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The AC loop of the RSLIC18 refers to the voice band path 
which provides full duplex signal communication and 
impedance synthesis. The circuit operation is described here 
in as well as the macromodel used to simulate the AC 
performance of the device. The architecture is the same for 
all part numbers available in the RSLIC18 family of ringing 
subscriber line interface circuits.

The information in this document applies to all part numbers 
of the RSLIC18 family: HC55180, HC55181, HC55182, 
HC55183 and HC55184.

Architectural Description
The complete AC response of the device is determined by a 
the dominant AC loop and a low frequency DC loop. The DC 
loop provides the loop current limit function and contributes 
to the AC characteristics below 400Hz. The operation of the 
DC loop will not be discussed in detail, however the effects 
of this loop are included in the macromodel.

Voltage Feed Current Sense

The AC loop is designed around a voltage feed current 
sense architecture. The AC loop current is sensed across a 
pair of low value resistors which are in series with the Tip 
and Ring amplifier outputs. These sense resistors are placed 
within the feedback loop of each amplifier, compensating for 
voltage loss. All internal resistors use ratio relationships 
providing superb matching, temperature stability and gain 
accuracies.

The voltage across each resistor is measured using a 
differential amplifier, referred to as the sense amplifier (SA). 
The sense amplifier is configured as a dual differential 
amplifier. The sense connections to the amplifier are 
“flipped” resulting in addition of metallic signals (AC voice 
and DC loop current) and cancellation of longitudinal 
currents.

The output of the sense amplifier drives an inverting 
amplifier referred to as the transmit amplifier (TA). The gain 
of the transmit amplifier is set by the external component 
RS, which sets the synthesized impedance for the device. 
The output of the transmit amplifier provides the 4-wire 
output of the device as well as the feedback required for 
impedance synthesis. The feedback signal for impedance 
matching is inverted with respect to the incoming voice 
signal at the receive input VRX.

The receiver represents a unity gain current summing node. 
The voice signal at the VRX input and the feedback signal at 
the VTX output each drive internal resistors. The currents 
formed by the respective voltages and resistors are summed 
by a high impedance current summing junction. The sum of 
the currents are mirrored and drive the inverting terminal of 
the Tip and Ring amplifiers. The mirrored output of the 
receiver sources Tip current and sinks Ring current, 
providing the differential 2-wire output for the device.

FIGURE 1. RSLIC18 AC SIGNAL TRANSMISSION SIGNAL PATH
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RSLIC18 AC Loop
Functional Description
The functional blocks of the AC loop are the receiver, tip and 
ring amplifiers, sense amplifier and transmit amplifier.

Receiver

The receiver provides the current summing node for the voice 
signals from the CODEC (VRX) and the impedance matching 
feedback (VTX). The current generated by each voltage signal 
and internal 200k resistor is summed and mirrored to the Tip 
and Ring amplifier inverting inputs. Positive voltages at the 
receive input (VRX) will source current to the Tip amp and sink 
current from the Ring amp.

Tip and Ring Amplifiers

Both amplifiers are of voltage feedback design with a 200k 
feedback resistor. The voltage and current relationships of the 
receiver to Tip and Ring amplifier outputs is shown in Figure 2. 

The 20 resistors are the sense resistors which provide the 
loop current information to the sense amplifier. The sense 
resistor voltage drops are compensated by the feedback loop 
of each amplifier.

Sense Amplifier

The sense amplifier is configured as a 4 input differential 
amplifier with a voltage gain of 1/4. The differential input pairs 
are connected across the internal 20 sense resistors. Current 
flowing out of Tip and into Ring is the convention for positive 
loop current (IL) flow. The sense connections across the sense 
resistors form an inverting relationship between the loop 
current flow and the output voltage of the sense amp. Figure 3 
shows the sense amplifier with connections to the sense 
resistors.

The sense amplifier output voltage as a function of the Tip 
sense connections can be found by applying superposition to 
the circuit of Figure 3.

Simplifying the terms in parenthesis leads to the Tip sense 
differential relationship of Equation 2.

The voltage across the Tip sense resistor is the loop current 
multiplied by the sense resistor as shown in Equation 3.

The voltage at the Tip amplifier output (VTO) is more positive 
than the Tip sense connection voltage (VT) as defined by the 
loop current flow convention of Figure 3. Substituting the loop 
current term of Equation 3 into the sense amplifier output 
expression of Equation 2 yields:

Applying the same superposition analysis to the Ring sense 
connections results in the complete sense amplifier output 
expression of Equation 5.

The final step in defining the sense amplifier functionality is to 
express the loop current in terms of the load impedance. Since 
the loop from Tip to Ring represents a closed system the loop 
current out of Tip equals the loop current into Ring. Therefore 
the voltage across any impedance in the loop will provide the 
loop current information. The loop impedance between Tip and 
Ring (VT and VR) is the protection resistors (2RP) and the load 
impedance (ZL). Using this voltage and impedance relationship, 
the sense amplifier output voltage is rewritten as shown in 
Equation 6. The last term of Equation 6 represent the voltage 
gain relationship of the sense amp.

Transmit Amplifier

The transmit amplifier is a voltage feedback design with the 
noninverting terminal referenced to ground. It amplifies the 
sense amplifier output to achieve impedance synthesis. The 
output equation for the transmit amplifier is provided below.

The term RS is the external resistor used to program the 
synthesized impedance of the device. The value of RS is equal 
to 400 x ZO. In addition to impedance matching, the transmit 
amplifier drives the CODEC transmit interface.

FIGURE 2. RECEIVE INTERFACE
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FIGURE 3. SENSE AMPLIFIER SENSING CONNECTIONS
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SPICE Macromodel Analysis
The SPICE macromodel represents entire the AC loop of the 
device. Of the five functional blocks only the receiver is not 
modeled. The receiver does not contribute significantly to the 
device bandwidth and is modeled as an ideal current mirror. The 
four core amplifiers of the design are modeled by two or three 
pole circuits using voltage controlled voltage sources. Low 
frequency effects of the loop current limit function are included in 
the model but will not be discussed in detail. The SPICE net list 
included at the end of the document should be compatible with 
any SPICE compatible simulation software.

Model Diagram

The macromodel diagram of Figure 6 is very similar to the 
functional diagram of Figure 1. The only differences are the 
addition of the DC loop current limit function and generic 
blocks representing the amplifiers. The current mirror is 
modeled using a generic current controlled current source. 

AMPLIFIER MODELS

The primary amplifier blocks of the architecture are the tip, 
ring, sense and transmit amplifiers. Each amplifier will be 
discussed separately followed by simulation examples using 
the model.

Tip Amplifier

The Tip amplifier is modeled with a three pole circuit. The open 
loop gain is 49740 or 94dB and the open loop 3dB bandwidth 
is 13Hz. An internal compensation capacitor of 5.2pF in 
parallel with the feedback resistor of 200k forms a zero in the 
amplifier response at 153kHz. The model for the Tip amplifier 

is shown below. The non inverting input is indicated by (+), the 
inverting input by (-) and the output by (o).

Ring Amplifier

The Ring amplifier is modeled with a three pole circuit. The open 
loop gain is 59420 or 95dB and the open loop 3dB bandwidth is 
12Hz. An internal compensation capacitor of 8pF in parallel with 
the feedback resistor of 200k forms a zero in the amplifier 
response at 100kHz. The model for the Ring amplifier is shown 
below. The non inverting input is indicated by (+), the inverting 
input by (-) and the output by (o).

FIGURE 4. TIP AMPLIFIER 3-POLE MODEL
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FIGURE 5. RING AMPLIFIER 3-POLE MODEL
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Sense Amplifier

The Sense amplifier is modeled with a two pole circuit. The 
open loop gain is 4716 or 73dB and the open loop 3dB 
bandwidth is 260Hz. The model for the Sense amplifier is 
shown below. The non inverting input is indicated by (+), the 
inverting input by (-) and the output by (o).

Transmit Amplifier

The Transmit amplifier is modeled with a two pole circuit. The 
open loop gain is 4151 or 72dB and the open loop 3dB 
bandwidth is 127Hz. The model for the Transmit amplifier is 
shown below. The non inverting input is indicated by (+), the 
inverting input by (-) and the output by (o).

The gains and component values used in the models were 
matched to the actual device level simulations of each 
amplifier. Lab measurements may vary due to component 
tolerances and process variations.

Simulation Example - Resistive Load
Resistive matching is a misnomer, since the impedance being 
matched is in the voice band. However, resistive matching is 
the case when the device synthesizes an impedance to match 
a purely resistive load. This example will match the device to a 
600 load impedance, which is the reference impedance for 
most North American telephony AC transmission 
specifications.

Device Impedance Synthesis

The device synthesized impedance (ZO) is defined as the 
difference between the load impedance (ZL) and the sum of 
the protection resistance (RP).

Typically the load impedance represents a combination of loop 
length and phone impedance, therefore a separate term for the 
loop length (ohms/foot) is not required.

The external resistor, RS, which programs the synthesized 
impedance is calculated from the equation shown below.

The resistor value used in the application circuit will be the 
standard component value nearest to the calculated value.

G42 Simulation

The G42 frequency response of the device is simulated using 
the circuit of Figure 9.

The VRX input of the model is driven by an AC voltage source. 
The differential voltage across the 600 load is converted to 
single ended by the voltage controlled voltage source with a 
gain of 1. A dB voltage probe was used to measure the 
magnitude and a phase voltage probe was used to measure 
the phase of the frequency response.

EXPECTED RESULTS

The G42 results are predicted using the voltage divider 
relationship shown below.

The magnitude of the frequency response in the voice band, 
300Hz to 3400Hz, should be approximately 0dB and the phase 
should be nearly 180 degrees.

G24 Simulation

The G24 frequency response of the device is simulated using 
the circuit of Figure 10.

FIGURE 7. SENSE AMPLIFIER 2-POLE MODEL
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FIGURE 9. G42 RESISTIVE LOAD SIMULATION CIRCUIT
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FIGURE 10. G24 RESISTIVE LOAD SIMULATION CIRCUIT
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The voltage controlled voltage source converts the single 
ended AC voltage source to a differential driver for the 2-wire 
interface. The 4-wire output voltage is measured at the 
transmit output, VTX, of the device. A dB voltage probe was 
used to measure the magnitude and a phase voltage probe 
was used to measure the phase of the frequency response.

EXPECTED RESULTS

The G24 results are predicted using the voltage divider 
relationship shown below.

The magnitude of the frequency response in the voice band, 
300Hz to 3400Hz, should be approximately -7.1dB and the 
phase should be nearly 180 degrees.

G44 Simulation

The G44 frequency response of the device is simulated using 
the circuit of Figure 11.

The VRX input of the mode is driven by an AC voltage source. 
The 4-wire output voltage is measured at the transmit output, 
VTX, of the device. A dB voltage probe was used to measure 
the magnitude and a phase voltage probe was used to 
measure the phase of the frequency response.

EXPECTED RESULTS

The G44 results are predicted using the voltage divider 
relationship shown below.

The magnitude of the frequency response in the voice band, 
300Hz to 3400Hz, should be approximately -7.1dB and the 
phase should be nearly 180 degrees.

Simulation Example - Complex Load
Most international telephony transmission requirements are 
defined around a complex 2-wire impedance. The most widely 
recognized form of the complex network is shown below as 
well as the device synthesis network to match the impedance.

This simulation example will use the 2-wire complex network 
for China which is defined as R1 = 200, R2 = 680 and C2 = 
100nF.

Device Impedance Synthesis

When matching the device to a complex load the sum of the 
protection resistance is subtracted from the series resistor R1. 
The other components remain unchanged. The general form of 
the design equation is shown below.

Substituting actual component values results in the complex 
network to be synthesized by the device.

Typically the load impedance represents a combination of loop 
length and phone impedance, therefore a separate term for the 
loop length (ohms/foot) is not required.

The external resistor, RS, which programs the synthesized 
impedance now takes the form of the complex network defined 
by R1S, R2S and C2S.

The resistor value used in the application circuit will be the 
standard component value nearest to the calculated value.

G42 Simulation

The G42 frequency response of the device can be simulated 
using the circuit of Figure 13.

G24

ZO–
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---------------------------------------

530–
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------------------------------------------------ 0.441–= = = (EQ. 11)

FIGURE 11. G44 RESISTIVE LOAD SIMULATION CIRCUIT
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FIGURE 12. TYPICAL COMPLEX IMPEDANCE NETWORK
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FIGURE 13. G42 COMPLEX LOAD SIMULATION CIRCUIT
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EXPECTED RESULTS

Though slightly cumbersome, the voltage divider relationship 
also applies to the complex matching gain.

Substituting the above terms into Equation 19, the G42 gain 
equation for complex matching is formed.

Cancelling the protection resistor terms in the denominator 
reduces the gain equation into the following simplified form.

Therefore for either resistive or complex matching the G42 
voltage gain will always be unity and the phase will be nearly 
180 degrees.

G24 Simulation

The G24 frequency response of the device can be simulated 
using the circuit of Figure 14.

EXPECTED RESULTS

The G24 results for complex matching are predicted using the 
voltage divider relationship shown below.

Substituting the above terms into Equation 22, the G24 gain 
equation for complex matching is formed.

Cancelling the protection resistor terms in the denominator and 
substituting terms reduces the gain equation to the frequency 
dependent form shown below.

Until now, all relationships have simplified to scalar terms and 
have not contained frequency dependent components. 
Evaluating the gain at 1kHz, results in a voltage gain of 0.459 
and a phase of 178 degrees. Simulation results will vary 
slightly due to device bandwidth.

G44 Simulation

The G44 frequency response of the device can be simulated 
using the circuit of Figure 15.

EXPECTED RESULTS

The G44 results for complex matching are predicted using the 
voltage divider relationship shown below.

Since the G44 gain has the same mathematical expression as 
the G24 gain, the same frequency dependent gain equation 
applies to both. Evaluating the gain at 1kHz, results in a 
voltage gain of 0.459 and a phase of 178 degrees. Simulation 
results will vary slightly due to device bandwidth.

Simulation Results
The following pages contain results for both simulation 
examples. The magnitude and phase response of each gain 
path is plotted from 10Hz to 10kHz. The model will accurately 
predict device frequency response up to 1MHz. In addition to 
the graphs, numerical data is also provided for reference. 
Performing the above simulations is suggested when first 
using the model. The results obtained should agree with those 
provided herein.

where: ZL = R1 + R2 // C2

RP = RP

ZO = (R1+R2 // C2) - (2RP)

where: ZL = R1 + R2 // C2

RP = RP

ZO = (R1+R2 // C2) - (2RP)
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FIGURE 14. G24 COMPLEX LOAD SIMULATION CIRCUIT
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where: ZL = R1 + R2 // C2

RP = RP

ZO = (R1+R2 // C2) - (2RP)
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FIGURE 15. G44 COMPLEX LOAD SIMULATION CIRCUIT
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Resistive Matching Simulation Results

FIGURE 16. G42 RESISTIVE MATCHING MAGNITUDE 
RESPONSE 

FIGURE 17. G42 RESISTIVE MATCHING PHASE RESPONSE

FIGURE 18. G24 RESISTIVE MATCHING MAGNITUDE 
RESPONSE

FIGURE 19. G24 RESISTIVE MATCHING PHASE RESPONSE

FIGURE 20. G44 RESISTIVE MATCHING MAGNITUDE 
RESPONSE

FIGURE 21. G44 RESISTIVE MATCHING PHASE RESPONSE

TABLE 1. RESISTIVE MATCHING NUMERICAL RESULTS

FREQUENCY

G42 G24 G44

MAGNITUDE (dB) PHASE (DEG) MAGNITUDE (dB) PHASE (DEG) MAGNITUDE (dB) PHASE (DEG)

10 4.46 179.9 -15.29 -113.0 -15.29 -113.0

30 2.64 166.8 -9.21 -141.9 -9.21 -141.9

100 0.48 171.5 -7.37 -166.9 -7.37 -166.9

300 0.06 177.1 -7.16 -175.9 -7.16 -175.9

1K 0.02 180.0 -7.14 -180.1 -7.14 -180.1

3K 0.08 182.5 -7.15 -183.8 -7.15 -183.8

10K 0.77 187.7 -7.34 -194.0 -7.34 -194.0
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Complex Matching Simulation Results

FIGURE 22. G42 COMPLEX MATCH MAGNITUDE RESPONSE FIGURE 23. G42 COMPLEX MATCH PHASE RESPONSE

FIGURE 24. G24 COMPLEX MATCH MAGNITUDE RESPONSE FIGURE 25. G24 COMPLEX MATCH PHASE RESPONSE

FIGURE 26. G44 COMPLEX MATCH MAGNITUDE RESPONSE FIGURE 27. G44 COMPLEX MATCH PHASE RESPONSE
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TABLE 2. COMPLEX MATCH NUMERICAL RESULTS

FREQUENCY

G42 G24 G44

MAGNITUDE (dB) PHASE (DEG) MAGNITUDE (dB) PHASE (DEG) MAGNITUDE (dB) PHASE (DEG)

10 4.70 179.2 -14.7 -113.8 -14.7 -113.8

30 2.74 165.9 -8.76 -143.0 -8.76 -143.0

100 0.49 171.1 -7.02 -167.6 -7.02 -167.6

300 0.07 177.2 -6.84 -176.8 -6.84 -176.8

1K 0.12 180.4 -6.92 -182.1 -6.92 -182.1

3K 0.42 181.0 -7.34 -187.1 -7.34 -187.1

10K 0.69 178.5 -8.50 -194.0 -8.50 -194.0
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SPICE Model Tutorial of the

RSLIC18 AC Loop
SPICE Net List
The following is the complete net list for the macromodel. 
Notations have been added to the listing to assist in decoding 
the net list.

*SPICE Net list*

*Components At Amplifier Block Interconnect Level*

R_U1_R1         $N_0002 $N_0001  200k

R_U1_R2         $N_0002 $N_0027  200k

R_U1_R3         $N_0035 $N_0043  200k

R_U1_R4         $N_0035 $N_0036  20

R_U1_R5         $N_0003 $N_0044  200k

R_U1_R6         $N_0003 $N_0010  20

R_U1_R7         $N_0036 $N_0029  600k

R_U1_R8         $N_0003 $N_0029  600k

R_U1_R9         $N_0010 $N_0028  600k

R_U1_R10         $N_0035 $N_0028  600k

R_U1_R11         $N_0028 0  150k

R_U1_R12         $N_0029 $N_0034  150k

R_U1_R13         $N_0034 $N_0004  8k

F_U1_F4         $N_0043 $N_0044 VF_U1_F4 -1

VF_U1_F4        $N_0002 $N_0005 0V

R_U1_R23         0 $N_0005  1

V_U1_V1         $N_0014 0 -12V

*Ring Amplifier Model Components*

E_U1_HS1_E8         $N_0006 0 $N_0014 $N_0044 59420

E_U1_HS1_E9         $N_0008 0 $N_0007 0 1

E_U1_HS1_E10         $N_0010 0 $N_0009 0 1

R_U1_HS1_R24         $N_0006 $N_0007  13.4G

R_U1_HS1_R25         $N_0011 $N_0009  65k

C_U1_HS1_C2         0 $N_0012  1p

C_U1_HS1_C3         0 $N_0009  1p

R_U1_HS1_R27         $N_0008 $N_0013  65k

C_U1_HS1_C5         0 $N_0013  1p

E_U1_HS1_E12         $N_0011 0 $N_0013 0 1

R_U1_HS1_R29         $N_0012 $N_0007  155k

C_U1_HS1_C6         $N_0010 $N_0044  8p

*Tip Amplifier Model Components*

E_U1_HS2_E8         $N_0015 0 $N_0014 $N_0043 49740

E_U1_HS2_E9         $N_0017 0 $N_0016 0 1

E_U1_HS2_E10         $N_0036 0 $N_0018 0 1

R_U1_HS2_R24         $N_0015 $N_0016  11.9G

R_U1_HS2_R25         $N_0019 $N_0018  55k

C_U1_HS2_C2         0 $N_0020  1p

C_U1_HS2_C3         0 $N_0018  1p

R_U1_HS2_R27         $N_0017 $N_0021  56k

C_U1_HS2_C5         0 $N_0021  1p

E_U1_HS2_E12         $N_0019 0 $N_0021 0 1

R_U1_HS2_R29         $N_0020 $N_0016  132k

C_U1_HS2_C6         $N_0036 $N_0043  5.2p

*Transmit Amplifier Model Components*

E_U1_HS3_E8         $N_0023 0 0 $N_0022 4151

E_U1_HS3_E9         $N_0025 0 $N_0024 0 1

E_U1_HS3_E10         $N_0027 0 $N_0026 0 1

R_U1_HS3_R24         $N_0023 $N_0024  1.25G

R_U1_HS3_R25         $N_0025 $N_0026  100k

C_U1_HS3_C2         0 $N_0024  1p

C_U1_HS3_C3         0 $N_0026  1p

*Sense Amplifier Model Components*

E_U1_HS4_E8         $N_0030 0 $N_0028 $N_0029 4716

E_U1_HS4_E9         $N_0032 0 $N_0031 0 1

E_U1_HS4_E10         $N_0034 0 $N_0033 0 1

R_U1_HS4_R24         $N_0030 $N_0031  611M

R_U1_HS4_R25         $N_0032 $N_0033  92k

C_U1_HS4_C2         0 $N_0031  1p

C_U1_HS4_C3         0 $N_0033  1p

*DC Loop Current Model Components*

G_U1_U4_G1         $N_0037 0 $N_0035 $N_0036 69.4e-6

I_U1_U4_I1         $N_0038 0 DC 34.375e-6

R_U1_U4_R1         $N_0039 0  17k

R_U1_U4_R2         $N_0041 $N_0040  100k

C_U1_U4_C2         0 $N_0039  4.7u

G_U1_U4_G2         $N_0042 0 $N_0036 $N_0035 69.4e-6

R_U1_U4_R6         0 $N_0042  10e6

R_U1_U4_R7         0 $N_0038  10e6

R_U1_U4_R8         0 $N_0037  10e6

D_U1_U4_D6         $N_0042 $N_0038 Dbreak

D_U1_U4_D8         $N_0037 $N_0038 Dbreak

G_U1_U4_G6         $N_0043 $N_0044 $N_0039 0 58.823e-6

G_U1_U4_G8         $N_0039 0 $N_0040 0 4e-3

D_U1_U4_D10         $N_0038 $N_0045 Dbreak

R_U1_U4_R33         0 $N_0045  50k

E_U1_U4_E3         $N_0041 0 $N_0045 0 1

I_U1_U4_I17         $N_0039 0 DC 20u

G_U1_U4_G10         $N_0039 0 $N_0046 0 2.5e-6

V_U1_U4_V16         $N_0046 0 -24

R_U1_U4_R40         0 $N_0040  100e15

V_U1_V1         $N_0014 0 -12V

*End of Subcircuit

The files required to load the model in MicroSim Pspice are 
located on our website at: www.intersil.com.
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