

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

date: 2003/10/30

1/1

RENESAS TECHNICAL UPDATE
Classification
of Production Development Environment No TN-CSX-054A/E Rev 1

THEME
SuperH RISC engine C/C++ Compiler
Ver.7 bug report (9)

Classification of
Information

1. Spec change
2. Supplement of Documents
3. Limitation of Use
4. Change of Mask
5. Change of Production Line

Lot No. term of validity

PRODUCT
NAME

P0700CAS7-MWR
P0700CAS7-SLR
P0700CAS7-H7R Ver.7.x

Reference
Documents

SuperH RISC engine C/C++ Compiler
Assembler Optimizing Linkage Editor
User’s Manual
ADE-702-372A
Rev.2.0

Eternity

Attached is the description of the known bugs in Ver. 7 series of the SuperH RISC engine C/C++ compiler.
The bugs will affect the package version shown in the table below.

Package version Compiler version
7.0B 7.0B

7.0.01 7.0.03
7.0.02 7.0.04
7.0.03 7.0.06
7.1.00 7.1.00
7.1.01
7.1.02

7.1.01

P0700CAS7-MWR

7.1.03 7.1.02
7.0B 7.0B

7.0.02 7.0.03
7.0.03 7.0.04
7.0.04 7.0.06
7.1.00 7.1.00
7.1.01
7.1.02

7.1.01

P0700CAS7-SLR

7.1.03 7.1.02
7.0B 7.0B

7.0.02 7.0.03
7.0.03 7.0.04
7.0.04 7.0.06
7.1.00 7.1.00
7.1.01
7.1.02

7.1.01

P0700CAS7-H7R

7.1.03 7.1.02

 The check tool can be downloaded from the following URL.
 http://www.renesas.com/eng/products/mpumcu/tool/index.html

Attached: P0700CAS7-030923E
 SuperH RISC engine C/C++ Compiler Ver. 7 Known Bugs Report(9)

P0700CAS7-030923E

SuperH RISC engine C/C++ Compiler ver. 7
Known Bugs Report (9)

The failures found in the ver. 7 series of the SuperH RISC engine C/C++ compiler are listed below.
The check tool can be downloaded from the following URL:

http://www.renesas.com/eng/products/mpumcu/tool/index.html

1. Illegal EXTS/EXTU deletion after NEG
[Description]

When expressions (A and B) which include the same unsigned char/short type variable exist in the
forms of A-B and B-A in the same function, an EXTS/EXTU instruction is deleted illegally by the
common subexpression elimination.

[Example]
unsigned short var_a, var_b, var_c;
long result;

void f() {
unsigned short x;
if (var_a >= var_b) {

x = var_a - var_b;
result = x * var_c;

} else {
x = var_b - var_a;
result = x * var_c;

}
}

_f:
MOV.L L14,R2 ; _var_a
MOV.L L14+4,R4 ; _var_b
MOV.W @R2,R5
MOV.W @R4,R2
MOV.L L14+8,R4 ; _var_c
MOV R5,R6
SUB R2,R6 ; temp <- var_a-var_b
MOV.W @R4,R7
EXTU.W R5,R5
EXTU.W R2,R2
CMP/GE R2,R5
BF/S L12
EXTU.W R7,R4
EXTU.W R6,R2 ; x <- (unsigned short)temp
MOV.L L14+12,R5 ; _result
MUL.L R2,R4
STS MACL,R2
RTS
MOV.L R2,@R5

L12:
EXTU.W R6,R6
MOV.L L14+12,R5 ; _result
NEG R6,R2 ; x <- (long)(-temp)

; EXTU.W R2,R2 is deleted illegally
MUL.L R2,R4
STS MACL,R2
RTS
MOV.L R2,@R5

P0700CAS7-030923E

[Conditions]
This problem may occur when all of the following conditions are satisfied.
Instances of this bug in the program can be found using the check tool.

(1) The optimize=1 option is specified.
(2) A variable which is declared with unsigned char/short type is used in the following expressions in

the same function.
 A-B and B-A

A and B are expressions which include the same unsigned char/short variable.
In the upper example, A is var_a and B is var_b.

(3) These expressions are target of common subexpression elimination (CSE). CSE works as follows
in the above example.

void f() {
unsigned short x;
long temp = var_a – var_b;
if (var_a >= var_b) {

result = (unsigned short)temp * var_c;
/* var_a-var_b is replaced. */

} else {
result = (unsigned short)(-temp) * var_c;
/* var_b-var_a is replaced. */

}
}

[Solution]
If a relevant failure exists, prevent the problem by one of the following methods.

(1) Specify the optimize=0 option to compile the file.
(2) Declare that unsigned char/short type variable as volatile, or declare the variable to which an
 expression including that unsigned char/short variable is assigned as volatile.

<Example>
void f() {

volatile unsigned short x; /* add volatile */
if (var_a >= var_b) {

x = var_a-var_b;
result = x * var_c;

} else {
x = var_b - var_a;
result = x * var_c;

}
}

P0700CAS7-030923E

2. Illegal EXTU deletion after load instruction
[Description]

An EXTU instruction after a load instruction may be deleted illegally in the expression where a datum
pointed to by a pointer to a variable of unsigned char/short type is added by 0, subtracted by 0 or
multiplied by 1.

[Example]
unsigned char *p;
int a;
void func(){

a = 0;
a += *p;

}

_func:
MOV.L L11,R5 ; _a
MOV #0,R2 ; H'00000000
MOV.L R2,@R5
MOV.L L11+4,R2 ; _p
MOV.L @R2,R6
MOV.B @R6,R2 ; R2 is sign extended.
RTS
MOV.L R2,@R5 ; R2 is stored in 4-byte area without zero-extension.

 [Conditions]
This problem may occur when all of the following conditions are satisfied.
Instances of this bug in the program can be found using the check tool.

(1) The optimize=1 option is specified.
(2) A variable of unsigned char/short type is accessed via a pointer.
(3) An addition or subtraction by 0, or a multiplication by 1 is performed against this variable.
 The optimization may induce an addition or subtraction by 0, or a multiplication by 1.

[Solution]
If a relevant failure exists, prevent the problem by one of the following methods.

(1) Remove the addition, subtraction or multiplication if an addition or subtraction by 0, or a
 multiplication by 1 is described explicitly.

 <Example>
 void func(){
 a = *p;
 }

(2) Specify the optimize=0 option to compile the file.
(3) Assign the datum pointed to by the pointer to a variable of unsigned char/short type to a variable
 qualified with volatile, and use this variable instead..

 <Example>
 void func() {
 volatile unsigned char temp = *p;
 a = 0;
 a += temp;
 }

