

© 2022 Renesas Electronics Corporation Page 1 of 12

AN-1161
A GreenPAK Wireless Morse Code Keyboard

Author: Michael Alba

Date: March 09, 2017

Introduction

This application note will discuss a one-button

Bluetooth keyboard that takes input in the form of

Morse Code. Morse Code is a scheme for sending

messages using only short and long intervals,

known respectively as dots and dashes. In this

way, users can type any alphanumeric character

using only a single input. See Figure 1 for a Morse

Code reference.

The GreenPAK SLG46537V will be used to

translate the Morse Code input into a byte of

data. This byte will then be transmitted using an

external Bluetooth module (specifically, the

Rigado BMD-300) to be displayed as the

appropriate character on a simple computer

application.

Figure 1. An overview of Morse Code

http://www.digikey.com/product-detail/en/rigado-inc/BMD-300-A-R/1604-1006-1-ND/5878285

© 2022 Renesas Electronics Corporation Page 2 of 12

A GreenPAK Wireless Morse Code Keyboard

External Components

The external components required for this

application include a button for Morse Code input

and a Bluetooth module to send the GreenPAK’s

data to the computer application.

• Button: This application note uses an E-

Switch KS-01Q-02 (Digi-Key EG4792-ND)

through-hole pushbutton switch, though any

momentary-on button would suffice.

• Bluetooth: The Bluetooth module chosen

for this application is a Rigado BMD-300 (Digi-

Key 1604-1006-1-ND). While an individual unit

sells for USD$11.71 (at the time of writing), there

are significant price breaks when ordering in bulk,

making this module an attractive low-cost

Bluetooth option.

For this application note, a BMD-300 Evaluation

Board (Digi-Key 1604-1007-ND) was used in

order to simplify prototyping.

Realization with GreenPAK Designer

The first step in configuring the GreenPAK to

serve as a Morse Code keyboard is to devise a

method for encoding Morse Code input (dots and

dashes) into binary data. To generate a unique

byte of data from each Morse Code input, we’ll

use the following scheme:

Using this scheme, we can create a complete

conversion table (Table 1).

Figure 2. Conversion from Morse Code input to byte of alphanumeric data

http://www.digikey.com/products/en?keywords=EG4792-ND
http://www.digikey.com/product-detail/en/rigado-inc/BMD-300-A-R/1604-1006-1-ND/5878285
http://www.digikey.com/product-detail/en/rigado-inc/BMD-300-A-R/1604-1006-1-ND/5878285
http://www.digikey.com/products/en?keywords=1604-1007-ND%20

© 2022 Renesas Electronics Corporation Page 3 of 12

A GreenPAK Wireless Morse Code Keyboard

Character Byte Character Byte

A 10000010 S 00000011

B 00010100 T 10000001

C 01010100 U 10000011

D 00100011 V 10000100

E 00000001 W 11000011

F 01000100 X 10010100

G 01100011 Y 11010100

H 00000100 Z 00110100

I 00000010 0 11111000

J 11100100 1 11110000

K 10100011 2 11100000

L 00100100 3 11000000

M 11000010 4 10000000

N 01000010 5 00000000

O 11100011 6 00001000

P 01100100 7 00011000

Q 10110100 8 00111000

R 01000011 9 01111000

Table 1. Complete conversion table from

Morse Code input to binary data

With this scheme in hand, we can go on to

describe the function of the GreenPAK with a state

diagram.

Figure 3 displays this diagram as configured in

GreenPAK Designer’s Asynchronous State Machine

(ASM) Editor.

Figure 4 gives an overview of the connections

configured in GreenPAK Designer, and highlights

the various functional groups used in this design:

Counters, Registers, Button Input, ASM, and Data

Output. We’ll cover each of these groups in turn.

Asynchronous State Machine

We’ll begin by describing the ASM in further

detail. There are eight states available in

GreenPAK’s ASM, each of which has eight outputs

and can take in as many as three inputs. The

inputs control the state transitions, and the

outputs will control the actions to be taken in

each state. Both the inputs and outputs can be

configured in the ASM Editor.

Figure 5 shows the states, state transitions, and

state outputs in the main GreenPAK Designer

workspace. This allows us to visualize both when

a state transition will occur (when an input goes

high), and which state the ASM will take next (the

state connected to the input that has gone high).

We can also visualize to which blocks the outputs

are connected, which correspond to the actions

that will be taken in each state. Table 2 gives a

description of what actions should occur in each

state.

The state outputs can easily be configured using

the ASM’s RAM table in the ASM Editor (shown in

Figure 6). The RAM table has been configured

such that five of the eight possible outputs control

the necessary actions in each state. These

outputs are described in Table 3 and visualized in

Figure 6.

© 2022 Renesas Electronics Corporation Page 4 of 12

A GreenPAK Wireless Morse Code Keyboard

State Action(s)

Idle N/A

Dot/Dash Counting 1. Start timer

Dot
1. Record dot to register

2. Increment dot/dash counter

Dash
1. Record dash to register

2. Increment dot/dash counter

Character Counting 1. Start timer

Word Counting/ Character Over
1. Start timer

2. Send register data to Bluetooth module

Word Continues 1. Reset registers

Word Over 1. Reset registers

Table 1. A description of what actions should take place in each state. These actions are

controlled via the state outputs

Figure 3. State diagram of Morse Code input conversion. The variable t represents

one unit of Morse Code time (see Morse Code reference in Figure 1). Some

alterations have been made with regards to timing to simplify the Morse Code input

© 2022 Renesas Electronics Corporation Page 5 of 12

A GreenPAK Wireless Morse Code Keyboard

Output Name Description

ClkReset The output necessary for starting the timer. When this value switches from HIGH to LOW, or vice versa,

a pulse is generated that restarts the counters.

DotOrDash Writes a 0 or 1 based on the Dot or Dash state, respectively.

RegisterClk When this value switches from LOW to HIGH, a clock pulse is generated to advance the registers. The

output connection is labelled “GenerateRegisterPulse” in the workspace.

RegisterReset When LOW, resets the DFFs in the registers. The output connection is labelled “RegReset” in the

workspace.

ReadRegisterData When HIGH, prompts the Bluetooth module to read the register data. The output connection is labelled

“Read” in the workspace.

Table 3. Descriptions of the ASM Connection Matrix Outputs

Figure 4. GreenPAK Designer overview highlighting the functional groups used in this

project

© 2022 Renesas Electronics Corporation Page 6 of 12

A GreenPAK Wireless Morse Code Keyboard

Counters

Now we’ll discuss the purpose and configuration

of the blocks shown in Figure 7. First, to time the

units of Morse Code, we’ll use the GreenPAK’s

counter blocks in counter mode. Based on the

state diagram shown in Figure 3, we’ll need one

counter to time three units and another to time

four. The configuration of the 3t counter is shown

in Figure 8.

Two additional counter blocks are used in this

application, both of which are configured to

generate a one-shot pulse. This pulse serves as

either a reset for the previous counter blocks, or

as a way to advance the registers. Both one-shot

counters are controlled via the ASM outputs

described in Table 3.

Figure 5. State transition signals of the

ASM. The ASM nRESET input returns the

ASM to the Idle state when it goes LOW.

For testing purposes, this is controlled

with an external button

Figure 6. Connection Matrix Output

RAM. StateDisplay0, StateDisplay1, and

StateDisplay2 represent the state

number, and have been connected to

LEDs for testing purposes

© 2022 Renesas Electronics Corporation Page 7 of 12

A GreenPAK Wireless Morse Code Keyboard

Figure 7. Four Counter blocks are used,

two for timing and two for generating

one-shot pulses

Figure 8. Configuration of the 3t counter,

where t is taken to be one second. The 4t

counter is configured in an identical

manner, with a Counter Data value of 1561

(four seconds)

Figure 9. The two counter blocks in one-shot mode, as configured to reset the timers

(left) and advance the registers (right)

© 2022 Renesas Electronics Corporation Page 8 of 12

A GreenPAK Wireless Morse Code Keyboard

Registers

To keep track of the dots and dashes input by the

user, we’ll create two separate registers using D

Flip Flops (DFFs). The first register will consist of

five DFFs and will record the sequence of user

input. The second register will consist of three

DFFs and will count the number of user inputs.

Taken together, the registers will actively create

the byte of Morse Code data as described in

Figure 2.

The Dot/Dash register is comprised of five DFFs.

The DotOrDash input to DFF 5 is set with the ASM

output. The ASM outputs also control the

RegReset (directly) and RegisterClk (indirectly,

through the one-shot counter) inputs.

To create the Counting Register, three Look-Up

Tables (LUTs) are used to set the next binary

value to be recorded.

Figure 11. LUT configurations for the counting logic. IN0 corresponds to RegReset. The

LUTs are shown in order from Most Significant Bit (MSB) to Least Significant Bit (LSB),

and cycle through the binary values 000, 001, 010, 011, and 100 as long as RegReset is

HIGH. When RegReset goes LOW, the output is 000

Figure 10. One register is used to record

the user input, and the other is used to

keep track of the total number of dots

and dashes

© 2022 Renesas Electronics Corporation Page 9 of 12

A GreenPAK Wireless Morse Code Keyboard

In this way, each time RegisterClk advances the

registers, the appropriate value is stored in the

DFFs.

Furthermore, since we can design each LUT to

require only two inputs, the third input can be set

as RegReset – this lets us work around the fact

that only the five DFFs used in the Dot/Dash

Register have a direct reset input. The LUT

configurations are shown in Figure 11.

Buttons

We’ll use PIN 3 as a digital input to record the

user’s button presses. In addition, we’ll use

another LUT (configured as an inverter) as a way

to determine when the button has been released.

One final LUT will be configured as an AND gate to

determine when both the button is pressed, and

the 3t timer has been reached.

Output

The register data is passed directly to the

Bluetooth module via output Pins 12-16

(dots/dashes) and Pins 5-7 (total number of

dots/dashes). This data is only passed if the Read

signal on PIN 17 is HIGH.

Figure 12. PIN 3 records the Morse

Code input, and two LUTs pass

additional information to the ASM

 Figure 13. PINS 5-7 and 12-17 are used

to pass the register data to the

Bluetooth module

© 2022 Renesas Electronics Corporation Page 10 of 12

A GreenPAK Wireless Morse Code Keyboard

Example Implementation

We can easily prototype this project using a

breadboard, the GreenPAK Development Board,

and the Bluetooth module’s evaluation board

(discussed above in External Components). The

prototype uses one button for Morse Code input

and another as a reset to the ASM (optional).

These inputs are taken from the breadboard to

the GreenPAK Development Board, with the

outputs taken from the GreenPAK Development

Board to the Bluetooth module’s GPIO pins.

With this setup, the GreenPAK Designer emulation

window should be configured as shown in Figure

15.

The next step is to configure the Bluetooth

module to send the Morse Code data. The full

steps of this process are beyond the scope of this

application note; however, full documentation

(see here and here) is provided for the BMD-300

Bluetooth module should readers choose to use it

if building this project.

We can test the prototype by using the input

button to type a character of Morse Code. Figure

17 shows the result of this test, using a simple

computer program (source code attached) to look

up the relationship between the byte of data and

the appropriate character.

Figure 14. Picture of the wired connections between the breadboard input button, the

GreenPAK Development Board (green), and the Bluetooth module’s evaluation board

(blue). The left button on the breadboard functions as the ASM reset and has been

disconnected.

https://www.rigado.com/products/modules/bmd-300/
https://infocenter.nordicsemi.com/index.jsp

© 2022 Renesas Electronics Corporation Page 11 of 12

A GreenPAK Wireless Morse Code Keyboard

Figure 15. The emulation window in GreenPAK Designer. Note the enabling of the

Expansion Connector.

Figure 16. A screenshot of available

Bluetooth devices on Windows 10,

advertising the device named

“MorseKeyboard”

Figure 17. A dot followed by a dash creates

the byte 10000010, which corresponds to

A. This computer program converts the

data into the correct alphanumeric

character

Figure 18. The prototype was used to type

in the word “Silego” and the number “123”

© 2022 Renesas Electronics Corporation Page 12 of 12

A GreenPAK Wireless Morse Code Keyboard

In the same way, we can test any of the other

characters given in Table 1. Now, the computer

program has been altered to allow for continuous

input of text (it will not display the binary data).

By using an external power source, we can test

the current consumption of the prototype. The

current consumption varies depending on its

state. Its range is given in Table 4:

State of Prototype Current

ASM in Idle State 36 µA

Button is pressed 3.3 mA

Table 4. Current consumption of Morse Code

Keyboard prototype

Extensions

This keyboard has a number of potential

applications, such as an alternative to Smart TV

text input (instead of the clumsy navigation of on-

screen keyboards), or as a tool for handicapped

keyboard input (due to its extreme simplicity).

Both possibilities can make use of the same

hardware while using the data in different ways.

However, both could also extend the hardware to

make use of an augmented or revised Morse

code.

Conclusion

In this application note, we built a low-cost,

wireless keyboard that takes user input in the

form of Morse Code. We used the GreenPAK

SLG46537V IC to convert the user input into a

customized binary format, and then transmitted

this data via a Bluetooth module for translation

with a simple computer program. Hopefully, this

project has demonstrated the versatility and ease

of GreenPAK design.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

© 2026 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

