Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Application Note

78K0 Universal Motor with Chopper Control

NOTES FOR CMOS DEVICES —

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

- The information in this document is current as of 28.04, 2004. The information is subject to change
 without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
 data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products
 and/or types are available in every country. Please check with an NEC sales representative for
 availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other
 intellectual property rights of third parties by or arising from the use of NEC Electronics products
 listed in this document or any other liability arising from the use of such NEC Electronics products.
 No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual
 property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC Electronics no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics
 products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated
 entirely. To minimize risks of damage to property or injury (including death) to persons arising from
 defects in NEC Electronics products, customers must incorporate sufficient safety measures in their
 design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools,

personal electronic equipment and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment

(not specifically designed for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact NEC Electronics sales representative in advance to determine NEC Electronics 's willingness to support a given application.

Notes: 1. " NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.

2. " NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

M8E 02.10

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics America Inc.

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Europe) GmbH

Duesseldorf, Germany Tel: 0211-65 03 1101 Fax: 0211-65 03 1327

Sucursal en España

Madrid, Spain Tel: 091-504 27 87 Fax: 091-504 28 60

Succursale Française

Vélizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

Filiale Italiana

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

Branch The Netherlands

Eindhoven, The Netherlands
Tel: 040-244 58 45
Fax: 040-244 45 80

Branch Sweden

Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

United Kingdom Branch

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

Singapore

Tel: 65-6253-8311 Fax: 65-6250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

Table of Contents

Chapter 1	Overview	. 9
1.1	Introduction	9
1.2	78K0 Family Overview	9
1.3	78K0 / KB1 Devices	. 11
1.4	Feature List 78K0 / KB1	. 12
Chapter 2	Universal Motor	13
2.1	Universal Motor	. 13
2.2	Universal Motor Speed Control	. 14
2	.2.1 Phase Angle Control	. 14
2	.2.2 Chopper Control	. 16
Chapter 3	System Design	19
3.1	System Concept	. 19
3.2	System Configuration	
	•	
Chapter 4	Hardware Configuration	21
4.1	Schematic Diagram	. 21
4.2	Device Configuration	
4.3	Peripherals and I/O Usage	
4.4	16-Bit Timer Function	
4.5	8 bit Timer / Event Counter 50	
4.6	A/D Converter	
Chapter 5	Software Process Description	29
Chapter 5 5.1	Software Process Description	
•		. 29
5.1	Main	. 29 . 29
5.1 5.2	Main	. 29 . 29 . 29
5.1 5.2 5.3 5.4	Main Micro Start-up PWM control	. 29 . 29 . 29 . 30
5.1 5.2 5.3 5.4	Main Micro Start-up PWM control	. 29 . 29 . 29 . 30
5.1 5.2 5.3 5.4	Main Micro Start-up PWM control 4.1 Open / Closed loop operation	. 29 . 29 . 30 . 31
5.1 5.2 5.3 5.4 5.5	Main Micro Start-up PWM control 4.1 Open / Closed loop operation Display	. 29 . 29 . 30 . 31
5.1 5.2 5.3 5.4 5.5	Main Micro Start-up PWM control 4.1 Open / Closed loop operation Display	. 29 . 29 . 30 . 30 . 31
5.1 5.2 5.3 5.4 5.5 5.5	Main Micro Start-up PWM control 4.1 Open / Closed loop operation Display Memory Flow Charts	. 29 . 29 . 30 . 30 . 31
5.1 5.2 5.3 5.4 5.5 5.6 Chapter 6	Main Micro Start-up PWM control 4.1 Open / Closed loop operation Display Memory Flow Charts Main Program	. 29 . 29 . 30 . 31 . 31
5.1 5.2 5.3 5.4 5.5 5.6 Chapter 6 6.1	Main. Micro. Start-up. PWM control4.1 Open / Closed loop operation. Display. Memory. Flow Charts. Main Program. Micro.	. 29 . 29 . 30 . 30 . 31 . 31
5.1 5.2 5.3 5.4 5.5 5.6 Chapter 6 6.1 6.2 6.3	Main Micro Start-up PWM control 4.1 Open / Closed loop operation Display Memory Flow Charts Main Program	. 29 . 29 . 30 . 30 . 31 . 33 . 33 . 34
5.1 5.2 5.3 5.4 5.5 5.6 Chapter 6 6.1 6.2 6.3 6.4	Main. Micro Start-up. PWM control. 4.1 Open / Closed loop operation. Display Memory. Flow Charts. Main Program. Micro Start-up. PWM Generation.	. 29 . 29 . 30 . 31 . 31 . 33 . 34 . 35
5.1 5.2 5.3 5.4 5.5 5.6 Chapter 6 6.1 6.2 6.3	Main. Micro. Start-up. PWM control. 4.1 Open / Closed loop operation. Display. Memory. Flow Charts. Main Program. Micro. Start-up.	. 29 . 29 . 30 . 31 . 31 . 33 . 34 . 35
5.1 5.2 5.3 5.4 5.5 5.6 Chapter 6 6.1 6.2 6.3 6.4 6.5	Main. Micro Start-up PWM control. 4.1 Open / Closed loop operation Display Memory. Flow Charts Main Program Micro Start-up PWM Generation Display Display	. 29 . 29 . 30 . 31 . 31 . 33 . 34 . 35 . 36
5.1 5.2 5.3 5.4 5.5 5.6 Chapter 6 6.1 6.2 6.3 6.4	Main. Micro Start-up. PWM control. 4.1 Open / Closed loop operation. Display Memory. Flow Charts. Main Program. Micro Start-up. PWM Generation.	. 29 . 29 . 30 . 30 . 31 . 33 . 34 . 35 . 36 . 37
5.1 5.2 5.3 5.4 5.5 5.6 Chapter 6 6.1 6.2 6.3 6.4 6.5 Chapter 7	Main. Micro. Start-up. PWM control. 4.1 Open / Closed loop operation. Display. Memory. Flow Charts. Main Program. Micro. Start-up. PWM Generation Display. Program Listing. Main.	. 29 . 29 . 30 . 30 . 31 . 33 . 33 . 34 . 35 . 36 . 37
5.1 5.2 5.3 5.4 5.5 5.6 Chapter 6 6.1 6.2 6.3 6.4 6.5 Chapter 7 7.1	Main. Micro Start-up PWM control4.1 Open / Closed loop operation Display Memory. Flow Charts Main Program Micro Start-up PWM Generation Display Program Listing Main. Micro	. 29 . 29 . 30 . 31 . 31 . 33 . 34 . 35 . 37 . 39 . 41
5.1 5.2 5.3 5.4 5.5 5.6 Chapter 6 6.1 6.2 6.3 6.4 6.5 Chapter 7 7.1 7.2	Main. Micro. Start-up. PWM control. 4.1 Open / Closed loop operation. Display. Memory. Flow Charts. Main Program. Micro. Start-up. PWM Generation Display. Program Listing. Main.	. 29 . 29 . 30 . 31 . 31 . 33 . 34 . 35 . 36 . 37
5.1 5.2 5.3 5.4 5.5 5.6 Chapter 6 6.1 6.2 6.3 6.4 6.5 Chapter 7 7.1 7.2 7.3	Main. Micro Start-up PWM control. 4.1 Open / Closed loop operation Display Memory. Flow Charts. Main Program. Micro Start-up PWM Generation Display Program Listing Main. Micro Start-up. Start-up Start-up Micro Start-up Start-up Start-up Main. Micro Start-up	. 29 . 29 . 30 . 31 . 31 . 33 . 34 . 35 . 36 . 37

List of Figures

Figure 1-1:	78K0 / KB1 Block Diagram	11
Figure 2-1:	Universal Motor – Operation	13
Figure 2-2:	Phase Angle Control Principle	
Figure 2-3:	Chopper Motor Control Principle	
Figure 3-1:	Chopper Control System Concept	19
Figure 3-2:	Chopper Control System Configuration	20
Figure 4-1:	Schematic Diagram	
Figure 4-2:	16-bit Timer/Event Counter 00 Block Diagram	24
Figure 4-3:	8-bit Timer/Event Counter 50 Block Diagram	
Figure 4-4:	A/D Converter Block Diagram	
Figure 6-1:	Main Program	
Figure 6-2:	Initialisation of the Microcontroller	
Figure 6-3:	Start-up	
Figure 6-4:	PWM Generation	
Figure 6-5:	Display	37

List of Tables

Table 1-1:	78K0 Series, Differences between Subseries	. 10
Table 4-1:	Device Configuration	. 22
	I/O Configuration	

Chapter 1 Overview

1.1 Introduction

This application note serves as an example of a PWM control for a universal motor, using an NEC K0 8-bit microcontroller.

The aim of the application note is to provide the user with an example for driving a universal motor via an IGBT directly from the mains, using a low-cost microcontroller.

A closed-loop control is realized by measuring the motor speed with a Hall sensor.

A suitable regulation algorithm depends largely on the final application and its requirements. Therefore the one implemented in this Application Note has to be seen just as an example.

The software and hardware configurations published here are examples and are not intended for mass production.

1.2 78K0 Family Overview

The heart of NEC's 78K0 family is a powerful 8-bit CPU with an excellent power/performance ratio.

The 78K0 series is a highly integrated 8-bit single-chip microcontroller family.

It features CPU, ROM, RAM and peripheral functions such as A/D converter, UART, I²C and serial interfaces as well as many dedicated ASSP peripheral functions.

All devices offer a range of on-chip memory options, both as Flash and Masked ROM.

The 78K0 core provides four register banks, each with 8-bit general registers that can be concatenated to form a 16-bit register, supporting 16-bit operations.

A total of 63 instructions are available. Bit manipulation operations are supported on all registers and the entire RAM address space.

Table 1-1: 78K0 Series, Differences between Subseries

Function		ROM	Timer			8-bit 10-bit		-bit 8-bit	0 : 11 : 1		V _{DD}	External	
Subseries Name		Capacity	8-bit	16-bit	WT	WDT	A/D	A/D	D/A	Serial Interface	I/O	MIN value	expansion
	μPD78075B	32K to 40K								3 ch (UART: 1 ch)	88	1.8 V	
	μPD78078									3 CH (OAKT: 1 CH)			
	μPD78078Y	48K to 60K								3 ch (UART: 1 ch, I ² C: 1 ch)			
	μPD78070A	OA			3 ch (UART: 1 ch)		2.7 V						
	μPD78070AY	- 1 ch 8 ch -	2 ch	3 ch (UART: 1 ch, I ² C: 1 ch)	61								
	μPD780058									3 ch (time-divi- sion UART: 1 ch)	68	1.8 V 2.7 V	×
Controller	μPD780058Y	24K to 60K			1 ch	1 ch				3 ch (time-division UART: 1 ch, I ² C: 1 ch)			
	μPD780065	40K to 48K								4 ch (UART: 1 ch)	60		
	μPD780078	48K to 60K	2 ch	2 ch				8 ch]] -	4 ch (UART: 1 ch, I ² C: 1 ch) 3 ch (UART: 1 ch, time-division 3-wire: 1 ch)	52		
	µPD780078Y	4010 to 0010		2 011				O CIT					
	μPD780034AS						-	4 ch			39	1.8 V	-
	μPD780034A	8K to 32K		1 ch				8 ch					×
	µPD780034AY	01110 0211					-	8 ch		3 ch (UART: 1 ch,	51 1,		
	μPD780024AY						8 ch	-		l ² C: 1 ch)			
	78K0/KB1	8K to 24K	3 ch		-			4 ch			22		
On-chip	78K0/KC1	8K to 32K		1 ch	- 1 ch	1 ch	-	8 ch	-	l ` ′⊨	32		_
power-on	78K0/KD1	011 10 3211	4 ch								39		
reset	78K0/KE1	8K to 60K	4 (11							4 ch (UART: 2 ch)			
	78K0/KF1	24K to60K		2 0						5 ch (UART: 2 ch)			×

1.3 78K0 / KB1 Devices

KB1 devices are part of the 78K0 microcontroller family.

With their many different integrated peripherals these devices are ideal for industrial and household appliances.

The KB1 series consists of four devices that differ mainly in RAM and ROM size.

For further details refer to the block diagram in Figure 1-1 and the feature list in section 1.4 "Feature List 78K0 / KB1" on page 12.

Figure 1-1: 78K0 / KB1 Block Diagram

Note: * - depending of the actual device

Chapter 1 Overview

1.4 Feature List 78K0 / KB1

- 8-bit CISC CPU core
- Hardwired instructions for bit manipulation, multiplication and division
- 10 MHz max. clock frequency (200 ns min. instruction cycle time)
- On-chip oscillator
- Various memory configurations (including flash memory)
- Clock monitor
- Power-on clear (POC/POR) with RESET output
- Low-voltage indicator
- 4-channel A/D converter, 10-bit resolution
- Advanced UART (highly flexible, supports LIN by hardware)
- Standard UART (except µPD780101)
- 3-wire serial interface (CSI)
- 3 × 8-bit timers, 16-bit timer
- Watchdog timer
- 22 I/Os
- Operating voltage: 2.7 to 5.5 V
- Operating temperature: -40 to +125°C (device dependent)
- Package: 30-pin SSOP

Chapter 2 Universal Motor

2.1 Universal Motor

Universal motors are used in applications where speed control and high torque are required. Typical applications are in the field of white goods or power tools.

This motor can run on either DC or AC power, which is why it is called a universal motor.

The universal motor consists out of three main parts.

- Stator: contains the field windings to generate the radial magnetic flux
- Rotor: armature winding supplied with current via the carbon brushes to generate magnetic flux
- Brushes: mechanical linking of power supply and rotor windings

If a DC power is connected to a universal motor, the coils of the stator behave as if they were permanent magnets and the universal motor behaves like a DC motor, with one exception: it does not reverse direction when the current passing through it is reversed. It will continue to rotate in the same direction, because reversing the current through the rotor also reverses the current through the electromagnets. In effect, every pole of the motor changes from north to south or from south to north. As all the poles change their polarity, the motor will continue turning in the same direction.

As the universal motor always rotates in the same direction irrespective of the direction of the current, it works also when connected to AC power.

In order to change the motor's direction of rotation, the coils of the stator must be rewired, because this reverses the poles and thus the direction of rotation.

When running a universal motor on AC power, the motor experiences no torque during current reversal, but the average torque is sufficient to turn the motor as if it were connected to a DC power supply.

Figure 2-1: Universal Motor – Operation

2.2 Universal Motor Speed Control

One major requirement for electromotors used in domestic appliances is the ability to control its speed.

Two electronic solutions, phase angle control and chopper control, are widely used in industry today to realize speed control.

Both solutions have their strengths and weaknesses.

2.2.1 Phase Angle Control

Phase angle control is a simple and cost-effective solution to change the speed of a universal motor by using a triac.

The gate of the triac can be controlled directly by the output ports of a microcontroller and the whole circuitry is usually connected directly to the mains.

The advantages of this solution are:

- simplicity
- · cost effectiveness
- · full speed control

On the other hand, the drawbacks are:

- · high brush noise
- · short lifetime
- · high current ripple
- poor EMI behaviour

Figure 2-2: Phase Angle Control Principle

(a) Block Diagram

(b) Timing

Chapter 2 Universal Motor

2.2.2 Chopper Control

PWM control is another solution for controlling the speed of a universal motor.

The AC voltage from the mains is rectified and then switched at a high frequency by a Power MOSFET or an IGBT.

The switching frequency is usually in the range of 10 to 20 KHz.

PWM control is the more advanced solution for controlling the speed of a universal motor. Driving a universal motor in PWM mode results in lower current ripple, which reduces the harmonics and therefore results in much better EMI behaviour.

The reduction of harmonics compared with phase angle control also reduces the copper and iron losses, which results in higher motor efficiency.

Running a motor in chopper mode also reduces acoustic noise, which is an important factor nowadays that should not be underestimated.

The advantages of this solution are:

- higher motor efficiency
- · lower acoustic noise
- · smooth current behaviour

On the other hand, the drawbacks are:

- · more components needed
- price disadvantage
- · filtering of chopper frequency required

Figure 2-3: Chopper Motor Control Principle

(a) Block Diagram

(b) Timing

[MEMO]

Chapter 3 System Design

3.1 System Concept

The aim of this application note is to provide a speed regulation example realized by chopper control, using an 8-bit microcontroller from NEC's 78K0 family.

The µPD78F0103 was selected for this application example.

The universal motor runs on rectified main voltage that is PWM-modulated.

An IGBT switches the rectified mains voltage via a suitable driver.

The PWM is generated by NEC's 8-bit microcontroller.

The motor speed can be controlled by changing the duty cycle of the generated PWM signal.

The motor speed is measured via a Hall sensor. A potentiometer, connected to the A/D converter of the microcontroller, delivers the reference value for the speed control function.

A closed-loop system is realized by comparing the reference and measured value.

Depending on the calculation results, the duty cycle of the PWM signal, controlling the power switch, is adapted to achieve a stable motor speed.

Figure 3-1: Chopper Control System Concept

3.2 System Configuration

The system configuration and the relationship between control software and hardware of the chopper controlled Universal Motor is shown in detail in Figure 3-2.

 ω reference ω measured 10-bit 16-bit Hall A/D Converter Timer 00 Sensor Δω 8-bit PWM Power Pot Meter Regulator Motor Switch Timer 50

Figure 3-2: Chopper Control System Configuration

The motor speed information is given by the output signal of the Hall sensor. This signal is measured by the 16-bit timer/counter, operating in pulse-width measuring mode.

The reference value for the closed-loop control system is given by an analog potentiometer, connected to the on-chip A/D converter of the microcontroller.

The speed reference value is compared with measured value to generate the input signal to the regulator

The output signal of the regulator itself changes the duty cycle of the 8-bit PWM counter in a way that constant motor speed is achieved.

The function of each of the peripheral units is described in the next chapter.

Chapter 4 Hardware Configuration

4.1 Schematic Diagram

The diagram shows the chopper motor control design using a $\mu PD78F0103$ microcontroller.

Figure 4-1: Schematic Diagram

Switch S1 allows the selection between closed-loop and open-loop system operation.

4.2 Device Configuration

The configuration and operating environment of the $\mu PD78F0103$ is shown in Table 4-1.

Table 4-1: Device Configuration

Operating clock	10.00 MHz
Operating voltage	5 V
Internal ROM	24 KB
Internal RAM	768 Bytes

4.3 Peripherals and I/O Usage

Table 4-2 shows the microcontroller's I/O pins. The pins used in the application and their functions are listed.

Table 4-2: I/O Configuration

Pin No.:	Pin Name	Signal Name	Function
1	P33		LED
2	P32		LED
3	P31		LED
4	P30		LED
5	IC	V _{PP}	Programming
6	V _{SS}		Ground
7	V _{DD}		V _{DD}
8	X1		Main crystal
9	X2		Main crystal
10	RESET		System reset
11	P03		LED
12	P02		LED
13	P01		LED
14	P00	TI000	Speed measure
15	P10		LED
16	P11		Not used
17	P12		Not used
18	P13		Not used
19	P14		LED
20	P15		LED
21	P16		LED
22	P17	TO50	PWM out
23	P130		Debugging
24	P23		Not used
25	P22		Not used
26	P21		Not used
27	P20	ANI0	Speed reference
28	AV _{REF}	5 V	A/D reference
29	AV _{SS}	0 V	Analog ground
30	P120	I/O	Switch

4.4 16-Bit Timer Function

As shown in Figure 3-2, "Chopper Control System Configuration," on page 20, the 16-bit timer is used to measure the motor speed.

The 16-bit timer (TM00) of the $\mu PD78K0103$ has several operating modes:

- Interval timer
 - Generates interrupt request at the preset time interval
- PPG mode
 - Outputs a square wave, output pulse and frequency can be set
- Pulse width measurement
 - Measures pulse width of an external signal
- · External event counter
 - Measures the number of external pulses
- Square wave output
 - Generates a square wave signal with an programmable frequency

Figure 4-2: 16-bit Timer/Event Counter 00 Block Diagram

Chapter 4 Hardware Configuration

The 16-bit timer is set to pulse width measurement mode to measure the frequency of the square wave signal.

A magnetic ring with eight pole pairs is mounted on the axis of the motor rotor.

The Hall sensor, mounted close to the magnetic ring, generates a square-wave signal.

The generated frequency of the Hall sensor is in the range of 300 Hz at low speed and increases to a maximum speed of 1800 Hz.

The count clock frequency of the 16-bit timer is programmable. In this application example, a frequency of 39 KHz is selected to measure the pulse width of the Hall sensor signal.

The pulse-width measurement is performed in a so-called "by means of restart" mode.

The speed measurement in this application example is not interrupt-controlled but performed in freerunning mode.

The 16-bit timer is triggered by the rising edge of the Hall sensor signal.

A rising edge transfers the value of the 16-bit timer/counter to the CR010 capture/compare register and automatically clears and restarts TM00 for the next measurement.

This has the advantage that the last measured speed value is always available in CR010 and can be used at any time for the speed control algorithm.

4.5 8 bit Timer / Event Counter 50

This timer is used to generate a PWM signal that controls the speed of the motor via the IGBT driver and IGBT. The PWM signal is varied by modifying the duty cycle.

The timer provides the following functions:

- · interval timer
- · external event counter
- square-wave output
- PWM output

Figure 4-3: 8-bit Timer/Event Counter 50 Block Diagram

Notes: 1. Timer output F/F

2. PWM output F/F

PWM output mode is selected and an output frequency of 10 KHz. The duty ratio of the 10 KHz signal is determined by the value of the 8-bit timer compare register 50 (CR50).

The calculation result of the speed control algorithm can be set on the fly, i.e., the CR50 register can be set at any time without stopping the PWM mode of the 8-bit timer.

A subroutine structure is used to modify the duty cycle by rewriting the CR50 register.

4.6 A/D Converter

The on-chip A/D converter has 4 input channels and a 10-bit resolution.

- AVREF ADCS bit ANI0/P20 ⊚ Sample & hold circuit Voltage comparator ANI1/P21 © Selector Tap selector ANI2/P22 © AVss ANI3/P23 ⊚ Successive approximation register (SAR) INTAD Controlle Comparator A/D conversion result Power-fail comparison register (ADCR) threshold register (PFT) ADS1 ADS0 ADCS FR2 FR1 FR0 ADCE PFEN PFCM Analog input channel Power-fail comparison A/D converter mode mode register (PFM) specification register register (ADM) (ADS) Internal bus

Figure 4-4: A/D Converter Block Diagram

In the example, channel one (ANI0) is connected to a potentiometer connected between V_{DD} and ground.

The A/D converted potentiometer value represents the reference value for the speed control algorithm for regulating the speed in the closed-loop system of this example.

The A/D conversion process is continuous and always the last converted value can be read out from the ADCR register of the μ PD78F0103.

The conversion time of the $\mu PD78F0103$ is 28.8 μs .

Analog reference AV_{DD} and analog ground of the A/D converter are connected respectively to V_{DD} and V_{SS} .

[MEMO]

Chapter 5 Software Process Description

5.1 Main

The main program provides the framework within which the subroutines execute the various tasks of the closed-loop motor control application example.

The main program starts by initializing the stack pointer and device-specific IMS register settings, before invoking the global initialization subroutine called Micro.

The start-up routine performs a soft start-up of the universal motor until the reference speed is reached.

The endless loop of the main program consists of the PWM generation and the Display subroutine.

5.2 Micro

The Micro subroutine is responsible for initializing the system after a system reset.

It configures the basic clock settings of the device, selects the oscillators running the device during the different operating modes and initializes the used peripherals. It has the following sections:

- · Watchdog timer
- Initialization and switching of CPU clock
- Initialization of I/O ports
- A/D converter settings (reference value generation)
- PWM timer initialization (PWM generation)
- Timer 00 setting (speed measurement)

5.3 Start-up

This routine performs a soft start-up of the universal motor.

The A/D converter delivers the reference value of the motor speed.

After determining this value, the PWM register of Timer 50 is set to minimum speed.

Timer 50 generates the PWM signal for controlling the motor speed.

PWM generation of Timer 50 is enabled and the PWM register, containing the minimum speed value, is incremented to increase the motor speed until the reference speed is reached.

To achieve a soft start-up, a delay is executed after each change in the PWM duty cycle.

5.4 PWM control

This subroutine controls the motor speed.

In this application, controlling the motor speed means comparing reference and measured speed and calculating the speed error from the difference.

Speed error in this context means the motor is either running too fast, too slow or runs exactly at reference speed, in which case the speed error is zero.

Depending on the calculated speed error, the duty cycle of the generated PWM signal is modified by rewriting the CR50 register of Timer 50.

Modifying the PWM signal basically means incrementing or decrementing the corresponding variable (PWM reference) in dependency on the calculated speed error.

The reference speed in this application is given by a potentiometer.

The A/D converter continuously converts its input value, i.e., approx. every 30 µs a new reference speed value is provided to the ADCR register for further calculations.

The A/D converter has a 10-bit resolution, which in this application is standardized to 8 bits.

The motor speed is measured with Timer 00 of the $\mu PD78K0103$.

Like the A/D converter, the speed measurement resolution is also standardized to 8 bits.

The timer runs in a so-called "pulse width measurement by means of restart" mode, i.e., the timer clears and starts its counter function automatically at the specified edges and provides the counter value for further calculation in its CR000 register.

A magnetic ring with eight pole pairs is mounted on the rotor of the universal motor.

A Hall sensor, mounted close to the ring provides speed information to Timer 00.

While calculating a new PWM duty cycle it is very important to check whether any underflow or overflow of the system limit values has been occurred.

'Regulation delay' is a function implemented in the PWM control subroutine. This is necessary to optimize the control performance of the whole system.

By changing the constants 'regulation_delay_const_out' and 'regulation_delay_const_in' this scheme can easily be adapted for transfer to other systems.

5.4.1 Open / Closed loop operation

This motor control application can run either in closed-loop or in open-loop mode.

The modes are selected via a switch connected to port P120.

In closed-loop operation the regulation algorithm as described above is performed.

In an open-loop system, this algorithm is switched off and basically the reference value provided in the ADCR register is transferred directly to the CR50 register of Timer 50, which specifies the duty cycle and thus the motor speed.

To achieve similar speeds in closed- and open-loop operation requires a conversion table with reference values.

The reason for that is in the different control characteristic curves in open- and closed-loop operation within this application.

5.5 Display

Display is a subroutine that in closed-loop operation indicates the regulation accuracy. In open-loop mode the display is switched off.

The accuracy of the regulation is calculated from the reference and measured speed values.

11 LEDs indicate the regulation accuracy in 2% steps.

The green LED on port P16 indicates 100% accuracy. The red LEDs on ports P30, P31, P32, P33 and P01, P02, P03, P10 indicate the accuracy in 2% steps in positive and negative direction, respectively.

The yellow LEDs on port P15 and P14 indicate an accuracy of less than 8% in positive and negative direction, respectively.

5.6 Memory

These application example provides an approach to a basic chopper control system suitable for implementation with NEC's 78K0 8-bit Microcontroller family.

The memory requirements for these example are as follows:

• 78K0 – µPD78F0103

CODE memory 16 Kbytes available, 679 bytes used DATA memory 768 bytes available 21 bytes used

The 78K0 Microcontroller used for this application example provides further resources for additional user functions or/and adaptions to the regulation algorithm.

[MEMO]

Chapter 6 Flow Charts

6.1 Main Program

Figure 6-1: Main Program

6.2 Micro

This Module executes the initialisation of the microcontroller

Figure 6-2: Initialisation of the Microcontroller

6.3 Start-up

This module performs soft start-up up to reference speed.

Figure 6-3: Start-up

6.4 PWM Generation

This module calculates out of reference and measured speed the new duty cycle of the PWM signal driving the Universal Motor.

Figure 6-4: PWM Generation

6.5 Display

This module gives in 2% steps an indication on the achieved accuracy while running the application in closed loop mode.

Figure 6-5: Display

[MEMO]

7.1 Main

```
* /
/* File:
                                         * /
       main.asm
/* Project: Motor Control ( chopper ) - startup
                                         * /
                                         * /
/* Description: Contains power-on reset initialisation and the idle loop.*/
/* History: 031103 creation
                                         * /
                                         * /
/******************************
; Enviroment
        Device: uPD78F0103
        Assembler: A78000 V3.21A/386
        Compiler: ICC78000 V3.21A/386
;
               XLINK V4.51J/386
        Linker:
;Changes
NAME Main
                   ; module name
; P780103
                   ; target device
                  ; header file
#include "df0103.h"
                   ; EXPORT LIST
                   ; Constants:
                   ; Variables:
                   ; Flags:
                   ; Labels:
  PUBLIC Start
                   ; reset entry address
                   ; IMPORT LIST
                   ; Constants:
                   ; Variables:
                   ; Flags:
                   ; Labels:
  EXTERN InitMicro
                    from Micro
  EXTERN Startup
                  ; from Startup
  EXTERN loop
                  ; from PWM_generation
  EXTERN Display
                  ; from Display
;-----
      org 0000H
      dw
          Start
```

; Segment name: CODE

; Segment type: relocatable code segment

; Address area: internal ROM area

RSEG CODE

; Block type: Program idle loop ; Purpose: Initilisation

; Input: none ; Output: none

Start: movw AX,#0FE20h ; set stackpointer

> movw SP,AX IMS,#06H mov

di

; disable Interrupts

call InitMicro
call Startup ; switching ring -> main oscillator

EndLess: nop ; endless loop

call loop call Display

nop

br EndLess

END

7.2 Micro

```
* /
/* File:
                                  * /
       micro.asm
/* Project:
      Motor Control (chopper) - startup
                                  * /
                                  * /
/* Description: Initilization of CPU and peripherals
                                  * /
                                  * /
/* History:
                                  * /
      031103 creation
                                  * /
Device: uPD78F0103
; Enviroment
       Assembler: A78000
                  V3.21A/386
       Compiler: ICC78000
                  V3.21A/386
       Linker:
            XLINK
                  V4.51J/386
;Changes
NAME micro
                ; module name
 ;P780103
                ; target device
 #include df 0103.h
               ; header file
                ; EXPORT LIST
                ; Constants:
                ; Variables:
                ; Flags:
                ; Labels:
 PUBLIC InitMicro
                ; - module initilization
                ; IMPORT LIST
                ; Constants:
                ; Variables:
                ; Flags:
                ; Labels:
; Segment name: CODE
; Segment type: relocatable code segment
; Address area: internal ROM area
CODE
; Block type:
         global standard subroutine
; Purpose:
         Initilization for chopper mode motor control
; Input:
         none
; Output:
         none
```

```
InitMicro: call InitWDTM
                             ; Begin
        call
              Init0sc
        call InitIO call InitAD
        call InitTM50 call InitTM00
         ret
                              ; End
; Block type: local standard subroutine
; Purpose:
              Initilization / Switching of CPU clock
; Input:
              none
; Output:
              none
cPCCini
         equ
               00000000B
                             ; processor clock control register
             ; | | | | | | | |
             ; | | | | | | | |
                                PCCn
                                       fCPU
             ; ||||||
                                _____
             ; | | | | | -----
                                000
                                001
                                      fx/2
                                     fx/2
fx/4
               010
                                011
             ; ||||
                                      fx/8
                                100
                                      fx/16
                                 other settings prohibited
             ; ||||+---- fixed to 0
               |||+---- fixed to 0
             ; | | +---- fixed to 0
             ; | +---- fixed to 0
             ; +----- fixed to 0
cRCMini
              00000000B
                            ; Ring-Osc mode register
        equ
             ; | | | | | | | |
             ; | | | | | | | |
                                RSTOP
                                _____
                                0 Ring-OSC working
1 Ring-OSC stopped
                               1
             ; | | | | | | |
             ; |||||+---- fixed to 0
             ; ||||+---- fixed to 0
               ||||+---- fixed to 0
             ; |||+---- fixed to 0
             ; | \ | \ +---- fixed to 0
             ; | +---- fixed to 0
```

```
00000000B
cMCMini
         equ
                                ; Main Clock Mode Register
              ; | | | | | | | |
              ; | | | | | | | +----- MCMO, [0] Ring-OSC input, [1] x1 input
              ; | | | | | | +----- MCS, [0] Ring-OSC or [1] x1 working
               |||||+---- fixed to 0
               ; ||||+---- fixed to 0
              ; |||+---- fixed to 0
               ; | | +---- fixed to 0
               ; |----- fixed to 0
               ; +----- fixed to 0
                0000000B
cMOCini
         equ
                               ; Main Oscillator Control Register
              ; | | | | | | | |
              ; ||||||+---- fixed to 0
              ; |||||+---- fixed to 0
              ; ||||+---- fixed to 0
               ; ||||+---- fixed to 0
              ; |||+---- fixed to 0
                ||+---- fixed to 0
                |+---- fixed to 0
                  ----- MSTOP, [0] x1 osc, [1] x1 stopped
cOSTCini
         equ
                0000000B
                                ; Osc. Stab. Time Counter status reg.
              ; ||||||
              ; ||||||
                                   MOSTn
                                           t
              ; ||||||
                                   _____
               ; | | | +++++----
                                   10000
                                           204.8us
                                   11000
                                           819.2us
              ; | | |
                                           1.64ms
                                    11100
              ; |||
                                    11110
                                           3.27ms
                                           6.55ms
              ; | | |
                                    11111
              ; | | +---- fixed to 0
              ; |----- fixed to 0
               ; +---- fixed to 0
cOSTSini
         equ
                00000101B
                                ; Osc. Stab. Time Select register
              ; ||||||
              ; ||||||
                                   OSTSn
                                          t
              ; | | | | | | | |
                                   _____
                ||||+++----
                                          204.8us
                                    001
                                    010
                                          819.2us
                                    011
                                          1.64 \mathrm{ms}
                                          3.27ms
                                    100
                                          6.55ms
              ; ||||
                                   101
              ; | | | | |
              ; | | | | |
                                    other settings prohibited
              ; ||||+---- fixed to 0
              ; |||+---- fixed to 0
              ; | | +---- fixed to 0
              ; |----- fixed to 0
               ; +----- fixed to 0
```

```
InitOsc:
               PCC, #cPCCini ; fx=10MHz selectiert
         mov
         mov
               RCM, #cRCMini ; Ring-OSC working
         mov
               MCM, #cMCMini ; Ring-OSC supplied to CPU
               MOC, #cMOCini ; x1 working
         mov
               OSTS, #cOSTSini; 6,5ms stabilization time selected
         mov
wait:
         BF
               OSTC.4, wait ; check stabilization time
         set1
               MCM.0
                          ; after stabilization time switch to x1
         ret
local standard subroutine
; Block type:
; Purpose:
               Initilization Watchdogtimer
; Input:
               none
; Output:
               none
01111111B
                           ; Watchdog Timer Mode register
cWDTMini
         equ
              ; | | | | | | | |
              ; ||||||
                                  WDCSn
                                        Ring-OSC
                                                  x1 OSC
               ______
              ; | | | | | -----
                                 000
                                        8.53ms
                                                 819.2us
                                  001
                                        17.07ms
                                                 1.64 \mathrm{ms}
                                  010
                                                 3.28ms
                                        34.13ms
                                  011
                                        68.27ms
                                                 6.55ms
                                  100
                                        136.53ms 13.11ms
                                  101
                                        273.07ms
                                                26.21ms
                                        546.13ms
                                                 52.43ms
                                  110
                                  111
                                        1.09s
                                                 104.86ms
                                 WDCSn
                                        clock selection
                                 _____
                   _____
                                 00
                                        fr Ring-OSC clock
                                        fx Main Oscillator
                                  01
                                  1x
                                        Watchdog timer stopped
               ||+---- fixed to 1
              ; | +---- fixed to 1
              ; +----- fixed to 0
InitWDTM
               WDTM, #cWDTMini ; Watchdog timer stopped
         mov
               IMS,#06H
         mov
         ret
```

```
; Block type:
              local standard subroutine
; Purpose:
              Initilization of I/O Ports
; Input:
              none
; Output:
              none
cPM0ini
        equ
              11110001B
                             ; Port Mode Register
             ; | | | | | | | |
             ; | | | | | | +---- PM00
             ; | | | | | | +----- PM01
             ; | | | | | +---- PM02
             ; | | | | +---- PM03
             ; ++++---- unused, fixed to 1
cPM1ini
        equ
              00000000B
                              ; Port Mode Register
             ; | | | | | | | |
             ; |||||+---- PM10
             ; | | | | | | +---- PM11
             ; | | | | | +---- PM12
             ; | | | | +---- PM13
             ; |||+---- PM14
             ; | | +---- PM15
             ; |+---- PM16
             ; +---- PM17
              11110000B
cPM3ini
         equ
                              ; Port Mode Register
             ; ||||||
             ; | | | | | | +---- PM30
             ; |||||+---- PM31
             ; | | | | | +---- PM32
             ; | | | | +---- PM33
             ; ++++---- unused, fixed to 1
cPM12ini
        equ
              11111110B
                             ; Port Mode Register
             ; ||||||
             ; |||||+---- PM120
             ; ++++++ unused, fixed to 1
                            ; PMxy [0] = output mode
                            ; [1] = input mode
              PM0,#cPM0ini
InitIO:
                            ; Port output mode
        mov
                             ; Port output mode
        mov
              PM1,#cPM1ini
        mov
              PM3,#cPM3ini
                            ; Port output mode
        ret
```

```
; Block type:
              local standard subroutine
; Purpose:
               Initilization of A/D Converter
; Input:
               none
; Output:
               none
cADMini
         equ
               10000001B
                            ; A/D Converter Mode Register
             ; ||||||
             ; | | | | | | | +----- ADCS, [0] stops conversion,
                                  [1] enables conversion
             ; |||||+---- unused, fixed to 0
             ; |||||+---- unused, fixed to 0
             ; ||||
             ; ||||
                                 FRn
                                     Conversion time
                                 _____
             ; | | | | |
              ; | | +++----
                                 000
                                       288/fx
                                 001
                                       240/fx
                                 010
                                       192/fx
             ; ||
                                 010
                                       144/fx
                                 101
                                       120/fx
             ; ||
                                 110
                                        96/fx
               \mid +----- unused, fixed to 0
              ; +----- ADCE, ref.volt.gen.,[0] off,[1] on
cADSini
              00000000B; Analog Input Channel Specification Register
        equ
             ; ||||||
              ; ||||||
                                 ADSn
                                       input channel
             ; | | | | | | | |
                                000
               | | | | | +++----
                                       ANI0
             ; | | | | |
                                 001
                                       ANI1
              ; ||||
                                 010
                                       ANI2
             ; ||||
                                 011
                                       ANI3
             ; ||||+---- unused, fixed to 0
                ||+---- unused, fixed to 0
               ||+---- unused, fixed to 0
              ; | +---- unused, fixed to 0
              ; +---- unused, fixed to 0
InitAD:
               ADM,#cADMini
                             ; start A/D Converter
         mov
               ADS,#cADSini
                             ; select analog input channel ANIO
         mov
         ret
```

```
; Block type: local standard subroutine
; Purpose:
                Initilization of Timer 50 ( PWM out )
; Input:
                none
; Output:
                none
cTCL50ini
          equ
                 00000100B ; Timer Clock Selection Register 50
               ; ||||||
               ; | | | | | | | |
                                    TCL50n count clock selection
                                    _____
               ; | | | | | | | |
                                    000 TI50 fallinge edge

001 TI50 rising edge

010 10 MHz (fx)

011 5 MHz

100 2.5 MHz

101 156.25 kHz
               ; | | | | | +++----
               ; | | | | |
               ; | | | | |
               ; | | | | |
               ; | | | | |
                                     110 39.06 kHz
111 1.22 kHz
               ; ||||
                                    110
               ; | | | | |
               ; | | | | |
               ; ||||+---- unused, fixed to 0
               ; | | | +---- unused, fixed to 0
               ; | \ | +---- unused, fixed to 0
               ; \mid +----- unused, fixed to 0
               ; +---- unused, fixed to 0
cTMC50ini equ
                01000010B ; format Timer Mode Control register
               ; | | | | | | | |
               ; ||||||+----- TCE50, counter [0]stopped, [1]starts ; |||||+---- TMC506, [0]clear & start, [1]PWM mode
               ; | | | | | |
               ; | | | | | |
                                  LVS50 LVR50 Timer output F/F status
               ; | | | | | | ------
               0
                                         1
                                               output F/F reset (0)
               ; | | | | |
                                  1 0
1 1
               ; | | | | |
                                               output F/F set (1)
               ; ||||
                                               Setting prohibited
               ; ||||
               ; | | | +---- unused, fixed to 0
               ; ||+----- unused, fixed to 0
               ; | +----- TMC501, active, [0] high, [1] low
               ; +----- TOE50, output,[0]disabled,[1]enabled
;-----
                TCL50, #cTCL50ini ; count clock selection
TMC50, #cTMC50ini ; select PWM mode, output enable
InitTM50:
          mov
          mov
          ret
```

```
; Block type:
                local standard subroutine
; Purpose:
               Initilization of 16bit Timer 00 (motor speed counter)
; Input:
                none
; Output:
                none
cTMC00ini equ
                00001010B ; 16bit Timer Mode Control Register
               ; ||||||
               ; | | | | | | | +----; OVF00, Overflow detected, [0]no, [1] yes
               ; |||||
               ; | | | | | | |
                                     timer operating modes
                                   -----
               ; | | | | | | |
                                   operating stop
operating stop
operating stop
offee running mode
free running mode
clear and start valid edge
               ; | | | | +++----
               ; ||||
               ; | | | | |
                                     clear and start valid edge clear and start match TM/CR clear and start match TM/CR
               ; ||||
               ; ||||
               ; | | | | |
               ; |||+---- unused, fixed to 0
                 ||----- unused, fixed to 0
               ; | +---- unused, fixed to 0
               ; +---- unused, fixed to 0
                00000111B
cCRC00ini
          equ
                                 ; Capture/Compare Control Register
               ; | | | | | | | |
               ; ||||||
                                  operating mode selection
               ; | | | | | | |
               ; | | | | | | |
                                  capture trigger selection
               ; | | | | | |
                                   operating mode selection
               ; | | | | | | +----- CRC010, operates [0] compare [1] capture
               ; ||||+---- unused, fixed to 0
               ; ||\cdot||+----- unused, fixed to 0
               ; | \ | + - - - - - - - - -  unused, fixed to 0
               ; | +---- unused, fixed to 0
               ; +---- unused, fixed to 0
cTOC00ini
          equ
                 0000001B
                                  ;16-bit Timer Output Control Register
               ; | | | | | | | |
                 |||||||+---- TOE00, [0] disables, [1] enables outp
               ; | | | | | | | +----- TOC001,[0] disables [1] enables inv
               ; | | | | | |
               ; | | | | | |
                                  LVS00 LVR00 Timer output F/F status
                                   ______
               ; | | | | ++---- 0 0 no change
; | | | | 0 1 Timer out
                                              Timer output F/F
                                  1
               ; | | | |
                                        0
                                               Timer output F/F set
                                  1 1
               ; | | | |
                                               Setting prohibited
               ; | | | +---- TOC004, [0] disables, [1] enables inv. op
               ; ||+---- unused, fixed to 0
               ; \mid +----- unused, fixed to 0
               ; +---- unused, fixed to 0
```


7.3 Start-up

```
/* File:
        Startup.asm
                                     * /
/* Project:
       Motor Control (chopper) - start-up
                                     * /
/* Description: Contains power-on reset initialisation and the idle loop.*/
                                     * /
/* History: 031103 creation
                                     * /
; Enviroment Device: uPD78F0103
       Assembler: A78000 V3.21A/386
        Compiler: ICC78000 V3.21A/386
                 V4.51J/386
        Linker: XLINK
NAME
        Startup
                 ; module name
; P780103
                 ; target device
#include "df0103.h"
                ; header file
                 ; EXPORT LIST
                 ; Constants:
                 ; Variables:
                 ; Flags:
                 ; Labels:
 PUBLIC
        Startup
                 ; IMPORT LIST
                 ; Constants:
                 ; Variables:
                 ; Flags:
                 ; Labels:
```

```
; Segment name: UDATA0
; Segment type: relocatable data segment
; Address area: short address RAM area
RSEG
       UDATAO (1)
                       ; (1) segment starts at even address
SADDR
startup_delay_in
                  DS
                      2
startup_delay_out
                  DS
startup_reference_v
                  DS
                      1
startup_measured_v
                  DS
; Block type: Standard Subprogram
; Purpose:
             Startup
; Input:
             none
; Output:
             none
CODE
;-----
                           ; AD , speed reference value
            AX,ADCR
Startup:
       movw
            startup_reference_v,A ; store speed reference value
       mov
            A,#0C0H
                           ; PWM start value (lower limit)
       mov
       set1
            TCE50
                           ; count operation start
       set1
            TOE50
                           ; output enable
                           ; set with decremented PWM value
cont_startup:mov
            CR50,A
       cmp
            A, startup_reference_v ; check startup stop value
            retur
                           ; if PWM=reference leave startup
       bz
       dec
       call
            startup_delay
                       ; startup delay time constant
       mov
            B,A
                           ; AD , speed reference value
       movw
            AX,ADCR
       mov
            startup_reference_v,A ; store speed reference value
       mov
            A,B
       br
            cont_startup
retur:
            ret
```

; Block type: Standard Subroutine

; Purpose: Startup Regulation Timing

; Input: none
; Output: none

startup_delay: push AX

mov startup_delay_out,#060H

loop_out: nop

movw startup_delay_in,#6000H

loop_in: dec startup_delay_in

nop

BNZ loop_in

dec startup_delay_out

BNZ loop_out

pop AX

ret

END

7.4 PWM Generation

```
/*****************************
                                                       * /
/* File:
           PWM_Control.s26
                                                       * /
/* Project:
          Motor Control (chopper) - startup
                                                       * /
                                                       * /
/* Description: Single phase Motor with chopper control
                                                       * /
         This software example provides a basic PWM control algorithm */
/*
         for Universal Motor control. Timer_50 is used to generate a */
/*
         10kHz PWM signal. This PWM signal is switching via an IGBT
/*
                                                       * /
         the rectified line voltage and therewith the speed of the
/*
         Universal Motor. Via a switch, it can be selected whether
                                                       * /
/*
         the system runs in closed or open loop mode.
                                                       * /
/*
         The speed can be controlled by a potmeter, connected to the */
/*
         microcontrollers 5V Vdd. The adjusted DC level is
/*
         AD converted and therewith giving the reference speed value */
/*
         A magnetic ring with eight pol pairs is mounted on the motor*/
/*
         rotor axis to measure the speed.
                                                       * /
/*
                                                       * /
                                                       * /
/* History:
           031103 creation
                                                       * /
Device: uPD78F0103
; Enviroment
           Assembler: A78000
                             V3.21A/386
;
           Compiler: ICC78000
                             V3.21A/386
           Linker:
                    XLINK
                             V4.51J/386
;Changes
NAME
           PWM Control
                         ; module name
; P780103
                         ; target device
                         ; EXPORT LIST
                         ; Constants:
                         ; Variables:
                         ; Flags:
                         ; Labels:
   PUBLIC
           loop
   PUBLIC
           speed reference value
   PUBLIC
           speed_measured_value
   PUBLIC
           PWM reference
   PUBLIC
           Monitor_ADCR
   PUBLIC
           Monitor_CR010
   PUBLIC
           Monitor A
   PUBLIC
           Monitor CR50
   PUBLIC
           speed_delta
```

```
; IMPORT LIST
                  ; Constants:
                  ; Variables:
                  ; Flags:
                  ; Labels:
  EXTERN
        Table
                  ; from Table
; INCLUDE FILE LIST
#include
       "df0103.h"
                 ; header file
LSTOUT-
$df0103.h
LSTOUT+
COL 132
; Segment name: UDATA0
; Segment type: relocatable data segment
; Address area: short address RAM area
UDATAO (1)
RSEG
                    ; (1) segment starts even address
SADDR
; Global:
              EVEN
Monitor_CR010
                  2
              DS
Monitor_ADCR
             DS
                  2
Monitor_CR50
             DS
                  1
             DS
                  1
Monitor_A
speed_reference_value
             DS
                  1
speed_measured_value
             DS
                  1
                  1
PWM_reference
              DS
speed_delta
              DS
              EVEN
regulation_delay_const_in DS
                  2
                  2
startup_delay_in
              DS
regulation_delay_const_out DS
                  1
startup_delay_out
                  1
RSEG
       Data
                      ; segment starts at even address
SADDR
; empty
```

```
; Segment name: BITVARS
; Segment type: relocatable bit segment
; Address area: short address RAM area
RSEG
          BITVARS
                          ; segment starts at even address
SADDR
; empty
; Segment name: INTVEC
; Segment type: interrupt vector
; Address area: ROM, 0x0000...0x003f
COMMON
       INTVEC
                ; should be located at 0000H in *.xcl file
; empty
; Segment name: CODE
; Segment type: relocatable code segment
; Address area: internal ROM area
RSEG
          CODE
; Block type:
          Standard Subroutine
; Purpose:
          startup and closed loop regulation
; Input:
          none
; Output:
          none
loop:
reference_speed:
               AX,ADC
                           ; capture speed ref. value
           movw
                           ; ( watch function )
           movw
               Monitor_ADCR,AX
               A,#015H
           cmp
           BC
               set_to_USL
                           ; set to Upper Speed Limit
           cmp
               A,#080H
           BNC
                           ; set to Lower Speed Limit
               set_to_LSL
               speed_reference_value,A ; store speed ref. value
           mov
           BR
               measured_speed
               speed_reference_value,#015H
set_to_USL:
           mov
           BR
               measured_speed
               speed_reference_value,#080H
set_to_LSL:
           mov
measured_speed:
           movw
               AX,CR010
                           ; mov measured speed to AX
               Monitor_CR010,AX ; help word ( watch function )
           movw
           xch
               A,X
               speed_measured_value,A ; speed measured value
           mov
delta_speed:
               A, speed_reference_value
           sub
           mov
               speed_delta,A
                           ; speed difference
           bz
               speed_stable
                           ; delta=0, speed ok go to stable
```

```
bnc
                                               ; C=1 means speed to high
                           speed_to_slow
speed_to_high:
                   cmp
                           PWM_reference, #0C0H; check lower speed limit
                                               ; if no, increment PWM value
                           increment
                   bc
                                               ; if yes, set lower speed limit
                           A,#0C0H
                   mov
                   mov
                           PWM_reference, A
                   br
                           set_new_PWM
increment:
                   inc
                           PWM_reference
                                               ; inc PWM ref => decrease speed
                   inc
                           PWM_reference
                           PWM_reference
                   inc
               cmp
                       PWM_reference, #0C0H; check lower speed limit
                       set_new_PWM
               bc
                       A, #0C0H
                                           ; reset low. limit if overflow
               mov
                       PWM_reference,A
               mov
               br
                       set_new_PWM
speed_to_slow:
                       PWM_reference, #020H; check if PWM below upper limit
               cmp
               bnc
                       decrement
                                           ; if yes decrement PWM value
                       A,#020H
               mov
                                           ; if yes, set PWM to upper limit
               mov
                       PWM_reference,A
               br
                       set_new_PWM
decrement:
               dec
                       PWM_reference
                                           ; dec PWM ref => increase speed
               dec
                       PWM_reference
               dec
                       PWM_reference
                       PWM_reference, #020H; check upper speed limit
               cmp
               bnc
                       set_new_PWM
               mov
                       A,#020H
                                           ; reset up. limit if underflow
               mov
                       PWM_reference,A
set_new_PWM:
               mov
                       A,PWM_reference
               BT
                       P12.0,c_loop
                                           ; sel closed/open loop operation
                       A, speed_reference_value
               mov
                       B,A
                                           ; speed ref to B for Table calc.
               mov
                       HL, #Table
               movw
               mov
                       A,[HL+B]
                                           ; mov corresponding PWM to A
                                           ; generation of reference pulse
               mov
                       P13,#1
               nop
               mov
                       P13,#0
c_loop:
               mov
                       CR50,A
                                           ; set new PWM_value
                       Monitor_CR50,A
                                           ; help register ( watch func. )
               mov
                       PWM_reference,A
                                           ; store new PWM_value
               mov
speed_stable:
                       regulation_delay
                                           ; regulation time constant
               call
               ret
```

; Block type: Standard Subroutine

; Purpose: Adjustment Regulation Timing

; Input: none
; Output: none

regulation_delay: mov regulation_delay_const_out,#01H; 02 0080 = 330usec

loop_reg_out: nop

movwregulation_delay_const_in, #0040H

nop

BNZ loop_reg_in

dec regulation_delay_const_out

BNZ loop_reg_out

ret END

Note: setting 15-01-04 01_0040_upper 040_6000_lower

7.5 Display

```
/*****************************
/* File:
        display.asm
                                         * /
                                         * /
/* Project:
        Motor Control (chopper) - startup
/* Description: Contains power-on reset initialisation and the idle loop.*/
/* History: 031103 creation
                                         * /
                                         * /
/*****************************
; Enviroment
        Device: uPD78F0103
        Assembler: A78000
                     V3.21A/386
        Compiler: ICC78000 V3.21A/386
                     V4.51J/386
              XLINK
        Linker:
NAME
        Display
                  ; module name
; P780103
                  ; target device
#include
                  ; header file
        "df0103.h"
                   ; EXPORT LIST
                   ; Constants:
                   ; Variables:
                   ; Flags:
                   ; Labels:
 PUBLIC Display
                   ; IMPORT LIST
                   ; Constants:
 EXTERN
         speed_measured_value; Variables:
 EXTERN
        speed_reference_value
                  ; Flags:
                  ; Labels:
 EXTERN
        PWM_generation ;
                    from ......
 EXTERN
        InitMicro
                  ; from Micro
 EXTERN
        loop
                  ; from PWM_generation
; Segment name: CODE
; Segment type: relocatable code segment
; Address area: internal ROM area
RSEG
         CODE
```

```
; Block type:
                Subprogram
; Purpose:
                Display speed error
; Input:
                none
; Output:
                none
; clear ports
Display:
             P3,#00H
          mov
          clrl P0.1
          clr1 P0.2
          clr1 P0.3
          clr1 P1.0
          clr1 P1.6
          clr1 P1.5
          clr1 P1.4
          BF
               P12.0, skip ; check open / closed loop
               A, speed_measured_value ; caculate speed difference
          mov
          sub
               A, speed_reference_value
               GreenLED
          bz
          bnc
              to_slow
to_fast:
               A,#0F9H
                                  ; select accuracy LED
          cmp
               LEDP03
          bnc
              A,#0F3H
          cmp
          bnc
              LEDP02
          cmp
              A,#0EDH
          bnc
              LEDP01
              A,#0E7H
          cmp
          bnc
              LEDP10
          br
              Y_fast
to_slow:
               A,#07H
                                  ; select accuracy LED
         cmp
               LEDP30
          bc
          cmp
               A,#0DH
               LEDP31
          bc
          cmp
               A,#013H
          bc
               LEDP32
              A,#019H
          cmp
          bc
              LEDP33
               Y_slow
          br
Y_slow:
          set1 P1.5
                                   ; accuracy > 8%
          ret
Y fast:
                                   ; accuracy > 8%
          set1 P1.4
         ret
GreenLED:
         set1 P1.6
          ret
LEDP30
         set1 P3.0
         ret
          set1 P3.1
LEDP31
         ret
LEDP32
          set1 P3.2
          ret
```

	LEDP33	set1	P3.3			
-		ret	13.3			
	LEDP03	set1 ret	P0.3			
	LEDP02	set1 ret	P0.2			
1	LEDP01	set1 ret	P0.1			
	LEDP10 skip	set1 ret	P1.0			
		END				

7.6 Conversion Table

```
; Motor Control
; Table
; Conversion Table to adapt Motor speed in open / closed loop operation
PUBLIC
                    Table
RSEG
         CONST
saddr
Table:
;AD 00h
                   ; AD_00
           018H
      DB
                   ; AD_01
      DB
           018H
      DB
         018H
                   ; AD 05
          018H
                   ; AD 05
      DB
                   ; AD_05
      DB
           018H
           018H
      DB
                   ; AD_05
      DB 018H
                   ; AD_06
      DB 018H
                   ; AD 07
                  ; AD_08
      DB
           018H
      DB 018H
                  ; AD_09
      DB
         018H
                   ; AD OA
                   ; AD_0B
      DB
          018H
      DB
           018H
                   ; AD_0C
      DB 018H
                   ; AD OB
           018H
                   ; AD 0E
      DB
      DB
           018H
                   ; AD_0F
;AD 10h
      DB
          018H ; AD_10
                   ; AD 11
      DB
           019Н
                   ; AD 15
           019Н
      DB
      DB 020H
                   ; AD_15
      DB 020H
                   ; AD 15
      DB
          022H
                   ; AD_15
      DB
           028H
                  ; AD_16
      DB 02BH
                   ; AD 17
      DB
          030H
                   ; AD 18
                   ; AD_19
      DB
           035H
      DB
           03CH
                   ; AD_1A
      DB 045H
                   ; AD_1B
                   ; AD 1C
      DB
         050H
                   ; AD_1B
      DB
           058H
      DB
           05EH
                  ; AD_1E
      DB
           064H
                   ; AD_1F
;AD 20h
                   ; AD 20
           064H
      DB
      DB
           066H
                   ; AD 21
      DB
           068H
                   ; AD_22
           069H
      DB
                   ; AD_23
      DB
         070H
                   ; AD_24
      DB
           072H
                   ; AD 25
      DB
           073H
                   ; AD 26
      DB
           074H
                   ; AD_27
      DB
           075H
                    ; AD_28
```

```
DB
              076H
                         ; AD_29
        DB
              077H
                         ; AD_2A
        DB
              078H
                         ; AD_2B
                         ; AD_2C
              H080
        DB
              082H
        DB
                         ; AD_2B
              084H
        DB
                         ; AD_2E
        DB
              085H
                         ; AD_2F
;AD 30h
        DB
              085H
                         ; AD_30
              086H
                         ; AD_31
        DB
        DB
              087H
                         ; AD_33
        DB
              088H
                         ; AD_33
              089Н
                         ; AD_33
        DB
                         ; AD_33
              089Н
        DB
                         ; AD_36
        DB
              HA80
        DB
              HA80
                         ; AD_37
        DB
              08BH
                         ; AD_38
                         ; AD_39
        DB
              08CH
              08DH
                         ; AD_3A
        DB
        DB
              08EH
                         ; AD_3B
        DB
              090H
                         ; AD_3C
              092H
                         ; AD_3B
        DB
              094H
                         ; AD_3E
        DB
              096H
                         ; AD_3F
        DB
;AD 40h
              096H
                         ; AD_40
        DB
        DB
              097H
                         ; AD_41
                         ; AD_43
        DB
              098H
              099Н
        DB
                         ; AD_43
        DB
              09AH
                         ; AD_44
              09AH
                         ; AD_45
        DB
        DB
              09AH
                         ; AD_46
              09BH
                         ; AD_47
        DB
              09BH
                         ; AD_48
        DB
                         ; AD_49
        DB
              09BH
        DB
              09CH
                         ; AD_4A
              09CH
        DB
                         ; AD_4B
        DB
              09CH
                         ; AD_4C
        DB
              09DH
                         ; AD_4B
              09EH
        DB
                         ; AD_4E
        DB
              0A0H
                         ; AD_4F
;AD 50h
              H0A0
                         ; AD_50
        DB
              0A1H
                         ; AD_51
        DB
        DB
              0A1H
                         ; AD_55
        DB
              0A2H
                         ; AD_55
                         ; AD_55
        DB
              0A2H
        DB
              0A2H
                         ; AD_55
                         ; AD_56
        DB
              0A3H
              0A3H
                         ; AD_57
        DB
        DB
              0A4H
                         ; AD_58
                         ; AD_59
              0A4H
        DB
        DB
              0A5H
                         ; AD_5A
        DB
              ОАбН
                         ; AD_5B
        DB
              0A7H
                         ; AD_5C
```

```
DB
              0A7H
                         ; AD_5B
        DB
              H8A0
                         ; AD_5E
        DB
              0A8H
                         ; AD_5F
;AD 60h
              H8A0
                         ; AD_60
        DB
        DB
              H8A0
                         ; AD_61
        DB
              H8A0
                         ; AD_62
              0A9H
                         ; AD_63
        DB
        DB
              0A9H
                         ; AD_64
                         ; AD_65
              0A9H
        DB
        DB
              0AAH
                         ; AD_66
        DB
              0AAH
                         ; AD_67
              0AAH
                         ; AD_68
        DB
                         ; AD_69
        DB
              0ABH
        DB
              0ACH
                         ; AD_6A
        DB
              0ACH
                         ; AD_6B
        DB
              0ADH
                         ; AD_6C
                         ; AD_6B
        DB
              0ADH
              0ADH
                         ; AD_6E
        DB
        DB
              0AEH
                         ; AD_6F
;AD 70h
        DB
              0AEH
                         ; AD_70
              0AEH
                         ; AD_71
        DB
                         ; AD_72
        DB
              0AFH
                         ; AD_73
        DB
              0AFH
              0B0H
                         ; AD_74
        DB
        DB
              0B1H
                         ; AD_75
                         ; AD_76
        DB
              0B1H
                         ; AD_77
        DB
              0B2H
        DB
              0B2H
                         ; AD_78
                         ; AD_79
        DB
              0B2H
        DB
              0B3H
                         ; AD_7A
        DB
              0B3H
                         ; AD_7B
              0B3H
                         ; AD_7C
        DB
                         ; AD_7B
        DB
              0B4H
        DB
              0B4H
                         ; AD_7E
        DB
              0B4H
                         ; AD_7F
;AD 80h
              0B4H
                         ; AD_80
        DB
        DB
              0B5H
                         ; AD_81
                         ; AD_82
              0B5H
        DB
        DB
              0B5H
                         ; AD_83
        DB
              0B6H
                         ; AD_84
                         ; AD_85
        DB
              0в6н
        DB
              0в6н
                         ; AD_86
                         ; AD_87
        DB
              0B6H
        DB
              0B6H
                         ; AD_88
        DB
              0B7H
                         ; AD_89
                         ; AD_8A
        DB
              0B7H
        DB
              0B7H
                         ; AD_8B
        DB
              0B7H
                         ; AD_8C
              0B7H
                         ; AD_8B
        DB
        DB
              0B7H
                         ; AD_8E
              0B8H
        DB
                         ; AD_8F
```

```
;AD 90h
        DB
              0B8H
                         ; AD_90
        DB
              0B8H
                         ; AD_91
                         ; AD_92
              0B8H
        DB
        DB
              0B8H
                         ; AD_93
                         ; AD_94
        DB
              0B8H
        DB
              0в9н
                         ; AD_95
        DB
              0в9н
                         ; AD_96
                         ; AD_97
              0в9н
        DB
        DB
              0BAH
                         ; AD_98
                         ; AD_99
        DB
              0BAH
        DB
              0BAH
                         ; AD_9A
              0BAH
                         ; AD_9B
        DB
                         ; AD_9C
        DB
              0BAH
                         ; AD_9B
        DB
              0BBH
        DB
              0BBH
                         ; AD_9E
        DB
              0BBH
                         ; AD_9F
;AD A0h
              0BBH
                         ; AD_A0
        DB
        DB
              0BBH
                         ; AD_A1
        DB
              0BBH
                         ; AD_A2
        DB
              0BCH
                         ; AD_A3
              0BCH
                         ; AD_A5
        DB
                         ; AD_A6
        DB
              0BCH
                         ; AD_A7
        DB
              0BCH
        DB
              0BCH
                         ; AD_A8
        DB
              0BCH
                         ; AD_A9
                         ; AD_AA
        DB
              0BDH
        DB
              0BDH
                         ; AD_AB
              0BDH
                         ; AD_AC
        DB
        DB
              0BDH
                         ; AD_AB
        DB
              0BDH
                         ; AD_AE
        DB
              0BDH
                         ; AD_AF
;AD B0h
        DB
              0BDH
                         ; AD_B0
              0BEH
        DB
                         ; AD_B1
        DB
              0BEH
                         ; AD_B2
        DB
              0BEH
                         ; AD_B3
        DB
              0BEH
                         ; AD_B4
        DB
              0BFH
                         ; AD_B5
                         ; AD_B6
        DB
              0BFH
        DB
              0BFH
                         ; AD_B7
              0C0H
                         ; AD_B8
        DB
                         ; AD_B9
        DB
              0C0H
              0C0H
                         ; AD_BA
        DB
        DB
              0C0H
                         ; AD_BB
        DB
              0C0H
                         ; AD_BC
                         ; AD_BB
        DB
              0C0H
        DB
              0C0H
                         ; AD_BE
        DB
              0C0H
                         ; AD_BF
;AD C0h
        DB
              0C0H
                         ; AD_C0
        DB
              0C0H
                         ; AD_C1
        DB
              0C0H
                         ; AD_C2
```

```
DB
              0C0H
                         ; AD_C3
        DB
              0C0H
                         ; AD_C4
        DB
              0C0H
                         ; AD_C5
                          ; AD_C6
        DB
              0C0H
              0C0H
        DB
                         ; AD_C7
              0C2H
                          ; AD_C8
        DB
        DB
              OC2H
                         ; AD_C9
        DB
              OC4H
                         ; AD_CA
              0С6Н
                         ; AD_CB
        DB
        DB
              0C8H
                          ; AD_CC
              0CAH
                         ; AD_CB
        DB
        DB
              0CBH
                          ; AD_CE
        DB
              0D0H
                          ; AD_CF
;AD D0h
              0D0H
                          ; AD_D0
        DB
        DB
              0D0H
                          ; AD_D1
        DB
              0D0H
                          ; AD_D2
                         ; AD_D3
        DB
              0D0H
              0D0H
        DB
                         ; AD_D4
        DB
              0D0H
                         ; AD_D5
        DB
              0D0H
                         ; AD_D6
        DB
              0D0H
                         ; AD_D7
        DB
              0D0H
                         ; AD_D8
              0D0H
                          ; AD_D9
        DB
        DB
              0D0H
                         ; AD_DA
              0D0H
        DB
                         ; AD_DB
              0D0H
                          ; AD_DC
        DB
        DB
              0D0H
                          ; AD_DB
        DB
              0D0H
                          ; AD_DE
        DB
              0D0H
                          ; AD_DF
;AD E0h
        DB
              0D0H
                          ; AD_E0
        DB
              0D0H
                          ; AD_E1
              0D0H
                         ; AD_E2
        DB
                         ; AD_E3
        DB
              0D0H
        DB
              0D0H
                         ; AD_E4
                          ; AD_E5
        DB
              0D0H
        DB
              0D0H
                         ; AD_E6
        DB
              0D0H
                         ; AD_E7
        DB
              0D0H
                         ; AD_E8
        DB
              0D0H
                          ; AD_E9
              0D0H
                         ; AD_EA
        DB
        DB
              0D0H
                         ; AD_EB
        DB
              0D0H
                         ; AD_EC
              0D0H
                          ; AD_EB
        DB
        DB
              0D0H
                          ; AD_EE
              0D0H
        DB
                          ; AD_EF
;AD F0h
                          ; AD_F0
        DB
              0D0H
        DB
              0D0H
                         ; AD_F1
        DB
              0D0H
                          ; AD_F2
              0D0H
                         ; AD_F3
        DB
        DB
              0D0H
                         ; AD_F4
        DB
              0D0H
                          ; AD_F5
        DB
              0D0H
                          ; AD_F6
```

```
0D0H ; AD_F7
0D0H ; AD_F8
DB
DB
    0D0H
            ; AD_F9
DB
    0D0H
             ; AD_FA
DB
           ; AD_FB
DB
    0D0H
    0D0H
            ; AD_FC
DB
DB
    0D0H
            ; AD_FB
            ; AD_FE
DB
    0D0H
DB
    0D0H
              ; AD_FF
```

end

Although NEC has taken all possible steps to ensure that the documentation supplied

Facsimile Message

Organization

From:	to our customers is complete, bug free and up-to-date, we readily accept that errors may occur. Despite all the care and precautions we've taken, you may encounter problems in the documentation. Please complete this form whenever				
Name					
Company		you'd like to report errors or sugges improvements to us.			
Tel.	FAX				
Address		Thank you for your kind support.			
North Amorica	Harry Karry Blatterines County				
North America NEC Electronics America Inc. Corporate Communications Dept. Fax: 1-800-729-9288 1-408-588-6130	Hong Kong, Philippines, Oceania NEC Electronics Hong Kong Ltd. Fax: +852-2886-9022/9044	Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd. Fax: +65-6250-3583			
Europe NEC Electronics (Europe) GmbH Market Communication Dept. Fax: +49(0)-211-6503-1344	Korea NEC Electronics Hong Kong Ltd. Seoul Branch Fax: 02-528-4411	Japan NEC Semiconductor Technical Hotline Fax: +81- 44-435-9608			
	Taiwan NEC Electronics Taiwan Ltd. Fax: 02-2719-5951				
I would like to report the follo	wing error/make the following	suggestion:			
Document title:					
Document number:		Page number:			
If possible, please fax the ref	erenced page or drawing.				
Document Rating	Excellent Good	Acceptable Poor			
Clarity	Excellent Good				
Technical Accuracy					

[MEMO]