
©1998 Integrated Device Technology, Inc.

 6.011
3560/5

JUNE 1999

Introduction
Integrated Device Technology is continuing to pioneer higher speed

and higher density static RAMs. As IDT has improved its CMOS tech-
nology, new SRAM architectures and additional features have become
feasible. The end result is that design engineers now have powerful new
integrated circuits available for demanding applications. Two such devices
are the IDT7052 and the IDT7054 FourPortTM SRAM. The 7052 is a
Four-port 2K by 8-bit Static RAM built using a 12-transistor four-ported
static RAM cell. Each of the four ports is independent in terms of the byte
that it can read or write.

The IDT7052/IDT7054 FourPort™ SRAM provides the system
architect with better ways to look at computer system design. For example,
the IDT7052 can be used in a multiprocessor environment to provide a
common memory among several processors. An example of such an

architecture is shown in Figure 1. Here we see each of the four SRAM ports
connected to a high performance microprocessor. These processors
could also be intelligent controllers, DSP engines, or a combination of the
two. The FourPort™ SRAM can be used in such computer architectures
as hypercubes and parallel processing machines for storage and move-
ment of data. It offers unheard of opportunities in digital signal processing
(DSP) where new architectures for Fast-Fourier-Transforms (FFTs),
recursive and non-recursive digital filters, windowing functions, and
special purpose algorithms can take advantage of multiple ports into a
shared memory. The IDT7052/IDT7054 FourPort™ SRAM can increase

system performance and reduce parts count by providing simultaneous
access to the data by more than one processor at a time.

Understanding the FourPort™ SRAM
In order to effectively design with the IDT7052/IDT7054 FourPortTM

SRAM, it is important for the design engineer to understand its construction
and architectural features. This is most easily accomplished by starting with
a simple single port SRAM cell and evolving its architecture into the
FourPortTM structure. Figure 2 shows a typical single port static RAM built
using a four-transistor cell. This architecture is commonly used by most
static RAM manufacturers to build static RAMs because it offers high
density, good speed and low power.

In its simplest description, the device consists of two N-channel

transistors (Q1) and two resistors (R1) that are connected so as to form two
simple cross-coupled inverters. This gives a regenerative action such that
one N-channel transistor is ON and the other N-channel transistor is OFF.
Thereby, a single bit of memory is formed. ln order to interface to this cross-
coupled pair of inverters, two additional N-channel transistors (Q2) are
connected between the inverter outputs and the bit-lines. The gates of
these two N-channel transistors are connected to a line called the row
select. These Q2 transistors connected between the cell and the bit lines
are usually called transmission gates. The result is that when a particular
row of cells in the SRAM is addressed, these two transistors are turned

INTRODUCTION
TO IDT's
FourPort™ SRAM

APPLICATION
NOTE
AN-45

By John R. Mick

Figure 1. Four-PortTM SRAM Providing
Common Memory to Four CPU's Figure 2. Typical Four-Transistor SRAM Cell

CPU
1

CPU
4

CPU
2

CPU
3

PORT PORT
1 2

IDT7052/
IDT7054

2K x 8 / 4K x 8
FourPortTM

SRAM

PORT PORT
3 4

3560 drw 01 ,

VCC

R1 R1
Row Select

Q2
Q2

Q1 Q1

Bit
Line

1

Bit
Line

2
3560 drw 02

,

 6.01

Application Note AN-45Introduction to IDT's FourPort™ RAM

2

on and one bit-line will reflect a HIGH and the other bit-line will reflect a LOW
as determined by the current state of the static RAM cell.

An expanded example of this SRAM architecture is shown in Figure
3. Here we see a 16-bit SRAM, organized four-rows by four columns
internally, in a more complete form. The bit-lines of the cells are connected
to the inputs of a sense amplifier by means of N-channel switches. These
switches are controlled by the column address decoder. The sense
ampilifier will detect whether the state of the bit is a logic one or a logic zero
depending on the relative polarity of the two bit-lines going into the
differential sense amplifier. We usually call the transistors connected
between the sense amplifier and bit-lines a data multiplexer or data
selector.
 When we wish to write the simple SRAM as shown in Figure 3, a row
address line is selected by the row address decoder and the N-channel
pass transistors (Q2 of Figure 2) connected to the bit lines are turned on
by pulling their gates high. Now however, the write amplifier driven by
the Data-In line (Figure 3) is turned on by the write enable signal via the

control logic. The write amplifier will drive one bit-line HIGH and the other
bit-line LOW as determined by the logic state of the data input. The output
of the write amplifier is more powerful than the inverter transistors (Q1 in
Figure 2) in the SRAM cell and it easily overpowers these inverter
transistors if it is necessary to flip the static RAM bit. In its simplest form, this
is all there is to the circuitry of a static RAM. Functions such as chip enable
are used to simply enable or disable the entire operation of the SRAM.
Output enable on a static RAM is used to turn “on” the outputs during a read
cycle and turn “off” the outputs during write cycles. It can be used to solve
timing problems in high-speed applications.
 A variation on the standard four-transistor static RAM call is the six-
transistor static RAM cell as shown in Figure 4. In this Figure we see that
the two pull-up resistors (R1 of Figure 2) have been replaced by two P-
channel transistors. The operation of such a six-transistor cell is identical
to the four-transistor cell previously described. The difference between the
two approaches is that the physical size of the cell with the P-channel
transistors is larger than the cell with the resistors. The standby power can

Figure 3. An Example Four-Transistor Cell for a 16-bit SRAM.

VCC VCC VCC VCC

VCC VCC VCC VCC

VCC VCC VCC VCC

VCC VCC VCC VCC

CS
WE
OE

DATAIN DATAOUT

Control
Logic

Row
Address
Decoder

A0

A1

Column
Address
Decoder

A2

A3

3560 drw 03

 6.01

Application Note AN-45Introduction to IDT's FourPort™ RAM

3

VccVcc

Column
Address
Decoder

Row
Address
Decoder

A3

A2

A1

A0

DATAIN DATAOUT

Control
Logic

CS
WE
OE

Vcc

Vcc

Vcc

Vcc

Vcc

Vcc

Vcc

Vcc

Vcc

VccVcc

Vcc

VccVcc

3560 drw 04

,

A3

A2
Column
Address
Decoder

Row
Address
DecoderA1

A0

Vcc

Vcc

Vcc

Vcc

Vcc

Vcc

Vcc

Vcc

Vcc

Vcc

Vcc

Vcc

Vcc

Vcc

Vcc

Vcc

Column
Address
Decoder A3

A2

Row
Address
Decoder A1

A0

DATAIN

DATAOUT

Control
Logic

DATAIN

DATAOUT

Control
Logic

CS
WE
OE

LEFT PORT RIGHT PORT

CS
WE
OE

3560 drw 05

,

Figure 4. An Example of a Six-Transistor 16-bit SRAM.

Figure 5. An example 16-bit Dual-Port SRAM.

 6.01

Application Note AN-45Introduction to IDT's FourPort™ RAM

4

Figure 6. A Simple Example of a Twelve Transistor FourPortTM SRAM Configuration.

Vcc

Vcc

P1-Row Sel 1

P2-Row Sel 1

P3-Row Sel 1

P4-Row Sel 1

P1-Row Sel 2

P2-Row Sel 2

P3-Row Sel 2

P4-Row Sel 2

RESISTOR
PULL-UPS

RESISTOR
PULL-UPS

3560 drw 06

,

be lower for the six-transistor cell because there is no power being
dissipated. In a four-transistor cell, one of the the pull-up resistors is always
dissipating power since one transistor of the cell is always ON. The six-
transistor cell can have higher radiation hardened characteristics than the
four-transistor cell because the voltage swings in the cell are larger. This
is because the internal node in the cell that is high is pulled to the +5V rail
by the P-channel transistor. In addition, the six-transistor cell provides
higher internal noise margins in the circuit for this same reason. Most
manufacturers of static RAMs use the four-transistor cell because it allows
static RAMs of higher density to be fabricated with smaller die sizes.
 Next, let’s look at a typical dual-port SRAM such as the IDT7027, a 32K
by 16-bit device. An example schematic diagram showing a sixteen-bit
two-port SRAM is shown in Figure 5. Here we see our standard cross-
coupled inverter pairs using two N-channel transistors with resistor pull-
ups (Q1 and R1 of Figure 2) to form the sixteen memory bits. Notice
however, now there are two pairs of N-channel transmission gates
connected to each SRAM cell’s true and compliment outputs and two pairs
of bit-lines associated with each cell. Each pair of bit-lines is a read/write

port into the dual-port SRAM. Each pair of transmission gates has its own
row address control so that Port A can select any memory cell in the SRAM
and Port B can select any memory cell in the SRAM. This is the technique
used in IDT dual-port SRAMs to provide total independent access to
individual bytes. Each pair of bit-lines is connected to a sense amplifier and
a write buffer via a data multiplexer so that each port on the 2-port SRAM
can read or write data at its selected address.
 Now for the FourPortTM SRAM operation. Figure 6 shows a minimal
schematic diagram for the IDT7052 12-transistor FourPortTM SRAM cell.
The two inverters making up the basic memory cell are fabricated using
two N-channel pulldown transistors and two P-channel pullup transistors.
They are connected in the normal cross-coupled inverter fashion to make
a single memory cell. Four individual memory ports are achieved by using
four pairs of N-channel pass transistors to connect to four pairs of bit-lines.
Four individual row addresses are used to select each pair of transmission
gates connected between the SRAM cell outputs and the bit-line pairs. Four
sense-amplifier/write-buffers are used to provide individual read/write
paths from each port to all the cells in the SRAM.

 6.01

Application Note AN-45Introduction to IDT's FourPort™ RAM

5

From this discussion, the design engineer should understand the
mechanism used to implement a FourPortTM SRAM. As described,
we can see how we can make each port of the FourPortTM SRAM totally
independent from the other ports. Do not confuse this statement to mean
that independent reads and writes can always be performed without data
corruption. If two ports write to the same byte at the same time, one or both
values may be lost. Likewise, if one port writes to a byte at the same time
another part is reading the byte, the read may be corrupted even though
the byte write is completed correctly. This application note does not discuss
issues of data integrity in the case of multiple accesses to the same location,
when one of the asynchronous accesses is a write cycle. These problems
are discussed in detail in Application Note 02 and will not be further
discussed here. Suffice it to say that the IDT7054 and IDT7052 FourPortTM

SRAMs have a BUSY input to allow external hardware or software
arbitration schemes to be implemented to meet the specific needs of the
designer’s system. The BUSY input serves only to block write cycles from
the port to which this signal is applied. It has no effect on a read cycle. Note
that in the following applications were not using the BUSY input of the
FourPortTM SRAM so it should be tied HIGH. This will not be mentioned
again, so please keep this in mind to avoid inadvertent write inhibits into
the FourPortTM SRAM.

Once the rules are understood however, only engineering creativity
is needed to visualize new architectural opportunities for FourPortTM

SRAMs. This powerful new memory technology will provide increased
performance in future electronic processing systems.

Cascading FourPort TM SRAM
Perhaps the most easily understood techniques in designing with

static RAMs are width and depth expansion. Width expansion of the
FourPortTM SRAM is straightforward. No additional parts are needed to
build 16, 24 or 32 bit wide or wider memories. Any port of the FourPortTM

SRAM can be viewed the same as a simple single port static RAM. All the
same rules apply and they can be applied individually to each port of the
FourPortTM SRAM.
Depth expansion of the FourPortTM SRAM is also quite simple. If one port
is viewed as a static RAM, it is expanded similar to a single port device.
Lower addresses are connected between devices and upper addresses
are decoded by means of a standard decoder such as an lDT74FCT138
or lDT74FCT139. The outputs of the decoders can be used either to
control the chip selects or control the write-enable and output-enable
individually. Simple examples of expansion of one port of a FourPortTM

A0-A10 CE

IDT7052 2Kx8
FOUR-PORTTM SRAM

I/O0-I/O7

R/W
OE

IDT7052 2Kx8
FOUR-PORTTM SRAM

A0-A10

IDT7052 2Kx8
FOUR-PORTTM SRAM

IDT7052 2Kx8
FOUR-PORTTM SRAM

DATA8-15 DATA0-7

ADDRESS1-11

Upper
Address
Decode

ADDRESS12-23

HIGH-RW

HIGH-OE

LOW-RW

LOW-OE

ADDR STB

BLOCK
SELECT

I/O0-I/O7

CE

R/W
OE

R/W
OE

R/W
OE

I/O0-I/O7 I/O0-I/O7

A0-A10 CE A0-A10 CE

3560 drw 07Figure 7. A 4K x 16-bit FourPort CE Controlled RAM

 6.01

Application Note AN-45Introduction to IDT's FourPort™ RAM

6

Figure 9. Interfacing the Z80A to One Port of the
FourPortTM SRAM.

IDT7052
FOUR-

PORTTM

SRAM

Z80A
CPU

A0-A10

I/O0-I/O7

11

8

A0-A10

D0-D7

A11-A15
DECODE CE

RD
WR

OE
R/W

MREQ

5

+5V BUSY

Port-x

3560 drw 09

,

A0-A10 CE

IDT7052 2Kx8
FOUR-PORTTM SRAM

I/O0-I/O7

R/W
OE

A0-A10 CE

IDT7052 2Kx8
FOUR-PORTTM SRAM

I/O0-I/O7

R/W
OE

A0-A10 CE

IDT7052 2Kx8
FOUR-PORTTM SRAM

I/O0-I/O7

R/W
OE

A0-A10 CE

IDT7052 2Kx8
FOUR-PORTTM SRAM

I/O0-I/O7

R/W
OE

DATA8-15 DATA0-7

A1-A11

HIGH-R/WHIGH-OE LOW-R/W LOW-OE

Upper
Address
Decode

A13-A23

ADDR
STB

R/W
Decode

O E
Decode

R/W
Decode

O E
Decode

BLOCK
SELECT

A12

3560 drw 08

SRAM to a 4K-word by 16-bit configuration are shown in Figure 7 and
Figure 8. Figure 7 shows the Chip Enable expansion method while Figure
8 shows write-enable, output-enable expansion. The two schemes are
similar, but, sometimes one can have a timing advantage over the other.
This is usually a function of the actual timing signals that are available or
have already been generated.

Once the depth expansion is understood, we can view the CPU
interconnect schemes by simply looking at a one deep FourPortTM SRAM.
We recognize that deeper versions can be realized as just described.

Connecting the FourPortTM SRAM to
CPUs a Z80A Example
 Probably the easiest interface of the IDT7052 FourPortTM SRAM is to
a Z80A. This processor still provides a great price-performance tradeoff!
By using four Z80As with the IDT7052 FourPortTM SRAM, significant
performance advantages can result. For example, no time need be lost
due to DMA channels. The data placed in memory by one Z80A on one
port is instantly available to another Z80A on another port. In a similar
fashion, parallel processing can be performed by multiple processors
working on the data in shared memory.
 The typical connection scheme for the IDT7052 (or IDT7054 4Kx8
FourPort RAM) to a Z80A is shown in Figure 9. Here we see the eleven
address lines, A0-A10, of the FourPortTM SRAM are connected to the A0-
A10

lines of the Z80A. This places the FourPortTM SRAM in a contiguous

2K address space of the Z80A. The 2K byte segment actually used is
determined by upper address decode circuit. A PAL or an IDT74FCT521

Figure 8. A 4K x 16-bit FourPort OE and R/W Controlled RAM

 6.01

Application Note AN-45Introduction to IDT's FourPort™ RAM

7

could be used to perform this function. The data lines are connected
between the processor and the SRAM. The Z80A has a RD line that can
be connected to the FourPortTM OE and a WR line that can be connected
to the FourPortTM R/W input. This works along the lines of the a Chip Enable
expansion method just described. When the Z80A addresses the
FourPortTM SRAM, either a read or write will be performed depending on
the instruction being executed. If RD = VIL, the FourPortTM SRAM will output
data from the addressed byte. If WR = VIL, the FourPortTM SRAM will write
data into the addressed byte.

A 68000 Connection Example
If we wish to build a 16-bit microprocessor interface to one port of the

IDT7052 FourPortTM SRAM, a typically interface might be as shown in
Figure 10. Here we see two IDT7052s used in a 16-bit configuration. One
FourPortTM SRAM is connected to the lower eight data bits (D0-D7) and
the other FourPortTM SRAM is connected to the upper eight data bits (D8-
D15). This completes a 16-bit data bus. Address lines A0-A10 of the
FourPortTM SRAM are connected between RAMs and also connected to
address lines A1-A11 respectively of the 68000. Remember, the 68000
does not have an A0 address line but uses Upper-Data-Strobe (UDS) and
Lower-Data-Strobe (LDS) to control the upper and lower byte selection.
These two signals in conjunction with the R/W signal are decoded in a PAL
to generate the individual FourPortTM SRAM R/W and OE control signals.
Figure 11 shows the truth table needed for the PAL. It has been my
experience when working with the 68000, that once these signals are
generated, they are useful throughout the design to control other periph-
erals, etc. Basically, however, in this example we simply have a lower byte

Figure 10. A 16-bit FourPortTM SRAM with the 68000 CPU.

68000
CPU

DECODE

A0-A10 CE

IDT7052
2Kx8

FOUR-PORTTM

SRAM

I/O0-I/O7

R/W
OE

PAL
DECODE

DTACK

AS
A12-A23

A1-A11

D0-D7

D8-D15

UDS
LDS
R/W

IDT7052
2Kx8

FOUR-PORTTM

SRAM

I/O0-I/O7

R/W
OE

11

8

8

12

3560 drw 10

,

Figure 11. 68000 16-bit Control PAL Truth Table.

INPUTS OUTPUTS

R/W UDS LDS URW LRW UOE LOE

X 1 1 1 1 1 1

1 0 0 1 1 0 0

0 0 0 0 0 1 1

1 1 0 1 1 1 0

0 1 0 1 0 1 1

1 0 1 1 1 0 1

0 0 1 0 1 1 1

3560 tbl 01

FourPortTM SRAM and an upper byte FourPortTM SRAM.
 The upper address lines of the 68000, A23-A12 in this case, are used
to position the 2K bytes of FourPortTM SRAM in continuous address space
of the 68000. The actual location can be anywhere from 0x000000 to
0xFFFFFF as long as the overall range is on 2K byte boundaries. Usually
we include address strobe (AS) in the decoding as it can solve some timing
problems. A timing review will show if it is needed. An output of the decode
circuit can be used to generate the data acknowledge (DTACK) if it is
needed. Usually design engineers have an overall plan for generating
the memory CEs and DTACK, so what is shown here is only to remind
you of solving the overall problem.

 6.01

Application Note AN-45Introduction to IDT's FourPort™ RAM

8

How about 8-Bits, 16-Bits and
32-Bits in the Same System!!!

This is perhaps the most interesting example to talk about. We will use
an 8-bit Z80A, a 16-bit 68000 and a 32-bit R3000 RISC microprocessor
to discuss the design techniques. We have chosen the three processors
because they are typical, they are fun to work with and they have had
broad acceptance in the microprocessor world. First, let’s look at Figure
12 to understand memory addressing and “memory space”. All three of
our selected microprocessors are “byte” addressable machines. That

Figure 12. Memory Map for 8, 16, and 32-bit Ordering.

means they can address bytes as well as words in the case of the
68000 and R3000. The 68000 is a Big-Endian machine and the
R3000 will be operated in Big-Endian mode to keep things simple. (DEC
and Intel fans can make the appropriate transformation. In fact, the
FourPort™ SRAM might make a really exciting byte-ordering problem
solver between machines by connecting one port as Big-Endian and
another port as Little-Endian to the same microprocessor and similarity for
the second processor.)
 Since we are talking about byte addressable machines, Figure 12

Address of Bytes in a Big-Endian 16-bit Word

Word Address Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0

0x0024 0x0024 - etc - - etc - - etc -

0x0020 0x0020 0x0021 0x0022 0x0023

0x001c 0x001c 0x001d 0x001e 0x001f

0x0018 0x0018 0x0019 0x000a 0x000b

0x0014 0x0014 0x0015 0x0016 0x0017

0x0010 0x0010 0x0011 0x0012 0x0013

0x000c 0x000c 0x000d 0x000e 0x000f

0x0008 0x0008 0x0009 0x000a 0x000b

0x0004 0x0004 0x0005 0x0006 0x0007

0x0000 0x0000 0x0001 0x0002 0x0003

3560 tbl 02

Address of Bytes in a Big-Endian 16-bit Word

Word Address Bits 15-8 Bits 7-0

0x0014 0x0014 - etc -

0x0012 0x0012 0x0013

0x0010 0x0010 0x0011

0x000e 0x000e 0x000f

0x000c 0x000c 0x000d

0x000a 0x000a 0x000b

0x0008 0x0008 0x0009

0x0006 0x0006 0x0007

0x0004 0x0004 0x0005

0x0002 0x0002 0x0003

0x0000 0x0000 0x0001 3560 tbl 03

Address of Bytes in a Big-Endian 8-bit Word

Word Address Bits 7-0

- etc - - etc -

0x0010 0x0010

0x000f 0x000f

0x000e 0x000e

0x000d 0x000d

0x000c 0x000c

0x000b 0x000b

0x000a 0x000a

0x0009 0x0009

0x0008 0x0008

0x0007 0x0007

0x0006 0x0006

0x0005 0x0005

0x0004 0x0004

0x0003 0x0003

0x0002 0x0002

0x0001 0x0001

0x0000 0x0000 3560 tbl 04

 6.01

Application Note AN-45Introduction to IDT's FourPort™ RAM

9

shows the byte addresses of an 8-bit machine, the byte addresses of a
16-bit machine and the byte addresses of a 32-bit machine. Likewise,
word addresses of 16-bit and 32-bit machines are shown. What is intended
here is to point out that we want the consecutive byte ordering of all of
the machines to remain constant. By doing this, we keep the ability to do
indexing into an array of bytes from any of the processors as a simple task.
For example, a 40 byte index from any byte address is the same in all
processors talking to each other through the FourPortTM SRAM. We
can look at Figure 12 as representing the Z80A, 68000 and
R3000 respectively.
 Next, let’s look at the interface needed for each of our three processors.
We will build on our previous examples in this application note but there
are differences needed to allow proper addressing. Let’s begin by looking
at the R3000. The reader should refer to IDT’s wealth of information on
the IDT79R3000 RISC microprocessor if you are not familiar with the
standard CPU, FPA, Cache and I/O interface. We will use four of the
IDT7052 FourPort RAMs to give a 32-bit wide memory for this example.
We assume the first port is connected to the R3000, the second port is
connected to the 68000 and the third port is connected to the Z80A. The
fourth port could be connected to a second one of any of these processors
or a wide selection of other things.
 A typical R3000 interface is shown in Figure 13. The key element here
is to understand that we are interfacing to a 32-bit data bus, 32-bit address
bus with byte encoded control signals and to an R3000 interface. We are
able to implement the required byte control per Figure 12 by using the
“BYTE PAL” shown in Figure 13. The truth table for this PAL is shown
in Figure 14. Using this decoding, we are able to do all of the required

operations. This includes 32-bit word operations, 24-bit three-byte
operations, 16-bit half-word operations and 8-bit byte operations. The
signals available are A0, A1, AccessType0, and AccessType1, all from
the R3000 address register, and we assume a R/W input from the “Control
PAL” shown in Figure 13. There may be other options here, but this R/
W signal must be realized in some fashion. The upper address bits from
the R3000 are decoded in the fashion previously discussed to locate the
total 8K bytes of FourPortTM SRAM in the R3000 address space.
 Working out the timing of the R3000 interface is most of the work.
Remember that at this interface point there are several flexibilities in the final
timing. With an R3000 running at 16 MHz, a data transfer cycle is in multiples
of 62.7 nanoseconds, 20 MHz gives 50 nanoseconds, and 25 MHz allows
40 nanoseconds. Thus depending on the processor speed and the
FourPortTM SRAM speed selected block refill may or may not be desired.
In any case, we should be able to run with zero, one or two stall cycles.
As mentioned before, the design engineer usually has a plan for address
decoding and control handshake which is more closely tied to the overall
system design. From this standpoint, interfacing to one port of the
FourPortTM SRAM is no different than interfacing to an EPROM, DRAM,
SRAM, or peripheral.
 Next, let’s look at the 16-bit 68000 interface in a 32-bit memory system.
A detailed block diagram is shown in Figure 15. The key thing to notice
here is that four of the IDT7052 FourPortTM SRAMs are used. Notice that
two of the devices are connected to the D0-D7 data bus and two of the
devices are connected to the D8-D15 databus on the 68000. Address line
A1 will be used to select which pair of FourPortTM SRAMs that the processor
will read or write.

Figure 13. Using a 32-bit Wide FourPort Memory with the R3000.

IDT79R3010 FPA

IDT79R3000 CPU

I - CACHE

D - CACHE

ADDRESS
REGISTER

IDT74FCT52 IDT74FCT52 IDT74FCT52 IDT74FCT52

I/O
0

-
I/O

7

R
/W O

E

BYTE
PAL

A0-A1

ACCT0-1

A2 - A12

A

CEDECODE

CONTROL
PAL

Other Address Space

W
0

W
1

W
2

W
3

R
0

R
1

R
2R
3

A13 - A31

DATA BUS

ADDRESS BUS

R/W

One Port of Four-Port RAM

D
24

-D
31

D
0-

D
7

D
8-

D
15

D
16

-D
23

R
/W O

E

I/O
0

-
I/O

7

R
/W O
E

I/O
0

-
I/O

7

R
/W O
E

I/O
0

-
I/O

7

NOTE: Tie BUSY to +5V.
3560 drw 11

,

 6.01

Application Note AN-45Introduction to IDT's FourPort™ RAM

10

Figure 15. A 32-bit FourPortTM SRAM with the 68000 CPU.

Figure 14. 32-bit R3000 Control PAL Truth Table (Big-Endian).

INPUTS OUTPUTS COMMENTS

ACCT0 A1 A0 W3 W2 W1 W0 R3 R2 R1 R0

1 0 0 1 1 1 1 0 0 0 0 Word Read

1 0 0 0 0 0 0 1 1 1 1 Word Write

0 0 0 1 1 1 1 0 0 0 0 Tri-Byte Read

0 0 0 1 1 1 1 1 0 0 0 Tri-Byte Read

0 0 1 0 0 0 1 1 1 1 1 Tri-Byte Write

0 0 1 1 0 0 0 1 1 1 1 Tri-Byte Write

1 0 0 1 1 1 1 0 0 1 1 Half-Word Read

1 0 0 1 1 1 1 1 1 0 0 Half-Word Read

1 1 0 0 0 1 1 1 1 1 1 Half-Word Write

1 1 0 1 1 0 0 1 1 1 1 Half-Word Write

0 0 0 1 1 1 1 0 1 1 1 Read Byte 0

0 0 1 1 1 1 1 1 0 1 1 Read Byte 1

0 1 0 1 1 1 1 1 1 0 1 Read Byte 2

0 1 1 1 1 1 1 1 1 1 0 Read Byte 3

0 0 0 0 1 1 1 1 1 1 1 Write Byte 0

0 0 1 1 0 1 1 1 1 1 1 Write Byte 1

0 1 0 1 1 0 1 1 1 1 1 Write Byte 2

0 1 1 1 1 1 0 1 1 1 1 Write Byte 3

3560 tbl 05

68000
CPU

A0-A10 CE

DTACK

A2-A12

D0-D7

D8-D15

I/O0-I/O7

R/W
OE

I/O0-I/O7

R/W
OE

DECODE
AS

A13-A23

CONTROL
PAL

DECODE

UDS
LDS
R/W

11

8

8

11

7052
FOUR-PORT

RAM

I/O0-I/O7

R/W
OE

I/O0-I/O7

R/W
OE

A1

W0

W1

W2

W3

R0

R1

R2

R3

8

O
ne

P
or

to
fF

ou
rP

or
tR

A
M

7052
FOUR-PORT

RAM

7052
FOUR-PORT

RAM

7052
FOUR-PORT

RAM

3560 drw 12

,

 6.01

Application Note AN-45Introduction to IDT's FourPort™ RAM

11

Figure 16. 32-bit 68000 Configuration Control PAL Truth Table.

INPUTS OUTPUTS COMMENTS

R/W A1 LDS UDS W3 W2 W1 W0 R3 R2 R1 R0

1 0 0 0 1 1 1 1 0 0 1 1 Word Read

1 1 0 0 1 1 1 1 1 1 0 0 Word Read

0 0 0 0 0 0 1 1 1 1 1 1 Word Write

0 1 0 0 1 1 0 0 1 1 1 1 Word Write

1 0 1 0 1 1 1 1 0 1 1 1 Read Byte 0

1 0 0 1 1 1 1 1 1 0 1 1 Read Byte 1

1 0 1 0 1 1 1 1 1 1 0 1 Read Byte 2

1 0 0 1 1 1 1 1 1 1 1 0 Read Byte 3

0 1 1 0 0 1 1 1 1 1 1 1 Write Byte 0

0 1 0 1 1 0 1 1 1 1 1 1 Write Byte 1

0 1 1 0 1 1 0 1 1 1 1 1 Write Byte 2

0 1 0 1 1 1 1 0 1 1 1 1 Write Byte 3

3560 tbl 06

Z80A
CPU

A0-A10 CE

WAIT

A2-A12

D0-D7

I/O0-I/O7

R/W
OE

I/O0-I/O7

R/W
OE

DECODE
MREQ

A13-A15

CONTROL
PAL

DECODE

A0

RD
WR

11

8

3

I/O0-I/O7

R/W
OE

I/O0-I/O7

R/W
OE

A1

W0

W1

W2

W3

R0

R1

R2

R3

8 Note: Tie BUSY to +5V.

O
ne

P
or

to
fF

ou
r-

P
or

tR
A

M

IDT7052
FOUR-PORT

RAM

IDT7052
FOUR-PORT

RAM

IDT7052
FOUR-PORT

RAM

IDT7052
FOUR-PORT

RAM

3560 drw 13

,

For example, when A1 is LOW, control signals W3, W2, R3 and R2
will be enabled. When A1 is HIGH, control signals W1, W0, R1 and R0 will
be enabled. This is shown in complete detail in the truth table of Figure 16.
If we study this truth table, we see how we accomplish both 16-bit word
(half-word) reads and writes as well as 8-bit byte reads and writes. All of
this is consistent with the memory map shown in Figure 12. The technique
here is actually to use A1 to select either the lower half-word or the upper

half-word in a 32-bit FourPortTM SRAM memory system. Every thing else
about the design is the same as the previous 68000 example.

Lastly, let’s look at the 8-bit interface to the Z80A microprocessor. It also
should be viewed as being hooked into a 32-bit memory system. A detailed
block diagram is shown in Figure 17. Notice that all four of the IDT7052
FourPortTM SRAMs are connected to the D0-D7 data bus. Address lines
A1 and A0 will be used to select the device to which the Z80A processor

Figure 17. A 32-bit FourPort RAM with a Z80A CPU.

 6.01

Application Note AN-45Introduction to IDT's FourPort™ RAM

12

will talk. In fact, A1, A0, RD and WR are inputs to the control PAL
decode. The truth table to be implemented is detailed in Figure 18.
This processor is only capable of performing byte reads or writes s
o the decoding is straightforward. A1 and A0 are used to do byte selection.
Thus, the FourPortTM SRAM A0

-A10 address inputs are connect to the

A2-A12 address lines of the Z80A. This keeps the byte addressing as
desired in the memory map of Figure 12. Again the remaining part
of the design is as shown in the previous Z80A example.

The key in all of this discussion is to keep track of the data bus width
being used in the design. Similarly, the decoding and processor address
connections must take this into account. This is one point that the
design engineer usually does not have to deal with when working
with single port memories.
 The purpose of this three processor example is to show a few
interconnect schemes to typical microprocessors. From this discussion, the
design engineer should be able to extend the concepts presented here
to other 8-bit, 16-bit and 32-bit microprocessors. Just keep the techniques
in mind and work out the desired memory mapping and timing.

System Design Ideas
Now that we have discussed how the the FourPortTM SRAM is built

and we have a good idea of how to connect it to many processors, let’s
look at some system level uses for this type of FourPortTM SPAM.

Digital Signal Processing (DSP)
 Digital signal processing applications have been expanding as new

developments in semiconductor technology provide increased packing
density and new architectures in integrated circuits. The IDT7052
and IDT7054 FourPortTM SRAM are another in the continuing growth
of integrated circuits that allow design engineers to realize new
system designs.
 One of the simplest DSP algorithms that can be implemented is
the finite-impulse-response (FIR) filter. In this type of algorithm, the
impulse response of the filter has nonzero values only for a finite duration.
These types of filters are easily implemented using only multiplication and
summation. Figure 19 shows a block diagram of a DSP machine that
 takes advantage of the FourPortTM SRAM to interface to a multiplier-

Figure 19. A Simple DSP Engine Using a FourPort RAM

Figure 18. 32-bit Z80A Control PAL Truth Table.

INPUTS OUTPUTS COMMENTS

WR RD A1 A0 W3 W2 W1 W0 R3 R2 R1 R0

1 0 0 0 1 1 1 1 0 1 1 1 Read Byte 0

1 0 0 1 1 1 1 1 1 0 1 1 Read Byte 1

1 0 1 0 1 1 1 1 1 1 0 1 Read Byte 2

1 0 1 1 1 1 1 1 1 1 1 0 Read Byte 3

0 1 0 0 0 1 1 1 1 1 1 1 Write Byte 0

0 1 0 1 1 0 1 1 1 1 1 1 Write Byte 1

0 1 1 0 1 1 0 1 1 1 1 1 Write Byte 2

0 1 1 1 1 1 1 0 1 1 1 1 Write Byte 3

3560 tbl 07

Address
Sequencer

IDT7052
FourPort

RAM

Timing
Generator

IDT 7217
Multiplier/Accumulator

X Y

Z

Data
P1

Data
P2

Data
P3

Data
P4

Addr
P4Addr-P1

Addr-P2

Control

Control

Addr-P3

3560 drw 14

,

 6.01

Application Note AN-45Introduction to IDT's FourPort™ RAM

13

accumulator (MAC) such as the IDT7210. In this example, two of the four
ports of the FourPortTM SRAM are used to feed data to the MAC inputs and
a third port of FourPortTM SRAM is used to receive completed results from
the MAC output. The fourth port of the FourPortTM SRAM is connected to
a local data-address bus to interface to the remainder of the system.
 In the actual operation of such a processor as shown in Figure 19, data
is loaded into the FourPortTM SRAM via Port 4. The algorithm usually
needs coefficients and these are also loaded into the FourPortTM SRAM
using Port 4. An address sequencer has the responsibility of providing the
correct sequence of addresses to Ports 1, 2 and 3. This unit operates in
conjunction with the timing generator to execute the algorithm. Let’s look
at an example. Suppose our algorithm is:

 y(n) - A0 * x(n) + A1 * x(n-1) + A2 * x(n-2) + A3 * x(n-3)

 We could read this as the current processed value is equal to the current
sample times A0, plus the first past sample times A1, plus the second past
sample times A2, plus the third past sample times A3. This already shows
its potential as a FourPortTM SRAM application.
 Now, we initialize our system at power-up by putting the values A0, A1,
A2, and A3 into the FourPortTM SRAM. We would most likely clear the four
locations for the data, then we start taking data. Each time we receive a
data value, we can overwrite the fourth past sample. For each new sample,
we will compute a new y(n) and put it into the FourPortTM SRAM. At some
point we will extract the sequence of values for y(n) that we have computed.
As can be seen, we can have several operations happening on the same
clock cycle. SRAM ports 1 and 2 could be outputting data, SRAM port 3
could be inputting data, and SRAM port 4 could be inputting or outputting
data, all simultaneously. The speed implications are obvious. Needless
to say, this is a simple example for the purpose of demonstration. But if we
wanted to work on 1024 samples with 128 coefficients and a more complex
algorithm, all we have to do is follow the same methodology. See IDT
application note 42 for a more detailed example of how to use this method
to implement a matrix multiplication.

CPU to CPU to CPU to CPU
 Referring to Figure 1 where we started this application note, we see
that we have a FourPortTM SRAM connected between four CPUs. How
do we efficiently communicate each processor’s status to the other
processors? You will need to work an acceptable software semaphore
scheme or accomplish hardware handshaking using external circuitry.
The most obvious software scheme is token passing. After each processor
has determined its order in the token passing scheme, the token passing

protocol boils down to each processor taking its turn. This can be achieved
by reading one memory location to see who is master. Usually multiple
reads and compares are performed to avoid any data corruption
problems. A good example of this mechanism is detailed in IDT application
note 43.
 Let’s take an example. The byte at address zero contains the token.
The current value is one. CPU 1 is master of the FourPortTM SRAM and
can read or write data. When finished, it writes a two at address zero. Every
so often CPU 2 checks address zero and when it sees a two, it knows it
is master. It performs any needed data reads or writes. When it is finished,
it writes a three at address zero. CPU 3 writes a four and CPU 4 writes
a one. Thus, a simple token passing scheme. “Fail safe” mechanisms can
be implemented to keep the token moving if there is any failure.
 Another obvious scheme is to set up a simple software semaphore path
between each pair of processors. This technique can be used to pass data
between processor pairs. The semaphore for each processor can use a
different byte (or word) address for each semaphore in each direction. By
using this method, many different software handshake techniques can be
implemented. Rather than use a test and set instruction for semaphores in
this application, another interlocking mechanism, like separate locations
dedicated to the status of each processor, should be used to guarantee
clean communications between tasks.
 In addition, several hardware approaches are usually available in
most multiprocessor environments. These include individual interrupts
between processors as well as broadcast interrupt approaches. In either
case, after the data has been set up in a private buffer, processor A can
interrupt processor B to notify it of the pending message. The data
structures used in such an environment can include pointer passing and
linkage conventions consistent with modern day software techniques.

Summary
 The FourPortTM SRAM is a truly new innovative integrated circuit
memory that offers now communications methods for computing machines.
It provides exceptional speeds because of its opportunity for parallelism.
The IDT7052 2Kx 8-bit FourPortTM SRAM and the IDT7054 4K x 8-bit
FourPort™ SRAM are the first in a series of memories that will pioneer these
new architectural frontiers. At speeds as fast as some of the fastest standard
static RAMs, they bring now performance dimensions to parallel commu-
nication between tasks of a computing machine. These devices utilize the
latest in IDTs CMOS technology to provide the design engineer with an
economical high performance, low power, small size and highly reliable
“Speciality Memory” for todays performance-driven designs.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

© 2026 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

