RX FAMILY ハードウェア マニュアルガイド (電気的特性①)

2022/11/22 REV1.0 ルネサスエレクトロニクス株式会社

絶対最大定格

61.1 絶対最大定格

表61.1 絶対最大定格

条件: VSS = AVSS0 = AVSS1 = VREFL0 = VSS USB = 0V

項目		記号	定格値	単位			
電源電圧		VCC, VCC_USB	−0.3 ~ +4.0	V			
V _{BATT} 電源電圧		V_{BATT}	−0.3 ~ +4.0	V			
入力電圧(5Vトレラント対応	ポート ^(注1) 以外)	V _{in}	-0.3 ~ VCC + 0.3 (最大 4.0)	V			
入力電圧(5Vトレラント対応	ポート ^(注1))	V _{in}	-0.3 ~ VCC + 4.0 (最大 5.8)	V			
リファレンス電源電圧		VREFH0	-0.3 ~ AVCC0 + 0.3 (最大 4.0)	V			
アナログ電源電圧		AVCC0, AVCC1 (注2)	− 0.3 ∼ + 4.0	V			
アナログ入力電圧		V _{AN}	-0.3 ∼ AVCC + 0.3 (最大 4.0)	V			
ジャンクション温度	Dバージョン	T _j	−40 ~ +105	C			
	Gバージョン	T _j	−40 ~ +125	°C			
保存温度		T _{stg}	<u>−55</u> ~ +125	° C			

【使用上の注意】絶対最大定格を超えて LSI を使用した場合、LSI の永久破壊となることがあります。

- 注1. P07、P11~P17、P20、P21、P30 P33、P67、PC0~PC3は、5Vトレラント対応です。
- 注2. AVCCO、AVCC1、VCC_USBはVCCに、AVSSO、AVSS1、VSS_USBはVSSに接続してください。
 A/Dコンバータのユニット0を使用しない場合、VREFH0端子はVCCに、VREFL0端子はVSSにそれぞれ接続し開放しないでください。AVCCOとAVSSO間、AVCC1とAVSS1間には周波数特性の良いコンデンサを挿入してください。コンテンサは0.1μF程度の容量のものを、できる限り電源端子の近くに配置し、最短距離かつできる限り太いパターンを使用して接続してください。

絶対最大定格は、マイコンが 「永久破壊」とならない範囲を示すもの であり、安定動作を保証するものではご ざいません。

条件は、電気的特性を保証するうえでの 必要条件です。

永久破壊を防ぐ電源電圧範囲です。

各端子における、永久破壊とならない入力電圧範囲です。 (最大)の条件は、VCCまたはAVCCが推奨動作条件 min以上の場合に有効です。

永久破壊を防ぐジャンクション温度範囲 です。

チップを動作させていないときの保管可 能な温度範囲です。

電気特性項目に対する補足情報です。 正しくお使いになるためには、こちらの 条件も確認いただく必要があります。

推奨動作条件

USB電源電圧は、使用時と不使用時で 異なります。USBを不使用として5V のVCC電源をUSB VCC電源を接続し た状態において、USBを使用すると、 USB端子の電源電圧特性を守れません。 USB使用時は必ず電源電圧をお守りく ださい。

動作を保証できる温度です。特に記載 のない限り、Taと同等です。

電源立ち上げ時もこの関係を遵守願い ます。

内部電源安定用平滑コンデンサは必ず 規格値に該当するものをお使いくださ い。これ以外の場合、動作の保証はで きません。

表 45.2 推奨動作条件(1)

_								
ſ		項目		記号	min	typ	max	単位
ſ	電源電圧			VCC (注1)	2.7	_	5.5	V
1				VSS	_	0	_	
f	USB電源電圧	(注2)	USB使用時	VCC_USB (注1)	3.0	_	3.6	
1				VSS_USB	_	0	_	
١			USB不使用時	VCC_USB	_	VCC	_	
1				VSS_USB	_	VSS	_	
	アナログ電源	電圧 (注3)		AVCC0, AVCC1, AVCC2 (注1)	3.0	_	5.5	
1				AVSS0, AVSS1, AVSS2	_	0	- /	
	入力電圧	PB1, PB2, PC0 (注4), PD2 (注4) P40~P42, 負入力許可時 (注5)		V _{in}	-0.3	_	5.8	
1					-1.0	_	AVCC1 + 0.3	
1		P44~P46	負入力禁止時		-0.3	_		
1		PH0, PH4	負入力許可時(注5)		-0.5	_	AVCC1 + 0.3	
1			負入力禁止時		-0.3	_		
١		P43, P47, PH1 ~ P	H3, PH5∼PH7		-0.3	_	AVCC1 + 0.3	
١		P50~P55, P60~	P65		-0.3		AVCC2 + 0.3	
١		USB0_DP, USB0_I	OM		-0.3	_	VCC_USB + 0.3	
1		上記以外			-0.3	_	VCC + 0.3	
1	動作温度	Dバージョン		T _{opr}	-40	_	85	°C
l		Gバージョン			-40	_	105	
•	注1. 4各電源	電圧の関係は以下を	守ってください。					

VCC USB ≤ VCC ≤ AVCC0 = AVCC1 = AVCC2

- USBを使用しないときは、VCC USBとVCC、VSS USBとVSSをそれぞれ接続し、VOLSR.USBVON = 0にしてください。
- 注3. 12 ビットA/D コンパータ (ユニット0~2)、12 ビット D/A コンパータ、コンパレータ C、温度センサのいずれも使用しないと きは、AVCCD、AVCC1、AVCC2はVCCに、AVSS0、AVSS1、AVSS2はVSSにそれぞれ接続してください。詳細は 「38.6.10 アナログ電源端子他の設定範囲」を参照してください。
- 注4. RAM容量が128Kバイトの製品のみ
- 注5. VOLSR.PGAVLS = 0かつADPGADCR0.PxDEN = 1 (x = 000, 001, 002, 100, 101, 102)のとき

表 45.3 推奨動作条件(2)

	項目	記号	規格值			
I	内部電源安定用平滑コンデンサ容量	C _{VCL}	0.47µF ± 30% (注 1)			

注1. 静電容量の公称値が0.47µF、静電容量許容差が±30%以内の積層セラミックコンデンサモ使用してくたさい。

推奨動作条件は、マイコンがACスペックを保 証し、安定動作できる条件になります。

端子により基準電圧が異なりますので注意して ください。

高温動作時の注意事項をまとめたアプリケー ションノートを用意しております。併せてご確 認ください。

高温動作に関する注意事項

VCLはVCCに接続せず、コンデンサを経由して VSSにのみ接続してください。

内部電源安定用平滑コンデンサは必ず積層セラ ミックコンデンサをお使いください。

表 45.4 DC特性(1)

条件: VCC = 2.7~5.5V、VCC_USB = 2.7~5.5V、AVCC0 = AVCC1 = AVCC2 = 3.0~5.5V、 VSS = VSS_USB = AVSS0 = AVSS1 = AVSS2 = 0V,

 $T_a = T_{opr}$

	項目	記号	min	typ	max	単位	測定条件
シュミットトリガ	CAN入力端子、MTU入力端子、	V _{IH}	0.8 × VCC	_	_	V	
入力電圧	GPTW 入力端子、POE 入力端子、 POEG 入力端子、TMR 入力端子、	V _{IL}	_	_	0.2 × VCC		
	SCI入力端子、ADTRG#入力端 子、RES#、NMI	ΔV_{T}	0.06 × VCC	_	_		
	IRQ入力端子	V _{IH}	0.8 × VCC	_	_		
	(P52~P55、P60~P65 を除く)	V _{IL}	_	_	0.2 × VCC		
		ΔV_{T}	0.06 × VCC	_	_		
	IRQ入力端子	V _{IH}	0.8 × AVCC2	_	_		
	(P52 ~ P55, P60 ~ P65)	V _{IL}	_	_	0.2 × AVCC2		
		ΔV_T	0.06 × AVCC2	_	_		
	RIIC入力端子	V _{IH}	0.7 × VCC	_	_		
	(SMBus を除く)	V_{IL}	_	_	0.3 × VCC		
		ΔV_T	0.06 × VCC	_	_		
	5V トレラント対応端子	V _{IH}	0.8 × VCC	_	_		
	(PB1, PB2, PC0 (注1), PD2 (注1))	V _{IL}	_	_	0.2 × VCC		
	アナログ入力端子	V _{IH}	0.8 × AVCC1	_	_		
	(P40 ~ P47, PH0 ~ PH7)	V _{IL}	_	_	0.2 × AVCC1		
	アナログ入力端子	V _{IH}	0.8 × AVCC2	_	_		
	(P50 ~ P55, P60 ~ P65)	V _{IL}	_	_	0.2× AVCC2		
	その他の入力端子	V _{IH}	0.8 × VCC		_		
	(上記以外のポート)	V_{IL}	_	-	0.2 × VCC		
High レベル入力	MD端子、EMLE	V _{IH}	0.9 × VCC	_	_	V	
電圧(シュミット トリガ入力端子を	EXTAL、WAIT#、RSPI入力端子		0.8 × VCC	-	_		
除く)	D0∼D15		0.7 × VCC	-	_		
	RIIC (SMBus)		2.1	_	_		
Lowレベル入力	MD端子、EMLE	V_{IL}	_	_	0.1 × VCC	V	
電圧(シュミット トリガ入力端子を	EXTAL、WAIT#、RSPI入力端子		_	_	0.2 × VCC		
除く)	D0~D15		_	-	0.3 × VCC		
	RIIC (SMBus)		_	_	0.8		

Page 4

下記スペックを保証するうえで遵守すべき条 件です。必ずご確認ください。

端子により基準電圧が異なりますので注意し てください。

ΔVtが明記されていない端子は、ヒステリシ ス幅を持つことを保証しておらず、VIHmin 以上であればHighと認識すること、VILmax 以下であればLowと認識することのみの保証 となります。

上記「入力リーク電流」に記載の端子 以外のリーク電流に関してはこちらを ご確認ください。 なお、オフ状態とはハイインピーダン

内蔵プルアップ抵抗値はここから算出 願います。

ス状態を指します。

プルアップ抵抗 = ご使用の電圧 ÷ Ip

表45.5 DC特性(2)

条件: $VCC = 2.7 \sim 5.5 \text{V}$, VCC USB = $2.7 \sim 5.5 \text{V}$, $AVCC0 = AVCC1 = AVCC2 = 3.0 \sim 5.5 \text{V}$, $VSS = VSS_USB = AVSS0 = AVSS1 = AVSS2 = 0 \text{V}$, $T_a = T_{opr}$

項		記号	min	typ	max	単位	測定条件
	3, P47, PH1 ~ PH3, 5 ~ PH7	V _{OH}	AVCC1 - 0.5	_	_	٧	I _{OH} = -1.0mA
P50	~ P55, P60 ~ P65		AVCC2 - 0.5	_	_	Ī	I _{OH} = -1.0mA
	0 ~ P95, P71 ~ P76, P81, 5, PD3		VCC - 1.0	-	_		I _{OH} = -5.0 mA (大電流出力設定時)
上記	己以外		VCC - 0.5	_	_	Ī	I _{OH} = -1.0mA
	3, P47, PH1 ~ PH3, 5 ~ PH7	V _{OL}	_	-	0.5		I _{OL} = 1.0mA
P50	~ P55, P60 ~ P65		_	_	0.5	Ī	I _{OL} = 1.0mA
	0 ~ P95, P71 ~ P76, P81, 5, PD3		_	_	1.0		I _{OL} = 15 mA (大電流出力設定時)
RIIC	端子		_	_	0.4	[I _{OL} = 3.0mA
			_	ı	0.6		I _{OL} = 6.0mA
上記	已以外		_	ı	0.5		I _{OL} = 1.0mA
	S#、MD端子、PE2、 LE ^(注1)	I _{in}	_	_	1.0	μА	V _{in} = 0V V _{in} = VCC
P40) ~ P42, P44 ~ P46		_	-	1.0		V _{in} = 0V V _{in} = AVCC1
РНО), PH4		_	_	1.0		V _{in} = 0V V _{in} = AVCC1 VOLSR.PGAVLS = 1
	端子	I _{TSI}	_	_	5.0	Ī	V _{in} = 0V
ク電流(オフ状態)	己以外		_	_	1.0	Ī	V _{in} = VCC
電流 PH5	8, P47, PH1 ~ PH3, 5 ~ PH7, P50 ~ P55, 0 ~ P65	l _p	-300	_	-10		AVCC1 = AVCC2 = 3.0 ~ 5.5V V _{in} = 0V
上記子	B以外および、PE2以外の端		-300	_	-10		VCC = 2.7 ~ 5.5V V _{in} = 0V
入力プルダウン抵抗 EMI 電流	LE		10	_	300		V _{in} = VCC = AVCC
入力端子容量 RIIC	C端子, PH0, PH4	C _{in}	_	_	16	pF	V _{bias} = 0V
USE	B0_DP、USB0_DM端子		_	_	16		V _{amp} = 20mV f = 1MHz
上記	己以外		_	_	8		T _a = 25°C
VCL端子出力電圧		V _{CL}	_	1.25	_	٧	

下記スペックを保証するうえで遵守すべき 条件です。必ずご確認ください。

記載していない条件下での情報に関しては、IBISモデルでの確認をお願いいたします。

注1. EMLE 端子の入力リーク電流はV_{in} = 0V 時のみの値です。

BGOを除く全機能動作時の消費電流です。

BGOを除き、かつモジュールストップコン トロールレジスタに示すモジュールにク ロック供給/停止した際の消費電流です。

各モードにおける消費電流値になります。 その際の状態は消費電力低減機能をご参照 下さい。以下は一例です。

遷移および解除方法と 動作状態	スリープモード	全モジュール クロックストップモード	ソフトウェア スタンパイモード	ディープソフトウェア スタンパイモード
遷移方法	制御レジスタ + 命令	制御レジスタ + 命令	制御レジスタ+命令	制御レジスタ + 命令
リセット以外の解除方法	割り込み	割り込み (注1)	割り込み (注2)	割り込み (注3)
解除後の状態(注4)	プログラム実行状態 (割り込み処理)	プログラム実行状態 (割り込み処理)	プログラム実行状態 (割り込み処理)	プログラム実行状態 (リセット処理)
メインクロック発振器	動作可能	動作可能	停止	停止
高速オンチップオシレータ	動作可能	動作可能	停止	停止
低速オンチップオシレータ	動作可能	動作可能	停止	停止
IWDT専用オンチップオシレータ	動作可能(注5)	動作可能(注5)	動作可能(注5)	停止(不定)(注5)
PLL	動作可能	動作可能	停止	停止
CPU	停止(保持)	停止(保持)	停止(保持)	停止(不定)
RAM, ECCRAM	動作可能(保持)	停止(保持)	停止(保持)	停止(不定)
フラッシュメモリ	動作	停止(保持)	停止(保持)	停止(保持)
USBFSホスト/ファンクションモ ジュール(USBb)	動作可能	停止(注6)	停止(注6)	停止(不定)
ウォッチドッグタイマ(WDTA)	停止(保持)	停止(保持)	停止(保持)	停止(不定)
独立ウォッチドッグタイマ (IWDT)	動作可能(注5)	動作可能(注5)	動作可能(注5)	停止(不定) ^(注5)
ポートアウトブットイネーブル (POE)	動作可能	動作可能(注7)	停止(保持)	停止(不定)
8ビットタイマ(ユニット0, 1) (TMR)	動作可能	動作可能(注8)	停止(保持)	停止(不定)
電圧検出回路(LVDA)	動作可能	動作可能	動作可能	動作可能(注9)
パワーオンリセット回路	動作	動作	動作	動作
周辺モジュール	動作可能	停止(保持)	停止(保持)	停止(不定)
VOポート	動作	保持(注10)	保持(注11)	保持(注11)

DC特性(3) (RAM容量が64Kバイトの製品、Dバージョン)

条件: VCC = 2.7~5.5V, VCC USB = 2.7~5.5V, AVCC0 = AVCC1 = AVCC2 = 3.0~5.5V

VSS = VSS USB = AVSS0 = AVSS1 = AVSS2 = 0V. $T_a = T_{opr}$

		7	ī	記号	D	バージョ	ン	単位	測定条件
			48	9C -5	min	typ	max	単位	测走米针
消費電流	ŧ	最大動作(注	£2)	Icc	-	_	75	mA	ICLK = 160MHz
(注1)		连带	- 周辺機能クロック供給状態 (注4)	(注3)	_	21	_		PCLKA = 80MHz PCLKB = 40MHz
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	動作	周辺機能クロック停止状態 (注4、注5)		-	12	-		PCLKC = 160MHz PCLKD = 40MHz
	# #	CoreMark 動作	周辺機能クロック停止状態 (注4、注5)		-	21	-		FCLK = 40MHz BCLK = 40MHz BCLK 端子 = 40MHz
	通常動作モ	スリープモ 態 ^(注4)	一ド時:周辺機能クロック供給状		-	18	37		BCLN编于 = 4UMIN2
		全モジュー (参考値)	ルクロックストップモード時		1	9.4	23		
/		BGO動作時	fの増加分 ^(注6)	[-	13	_		
		Trusted Sec	cure IP 動作時の増加分	Ī	_	3.9	5.0		1
	ソフト	ウェアスタン	バイモード	Ī	_	0.9	7.0		OLSR.PGAVLS = 1
	ディープソフトウェアスタンパイモード				_	14	20	μA	VOLSR.PGAVLS = 1
24.4	出来要流体	+ + 2 - 0	出力端子を無負荷状態にして、さ	C 1 = rh db =	fu -z	がははまる	■か <i>!</i> -1 +	・担合	りはってナ

べき条件です。必ずご確認ください。

下記スペックを保証するうえで遵守す

Typ/maxの相違は、

温度と製造バラつきなどにより発生します。 特に温度に依存します。

- 注1. 消費電流値は、すべての出力端子を無負荷状態にして、さらに内蔵ブルアップ抵抗を無効にした場合の値です。
- 注2. 周辺機能クロック供給状態。BGO動作は除きます。
- 注3. I_{CC}は、下記の式のとおりICLK周波数f (MHz)に依存します (ICLK:PCLKA:PCLKB:PCLKC:PCLKD:BCLK:BCLK: 端子 = 4:2:1:4:1:1:1 @EXTAL = 16MHz)。 Dバージョン製品
 - I_{CC} max = 0.375 x f + 15 (高速動作モード、最大動作時)
 - I_{CC} typ = 0.099 × f + 5 (高速動作モード、通常動作時)
 - ICC max = 0.135 × f + 15 (スリープモード時)
- 注4. BGO動作は除きます。また、周辺機能クロックの供給/停止は、モジュールストップコントロールレジスタA~D 定でのみ制御しています。

Page 6

- 注5. 周辺機能クロック停止時の各クロック周波数は、
 - FCLK = BCLK = PCLKA = PCLKB = PCLKC = PCLKD = BCLK 端子を64分周に設定しています。
- 注6. プログラム実行中に、コードフラッシュメモリまたはデータフラッシュメモリをプログラム/イレーズした場合の増加分です。

実際の消費電流の求め方は、「各グループの高温動作に 関する注意事項」に記載しています。 詳細は下記より資料をご参照ください。

RX用お役立ち情報はこちら

下記スペックを保証するうえで遵守す べき条件です。必ずご確認ください。

表45.11 DC特性(5)

条件: VCC = 2.7~5.5V, VCC USB = 2.7~5.5V, AVCC0 = AVCC1 = AVCC2 = 3.0~5.5V, VSS = VSS_USB = AVSS0 = AVSS1 = AVSS2 = 0V,

 $T_a = T_{opr}$

	項目				typ	max	単位	測定条件
電源投入時VCC	立ち上がり勾配	通常起動時	SrVCC	0.02	_	8	ms/V	
		起動時電圧監視0リセット 有効時(注1、注2)		0.02	_	20		
許容電源変動立	ち上がり/立ち下か	り勾配	dt/dVCC	1.0	_	_		VCC 変動がVCC±10% を超える場合

注1. OFS1.LVDAS = 0を設定した場合です。

注2. ブートモード、ユーザブートモード時はOFS1レジスタにて設定した値は読み込まれませんので、通常起動時の立ち上げ勾配 にて電源電圧を立ち上げてください。

90

80 VCC=5Vの例

Page 7

100 110

SrVCC(MAX) SrVCC(MAX) LVD0未使用時の電源立ち上げ勾配です。 LVD0使用時の電源立ち上げ勾配です。 これよりも緩慢に電源を立ち上げる場 これよりも緩慢に電源を立ち上げる場合は保証 合は保証範囲外となります。(8ms/V) 範囲外となります。(20ms/V) Vcc dt/dVCC LVD0未使用時の 電源変動(±10%を超える変動)に LVD0使用時の 電源立ち上げ範囲 電源立ち上げ範囲 対する許容可能立ち上がり/下がり 勾配です。これよりも急激に 5 電源変動が発生した場合は 保証範囲外となります。(1ms/V) Δ VCC下限 (製品により異なります) 1

VCC変動が±10%を超える場合、 許容出来る電源変動勾配です。

これよりも急激に電源を立ち上げる場合は 保証範囲外となります。(0.02ms/V)

SrVCC(MIN)

50

210 220 230 240 Time(ms)

下記スペックを保証するうえで遵守すべき条件です。必ずご確認ください。

表63.8 出力許容電流

条件: $VCC = AVCC0 = AVCC1 = VCC_USB = V_{BATT} = 2.7 \sim 3.6 \text{V}, 2.7 \text{V} \le VREFH0 \le AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = 0 \text{V},$

 $T_a = T_{opr}$

外部から電流を引き込んだ時の値となります。

MCU駆動時間に対する平均電流です。 (例)1mAh、2mAh、3mAhの場合、 6mA/3h=平均2mA/hとなります。

1端子に流せる最大許容電流値です。 これを超えると信頼性確保が出来なく なります。

MCUの全出力端子の合計電流値です。

MCUから外部に電流を吐き出した時の値となります。

	項目		記号	min	typ	max	単位
Lowレベル出力許容電流	全出力端子(注1)	通常駆動	l _{OL}	_	_	2.0	mA
(1端子あたりの平均値)	全出力端子(注2)	高駆動		_	_	3.8	
	全出力端子(注3)	高速インタフェース 用高駆動		_	_	7.5	
Lowレベル出力許容電流	全出力端子(注1)	通常駆動	I _{OL}	_	_	4.0	mA
(1端子あたりの最大値)	全出力端子(注2)	高駆動]	_	_	7.6	
	全出力端子(注3)	高速インタフェース 用高駆動		_	_	15	
Low レベル出力許容電流 (総和)	全出力端子の総和	•	ΣI _{OL}	_	_	80	mA
High レベル出 力許 容電流	全出力端子(注1)	通常駆動	I _{OH}	_	_	-2.0	mA
(1端子あたりの平均値)	全出力端子(注2)	高駆動]	_	_	-3.8	
	全出力端子(注3)	高速インタフェース 用高駆動		_	_	-7.5	
Highレベル出力許容電流	全出力端子(注1)	通常駆動	I _{OH}	_	_	-4.0	mA
(1端子あたりの最大値)	全出力端子(注2)	高駆動	1	_	_	- 7.6	
	全出力端子(注3)	高速インタフェース 用高駆動		_	_	- 15	
High レベル出力許容電流(総和)	全出力端子の総和		Σl _{OH}	_	_	-80	mA

駆動能力制御レジスタ(DSCRx)にてポート 駆動能力を設定した際のデータです。 出力インピーダンスは以下となります。

通常駆動 > 高駆動 > 高速インタフェース用 高駆動

【使用上の注意】MCU の信頼性を確保するため、出力電流値は表 63.8 の値を超えないようにしてください。

- 注1. 通常駆動が選択できる端子で通常駆動を設定した場合の値
- 注2. 通常駆動が選択できる端子で高駆動を設定した場合、あるいは高駆動固定の端子の値
- 注3. 高速インタフェース用高駆動設定ができる端子で、高速インタフェース用高駆動設定をした場合の値

表45.13 熱抵抗値(参考値)

条件: VCC = 2.7~5.5V, VCC_USB = 2.7~5.5V, AVCC0 = AVCC1 = AVCC2 = 3.0~5.5V,

VSS = VSS_USB = AVSS0 = AVSS1 = AVSS2 = 0V,

 $T_a = T_{opr}$

項目	パッケージ	記号	min	typ	max	単位	測定条件] ,	
熱抵抗	144ピンLFQFP (PLQP0144KA-B)	θja	_	_	32.4	°C/W	JESD51-2および		JEDEC規格に則った熱抵抗を記載して おります。
	112 ピンLQFP (PLQP0112JA-B)]		_	33.8		JESD51-7準拠		のります。 詳細は以下をご参照下さい。
	100ピンLFQFP (PLQP0100KB-B)		_	_	35.0				< <u>放熱のメカニズム Renesas</u> >
	80 ピンLFQFP (PLQP0080KB-B)]	_	_	36.3			'	
	80 ピンLQFP (PLQP0080JA-A)]	_	_	35.7				
	64 ピンLFQFP (PLQP0064KB-C)]	_	_	37.9	Ī			Θja=(Тj-Та)/Р
	144ピンLFQFP (PLQP0144KA-B)	Ψ _{jt} -		_	0.6	Ī			
	112 ピンLQFP (PLQP0112JA-B)]	_	_	0.6				Ψjt=(Tj-Tt)/P
	100ピンLFQFP (PLQP0100KB-B)]	_	_	0.8				+ jt=(1)-1 t//1
	80 ピンLFQFP (PLQP0080KB-B)]	_	_	0.8				Tt 1
	80 ピンLQFP (PLQP0080JA-A)]	_	_	0.8	Ī			1mm
	64 ピンLFQFP (PLQP0064KB-C)]	_	_	0.8				T)
	■装ポードを想定した参考値です。熱抵抗 JEDEC規格を参照してください。	は実装ボ-	- 一ドの層数	女やサイズ	などの環	境に依存し	しますので、環境の詳	(Tb 実装基板

Page 9

様々な経路で放熱

Ta:発熱源の影響を受けない場所の温度

