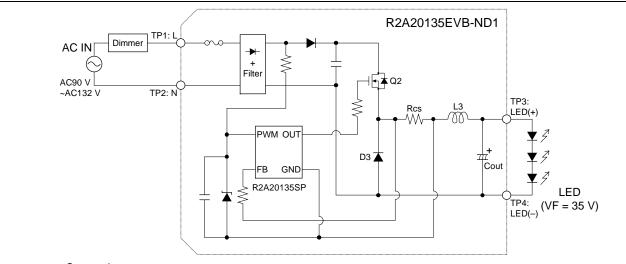


R2A20135EVB-ND1

R2A20135 Evaluation Board

R19AN0012EJ0200 Rev.2.00 Jul 31, 2013

1. General Description


R2A20135EVB-ND1 is an evaluation tool for evaluating LED control IC R2A20135. As all of the parts and the peripheral circuit which are necessary for LED lighting control are built on this evaluation board, R2A20135 can be evaluated with just only supplying AC power source and connecting LED load.

Since this evaluation board is composed as Step-down/High-side (non-isolated), it achieves high efficiency, high power factor, low THD (total harmonic distortion) and low output current ripple. Furthermore, phase cut dimming is supported with dimmable function built in R2A20135. For using this board, please also refer the R2A20135SP datasheet and application note.

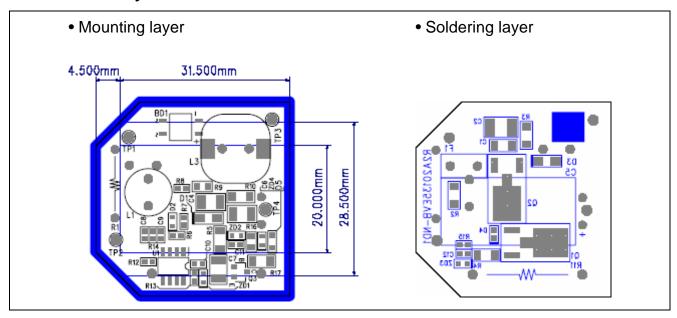
2. Specifications

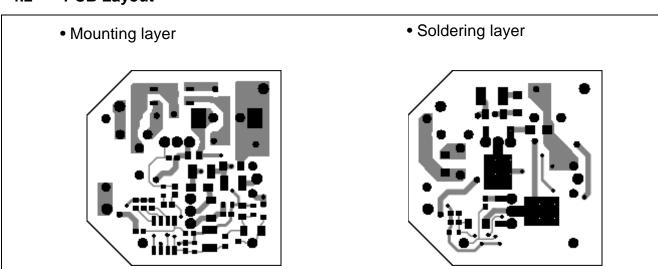
No.	Item	Specification		
1	Input voltage range	AC90 to 132 V (single phase 47 to 63 Hz)		
2	Input power	9.1 W (typ.)		
3	Output voltage (VF)	DC35 V		
4	Output current	220 mA (typ.)		
5	Efficiency	85% < (@Vin = AC100 V)		
6	Power factor	0.9 < (@Vin = AC90 V to 132 V)		
7	Switching frequency	62 kHz		
8	Operational mode	Current discontinuity (Fixed switching frequency)		
9	PCB	Dual layers / Glass epoxy (FR4) / Dual-sided mount		
10	Size (W´D´H)	36 mm ´ 36 mm ´ 20 mm (Top layer)		

3. System Diagram & Connection

Connecting steps:

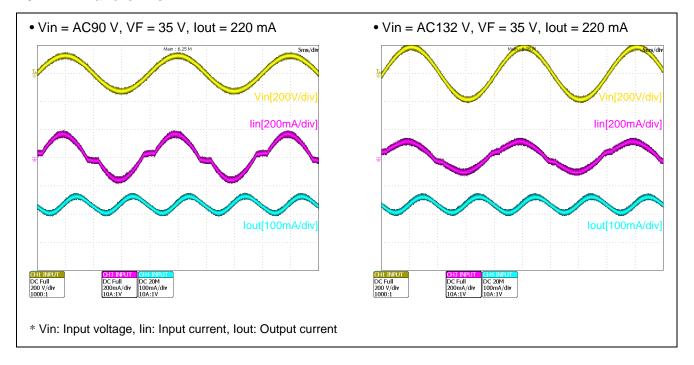
- (1) LED load (VF = 35 V, not less than 220 mA of current ratings) is connected to TP3 and TP4.
- (2) AC power supply is connected to TP1 and TP2. When connecting, it is cautious of the polarity of LED.


Note: When you use this evaluation board, please use connecting LED load to an output terminal (TP3, TP4). It is no-load, and output voltage will not be stabilized if it is made to operate. Parts may be damaged when the worst.

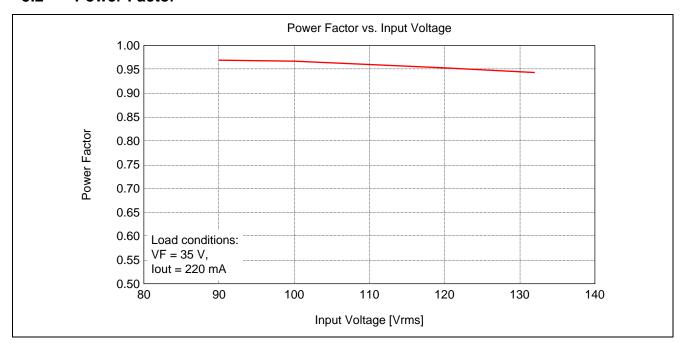

High voltages are produced in parts of the board. Take care of this point when using the board.

4. PCB Layout

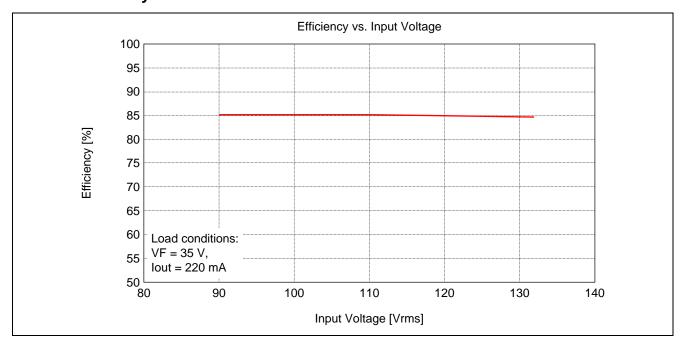
4.1 Parts Layout

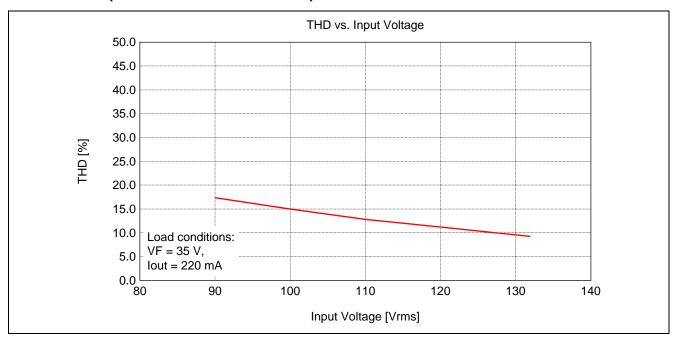


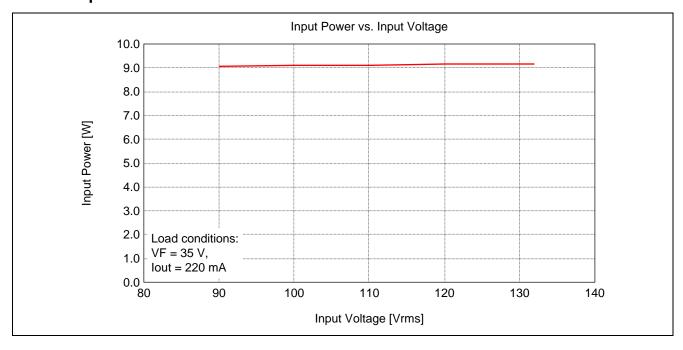
4.2 PCB Layout

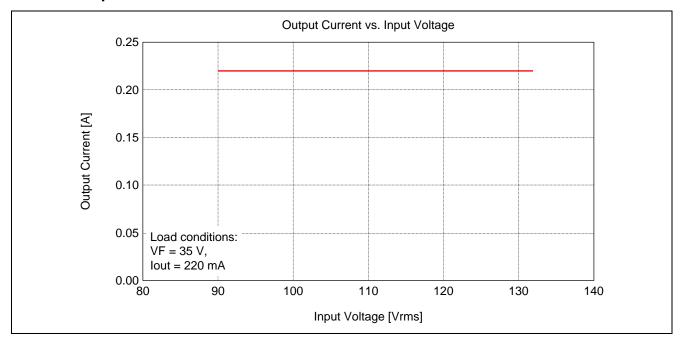


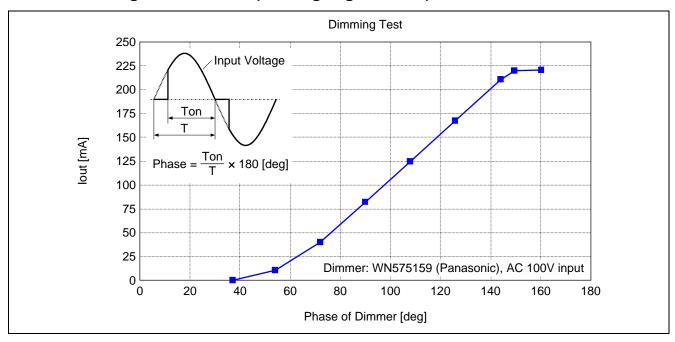
5. Performance Characteristics

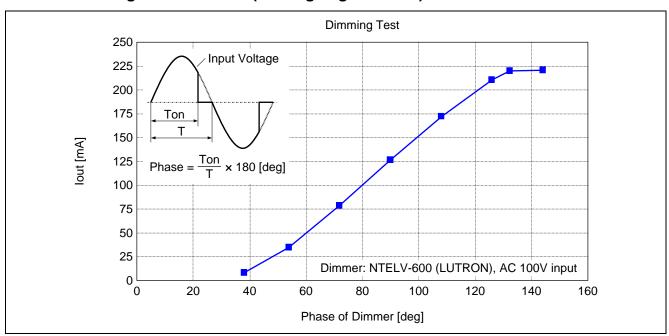

5.1 Waveforms

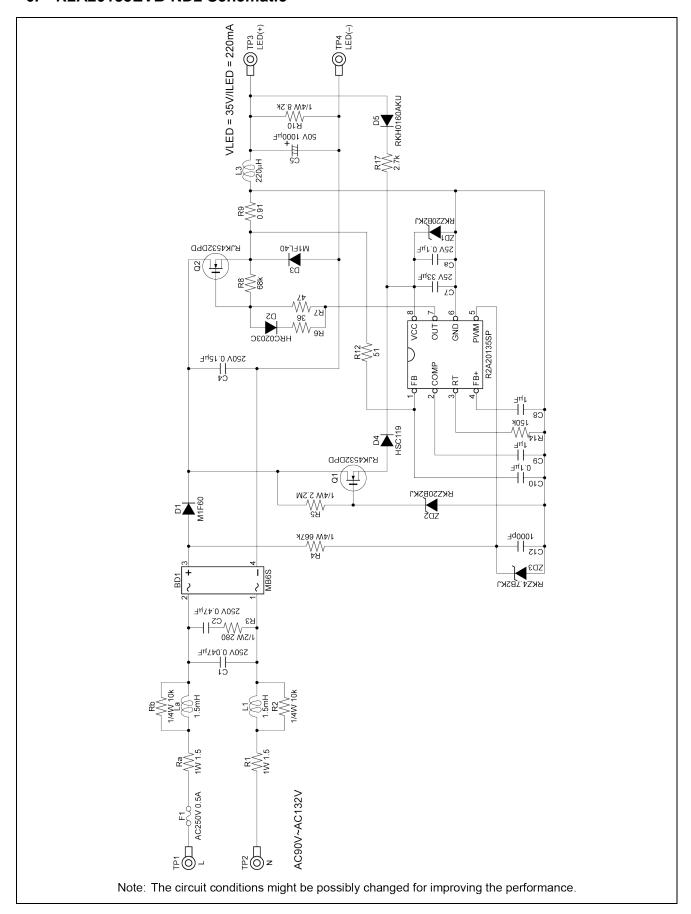

5.2 Power Factor


5.3 Efficiency


5.4 THD (Total Harmonic Distortion)


5.5 Input Power


5.6 Output Current


5.7 Dimming Characteristic (Leading edge dimmer)

5.8 Dimming Characteristic (Trailing edge dimmer)

6. R2A20135EVB-ND2 Schematic

7. Design Guide

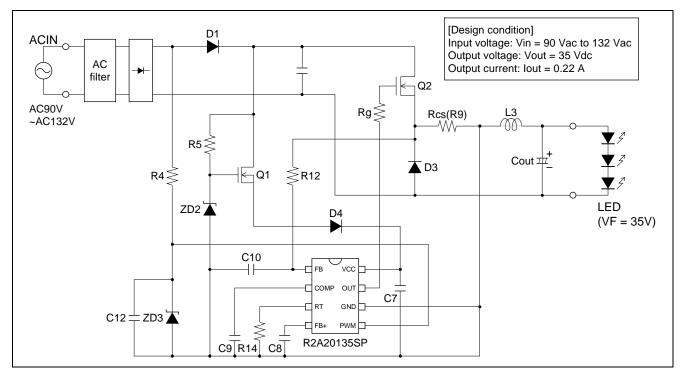


Figure 7.1 R2A20135EVB-ND1 Schematic

In frequency fixation and average current control, it becomes a control system which makes input electric power regularity.

In this case, the current which flows into the inductor L3 becomes discontinuous, as shown in the following figure.

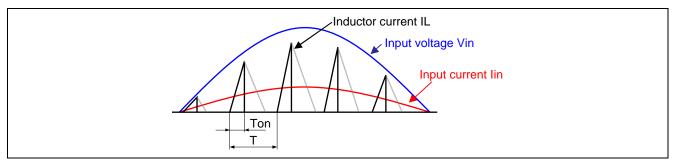


Figure 7.2 Input Current & Inductor Current

7.1 The Choice of Fixed-Frequency

To avoid the listenable frequency range, and in consideration of efficiency, it designs or less than 100 kHz. We choose 60 kHz as an example. (20 kHz or more)

7.2 Calculation of the Resistance Rrt for Setting the Frequency

It is calculated with 157 kW from the following formula, and 150 kW is selected. The frequency at this time is set to 62 kHz.

$$Rrt[kW] = \frac{(1/fout[kHz]) - (200 \times 10^{-6})}{105 \times 10^{-9}}$$

7.3 Setting Rcs

The relation between output current Iout and Rcs is in following formula;

Rcs = 0.204/lout

when the design condition is Iout = 0.22 A, Rcs will be;

7.4 Selecting Inductor L

In order to compute the maximum on-duty.

Critical conditions are searched for first.

As severest conditions, if the minimum value of Vin shall be 90 Vac and Vout is set to 35 V, it is the on-duty D_{ON}.

$$D_{ON} = Vout/(Vin) = 35/(90 \ 1.414) = 0.275$$

Note: *1 When D_{ON} exceeds 0.5 on condition of the Vin minimum and the Vout minimum, it calculates as $D_{ON} = 0.5$.

When frequency is 62 kHz, it is the ON time Ton,

Ton =
$$D_{ON}/fout = 0.275/62 \text{ kHz} = 4.44 \text{ ms}$$

If it is input voltage Vin = 90 V, output electric power Pout = 0.22 ' 35 = 7.7 W, and 82% of conduction angle (*2), it is the average input current Iin (ave),

$$lin(ave) = Pout/h/Vin = 7.7/0.82/90 = 104 mA$$

The peak value of coil current,

$$IL(peak) = Iin(ave) ' 2/D_{ON} = 0.104 ' 2/0.275 = 0.756 A$$

From this result.

$$L = (Vin - Vout)$$
 Ton/lin(peak) = (90 1.414 - 35) 4.44 ms/0.756 = 542 mH

Since it will become discontinuous operation if it is the inductance below this value, 220 mH is chosen from the lineup of standard inductance in consideration of a permissible error, size, etc.

Note: *2 Please refer to another data (R2A20135SP Application Note, Selection of the inductance L) for a conduction angle.

7.5 FB, COMP External Circuitry

The frequency characteristic of R2A20135EVB-ND1 is shown in the following figure.

Since this is the composition in current mode (single capacity lag system), it operates stably, but in order to improve power factor, please set up the value of Ccomp so that a loop gain is set to 0 dB below by AC frequency: 50 to 60 Hz twice (100 to 120 Hz). The value of Ccomp is set to 1 mF with the evaluation board.

Moreover, when operation is affected by a switching noise etc., it is CR filter (Cf1, Rf1) to FB pin. Please insert. 51 W and 0.1 mF are beforehand mounted in EVB.

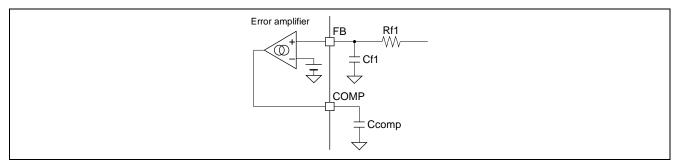


Figure 7.3 External Circuit for FB & COMP Terminals

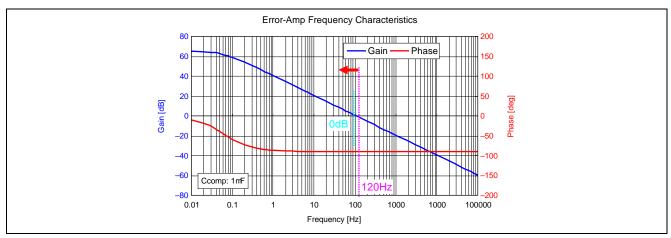
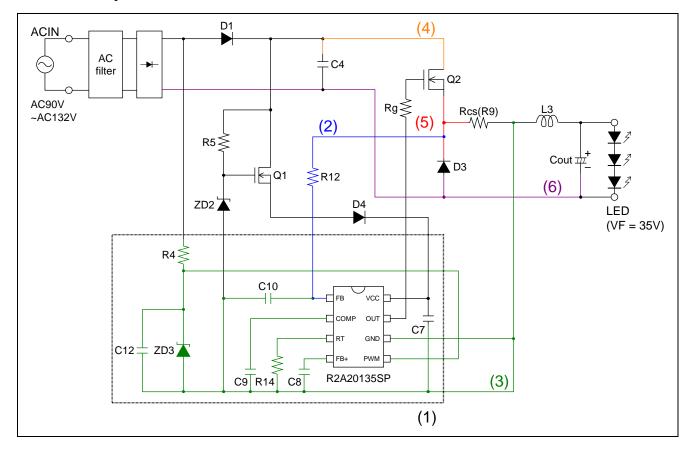



Figure 7.4 R2A20135EVB-ND1 Frequency Characteristics

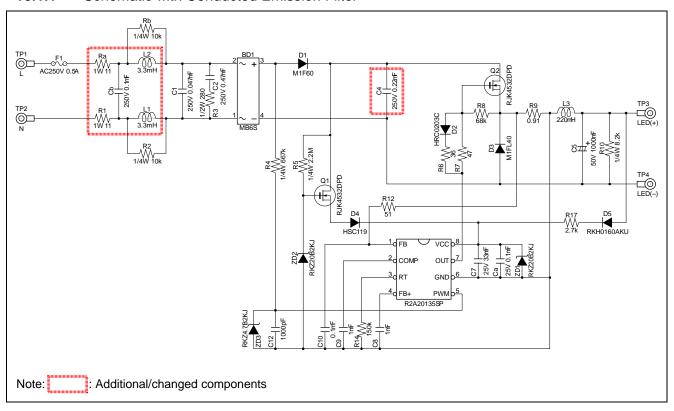
8. PCB Layout Guide

- (1) It is subject to the influence of a switching noise. Wiring of the circumference of IC is made into the minimum length.
- (2) CS line wires short by connecting with the Rcs latest.
- (3) Wire the GND line of the IC with a single thick pattern to the Rcs Resistor (Output side). Also place the bypass capacitors (C7) for VCC and resistor of RT, FB (R14, R12) as close to the IC as possible.
- (4) Wiring between Q2 (Drain) and C2 (+) is shortened thickly.
- (5) Wiring between Q2 (Source) and D3 (Cathode) is shortened thickly.
- (6) Since switching current flows, it shortens thickly.

9. Bill of Materials

Symbol	Parts Name	Catalog No.	Q	Rating		Manufacturer	Note
PWB	Printed-wiring board	R2A20135EVB-ND1	1			Renesas Electronics	
U1	IC	R2A20135SP	1	24V		Renesas Electronics	SOP-8
Q1	FET	RJK4532DPD	1	450V	4A	Renesas Electronics	TO-252 (DPAK)
Q2	FET	RJK4532DPD	1	450V	4A	Renesas Electronics	TO-252 (DPAK)
Q3	TRS	No mount					
BD1	Bridge diode	MB6S	1	600V	0.5A	VISHAY	TO-269AA (MBS
D1	Diode	M1F60	1	600V	1A	Shindengen	M1F
D2	SBD	HRC0203C-E	1	30V	0.2A	Renesas Electronics	UFP
D3	FRD	M1FL40	1	400V	1.5A	Shindengen	M1F
D3 D4	Diode	HSC119	1	80V	100mA	Renesas Electronics	UFP
D5	Diode	RKH0160AKU	1	00 V	TOUTIA	Renesas Electronics	OI F
<u> </u>	Blode	111101007110	<u> </u>			Trenesas Electronies	
ZD1	Zener diode	RKZ20B2KJ	1	20V	5mA	Renesas Electronics	UFP
ZD2	Zener diode	RKZ20B2KJ	1	20V	5mA	Renesas Electronics	UFP
ZD3	Zener diode	RKZ4.7B2KJ	1	4.7V	5mA	Renesas Electronics	UFP
ZD4	Zener diode	No mount	Ė		0	Tremedae Electromes	UFP
Ra	Resistor	MOSX1CT52A1R5J	1	1W	1.5	KOA	Leaded
R1	Resistor	MOSX1CT52A1R5J	1	1W	1.5	KOA	Leaded
Rb	Chip resistor	KTR18EZPJ103	1	1/4W	10k	Rohm	3216
R2	Chip resistor	KTR18EZPJ103	1	1/4W	10k	Rohm	3216
R3-1	Chip resistor	KTR18EZPJ561	1	1/4W	560	Rohm	3216, paralleling
R3-2	Chip resistor	KTR18EZPJ561	1	1/4W	560	Rohm	3216, paralleling
R4-1	Chip resistor	KTR18EZPJ105	1	1/4W	1M	Rohm	3216, paralleling
R4-2	Chip resistor	KTR18EZPJ205	1	1/4W	2M	Rohm	3216, paralleling
R5	Chip resistor	KTR18EZPJ225	1	1/4W	2.2M	Rohm	3216
R6	Chip resistor	MCR03EZPFX36R0	1	1/10W	36	Rohm	1608
R7	Chip resistor	MCR03EZPFX47R0	1	1/10W	47	Rohm	1608
R8	Chip resistor	MCR03EZPFX6802	1	1/10W	68k	Rohm	1608
R9	Chip resistor	RL1220S-R91-F	1	1/4W	0.91	Rohm	2012
R10	Chip resistor	MCR18ERTJ822	1	1/4W	8.2k	Rohm	3216
R11	Resistor	No mount					Leaded
R12	Chip resistor	MCR03EZPFX51R0	1	1/10W	51	Rohm	1608
R13	Chip resistor	No mount					1608
R14	Chip resistor	MCR03EZPFX1503	1	1/10W	150k	Rohm	1608
R15	Chip resistor	No mount					1608
R16	Chip resistor	MCR25JZHJ000	1	1/2W	0	Rohm	3225
R17	Chip resistor	MCR18ERTJ272	1	1/4W	2.7k	Rohm	3216
Q3 B-E	Chip resistor	MCR03ERTJ000	1	1/10W	0	Rohm	1608
		001440004454044444	٠.	0=) (0.4.5		4000
<u>Ca</u>	Ceramic capacitor	GRM188B11E104KA01	1	25V	0.1mF	murata	1608
C1	Ceramic capacitor	GR331BD72E473KW01L	1	250V	0.047mF	murata	3216
C2	Ceramic capacitor	GRJ43DR72E474KWJ1L	1	250V	0.47mF	murata	4532
C4	Ceramic capacitor	GR332DD72E154KW01L	1	250V	0.15mF	murata	3225
<u>C5</u>	Electrochemical capacitor	ECA1HHG102	1	50V	1000mF	Panasonic	f 12.5´25, 105°C
C6	Ceramic capacitor	No mount UPV1E330MFD	1	25\/	22~5	nichicon	2012
C7 C8	Electrochemical capacitor		1	25V 25V	33mF 1mF	nichicon	f 5′ 10, 105°C 1608
C8 C9	Ceramic capacitor	GRM188B31E105KA75B GRM188B31E105KA75B	1	25V 25V	1mF	murata	1608
C9 C10	Ceramic capacitor Ceramic capacitor	GRM188B31E105KA75B	1	25V 25V	0.1mF	murata murata	1608
C11	Ceramic capacitor	No mount	+	201	V. HIF	muiata	1608
C12	Ceramic capacitor	GRM1882C1E102JA01	1	25V	1000pF	murata	1608
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Ľ				
L1	Inductor	TSL0808S-152KR21-PF	1	0.21A	1.5mH	TDK	
L2	Inductor	TSL0808S-152KR21-PF	1	0.21A	1.5mH	TDK	
L3	Inductor	#B953AS-221M	1	1A	220mH	TOKO	
			1	AC250V	0.5A	Skygate	
F1	Fuse	HTS 500mA					

Note: The parts might be possibly changed for improving the performance.

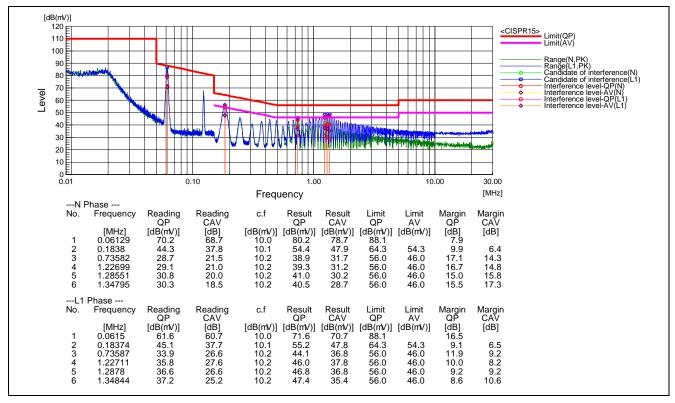

10. Conducted Emission

10.1 Conducted Emission Standard (CISPR15) Adaptation

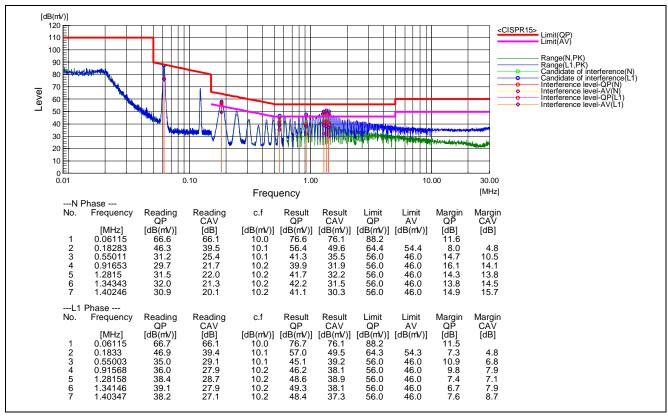
This evaluation board is possible to meet the conducted emission standard (CISPR15) by changing or adding some components.

However, basic characteristics such as power efficiency or power factor are trade-off for conducted emission, please adjust each components' value according to required performance.

10.1.1 Schematic with Conducted Emission Filter



10.1.2 Additional/Changed Parts to Meet Conducted Emission Standard


Symbol	Parts Name	Catalog No.	Q	Rating		Manufacturer
Ra	Resistor	MOS1CT52A110J	1	1 W	11	KOA
R1	Resistor	MOS1CT52A110J	1	1 W	11	KOA
Cb	Ceramic capacitor	GRJ31CR72E104KWJ3L	1	250 Vdc	0.1 mF	murata
C4	Ceramic capacitor	GRJ32DR72E224KWJ1L	1	250 Vdc	0.22 mF	murata
L1	Inductor	TSL0808S-332KR14-PF	1	0.14 A	3.3 mH	TDK
L2	Inductor	TSL0808S-332KR14-PF	1	0.14 A	3.3 mH	TDK

10.2 Conducted Emission Test Results (CISPR15)

· Vin = AC100 V, 60 Hz, LED load (VF = 35 V), Iout = 220 mA

· Vin = AC120 V, 60 Hz, LED load (VF = 35 V), Iout = 220 mA

Website and Support

Renesas Electronics Website http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

Revision Record

Description

Rev.	Date	Page	Summary
Rev.1.00	May 24, 2012	_	First edition issued
Rev.2.00	Jul 31, 2013	13, 14	"Section 10" added

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No. 1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tei: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Pax: +60-3-7955-9310

Renesas Electronics Korea Co., Ltd. 11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141