
 Application Note

R01AN2807EJ0121 Rev.1.21 Page 1 of 39
Jan 31, 2022

Bluetooth® Low Energy Protocol Stack
RL78/G14 Host Sample

Introduction
This manual describes the device composition, software composition, procedure of checking operation, details of

software processing and software sequence about the host sample.

The host sample works on the Renesas Starter Kit for RL78/G14, and controls the Renesas Bluetooth low energy
microcontroller RL78/G1D device programmed with Bluetooth Low Energy protocol by serial communication.

Target Device
Renesas Starter Kit for RL78/G14

Related documents

Document Name Document No.

Bluetooth Low Energy Protocol Stack

 User’s Manual R01UW0095E
 API Reference Manual: Basics R01UW0088E
 Application Note: Sample Program R01AN1375E
 Application Note: rBLE Command Specification R01AN1376E
 RL78/G1D

 User’s Manual: Hardware R01UH0515E
 RL78/G1D Evaluation Board

 User’s Manual R30UZ0048E
 RL78/G14

 User’s Manual: Hardware R01UH0186E
 Renesas Starter Kit for RL78/G14

 User’s Manual R20UT0785E
 Tutorial Manual R20UT0786E
 Quick Start Guide R20UT0787E
 CPU Board Schematics R20UT0784E

R01AN2807EJ0121
Rev.1.21

Jan 31, 2022

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 2 of 39
Jan 31, 2022

Contents

1. Overview .. 4
1.1 Environment .. 4

2. Compositions ... 5
2.1 Device Composition .. 5
2.2 Software Composition ... 6
2.3 Peripheral Hardware Composition .. 8
2.4 File Composition ... 10

3. Procedure ... 12
3.1 Preparation .. 12

3.1.1 Host MCU .. 12
3.1.2 BLE MCU .. 14
3.1.3 Host MCU - BLE MCU Connection ... 16
3.1.4 Smart Phone ... 16
3.1.5 UART Connection Method Setting .. 17

3.2 Verification... 18
3.2.1 Android Device .. 18
3.2.2 iOS Device .. 20

3.3 Configuration ... 22
3.3.1 Configuration Macro Settings .. 22
3.3.2 Low Level Peripheral Driver Update By Code Generation Tool ... 22

4. Behavior ... 23
4.1 Command and Event .. 23
4.2 Main Loop.. 23
4.3 UART 2-wire with Branch Connection .. 24

4.3.1 Transmission Process ... 24
4.3.2 Reception Process .. 25
4.3.3 Example of Application Circuit .. 26

5. Sequence chart .. 27
5.1 Main sequence chart ... 27
5.2 Step1. rBLE Initialize sequence .. 28
5.3 Step2. GAP Initialize sequence .. 28
5.4 Step3. Broadcast sequence .. 29
5.5 Step4. Connection sequence .. 29
5.6 Step5. Profile Enable sequence .. 30
5.7 Step6. Remote Device Check sequence .. 30
5.8 Step7. Pairing sequence ... 31
5.9 Step8. Start Encryption sequence .. 33
5.10 Step9. Profile Communication sequence .. 34
5.11 Step10. Disconnection sequence ... 35

6. Appendix .. 36

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 3 of 39
Jan 31, 2022

6.1 ROM size, RAM size ... 36
6.2 References .. 36
6.3 Terminology .. 37

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 4 of 39
Jan 31, 2022

1. Overview
This manual describes the device composition, software composition, procedure of checking operation, details of

software processing and software sequence about the host sample.

The host sample works on the Renesas Starter Kit for RL78/G14 (RSK), and controls the Renesas Bluetooth low
energy microcontroller RL78/G1D device programmed with Bluetooth Low Energy protocol by serial communication.
Serial communication between the RSK and the RL78/G1D evaluation board supports the UART 2-wire
connectionNOTE1 and UART 2-wire with branch connectionNOTE2.

For details about the BLE protocol stack APIs, refer to Bluetooth Low Energy Protocol Stack API Reference
Manual.(R01UW0088)

Notes: 1. UART 2-wire connection is a communication method using TxD and RxD of the UART data signal
line.

 2. UART 2-wire with branch connection is expanding 2-wire UART. The TxD line is branched and
connected to the WAKEUP of modules from Host MCU. About connection between Host MCU and
BLE MCU, refer to "4.3.3 Example of Application Circuit".

1.1 Environment
The environment in which the host sample was build and checking operation is shown below.

• Hardware environment

- Host

• PC/ATTM compatible computer

• Processor ：At least 1.6GHz

• Main Memory ：At least 1GB

• Display ：1024 x 768 or higher resolution and 65,536 colors

• Interface ：USB2.0

- Device

• Renesas Starter Kit for RL78/G14

• Renesas BLE Evaluation Board for RL78/G1D

• Smart Phone (Android device or iOS device)

• Tools

• Renesas on-chip debugging emulator E1

• Software environment

• Windows7 Service Pack1

• e2 studio V4.3.1.001 / RL78 Family C Compiler Package V1 V1.03.00
or Renesas CS+ for CC V4.00.00 / RL78 Family C Compiler Package V1 V1.03.00
or Renesas CS+ for CA, CX V3.02.00 / Renesas CA78K0R V1.72

• Renesas Flash Programmer v3.02.00

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 5 of 39
Jan 31, 2022

2. Compositions

2.1 Device Composition
The device composition for checking operation the host sample is shown in Figure 2-1.

Local Device consists of RL78/G14 as a Host MCU and RL78/G1D as a BLE MCU which ware connected by UART.
Remote Device is Smart Phone which is Android device or iOS device.

Local Device behaves as a Slave and Remote Device behaves as a Master. RL78/G14 executes BLE communication
with Smart Phone by controlling BLE protocol stack on RL78/G1D via interactive UART communication.

Figure 2-1 Device Composition

The overview of the host sample is shown below.

 It uses rBLE API and executes below operations.

 After power up, it starts broadcasting and establishes a connection automatically.

 After establishing a connection, it enables SCP (Sample Custom Profile).

 It executes pairing and starting encryption if Remote Device requires.

 It sends ADC result value every second if Remote Device permits the notification from Local Device.

 It is implemented a simple scheduler for management processing sequence.

 It changes the RL78/G14 state into the STOP mode if there is nothing to execute.

 It supposes that peer device is a smart phone (Android device or iOS device).

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 6 of 39
Jan 31, 2022

2.2 Software Composition
The software composition of RL78/G14 and RL78/G1D is shown in Figure 2-2.

Host Application

rBLE_Host

RSCIP

Peripheral Driver

Low Level Peripheral Driver

RL78/G14(Host MCU)

Modem Application

rBLE_Core

Profile

Host Stack

Controller Stack

Se
ria

l
D

riv
er

Peripheral

RW
KE

(O
S)

RL78/G1D(BLE MCU-Modem)

Peripheral

RF Driver

RF/BB

RS
C

IP

SerialSerial

Pe
rip

he
ra

l D
riv

er

Sample
Custom
Profile

SCP
GATT

Database

Figure 2-2 Software Composition

The software of Host MCU consists of Low Level Peripheral drivers and Peripheral drivers which controls MCU
peripheral hardware, RSCIP (Renesas Serial Communication Interface Protocol), rBLE_Host which provides rBLE
APIs, Host Application which controls the system, and Sample Custom Profile using the GATT API.

Low Level Peripheral driver code is generated by the Code Generator. RSCIP and rBLE_Host are included in BLE
protocol stack package and provided code. When developing software, it is necessary to use the latest code which is
provided by BLE protocol stack package.

Table 2-1 Host MCU Software Composition

Software Functions When developing software
Host Application Initializing rBLE

Scheduling rBLE command execution
Registering rBLE event callbacks

Need to be coded

Sample Custom Profile
(SCP)

Custom Profile using GATT APIs No need to be coded

(provided by package) Note1
rBLE_Host Providing rBLE APIs

Executing rBLE event callbacks
No need to be coded

(provided by package) Note1
RSCIP Controlling serial communication No need to be coded

(provided by package) Note1
Peripheral Driver Controlling Host MCU peripheral hardware Need to be coded
Low Level Peripheral Driver Controlling Host MCU peripheral hardware

primitively
No need to be coded

(generated by tool) Note2
Notes: 1. Code files for software development are provided by BLE protocol stack package.
 2. Code files for software development are generated by the Code Generator.

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 7 of 39
Jan 31, 2022

The software of BLE MCU consists of RF driver which controls RF/BB, Host/Controller stacks, Profiles, rBLE_Core,
Serial Driver and RSCIP for communicating with Host MCU, RWKE (Renesas Wireless Kernel Extension) which
manages the system and Modem application.

The build environment and tools and source code and libraries are provided by BLE protocol stack.

Table 2-2 BLE MCU Software Composition

Software Functions
Modem Application Controlling RSCIP and rBLE
RWKE Managing the whole system schedule and memory resource.
RSCIP Controlling serial communication
Peripheral Driver/Serial Driver Controlling BLE MCU peripheral hardware
rBLE_Core Providing rBLE APIs
Profile Providing Profiles functions
Host Stack Providing GAP, GATT, SM, L2CAP functions
SCP GATT Database GATT Database of Sample Custom Profile
Controller Stack Providing LL functions

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 8 of 39
Jan 31, 2022

2.3 Peripheral Hardware Composition
The peripheral hardware composition of RL78/G14 is shown in Figure 2-3.

The host sample uses the RL78/G14 peripherals of Serial Array Unit, 12bit Interval Timer A/D Converter, and uses
the RSK peripheral hardware of Variable Resistor, LCD, LED, and SW. And at least it needs Serial Array Unit and
12bit Interval Timer for using rBLE.

Figure 2-3 Peripheral Hardware Composition

Table 2-3 Peripheral Hardware Composition

Peripheral Hardware Purpose Necessity
Serial Array Unit Communicating with BLE MCU(UART2 or UART0 which can

SNOOZE)
Mandatory

12bit Interval Timer Monitoring UART timeout and Triggering for Profile Notification Mandatory
A/D Converter Generating for Notification data Optional
Variable Resistor(RV1) Generating for Notification data (connected ADC) Optional
LCD(LCD) Displaying BLE command, BLE event and PassKey in pairing Optional
LED(LED0) Displaying MCU status (light on: RUN mode, light off: STOP mode) Optional
SW(SW3) Triggering for Disconnection Optional
Note: Peripheral hardware which Host MCU required to use the rBLE is classified “Mandatory”, other

peripheral hardware is classified “Optional”.

Notable settings of Code Generator tool in CS+ is shown in Table 2-4.

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 9 of 39
Jan 31, 2022

Table 2-4 Peripheral Hardware Configuration

Peripheral Hardware Setting
Clock Generator
└Clock

mode High-speed main mode 2.7(V) ≦VDD≦

5.5(V)
Main system clock(fMAIN) High-speed on-chip oscillator (fIH)
Hi-speed on-chip oscillator 24(MHz)
Sub system clock(fSUB) used

XT1 oscillation(fXT)
32.768(kHz)
low power consumption oscillation
permit to supply clock in STOP,HALT mode

RTC, interval timer clock 32.768(kHz)
CPU/peripheral hardware clock
frequency(fCLK)

24000(kHz)

Interrupt functions
└External Interrupt

INT10 Use INTP10
detect falling edge
low priority

Serial array unit
└SAU1
└Channel

Channel 0 UART2 transmitting/receiving

Serial array unit
└SAU1
└UART2
└Receiving

Data bit length 8 bit
Data Direction LSB
Parity no parity
Stop bit length 1 bit
Data Phase standard
Baudrate 4800(bps)
Interrupt reception transfer end interruption(INTSR2)

high priority
Callback function Received

Error
Serial array unit
└SAU1
└UART2
└Transmitting

Transfer mode single mode
Data bit length 8 bit
Data direction LSB
Parity no parity
Stop bit length 1 bit
Data phase standard
Baudrate 4800(bps)
Interrupt transmission end interruption(INTST2)

low priority
Callback function Transmitted

A/D converter A/D converter used
comparator unused
Resolution 8 bit
Trigger mode software trigger mode
Conversion mode one shot select mode
Interrupt conversion end interruption(INTAD)

low priority
12-bit interval timer Interval timer used

Interval period 10(ms)
Interrupt interval period expiration interruption(INTIT)

low priority

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 10 of 39
Jan 31, 2022

2.4 File Composition
The file composition of the host sample is shown below.

(R)-mark which is set on the head of file name is shown that file is included in the BLE protocol stack package.
When developing software, it is necessary to use the latest code which is provided by BLE protocol stack package.

HostSampleRL78G14
 ├─Platform
 │ ├─driver
 │ │ ├─plf
 │ │ │ plf.c platform driver code file
 │ │ │ plf.h platform driver header file
 │ │ ├─serial
 │ │ │ uart.c uart driver code file
 │ │ │ uart.h uart driver header file
 │ │ ├─timer
 │ │ │ timer.c timer driver code file
 │ │ │ timer.h timer driver header file
 │ │ └─lcd
 │ │ lcd.c LCD driver code file
 │ │ lcd.h LCD driver header file
 │ └─include
 │ arch.h (R) architecture header file
 │ compiler.h (R) compiler header file
 │ ll.h (R) low level macro header file
 │ types.h (R) type definition header file
 │ rscip_api.h (R) RSCIP callback header file
 │ rskrl78g14def.h RSK header file
 │ iodefine.h Macro definition for register access header file
 ├─rBLE
 │ ├─sample_app
 │ │ app.c host application code file
 │ ├─sample_profile
 │ │ └─scp
 │ │ scps.c (R) SCP Server API code file
 │ ├─host
 │ │ │ rble_host.c (R) rBLE_Host code file
 │ │ │ rble_if_api_cb.c (R) rBLE API callback code file
 │ │ ├─gap
 │ │ │ rble_api_gap.c (R) GAP API code file
 │ │ ├─gatt
 │ │ │ rble_api_gatt.c (R) GATT API code file
 │ │ ├─sm
 │ │ │ rble_api_sm.c (R) SM API code file
 │ │ └─vs
 │ │ rble_api_vs.c (R) VS API code file
 │ ├─rscip
 │ │ rscip.c (R) RSCIP code file
 │ │ rscip.h (R) RSCIP header file
 │ │ rscip_cntl.c (R) RSCIP control code file
 │ │ rscip_cntl.h (R) RSCIP control header file
 │ │ rscip_ext.h (R) RSCIP external callback header file
 │ │ rscip_uart.c (R) RSCIP serial communication code file
 │ │ rscip_uart.h (R) RSCIP serial communication header file
 │ └─include
 │ │ db_handle.h (R) database handle header file
 │ │ prf_sel.h (R) profile select header file
 │ │ rble.h (R) rBLE macro header file
 │ │ rble_api.h (R) rBLE API header file
 │ │ rble_api_custom.h (R) rBLE SCP API header file
 │ │ rble_trans.h (R) rBLE communication header file

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 11 of 39
Jan 31, 2022

 │ │ rble_app.h (R) host application header file
 │ └─host
 │ rble_host.h (R) rBLE_Host header file
 └─project
 CS_CCRL Project for CS+ for CC
 CubeSuite Project for CS+ for CA,CX
 e2studio Project for e2studio

Each project directory include following low level peripheral drivers. Though the low level drivers for each project
have different implementation such as interrupt handler declaration, the low level peripheral drivers have same
behavior.

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 12 of 39
Jan 31, 2022

3. Procedure

3.1 Preparation
3.1.1 Host MCU

The procedure about preparing Host MCU of RL78/G14 is shown below. When changing the UART connection
method, refer to 3.1.5.

Following shows the procedure to build the firmware for Host MCU. The procedure is different depends on the
development environment.

(1) e2studio

1. Launch e2 studio.

2. Right click on “Project Explorer” and select “Import…” from the dropdown menu.

3. “Import” window is popped up and select “Existing Projects into Workspace” and click “Next >”.

4. Fill “Select root directory:” form with the project directory shown in Table 3-1.

5. Make sure that the project you selected is displayed in “Projects:” and click “Finish”. Then the windows is
closed.

6. Right click on the project just imported on “Project Explorer” and Select “Build Project” from the dropdown
menu.

7. Refer Table 3-1 for the Firmware file generate path.

(2) CS+

1. Double click the project file shown in Table 3-1.

2. Right click on “BLE_Emb” in “Project Tree” and select “Build BLE_Emb” from the dropdown menu.

3. Refer Table 3-1 for the Firmware file generate path.

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 13 of 39
Jan 31, 2022

Table 3-1 Host MCU Project Directory and Firmware Path

e2studio

 Project Directory HostSampleRL78G14\project\e2studio\HostSample

Firmware File HostSampleRL78G14\project\e2studio\HostSample\DefaultBuild\HostSample.hex

CS+ for CC

 Project File HostSampleRL78G14\project\CS_CCRL\RSKRL78G14.mtpj

Firmware File HostSampleRL78G14\project\CS_CCRL\HostSample\DefaultBuild\HostSample.hex

CS+ for CA,CX

 Project File HostSampleRL78G14\project\CubeSuite\RSKRL78G14.mtpj

Firmware File HostSampleRL78G14\project\CubeSuite\HostSample\DefaultBuild\HostSample.hex

Next shows the procedure to boot the firmware on Host MCU.

1. Refer to Table 3-2 and set jumpers on the RSK board.

2. Connect E1 emulator to RSK and connect E1 emulator to PC.

3. Connect AC power adapter to RSK and supply power from AC power adapter to RSK.

4. Start RFP (Renesas Flash Programmer) and create workspace by selecting [File]  [Create New Project],
select [RL78] as [Microcontroller] and push [Connect] button.

5. Select “HostSample.hex” on [Operation] tab  [Program File].

6. Push [Start] button on [Operation] tab to start writing and confirm that [SUCCESS] is displayed.

7. Remove AC power adapter and E1 emulator from RSK board.

Table 3-2 Jumper Setting

JumperJ5 setting JumperJ6 setting Power source Input voltage Regulator supply voltage
Pin2-3 shorted open PWR connector 5V 3.3V

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 14 of 39
Jan 31, 2022

3.1.2 BLE MCU
The procedure about preparing BLE MCU of RL78/G1D is shown below. When changing the UART connection

method, refer to 3.1.5.

Note: The source of supplying power is selectable from AC power adapter or USB port.

Note: It is possible to use “RL78_G1D_CM(SCP).hex” firmware included in the package of BLE protocol stack. If
use this firmware, start below procedure from the step 8. But pairing sequence with iOS device is not executed, because
this firmware is made without the step2.

First prepare the source code.

1. Download the EEPROM Emulation Library and Code Flash Library from the Renesas web site, and copy the
library to following directories. The copy directory is different depends on the compiler.

- EEPROM Emulation Library

- CC-RL

RL78_G1D\Project_Source\renesas\src\driver\dataflash\cc_rl

- CA78K0R

RL78_G1D\Project_Source\renesas\src\driver\dataflash\cs

- Code Flash Library

- CC-RL

RL78_G1D\Project_Source\renesas\src\driver\codeflash\cc_rl

- CA78K0R

RL78_G1D\Project_Source\renesas\src\driver\codeflash\cs

2. To execute pairing with Remote Device, perform the following procedures. But this alteration is not essential.
Open “prf_config.c” file and find “Sample Custom Notify Cfg Value” words. In near the location where found
words, change the Attribute Permission configuration from (RBLE_GATT_PERM_RD |
RBLE_GATT_PERM_WR) to (RBLE_GATT_PERM_RD | RBLE_GATT_PERM_WR_UNAUTH). This
alteration changes Notification configuration of Sample Custom Profile to Write Permission (Unauthentication
Required). This configuration will be needed for secure communication with Remote Device.

Then build the source code. The procedure is different depends on the development environment.

(1) e2studio

1. Launch e2 studio.

2. Right click on “Project Explorer” and select “Import…” from the dropdown menu.

3. “Import” window is popped up and select “Existing Projects into Workspace” and click “Next >”.

4. Fill “Select root directory:” form with the project directory shown in Table 3-3.

5. Make sure that the project you selected is displayed in “Projects:” and click “Finish”. Then the windows is
closed.

6. Right click on the project just imported on “Project Explorer” and select “Renesas Tool Settings”  “Tool
Settings”  “Compiler”  “Source”  “Macro definition” and add “USE_SAMPLE_PROFILE” macro (If
“noUSE_SAMPLE_PROFILE” macro is defined, delete “no” word.).

7. Right click on the project on “Project Explorer” and select “Build Project” from the dropdown menu.

8. Refer Table 3-3 for the Firmware file generate path.

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 15 of 39
Jan 31, 2022

(2) CS+

1. Double click the project file shown in Table 3-3.

2. Select [Property] in the right clicked menu of Build Tool in “rBLE_emb” subproject in the project tree.

3. Define “USE_SAMPLE_PROFILE” macro in the location of [Preprocess]  [Defined Macros] in the Compile
Option of the dialog displayed. (If “noUSE_SAMPLE_PROFILE” macro is defined, delete “no” word.)

4. Right click on “BLE_Emb” in “Project Tree” and select “Build BLE_Emb” from the dropdown menu.

5. Refer Table 3-3 for the Firmware file generate path.

Table 3-3 BLE MCU Project Directory and Firmware Path

e2studio

 Project Directory RL78_G1D\Project_Source\renesas\tools\project\e2studio\BLE_Modem

Firmware File RL78_G1D\Project_Source\renesas\tools\project\e2studio\BLE_Modem\rBLE_Mdm\DefaultBu
ild\rBLE_Mdm_CCRL.hex

CS+ for CC

 Project File RL78_G1D\Project_Source\renesas\tools\project\CS_CCRL\BLE_Modem\BLE_Modem.mtpj

Firmware File RL78_G1D\Project_Source\renesas\tools\project\CS_CCRL\BLE_Modem\rBLE_Mdm\Default
Build\rBLE_Mdm_CCRL.hex

CS+ for CA,CX

 Project File RL78_G1D\Project_Source\renesas\tools\project\CubeSuite\BLE_Modem\BLE_Modem.mtpj

Firmware File RL78_G1D\Project_Source\renesas\tools\project\CubeSuite\BLE_Modem\rBLE_emb\DefaultB
uild\rBLE_emb.hex

Finally write the firmware onto BLE MCU.

1. Connect E1 emulator to BLE Evaluation Board and connect E1 emulator to PC.

2. Connect the power source to BLE Evaluation Board and supply power to BLE Evaluation Board.

3. Start RFP (Renesas Flash Programmer) and create workspace by selecting [File]  [Create New Project]. And
then select [RL78] as [Microcontroller] and push [Connect] button.

4. Uncheck Erase and P.V checkbox on the [Block Setting] tab  [Code Flash 1]  [Block255] and all blocks of
[Data Flash 1].

5. Select the generated firmware by the menu [User/Data Area] and select [Write after Delete] command.

6. Push [Start] button on [Operation] tab to start writing and confirm that [SUCCESS] is displayed.

7. Remove the power source and E1 emulator from BLE Evaluation Board.

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 16 of 39
Jan 31, 2022

Table 3-4 Switch Setting

Switch Setting Function
SW7 2-3 connected (right) <Default> Power supplied from AC adapter or USB via

regulator
SW8 1-2 connected (left) <Default> Power supplied from AC adapter

Note:if power supplied from USB, connect 2-3
(Right)

SW9 1-2 connected (left) Connected to an external extension interface.
SW10 1-2 connected (left) <Default> Power supplied to the module.
SW11 2-3 connected (right) <Default> Power supplied from a source other than the

E1 debugger.
SW12 2-3 connected (right) <Default> (fixed default)
SW13 1-2 connected (left) <Default> Connected to USB interface.

3.1.3 Host MCU - BLE MCU Connection
The procedure about wired connection between Host MCU and BLE MCU is shown below.

Note: About connection of UART 2-wire with branch connection, refer to "4.3.3 Example of Application Circuit".

1. Refer to Table 3-5and connect pins RSK board and BLE Evaluation Board by wires.

2. Start supplying power to BLE Evaluation Board.

3. Start supplying power to RSK board.

Table 3-5 pin connection

RL78/G14 ports (RSK pins) RL78/G1D ports (board pins) Purpose
TXD2(J3-Pin16) RxD0(CN4-Pin16) UART(Host MCUBLE MCU)
RXD2(J3-Pin15) TxD0(CN4-Pin14) UART(BLE MCUHost MCU)
Vss(GND1) Vss(CN4-Pin26) Ground

3.1.4 Smart Phone
The procedure about preparation Smart Phone is shown below.

Install below application either Android device or iOS device which is used as Remote Device.

- (for Android device) “BLE Scanner:Read,Write,Notify” - Pixel’s Perception

https://play.google.com/store/apps/details?id=com.macdom.ble.blescanner&hl=en

- (for iOS device) “GATTBrowser” – Renesas Electronics

https://itunes.apple.com/us/app/gattbrowser/id1163057977?mt=8

https://play.google.com/store/apps/details?id=com.macdom.ble.blescanner&hl=en
https://itunes.apple.com/us/app/gattbrowser/id1163057977?mt=8

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 17 of 39
Jan 31, 2022

3.1.5 UART Connection Method Setting
It shows the source files change point for setting the UART connection method.

(1) Host MCU

UART connection method of the host sample is selected by the following macro of uart.h.

Table 3-6 Setting of uart.h

Macro Description
SERIAL_U_DIV_2WIRE 0 : UART 2-wire connection <default setting>

1 : UART 2-wire with branch connection

(2) BLE MCU

BLE UART connection method of the MCU firmware will be selected in the following macro of serial.h and
wakeup.c, which is included in the BLE protocol stack.

Table 3-7 Setting of serial.h

Macro Description
SERIAL_U_2WIRE (1)
SERIAL_U_DIV_2WIRE (0)

UART 2-wire connection : <default setting>
Set (1) to SERIAL_U_2WIRE. Set (0) to other macros.

UART 2-wire with branch connection :
Set (1) to SERIAL_U_DIV_2WIRE. Set (0) to other
macros.

Table 3-8 Setting of wakeup.c

Macro Description
USE_WAKEUP_SIGNAL_PORT (0) /* Modem Setting */ 0 : UART 2-wire connection <default setting>

1 : UART 2-wire with branch connection

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 18 of 39
Jan 31, 2022

3.2 Verification
3.2.1 Android Device

The procedure about verifying host sample with Android device is shown below.

1. Start “GATTBrowser” application.

2. Select a device named “Renesas-BLE” from the nearby devices list to connect with the device. (Figure A1
Arrow-1)

3. Select the Characteristic the UUID is 02000000-0000-0000-0000-000000000080. (Figure A2 Arrow-1)

4. Select [Notification Off]. (Figure A3 Arrow-1)

5. Enter passkey (six digits) to the passkey dialog. Note1 Note2 (Figure A4 Arrow-1). When
USE_PAIRING_JUSTWORKS macro is set, the passkey input is not requested. Though GUI indication of BLE
Scanner looks like Notification has been enabled, Notification is still disabled. To enable Notification actually,
re-selects N button (N button’s color turns to blue) and once again selects N button (N button’s color turns to
green).

6. If the passkey entered is correct, notification is started. Bit16:31 of the notification data is incremented in every
second. (Figure A5 Arrow-1)

7. Bit0:7 of the notification data is changed depending on the potentiometer’s position on the RSK. (Figure A5
Arrow-1)

8. Select [Notification On]. (Figure A5 Arrow-2)

9. Select [] to disconnect the connection. (Figure A5 Arrow-3) (Figure A6 Arrow-1)

10. Repeat 2~4 and make sure that notification is re-started without passkey request. Note3

11. Repeat 8~9 to disconnect the connection.

Notes: 1. Sometimes the passkey dialog is not displayed on the foreground. That time you will see the
message “Pairing request” in the information pane and click it to open the dialog.

 2. To run the pairing again, select [Settings][Bluetooth]. In the [Paired devices] list, you will see the
device named “Renesas-BLE” and select the device [FORGET] to delete pairing information.

 3. Android 6.0/6.0.1 always fail to connect with bonded devices. To reconnect with bonded devices,
use Android 5 series, or follow [Note2] to delete pairing information and re-connect.
https://code.google.com/p/android/issues/detail?id=202850&can=1&q=pairing%20bonded&colspec
=ID%20Status%20Priority%20Owner%20Summary%20Stars%20Reporter%20Opened

https://code.google.com/p/android/issues/detail?id=202850&can=1&q=pairing%20bonded&colspec=ID%20Status%20Priority%20Owner%20Summary%20Stars%20Reporter%20Opened
https://code.google.com/p/android/issues/detail?id=202850&can=1&q=pairing%20bonded&colspec=ID%20Status%20Priority%20Owner%20Summary%20Stars%20Reporter%20Opened

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 19 of 39
Jan 31, 2022

Figure A1

Figure A2

Figure A3

Figure A4

Figure A5

Figure A6

(1)

(1)

(1)

(1)

(1)

(2)

(3) (1)

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 20 of 39
Jan 31, 2022

3.2.2 iOS Device
The procedure about verifying host sample with iOS device is shown below.

1. Start “GATTBrowser” application.

2. Select a device named “Renesas-BLE” from the nearby devices list to connect with the device. (Figure i1
Arrow-1)

3. Select the characteristic [UUID: 0x02000000-0000-0000-0000-000000000080]. (Figure i2 Arrow-1)

4. Select [Enable Notification] to enable notification. (Figure i3 Arrow-1)

5. Enter passkey (six digits) to the dialog. Note1 (Figure i4 Arrow-1). When USE_JUSTWORKS_PAIRING macro is
set, the dialog showing the receipt of pairing request is pop up. Select “Pair” to accept the request.

6. If the passkey entered is correct, notification is started. Bit16:31 of the notification data is incremented in every
second. Note2 (Figure i5 Arrow-1)

7. Bit0:7 of the notification data is changed depending on the potentiometer’s position on the RSK. (Figure i5-1)

8. Select [Disable Notification] to disable notification. (Figure i5 Arrow-2)

9. Select [< Services]  [< Back] to disconnect the connection. (Figure i5 Arrow-3) (Figure i6 Arrow-1)

10. Re-do 2~4 to make sure that notification is re-started without passkey request.

11. Re-do 8~9 to disconnect the connection.

Notes: 1. To re-run the pairing, select [Settings]  [General]  [Bluetooth]  [Device] and select [Forget
this Device] to delete pairing information.

Notes: 2. Sometimes notification is not started automatically after entering passkey. In such case, select
[Enable Notification] once again.

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 21 of 39
Jan 31, 2022

Figure i1

Figure i2

Figure i3

Figure i4

Figure i5

Figure i6

(1)

(1)

(1)
(1)

(2)

(1) (3)

(1)

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 22 of 39
Jan 31, 2022

3.3 Configuration
3.3.1 Configuration Macro Settings

The procedure about changing the behavior of host sample is shown below.

The behavior of host sample is able to be changed by changing definition the behavior configuration macros in
compile option. The procedure of changing macros is selecting [Property] in the right clicked menu of “HostSample”
subproject in the project tree and defined or undefined macros in [preprocess][definition macros] on compile option
tab in the dialog displayed.

Table 3-9 Behavior Configuration Macros

Macro when defined when undefined
USE_PAIRING_JUSTWORKS execute pairing with JustWorks

method
<default setting>
execute pairing with PassKeyEntry
method

USE_RSK_LCD <default setting>
use LCD on RSK

no use LCD on RSK
Note: select JustWorks method in
pairing because impossible to
display PassKey

USE_RSK_LED <default setting>
use LED on RSK

no use LED on RSK

USE_RSK_SW <default setting>
use SW on RSK

no use SW on RSK
Note: impossible to request
disconnection from host sample
when this setting

USE_RSK_ADC <default setting>
use A/D converter on RSK

no use A/D converter on RSK
Note: set A/D converter configuration
on Code Generator to [no use A/D
converter] when this setting

3.3.2 Low Level Peripheral Driver Update By Code Generation Tool
You can update the low level peripheral drivers by using Code Generation Tool. Following file is updated in this

project to avoid the type declaration confliction. You shall not overwrite the file when you use Code Generation Tool.

- r_cg_macrodriver.h

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 23 of 39
Jan 31, 2022

4. Behavior
The software behavior of Host Application (hereafter called APP) and rBLE is shown in this chapter.

4.1 Command and Event
The behavior of command and event which is used by APP and rBLE is shown in Figure 4-1.

1. APP issues the command by calling rBLE API.

2. rBLE executes the command issued by APP.

3. After finishing executing the command, rBLE informs the event by calling the callback function
registered by APP.

4. APP decides whether to issue the next command or not in the callback function. (And go back to step1.)

Figure 4-1 Command and Event

4.2 Main Loop
The main loop behavior of the host sample is shown in Figure 4-2.

The main loop of the host sample executes the APP Scheduler, rBLE Scheduler and the MCU Mode Manager
repeatedly. The APP Scheduler issues the command. The rBLE Scheduler calls the callback function. The MCU Mode
Manager changes the MCU mode to STOP state for reducing power consumption.

Figure 4-2 Main Loop

The APP Scheduler has the command request queue. If there is a command request in the queue, the scheduler calls
rBLE API.

The rBLE Scheduler has the event queue. If there is an event in the queue, the scheduler calls callback function which
is registered by APP.

The MCU Mode Manager checks if the command request queue and the event queue is set. If both of the queue is
empty, the manager changes the MCU mode to STOP state. After changing to STOP state, MCU is awoke by occurring
interruption.

APP Scheduler
(APP_Run)

rBLE Scheduler
(rBLE_Run)

MCU Mode Manager

APP

rBLE

4.Next Command Request (if necessary)

2.Command Execute

1.rBLE API Call
(Command Issue)

3.APP Callback Function Call
(Event Inform)

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 24 of 39
Jan 31, 2022

4.3 UART 2-wire with Branch Connection
This section describes the UART driver communication method in the UART 2-wire branch connection.

4.3.1 Transmission Process
A handshake is performed to send the packet to a module from Host MCU. A handshake is performed by send the

REQ byte (0xC0) from the Host MCU and send the ACK byte (0x88) or the RSCIP packet from the module. In
addition, when performing a handshake performs monitoring by the timer, the timeout occurs and restart the handshake.
Host MCU of UART driver for performing a handshake, it has a 5 state by the transmission status.

Table 4-1 UART driver transmission state
STATE Description

T_IDLE Initialize UART driver. RSCIP packet transmission completion.
T_REQUESTING During REQ byte transmission.
T_RCV_BF_REQUESTED Receive RSCIP packet from the module instead of ACK bytes.
T_REQUESTED REQ byte transmission completion. (Wait for the ACK byte from the

module)
T_ACTIVE During RSCIP packet transmission.

Transmission from the Host MCU to the module, always start with REQ byte. After sending the REQ byte, Host
MCU branches to one of the following operations by the receiving state.

(a) Host MCU has not received RSCIP packet from the module (Figure 4-3)

(b) Host MCU is receiving RSCIP packet from the module (Figure 4-4)

(c) ACK byte reception time-out (Figure 4-5)

(a) Host MCU has not received RSCIP packet from the module

This state is RSCIP packet has not been transmitted from the module, after sending the REQ byte from Host the
MCU, the Host MCU is waiting to receive an ACK byte. Module sends an ACK byte receive the REQ byte. Host MCU
which received ACK byte sends a RSCIP packet to a module.

Figure 4-3 Host MCU has not received RSCIP packet from the module

TxD

RxD

T_IDLE T_REQUESTING T_REQUESTED T_ACTIVE T_IDLE

REQ
Complete Tx

ACK
Complete Rx

RSCIP packet
Complete Tx

REQ
Start Tx

UART driver
Tx state

RSCIP packet
Start Tx

REQ (0xC0) 1st byte (0xC0) End byte (0xC0)

ACK (0x88)

[Handshake] [RSCIP packet (Tx)]

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 25 of 39
Jan 31, 2022

(b) Host MCU is receiving RSCIP packet form the module

This state module has to send RSCIP packet, Host MCU is receiving RSCIP packet. Even if a module receives REQ,
ACK byte isn't returned. The RSCIP packet which is being sent is made a substitute of ACK byte. A host regards a
RSCIP packet from a module as a substitute of ACK byte. And a RSCIP packet is sent to a module.

Figure 4-4 Host MCU is receiving RSCIP packet from the module

(c) ACK byte reception time-out

After sending REQ byte, Host MCU starts a timeout timer. If it can not be received ACK bytes for a certain period,
and then resend the REQ byte.

Figure 4-5 ACK byte reception time-out

4.3.2 Reception Process
There is no state transition of a UART driver at the reception. In order to receive the data from the module, it listens

for RSCIP packet from the module in the specified number of bytes from rBLE_Host.

TxD

RxD

T_IDLE

T_REQUESTING
T_RCV_BF_

T_ACTIVE T_IDLE

REQ
Complete Tx

RSCIP packet
Complete Tx

RSIP packet
Complete Rx

REQ
Start Tx

UART driver
Tx state

RSCIP packet
Start Tx

REQ (0xC0) 1st byte (0xC0) End byte (0xC0)

1st byte (0xC0) End byte(0xC0) N byte

[Handshake] [RSCIP packet (Tx)]
[RSCIP packet (Rx)]

TxD

RxD

 T_REQUESTING

T_REQUESTED

T_ACTIVE T_IDLE

Timeout
REQ

Start Retransmit
ACK

Complete Rx
RSCIP packet
Complete Tx

UART driver
Tx state

RSCIP packet
Start Tx

T_REQUESTED T_REQUESTING

T_IDLE

REQ
Start Tx

Timeout
Timer Start

REQ (0xC0) REQ (0xC0) 1st byte (0xC0) End byte (0xC0)

ACK (0x88)

[Handshake] [Handshake (Retransmit)] [RSCIP packet (Tx)]

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 26 of 39
Jan 31, 2022

4.3.3 Example of Application Circuit
UART 2-wire with branch connection example of Host MCU and BLE MCU are shown below.

Figure 4-6 UART 2-wire with branch connection example

Notes: 1. Pin number is CN4 external extension interface connector pin number of RL78/G1D evaluation
board.

 2. /RESET pin are pulled-up/pulled-down with a resistor in accordance with the system requirement
(see RL78/G1D User’s Manual: Hardware) (R01UH0515).

 3. VBUS detection of USB is assigned to P30/INTP3/RCT1HZ (WAKEUP) of the RL78/G1D
evaluation board. If it supplies a power to an evaluation board from USB, do not connect TXD line
of RSK which diverged to INTP3 of the RL78/G1D evaluation board.

RxD
TxD

Reset signal (port output)

P12/SO00/TxD0/TOOLTxD/(TI05)/(TO05)
P11/SI00/RxD0/TOOLRxD/SDA00/(TI06)/(TO06)
P30/INTP3/RCT1HZ

RESET NOTE2

Host MCU BLE MCU (RTK0EN0001D01001BZ)
14
16
1

22

UART 2-wire with
branch connection

NOTE3

NOTE1

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 27 of 39
Jan 31, 2022

5. Sequence chart
The sequence chart of Local Device and Remote Device is shown in this chapter. Each sequence is consisted of the

devices which contains Host MCU, BLE MCU, Smart Phone and the software which contains APP and rBLE.

5.1 Main sequence chart
In the Main Sequence Chart, the processing blocks of 10 steps are shown. The detail of each processing block is

shown in following sections.

Figure 5-1 main sequence chart

Host MCU
(RL78/G14)

BLE MCU
(RL78/G1D)

APP rBLE
(Host)

rBLE
(Core)

Peer Device
(Smart Phone)

Step1. rBLE Initialize

Step2. GAP Initialize

Step3. Broadcast

Step5. Profile Enable

Step4. Connection

Step6. Remote Device Check

Step7. Pairing

Step9. Profile Commnunication

Step10. Disconnection

If this is the first time connection with the peer device, or if pairing is not executed yet in the previous connection

Step8. Start Encryption

If pairing with the peer device is completed in the previous connection

(Go Back to Step3. Broadcast)

Local Device as a Slave Remote Device as a Master

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 28 of 39
Jan 31, 2022

5.2 Step1. rBLE Initialize sequence
APP calls “RBLE_Init” function to initialize rBLE (rBLE_Host and rBLE_Core). After initializing rBLE and

establishing communication to BLE MCU, rBLE informs “RBLE_MODE_ACTIVE” event.

RBLE_Init

RBLE_MODE_ACTIVE

Host MCU
(RL78/G14)

BLE MCU
(RL78/G1D)

APP rBLE
(Host)

rBLE
(Core)

Peer Device
(Smart Phone)

Local Device as a Slave Remote Device as a Master

Figure 5-2 rBLE Initialize sequence chart

5.3 Step2. GAP Initialize sequence
APP calls “RBLE_GAP_Reset” function to reset GAP. After resetting rBLE, rBLE informs

“RBLE_GAP_EVENT_RESET_RESULT” event.

APP calls “RBLE_GAP_Set_Bonding_Mode” function to permit the bonding with remote device. After setting the
permission, rBLE informs “RBLE_GAP_EVENT_SET_BONDING_MODE_COMP” event.

APP calls “RBLE_GAP_Set_Security_Request” function to set security level. After setting security level, rBLE
informs “RBLE_GAP_EVENT_SET_SECURITY_REQUESET_COMP” event.

Figure 5-3 GAP Initialize sequence chart

RBLE_GAP_Reset

RBLE_GAP_EVENT_RESET_RESULT

RBLE_GAP_Set_Bonding_Mode

RBLE_GAP_EVENT_SET_BONDING_MODE_COMP

RBLE_GAP_Set_Security_Request

RBLE_GAP_EVENT_SET_SECURITY_REQUEST_COMP

Host MCU
(RL78/G14)

BLE MCU
(RL78/G1D)

APP rBLE
(Host)

rBLE
(Core)

Peer Device
(Smart Phone)

Local Device as a Slave Remote Device as a Master

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 29 of 39
Jan 31, 2022

5.4 Step3. Broadcast sequence
Local Device starts broadcasting to establish connection as a slave.

APP calls “RBLE_GAP_Broacast_Enable” function to start broadcasting. After starting the broadcast, rBLE informs
“RBLE_GAP_EVENT_BROADCAST_ENABLE_COMP” event.

RBLE_GAP_Broadcast_Enable

RBLE_GAP_EVENT_BROADCAST_ENABLE_COMP Broadcast

Host MCU
(RL78/G14)

BLE MCU
(RL78/G1D)

APP rBLE
(Host)

rBLE
(Core)

Peer Device
(Smart Phone)

Local Device as a Slave Remote Device as a Master

Figure 5-4 Broadcast sequence chart

5.5 Step4. Connection sequence
Remote Device receives the broadcast and requests to establish connection with Local Device.

If the connection between Remote Device and Local Device is established by receiving Connection Request from
Remote Device, rBLE informs “RBLE_GAP_EVENT_CONNECTION_COMP” event.

Connection Request
RBLE_GAP_EVENT_CONNECTION_COMP

Host MCU
(RL78/G14)

BLE MCU
(RL78/G1D)

APP rBLE
(Host)

rBLE
(Core)

Peer Device
(Smart Phone)

Local Device as a Slave Remote Device as a Master

Figure 5-5 Connection sequence chart

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 30 of 39
Jan 31, 2022

5.6 Step5. Profile Enable sequence
Local Device enables SCP (Sample Custom Profile) to send data.

APP calls “RBLE_SCP_Server_Enable” function to enable SCP. After enabling SCP, rBLE informs
“RBLE_SCP_EVENT_SERVER_ENABLE_COMP” event.

RBLE_SCP_Server_Enable

RBLE_SCP_EVENT_SERVER_ENABLE_COMP

Host MCU
(RL78/G14)

BLE MCU
(RL78/G1D)

APP rBLE
(Host)

rBLE
(Core)

Peer Device
(Smart Phone)

Local Device as a Slave Remote Device as a Master

Figure 5-6 Profile Enable sequence chart

5.7 Step6. Remote Device Check sequence
Local Device confirms security information about Remote Device.

If the device address of Remote Device is public address or if it is random address except resolvable private address,
rBLE informs “RBLE_SM_CHK_BD_ADDR_REQ” event to acquire security information about Remote Device. APP
calls “RBLE_SM_Chk_Bd_Addr_Req_Resp” function to inform security information.

If the device address of Remote Device is resolvable private address, rBLE informs “RBLE_SM_IRK_REQ_IND”
event to acquire IRK (Identify Resolving Key) which is used for resolving address. APP calls
“RBLE_SM_Irk_Req_Resp” function to informs whether to have IRK or not and informs IRK. If resolving address is
success, rBLE informs “RBLE_GAP_EVENT_RPA_RESOLVED” event. If resolving address is failed, rBLE informs
“RBLE_SM_IRK_REQ_IND” event repeatedly until it is successful or until all of IRK which APP possess is checked.

Figure 5-7 Remote Device Check sequence chart

RBLE_SM_CHK_BD_ADDR_REQ

RBLE_SM_Chk_Bd_Addr_Req_Resp

RBLE_SM_IRK_REQ_IND

RBLE_SM_Irk_Req_Resp

RBLE_GAP_EVENT_RPA_RESOLVED

Host MCU
(RL78/G14)

BLE MCU
(RL78/G1D)

APP rBLE
(Host)

rBLE
(Core)

Peer Device
(Smart Phone)

Local Device as a Slave Remote Device as a Master

If Remote Device Address is Public Address, or Random Address except Resolvable Private Address

If Remote Device Address is Resolvable Private Address

If Resolving Resolvable Private Address succeed

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 31 of 39
Jan 31, 2022

5.8 Step7. Pairing sequence
If the connection with the Remote Device is first time or if pairing is not executed in previous connection, Local

Device starts pairing sequence by request from Remote Device. Pairing sequence is consisted of PHASE1, PHASE2,
starting encryption and PHASE3.

PHASE1 is for exchanging the pairing features between Local Device and Remote Device.

If Local Device receives Pairing Request from Remote Device, rBLE informs “RBLE_GAP_EVENT_BONDING_

REQ_IND” event. APP calls “RBLE_GAP_Bonding_Response” function to send Pairing Response.

PHASE2 is for generating STK (Short Term Key).

rBLE informs “RBLE_SM_TK_REQ_IND” event to acquire TK (Temporary Key). APP calls
“RBLE_SM_Tk_Req_Resp” function to inform TK. After generating STK by BLE_MCU, Local Device and Remote
Device start encrypting the contents of communication.

PHASE3 is for distributing encryption keys of Local Device and Remote Device.

rBLE informs “RBLE_SM_LTK_REQ_IND” event to acquire LTK (Long Term Key). APP calls
“RBLE_SM_Ltk_Req_Resp” function to inform LTK and send Encryption Information (LTK).

By receiving Encryption Information (LTK) from Remote Device, rBLE informs “RBLE_SM_KEY_IND” event.

By receiving Identity Information (IRK) from Remote Device, rBLE informs “RBLE_SM_KEY_IND” event.

If pairing sequence is success, rBLE informs “RBLE_GAP_EVENT_BONDING_COMP” event.

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 32 of 39
Jan 31, 2022

Figure 5-8 Pairing sequence chart

Pairing Request
RBLE_GAP_EVENT_BONDING_REQ_IND

RBLE_GAP_Bonding_Response Pairing Response

RBLE_SM_TK_REQ_IND
RBLE_SM_Tk_Req_Resp

Pairng Confirm(Mconfirm)

Pairing Confirm(Sconfirm)

Pairing Random(Mrand)

Pairing Random(Srand)

Encryption Request

Encryption Response

Start Encryption Request

Start Encryption Response

Start Encyrption Response

RBLE_SM_LTK_REQ_IND
RBLE_SM_Ltk_Req_Resp Encryption Information(LTK)

Master Identification(EDIV,Rand)

Identity Information(IRK)

Identity Address Information

Encryption Information(LTK)
RBLE_SM_KEY_IND(LTK)

Master Identification(EDIV,Rand)

Identity Information(IRK)
RBLE_SM_KEY_IND(IRK)

Identity Address Information

RBLE_GAP_EVENT_BONDING_COMP

Host MCU
(RL78/G14)

BLE MCU
(RL78/G1D)

APP rBLE
(Host)

rBLE
(Core)

Peer Device
(Smart Phone)

Local Device as a Slave Remote Device as a Master

PHASE 3: TRANSPORT SPECIFIC KEY DISTRIBUTION

PHASE 2: SHORT TERM KEY(STK) GENERATION

PHASE 1: PAIRING FEATURE EXCHANGE

Establishment of encrypted connection with STK

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 33 of 39
Jan 31, 2022

5.9 Step8. Start Encryption sequence
If pairing is success in previous connection, Local Device starts encryption sequence with LTK (Long Term Key) by

request from Remote Device.

By receiving Encryption Request from Remote Device, rBLE informs “RBLE_SM_LTK_REQ_FOR_ENC_IND”
event. APP calls “RBLE_SM_Ltk_Req_Resp” function to inform LTK and send Encryption Response.

By receiving Start Encryption Request, BLE MCU of Local Device sends Start Encryption Response.

If start encryption sequence is success, rBLE informs “RBLE_SM_ENC_START_IND” event.

Encryption Request
RBLE_SM_LTK_REQ_FOR_ENC_IND
RBLE_SM_Ltk_Req_Resp Encryption Response

Start Encryption Request

Start Encryption Response

Start Encyrption Response
RBLE_SM_ENC_START_IND

Host MCU BLE MCU

APP rBLE
(Host)

rBLE
(Core)

Peer Device
(Smart Phone)

Local Device as a Slave Remote Device as a Master

Figure 5-9 Start Encryption sequence chart

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 34 of 39
Jan 31, 2022

5.10 Step9. Profile Communication sequence
Local Device starts sending data to Remote Device with SCP (Sample Custom Profile).

By receiving Write Client Characteristic Configuration for permitting Notification, rBLE informs
“RBLE_SCP_EVENT_SERVER_CHG_INDNTF_IND” event.

APP activates interval timer, and the timer generates INTIT interruption periodically. By receiving INTIT
interruption, APP activates A/D converter. The converter generates INTAD interruption when finished converting. By
receiving INTAD, APP calls “RBLE_SCP_Server_Send_Notify” function to send result value of converting by
Notification.

By receiving Write Client Characteristic Configuration for inhibiting Notification, rBLE informs
“RBLE_SCP_EVENT_SERVER_CHG_INDNTF_IND” event. APP inactivates interval timer to stop sending data.

Write Client Characteristic Configuration
(Notification Configuration = START)

RBLE_SCP_EVENT_SERVER_CHG_INDNTF_IND

INTIT

INTAD
RBLE_SCP_Server_Send_Notify Notification

RBLE_SCP_EVENT_SERVER_SEND_NOTIFY_COMP

Write Crient Characteristic Configuration
(Notification Configuration = STOP)

RBLE_SCP_EVENT_SERVER_CHG_INDNTF_IND

Host MCU
(RL78/G14)

BLE MCU
(RL78/G1D)

APP rBLE
(Host)

rBLE
(Core)

Peer Device
(Smart Phone)

Local Device as a Slave Remote Device as a Master

Repeat until While Notificaion Configuration is START

Figure 5-10 Profile Communication sequence chart

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 35 of 39
Jan 31, 2022

5.11 Step10. Disconnection sequence
Remote Device and Local Device are able to request disconnection.

By receiving Disconnect from Remote Device, rBLE disconnects connection and informs
“RBLE_GAP_EVENT_DISCONNECT_COMP” event.

If INTP10 interruption occurs, APP calls “RBLE_GAP_Disconnect” function to send Disconnect to Remote Device.
After disconnecting, rBLE informs “RBLE_GAP_EVENT_DISCONNECT_COMP” event.

Figure 5-11 Disconnection sequence chart

Disconnect
RBLE_GAP_EVENT_DISCONNECT_COMP

INTP10(SW3)
RBLE_GAP_Disconnect Disconnect

RBLE_GAP_EVENT_DISCONNECT_COMP

Host MCU
(RL78/G14)

BLE MCU
(RL78/G1D)

APP rBLE
(Host)

rBLE
(Core)

Peer Device
(Smart Phone)

Local Device as a Slave Remote Device as a Master

If Remote Device request to disconnect

If Local Device request to disconnect

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 36 of 39
Jan 31, 2022

6. Appendix

6.1 ROM size, RAM size
The ROM size and the RAM size which is used by host sample is shown in Table 6-1.

setting for build ：Default setting of host sample released

 Define below macros
− USE_RSK_LCD
− USE_RSK_LED
− USE_RSK_SW
− USE_RSK_ADC

 Use Passkey as pairing method
 Use UART 2-wire

Table 6-1 ROM size, RAM size

Compiler ROM (bytes) RAM (bytes)
CC-RL 20,702 4,524

CA78K0R 29,625 4,736

6.2 References
1. Bluetooth Core Specification v4.2, Bluetooth SIG

2. Bluetooth SIG Assigned Numbers https://www.bluetooth.com/specifications/assigned-numbers/

3. Services UUID https://www.bluetooth.com/specifications/assigned-numbers/

4. Characteristics UUID https://www.bluetooth.com/specifications/assigned-numbers/

https://www.bluetooth.com/specifications/assigned-numbers/
https://www.bluetooth.com/specifications/assigned-numbers/
https://www.bluetooth.com/specifications/assigned-numbers/

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 37 of 39
Jan 31, 2022

6.3 Terminology
Term Description

Service A service is provided from a GATT server to a GATT client. The GATT
server exposes some characteristics as the interface.
The service prescribes how to access the exposed characteristics.

Profile A profile enables implementation of a use case by using one or more
services. The services used are defined in the specifications of each
profile.

Characteristic A characteristic is a value used to identify services. The characteristics
to be exposed and their formats are defined by each service.

Role Each device takes the role prescribed by the profile or service in order
to implement the specified use case.

Client Characteristic Configuration
Descriptor

A descriptor is used to control notifications or indications of
characteristic values that include the client characteristic configuration
descriptor sent from the GATT server.

Connection Handle This is the handle determined by the controller stack and is used to
identify connection with a remote device. The valid handle range is
between 0x0000 and 0x0EFF.

Universally Unique Identifier
(UUID)

This is an identifier for uniquely identifying an item. In the BLE
standard, a 16-bit UUID is defined for identifying services and their
characteristics.

Bluetooth Device Address
(BD Address)

This is a 48-bit address for identifying a Bluetooth device. The BLE
standard defines both public and random addresses, and at least one
or the other must be supported.

Public Address This is an address that includes an allocated 24-bit OUI
(Organizationally Unique Identifier) registered with the IEEE.

Random Address This is an address that contains a random number and belongs to one
of the following three categories :

Static Address
Non-Resolvable Private Address
Resolvable Private Address

Static Address

This is an address whose 2 most significant bits are both 1, and whose
remaining 46 bits form a random number other than all 1’s or all 0’s.
This static address cannot be changed until the power is switched off.

Non-Resolvable Private Address This is an address whose 2 most significant bits are both 0, and whose
remaining 46 bits form a random number other than all 1’s or all 0’s.
Static addresses and public addresses must not be equal.
This type of address is used to make tracking by an attacker difficult
by changing the address frequently.

Resolvable Private Address This is an address generated from an IRK and a 24-bit random
number. Its 2 most significant bits are 0 and 1, and the remaining
higher 22 bits form a random number other than all 1’s or all 0’s. The
lower 24 bits are calculated based on an IRK and the higher random
number.
This type of address is used to make tracking by an attacker difficult
by changing the address frequently.
By allocating an IRK to the peer device, the peer device can identify
the communicating device by using that IRK.

Broadcaster This is one of the roles of GAP. It is used to transmit advertising data.
Observer This is one of the roles of GAP. It is used to receive advertising data.
Central This is one of the roles of GAP. It is used to establish a physical link.

In the link layer, it is called Master.

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 38 of 39
Jan 31, 2022

Term Description
Peripheral This is one of the roles of GAP. It is used to accept the establishment

of a physical link. In the link layer, it is called Slave.
Advertising Advertising is used to transmit data on a specific channel for the

purpose of establishing a connection or performing data transmission.
Scan Scans are used to receive advertising data. There are two types of

scans : Passive scan, in which data is simply received, and active
scan, in which additional information is requested by sending
SCAN_REQ.

White List By registering known devices that are connected or bonded to a White
List, it is possible to filter devices that can accept advertising data or
connection requests.

Device Name This is a user-friendly name freely assigned to a Bluetooth device to
identify it.
In the BLE standard, the device name is exposed to the peer device
by the GATT server as a GAP characteristic.

Reconnection Address If a non-resolvable private address is used and the address is
changed frequently, not only attackers but also the peer device will
have difficulty identifying the device. Therefore, the address to be used
at reconnection is reported by setting a new reconnection address as
the exposed reconnection address characteristic.

Connection Interval This is the interval for transmitting and receiving data periodically
following connection establishment.

Connection Event This is the period of time during which data is transmitted and received
at the connection interval.

Supervision Timeout This is the timeout interval after which the link is considered to have
been lost when no response is received from the peer device.

Passkey Entry This is a pairing method whereby a six-digit number is input by each
device to the other, or a six-digit number is displayed by one of the
devices and that number is input to the other device.

Just Works This is a pairing method that does not require user action.
OOB This is a pairing method whereby pairing is performed by using data

obtained by a communication method other than Bluetooth.
Identity Resolving Key
(IRK)

This is a 128-bit key used to generate and resolve resolvable private
addresses.

Connection Signature Resolving Key
(CSRK)

This is a 128-bit key used to create data signatures and verify the
signature of incoming data.

Long Term Key
(LTK)

This is a 128-bit key used for encryption. The key size to be used is
the size agreed on during pairing.

Short Term Key
(STK)

This is a 128-bit key used for encryption during key exchange. It is
generated using TK.

Temporary Key
(TK)

This is a 128-bit key required for STK generation. In the case of Just
Works, the TK value is 0. In the case of Passkey Entry, it is the 6-digit
number that was input, and in the case of OOB, it is the OOB data.

Bluetooth® Low Energy Protocol Stack RL78/G14 Host Sample

R01AN2807EJ0121 Rev.1.21 Page 39 of 39
Jan 31, 2022

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

Bluetooth is a registered trademark of Bluetooth SIG, Inc. U.S.A.
All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

Revision Record

Rev. Date
Description

Page Summary
1.00 Jun 30, 2015 － First edition issued
1.01 Oct 30, 2015 10

16
section 2.4 File Composition : File tree modified
Table 3-3 pin connection : pin number of RSK modified

1.10 Aug 26, 2016 -
4

6
17

24

36

Change document title
1 Overview : Add the support of UART 2-wire with branch
connection.
2.2 Software Composition : Add the Sample Custom Profile.
3.1.5 UART Connection Method Setting : Add the setting
method of source program.
4.3 UART 2-wire with Branch Connection : Add the operation
explanation.
6.1 ROM size, RAM size : Add the UART 2-wire with branch
connection.

1.20 Oct 27, 2016 10
12

20
22
33

36

2.4 File Composition : Update.
3.1 Preparation : Add the procedure for each development
environment.
3.2.2 iOS Device : Change application.
3.3.2 Low Level Peripheral Driver Update By Code Generation
Tool : Newly Added.
5.9 Step8. Start Encryption sequence : Change the sequence
to accommodate BLE Protocol Stack V1.20.
6.1 ROM size, RAM size : Add the size for each development
environment.

1.21 Oct 20, 2017 18 3.2.1 Android Device : Use GATTBrowser for the test
application.

1.21 Jan 31, 2022 - Fixed due to the end of IAR support in Bluetooth Low Energy
Protocol Stack.

 General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit
Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.
For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as
well as any technical updates that have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator) during

a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of Microprocessing unit or Microcontroller unit products in the same group but

having a different part number may differ in terms of the internal memory capacity, layout pattern,
and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a
product with a different part number, implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2015 Renesas Electronics Corporation. All rights reserved.
Colophon 5.0

	1. Overview
	1.1 Environment

	2. Compositions
	2.1 Device Composition
	2.2 Software Composition
	2.3 Peripheral Hardware Composition
	2.4 File Composition

	3. Procedure
	3.1 Preparation
	3.1.1 Host MCU
	(1) e2studio
	(2) CS+

	3.1.2 BLE MCU
	(1) e2studio
	(2) CS+

	3.1.3 Host MCU - BLE MCU Connection
	3.1.4 Smart Phone
	3.1.5 UART Connection Method Setting
	(1) Host MCU
	(2) BLE MCU

	3.2 Verification
	3.2.1 Android Device
	3.2.2 iOS Device

	3.3 Configuration
	3.3.1 Configuration Macro Settings
	3.3.2 Low Level Peripheral Driver Update By Code Generation Tool

	4. Behavior
	4.1 Command and Event
	4.2 Main Loop
	4.3 UART 2-wire with Branch Connection
	4.3.1 Transmission Process
	(a) Host MCU has not received RSCIP packet from the module
	(b) Host MCU is receiving RSCIP packet form the module
	(c) ACK byte reception time-out

	4.3.2 Reception Process
	4.3.3 Example of Application Circuit

	5. Sequence chart
	5.1 Main sequence chart
	5.2 Step1. rBLE Initialize sequence
	5.3 Step2. GAP Initialize sequence
	5.4 Step3. Broadcast sequence
	5.5 Step4. Connection sequence
	5.6 Step5. Profile Enable sequence
	5.7 Step6. Remote Device Check sequence
	5.8 Step7. Pairing sequence
	5.9 Step8. Start Encryption sequence
	5.10 Step9. Profile Communication sequence
	5.11 Step10. Disconnection sequence

	6. Appendix
	6.1 ROM size, RAM size
	6.2 References
	6.3 Terminology

