To our customers,

Old Company Name in Catalogs and Other Documents

On April 1!, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

8.

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

RENESANS
Application Note

78K0/Lx3

Sample Program (16-bit AZ-Type A/D Converter)

Conversion Result Accuracy Correction

This application note introduces methods which enable the 16-bit AX-type A/D converter mounted in the 78K0/LE3 and
78KO0/LF3 microcontrollers to be used with better accuracy. When using the 16-bit AZ-type A/D converter in differential
input mode, the conversion result error includes a specific characteristic. By using this error characteristic and removing
it using software, the AZ-type A/D converter can be used with better accuracy.

CONTENTS
. CHAPTER 1 OVERVIEW 3
Target devices CHAPTER 2 A/D CONVERSION RESULT CORRECTION ALGORITHM....7
H 2.1 5-Point Correction 7
78K0/LE3 m|CrocontrO”er 2.2 Temperature Correction 10
H CHAPTER 3 CIRCUIT DIAGRAM 12
78K0/LF3 microcontroller 31 Circult Diagrams b
3.1.1 Circuit diagram when not using DAC 12
3.1.2 Circuit diagram when using DAC 13
3.2 Peripheral Hardware 14
CHAPTER 4 SOFTWARE 15
4.1 File Configuration 15
4.2 Internal Peripheral Functions to Be Used 16
4.3 Initial Settings and Operation Overviews 17
4.3.1 Operation when not using DAC 17
4.3.2 Operation when using DAC 20
4.4 UART Transmission Data Format 23
4.5 FIOWChArTS.....ccccieiiiiiinin s e 24
CHAPTER 5 SETTING METHOD 43
5.1 Initial Settings of Peripherals to Be Used 43
5.2 A/D Conversion Processing 45
CHAPTER 6 OPERATION CHECK EXAMPLE USING DEVICE................ 46
6.1 5-Point Correction 46
6.2 Temperature Correction 47
Document No. U19332EJ1VOANOO (1st edition) o poee POCUMENTS o
Date Published July 2008 N APPENDIX B REVISION HISTORY 87

© NEC Electronics Corporation 2008
Printed in Japan

¢ The information in this document is current as of June, 2008. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all
products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.

e No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.

e NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.

e Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.

e While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.

e NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC

Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of

each NEC Electronics product before using it in a particular application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)

(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.

(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).

M8E 02.11-1

Application Note U19332EJ1VOAN

CHAPTER 1 OVERVIEW

This application note introduces methods which enable the 16-bit AXZ-type A/D converter mounted in the 78KO0/LE3
and 78KO0/LF3 microcontrollers to be used with better accuracy.

When using the 16-bit AX-type A/D converter in differential input mode, the conversion result includes a specific
characteristic. Particularly, as shown in Figure 1-1, inflection points exist in the conversion result at specific input
voltages (5 points). By using this characteristic and removing it using software (5-point correction), the AX-type A/D
converter can be used with better accuracy.

There is also a specific characteristic in the conversion result when the temperature has changed. Particularly, as
shown in Figure 1-2, the gain changes due to the temperature change. By using this characteristic and removing
them using software (temperature correction), the AX-type A/D converter can be used at better accuracy.

This application note describes the above-mentioned methods in detail and provides a sample program.

Figure 1-1. A/D Conversion Result Characteristic Figure 1-2. A/D Conversion Result Characteristic upon
Temperature Change

Y-axis: A/D conversion result
(after 5-point correction)

A A

Y-axis: A/D conversion result

.
¥ Fluctuates due to temperature change

X-axis: Input voltage X-axis: Input voltage

Caution The methods described in this document do not guarantee accuracy improvement. Use them
after implementing thorough evaluation in an actual application.

Application Note U19332EJ1VOAN 3

CHAPTER 1 OVERVIEW

An operation procedure overview and use of the sample program are described below.
The basic operation procedure is performed in the order of steps <1> to <5>, shown below.

Basically, the correction reference voltages are input from an
external reference voltage source. Voltages that correspond
to the REF+ voltage are input, because the correction point

<1> Input the correction reference voltages (ANA1 to
5) on the board.

voltages depend on the REF+ voltage.

\ 4
<2> » Make the microcontroller A/D convert the These operations are executed by using correction A mode
correction reference voltages (ANA1 to 5).
e Make the microcontroller retain the conversion
result as correction data.

of the sample program. (Specifically, they are repeated five
times by combining steps <1> and <2>.)

Y

<3> Input the voltage to be measured on the board. A voltage is externally applied. This voltage is the voltage to
be actually measured.

A/ These operations are executed by using conversion A mode
<4> ¢ Make the microcontroller A/D convert the

externally input voltage.
e Make the microcontroller use the correction
data and correct the conversion result. CHAPTER 2.

of the sample program. The conversion result is corrected
and calculated by using the correction algorithm described in

This operation is executed by using conversion A mode of
<5> Make the microcontroller output the conversion | the sample program. The result is output via UART. The

result and corrected conversion result. result is monitored using a PC (using a communication
software application).

Correction B mode and conversion B mode are provided in this sample program, in addition to correction A mode
and conversion A mode, mentioned above. Correction B mode and conversion B mode are used to output the voltage
setting to an external DAC-IC before A/D conversion. By mounting a DAC-IC on the board and using these modes,
evaluation using the voltage from the DAC-IC can be performed.

Hereinafter, “when not using a DAC” refers to externally inputting a voltage without using the voltage from the DAC-
IC, and “when using a DAC” refers to using the voltage from the DAC-IC.

4 Application Note U19332EJ1VOAN

CHAPTER 1 OVERVIEW

The processing contents of the sample program are described below.

)

)

3

“

®)

Main contents of the initial settings of the peripherals to be used
The contents of the initial settings of the peripherals to be used are as follows.

¢ Disabling interrupts
e Setting the CPU and peripheral hardware clock to 10 MHz via high-speed system clock operation
e Setting serial interface UART®6 for data transmission
e Setting 8-bit timer HO as the interval timer (basic timer: about 100 us) for the following timing
» Wait for stabilization of the circuit after setting the DACs (about 500 us)
e Setting 8-bit timer H1 as the interval timer for key scan (about 10 ms cycle)
¢ Setting the 16-bit AZ-type A/D converter
e Setting ports
¢ Enabling interrupts

Contents of main processing

Key scan processing and event processing are called. Furthermore, the current mode is identified and one
among conversion A1 mode control processing, conversion A2 mode control processing, conversion B mode
control processing, correction A mode control processing, and correction B mode control processing is called.
Key scan processing is called in a cycle of about 10 ms.

Contents of key scan processing

This processing detects key inputs.

It scans the seven key input pins about every 10 ms. It removes chattering upon three matches and encodes
the current key statuses only if matches occur.

Contents of event processing

The mode (conversion A1, conversion A2, conversion B, correction A, or correction B) or the processing
execution status (during standby, during execution, or during stop processing) is switched according to key
code when a key code change has been detected. If the processing execution status is “During standby”, the
mode can be switched.

Contents of conversion A1 mode control processing
In conversion A1 mode, a single conversion operation is performed assuming external voltage input. The
following processing is executed once by pressing the progress key.

¢ Analog input A/D conversion

e A/D conversion result correction™’

Note 2

e UART transmission
Notes 1. A/D conversion result correction is executed only if 5-point correction data has been normally

measured in correction A mode or correction B mode.
2. See 4.4 UART Transmission Data Format for the UART transmission data format.

Application Note U19332EJ1VOAN 5

CHAPTER 1 OVERVIEW

(6) Contents of conversion A2 mode control processing
In conversion A2 mode, successive conversion operations are performed assuming external voltage input. By
pressing the progress key, the following processing is executed until the stop key is pressed.

¢ Analog input A/D conversion
Note 1

e A/D conversion result correction
e UART transmission""?

(7) Contents of conversion B mode control processing
In conversion B mode, successive conversion operations are performed assuming voltage input from a DAC.
The set conversion start and conversion end values are read by pressing the progress key. Next, the following
processing is executed while the DAC setting values from the conversion start value to the conversion end
value, which have been read, are incremented. Conversion B mode control processing ends when the
following processing ends after setting the conversion end value to the DAC, or when the stop key is pressed.

e DAC output setting
¢ Analog input A/D conversion

Note 1

e A/D conversion result correction
Note 2

e UART transmission

(8) Contents of correction A mode control processing
In correction A mode, 5-point correction data is measured assuming external voltage input. The following
processing is performed every time the progress key is pressed, and correction A mode control processing
ends if the following processing has been executed five times or if the stop key has been pressed.

¢ Analog input A/D conversion

Note 2

o UART transmission

An error display LED will be lit if the 5-point A/D conversion result is not measured correctly.

(9) Contents of correction B mode control processing
In correction B mode, 5-point correction data is measured assuming voltage input from a DAC. The main
processing is as follows. The following processing is successively performed by pressing the progress key, and
correction B mode control processing ends if the following processing has been executed five times or if the
stop key has been pressed. The DAC output setting values are calculated in advance via initialization
processing.

e DAC output setting
¢ Analog input A/D conversion

Note 2

e UART transmission
An error display LED will be lit if the 5-point A/D conversion result is not measured correctly.
Notes 1. A/D conversion result correction is executed only if 5-point correction data has been normally

measured in correction A mode or correction B mode.
2. See 4.4 UART Transmission Data Format for the UART transmission data format.

Application Note U19332EJ1VOAN

CHAPTER 2 A/D CONVERSION RESULT CORRECTION ALGORITHM

This chapter describes the 5-point correction and temperature correction algorithms to be used in this sample
program.

2.1 5-Point Correction

An overview of 5-point correction processing is given below.

<1> Five units of 5-point correction data, which have been matched with the voltage to be used are measured
from each sample in advance.

<2> The /O characteristics of the 16-bit AX-type A/D converter are approximated to four functions, based on the
5-point correction data.

<3> The approximation functions of the 16-bit AZ-type A/D converter I/O characteristics are used to correct the
conversion result of the 16-bit AZ-type A/D converter.

(1) 5-point correction data measurement
Five units of 5-point correction data, which have been matched with the voltage to be used are measured from
each sample in advance. Figure 2-1 shows the 1/O characteristic model of the 16-bit AX-type A/D converter.
anal, ana2, ana3, ana4, and ana5, shown in the figure, are 1/O signal values. code1l, code2, code3, code4,
and code5, shown in the figure, are the output codes for I/O signals anal, ana2, ana3, ana4, and ana5.
The 16-bit AZ-type A/D converter is used to measure codel to code5 at anal to ana5 in 16-bit resolution.
anal to ana5 are calculated using the following expressions. code1 to code5 are measured at 25°C.

ana5: 0.9 x (REF+)

ana4: 0.82 x (REF+) — 0.91""

ana3: 0.5 x (REF+)

ana2: (REF+) — (0.82 x (REF+) — 0.91)""
anal: 0.1 x (REF+)

e (REF+) is the positive-side voltage of the reference pin and has the same potential as AVRer.
e AVpp is an analog power supply voltage.

¢ Output codes code1 to codeb are calculated by A/D converting input signals anal to ana5.

Note If AVRer = (REF+) < 2.84375 V, ana2 > ana4. In this case, the values of ana2 and ana4 are reversed
and 5-point correction is performed.

Application Note U19332EJ1VOAN 7

CHAPTER 2 A/D CONVERSION RESULT CORRECTION ALGORITHM

Figure 2-1. 16-bit AX-Type A/D Converter I/O Characteristic Model

&
N anah, codeh)
Y4
s
8 .
z (ana3, code3 (anad, coded) ¥a
© (ana2, code2) 2
- Yi
[anal, codell
| | | L,

Analog signal input voltage

(2) Approximating 16-bit AX-type A/D converter I/O characteristic to functions
The 1/O characteristics of the 16-bit AX-type A/D converter are approximated to four functions, based on the 5-
point correction data. As shown in Table 2-1, the 1/O characteristic of each output code interval Y1, Y2, Y3, and
Y4 (see Figure 2-1) is approximated to a function (inclination and intercept) using the 5-point correction data in
sets of two points.

Table 2-1. 16-bit AX-Type A/D Converter I/O Characteristic Approximation Functions

Interval Subject Output Approximation Functions
Codes Inclination Intercept
codeS —code4d anad x code5 — ana5x code4
Y4 code4 or later ad x An + bd ad=—— b4 =
anaS—ana4 anad —anas
code4 — code3 ana3 X code4 —ana4x code3
Y3 code3 to code4 a3 x AN + b3 a3d=————— b3 =
anad —ana3 ana3 — ana4
code3 — code2 ana X code3 — ana3 X code2
Y2 code? to code3 a2 x A + b2 a2=— b2 =
ana3—ana? ana2 —ana3
code2 — codel anal X code2 — ana2 X codel
Y1 code2 al x An + b1 al=——— bl =
ana?2 — anal anal —ana?2

Remark An: Analog input voltage

Application Note U19332EJ1VOAN

CHAPTER 2 A/D CONVERSION RESULT CORRECTION ALGORITHM

(3) A/D conversion result correction
The approximation functions of the 16-bit AX-type A/D converter I/O characteristics are used to correct the A/D
conversion result. As shown in Table 2-2, the A/D conversion result is corrected according to the output code
values and then output. In principle, the same result is obtained for the interval boundary values (code2,
code3, and code4), regardless of whichever correction expression is used.
If code1 < A/D conversion result < code5, 5-point correction can be performed.

Table 2-2. Correction Output Arithmetic Expressions

Interval Output Codes 5-Point Correction Outputs 5-Point Correction Outputs (Expanded by Assigning a1 to a4 and
Subject to 5- b1 to b4)
Point Correction

Y4 code4 or later A/ D conversion result — b4 A/ D conversion result (ana5 — anad) +anadcode5 — ana5coded
a4 code5 — coded

Y3 code3 to code4 A/ D conversion result — b3 A/D conversion result (ana4 — ana3) +ana3coded — anadcode3
a3 coded — code3

Y2 code?2 to code3 A/ D conversion result —b2 A/D conversion result (ana3 — ana2) +ana2code3 — ana3code2
a2 code3 — code2

Y1 code2 A/ D conversion result — bl A/D conversion result (ana2 — anal) +analcode2 — ana2codel
al code2 — codel

Application Note U19332EJ1VOAN 9

CHAPTER 2 A/D CONVERSION RESULT CORRECTION ALGORITHM

2.2 Temperature Correction

An overview of temperature correction processing is given below.

<1> One point of temperature correction data is measured before starting A/D conversion.

<2> The inclination of the 5-point correction result according to the temperature is calculated, based on the
temperature correction data.

<3> The 5-point correction result is temperature-corrected, based on the calculated inclination.

Caution The outcome of correction via this temperature correction is not quantified.

(1) Temperature correction data measurement
The 16-bit AX-type A/D converter is used to measure the output code at anal in 16-bit resolution and 5-point
correction is performed for the A/D value before starting A/D conversion. This value is code1’.

(2) Calculating inclination of 5-point correction result
The reference temperature A/D value (codel) changes up to codel’ due to a temperature change at anal. At
this time, the A/D conversion value characteristic is a straight line going through (anail, code1’) and (ana3,
code3).
The actual inclination of the 5-point correction result is calculated based on code1’ measured in (1), anai,
ana3, and code3, which has been corrected in advance. codel and code3 are values resulting from
performing 5-point correction for code1 and code3, which were measured in 2.1 (1).

Figure 2-2. 5-Point Correction Result Inclination Model

3 8
o 8
g El
8 i (ana3, code3) 8 ! (ana3, code3)
\ (anat, code1 ’)E E
! ! (anat, codel) !
' (anat, codel) ! i
i E i(anat, codet’) E
. i > : P—— >
Analog signal input voltage Analog signal input voltage

<1>: Data without temperature errors
<2>: Actual 5-point correction result (when the inclination decreases due to temperature errors)

<3>: Actual 5-point correction result (when the inclination increases due to temperature errors)

10 Application Note U19332EJ1VOAN

CHAPTER 2 A/D CONVERSION RESULT CORRECTION ALGORITHM

(3) Temperature-correcting 5-point correction result
Temperature correction is performed by calculating the inclination of the 5-point correction result with

temperature errors, according to codel, code3, and codel’, and thus approximating the inclination to an
inclination of ideal values.

Table 2-2 shows the expressions to be used for actual temperature correction operation. Two expressions for

the cases of X1 and X2 are used so that negative values do not result midway during the calculation. See
Figure 2-2 for each case.

Table 2-2. Temperature Correction Arithmetic Expressions

Interval Inclination of 5-Point Temperature-Corrected Output
Correction Result
According to
Temperature Errors

X1 Small 5-point correction result (code3 — codel) — code3 (codel” — codel)
code3 — codel’

X2 Large S-point correction result (code3 — codel) + code3 (codel — codel”)
code3 — codel’

Application Note U19332EJ1VOAN

1

CHAPTER 3 CIRCUIT DIAGRAM

This chapter describes the circuit diagrams and peripheral hardware when using this sample program.
3.1 Circuit Diagrams

3.1.1 Circuit diagram when not using DAC
The circuit diagram when not using a DAC for the AZ-type A/D converter analog input is shown below.

Figure 3-1. Connection When Not Using DAC

VoD

AVEDD VDD
¥ A

Error
- Z REF +
O O F150
_ REF-
Conversion A2
AVREF
—-.
O G P151 AVES
Conversion A1 DD
- ves
O O P15z
78K0/Lx3 .
Correction A microcontroller SHD
—-.
e P11
Progr D=0+
ogress oooo
- os0-
O O Fldz
Stop Voltage converter
INTRO
krrd
GHD &
i = [
luMHZ — \
1 T L 1
I |
=D Master device capable of UART reception

Cautions 1. Use the circuit within a voltage range of 2.7 V < AVrer = REF+ <Vbb < 5.5 V.
2. Make the AVss pin the same potential as Vss and connect it directly to GND.
3. Leave unused port function pins except those in the circuit diagram open (unconnected),
because they are all output ports.
4. Connect DSO0- and DS0+ to a voltage converter for which analog input can be performed
within a range of REF- to REF+.
5. Connect the TxD6 pin to a device that is capable of UART reception.

12 Application Note U19332EJ1VOAN

CHAPTER 3 CIRCUIT DIAGRAM

3.1.2 Circuit diagram when using DAC
The circuit diagram when using a DAC for the AZ-type A/D converter analog input is shown below.
DAC8830ICD made by Texas Instruments is used as the DACs in this sample program.

Figure 3-2. Connection When Using DAC

Master device capable of
AVDD WDD
R ¥ UART reception
Error
T4HCIES
Jpo oH PAT fpimg + REF +
2 AT frgs REF-
——{A~H
7;(, : oL S pynz ANREF
' SIN — AVSS
T GND e
e VoD ————
o ?4Hc155QH wss (]
— -
o &0 Pisz 78K0/Lx3 -
——— A-H Conversion B microcontroller ane VDD AVREF
! = - o -« g
! SIN —
GND w5 Correction B g+ [DACOUTL DACHI0-ICD
--------------- - DACOUTO
o pLal sl WOUT WDD |—
: wDD cso —
! H Progress Pa4 T DGND
i 5z ' pLaz piy |25k SCLK WREF
———{ A~H
i 5D
7-;”" : = Stop [3E SDI AGND
! cs1
| SN — INTRO P4z DAcCo
GND g 77 o = é
_______________ GND DAC2830-1CD
"""""""" TAHCIES
om Iy wouT woD [
! TS DGND
! ' SiL
: ' AeH 10MH: = L Jsclk wREF
' ! oL
H r;',n ! |—Ti SOI AGND
: Ls SN oA
L anND b
e ™
aND GND
GND

Cautions 1. Use the circuit within a voltage range of 2.7 V < AVrer = REF+ <Vpb < 5.5 V.
2. Make the AVss pin the same potential as Vss and connect it directly to GND.
3. Leave unused port function pins except those in the circuit diagram open (unconnected),
because they are all output ports.
4. Connect DS0- and DS0+ to a voltage converter for which analog input can be performed
within a range of REF- to REF+.
5. Connect the TxD6 pin to a device that is capable of UART reception.

Application Note U19332EJ1VOAN 13

CHAPTER 3 CIRCUIT DIAGRAM

3.2 Peripheral Hardware

14

The peripheral hardware to be used is shown below.

(1M

&)

3

@

®)

(6)

Crystal resonators
10 MHz crystal resonators are connected to X1 and X2.

UART communication device (TxD6)
A UART reception device is connected to the TxD6 pin.

Key switches (P140 to P142, P150 to P153)

When not using a DAC, five key switches are connected to the key input ports (P150, P151, P153, P141,
P142).

When using a DAC, four key switches are connected to the key input ports (P152, P140 to P142).

16-bit AX-type A/D converter analog input pins (DS0-/DS0+)

When not using a DAC for analog input, the DS0- and DS0+ pins are connected to a voltage converter to
which analog input can be performed within a range of AVss to AVRer.

When using a DAC for analog input, the DSO- and DS0+ pins are connected to the DAC output pins. Two units
of DAC8830ICD are used in this sample program.

8-bit serial shift registers (P110, P102, P103)

When using a DAC, four 8-bit serial shift registers (74HC165) are connected to set the conversion start value
(16 bits) and conversion end value (16 bits). P110, P103, and P102 are used for the data line, latch, and clock
line, respectively.

Error output LED (P40)
An error output LED is connected to P40 for displaying errors of 5-point correction operation coefficients.

Application Note U19332EJ1VOAN

CHAPTER 4 SOFTWARE

This chapter describes the file configuration of compressed files to be downloaded, internal peripheral functions of
the microcontroller to be used, initial settings and operation overviews of the sample program, UART transmission
data format, and flowcharts.

4.1 File Configuration

The file configuration of the compressed files to be downloaded is shown below.

File Name Description Compressed (*.zip) File Included
L2
main.c Source file of hardware initialization processing of the ® L]
microcontroller, main processing, key scan processing, event
processing, conversion A1 mode control processing, conversion A2
mode control processing, conversion B mode control processing,
correction A mode control processing, and correction B mode
control processing"™®
KOLx3_DSAD.prw Work space file for integrated development environment PM+ []

KOLx3_DSAD.prj

Project file for integrated development environment PM+

Note The source file to be downloaded includes processing of both when not using and when using a DAC for

A/D conversion analog input. Delete unnecessary processing according to the operation environment.

Remark @ : Only the source file is included.

I||'|
| L.
(32|

Application Note U19332EJ1VOAN

: The files to be used with integrated development environment PM+ are included.

15

CHAPTER 4 SOFTWARE

4.2 Internal Peripheral Functions to Be Used

16

The following peripheral functions provided in the microcontroller are used in this sample program.

e For measuring the key scan cycle timing:
8-bit timer H1 is used as an interval timer of a cycle of about 10 ms (fers/2" x 23).

e For measuring the peripheral circuit stabilization time after setting the DAC:
8-bit timer HO is used as an interval timer with a reference time of a cycle of about 100 us (frrs/2'°).

For A/D conversion:
DSO0- and DS0+ of the 16-bit AZ-type A/D converter are used.

For A/D conversion result output:
Serial interface UARTS6 is used.

Application Note U19332EJ1VOAN

CHAPTER 4 SOFTWARE

4.3 Initial Settings and Operation Overviews

In this sample program, the clock frequency is selected and 8-bit timer HO, 8-bit timer H1, serial interface UARTS,
the 16-bit AX-type A/D converter, and I/O ports are set in the initial settings.

Operation overviews are described in 4.3.1 Operation when not using DAC and 4.3.2 Operation when using
DAC.

This sample program includes the processing of both when not using and when using a DAC for A/D conversion
analog input. Delete unnecessary processing according to the operation environment and reference the 4.3.1
Operation when not using DAC, or 4.3.2 Operation when using DAC.

4.3.1 Operation when not using DAC

Variables are initialized and key scan processing, event processing, conversion A1 mode control processing,
conversion A2 mode control processing, and correction A mode control processing are called after the initial settings
of the peripherals to be used have been completed. Key scan processing is called in a cycle of about 10 ms.
Furthermore, conversion A1 mode control processing, conversion A2 mode control processing, and correction A mode
control processing are called according to the current mode and system status.

(1) Key scan processing
The key statuses are scanned from the seven key input ports. Chattering is removed three times and the key
statuses are encoded.

(2) Event processing
When a key code has changed, the mode (conversion A1, conversion A2, or correction A) or the conversion
execution status (during conversion execution, during standby, or stopped) is switched according to key code.
The mode can be switched only if the conversion status is “During standby”.

(3) Conversion A1 mode control processing
The following processing is executed every time the progress key is pressed. The conversion operation ends
by pressing the stop key.

¢ A/D conversion using the 16-bit AX-type A/D converter

¢ 5-point correction (executed only if the 5-point correction data have been measured)

e Temperature correction (executed only if 5-point correction has been completed and temperature errors exist)
« Outputting the A/D conversion, 5-point correction, and temperature correction results via UART"™

Temperature correction is performed if temperature errors exist in the 5-point correction data (codel)
measured immediately after conversion A1 mode has been entered. Consequently, the anal value must be
input to the analog input when entering conversion A1 mode.

The A/D conversion, 5-point correction, and temperature correction results are output via UART, but if 5-point
correction and temperature correction are not performed, the corresponding sections of the transmit data will

ik k% *x17Note
be .

Note See 4.4 UART Transmission Data Format for details of the UART transmit data.

Application Note U19332EJ1VOAN 17

CHAPTER 4 SOFTWARE

18

@

®)

Conversion A2 mode control processing
The following processing is successively performed by pressing the progress key. The conversion operation
ends by pressing the stop key.

e A/D conversion using the 16-bit AX-type A/D converter

¢ 5-point correction (executed only if the 5-point correction data have been measured)

e Temperature correction (executed only if 5-point correction has been completed and temperature errors
exist)

Note

¢ Outputting the A/D conversion, 5-point correction, and temperature correction results via UART

Temperature correction is performed if temperature errors exist in the 5-point correction data (codel)
measured immediately after conversion A2 mode has been entered. Consequently, the anal value must be
input to the analog input when entering conversion A2 mode.

The A/D conversion, 5-point correction, and temperature correction results are output via UART, but if 5-point
correction and temperature correction are not performed, the corresponding sections of the transmit data will

k% *x7Note
be .

Correction A mode control processing

In correction A mode, 5-point correction data is measured. The following processing is performed once by
pressing the progress key. The conversion operation ends by pressing the stop key. Furthermore, the
conversion operation ends when the following processing is performed five times.

¢ A/D conversion using the 16-bit AZ-type A/D converter

Note

¢ Outputting the A/D conversion result via UART
code1 to code5 are sequentially measured each time the progress key is pressed. Consequently, anal to
ana5 must be sequentially input to the analog input.

An error display LED is lit if the sizes of 5-point correction data code1 to code 5 are not in the order of code1 <
code3 < code5. codel and code3 are corrected via 5-point correction and saved as temperature correction
data if the 5-point correction data have been correctly measured.

Note See 4.4 UART Transmission Data Format for details of the UART transmit data.

Details are shown in the following state transition diagram (state chart).

Application Note U19332EJ1VOAN

CHAPTER 4 SOFTWARE

Initial settings of peripherals to be used

o

/ @ Disabling interrupts
® ROM/RAM size setting
@ Setting CPU clock to high-speed system clock operation (10 MHz)

@ Stopping internal high-speed oscillator operation
@ Stopping internal low-speed oscillator operation

@ Setting serial interface UARTG6 for data transmission
¢ Data length: 8 bits
e Transfer rate: 115,200 bps
o Parity bit: None
¢ Stop bit: 1 bit appended
 Data direction: LSB-first transfer
@ 16-bit AX-type A/D converter setting
¢ High-accuracy mode setting: High-accuracy mode on
e Input mode: Differential input
¢ Input channel: DS0-/DS0+
e Serial/parallel mode: Serial mode
e Sampling count: 65,536 times (16-bit resolution)
e Sampling clock (fve): frrs/8
@ Port setting
e Setting P40 as error display LED
¢ Setting P112 for UART transmission

@ Setting peripheral hardware clock to high-speed system clock operation (10 MHz)

@ Setting 8-bit timer H1 as interval timer for measuring key scan cycle (about 10 ms)

e Setting P20 and P21 as 16-bit AZ-type A/D converter analog input pins

e Setting P140, P141, P142, P150, P151, P152, and P153 as key input pins

e Setting P120 as stop key input signal pin
@ Enabling interrupts

»l

Main processing

Cycle of about 10 ms

@ Key scan cycle (about 10 ms) identification
@ Calling key scan processing

@ Event processing

® Mode identification

@ Conversion execution status identification

@ Calling conversion A1 mode control processing
@ Calling conversion A2 mode control processing
!Calling correction A mode control processing /

l

(Key scan processing \
@ Key status retrieval
@ Chattering removal
@ Key code creation

Conversion A1 mode Conversion A2 mode

Y

ﬁ)nversion A1 mode control processm ﬂnversion A2 mode control process@

Correction A mode

Correction A mode control processirh

@ Conversion execution status @ Conversion execution status
identification identification

@ Stop processing @ Stop processing

@ Temperature correction data (code1’) @ Temperature correction data (code1’)
measurement measurement

@ A/D conversion processing @ A/D conversion processing

@ 5-point correction processing @ 5-point correction processing

@ Temperature correction processing @ Temperature correction processing

® UART transmit data creation ® UART transmit data creation
processing processing

@ Conversion execution status
identification

@ Stop processing

@ A/D conversion processing

® UART transmit data creation
processing

@ UART data transmission processing

@ Temperature correction data (code1,
code3) measurement

@ Conversion end identification

® UART data transmission processing ® UART data transmission processing
wonversion execution status setting/ KConversion execution status setting/

Qonvarsion execution status settingy

Application Note U19332EJ1VOAN

19

CHAPTER 4 SOFTWARE

4.3.2 Operation when using DAC
Variables are initialized and key scan processing, event processing, conversion B mode control processing, and
correction B mode control processing are called after the initial settings of the peripherals to be used have been

completed. Key scan processing is called in a cycle of about 10 ms. Furthermore, conversion B mode control

processing and correction B mode control processing are called according to the current mode and system status.

20

)

&)

()

Key scan processing
The key statuses are scanned from the seven key input ports. Chattering is removed three times and the key
statuses are encoded.

Event processing

When a key code has changed, the mode (conversion B or correction B) or the conversion execution status
(during conversion execution, during standby, or stopped) is switched according to key code. The mode can be
switched only if the conversion status is “During standby”.

Conversion B mode control processing

When conversion B mode is entered, the conversion start and end values are read from 74HC165 and the
following processing is successively performed by pressing the progress key. The conversion operation ends if
the stop key is pressed or if the values set for DAC output become equal to the conversion end values, which
have been read.

¢ DAC output setting

* A/D conversion using the 16-bit AX-type A/D converter

¢ 5-point correction (executed only if the 5-point correction data have been measured)

e Temperature correction (executed only if 5-point correction has been completed and temperature errors exist)
« Outputting the A/D conversion, 5-point correction, and temperature correction results via UART"*®

The values to be set to the DAC are incremented every time A/D conversion is performed. The values from the
conversion start value to the conversion end value, which have been read, are sequentially set for DAC output
and A/D converted. If the conversion end value is smaller than the conversion start value, the DAC setting
values are rounded and the values from the conversion start value to the conversion end value are set for DAC
output.

Temperature correction is performed if temperature errors exist in the 5-point correction data (code1)
measured immediately after conversion B mode has been entered. code1 is measured by setting anai to the
DAC.

The A/D conversion, 5-point correction, and temperature correction results are output via UART, but if 5-point
correction and temperature correction are not performed, the corresponding sections of the transmit data will

ik k% *7Note
be .

Note See 4.4 UART Transmission Data Format for details of the UART transmit data.

Application Note U19332EJ1VOAN

CHAPTER 4 SOFTWARE

(4) Correction B mode control processing
In correction B mode, 5-point correction data is measured. The following processing is successively performed
five times by pressing the progress key. The conversion operation ends by pressing the stop key or when the
following processing has been completed five times.

¢ DAC output setting
¢ A/D conversion using the 16-bit AZ-type A/D converter
e Outputting the A/D conversion result via UART""

ana1l to ana5 are sequentially set for DAC output and code1 to code5 are measured. An error display LED is lit
if the sizes of code1 to code 5 are not in the order of code1 < code3 < code5. codel and code3 are corrected
via 5-point correction and saved as temperature correction data if the 5-point correction data have been
correctly measured.

The A/D conversion, 5-point correction, and temperature correction results are output via UART, but if 5-point
correction and temperature correction are not performed, the corresponding sections of the transmit data will
be “****™* The conversion operation ends by pressing the stop key.

Note See 4.4 UART Transmission Data Format for details of the UART transmit data.

Details are shown in the following state transition diagram (state chart).

Application Note U19332EJ1VOAN 21

CHAPTER 4 SOFTWARE

/ Initial settings of peripherals to be used \

/ @ Disabling interrupts \
® ROM/RAM size setting
@ Setting CPU clock to high-speed system clock operation (10 MHz)
@ Setting peripheral hardware clock to high-speed system clock operation (10 MHz)
@ Stopping internal high-speed oscillator operation
@ Stopping internal low-speed oscillator operation
@ Setting 8-bit timer HO as interval timer of a cycle of about 100 us (frrs/2")
@ Setting 8-bit timer H1 as interval timer for measuring key scan cycle (about 10 ms)
@ Setting serial interface UART6 for data transmission
» Data length: 8 bits
o Transfer rate: 115,200 bps
o Parity bit: None
o Stop bit: 1 bit appended
o Data direction: LSB-first transfer
@ 16-bit AX-type A/D converter setting
e High-accuracy mode setting: High-accuracy mode on
* Input mode: Differential input
e Input channel: DSO—/DS0+
o Serial/parallel mode: Serial mode
e Sampling count: 65,536 times (16-bit resolution)
e Sampling clock (fve): frrs/8
@ Port setting
o Setting P40 as error display LED
o Setting P112 for UART transmission
» Setting P20 and P21 as 16-bit AX-type A/D converter analog input pins
o Setting P140, P141, P142, P150, P151, P152, and P153 as key input pins

o Setting P120 as stop key input signal pin

@ Enabling interrupts
/ Main processing \

@ Key scan cycle (about 10 ms) identification

Cycle of about 10 ms

@ Calling key scan processing *
@ Event processing
® Mode identification (Key scan processing \

@ Conversion execution status identification
@ Calling conversion B mode control processing
\OCaIIing correction B mode control processing /

@ Key status retrieval
@ Chattering removal
@ Key code creation

Conversion B mode Correction B mode
ﬂ)onversion B mode control processirm /Correction B mode control processing\
@ Conversion execution status identification @ Conversion execution status identification
@ Stop processing @ Stop processing
@ Temperature correction data (code1’) @ DAC output setting processing
measurement @ A/D conversion processing
@ Conversion start and end value read @ UART transmit data creation processing
processing @ UART data transmission processing
@ DAC output setting processing @® Temperature correction data (code1, code3)
@ A/D conversion processing measurement
@ 5-point correction processing @ Conversion end identification
® Temperature correction processing @ Conversion execution status setting
@ UART transmit data creation processing

@ UART data transmission processing
wonversion execution status setting j K /

Application Note U19332EJ1VOAN

CHAPTER 4 SOFTWARE

4.4 UART Transmission Data Format

The data to be transmitted via UART®6 is described below.
The UART settings are as follows.

¢ Baud rate: 115,200 bps

¢ Data character length: 8 bits

o Parity bit: Not output

o Number of stop bits: 1

Data transmission is performed once for every A/D conversion. The length of data transmitted at one time is 21
bytes. The DAC setting values, A/D conversion result, 5-point correction result, and temperature correction result are
converted into ASCII codes in hexadecimal and then transmitted.

Figure 4-1 shows the contents of the data.

Figure 4-1. UART Transmission Data Format

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 v n

Note 1

<1> DAC setting values <2> A/D conversion result <3> 5-point correction result'™** <4> Temperature correction result*?

Notes 1. When not using a DAC, the data becomes “****”.
2. When not performing 5-point correction, the data becomes “****”.
3. When not performing temperature correction, the data becomes “****”.

Application Note U19332EJ1VOAN 23

CHAPTER 4 SOFTWARE

4.5 Flowcharts

The flowcharts of this sample program are shown below.

<Initialization processing after reset release>

C =

Disable interrupts

Enable high-speed system
clock operation

Set CPU/peripheral
hardware clock as high-
speed system clock

Stop internal high-/low-
speed oscillator operation

|
Set 8-bit timer HO
|
Set 8-bit timer H1
|
Set serial interface UART6

Set 16-bit AX-type A/D
converter

|
Set ports
|
Enable interrupts

|
Initial setting of RAM

to be used Y

Initial settings of peripherals to be used

24 Application Note U19332EJ1VOAN

CHAPTER 4 SOFTWARE

® Main processing when not using a DAC

Cautions 1.

No
About 10 ms

elapsed?
Yes

Key scan processing

P
<«

Event processing

What is the
current mode?

Conversion A1 mode

Conversion A2 mode

Correction A mode

Conversion A1 mode Conversion A2 mode
control processing control processing

Correction A mode
control processing

Main processing

Y

Set the option byte via the RA78KO0 linker options. See the RA78K0 Assembler Package

User’s Manual for the setting method.

The following items can be set using the option byte.

e Watchdog timer operation

¢ LVI setting upon reset release (upon power activation)
¢ On-chip debug operation control

This sample program includes the processing of both when using and not using a DAC for
analog input. Delete unnecessary processing according to the operation environment.

Application Note U19332EJ1VOAN

25

CHAPTER 4 SOFTWARE

® Main processing when using a DAC

About 10 ms
elapsed?

Yes

Key scan processing

P
<«

Event processing

What is the
current mode?2

Main processing

Conversion B mode Correction B mode
Conversion B mode Correction B mode
control processing control processing

Cautions 1. Set the option byte via the RA78K0 linker options. See the RA78K0 Assembler Package
User’s Manual for the setting method.
The following items can be set using the option byte.
e Watchdog timer operation
¢ LVI setting upon reset release (upon power activation)
¢ On-chip debug operation control
2. This sample program includes the processing of both when using and not using a DAC for
analog input. Delete unnecessary processing according to the operation environment.

26 Application Note U19332EJ1VOAN

CHAPTER 4 SOFTWARE

<Key scan processing>

Retrieve current key status

Key status same as last

No

Remove chattering

No
Chattering removal

completed?

Initialize chattering
counter

Yes

Initialize chattering counter

Convert current key status
into key code

A 4

Save current key status

{ Return }

Caution Pressing a key multiple times is invalid.

Application Note U19332EJ1VOAN

27

CHAPTER 4 SOFTWARE

<Event processing>

ey code same as last time?

No

Key code?

Yes

i:)rll(version Conversion A2 key [Conversion B key | Correction Akey | Correction B key Progress key Stop key Other
ey
Is conversion execution status R e)
“During standby”2
Yes s conversion execution status — — — T
“During standby™?
No
Yes Is conversion execution status A ™ MN—————p
“During standby”2
No
Yes Is conversion execution status A ™ N—p
“During standby”2
No
Yes Is conversion execution status N———T————p
“During standby’2
No
s conversion execution status — >
Yes “Waiting for progress key’?
Use conversion A1 Use correction A mode
mode Yes
; Set conversion
Use conversion A2 Use correction B mode execution status to
mode “Stopped”
U ion B Set conversion
Se conversion execution status to
mode “During execution”
| |

Stop key pressed

A

?Note

No

Set conversion execution

status to “Stopped”

>

<

Save current key code

Note Use the interrupt request flag (PIFO) to determine whether the stop key has been pressed. Key scan

processing is executed in a cycle of about 10 ms, but may be delayed due to A/D conversion processing.

28

Application Note U19332EJ1VOAN

CHAPTER 4 SOFTWARE

<Conversion A1 mode control processing>

Conversion execution
status?

Stopped Waiting for progress key During execution Other
Conversion result -) No
initialization processing 5-point correctljof)n data T >
measure
|
Yes }
-) A/D conversion
Initialize variables processing
I
: Yes
Set conversion execution iggmﬁ;@:ﬁﬂ:‘gggg% 10 >
status to “During standby”

No

5-point correction data
measured?

A/D conversion

processing Yes
5-point correction 5-point correction
processing processing

No No

Current code1

] Execute temperature
includes temperature

correction?

error?
Yes
Set temperature correction Temperature correction
execution processing
< <
UART transmit data

creation processing

UART data transmission
processing

]
Set conversion execution
status to “Waiting for
progress key”

(Return >

Application Note U19332EJ1VOAN

CHAPTER 4 SOFTWARE

<Conversion A2 mode control processing>

Conversion execution
status?

Stopped Waiting for progress key During execution Other
No
Conversion result 5-point correction data — >
initialization processing measured?
I ves A/D conversion
Initialize variables processing
| emperature correction R

identified as necessary?

Set conversion execution
status to “During standby”

No

5-point correction data

16-bit AX-type A/D
conversion
|
5-point correction 5-point correction
processing processing

No

Current code1
includes temperature
error?

Execute temperature
correction?

Yes
Set temperature correction Temperature qorrection
execution processing
UART transmit data

creation processing
]

UART data transmission
processing

{ Return }

30 Application Note U19332EJ1VOAN

CHAPTER 4 SOFTWARE

<Conversion B mode control processing>

Conversion execution
status?

Stopped

Conversion result
initialization processing

Initialize variables

status to “During standby”

Waiting for progress key During execution Other
No
onversion start and end onversion start and en >
values read?
Yes
Conversion start and end . .
) DAC setting processing
value read processing
|
Set conversion execution < A/D conversion
No processing
5-point correction data >
measured?
5-point correction data
measured? No
emperature Yes
correction identified as TP
necessary?
No 5-point correction
processing
A/D conversion
processing No
Execute temperature
[correction
5-point correction
processing
Temperature correction
processing
Current codeT P
includes temperature «
error? -
Yes UART transmit data
creation processing
Set temperature correction I
execution UART data transmission
processing
: I
Increment DAC setting
values
A7D conversio No
completed up to conversion
2
Set conversion execution
status to “Stopped”
{ Return }
31

Application Note U19332EJ1VOAN

CHAPTER 4 SOFTWARE

32

<Correction A mode control processing>

onversion execution
status?

Stopped Waiting for
progress key

Conversion result
initialization processing

Initialize variables

Set conversion execution
status to “During standby”

During execution

First conversion?

Clear 5-point correction
data measurement
completion information

Other

>
<

A/D conversion
processing

Save A/D conversion result
as 5-point correction
coefficients

UART transmit data
creation processing

I

UART data
transmission processing

5-point measurement
completed?

Size relationship of 5-
points correct?

Yes

No

Set conversion execution
status to “Stopped”

5-point correction
processing

Save temperature
correction coefficients

Set conversion execution
status to “Waiting for
progress key”

Set 5-point correction data

measurement completion
information

Set error display

&

v

al

(Return }

Application Note U19332EJ1VOAN

CHAPTER 4 SOFTWARE

<Correction B mode control processing>

Conversion execution

Stopped Waiting for
progress key

Conversion result
initialization processing

I

Initialize variables

|

Set conversion execution
status to “During standby”

During execution

First conversion?

Clear 5-point correction
data measurement
completion information

<
«

DAC setting
processing

A/D conversion

processing

Save A/D conversion result

as 5-point correction
coefficients

UART transmit data
creation processing

UART data

transmission processing

5-point measurement
completed?

Size relationship of 5-
points correct?

Yes

No

Set conversion execution
status to “Stopped”

5-point correction
processing

Save temperature
correction coefficients

Set 5-point correction data
measurement completion
information

Set error display

>

v

<

Other

(Return }

Application Note U19332EJ1VOAN

CHAPTER 4 SOFTWARE

<Conversion result initialization processing>

(Start }

Initialize DAC setting
values

Initialize A/D conversion
result value

|
Initialize 5-point
correction result

Initialize temperature
correction result

Clear DAC setting value
preparation flag

Clear A/D conversion result
preparation flag

Clear 5-point correction
result preparation flag
|
Clear temperature

correction result preparation
flag

(Return }

Application Note U19332EJ1VOAN

CHAPTER 4 SOFTWARE

<Conversion start and end value read processing>

{ Start }

Read conversion start value
(16 bits)
|

Save conversion start value

Read conversion end value
(16 bits)
|

Save conversion end value

Set conversion start and
end value read completion
information

(Return >

Application Note U19332EJ1VOAN

CHAPTER 4 SOFTWARE

36

<DAC setting processing>

{ Start)

Calculate DACO setting
value from DAC1 setting
value

|
Set DAC1 transmission star]

Software serial
transmission processing

Set DAC1 transmission end
|

Set DACO transmission start]

Software serial
transmission processing

Set DACO transmission end

Wait for circuit to stabilize
(500 us)

(Return }

Application Note U19332EJ1VOAN

CHAPTER 4 SOFTWARE

<Software serial transmission processing>

{ Start }

»
>

No
16-bit transmission
completed?

Yes

Transmit 1-bit of data

Update position of bit to be
transmitted within data

(Return }

Caution Data is sequentially transmitted from the MSB, bit by bit.

Application Note U19332EJ1VOAN

CHAPTER 4 SOFTWARE

<A/D conversion processing>

(Start)

Start A/D conversion

\ 4

D conversio
of DS0+/DS0-
ompleted?
Yes
D conversiol No
completed except for
S0+/DS0=2
Yes No
Stop key pressed?"**
Yes
Acquire A/D conversion Start A/D conversion Set 0 to A/D conversion
result result
Va Y Y 7T\

A

{ Return >

Note Use the interrupt request flag (PIF0) to determine whether the stop key has been pressed. Key scan
processing is executed in a cycle of about 10 ms, but may be delayed due to A/D conversion processing.

Application Note U19332EJ1VOAN

CHAPTER 4 SOFTWARE

<5-point correction processing>
(Start)

Set 5-point correction
coefficients to be used

s denominator Yes

of correction expression
0?

No

Set values subject to 5-point]
correction to 5-point
correction result

Calculate 5-point correction
result"®

>
al

(Return >

Note See 2.1 5-Point Correction for details of the 5-point correction arithmetic expression.

Application Note U19332EJ1VOAN

CHAPTER 4 SOFTWARE

40

<Temperature correction processing>

Yes

Is denominator of

orrection expression 02

Yes

s inclination of 5-poin

Set values subject to 5-point
correction to 5-point
correction result

correction result larger
an ideal valug2

Yes
Subject of correction

larger than code3?
No

Calculate temperature
correctionN result using
interval X1"*° expression

Yes
Subject of correction

larger than code3?
No

Calculate temperature
correctionN result using
interval X3"° expression

Calculate temperature Calculate temperature
correctionN result using correction result using
interval X2"** expression interval X4"** expression
\ 4 \ 4 \ 4

»)
<

(Return }

Note See 2.2 Temperature Correction for details of the temperature correction arithmetic expression.

Application Note U19332EJ1VOAN

CHAPTER 4 SOFTWARE

<UART transmission data creation processing>

No

DAC setting value data

Convert DAC setting values to
ASCII codes and set to transmit
buffer

Set “****” to transmit buffer

»)
<

No

A/D conversion
result data present?

Convert A/D conversion result to
ASCII codes and set to transmit
buffer

Set “***” to transmit buffer

>
<

No

5-point correction resul
ata present?
Yes

Convert 5-point correction result
to ASCII codes and set to
transmit buffer

Set “***” to transmit buffer

<&
<

No

Temperature correctio
result data present?2

Yes

Convert temperature correction
result to ASCII codes and set to
transmit buffer

Set “****” to transmit buffer

<
<

{ Return }

Caution See 4.4 UART Transmission Data Format for details of the UART transmit data.

Application Note U19332EJ1VOAN

41

CHAPTER 4 SOFTWARE

<UART data transmission processing>

(Start }

»
»

1 bytes set to be Yes
transmitted?

No

1 byte transmitted?

Stop key pressed?"**
Set next data to be

transmitted No
]

Increment transmit data
count

{ Return }

Note Use the interrupt request flag (PIFO) to determine whether the stop key has been pressed. Key scan
processing is executed in a cycle of about 10 ms, but may be delayed due to A/D conversion processing.

Caution The data is sequentially transmitted from the MSB, bit by bit.

Application Note U19332EJ1VOAN

CHAPTER 5 SETTING METHOD

This chapter describes AX A/D processing.
See the user’s manual (78K0/LE3, 78K0/LF3) of each product for details of register setting methods.

5.1 Initial Settings of Peripherals to Be Used

Initial settings of the following SFRs are performed in the initialization processing after reset release.

<1>

<2>

<3>

<4>

<5>

<6>

<7>

<8>

A/D port configuration register 0 (ADPCO0)

Specifies pins to be used as analog inputs.

Port mode register 2 (PM2)

Sets analog input ports to input mode.

A/D converter power supply (ADDPON)

Turns on the A/D converter power supply.

16-bit AX-type A/D converter control register 1 (ADDCTL1)

Sets the sampling count, sampling clock, and operation mode.

16-bit AX-type A/D converter control register 0 (ADDCTLO)

Sets A/D operation to AX.

Leave an interval of at least 5 us between turning on the A/D converter power supply and enabling operation.
Waits for the A/D power supply to stabilize.

Conversion operation enable bit (ADDCE)

Enables A/D conversion operation.

A/D conversion completion interrupt request flag (DSADIF)

Clears the interrupt request flag, because it is used for A/D conversion completion.

Application Note U19332EJ1VOAN 43

CHAPTER 5 SETTING METHOD

<1> |-

<2> |-

__ */
"""""" ADPCO = 0b00000000; /* A/D port configuration register 0 */
72 | | | $sttecm——em—omemaae ADPCO03/ADPC02/ADPCO1/ADPC00: Set P20 to P27 as
analog inputs (AX-type) */
A e e <Fix to 0000> */
rrrrrrrrrrr PM2 = 0b11111111; /* Set PM2 I/O */
/I 4= === === == PM20: Use input (1) as DSO0- */
/x| |+ === === === PM21: Use input (1) as DSO0+ */
/¥ | +--——===— - PM22: Use input (1) as DS1- */
/¥] | +-=====—= === PM23: Use input (1) as DS1+ */
/¥ | |+ - PM24: Use input (1) as DS2- */
/¥ | | PM25: Use input (1) as DS2+ */
[* | = m e PM26: Use input (1) as REF- */
A e e e L L L PM27: Use input (1) as REF+ */
P2 = 0p00000000; /* Set initial P2 value */
F R e atata et P27/P26/P25/P24/P23/P22/P21/P20: Lo(0O) */
""""" ADDPON = 1; /* Turn on A/D converter power supply */
""""" ADDCTL1=0b01100111; /* 1l6-bit AX-type A/D converter control register 1 */
I]| | +++-=mmm o= ADDN2/ADDN1/ADDNO: Specify sampling count
(resolution) to 65,536 times (16 bits) */
F A R <Fix to 00> */
/| |+ e ADDTS: Set serial mode */
A e ittt LR ADDFS1/ADDFS0: Select fPRS/8 as sampling clock */
,,,,,,,,,, ADDCTLO0=0b10110000; /* 1l6-bit AX-type A/D converter control register 0 */
/] | +4==—== === === === ADDS1/ADDS0: Specify DS0+/DS0- as analog input */
/¥] [++=-==— - m oo <Fix to 00> */
/|| | +-mm - AINMOD: Specify differential input as input mode */
A e HAC: Set high-accuracy mode to on */
A R e ADDCE: Stop conversion */
F i ADDPON: Turn on A/D converter power supply */
rrrrrrrrrrr for(i =20; i < 0; i--); /* Leave interval of at least 5 us between turning on
A/D converter power supply and enabling operation */
,,,,,,,,,,, ADDCE = 1; /* Enable conversion operation */
rrrrrrrrrrr DSADIF = 0; /* Clear A/D conversion completion interrupt

request flag */

44

Application Note U19332EJ1VOAN

CHAPTER 5 SETTING METHOD

5.2 A/D Conversion Processing

<3>

<4>

The following operations are performed in AX A/D conversion processing.
An A/D conversion operation for the voltage applied to analog input channel 0 (DS0+/DS0-) is performed. See the
user’s manual (78K0/LE3, 78K0/LF3) of each product for details of A/D conversion.

<1>

<2>

<3>

<4>

<5>

A/D conversion operation is enabled.

The A/D conversion end timing is determined upon an A/D conversion completion interrupt request, so the
interrupt request is cleared.

The conversion result is read after waiting for the end of A/D conversion, because A/D conversion is always
operated in this application.

The conversion end channel (ADDSTR) is not required to be checked, because only channel 0 is used in this
application. However, whether ADDSTR is the target channel, channel 0, is checked just in case.
Re-conversion is performed if ADDSTR is another channel.

A/D conversion loops until the end of A/D conversion in this application, so external interrupts are checked to
end A/D conversion midway.

The A/D conversion result is returned as return values.

/*

* %

st
{

I — ADDCE = 1; /* Enable conversion operation */

interrupt request */

EE R R R R

16-bit AX-type A/D conversion

AX-type A/D conversion is started and A/D conversion result is returned.
***/
atic unsigned short fn_GetAD(void)

unsigned short ret = 0; /* A/D conversion result return value */

/* Start A/D conversion */

DSADIF = 0; /* Clear A/D conversion completion

/* Acquire A/D conversion result */

while (1) { /* Wait until A/D conversion is completed or stop key is pressed */
if ((DSADIF)&&(ADDSTR ==)) { /* If A/D conversion of DSO0+
is completed */
ret = ADDCR; /* Read A/D conversion result
*/
break;
}else if((DSADIF)&&(ADDSTR != 0)){ /* If value of non-
target channel is converted */
ADDCE = 1; /* Redo A/D conversion */
DSADIF = 0;
}else if (PIFO0) { /* If stop key is pressed */
ADDCE = 0; /* Stop A/D conversion
operation */
break; /* Abort A/D conversion */
}else
}
""""""""""" return (ret); /* Return A/D conversion result */

Application Note U19332EJ1VOAN 45

CHAPTER 6 OPERATION CHECK EXAMPLE USING DEVICE

This chapter describes examples of A/D conversion value correction.

6.1 5-Point Correction

46

An example of 5-point correction is shown below.

Measured value (error)

0

8192

16384

__ No)
correction
5-point
correction

24576 32768 40960 49152 57344 65536
Ideal value

Application Note U19332EJ1VOAN

CHAPTER 6 OPERATION CHECK EXAMPLE USING DEVICE

6.2 Temperature Correction

An example of temperature correction performed at 0°C, based on the values measured at 25°C, is shown below.

Measured value (error)

0

8192

16384

24576 32768 40960 49152
Ideal value

57344

65536

No

~—correction

5-point,
~— correction
Temperature

| comedtion |

Application Note U19332EJ1VOAN

47

CHAPTER 7 RELATED DOCUMENTS

Document Name

Japanese/English

78KO0/LE3 User’'s Manual PDF
78K0/LF3 User's Manual PDF
78K/0 Series Instructions User's Manual PDF
RA78KO0 Assembler Package Language PDFE
User’s Manual Operation PDF
CC78K0 C Compiler Language PDFE
User's Manual Operation PDFE
PM+ Project Manager User's Manual PDE

48 Application Note U19332EJ1VOAN

http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U18696*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U18329*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?litcode=U12326*
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?article=RA78K0&title=language&andor=or&doccode=UM
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?article=RA78K0&title=operation&andor=or&doccode=UM
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?article=CC78K0&title=language&andor=or&doccode=UM
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?article=CC78K0&title=operation&andor=or&doccode=UM
http://www.necel.com/cgi-bin/nesdis/o002_e.cgi?struct=01&title=PM%2b%2a

APPENDIX A PROGRAM LIST

The 78KO0/LF3 microcontroller source program is shown below as a program list example.

® main.c (C language version)

/******************‘k*************************‘k**********************************

NEC Electronics 78K0/Lx3 Series

Rk R I S S R R R R R R Sk R S R R R A S R R R R S ek S R S R R R R b S R R R R AR IR e R R S b e

78K0/LF3 Series Sample program

R R S I R I I I I R I S S R R I S S I I R I I I R R I I S S R I S I R R I I S S R I I S

16-bit AX-type ADC accuracy correction AN development
R I S R I I S S I R S I R S I I kO S
<<History>>

2008.1.-- Release

B R I I I I I I I R I I I I R I S I I I I R R I S R R I I S R R R I I I R S S

<<Overview>>

In this sample program, the 16-bit AX-type A/D converter is used to A/D convert analog
inputs and A/D values are corrected. 5-point correction and temperature correction are
performed for the measured A/D values.

5-point correction is performed by deriving an approximation function of an A/D
conversion I/0 characteristic from five units of 5-point correction data measured
according to the voltage used.

Temperature correction corrects errors in the 5-point correction result due to
temperature changes, using the acquired temperature correction data and 5-point

correction data.

This sample program consists of the five modes of conversion Al, conversion A2,

conversion B, correction A, and correction B.

<<Conversion Al mode>>
Voltages input from other than the DAC are A/D converted once every time the progress

key is pressed and the A/D values are corrected.

<<Conversion A2 mode>>
By pressing the progress key, voltages input from other than the DAC are A/D converted

until the stop key is pressed and the A/D values are corrected.

<<Conversion B mode>>

The conversion start and end values are read, an output voltage is set to the DAC, the
analog input from the DAC is A/D converted, and the A/D values are corrected. This
processing is successively performed until the setting value reaches the end value

while incrementing the output voltage to be set to the DAC from the start value.

<<Correction A mode>>

Application Note U19332EJ1VOAN 49

APPENDIX A PROGRAM LIST

Voltages input from other than the DAC are A/D converted once every time the progress
key is pressed. This processing is performed five times and the five units of

correction data to be used for 5-point correction operation are acquired.

<<Correction B mode>>
The value derived from the AVDD voltage is set to the DAC and the analog input from the
DAC is A/D converted. This processing is performed five times and the five units of

correction data to be used for 5-point correction operation are acquired.

The conversion Al, conversion A2, and correction A modes are used to A/D convert analog
inputs from other than the DAC. The conversion B and correction B modes are used to
A/D convert the analog input from the DAC. Delete unnecessary processing according to

the operation environment.

***/

#pragma SFR /* SFR names can be described at the C source
level */
#pragma DI /* DI instructions can be described at the C

source level */
#pragma ET /* EI instructions can be described at the C

source level */

/* Key input ports */

#define P_KEYO P15 /* Key (conversion Al, conversion A2, conversion B, correction
A) input port */

#define P_KEY1l P14 /* Key (correction B, progress, stop) input port */

/* Software serial interface */

#define P_CSO P4.4 /* Chip select 0: For DACO */
#define P_CS1 P4.3 /* Chip select 1: For DAC1l */
#define P_SCK P1.1 /* Clock: Common to DAC1l and DACO*/
#define P_SDA P1.3 /* Data: Common to DAC1l and DACO */

/* Parallel-to-serial input for HD74HC165 communication */
#define P_CLK P11.0 /* Clock */
#define P_DAT P10.3 /* Data */
#define P_LAT P10.2 /* Latch */

/* Error display */
#define P_NOERR P4.0

Define the structure

50 Application Note U19332EJ1VOAN

APPENDIX A PROGRAM LIST

—===¥% /
struct st_Result { /* Structure storing processing result */

unsigned short ushDAC; /* DAC setting values */

unsigned short ushAD; /* A/D conversion result */

unsigned short ushCorrect; /* 5-point correction result */

unsigned short ushHeatCorr; /* Temperature correction result */

unsigned char bDAC_ready :1; /* DAC setting value preparation flag
*/

unsigned char bAD_ready :1; /* A/D conversion result preparation
flag */

unsigned char bCorrect_ready :1; /* 5-point correction result
preparation flag */

unsigned char bHeatCorr_ready :1; /* Temperature correction result
preparation flag */
}i
)/*==

Function prototype declaration
—===¥% /

static void fn_Init(void);

static void fn_Init_st_Result(struct st_Result *result);

static void fn_KeyScan (void) ;

static void fn_KeyEvent (void) ;

static void fn_Control_ConvertAl (void) ;

static void fn_Control_ConvertA2 (void) ;

static void fn_Control_ConvertB(void) ;

static void fn_Control_CorrectA(void) ;

static void fn_Control_CorrectB(void) ;

static void fn_ImportStartEnd(void) ;

static void fn_SetDAC (unsigned short DAC1_value) ;

static void fn_SSIO_16bit (unsigned short wvalue);

static unsigned short fn_GetAD(void) ;

static unsigned short fn_CorrectADresult(unsigned short ADresult);

static unsigned short fn_HeatCorrect (unsigned short ushNowCodel, unsigned short
ushCode) ;

static void fn_SetSendData(struct st_Result s_Result, unsigned char *p_ucTxBuffer) ;

static void fn_ADResultOut (unsigned char ucTxBuffer[16]);

==% /
/* For AX-type A/D converter initialization */

#define ADDOTCRO (* (volatile unsigned char*) 0x0FA26)

#define ADDOTCRIL (*(volatile unsigned char*) 0x0FA27)

Application Note U19332EJ1VOAN 51

APPENDIX A PROGRAM LIST

#define ADDOTCR2 (* (volatile unsigned char*) 0x0FA28)
#define ADDOTCR3 (*(volatile unsigned char*) 0x0FA29)
) ¥==

==% /
#define ANA_AVDD 5 /* AVDD = 5V */

#define ANA_REFP ANA_AVDD /* REFP = AVDD */

#define ANA_MIN 0x0000 /* Minimum digital voltage value */
#define ANA_MAX OXFFFF /* Maximum digital voltage value */
#define ANA_THRESHOLD 2.84375 /* Threshold when ana2 > anad */
#define CONVERT_B_STEP 1 /* Perform successive conversion in 1H

intervals when converting from start value to end value */

#define TXDATA_SIZE 21 /* Display data size */
/* Display contents: DAC setting values (four digits) SP A/D conversion result (four
digits) SP 5-point correction result (four digits) SP temperature correction result

(four digits) \r\n */

#define READY_NO 0 /* No data */

#define READY_ OK 1 /* Data 1s present */

#define CKEYCHAT 3 /* Key scan chattering removal count */
static unsigned char ucKeyCode; /* Key code */

#define KYCODE_OFF 0 /* No keys are pressed */

#define KYCODE_CONVERT_A1l 1 /* Conversion Al key is pressed */
#define KYCODE_CONVERT_A2 2 /* Conversion A2 key is pressed */
#define KYCODE_CONVERT_B 3 /* Conversion B key is pressed */
#define KYCODE_CORRECT A 4 /* Correction A key is pressed */
#define KYCODE_CORRECT_B 5 /* Correction B key is pressed */
#define KYCODE_GO 6 /* Progress key is pressed */

#define KYCODE_STOP 7 /* Stop key is pressed */

#define KYCODE_INVALID 9 /* Multiple keys are pressed (invalid)
*/

static unsigned char ucSystemMode; /* System status */

#define MODE_STANDBY 0 /* Standby status/Waiting for key input
*/

#define MODE_CONVERT_A1l 1 /* Single conversion mode (voltage
input from other than DAC) */

#define MODE_CONVERT_A2 2 /* Successive conversion mode (voltage
input from other than DAC) */

#define MODE_CONVERT_B 3 /* Successive conversion mode (voltage
input from DAC) */

#define MODE_CORRECT_A 4 /* 5-point correction mode (voltage

input from other than DAC)*/

52 Application Note U19332EJ1VOAN

APPENDIX A PROGRAM LIST

#define MODE_CORRECT_B 5
input from DAC) */

static unsigned char ucState;

status */

#define STATE_STANDBY 0
#define STATE_WAIT_ GO 1
#define STATE_EXEC 2
#define STATE_STOP 3
#define CMPOO_AFTER_DAC (500/100)

circuit to stabilize after setting DAC */

static unsigned char uc5CodeReady;
completion status */

#define CODE5_NOT_COMP 0
not completed */

#define CODE5_COMPLETE 1
completed */

static float fAnal5];

coefficient */

static unsigned short ushCodel[5];
coefficient */

static unsigned short ushCorrCodel;

operation coefficient codel correction result */

static unsigned short ushCorrCode3;

operation coefficient code3 correction result */

#define JDG_HEATCORR_NO 0
required */

#define JDG_HEATCORR_EX 1
*/

#define JDG_NOT_YET 2

is not identified */

static unsigned short ushStart;
static unsigned short ushEnd;
static unsigned char ucImportState;

retrieval status */

#define IMPORT_NO 0
value is not completed */
#define IMPORT_OK 1

value is completed */

/*

/*
/~k
/*
/*
/*

/*

/~k

/*

/~k

/*

/*

/*

/*

/~k

/*

/~k

/*

/~k

/*

/*

/*

5-point correction mode (voltage

A/D conversion/correction execution
During standby */

Waiting for progress key */

During execution */

Stopped/End of processing */

8-bit TMH1 count: Waiting for

5-point correction data measurement

Measuring 5-point correction data is

Measuring 5-point correction data is

5-point correction output operation

5-point correction output operation

Temperature correction output

Temperature correction output

Temperature correction is not

Temperature correction is required

Necessity of temperature correction

A/D conversion start value */

A/D conversion end value */

A/D conversion start/end value

Retrieving A/D conversion start/end

Retrieving A/D conversion start/end

/***

Initialization processing after reset release

***/

Application Note U19332EJ1VOAN

53

APPENDIX A PROGRAM LIST

void hdwinit (void)

{
unsigned short i; /* Work area */
DI(); /* Disable interrupts */
/* __
Set the ROM/RAM size
__ /
Note that the setting values differ depending on the model.
Enable setting of the model used. (uPD78F0495 by default)
__ */
/* Settings when uPD78F0461 or uPD78F0491 is used */
/*IMS = 0x04; /* Set ROM size */
/*IXS = 0x0C; /* Set internal expansion RAM size */
/* Settings when uPD78F0462 or uPD78F0492 is used */
/*IMS = 0xC6; /* Set ROM size */
/*IXS = 0x0C; /* Set internal expansion RAM size */
/* Settings when uPD78F0463 or uPD78F0493 is used */
/*IMS = 0xC8; /* Set ROM size */
/*IXS = 0x0C; /* Set internal expansion RAM size */
/* Settings when uPD78F0464 or uPD78F0494 is used */
/*IMS = 0xCC; /* Set ROM size */
/*IXS = 0x0A; /* Set internal expansion RAM size */
/* Settings when uPD78F0465 or uPD78F0495 is used */
IMS = 0xCF; /* Set ROM size */
IXS = 0x0A; /* Set internal expansion RAM size */
/* __
Set the clock frequency
The clock frequency is set to enable operation using the high-speed system
clock
__ */
OSCCTL =0b01000000; /* Clock operation mode */
/¥ | [++++—mmm e <Fix to 0> */
/¥ |+ OSCSELS: Input port */
A N R <Fix to 0> */
Y EXCLK/OSCSEL: X1 oscillation mode */
MOC = 0; /* X1 oscillator operation */
while (OSTC.0 == 0) /* Wait for oscillation stabilization time of

X1 oscillator to elapse */

MCM = 0b00000101; /* Select supply clock */

54 Application Note U19332EJ1VOAN

APPENDIX A PROGRAM LIST

/x| +]+ === === XSEL/MCMO: */
/1] Main system clock (fXP) = fXH */
/¥ Peripheral hardware clock (fPRS) = fXH */
/¥ +====mmm - MCS: Read Only */
/¥t — - <Fix to 0> */
PCC = 0b0000000; /* Select CPU clock (fCPU) */
AN R R e e CSS/PCC2/PCC1/PCCO: */
AR CPU clock (fCPU) = fXP */
/x| || +----mmmm - <Fix to 0> */
A N R CLS: Main system clock */
A it <Fix to 0> */
RCM = 0b0000011; /* Select CPU clock (fCPU) */
/5] |+ === === == LSRSTOP: Stop internal low-speed oscillator
*/
/5] | +====— - RSTOP: Stop internal high-speed oscillator */
A <Fix to 0> */
[FA - RSTS: Read Only */
/* __
Set UART6
__ */
CKSR6 = 0b00000000; /* Select UART6 base clock */
/x| |+ TPS63-60: Base clock (fXCLK6) = fPRS */
R <Fix to 0> */
/* Set baud rate clock division value */
BRGC6 = 43; /* Baud rate: 115200 bps ¢« 116279 bps(ERR: 0.94%) */
ASIM6 = 0b01000101; /* Select UART6 operation mode */
/5 |+ === ISRM6: Interrupt INTSR6 when reception error
occurs */
/5| |+ === === SL6: Number of stop bits = 1 */
/¥ |+=======m === === == CL6: Data length = 8 */
A R PS61-60: No parity */
A N R RXE6: Disable receive operation */
A R e e e TXE6: Enable transmit operation */
Y e POWER6: Disable internal operating clock
operation */
ASICL6 =0b00010110; /* Select start bit and TxD6 output reversal */
/¥ 4= - TXDLV6: Normal TxD6 output */
/5 | +====== === === === DIR6: Start bit LSB */
/3| | | +++--m e SBL62-60: Unused */
A N R SBTT6: Unused */
[e SBRT6: Read Only */
R SBRF6: Unused */

Application Note U19332EJ1VOAN 55

APPENDIX A PROGRAM LIST

PFl = 0b00000000; /* Set to use Pl6 */
A R <Fix to 000000> */
/% | A PF13: Unused */
B it PF16: Unused (when using KO/LF3) */
/* e - <Fix to 0> (when using KO/LE3) */
IsC = 0b00001000; /* Control input switching (when using LF3) */
/¥ 4= == ISCO: Unused */
/5 | +====== === == === == ISCl: Use TIOO00 input as it is (normal
operation) */
/¥ | |+------=====———--- ISC2: Unused */
/¥ | | +=====m - ISC3: Enable RxD6/P113 input */
A N e L e ISC5-4: TxD6 = P112, RxD6 = P113 */
B s <Fix to 0> */
POWER6 = 1; /* Enable internal operating clock operation */
/'k ______________________________________
Set the transmission
______________________________________ */
PM11.2 = 0; /* P112 = TxD6 */
P11.2 = 1; /* P112 = Hi */
/* ______________________________________
Set the reception
______________________________________ */
PM11.3 = 1; /* P113 = RxD6 */
PU11.3 = 1; /* Connect internal pull-up, because receive

Set the wait time measurement timer (the interval time can be set in 100 us

- Circuit stabilization wait time after setting the DAC (500 us)

__ */
TMHMDO = 0b01000000; /* Timer clock selection register */

/* | | +-============= TOEN1: Disable timer output */

/* 1] |+ === —- TOLEVO: Timer output level = Unused */

/* || |+ TMMD01/00: Timer operation = Interval */

F A CKS02/01/00: Count clock fPRS/2710 (9.77 kHz
when fPRS = 10 MHz) */

/F e TMHEO: Disable timer operation (enable by

setting CMP0O0 when using timer) */

TMIFHO = 0; /* Clear interrupt request */
TMMKHO = 1; /* Disable interrupts */

56 Application Note U19332EJ1VOAN

APPENDIX A PROGRAM LIST

Set the 10 ms interval

TMHMD1 = 0b01000000; /* Timer clock selection register */
/* | | +--============ TOEN1: Disable timer output */
/* | | +--============= TOLEV1: Timer output level = Unused */
/* || | ++-mmm - TMMD11/10: Timer operation = Interval */
/% |t CKS12/11/10: Count clock fPRS/2712 (2.44 kHz
when fPRS = 10 MHz) */
Y TMHE1l: Disable timer operation (enable after
setting timer) */
CMP01 = 24-1; /* 10 ms interval: (fPRS/2712)*0.01l[sec]=24.4
*/
TMHE1 = 1; /* Start timer operation */
TMIFH1 = 0; /* Clear interrupt request */
TMMKH1 = 1; /* Disable interrupts */
/* __
Set the DAC setting software serial interface
__ */
PM1 = 0b00000000; /* Set Pl I/O *//* Exclude the comment only
when operating with the KO/LF3 */
/5 |+ === == PM10: Unused (0) */
/] |- PM11l: Use output (0) as SCK */
/x| | +--===== === PM12: Unused (0) */
/¥ | |+===== - PM13: Use output (0) as SDA */
[ttt PM17/PM16/PM15/PM14: Unused (0) */
Pl = 0b00000010; /* Initial P1 value *//* Exclude the comment
only when operating with the KO/LF3*/
/¥)+ - P10: Unused (0) */
I |+ - P11: Hi(1) */
/*|] |+ P12: Unused (0) */
/x| |+ P13: Lo(0) */
S P17/P16/P15/P14: Unused (0) */
/* PM1 = 0b11100000; */ /* Set P1 I/O *//* Exclude the comment only
when operating with the KO/LE3 */
/1 4= === === === PM10: Unused (0) */
/¥ | +======== === === PM11l: Use output (0) as SCK */
/5] | +====— - PM12: Unused (0) */
/x| |+ PM13: Use output (0) as SDA */
/x| |+ PM14: Unused (0) */
F A <Fix to 111> */
/* Pl = 0b00000010; */ /* Initial Pl value *//* Exclude the comment
only when operating with the KO0/LE3 */
/1 4= === === === P10: Unused (0) */
I |+ - P11: Hi(1) */
/5] | +====— - P12: Unused (0) */
/x| |+ P13: Lo(0) */

Application Note U19332EJ1VOAN

57

APPENDIX A PROGRAM LIST

/¥ |+ P14: Unused (0) */
B s <Fix to 000> */
PM4 = 0b00000000; /* Set P4 I/O *//* Exclude the comment only

when operating with the KO/LF3 */

/x| |44+ m e PM42/PM41/PM40: Unused (0) (Set P40 for error
output afterward) */

/x| |+ PM43: Use output (0) as CS1 */

/¥ | |+ PM44: Use output (0) as CSO */

F A e PM47/PM46/PM45: Unused (0) */

P4 = 0b00011000; /* Initial P4 value *//* Exclude the comment

only when operating with the KO0/LF3 */

[] | ++4-mm e - PM42/PM41/PM40: Unused (0) (Set P40 for error
output afterward) */

/x| |+ PM43: Hi(1l) */

e I ——— PM44: Hi (1) */

Y PM47/PM46/PM45: Unused (0) */
/* PM4 = 0b11100000; */ /* Set P4 I/O0 *//* Exclude the comment only
when operating with the KO/LE3 */

/¥ || | +++---—==== === - PM42/PM41/PM40: Unused (0) (Set P40 for error
output afterward) */

/¥ [+-==—— e - PM43: Use output (0) as CS1 */

/x| | |+ PM44: Use output (0) as CSO */

A <Fix to 111> */
/* P4 = 0b00011000; */ /* Initial P4 value *//* Exclude the comment
only when operating with the KO0/LE3 */

] | +++-- - PM42/PM41/PM40: Unused (0) (Set P40 for error
output afterward) */

YA TS ——— PM43: Hi (1) */

/¥ |+ PM44: Hi(1l) */

B s <Fix to 000> */

/* __
16-bit AX-type A/D converter
__ */
ADPCO = 0b00000000; /* A/D port configuration register 0 */
/¥ | [++++—mmm e ADPCO03/ADPC02/ADPC0O1/ADPCO0: Set P20 to P27
as analog inputs (AX-type) */
B ittt <Fix to 0000> */
PM2 = 0b11111111; /* Set PM2 I/0 */
/5 |+ == === == PM20: Use input (1) as DSO0- */
/*|] | +---============= PM21: Use input (1) as DSO0+ */
/x| |+--===== === PM22: Use input (1) as DS1- */
/¥ | |+=====m - PM23: Use input (1) as DS1+ */
A R PM24: Use input (1) as DS2- */
A R PM25: Use input (1) as DS2+ */
/| PM26: Use input (1) as REF- */
F e PM27: Use input (1) as REF+ */
P2 = 0b00000000; /* Set initial P2 value */
R e ittt P27/P26/P25/P24/P23/P22/P21/P20: Lo(0) */

58 Application Note U19332EJ1VOAN

APPENDIX A PROGRAM LIST

register 1 */

*/

register 0 */

*/

mode */

ADDPON = 1; /* Turn on A/D converter power supply */
ADDCTL1=0b01100111; /* 16-bit AX-type A/D converter control
/| |4+ - ADDN2/ADDN1/ADDNO: Specify sampling count
(resolution) to 65,536 times (16 bits) */
/¥] | +#4mmm e <Fix to 00> */
A R ADDTS: Set serial mode */
/¥ ADDFS1/ADDFS0: Select fPRS/8 as sampling clock
ADDCTL0=0b10110000; /* 16-bit AX-type A/D converter control
/¥ | ++---=—======——-= ADDS1/ADDSO: Specify DS0+/DS0- as analog input
/¥ [++==——— - o= <Fix to 00> */
/x| |+ AINMOD: Specify differential input as input
[*| |+ HAC: Set high-accuracy mode to on */
[| m e ADDCE: Stop conversion */
[* ADDPON: Turn on A/D converter power supply */

turning

request

/* Initialize SFR */

ADDOTCRO = 0b10000000;
ADDOTCRO = 0b11000000;
ADDOTCR1 = 0b00100000;
ADDOTCR2 = 0b01100000;
ADDOTCR3 = 0b00010011;

for(i = 20; 1 < 0; 1i--); /* Leave interval of at least 5 us between

on A/D converter power supply and enabling operation */

ADDCE = 1; /* Enable conversion operation */
DSADIF = 0; /* Clear A/D conversion completion interrupt
flag */

Set the ports for key scan
Allocate ports
P150 : Conversion Al P140 : Correction B
P151 : Conversion A2 P141 : Progress key
P152 : Conversion B P142 : Stop
P153 : Correction A

__ */
PM15 = 0b11111111; /* Set P15 I/O */
/¥ | [+++t—mmm e PM153/PM152/PM151/PM150: Input (1) */
B <Fix to 0000> */
P15 = 0b00000000; /* Initial P15 value */

Application Note U19332EJ1VOAN

APPENDIX A PROGRAM LIST

A N R R P153/P152/P151/P150: Lo(O) */
R <Fix to 0000> */

PU1l5 = 0b00001111; /* Set P15 internal pull-up connection */
IR] [+#++4mmm e PU153/PU152/PU151/PU150: Connect (1) internal

pull-up resistor */

B ittt bl <Fix to 0000> */

PM14 = 0b11111111; /* Set P14 I/0 */
A N R R PM143/PM142/PM141/PM140: Input (1) */
R e ittt <Fix to 1111> */
Pl4 = 0b00001111; /* Set initial P14 value */
J*| || | +++tmmmm e e e P143/P142/P141/P140: Hi (1) */
B <Fix to 0000> */
PU14 = 0b00001111; /* Set P14 internal pull-up connection */
/x| |+ PU143/PU142/PU141/PU140: Connect (1) internal
pull-up resistor */
B <Fix to 0000> */

/* Set interrupt using STOP key */

PM12 = 0b11111111; /* Set P12 I/O */
/5 |+ === P120: Input (1) INTPO */
B <Fix to 0000000> */
P12 = 0b00000001; /* Set initial PM12 value */
/¥ 4= == PM120: Lo (0) */
Yl e e <Fix to 0000000> (when using KO/LF3) */
/F Not settable (0) (when using KO0/LE3) */
PU12 = 0b00000001; /* Set P12 internal pull-up connection */
A R R PU120: Connect (1) internal pull-up resistor
*/
B <Fix to 0000000> */
EGP = 0b00000000; /* External interrupt rising edge enable
register */
U |+ EGP0: Enable falling-edge detection according
to EGNO */
F Al R EGP5/EGP4/EGP3/EGP2/EGP1: Unused */
B <Fix to 00> */
EGN = 0b00000001; /* External interrupt falling edge enable

register */

/¥ 4= == EGNO: Enable falling-edge detection according
to EGPO*/
/3| | s EGN5/EGN4 /EGN3/EGN2 /EGN1: Unused */
Y <Fix to 00> */
PMKO = 1; /* Disable interrupt servicing */
PIFO = 0; /* Clear interrupt request */
/* __

60 Application Note U19332EJ1VOAN

APPENDIX A PROGRAM LIST

P10 = 0b00000000; /* Set initial P10 value */
/*|] | ++---== === P101/P100: Lo(O) */
I*| || | ++-----—===———————- P103/P102: Lo(0) */
A e it <Fix to 0000> */
PM10 = 0b11111000; /* Set P10 I/O */
/*|] | ++---== === PM101/PM100: Unused (0) */
/¥ |+ - PM102: Output (0)= LAT */
/¥ | |+===== - PM103: Input (1) = DAT */
B <Fix to 1111> */
PU10 = 0b00001000; /* Set P10 internal pull-up connection */
/¥ |4+ === PU101/PU100: Unused (0) */
/¥ |+=======m === === == PU102: Unused (0) */
/5| [+-===— e - PU103: Connect (1) internal pull-up resistor
*/
e ittt <Fix to 0000> */
P11.0 = 0; /* P110: Lo(O) */
PM11.0 = 0; /* PM110: Output (0) = CLK */
/* __
Set the error output port
__ */
PM4.0 = 0; /* PM40: Use output (0) for error output */
P4.0 = 1; /* P40: Hi(1) */
/* __
Initialize unused ports
__ */
/* P3 */
PM3 = 0b11100000; /* Set P3 I/O *//* Exclude the comment only
when operating with the KO/LF3 */
A R e PM34/PM33/PM32/PM31/PM30: Unused (0) */
B <Fix to 111> */
P3 = 000000000 ; /* Set initial P3 value *//* Exclude the
comment only when operating with the KO/LF3 */
A R e P34/P33/P32/P31/P30: Lo(0) */
B <Fix to 000> */
/* PM3 = 0b11100001; */ /* Set P3 I/0 *//* Exclude the comment only
when operating with the KO/LE3 */
/5 |+ === == <Fix to 1> */
/3| | |+ PM34/PM33/PM32/PM31: Unused (0) */
B e <Fix to 111> */
/* P3 = 0b00000000; */ /* Set initial P3 value *//* Exclude the
comment only when operating with the KO/LE3 */
/I | +--============= <Fix to 0> */
[*| | | #+++-———mm oo - P34/P33/P32/P31: Lo(0) */
e e <Fix to 000> */
/* P8 */

Application Note U19332EJ1VOAN

61

APPENDIX A PROGRAM LIST

PM8 = 0b11110000; /* Set P8 I/O */
A R e e e PM83/PM82/PM81/PM80: Unused (0) */
F A <Fix to 1111> */
P8 = 0b00000000; /* Set initial P8 value */
/5| [++++—mmm e P83/P82/P81/P80: Lo(0) */
B ittt bl <Fix to 0000> */
/* P9 */
PM9 = 0b11110000; /* Set P9 I/O *//* Exclude the comment only
when operating with the KO/LF3 */
[|| | #++4mmm - PM93/PM92/PM91/PM90: Unused (0) */
F A e <Fix to 1111> */
P9 = 0b00000000; /* Set initial P9 value *//* Exclude the
comment only when operating with the KO/LF3 */
/x| |+ P93/P92/P91/P90: Lo (0) */
F A e <Fix to 0000> */
/* P11l */
PM11.1 = 0O; /* PM111: Unused (0) */
P11.1 = O; /* P111: Lo (0) */
/* P13 */
PM13 = 0b11110000; /* Set P13 I/0 *//* Exclude the comment only
when operating with the KO/LF3 */
/5| [++++—mmm e PM130/PM133/PM132/PM131: Unused (0) */
[F At — <Fix to 1111> */
P13 = 0b00000001; /* Set initial P13 wvalue *//* Exclude the
comment only when operating with the KO/LF3 */
/5| [++++—mmm e P133/P132/P131/P130: Lo(0) */
B ittt bl <Fix to 0000> */
PFALL = 0b00000000; /* Set output of port shared with segment */
FA I e PF15ALL/PF14ALL/PF11ALL/PF10ALL/PFO8ALL: Use
for other than segment output */
F A I PF13ALL/PFO09ALL: Use for other than segment
output (when using KO/LF3) */
F A T <Fix to 00> (when using KO/LE3) */
[F e — <Fix to 0> */
EI(); /* Enable interrupts */

/***

Variable initialization processing

***/

static void fn_Init (void)

62 Application Note U19332EJ1VOAN

APPENDIX A PROGRAM LIST

unsigned char 1i; /* Initialization work variable */

float temp;

/* Key code */
ucKeyCode = KYCODE_OFF; /* Key off */

/* System status */
ucSystemMode = MODE_STANDBY; /* Standby */

/* A/D conversion/correction execution status */
ucState = STATE_STANDBY; /* During standby */

/* 5-point correction data measurement completion status */
uchCodeReady = CODE5_NOT_COMP; /* Measuring 5-point correction data is

not completed */

/* Set voltage values of correction output operation coefficients anal to anab

using digital values */

fAna[0] = ((0.1) * ANA_REFP) * (ANA_MAX/ANA_REFP) ;

fAna[l] = (ANA_AVDD - (0.82*ANA_AVDD) + 0.91)* (ANA_MAX/ANA_REFP) ;

fAna[2] = (0.5 * ANA_REFP) * (ANA_MAX/ANA_REFP) ;

fAna[3] = (0.82 * ANA_AVDD - 0.91)* (ANA_MAX/ANA_REFP) ;

fAna[4] = (0.9 * ANA_REFP) * (ANA_MAX/ANA_REFP) ;

if(ANA_AVDD < ANA_THRESHOLD) { /* If AVDD = REFP < 2.84375 VvV */
temp = fAnalll]; /* Replace value because ana2 > ana4 */
fAna[l] = fAnal[3];
fAna[3] = temp;

}

/* Correction output operation coefficients codel to codeb5 */
for(i = 0; i < 5; i++){
ushCode[i] = ANA_MIN;

/* Retrieve A/D conversion start/end value */

ushStart = ANA_MIN; /* Initialize A/D conversion start
value at minimum value */

ushEnd = ANA_MAX; /* Clear A/D conversion end value */

ucImportState = IMPORT_NO; /* Retrieving A/D conversion start/end
value is not completed */

}

/***

st_Result type variable initialization processing

***/

static void fn_Init_st_Result (struct st_Result *result)

Application Note U19332EJ1VOAN 63

APPENDIX A PROGRAM LIST

{

(*result) .ushDAC = ANA_MIN; /* Initialize DAC setting
values */

(*result) .ushAD = ANA_MIN; /* Initialize A/D conversion
result */

(*result) .ushCorrect = ANA_MIN; /* Initialize 5-point

correction result */
(*result) .ushHeatCorr = ANA_MIN; /* Initialize temperature

correction result */

(*result) .bDAC_ready = READY_NO; /* No DAC setting value data */

(*result) .bAD_ready = READY_NO; /* No A/D conversion result
data */

(*result) .bCorrect_ready = READY_NO; /* No 5-point correction result
data */

(*result) .bHeatCorr_ready = READY_NO; /* No temperature correction

result data */

}

/***

Main loop

***/

void main (void)

{
hdwinit () ; /* Initialize hardware */
fn_Init(); /* Initialize variables or the like */
while (1)
{
if(TMIFH1) /* Processing every 10 ms */
{
TMIFH1 = 0O;
fn_KeyScan () ; /* Retrieve key */
}
fn_KeyEvent () ; /* Event processing using key code */
switch(ucSystemMode) { /* Branch using current mode */
case MODE_CONVERT_AI1: /* Conversion Al mode control

processing */
fn_Control_ConvertAl () ;
break;
case MODE_CONVERT_A2: /* Conversion A2 mode control
processing */
fn_Control_ConvertA2 () ;
break;
case MODE_CONVERT_B: /* Conversion B mode control processing
*/
fn_Control_ConvertB() ;

break;

64 Application Note U19332EJ1VOAN

APPENDIX A PROGRAM LIST

case MODE_CORRECT_ A: /* Correction A mode control processing
*/
fn_Control_CorrectA() ;
break;
case MODE_CORRECT B: /* Correction B mode control processing
*/
fn_Control_CorrectB() ;
break;
default:

break;

/***

Key scan processing

The key status is retrieved and chattering is removed.

Key scan cycle: 10 ms
***/
static void fn_KeyScan (void)

{
static unsigned char LastKeyState = 0;
static unsigned char ChatCounter = 0;

unsigned char NewKeyState;

NewKeyState = (P_KEY1l & 0b00001111) << 4 ; /* Retrieve current key
status */
NewKeyState = NewKeyState | (P_KEY0 & 0b00001111);
if (LastKeyState == NewKeyState) { /* When key status does
not change */
ChatCounter--;
if (ChatCounter == 0){
ChatCounter = CKEYCHAT; /* Initialize

chattering counter */

/* Set key code according to key status */

if(NewKeyState == 0b11111111){ /* All keys are off */
ucKeyCode = KYCODE_OFF; /* Key code: Key off */
} else if(NewKeyState == 0b11111110){ /* Only conversion Al

key is on */
ucKeyCode = KYCODE_CONVERT_Al; /* Key code: Conversion
Al */
} else if(NewKeyState == 0b11111101){ /* Only conversion A2
key is on */
ucKeyCode = KYCODE_CONVERT_A2; /* Key code: Conversion
A2 */

Application Note U19332EJ1VOAN 65

APPENDIX A PROGRAM LIST

} else if(NewKeyState == 0b11111011){ /* Only conversion B
key is on */
ucKeyCode = KYCODE_CONVERT_B; /* Key code: Conversion
B */
} else if(NewKeyState == 0b11110111){ /* Only correction A
key is on */
ucKeyCode = KYCODE_CORRECT_A; /* Key code: Correction
A */
} else if(NewKeyState == 0b11101111){ /* Only correction B
key is on */
ucKeyCode = KYCODE_CORRECT_B; /* Key code: Correction
B */
} else if(NewKeyState == 0011011111){ /* Only progress key is
on */
ucKeyCode = KYCODE_GO; /* Key code: Progress
*/
} else if(NewKeyState == 0b10111111){ /* Only stop key is on
*/
ucKeyCode = KYCODE_STOP; /* Key code: Stop */
} else { /* Multiple keys are on
*/
ucKeyCode = KYCODE_INVALID; /* Key code: Keys are
invalid */
}
}
}
else{ /* When key status has changed */
ChatCounter = CKEYCHAT; /* Initialize chattering counter */
}
LastKeyState = NewKeyState; /* Save current key status */

/***

Key event processing

The mode or conversion execution status is transitioned by using keys.

***/

static void fn_KeyEvent (void)

{

static unsigned char ucLastKeyCode;

if(ucKeyCode != ucLastKeyCode) {
switch (ucKeyCode) {
case KYCODE_CONVERT_AL: /* If conversion Al key is pressed */
if (ucState == STATE_STANDBY) { /* If

conversion/correction is not performed */

66 Application Note U19332EJ1VOAN

APPENDIX A PROGRAM LIST

conversion mode

wait state */

ucSystemMode = MODE_CONVERT_Al; /* Go to single
(voltage input from other than DAC) */

ucState = STATE_WAIT_GO; /* Set progress key
}
break;
case KYCODE_CONVERT_A2: /* If conversion A2 key is pressed */
if(ucState == STATE_STANDBY) { /* If

conversion/correction is not performed */

conversion mode

wait state */

ucSystemMode = MODE_CONVERT_A2; /* Go to successive
(voltage input from other than DAC) */

ucState = STATE_WAIT_ GO; /* Set progress key
}
break;
case KYCODE_CONVERT B: /* If conversion B key is pressed */
if(ucState == STATE_STANDBY) { /* If

conversion/correction is not performed */

conversion mode

wait state */

ucSystemMode = MODE_CONVERT_B; /* Go to successive
(voltage input from DAC) */

ucState = STATE_WAIT_GO; /* Set progress key
}
break;
case KYCODE_CORRECT_A: /* If correction A key is pressed */
if(ucState == STATE_STANDBY) { /* If

conversion/correction is not performed */

correction mode

wait state */

ucSystemMode = MODE_CORRECT_A; /* Go to 5-point
(voltage input from other than DAC) */

ucState = STATE_WAIT_ _GO; /* Set progress key
}
break;
case KYCODE_CORRECT B: /* If correction B key is pressed */
if(ucState == STATE_STANDBY) { /* If

conversion/correction is not performed */

correction mode

wait state */

progress key */

ucSystemMode = MODE_CORRECT_B; /* Go to 5-point
(voltage input from DAC) */

ucState = STATE_WAIT_GO; /* Set progress key
}
break;
case KYCODE_GO: /* If progress key is pressed */
if(ucState == STATE_WAIT GO){ /* If waiting for

Application Note U19332EJ1VOAN

67

APPENDIX A PROGRAM LIST

ucState = STATE_EXEC;
execution wait state */

}

break;

/* Set conversion

case KYCODE_STOP: /* If stop key is pressed */

ucState = STATE_STOP;

processing */

/* Go to stop

break;
/* case KYCODE_INVALID: */ /* If key is invalid */
default:
; /* Do nothing */
}
}
1f (PIFO0) { /* If stop key is

pressed */
ucState = STATE_STOP;
processing */
PIFO = 0;
request */
}
ucLastKeyCode = ucKeyCode;
code */

}

/* Go to stop

/* Clear interrupt

/* Update previous key

/***

A/D conversion: Conversion Al mode control processing

Single conversion mode (voltage input from other than the DAC) processing is

controlled.

* Used only if the DAC is not used for A/D conversion analog input

***/

static void fn_Control_ConvertAl (void)

{
struct st_Result sResult; /* Store conversion result */
static unsigned char ucTxBuffer [TXDATA_SIZE]; /* Display data buffer */
static unsigned short ushNowCodel; /* codel re-acquired at current
temperature */
static unsigned char HeatCorrJdg; /* Information on necessity of
temperature correction */
switch(ucState) { /* Branch according to execution status */

case STATE_STOP: /* Stop processing */
fn_Init_st_Result(&sResult);
conversion result */
ucState = STATE_STANDBY;
to “Standby” */

68 Application Note U19332EJ1VOAN

/* Initialize

/* Set operation status

APPENDIX A PROGRAM LIST

ushNowCodel = ANA_MIN; /* Initialize codel of

current temperature */

HeatCorrJdJdg = JDG_NOT_YET; /* Necessity of

temperature correction is not identified */

break;

case STATE_WAIT_GO:

/* Wait for progress key */

if ((ucbhCodeReady == CODE5_COMPLETE)&&(HeatCorrJdg == JDG_NOT_YET))

{ /* If 5-point correction data has been measured and necessity

of temperature correction is unidentified, re-acquire codel and perform identification

*/

ushNowCodel = fn_GetAD() ; /* Re-acquire
anal A/D conversion result */

ushNowCodel = fn_CorrectADresult(ushNowCodel);/* Correct
current codel */

if (ushNowCodel != ushCorrCodel) /* If

temperature change exists */

HeatCorrJdg = JDG_HEATCORR_EX; /* Set to

execute temperature correction */

else

HeatCorrJdg = JDG_HEATCORR_NO; /* Set so as

not to execute temperature correction */

}

break;

case STATE_EXEC:

/* Execute conversion processing */

sResult.bDAC_ready = READY_NO; /* No DAC setting value
data */

sResult.ushAD = fn_GetAD(); /* Acquire A/D
conversion result */

sResult.bAD_ready = READY_OK; /* Preparing A/D

conversion result data is completed */

if (ucb5CodeReady == CODE5_COMPLETE) /* If measuring 5-point

correction data is completed */
{

sResult.ushCorrect = fn_CorrectADresult(sResult.ushAD);

/* Correct 5-point of A/D conversion result */

sResult.bCorrect_ready = READY_OK; /* Preparing 5-point

correction result data is completed */
if (HeatCorrJdg == JDG_HEATCORR_EX) /* If temperature

correction is required */

{

sResult.ushHeatCorr = fn_HeatCorrect(ushNowCodel,

sResult.ushCorrect);/* Correct temperature */

sResult.bHeatCorr_ready = READY OK;/* Preparing

temperature correction result data is completed */

}

else

Application Note U19332EJ1VOAN 69

APPENDIX A PROGRAM LIST

sResult.bHeatCorr_ready = READY NO;/* No 5-point
correction result data */
}
else /* If preparing 5-point
correction data is not completed */
{
sResult.bCorrect_ready = READY_NO; /* No 5-point
correction result data */
sResult.bHeatCorr_ready = READY_NO; /* No 5-point
correction result data */

}

fn_SetSendData(sResult, ucTxBuffer); /* Set conversion
result output */
fn_ADResultOut (ucTxBuffer); /* Output data */
ucState = STATE_WAIT_GO; /* Wait for progress
key and perform next conversion */
break;
default:
break;

/***

A/D conversion: Conversion A2 mode control processing

Successive conversion mode (voltage input from other than the DAC) processing
is controlled.
* Used only if the DAC is not used for A/D conversion analog input.

***/

static void fn_Control_ConvertA2 (void)

{
struct st_Result sResult; /* Store conversion result */
static unsigned char ucTxBuffer [TXDATA_SIZE]; /* Display data buffer */
static unsigned short ushNowCodel; /* codel re-acquired at current

temperature */
static unsigned char HeatCorrJdg; /* Information on necessity of

temperature correction */

switch(ucState) { /* Branch according to execution status */
case STATE_STOP: /* Stop processing */
fn Init_st_Result(&sResult); /* Initialize

conversion result */

ucState = STATE_STANDBY; /* Set operation status
to “Standby” */

ushNowCodel = ANA_MIN; /* Initialize codel of

current temperature */

70 Application Note U19332EJ1VOAN

APPENDIX A PROGRAM LIST

temperature correction is not

case STATE_WAIT_GO:

necessity of temperature correction is unidentified,

HeatCorrJdg = JDG_NOT_YET;

identified */

/* Necessity of

break;

/* Wait for progress key */
if ((ucbCodeReady == CODE5_COMPLETE)&&(HeatCorrJdg == JDG_NOT_YET))
{ /* If measuring 5-point correction data is completed and

re-acquire codel and perform

identification */

ushNowCodel = fn_GetAD() ; /* Re-acquire
anal A/D conversion result */
ushNowCodel = fn_CorrectADresult(ushNowCodel);/* Correct
current codel */
if (ushNowCodel != ushCorrCodel) /* If
temperature change exist */
HeatCorrJdg = JDG_HEATCORR_EX; /* Set to
execute temperature correction */
else
HeatCorrJddg = JDG_HEATCORR_NO; /* Set so as

not to execute temperature correction */

case STATE_EXEC:

data */

conversion

conversion

correction

/* Correct

correction

correction

sResult.ushCorrect) ;/*

temperature correction

correction

}

break;

/* Execute conversion processing */

sResult.bDAC_ready = READY_NO; /* No DAC setting value
sResult.ushAD = fn_GetAD() ; /* Acquire A/D

result */
sResult.bAD_ready = READY_OK; /* Preparing A/D

result data is completed */

if (uchCodeReady CODE5_COMPLETE) /* If measuring 5-point

data is completed */

{

sResult.ushCorrect = fn_CorrectADresult(sResult.ushAD);

5-point of A/D conversion result */

sResult.bCorrect_ready = READY_OK; /* Preparing 5-point
result data is completed */
if (HeatCorrJddg == JDG_HEATCORR_EX) /* If temperature
is required */
{
sResult.ushHeatCorr = fn_ HeatCorrect(ushNowCodel,
Correct temperature */
sResult.bHeatCorr_ready = READY_OK;/* Preparing

result data is completed */

}
else

sResult.bHeatCorr_ready = READY _NO;/* No 5-point

result data */

}

Application Note U19332EJ1VOAN 71

APPENDIX A PROGRAM LIST

else /* If measuring 5-point
correction data is not completed */
{
sResult.bCorrect_ready = READY_NO; /* No 5-point
correction result data */
sResult.bHeatCorr_ready = READY_NO; /* No 5-point
correction result data */
}
fn_SetSendData(sResult, ucTxBuffer); /* Set conversion
result output */
fn_ADResultOut (ucTxBuffer); /* Output data */
/* Do not change A/D execution status, because conversion is also
performed next time */

break;

default:

break;

/***

A/D conversion: Conversion B mode control processing

Successive conversion mode (voltage input from the DAC) processing is
controlled.
* Used only if the DAC is used for A/D conversion analog input.

***/

static void fn_Control_ConvertB(void)

{
static struct st_Result sResult; /* Store conversion result */
static unsigned char ucTxBuffer [TXDATA_SIZE]; /* Display data buffer */
static unsigned short ushNowCodel; /* codel re-acquired at current

temperature */
static unsigned char HeatCorrJdg; /* Information on necessity of
temperature correction */

unsigned char temp;

switch(ucState){ /* Branch according to execution status */
case STATE_STOP: /* Stop processing */
fn Init_st_Result(&sResult); /* Initialize

conversion result */

ushStart = ANA_MIN; /* Clear A/D conversion
start value */

ushEnd = ANA_MAX; /* Clear A/D conversion
end value */

ucImportState = IMPORT_NO; /* Clear A/D conversion

start/end value retrieval status */

72 Application Note U19332EJ1VOAN

APPENDIX A PROGRAM LIST

ucState = STATE_STANDBY; /* Set operation status
to “Standby” */
ushNowCodel = ANA_MIN; /* Initialize codel of
current temperature */
HeatCorrJdg = JDG_NOT_YET; /* Necessity of
temperature correction is not identified */
break;
case STATE_WAIT_GO: /* Wait for progress key */
if(ucImportState == IMPORT_NO) /* If A/D conversion
start/end value is not retrieved */
{
fn_ImportStartEnd() ; /* Retrieve conversion
start/end value */
sResult.ushDAC = ushStart; /* Initialize DAC
setting values */
}
if ((ucbCodeReady == CODE5_COMPLETE)&&(HeatCorrJdg == JDG_NOT_YET))
{ /* If 5-point correction data has been measured and necessity

of temperature correction is unidentified, re-acquire codel and perform identification

*/

fn_SetDAC((unsigned short) fAnal[l-1]); /* Set anal to
DAC output */

ushNowCodel = fn_GetAD() ; /* Re-acquire
anal A/D conversion result */

ushNowCodel = fn_CorrectADresult(ushNowCodel);/* Correct
current codel */

if (ushNowCodel != ushCorrCodel) /* If

temperature change exists */
HeatCorrJdg = JDG_HEATCORR_EX; /* Set to
execute temperature correction */
else
HeatCorrJdg = JDG_HEATCORR_NO; /* Set so as
not to execute temperature correction */

}

break;
case STATE_EXEC: /* Execute conversion processing */
if(ucImportState == IMPORT_NO) /* If start/end value
is not yet retrieved */
{
ucState = STATE _WAIT GO; /* Re-read start/end
value */
return;
}
fn_SetDAC(sResult.ushDAC) ; /* Set DAC output */
sResult.bDAC_ready = READY_OK; /* Preparing DAC

setting value data is completed */

Application Note U19332EJ1VOAN 73

APPENDIX A PROGRAM LIST

sResult.ushAD = fn_GetAD(); /* Acquire A/D
conversion result */
sResult.bAD_ready = READY_OK; /* Preparing A/D

conversion result data is completed */

if (ucb5CodeReady == CODE5_COMPLETE) /* If measuring 5-point
correction data is completed */
{
sResult.ushCorrect = fn_CorrectADresult(sResult.ushAD);
/* Correct A/D conversion result */
sResult.bCorrect_ready = READY_OK; /* Preparing 5-point
correction result data is completed */
if (HeatCorrJdg == JDG_HEATCORR_EX) /* If temperature
correction is required */
{
sResult.ushHeatCorr = fn_HeatCorrect(ushNowCodel,
sResult.ushCorrect);/* Correct temperature */
sResult.bHeatCorr_ready = READY OK;/* Preparing
temperature correction result data is completed */
}
else

sResult.bHeatCorr_ready

READY_NO; /* No 5-point
correction data measurement result data */
}
else /* If 5-point
correction has not been completed */
{
sResult.bCorrect_ready = READY_NO; /* No 5-point
correction result data */
sResult.bHeatCorr_ready = READY_NO;/* No 5-point correction
result data */
}
fn_SetSendData(sResult, ucTxBuffer); /* Set conversion
result output */
fn_ADResultOut (ucTxBuffer); /* Output data */

/* Update DAC setting values */

/*1if(sResult.ushDAC == ANA_MAX) */ /* If conversion up to
maximum value is completed */

/* sResult.ushDAC = 0; */ /* Continue conversion

from minimum value */

/*else*/
/* sResult.ushDAC++; */
/*1if ((ushEnd == ANA_MAX)&&(sResult.ushDAC == 0))*//* If conversion

up to conversion end value is completed */

/* ucState = STATE_STOP; */ /* End conversion */
/*else if(sResult.ushDAC == (ushEnd + 1))*/
/* ucState = STATE_STOP; *//* End successive conversion

*/

74 Application Note U19332EJ1VOAN

APPENDIX A PROGRAM LIST

/* Update DAC setting values */
for(temp = 0; temp < CONVERT_B_STEP; temp++)

{
sResult.ushDAC ++;
if(sResult.ushDAC == (ushEnd + 1))
{
ucState = STATE_STOP; /* End successive
conversion */
break;
}
}
break;
default:
break;

/***

A/D conversion: Correction A mode control processing

5-point correction mode (voltage input from other than the DAC) is controlled.

* Used only if the DAC is not used for A/D conversion analog input.

***/

static void fn_Control_CorrectA(void)

{
static struct st_Result sResult; /* Store conversion result */
static unsigned char ucTxBuffer [TXDATA_SIZE]; /* Display data buffer */
static unsigned char ADCount = 0; /* Conversion count */
switch(ucState) { /* Branch according to execution status */
case STATE_STOP: /* Stop processing */
fn_TInit_st_Result(&sResult); /* Initialize conversion result
*/
ADCount = 0; /* Clear conversion count */
ucState = STATE_STANDBY ; /* Set operation status to

“Standby” */

break;

case STATE_WAIT_GO: /* Wait for progress key */
break;

case STATE_EXEC: /* Execute conversion processing */
if(ADCount == 0)

uchCodeReady = CODE5_NOT_COMP; /* Measuring 5-point correction

data is not completed */
sResult.bDAC_ready = READY_NO; /* No DAC setting value data */

Application Note U19332EJ1VOAN 75

APPENDIX A PROGRAM LIST

sResult.ushAD = fn_ GetAD() ; /* Acquire A/D conversion
result */

ushCode [ADCount] = sResult.ushAD; /* Save A/D conversion result
*/

sResult.bAD_ready = READY_OK; /* Preparing A/D conversion

result data is completed */

sResult.bCorrect_ready = READY_NO; /* No 5-point correction result
data */
sResult.bHeatCorr_ready = READY_NO; /* No 5-point correction result
data */
fn_SetSendData(sResult, ucTxBuffer); /* Set conversion result output
*/
fn_ADResultOut (ucTxBuffer); /* Output data */
ADCount++; /* Update DAC setting values */
if (ADCount >= 5){ /* If converting all 5 points
is completed */
ucState = STATE_STOP; /* End conversion */
if ((ushCode[0] < ushCode[2]) /* If size relation among codel,

codel3, and code5 is correct */
&& (ushCode[2] < ushCode[4])){
uchCodeReady = CODE5_COMPLETE; /* Report completion of
5-point correction data measurement */
P_NOERR = 1; /* No error display */
ushCorrCodel = fn_CorrectADresult(ushCode[l-1]);
/* Correct and save codel for temperature correction */
ushCorrCode3 = fn_CorrectADresult (ushCode[3-1]);
/* Correct and save code3 for temperature correction */
}
else{ /* If size relation among codel
to code5 is not correct */
ucb5CodeReady = CODE5_NOT _COMP; /* Measuring 5-point

correction data is not completed */

P_NOERR = 0; /* Set error display */
}
}
else{ /* If correcting 5 points is
not completed */
ucState = STATE_WAIT GO; /* Wait for progress key and

perform next conversion */

}
break;
default:

break;

76 Application Note U19332EJ1VOAN

APPENDIX A PROGRAM LIST

/***

A/D conversion: Correction B mode control processing

5-point correction mode (voltage input from the DAC) is controlled.
* Used only if the DAC is used for A/D conversion analog input.

***/

static void fn_Control_CorrectB(void)

{
static struct st_Result sResult; /* Store conversion result */
static unsigned char ucTxBuffer [TXDATA_SIZE]; /* Display data buffer */
static unsigned char ADCount = 0; /* Conversion count */
switch(ucState) { /* Branch according to execution status */
case STATE_STOP: /* Stop processing */
fn_Init_st_Result(&sResult); /* Initialize conversion result
*/
ADCount = 0; /* Clear conversion count */
ucState = STATE_STANDBY; /* Set operation status to
“Standby” */
break;
case STATE WAIT_GO: /* Wait for progress key */
break;
case STATE_EXEC: /* Execute conversion processing */
if(ADCount == 0)

ucb5CodeReady = CODE5_NOT_COMP; /* Measuring 5-point correction

data is not completed */

sResult.ushDAC = (unsigned short) fAna[ADCount];
fn_SetDAC(sResult.ushDAC); /* Set DAC output */
sResult.bDAC_ready = READY_OK; /* Preparing DAC setting value

data is completed */

sResult.ushAD = fn_GetAD() ; /* Acquire A/D conversion
result */

ushCode [ADCount] = sResult.ushAD; /* Save A/D conversion result
*/

sResult.bAD_ready = READY_OK; /* Preparing A/D conversion

result data is completed */

sResult.bCorrect_ready = READY_NO; /* Preparing 5-point correction
result data is completed */

sResult.bHeatCorr_ready = READY_NO; /* No 5-point correction result
data */

Application Note U19332EJ1VOAN 77

APPENDIX A PROGRAM LIST

fn_SetSendData(sResult, ucTxBuffer); /* Set conversion result output
*/
fn_ADResultOut (ucTxBuffer); /* Output data */
ADCount++; /* Update DAC setting values */
if(ADCount >= 5){ /* If converting all 5 points
is completed */
ucState = STATE_STOP; /* End conversion */
if ((ushCode[0] < ushCode[2]) /* If size relation among codel,

code3, and codeb is correct */
&& (ushCode[2] < ushCode[4])){
ucb5CodeReady = CODE5_COMPLETE; /* Report completion of
5-point correction data measurement */
P_NOERR = 1; /* No error display */
ushCorrCodel = fn_CorrectADresult(ushCodel[l-1]);
/* Correct and save codel for temperature correction */
ushCorrCodel3 = fn_CorrectADresult (ushCode[3-1]);
/* Correct and save code3 for temperature correction */
}
else{ /* If size relation among codel
to code5 is not correct */
uc5CodeReady = CODE5_NOT_COMP; /* Measuring 5-point
correction data is not completed */
P _NOERR = 0; /* Set error display */

}

break;

default:

break;

/***

Retrieving A/D conversion start and end values from HD74HC165

The A/D conversion start value (16 bits) and end value (16 bits), which have
been set by using a switch, are read.
* Used only if the DAC is used for A/D conversion analog input.

***/

static void fn_ImportStartEnd(void)

{
unsigned short temp; /* Temporary variable for data retrieval */
unsigned char count; /* Counter for data retrieval */
/* __

A/D conversion start value retrieval

78 Application Note U19332EJ1VOAN

APPENDIX A PROGRAM LIST

__ */
temp = 0;
P_LAT = 1; /* Start data retrieval */
for(count = 16; count != 0; count--){ /* Read 16 bits of A/D conversion start
value from MSB */
temp = (temp << 1);
if (P_DAT) /* If retrieved data is “1”, set 1 to
corresponding bit */
temp++;
P_CLK = 0;
P_CLK = 1; /* Request shifting of next data */
}
ushStart = temp; /* Set A/D conversion start value */
/* __
A/D conversion end value retrieval
__ */
temp = 0;
for(count = 16; count != 0; count--){ /* Read 16 bits of A/D conversion start
value from MSB */
temp = (temp << 1);
if(P_DAT) /* If retrieved data is “1”, set 1 to
corresponding bit */
temp++;
P_CLK = 0;
P CLK = 1; /* Request shifting of next data */
}
ushEnd = temp; /* Set A/D conversion end value */
/* End all data retrieval */
P_LAT = 0;
P_CLK = 0;
ucImportState = IMPORT_OK; /* Retrieval has been completed */

/***

Set the DAC

The output voltages are set to DAC1l and DAC2.

* Used only if the DAC is used for A/D conversion analog input.

***/

static void fn_SetDAC (unsigned short DAC1_value)

{
unsigned short DACO_value; /* DACO setting data */

/* Calculate value to be set to DACO */
DACO_value = ~DAC1l_value; /* Reverse DACl setting value */

Application Note U19332EJ1VOAN 79

APPENDIX A PROGRAM LIST

if((DACO_value == ANA_MAX)||(DACO_value == ANA_MIN))
; /* Set reverse value of DAC1 for
minimum/maximum setting */
else
DACO_value += 1; /* Set “reverse value DAC1l + 1” for

settings other than minimum/maximum setting */

/* __

Set to DAC1l
__ */
/* Transmit setting to DACl */
P_CS1 = 0; /* Start transmission */
fn_SSTIO _16bit(DAC1l_value); /* Output data */
P CS1 = 1; /* End transmission */
/* __

Set to DACO
__ */
/* Transmit setting to DACO */
P_CS0 = 0; /* Start transmission */
fn_SSTIO _16bit(DACO_value); /* Output data */
P _CSO = 1; /* End transmission */

/* Wait until DAC stabilizes after serial transmission */

CMP0O0 = CMPOO_AFTER_DAC; /* Set 500 us */

TMIFHO = 0; /* Clear interrupt request */
TMHEO = 1; /* Start timer operation */
while(!T™IFHO) ; /* Wait for 500 us to elapse */
TMHEO = 0; /* Stop timer operation */

/***

Software serial transmission

Data (16 bits) 1is transmitted to the DAC via 3-wire serial communication.

* Used only if the DAC is used for A/D conversion analog input.

***/

static void fn_SSIO_1l6bit (unsigned short value)

{
unsigned short mask = 0b1000000000000000; /* Mask data */
for(; mask != 0; mask >>= 1) /* Transmit bit by bit from MSB */
{
P_SCK = 0; /* SCK: LOW */
if((value & mask) == 0) /* Is transmit data at low level? */
P_SDA = 0; /* Yes: Output transmit data (low

level) */

else

80 Application Note U19332EJ1VOAN

APPENDIX A PROGRAM LIST

P_SDA = 1; /* No: Output transmit data (high
level) */
P_SCK = 1; /* SCK: HIGH (DAC reads transmit data)
*/

/***

16-bit AX-type A/D conversion

AX-type A/D conversion is started and A/D conversion result is returned.

***/

static unsigned short fn_GetAD(void)

{

unsigned short ret = 0; /* A/D conversion result return value */

/* Start A/D conversion */

ADDCE = 1; /* Enable conversion operation
*/

DSADIF = 0; /* Clear A/D conversion

completion interrupt request */

/* Acquire A/D conversion result */
while (1) { /* Wait until A/D conversion is completed or stop key is

pressed */

if ((DSADIF)&&(ADDSTR == 0)){ /* If A/D conversion of DSO+ is
completed */
ret = ADDCR; /* Read A/D conversion result
*/
break;
}else if((DSADIF)&&(ADDSTR != 0)){ /* If value of non-target
channel is converted */
ADDCE = 1; /* Redo A/D conversion */
DSADIF = 0;
}else 1f (PIFO) { /* If stop key is pressed */
ADDCE = 0; /* Stop A/D conversion
operation */
break; /* Abort A/D conversion */
lelse
}
return (ret); /* Return A/D conversion result

*/

/***

Application Note U19332EJ1VOAN 81

APPENDIX A PROGRAM LIST

5-point correction

The A/D conversion result is corrected by using the following arithmetic

expression for correction output.

If the denominator of the operation is 0, the A/D conversion result is returned

as it is without performing a 5-point correction operation.

A/D conversion result - bn

an

* Description of the correction coefficients
codeA - codeB

an =

anaA - anaB

anaB x codeA - anaA x codeB
bn =

anaB - anaA

n: 1 to 4
n =1 anaA = ana2, anaB = anal, codeA = code2, codeB = codel
n = 2 anaA = ana3, anaB = ana2, codeA = code3, codeB = code2
n =3 anaA = ana4, anaB = ana3, codeA = coded4, codeB = code3
n = 4 : anaA = anab, anaB = ana4, codeA = codeb, codeB = code4d

***/

static unsigned short fn_CorrectADresult(unsigned short ADresult)
{

float ret = ADresult; /* Operation result: Initial value is value
before correction */

unsigned short temp;

unsigned char n;

/* Identify coefficient to be used */
if(ADresult >= ushCode[4-11) /* If A/D conversion result is coded
later */
n = 4;
else if((ADresult >= ushCode[3-11)) /* If A/D conversion result is code3

coded (including code3) */

n = 3;
else if((ADresult > ushCode[2-1])) /* If A/D conversion result is code2
code3 */
n = 2;
else /* If A/D conversion result is code2
earlier */
n = 1;

/* Correct A/D conversion result */

temp = ushCode[n] - ushCode[n-11];

82 Application Note U19332EJ1VOAN

or

to

to

or

APPENDIX A PROGRAM LIST

if(temp != 0){ /* If denominator of operation is 0, return A/D value

as it is without performing correction operation */

ret = (float)ADresult* (fAna[n] - fAnal[n-1]) + fAnal[n-
1]1*(float)ushCode[n] - fAnal[n]*(float)ushCodel[n-17];
ret = ret / temp;
}
return (unsigned short) (ret); /* Return integer portion (16 bits)

correction result */

}

/***

Temperature correction

This function is used to perform temperature correction.

of

The 5-point correction result is corrected by converting the inclination of 5-

point correction including temperature errors to an inclination of ideal values.
Operation is performed separately for the following two cases.
<1l> The inclination of the 5-point correction result is smaller than
that of the ideal values (high temperature)
<2> The inclination of the 5-point correction result is greater than

that of the ideal values (low temperature)

If the denominator of the operation is 0, the A/D result is returned as it is

without performing a temperature correction operation.

***/

static unsigned short fn_HeatCorrect (unsigned short ushNowCodel, unsigned short
ushCode) {

unsigned long ret = ushCode; /* Temperature correction result */

unsigned short temp; /* Operation work area */

temp = ushCorrCode3 - ushNowCodel;
if(temp != 0){ /* If denominator is 0, return correction

target as it is without performing correction operation */

if (ushNowCodel > ushCorrCodel) /* <1> */
{
ret = (unsigned long)ushCode* (unsigned long) (ushCorrCode3 -
ushCorrCodel) ;
ret = ret - (unsigned long)ushCorrCode3* (unsigned

long) (ushNowCodel - ushCorrCodel) ;
}

else /* <2> */
{
ret = (unsigned long)ushCode* (unsigned long) (ushCorrCode3 -
ushCorrCodel) ;
ret = ret + (unsigned long)ushCorrCode3* (unsigned

long) (ushCorrCodel - ushNowCodel) ;

Application Note U19332EJ1VOAN

83

APPENDIX A PROGRAM LIST

}

ret = ret / temp;

return (unsigned short) (ret); /* Return correction result */

/***

Create the data to be output via UART

The argument values are converted to data to be output via UART and set to the

transmit buffer.

***/

static void fn_SetSendData (struct st_Result s_Result, unsigned char *p_ucTxBuffer)

{

(4*(3 -

Convert

Convert

setting

(4*(3 -

84

unsigned char temp; /* Data creation work area */

unsigned char n;

/* Set transmit data of DAC setting values */

if(s_Result.bDAC_ready)

{ /* If transmit data of DAC setting values exists */
for(n = 0; n < 4; n++){

/* Extract digits to be converted to transmit data */

temp = (unsigned char) ((s_Result.ushDAC & (0xf000 >> 4*n)) >>
n)));
if(temp >= Oxa) /* If transmit data i1s Oxa to Oxf */
p_ucTxBuffer[n] = temp + ('A' - 0xa); /*
to “A” to “F" */
else /* If transmit data is 0x0 to 0x9 */
p_ucTxBuffer[n] = temp + '0'; /*

to “0” to “9" */
}
telse{ /* If transmit data of DAC setting values does not exist */
for(n =0; n < 4; n++)
p_ucTxBuffer[n] = '*'; /* Output “*” in place of DAC
values */

}

p_ucTxBuffer[4] = ' '; /* SP between data */

/* Set transmit data of A/D conversion values */
if(s_Result.bAD_ready)
{ /* If transmit data of A/D setting values exists */
for(n = 0; n < 4; n++){
/* Extract digits to be converted to transmit data */
temp = (unsigned char) ((s_Result.ushAD & (0xf000 >> 4*n)) >>
n)));

Application Note U19332EJ1VOAN

APPENDIX A PROGRAM LIST

if(temp >= Oxa) /* If transmit data is Oxa to Oxf */
p_ucTxBuffer[n + 5] = temp + ('A' - Oxa); /*
Convert to “A” to “F” */
else /* If transmit data is 0x0 to 0x9 */
p_ucTxBuffer[n + 5] = temp + '0'; /*
Convert to “0” to “9" */
}
telse{ /* If transmit data of A/D setting values does not exist */
for(n =0; n < 4; n++)
p_ucTxBuffer[n + 5] = '*'; /* Output “*” in place
of DAC setting values */
}
p_ucTxBuffer[9] = ' '; /* SP between data */
/* Set 5-point correction transmit data */
if(s_Result.bCorrect_ready)
{ /* If 5-point correction transmit data exists */
for(n = 0; n < 4; n++){
/* Extract digits to be converted to transmit data */
temp = (unsigned char) ((s_Result.ushCorrect & (O0xf000 >>
4*n)) >> (4*(3 - n)));
if(temp >= Oxa) /* If transmit data is Oxa to Oxf */
p_ucTxBuffer[n + 10] = temp + ('A' - 0xa); /*
Convert to “A” to “F" */
else /* If transmit data is 0x0 to 0x9 */
p_ucTxBuffer[n + 10] = temp + '0'; /*
Convert to “0” to “9” */
}
telse{ /* If 5-point correction transmit data does not exist */
for(n = 0; n < 4; n++)
p_ucTxBuffer[n + 10] = '*'; /* Output “*” in place
of DAC setting values */
}
p_ucTxBuffer[14] = ' '; /* SP between data */
/* Set temperature correction result transmit data */
if(s_Result.bHeatCorr_ready)
{ /* If temperature correction result transmit data exists */
for(n =0; n < 4; n++){
/* Extract digits to be converted to transmit data */
temp = (unsigned char) ((s_Result.ushHeatCorr & (O0xf000 >>
4*n)) >> (4*(3 - n)));
if(temp >= Oxa) /* If transmit data is Oxa to Oxf */
p_ucTxBuffer[n + 15] = temp + ('A' - Oxa); /*
Convert to “A” to “F” */
else /* If transmit data is 0x0 to 0x9 */
p_ucTxBuffer[n + 15] = temp + '0'; /*
Convert to “0” to “9" */

Application Note U19332EJ1VOAN 85

APPENDIX A PROGRAM LIST

}
telse{ /* If temperature correction result transmit data does not exist */
for(n = 0; n < 4; n++)
p_ucTxBuffer[n + 15] = '*'; /* Output “*” in place
of DAC setting values */
}

p_ucTxBuffer[19] = '\r‘'; /* Carriage return */
p_ucTxBuffer[20] '"\n"'; /* Line feed */

/***

Output the conversion result via UART6

The transmit buffer contents are transmitted via UART.

***/

static void fn_ADResultOut (unsigned char *p_TxBuffer)
{

unsigned char ucTxBufferCounter = 0; /* Transmit counter */

/* Start transmit operation */
STIF6 = 1; /* Set interrupt request */

while(ucTxBufferCounter < TXDATA_ SIZE) { /* Wait for completion of UART6
transmission */
if(STIF6){

STIF6 = 0; /* Clear interrupt request */
TXB6 = p_TxBuffer[ucTxBufferCounter]; /* TxD6: Transmit data
*/
ucTxBufferCounter++; /* Update transmit counter */
}
if (PIFO) { /* If stop key is pressed */
STIF6 = 1; /* Set interrupt request */
break;

86 Application Note U19332EJ1VOAN

APPENDIX B REVISION HISTORY

Edition

Date Published

Page

Revision

1st edition

July 2008

Application Note U19332EJ1VOAN

87

For further information,
please contact:

NEC Electronics Corporation

1753, Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8668,
Japan

Tel: 044-435-5111
http://www.necel.com/

[America]

NEC Electronics America, Inc.
2880 Scott Blvd.

Santa Clara, CA 95050-2554, U.S.A.

Tel: 408-588-6000
800-366-9782
http://www.am.necel.com/

[Europe]

NEC Electronics (Europe) GmbH
Arcadiastrasse 10

40472 Dusseldorf, Germany

Tel: 0211-65030
http://www.eu.necel.com/

Hanover Office
Podbielskistrasse 166 B
30177 Hannover

Tel: 0511 3340 2-0

Munich Office
Werner-Eckert-Strasse 9
81829 Mlinchen

Tel: 089 92 10 03-0

Stuttgart Office
Industriestrasse 3
70565 Stuttgart

Tel: 0711 99 01 0-0

United Kingdom Branch
Cygnus House, Sunrise Parkway
Linford Wood, Milton Keynes
MK14 6NP, UK.

Tel: 01908-691-133

Succursale Francaise

9, rue Paul Dautier, B.P. 52
78142 Velizy-Villacoublay Cédex
France

Tel: 01-3067-5800

Sucursal en Espana
Juan Esplandiu, 15
28007 Madrid, Spain
Tel: 091-504-2787

Tyskland Filial
Taby Centrum
Entrance S (7th floor)
18322 Taby, Sweden
Tel: 08 638 72 00

Filiale ltaliana

Via Fabio Filzi, 25/A
20124 Milano, ltaly
Tel: 02-667541

Branch The Netherlands
Steijgerweg 6

5616 HS Eindhoven

The Netherlands

Tel: 040 265 40 10

[Asia & Oceania]

NEC Electronics (China) Co., Ltd

7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian
District, Beijing 100083, P.R.China

Tel: 010-8235-1155

http://www.cn.necel.com/

Shanghai Branch

Room 2509-2510, Bank of China Tower,

200 Yincheng Road Central,

Pudong New Area, Shanghai, PR.China P.C:200120
Tel:021-5888-5400

http://www.cn.necel.com/

Shenzhen Branch

Unit 01, 39/F, Excellence Times Square Building,
No. 4068 Yi Tian Road, Futian District, Shenzhen,
P.R.China P.C:518048

Tel:0755-8282-9800

http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.

Unit 1601-1613, 16/F., Tower 2, Grand Century Place,

193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: 2886-9318

http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.

7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R. O. C.

Tel: 02-8175-9600
http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,

#12-08 Novena Square,

Singapore 307684

Tel: 6253-8311
http://www.sg.necel.com/

NEC Electronics Korea Ltd.

11F., Samik Lavied’or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku,
Seoul, 135-080, Korea

Tel: 02-558-3737
http://www.kr.necel.com/

G0706

	COVER
	CHAPTER 1 OVERVIEW
	CHAPTER 2 A/D CONVERSION RESULT CORRECTION ALGORITHM
	2.1 5-Point Correction
	2.2 Temperature Correction

	CHAPTER 3 CIRCUIT DIAGRAM
	3.1 Circuit Diagrams
	3.1.1 Circuit diagram when not using DAC
	3.1.2 Circuit diagram when using DAC

	3.2 Peripheral Hardware

	CHAPTER 4 SOFTWARE
	4.1 File Configuration
	4.2 Internal Peripheral Functions to Be Used
	4.3 Initial Settings and Operation Overviews
	4.3.1 Operation when not using DAC
	4.3.2 Operation when using DAC

	4.4 UART Transmission Data Format
	4.5 Flowcharts

	CHAPTER 5 SETTING METHOD
	5.1 Initial Settings of Peripherals to Be Used
	5.2 A/D Conversion Processing

	CHAPTER 6 OPERATION CHECK EXAMPLE USING DEVICE
	6.1 5-Point Correction
	6.2 Temperature Correction

	CHAPTER 7 RELATED DOCUMENTS
	APPENDIX A PROGRAM LIST
	APPENDIX B REVISION HISTORY

