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SuperH RISC engine C/C++ Compiler Ver.8 

The details of the detected bug information (2) 
 

 
The bugs detected in the ver. 8 of the SuperH RISC engine C/C++ Compiler is shown below. 

 
1.  Illegal Copy Propagation 
[Description] 
When a copy instruction existed in a block with multiple branch sources, the copy instruction might be 
illegally eliminated. 
 
[Example] 

int func(int *x) { 
int ret=0; 
while(*x++){ 

if(*x==1){ 
ret+=2; 

} 
} 
return (ret+2); 

} 
 

_func: 
MOV #0,R5 ; Illegally eliminated the copy instruction and converted R7 to R5 

L11: 
MOV.L @R4,R2 
ADD #4,R4 
  ; *1 Illegally eliminated MOV R7,R5 
TST R2,R2 
ADD #2,R5 
BT L13 
MOV.L @R4,R0 
CMP/EQ #1,R0 
BT L11 ; *2 By *3, BF L11 was converted 
BRA L11 
NOP  ; *3 Illegally eliminated MOV R5,R7 

L13: 
RTS 
MOV R5,R0 

 
[Conditions] 
This problem might occur when all of the following conditions were fulfilled. 

(1) The optimize=1 option was specified. 
(2) A conditional statement was described. 
(3) A copy instruction existed in a block with multiple branch sources (*1 in the above example). 
(4) The block of the branch sources in (3) had a path with no definition of the copy source register 

(R7 in the above example) for the copy instruction (in the example, the path branching from *2 
to L11). 

 
[Solution] 
This problem can be prevented by the following method. 

(1) Specify optimize=0. 
 
 
 



P0700CAS8-040518E 

 

2. Illegal Elimination of Unnecessary Expressions 
[Description] 
If a then or else clause of a conditional statement had an assignment expression and another assignment 
expression, of which the both sides had the same variable, follows the said expression, the conditional 
statement might be illegally eliminated. 
 
[Example] 

int x; 
 

void f(int y){ 
if (y>=256){ /* Illegal elimination */ 

x=0; /* *1 */ 
} 
x=x;  /* *2  Eliminated the assignment expression that had the same variable in both sides */ 
x++; 

} 
 
 
 

void f(int y){ 
x=0; 
x++; /* Propagated x=0 */ 

} 
 
 
 

void f(int y){ 
x=1; 

} 
 
[Conditions] 
This problem might occur when all of the following conditions were fulfilled. 

(1) The optimize=1 option was specified.  
(2) A conditional statement was described. 
(3) A then or else clause of the conditional statement of (2) had an assignment expression (*1 in the 

above example). 
(4) An assignment expression, in which the both sides had the same variable as the variable assigned 

to in (3), followed the conditional statement of (2) (*2 in the above example). 
 
[Solution] 
This problem can be prevented by either of the following methods. 

(1) Specify optimize=0. 
(2) Specify opt_range=noblock. 

. 
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3. Illegal Access with a Parameter Passed via the Stack 
[Description] 
If a function with the parameter passed via the stack had a function call immediately before the exit, an 
address for reference to a parameter passed via the stack might be incorrect when the speed option was 
specified. 
 
[Example] 

typedef struct { 
int x; 

} ST; 
extern void g(ST *x); 
void f(int a, ST b) { /* b was a parameter passed via the stack */ 

if (a) { 
g(&b); 
/* (A) */ 

} 
/* (B) */ 

} 
 
; Address where parameter b was stored at the function entry = R15  
_f: 

TST R4,R4 
BT L12 
MOV R15,R4 
MOV.L L14,R2 ; _g 
JMP @R2 ; (A) 
ADD #4,R4 ; R4 <- R15+4 : Not the address of b 

L12: 
RTS   ; (B) 
NOP 

 
[Conditions] 
This problem might occur when all of the following conditions were fulfilled. 

(1) The optimize=1 option was specified. 
(2) The speed option was specified. 
(3) The function had a parameter passed via the stack (b in the above example). 
(4) The function had multiple exits ((A) and (B) in the above example). 
(5) There was a function call immediately before any of the exits in (4) (g(&b); in the above 

example). 
(6) (5) was the only function call in this function. 

 
[Solution] 
This problem can be prevented by one of the following methods. 

(1) Do not specify the speed option. 
(2) Specify optimize=0. 
(3) Insert a nop() built-in function after the function call. 
(4) Insert a dummy function call in the function and specify the noinline option. 
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4. Incorrect GBR Relative Logic Operation 
[Description] 
If a logic operation with a 1-byte array or a bit-field member for which #pragma gbr_base/gbr_base1 was 
specified was performed, the result of the operation might be written to an incorrect area. 
 
[Example] 

#pragma gbr_base a,b 
char a[2],b[2]; 
void f() { 

a[0] = b[0] & 1; 
} 
 

MOV #_b-(STARTOF $G0),R0 
RTS 
AND.B #1,@(R0,GBR) ; Wrote the result of the operation to b[0] 

 
[Conditions] 
This problem might occur when all of the following conditions were fulfilled. 

(1) The gbr=user option was specified. 
(2) #pragma gbr_base/gbr_base1 was specified for any of the following variables: 

• An (unsigned) char-type array 
• A structure array that has an (unsigned) char-type member 
• A structure that has an (unsigned) char-type array member 
• A structure that has a bit-field member of 8 bits or less 

(3) A logic operation of a constant (&, |, ^) with the variable of (2) (b[0] in the above example) was 
performed. 

(4) The variable assigned to by the operation of (3) (a[0] in the above example) fulfilled the 
condition of (2). 

(5) Variables of (3) and (4) were different variables, different elements of the same array, or different 
members of the same structure. 

 
[Solution] 
This problem can be prevented by one of the following methods. 

(1) Cancel specification of #pragma gbr_base/gbr_base1. 
(2) Specify gbr=auto (outputs a warning and invalidates #pragma gbr_base/gbr_base1). 
(3) Assign the result of the operation to a temporary variable for which volatile has been specified. 

Example: 
      void f() { 
          volatile char temp; 
          temp = b[0] & 1; 
          a[0] = temp; 
      } 
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5. Illegal Elimination of Sign/Zero Extension 
[Description] 
If the address of a variable/constant or the index of an array was cast to 1 or 2 bytes and this value was 
used for accessing memory, or the expression which was cast to a char type was assigned to an unsigned 
short type variable and the result was used for comparison, the cast might be illegally eliminated. 
 
[Example 1] 

unsigned short x; 
char a[1000]; 
 
void f() { 
    a[(char)x] = 0; 
} 
 

MOV.L L11+2,R2 ; _x 
MOV.L L11+6,R6 ; _a 
MOV.W @R2,R5 
EXTU.B R5,R0 
  ; Eliminated EXTS.B R0,R0 
MOV #0,R5 ; H'00000000 
RTS 
MOV.B R5,@(R0,R6) ; When x was not within the range of 0 to 127, 
  ; an incorrect address might be referred to. 

 
[Example 2] 

unsigned short sc0; 
unsigned int b; 
 
func1() { 

unsigned short us1; 
us1 = (char)b�  
return(us0 !=us1); 

} 
 

MOV.L L11,R2 ; _b 
MOV.L L11+4,R5 ; _us0 
MOV.L @R2,R6 
EXTS.B R6,R2 
MOV.W @R5,R6 
EXTU.W R6,R5  
CMP/EQ R2,R5 ; (char)b was not cast to an unsigned short type 
  ; and was used in comparison. 
MOVT R0 
RTS 
XOR #1,R0 

 
[Conditions] 
This problem might occur when all of the following conditions were fulfilled. 

(1) The optimize=1 option was specified. 
(2) One of the following conditions (a)(b) was fulfilled. 

(a-1)  The address of a variable/constant or the index of an array was explicitly cast to 1 or 2 
bytes, or this function had a char/short type temporary parameter and the parameter was used 
only in the index of an array. 

       (a-2)  The value of (a-1) was used for accessing memory. 
 

(b-1)  The expression which was cast to a char type was assigned to an unsigned short type 
variable. 

       (b-2)  The variable of (b-1) was used for comparison. 
 
[Solution] 
This problem can be prevented by one of the following methods. 

(1) Specify optimize=0. 
(2) If the condition (2)(b) is fulfilled, declare the unsigned type variable of (b-1) as volatile. 


