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PRODUCT
NAME

P0700CAS7-MWR
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P0700CAS7-H7R Ver.7.x

Reference
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SuperH RISC engine C/C++ Compiler
Assembler Optimizing Linkage Editor
User’s Manual
ADE-702-372A
Rev.2.0

Eternity

Attached is the description of the known bugs in Ver. 7 series of the SuperH RISC engine C/C++ compiler.
The bugs will affect the package version shown in the table below.

Package version Compiler version
7.0B 7.0B

7.0.01 7.0.03
7.0.02 7.0.04
7.0.03 7.0.06
7.1.00 7.1.00
7.1.01
7.1.02

7.1.01

P0700CAS7-MWR

7.1.03 7.1.02
7.0B 7.0B

7.0.02 7.0.03
7.0.03 7.0.04
7.0.04 7.0.06
7.1.00 7.1.00
7.1.01
7.1.02

7.1.01

P0700CAS7-SLR

7.1.03 7.1.02
7.0B 7.0B

7.0.02 7.0.03
7.0.03 7.0.04
7.0.04 7.0.06
7.1.00 7.1.00
7.1.01
7.1.02

7.1.01

P0700CAS7-H7R

7.1.03 7.1.02

 The check tool can be downloaded from the following URL.
    http://www.renesas.com/eng/products/mpumcu/tool/index.html

Attached: P0700CAS7-030923E
          SuperH RISC engine C/C++ Compiler Ver. 7 Known Bugs Report(9)
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SuperH RISC engine C/C++ Compiler ver. 7
Known Bugs Report (9)

The failures found in the ver. 7 series of the SuperH RISC engine C/C++ compiler are listed below.
The check tool can be downloaded from the following URL:

http://www.renesas.com/eng/products/mpumcu/tool/index.html

1. Illegal EXTS/EXTU deletion after NEG
[Description]

When expressions (A and B) which include the same unsigned char/short type variable exist in the
forms of A-B and B-A in the same function, an EXTS/EXTU instruction is deleted illegally by the
common subexpression elimination.

[Example]
unsigned short var_a, var_b, var_c;
long result;

void f() {
unsigned short x;
if (var_a >= var_b) {

x = var_a - var_b;
result = x * var_c;

} else {
x = var_b - var_a;
result = x * var_c;

}
}

_f:
MOV.L L14,R2 ; _var_a
MOV.L L14+4,R4 ; _var_b
MOV.W @R2,R5
MOV.W @R4,R2
MOV.L L14+8,R4 ; _var_c
MOV R5,R6
SUB R2,R6 ; temp <- var_a-var_b
MOV.W @R4,R7
EXTU.W R5,R5
EXTU.W R2,R2
CMP/GE R2,R5
BF/S L12
EXTU.W R7,R4
EXTU.W R6,R2 ; x <- (unsigned short)temp
MOV.L L14+12,R5 ; _result
MUL.L R2,R4
STS MACL,R2
RTS
MOV.L R2,@R5

L12:
EXTU.W R6,R6
MOV.L L14+12,R5 ; _result
NEG R6,R2 ; x <- (long)(-temp)

; EXTU.W R2,R2 is deleted illegally
MUL.L R2,R4
STS MACL,R2
RTS
MOV.L R2,@R5
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[Conditions]
This problem may occur when all of the following conditions are satisfied.
Instances of this bug in the program can be found using the check tool.

(1) The optimize=1 option is specified.
(2) A variable which is declared with unsigned char/short type is used in the following expressions in

the same function.
                A-B and B-A

A and B are expressions which include the same unsigned char/short variable.
In the upper example, A is var_a and B is var_b.

(3) These expressions are target of common subexpression elimination (CSE). CSE works as follows
in the above example.

void f() {
unsigned short x;
long temp = var_a – var_b;
if (var_a >= var_b) {

result = (unsigned short)temp * var_c;
/* var_a-var_b is replaced. */

} else {
result = (unsigned short)(-temp) * var_c;
/* var_b-var_a is replaced. */

}
}

[Solution]
If a relevant failure exists, prevent the problem by one of the following methods.

(1) Specify the optimize=0 option to compile the file.
(2) Declare that unsigned char/short type variable as volatile, or declare the variable to which an
      expression including that unsigned char/short variable is assigned as volatile.

<Example>
void f() {

volatile unsigned short x;  /* add volatile */
if (var_a >= var_b) {

x = var_a-var_b;
result = x * var_c;

} else {
x = var_b - var_a;
result = x * var_c;

}
}
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2. Illegal EXTU deletion after load instruction
[Description]

An EXTU instruction after a load instruction may be deleted illegally in the expression where a datum
pointed to by a pointer to a variable of unsigned char/short type is added by 0, subtracted by 0 or
multiplied by 1.

[Example]
unsigned char *p;
int a;
void func(){

a = 0;
a += *p;

}

_func:
MOV.L L11,R5 ; _a
MOV #0,R2 ; H'00000000
MOV.L R2,@R5
MOV.L L11+4,R2 ; _p
MOV.L @R2,R6
MOV.B @R6,R2 ; R2 is sign extended.
RTS
MOV.L R2,@R5 ; R2 is stored in 4-byte area without zero-extension.

 [Conditions]
This problem may occur when all of the following conditions are satisfied.
Instances of this bug in the program can be found using the check tool.

(1) The optimize=1 option is specified.
(2) A variable of unsigned char/short type is accessed via a pointer.
(3) An addition or subtraction by 0, or a multiplication by 1 is performed against this variable.
   The optimization may induce an addition or subtraction by 0, or a multiplication by 1.

[Solution]
If a relevant failure exists, prevent the problem by one of the following methods.

(1) Remove the addition, subtraction or multiplication if an addition or subtraction by 0, or a
      multiplication by 1 is described explicitly.

              <Example>
                        void func(){
              a = *p;
          }

(2) Specify the optimize=0 option to compile the file.
(3) Assign the datum pointed to by the pointer to a variable of unsigned char/short type to a variable
      qualified with volatile, and use this variable instead..

              <Example>
                         void func() {
                                  volatile unsigned char temp = *p;
                                  a = 0;
                                  a += temp;
                         }


