
 APPLICATION NOTE

R01AN1375EJ0120 Rev.1.20 Page 1 of 125
Jul 31, 2017

Bluetooth® Low Energy Protocol Stack
Sample Program

Introduction
This manual describes the installation, configuration and usage of sample program, which is included in the Bluetooth
Low Energy software (the BLE software).

The BLE software refers to the set of software that includes the Bluetooth Low Energy protocol stack (the BLE protocol
stack) compliant with the Bluetooth Low Energy specification (Bluetooth specification v4.2). The BLE protocol stack is
designed to run on the Bluetooth Low Energy microcontroller RL78/G1D.

Target Device
RL78/G1D

Contents

1. Overview ... 4

2. Applicability .. 4

3. Installation .. 4

3.1. Contents ... 4

3.2. Installation Procedure .. 5

4. Sample Program ... 5

4.1. Operating Environment and Development Environment .. 5

4.2. Structure .. 6

5. Usage of Console-based Sample Program ... 8

5.1. How to Change Parameters ... 8

5.2. Start the Sample Program in Modem Configuration ... 9

5.3. Start the Sample Program in Embedded Configuration ... 9

5.4. Usage of Console-based Sample Program .. 10

5.5. Generic Access Profile (GAP) .. 12

5.6. Security Manager (SM) ... 13

5.7. Generic Attribute Profile (GATT) ... 17

5.8. Find Me Profile (FMP) ... 19

5.9. Proximity Profile (PXP) ... 22

5.10. Health Thermometer Profile (HTP) .. 25

5.11. Blood Pressure Profile (BLP) ... 28

5.12. HID over GATT Profile (HOGP) .. 31

5.13. Scan Parameters Profile (ScPP) .. 34

R01AN1375EJ0120
Rev.1.20

Jul 31, 2017

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 2 of 125
Jul 31, 2017

5.14. Heart Rate Profile (HRP) ... 37

5.15. Cycling Speed and Cadence Profile (CSCP) .. 41

5.16. Cycling Power Profile (CPP) .. 45

5.17. Alert Notification Profile (ANP) .. 49

5.18. Location and Navigation Profile (LNP) ... 52

5.19. Vendor Specific (VS) ... 56

6. Usage of Simple Sample Program .. 59

6.1. Configuration ... 59

6.2. HEX File Preparation ... 59

6.3. Behavior ... 59

6.4. Check with Android Device .. 60

6.5. Check with iOS Device ... 62

7. Appendix ... 64

7.1. Transmit and Receive Operations in the Sample Program for the Computer 64

7.2. Requirements and Flow Chart of Serial Communication Driver on APP MCU 67

7.2.1. Transmit Procedure Example using the UART 2-wire Connection Method 70

7.2.2. Receive Procedure Example using the UART Two-wire Connection Method 70

7.2.3. Transmit Procedure Example using the UART 3-wire Connection Method 71

7.2.4. Transmit Procedure Example using the UART 2-wire with Branch Connection Method
 .. 72

7.2.5. Receive Procedure Example using the UART 3-wire and 2-wire with Branch
Connection Methods .. 73

7.2.6. Transmit Procedure Example using the CSI 4-wire Connection Method 74

7.2.7. Transmit Procedure Example using the CSI 5-wire Connection Method 75

7.2.8. Receive Procedure Example using the CSI 4-wire and 5-wire Connection Method 76

7.2.9. Transmit Procedure Example using the IIC 3-wire Connection Method 77

7.2.10. Receive Procedure Example using the IIC 3-wire Connection Method 77

7.3. Porting of the Sample Program ... 79

7.4. How to use the Direct Test Mode .. 80

7.4.1. Direct Test Mode (Receiver) ... 81

7.4.2. Direct Test Mode (Transmitter) .. 82

7.4.3. Direct Test Mode (Parameter Set) ... 83

7.5. Sample Custom Profile ... 85

7.5.1. Sample Custom Profile Specification ... 85

7.5.2. File Structure Corresponding to Sample Custom Profile ... 86

7.5.3. API Functions defined for Sample Custom Profile .. 87

7.5.4. Events defined for Sample Custom Profile .. 91

7.5.5. Usage of the Sample Program for Sample Custom Profile .. 93

7.6. Simple Sample Profile .. 97

7.6.1. Characteristic Specification ... 97

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 3 of 125
Jul 31, 2017

7.6.2. File Structure ... 97

7.6.3. Details of Simple Sample Profile ... 97

7.7. Sample Program for the Direct Test Mode with RF Tester ... 98

7.8. Printf program in the Embedded configuration ... 101

7.9. FW Update Sample Program .. 102

7.9.1. FW Update Profile Specification .. 102

7.9.2. File Structure Corresponding to FW Update Profile ... 103

7.9.3. API Functions defined for FW Update Profile .. 105

7.9.4. Events defined for FW Update Profile .. 109

7.9.5. Usage of the Sample Program for FW Update Profile ... 110

7.10. Project Setting to use FW Update Sample Program.. 113

7.10.1. Receiver device ... 113

7.10.2. Sender device .. 120

7.10.3. Notes of making FW Update Environment ... 121

7.11. References ... 122

7.12. Terminology ... 123

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 4 of 125
Jul 31, 2017

1. Overview
This manual describes the installation, configuration and usage of sample program, which is included in the Bluetooth
Low Energy software (the BLE software).

The BLE software refers to the set of software that includes the Bluetooth Low Energy protocol stack (the BLE protocol
stack) compliant with the Bluetooth Low Energy specification (Bluetooth specification v4.2). The BLE protocol stack is
designed to run on the Bluetooth Low Energy microcontroller RL78/G1D.

For details about the BLE protocol stack APIs, see Bluetooth Low Energy Protocol Stack API Reference Manual.

2. Applicability
The descriptions in this manual apply to the BLE protocol stack Version 1.20 and later.

3. Installation
The sample program of the BLE software is included in the BLE protocol stack package.

3.1. Contents
The BLE software package includes the following:

Documents

- Bluetooth Low Energy Protocol Stack User’s Manual
- Bluetooth Low Energy Protocol Stack API Reference Manual
- Bluetooth Low Energy Protocol Stack Sample Program Application Note (this document)
- rBLE Command Specification

Files used for building the executable file

- Executable file
- BLE software library
- Sample source code
- Source code that configures parameters
- CS+ for CA, CX project file
- CS+ for CC project file
- IAR Embedded Workbench workspace file
- e2 studio project file

Sample program for computer

- Executable file
- Source code
- Microsoft Visual Studio Express 2015 for Desktop project file

HCI packet monitor application for computer

- Executable file
- INI file

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 5 of 125
Jul 31, 2017

3.2. Installation Procedure
Copy the decompressed contents to any folder in your computer.

[Note] If using the e2 studio, cannot be include multi-byte characters and blank in the BLE software installation folder
path.

4. Sample Program
This sample program shows how to use the BLE software. The BLE software contains two sample programs.

 Console-based Sample Program Section 5

 Simple Sample Program Section 6

This section describes the common concept of a sample program. Regarding the details of sample programs, refer
respective dedicated section.

Caution

Sample programs in this application note shall be handled as a sample, whose quality and reliability are not guaranteed.
When you use the sample program in the final products or systems manufactured by you, evaluate the safety of them at
your own risk.

4.1. Operating Environment and Development Environment
The BLE software supports two different system configurations, the modem configuration and the embedded
configuration. This section describes the operating environment and development environment of the sample program
in each configuration.

Modem Configuration

In the modem configuration, the controller stack, host stack and profiles are implemented together on the BLE MCU
(RL78/G1D), while the application is implemented on the APP MCU separately.
The BLE software provides the sample program running on the computer as the APP MCU. You can easily evaluate
the BLE software using the computer.
The sample program in the modem configuration runs on the following operating environment.

Hardware

- PC/AT™ compatible computer
 Processor : 1.6GHz and greater
 Memory : 1.0GB and more
 Display : 1024×768 (XGA) and higher resolution

65536 and more colors

 Interface : USB 2.0 (E1 emulator and USB TTL serial cable)

Software
- Windows 7 or later

- Microsoft Visual Studio Express 2015 for Desktop

- Microsoft .NET Framework 4 + Language Pack

Embedded Configuration

In the embedded configuration, the controller stack, host stack, profiles and the application are implemented
together on the BLE MCU (RL78/G1D).
The BLE software also provides the sample program running on the BLE MCU.
The sample program in the embedded configuration runs on the following operating environment.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 6 of 125
Jul 31, 2017

Hardware

- RL78/G1D Test Board

Development tools and utilities
- Renesas on-chip debugging emulator E1

- Terminal Emulator for Windows

Software

- Renesas Integrated Development Environment CS+ for CA, CX or CS+ for CC or e2 studio
or IAR Embedded Workbench

- Renesas Flash Programmer V3
(You can download it from
https://www.renesas.com/software-tool/renesas-flash-programmer-programming-gui)

4.2. Structure
Figure 4-1 shows the structure of the BLE software.

Figure 4-1 Structure of the BLE software

https://www.renesas.com/software-tool/renesas-flash-programmer-programming-gui

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 7 of 125
Jul 31, 2017

The BLE software in the modem configuration runs on two MCUs that are APP MCU and BLE MCU, and consists of
‘rBLE_Host’ block (block in the figure) running on the APP MCU and the software blocks (blocks in the
figure) running on the BLE MCU.

In addition, the software blocks (blocks in the figure) that you need to prepare is ‘application’, ‘serial
communication driver’ and ‘OS’ (Operating System) blocks. However, ‘rBLE_Host’ block does not use any OS
specific resources, ‘OS’ block is not required if it does not run on the APP MCU.

On the other hand, the BLE software in the embedded configuration runs on the BLE MCU (RL78/G1D) only. The
software block that you need to prepare is ‘application’ block running on the BLE MCU.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 8 of 125
Jul 31, 2017

5. Usage of Console-based Sample Program

5.1. How to Change Parameters
The console-based sample program has the ability to change the parameters for rBLE API, and you will be able to
execute it by selecting the parameters prepared in advance.

Parameters selection is performed as follows.

menu-number [blank] parameter-number

In the function which is called at the time of execution of the menu, treats the given arguments separated by a space and
calls rBLE function.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 9 of 125
Jul 31, 2017

5.2. Start the Sample Program in Modem Configuration
The console-based sample program in the modem configuration is started by executing the EXE file
‘rBLE_Sample.exe’ that is stored in the folder
‘\Renesas\BLE_Software_Ver_X_XX\BLE_Sample\project\windows\Exe’.

The sample program ‘rBLE_Sample.exe’ requires arguments at its start time, please edit the contents of the batch file
“run.bat” stored in the same folder as the EXE file and execute it. The arguments required at the start time are
explained below.

Table 5-1 Arguments required at the start time

Arguments Description
COM Port Number Specify the COM port number in the computer (e.g., COM1, COM2, …)
Baud rate Specify between 4,800

and 250,000 to match
the settings of the BLE
software

items settings
Baud rate 4,800 ~ 250,000 bps

data length 8 bit
parity none

stop bit 1bit
flow control none

BD Address of remote device
(public address)

Set the BD address (Bluetooth device address) of the remote device to be
connected to. With this address, it is not required to obtain the BD address of
remote device using device search, and connection procedure can be started
immediately.
Use public address as BD address.

UART 2-wire Branch Connection UART 2-wire with Branch Connection : -div2wire
UART 2 wire : none

Write the program into the BLE-MCU using the HEX file ‘RL78_G1D_CM(*).hex’ or ‘RL78_G1D_IM(*).hex’ or
‘RL78_G1D_CCM(*).hex’ stored in the following folder after the BLE software installation from package

’\Renesas\BLE_Software_Ver_X_XX\RL78_G1D\ROM_File’ after installation.

These HEX files are used in 4800 bps with baud rate of serial communication.

5.3. Start the Sample Program in Embedded Configuration
Before starting the sample program in the embedded configuration, write the program into the RL78/G1D Test Board
using the HEX file ‘RL78_G1D_CE(*).hex’ or ‘RL78_G1D_IE(*).hex’ or ‘RL78_G1D_CCE(*).hex’ stored in the
following folder after the BLE software installation from package.

’\Renesas\BLE_Software_Ver_X_XX\RL78_G1D\ROM_File’ after installation.

To start the sample program, reset the RL78/G1D Test Board.

However, to use this sample program, the RL78/G1D Test Board and computer should be connected each other by the
USB TTL serial cable, and you should enter commands to the sample program from the terminal emulator running on
the computer.

Please setup the serial port of terminal emulator as shown below. In addition, the new-line code on receive for the
terminal emulator is set to LF (LF only).

Table 5-2 UART port settings

Port Setting Setting value
Baud rate 250,000 bps

Data length 8 bit

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 10 of 125
Jul 31, 2017

Port Setting Setting value
Parity None

Stop bit 1 bit
Flow control None

Note that the BD Address of remote device is not required for the sample program in the embedded configuration, it
does the device search automatically.

Figure 5-1 shows the screen shot of terminal setup window in the terminal emulator (Tera Term).

In the following, it is described in the screenshot when the EXE file is executed.

Figure 5-1 Terminal Setup window (Tera Term)

5.4. Usage of Console-based Sample Program
When you start the console-based sample program at the command prompt, Table 5-2 shows the main menu.

[Note] When the number of the implementation profile is changes, the command number may change.

Figure 5-2 Sample Program Start Screen

Please confirm that the message “rBLE Mode (ACTIVE)” is displayed. If this message is not displayed, there is some
problem and the sample program does not start successfully. Please check the cable connection or settings again.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 11 of 125
Jul 31, 2017

The console-based sample program executes the operation which you may choose the menu item by its number. It
shows the following main menu at the start time.

Figure 5-3 Main menu at the start time
At the main menu, there are three menu items. You can choose the menu item by its number.

In this screen, the menu items from 1 to 4 are displayed.
When you want to select the menu item, type its number and ENTER key.

When you want to go back to the previous menu, type ESC key.

When you want to see the current menu list again, type ENTER key.

When you want to exit the sample program, go back to the main menu by ESC key and enter ESC key again to
terminate the sample program.

In addition, log output is displayed in different colors (using ANSI escape sequence).

The cyan notation means command execution (it called rBLE API), the yellow notation means event notification (its
rBLE callback function is called), as shown in the following figure.

Figure 5-4 Execution example of RBLE_GAP_Reset function

In the following sections, basic usage of each layer is explained.

-- BLE Sample Program Menu --
1.GAP & SM & GATT Test
2.Profile Test
3.Vendor Specific Test
ESC Key: Menu exit

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 12 of 125
Jul 31, 2017

5.5. Generic Access Profile (GAP)
Commands and events for connecting device without security are shown in the following table as basic operations of
the GAP. In addition, Figure 5-5 shows the log of the master device and Figure 5-6 shows the log of the slave device
when you do the following operations in the table.

Operation Master (Command & Event) Slave (Command & Event)

Initialize
GAP Reset GAP Reset

RESET_RESULT RESET_RESULT

Send
Advertising

 GAP Broadcast_Enable

 BROADCAST_ENABLE_COMP

Search device
(optional)

GAP Device_Search

DEVICE_SEARCH_RESULT_IND

DEVICE_SEARCH_COMP

Establish
connection

GAP Create_Connection

CONNECTION_COMP CONNECTION_COMP

Figure 5-5 Log of Master Device (when connecting device without security)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 13 of 125
Jul 31, 2017

Figure 5-6 Log of Slave Device (when connecting device without security)

5.6. Security Manager (SM)
Commands and events for connecting device with security are shown in the following table as basic operations of the
SM. In addition, Figure 5-7 and Figure 5-8 show the log of the master device and Figure 5-9 and Figure 5-10 show the
log of the slave device when you do the following operations in the table. The device search operation is omitted in the
each log.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 14 of 125
Jul 31, 2017

Operation Master (Command & Event) Slave (Command & Event)

Initialize
GAP Reset GAP Reset

RESET_RESULT RESET_RESULT

Set security

GAP Set_Security_Request GAP Set_Security_Request

SET_SECURITY_REQUEST_COMP SET_SECURITY_REQUEST_COMP

GAP_Set_Bonding_Mode GAP_Set_Bonding_Mode

SET_BONDING_MODE_COMP SET_BONDING_MODE_COMP

Send
Advertising

 GAP Broadcast_Enable

 BROADCAST_ENABLE_COMP

Search device
(optional)

GAP Device_Search

DEVICE_SEARCH_RESULT_IND

DEVICE_SEARCH_COMP

Establish
connection

GAP Create_Connection

CONNECTION_COMP CONNECTION_COMP

Confirm
device

BD_ADDR_REQ_IND BD_ADDR_REQ_IND

SM Chk_Bd_Addr_Req_Resp SM Chk_Bd_Addr_Req_Resp

Start bonding GAP Start_Bonding

Bonding
request and

response

 BONDING_REQ_IND

 GAP Bonding_Response

TK request
and response

TK_REQ_IND

SM Tk_Req_Resp

 TK_REQ_IND

 SM Tk_Req_Resp

LTK delivery
 LTK_REQ_IND

 SM Ltk_Req_Resp

Key Indication KEY_IND KEY_IND

Bonding
completion

BONDING_COMP BONDING_COMP

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 15 of 125
Jul 31, 2017

Figure 5-7 Log of Master Device (when connecting device with security)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 16 of 125
Jul 31, 2017

Figure 5-8 Log of Master device (when connecting device with security) (continued).

Figure 5-9 Log of Slave device (when connecting device with security)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 17 of 125
Jul 31, 2017

Figure 5-10 Log of Slave Device (when connecting device with security) (continued)

5.7. Generic Attribute Profile (GATT)
Commands and events for obtaining the characteristic handle grouped in service of remote device are shown in the
following table as basic operations of the GATT. In addition, Figure 5-11 show the log of the Master device and Figure
5-12 shows the log of the Slave device when you do the following operations in the table.

Operation Master (Command & Event) Slave (Command & Event)
Connecting to
the remote
device

Refer to 5.5 Generic Access Profile (GAP) and 5.6 Security Manager (SM)

Enable GATT GATT Enable

Read
characteritics

GATT Discovery_Char_Request
DISC_CHAR_BY_UUID_CMP

DISC_CHAR_BY_UUID_CMP

COMPLETE

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 18 of 125
Jul 31, 2017

Figure 5-11 Log of Master (Read Characteristic using GATT)

Figure 5-12 Log of Slave (Read Characteristic using GATT)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 19 of 125
Jul 31, 2017

5.8. Find Me Profile (FMP)
Commands and events for writing alert level are shown in the following table as basic operations of the FMP. In
addition, Figure 5-13 show the log of the Locator device and Figure 5-14 shows the log of the Target device when you
do the following operations in the table.

Operations Locator (Command & Event) Target (Command & Event)
Connecting to
the remote
device

Refer to 5.5 Generic Access Profile (GAP) and 5.6 Security Manager (SM)

Enable target
 FMP Target_Enable

 TARGET_ENABLE_COMP

Enable
locator

FMP Locator_Enable
LOCATOR_ENABLE_COMP

Set alert
FMP Locator_Set_Alert

 TARGET_ALERT_IND

[Note]

All profiles are connected to the remote device using GAP and SM commands, and use the handle that has been
notified at the time of connection.
About commands and events for profiles are described after connecting to the remote device.
To connect to the remote device, refer to 5.5 Generic Access Profile and 5.6 Security Manager.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 20 of 125
Jul 31, 2017

Figure 5-13 Log of FMP Locator

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 21 of 125
Jul 31, 2017

Figure 5-14 Log of FMP Target

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 22 of 125
Jul 31, 2017

5.9. Proximity Profile (PXP)
Commands and events for reading and writing alert level are shown in the following table as basic operations of the
PXP. In addition, Figure 5-15 and Figure 5-16 show the log of the Monitor device and Figure 5-17 shows the log of the
Reporter device when you do the following operations in the table.

Operation Monitor (Command & Event) Reporter (Command & Event)
Connecting to
the remote
device

Refer to 5.5 Generic Access Profile (GAP) and 5.6 Security Manager (SM)

Enable
reporter

 PXP Reporter_Enable

 REPORTER_ENABLE_COMP

Enable
monitor

PXP Monitor_Enable
MONITOR_ENABLE_COMP

Read alert
level

PXP Monitor_Get_Alert_Level

MONITOR_READ_CHAR_RESPONSE

Write alert
level

PXP Monitor_Set_Alert_Level

MONITOR_WRITE_CHAR_RESPONSE

[Note]

All profiles are connected to the remote device using GAP and SM commands, and use the handle that has been
notified at the time of connection.
About commands and events for profiles are described after connecting to the remote device.
To connect to the remote device, refer to 5.5 Generic Access Profile and 5.6 Security Manager.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 23 of 125
Jul 31, 2017

Figure 5-15 Log of PXP Monitor

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 24 of 125
Jul 31, 2017

Figure 5-16 Log of PXP Monitor (continued)

Figure 5-17 Log of PXP Reporter

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 25 of 125
Jul 31, 2017

5.10. Health Thermometer Profile (HTP)
Commands and events for sending thermometer data are shown in the following table as basic operations of the HTP. In
addition, Figure 5-18 and Figure 5-19 show the log of the Collector device and Figure 5-20 and Figure 5-21 shows the
log of the Thermometer device when you do the following operations in the table.

Operation Collector (Command & Event) Thermometer (Command & Event)
Connecting to
the remote
device

Refer to 5.5 Generic Access Profile (GAP) and 5.6 Security Manager (SM)

Enable
Thermometer

 HTP Thermometer_Enable

 THERMOMETER_ENABLE_COMP

Enable
Collector

HTP Collector_Enable
COLLECTOR_ENABLE_COMP

Enable
Indication

HTP Collector_Write_Char
COLLECTOR_WRITE_CHAR_RESPONSE THERMOMETER_CFG_INDNTF_IND

Transmit and
receive
thermometer
data

 HTP Thermometer_Send_Temp

COLLECTOR_TEMP_IND THERMOMETER_SEND_TEMP_COMP

[Note]
All profiles are connected to the remote device using GAP and SM commands, and use the handle that has been
notified at the time of connection.
About commands and events for profiles are described after connecting to the remote device.
To connect to the remote device, refer to 5.5 Generic Access Profile and 5.6 Security Manager.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 26 of 125
Jul 31, 2017

Figure 5-18 Log of HTP Collector

Figure 5-19 Log of HTP Collector (continued)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 27 of 125
Jul 31, 2017

Figure 5-20 Log of HTP Thermometer

Figure 5-21 Log of HTP Thermometer (continued)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 28 of 125
Jul 31, 2017

5.11. Blood Pressure Profile (BLP)
Commands and events for sending measurement data are shown in the following table as basic operations of the BLP.
In addition, Figure 5-22 and Figure 5-23 show the log of the Collector device and Figure 5-24 shows the log of the
Sensor device when you do the following operations in the table.

Operation Collector (Command & Event) Sensor (Command & Event)
Connecting to
the remote
device

Refer to 5.5 Generic Access Profile (GAP) and 5.6 Security Manager (SM)

Enable Sensor
 BLP Sensor_Enable

 SENSOR_ENABLE_COMP

Enable
Collector

BLP Collector_Enable
COLLECTOR_ENABLE_COMP

Enable
Indication

BLP Collector_Write_Char
COLLECTOR_WRITE_CHAR_RESPONSE SENSOR_CFG_INDNTF_IND

Transmit and
receive
measurement
data

 BLP Sensor_Send_Measurements

COLLECTOR_MEASUREMENTS_IND SENSOR_SEND_MEASUREMENTS_COMP

[Note]

All profiles are connected to the remote device using GAP and SM commands, and use the handle that has been
notified at the time of connection.
About commands and events for profiles are described after connecting to the remote device.
To connect to the remote device, refer to 5.5 Generic Access Profile and 5.6 Security Manager.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 29 of 125
Jul 31, 2017

Figure 5-22 Log of BLP Collector

Figure 5-23 Log of BLP Collector (continued)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 30 of 125
Jul 31, 2017

Figure 5-24 Log of BLP Sensor

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 31 of 125
Jul 31, 2017

5.12. HID over GATT Profile (HOGP)
Commands and events for transmitting the input report data are shown in the following table as basic operations of the
HOGP. In addition, Figure 5-25 and Figure 5-26 shows the log of the Report Host device and Figure 5-27 and Figure
5-29 shows the log of the HID Device when you do the following operations in the table.

Operation Report Host (Command & Event) HID Device (Command & Event)
Connecting to
the remote
device

Refer to 5.5 Generic Access Profile (GAP) and 5.6 Security Manager (SM)

Enable HID
device

 HGP_HDevice_Enable

 HDEVICE_ENABLE_COMP

Enable report
host

HGP_RHost_Enable
RHOST_ENABLE_COMP

Transmit and
receive input
report data

HGP_RHost_Set_Report

RHOST_WRITE_CHAR_RESPONSE HDEVICE_REPORT_IND

[Note]

All profiles are connected to the remote device using GAP and SM commands, and use the handle that has been
notified at the time of connection.
About commands and events for profiles are described after connecting to the remote device.
To connect to the remote device, refer to 5.5 Generic Access Profile and 5.6 Security Manager.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 32 of 125
Jul 31, 2017

Figure 5-25 Log of Report Host

Figure 5-26 Log of Report Host (continued)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 33 of 125
Jul 31, 2017

Figure 5-27 Log of HID Device

Figure 5-28 Log of HID Device (continued)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 34 of 125
Jul 31, 2017

5.13. Scan Parameters Profile (ScPP)
Commands and events for transmitting the scan interval window data are shown in the following table as basic
operations of the ScPP. In addition, Figure 5-29 shows the log of the Scan Client device and Figure 5-30 shows the log
of the Scan Server device when you do the following operations in the table.

Operation Scan Client (Command & Event) Scan Server (Command & Event)

Connect to the
remote device Refer to 5.5 Generic Access Profile (GAP) and 5.6 Security Manager (SM)

Enable server
 SPP_Server_Enable

 SPPS_ENABLE_COMP

Enable client
SPP_Client_Enable
SPPC_ENABLE_COMP

Transmit and
receive scan
interval
window data

SPP_Client_Write_Interval

 SPPS_INTERVAL_WINDOW_CHG_EVT

[Note]

All profiles are connected to the remote device using GAP and SM commands, and use the handle that has been
notified at the time of connection.
About commands and events for profiles are described after connecting to the remote device.
To connect to the remote device, refer to 5.5 Generic Access Profile and 5.6 Security Manager.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 35 of 125
Jul 31, 2017

Figure 5-29 Log of Scan Client

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 36 of 125
Jul 31, 2017

Figure 5-30 Log of Scan Server

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 37 of 125
Jul 31, 2017

5.14. Heart Rate Profile (HRP)
Commands and events for sending measurement data are shown in the following table as basic operations of the HRP.
In addition, Figure 5-31 and Figure 5-32 show the log of the Collector device and Figure 5-33 shows the log of the
Sensor device when you do the following operations in the table.

Operation Heart Rate Collector (Command & Event) Heart Rate Sensor (Command & Event)

Connect to the
remote device Refer to 5.5 Generic Access Profile (GAP) and 5.6 Security Manager (SM)

Enable Sensor
 HRP Sensor_Enable

 SENSOR_ENABLE_COMP

Enable
Collector

HRP Collector_Enable
COLLECTOR_ENABLE_COMP

Enable
Indication

HRP Collector_Write_Char
COLLECTOR_WRITE_CHAR_RESPONS
E SENSOR_CFG_NTF_IND

Transmit and
receive
measurement
data

 HRP Sensor_Send_Measurements

COLLECTOR_MEASUREMENTS_NTF SENSOR_SEND_MEASUREMENTS_CO
MP

[Note]

All profiles are connected to the remote device using GAP and SM commands, and use the handle that has been
notified at the time of connection.
About commands and events for profiles are described after connecting to the remote device.
To connect to the remote device, refer to 5.5 Generic Access Profile and 5.6 Security Manager.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 38 of 125
Jul 31, 2017

Figure 5-31 Log of HRP Collector

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 39 of 125
Jul 31, 2017

Figure 5-32 Log of HRP Collector (continued)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 40 of 125
Jul 31, 2017

Figure 5-33 Log of HRP Sensor

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 41 of 125
Jul 31, 2017

5.15. Cycling Speed and Cadence Profile (CSCP)
Commands and events for sending CSC measurement data are shown in the following table as basic operations of the
CSCP. In addition, Figure 5-34 , Figure 5-35 and Figure 5-36 show the log of the Collector device and Figure 5-37
shows the log of the Sensor device when you do the following operations in the table.

Operation Cycling Speed and Cadence Collector
(Command & Event)

Cycling Speed and Cadence Sensor
(Command & Event)

Connect to the
remote device Refer to 5.5 Generic Access Profile (GAP) and 5.6 Security Manager (SM)

Enable Sensor
 CSCP Sensor_Enable

 SENSOR_ENABLE_COMP

Enable
Collector

CSCP Collector_Enable
COLLECTOR_ENABLE_COMP

Enable
Indication

CSCP Collector_Write_Char
COLLECTOR_WRITE_CHAR_RESPONS
E SENSOR_CFG_INDNTF_IND

Transmit and
receive CSC
measurement
data

 CSCP Sensor_Send_Measurements

COLLECTOR_MEASUREMENTS_NTF SENSOR_SEND_MEASUREMENTS_CO
MP

[Note]

All profiles are connected to the remote device using GAP and SM commands, and use the handle that has been
notified at the time of connection.
About commands and events for profiles are described after connecting to the remote device.
To connect to the remote device, refer to 5.5 Generic Access Profile and 5.6 Security Manager.

Figure 5-34 Log of CSCP Collector

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 42 of 125
Jul 31, 2017

Figure 5-35 Log of CSCP Collector (continued -1)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 43 of 125
Jul 31, 2017

Figure 5-36 Log of CSCP Collector (continued -2)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 44 of 125
Jul 31, 2017

Figure 5-37 Log of CSCP Sensor

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 45 of 125
Jul 31, 2017

5.16. Cycling Power Profile (CPP)
Commands and events for sending Cycling Power measurement data are shown in the following table as basic
operations of the CPP. In addition, Figure 5-38, Figure 5-39 and Figure 5-40 show the log of the Collector device
and Figure 5-41 shows the log of the Sensor device when you do the following operations in the table.

Operation Cycling Power Collector (Command & Event) Cycling Power Sensor (Command & Event)

Connect to the
remote device Refer to 5.5 Generic Access Profile (GAP) and 5.6 Security Manager (SM)

Enable Sensor
 CPP Sensor_Enable

 SENSOR_ENABLE_COMP

Enable
Collector

CPP Collector_Enable
COLLECTOR_ENABLE_COMP

Enable
Indication

CPP Collector_Write_Char
COLLECTOR_WRITE_CHAR_RESPONS
E SENSOR_CFG_INDNTFBRD_IND

Transmit and
receive
Cycling Power
measurement
data

 CPP Sensor_Send_Measurements

COLLECTOR_MEASUREMENTS_NTF SENSOR_SEND_MEASUREMENTS_CO
MP

[Note]

All profiles are connected to the remote device using GAP and SM commands, and use the handle that has been
notified at the time of connection.
About commands and events for profiles are described after connecting to the remote device.
To connect to the remote device, refer to 5.5 Generic Access Profile and 5.6 Security Manager.

Figure 5-38 Log of CPP Collector

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 46 of 125
Jul 31, 2017

Figure 5-39 Log of CPP Collector (continued -1)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 47 of 125
Jul 31, 2017

Figure 5-40 Log of CPP Collector (continued -2)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 48 of 125
Jul 31, 2017

Figure 5-41 Log of CPP Sensor

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 49 of 125
Jul 31, 2017

5.17. Alert Notification Profile (ANP)
Commands and events for sending New Alert data are shown in the following table as basic operations of the ANP. In
addition, Figure 5-42 and Figure 5-43 show the log of the Client device and Figure 5-44 shows the log of the Server
device when you do the following operations in the table.

Operation Alert Notification Client (Command & Event) Alert Notification Server (Command & Event)

Connect to the
remote device Refer to 5.5 Generic Access Profile (GAP) and 5.6 Security Manager (SM)

Enable Sensor
 ANP Server_Enable

 SERVER_ENABLE_COMP

Enable
Collector

ANP Client_Enable
CLIENT_ENABLE_COMP

Enable
Indication

ANP Client_Write_Char

CLIENT_WRITE_CHAR_RESPONSE SERVER_CFG_NTF_IND
Transmit and
receive New
Alert data

 ANP Sensor_Send_New_Alert

CLIENT_NEW_ALERT_NTF SERVER_SEND_NEW_ALERT_COMP
[Note]

All profiles are connected to the remote device using GAP and SM commands, and use the handle that has been
notified at the time of connection.
About commands and events for profiles are described after connecting to the remote device.
To connect to the remote device, refer to 5.5 Generic Access Profile and 5.6 Security Manager.

Figure 5-42 Log of ANP Client

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 50 of 125
Jul 31, 2017

Figure 5-43 Log of ANP Client (continued)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 51 of 125
Jul 31, 2017

Figure 5-44 Log of ANP Server

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 52 of 125
Jul 31, 2017

5.18. Location and Navigation Profile (LNP)
Commands and events for sending Location Speed data are shown in the following table as basic operations of the LNP.
In addition, Figure 5-45, Figure 5-46 and Figure 5-47 show the log of the Collector device and Figure 5-48 shows the
log of the Sensor device when you do the following operations in the table.

Operation Location and Navigation Collector
(Command & Event)

Location and Navigation Sensor
 (Command & Event)

Connect to the
remote device Refer to 5.5 Generic Access Profile (GAP) and 5.6 Security Manager (SM)

Enable Sensor
 LNP Sensor_Enable

 SENSOR_ENABLE_COMP

Enable
Collector

LNP Collector_Enable
COLLECTOR_ENABLE_COMP

Enable
Indication

LNP Collector_Write_Char
COLLECTOR_WRITE_CHAR_RESPONS
E SENSOR_CFG_INDNTF_IND

Transmit and
receive
Location
Speed data

 LNP Sensor_Send_Location_Speed

COLLECTOR_LOCATION_SPEED_NTF SENSOR_SEND_LOCATION_SPEED_CO
MP

[Note]

All profiles are connected to the remote device using GAP and SM commands, and use the handle that has been
notified at the time of connection.
About commands and events for profiles are described after connecting to the remote device.
To connect to the remote device, refer to 5.5 Generic Access Profile and 5.6 Security Manager.

Figure 5-45 Log of LNP Collector

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 53 of 125
Jul 31, 2017

Figure 5-46 Log of LNP Collector (continued -1)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 54 of 125
Jul 31, 2017

Figure 5-47 Log of LNP Collector (continued -2)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 55 of 125
Jul 31, 2017

Figure 5-48 Log of LNP Sensor

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 56 of 125
Jul 31, 2017

5.19. Vendor Specific (VS)
Commands and events for using the Direct Test Mode are shown in the following table as basic operations of the VS. In
addition, Figure 5-49 shows the log of the transmitter device and Figure 5-50 shows the log of the receiver device when
you do the following operations in the table.

Operation Transmitter (Command & Event) Receiver (Command & Event)

Enable VS VS Enable VS Enable

Test start
VS Test_Tx_Start VS Test_Rx_Start

TEST_TX_START_COMP TEST_RX_START_COMP

Test end
VS Test_End VS Test_End

TEST_END_COMP TEST_END_COMP

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 57 of 125
Jul 31, 2017

Figure 5-49 Log of Direct Test Mode (Transmitter)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 58 of 125
Jul 31, 2017

Figure 5-50 Log of Direct Test Mode (Receiver)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 59 of 125
Jul 31, 2017

6. Usage of Simple Sample Program
 This simple sample program shows how to use the BLE software. Contrary to the Sample Program, this simple sample
program includes small functions, thus you can understand the behavior and the implementation easily.

This simple sample program is identical with “Embedded Configuration Sample Application (r01an3319)” Peripheral
role sample application. Refer “Embedded Configuration Sample Application (r01an3319)” application note for the
detail.

6.1. Configuration
This simple sample program works with embedded configuration only. Not works with modem configuration.

6.2. HEX File Preparation
There are two methods to prepare HEX file.

First one is to use the pre-built HEX file. The pre-built HEX files are located in
/Renesas/BLE_Software_Ver_X_XX/RL78_G1D/ROM_File. You can find the pre-built HEX files compiled with each
supported compiler (CC-RL, IAR, CA78K0R).

Second one is to build the HEX file from source codes. The project files are located in
/Renesas/BLE_Software_Ver_X_XX/RL78_G1D/renesas/tools/simple_sample. You can find the project files for each
supported development environment (e2 studio, CS+, IAR Embedded Workbench).

6.3. Behavior
After writing the HEX file prepared in Section 6.2 onto RL78/G1D Test Board, reset the board by pressing the reset
button. After the reset, make sure LED1 and LED2 on the board start blinking.

The simple sample program starts advertising automatically. You can perform following functions after establishing
connection between the board and a peer device.

- A peer device receives SW4 state (PUSH/RELEASE) from the board

- A peer device controls LED4 state (ON/OFF) on the board

You need a peer device for the simple sample program behavior checking. From next section describes the procedure
to use Android Device or iOS Device as a peer device.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 60 of 125
Jul 31, 2017

6.4. Check with Android Device
This section describes procedures to check the simple sample program behavior with Android Device. We use “BLE
Scanner Version 3.6”. Check following URL for details of BLE Scanner.

https://play.google.com/store/apps/details?id=com.macdom.ble.blescanner&hl=en

1) Launch BLE Scanner on Android Device and scan nearby device. Select the device the name is “REL-BLE”
from the discovered device list (Figure a). After selecting the device, a connection between the board and
Android Device is established.

2) Select CUSTOM SERVICE (UUID: 5BC1B9F7-A1F1-40AF-9043-C43692C18D7A) from the service list
(Figure b).

3) Procedures for “Android Device receives SW4 state (PUSH/RELEASE) from the board”
You use CUSTOM CHARACTERISTIC (UUID: 5BC18D80-A1F1-40AF-9043-C43692C18D7A) for the LED4
control. When you tap on (N) button (Figure c, upside arrow), the board starts sending SW4 state to Android
Device. Depends on the board SW4 state, you will see “HEX” value is changed (Figure c, downside arrow).
When SW4 state is RELEASE you will see 0x00, when SW4 state is PUSH you will see 0x01. To stop sending
SW4 state, re-tap the (N) button.

4) Procedures for “Android Device controls LED4 state (ON/OFF) on the board”.
You use CUSTOM CHARACTERISTIC (UUID: 5BC143EE-A1F1-40AF-9043-C43692C18D7A) for the LED4
control. When you tap (W) button (Figure d), a dialog is opened. Then select “Byte Array”, input “01” and tap
“OK” (Figure e), then you will see LED4 is ON. To turn OFF LED4 writes 0x01.

https://play.google.com/store/apps/details?id=com.macdom.ble.blescanner&hl=en

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 61 of 125
Jul 31, 2017

Figure a

Figure b

Figure c

Figure d

Figure e

１

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 62 of 125
Jul 31, 2017

6.5. Check with iOS Device
This section describes the process to check the behavior of the simple sample program with iOS Device. We use
“LightBlue Version 2.4.0”. Regarding LightBlue, see following URL.

https://itunes.apple.com/en/app/lightblue-explorer-bluetooth/id557428110?mt=8

1) Launch BLE Scanner on Android Device and scan nearby device. Select the device the name is “REL-BLE”
from the discovered device list (Figure a). After selecting the device, a connection between the board and
Android Device is established.

2) Procedures for “iOS Device receives SW4 state (PUSH/RELEASE) from the board”
Select Characteristic (UUID:5BC18D80-A1F1-40AF-9043-C43692C18D7A) (Figure b, upside arrow). Tap on
“Listen for notifications” button (Figure c), and then the board start sending SW4 state to iOS Device. Depends
on the board SW4 state, you will see “NOTIFIED VALUES” is changed (Figure d, downside arrow). When SW4
state is RELEASE you will see 0x00, when SW4 state is PUSH you will see 0x01. To stop the SW4 state sending,
tap on “Stop Listening” (Figure d, upside arrow).

3) Procedures for “iOS Device controls LED4 state (ON/OFF) on the board”.
Select Characteristic (UUID:5BC1B9F7-A1F1-40AF-9043-C43692C18D7A) (Figure b, downside arrow). When
you tap on “write new value” (Figure e), then new dialog is opened. Input “01” and tap on “Done” on the dialog
(Figure f), then you will see LED4 on the board is ON. To turn off the LED4, write 0x00.

https://itunes.apple.com/en/app/lightblue-explorer-bluetooth/id557428110?mt=8

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 63 of 125
Jul 31, 2017

Figure a

Figure b

Figure c

Figure d

Figure e

Figure f

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 64 of 125
Jul 31, 2017

7. Appendix

7.1. Transmit and Receive Operations in the Sample Program for the Computer
The application running on the APP MCU is provided the BLE services from the BLE MCU via rBLE_Host. APP
MCU and BLE MCU are physically connected by the UART or CSI or IIC and communicate each other using RSCIP
(Renesas Serial Communication Protocol) under the control of rBLE_Host.

Figure 7-1 shows the internal structure of the sample program for computer. The sample program for computer works
by calling the command I/O function from the main processing and rBLE software blocks as shown Figure 7-1.

main processing

rBLE software
command I/O

call from the
main loop

event notification
(callback function call)

call from the
main loop

command request
(rBLE API function call)

user
input

Figure 7-1 Internal structure of sample program

The process of transmitting and receiving in rBLE software block, are handled by calling the rBLE_Run function from
the main processing block.

The rBLE_Run function checks the transmit buffer to the BLE MCU and calls the transmit function in RSCIP driver if
there is the transmit data. It also analyzes received data in the receive buffer from BLE-MCU, if any, and calls
registered application function based on the event information.

Also, if there is an event notification, it calls RSCIP function corresponding to the event. Figure 7-2 shows the sequence
of internal processing.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 65 of 125
Jul 31, 2017

main processing

rBLE_sample.cpp rble_sample.app.c rble_if_api_cb.c rBLE_host.c RSCIP_Driver UART Driver

issue of
transmit event

"rBLE_Run" function call

Y

UART transmit
processing

receive buffer
allocation

↓
data storage

Y

N

Y

N

Y

Transmit function call

(console.c)

console input
key data

(console.c)

menu selection

(menu_sel.c)

rBLE command function call transmit buffer
allocation

↓

packet construction

Y

callback function
display contents

console output
display screen

receive data
analysis

N

Y

N

N

N

transmit data exist ?

receive data exist ?

transmit request event exists ?

packet is received successfully ?

transmit event exists ?

receive event exists ?

Figure 7-2 Internal processing of the sample program (main processing)

Figure 7-3 shows the sequence of events at the time of issuance of the transmit events from RSCIP. The RSCIP
processes transmit requests both from the retransmit processing block and from the application in one place, so it issues
transmit event request to the rBLE when transmit events from both side. The rBLE calls RSCIP transmit function as
shown in Figure 7-2 if transmit request is generated from both sides.

issue of
transmit event

rBLE_sample.cpp rble_sample.app.c rble_if_api_cb.c rBLE_host.c UART Driver

set transmit event

return

RSCIP_Driver

Figure 7-3 Internal processing of sample program (issue of transmit event)

Figure 7-4 shows the sequence of events at the time of issuance of the receive events from RSCIP. Considering that the
data receive notification from serial communication driver is called from an interrupt, RSCIP issues the receive event
request to the rBLE when a packet has been received. The rBLE calls RSCIP packet receive function as shown in
Figure 7-2 if receive event request is generated.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 66 of 125
Jul 31, 2017

UART Driver

main processing

rBLE_sample.cpp rble_sample.app.c rble_if_api_cb.c rBLE_host.c RSCIP_Driver

return

buffering

set receive event

Y

N

N

Y

data received ?

whole packet received ?

Figure 7-4 Internal processing of sample program (issue of receive event)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 67 of 125
Jul 31, 2017

7.2. Requirements and Flow Chart of Serial Communication Driver on APP MCU
The requirements on the APP MCU in the application development of modem configuration are summarized below.

H/W resource

1 channel of UART or CSI (Clocked Serial Interface) or IIC(Inter-Integrated Circuit) for serial communication is
required for the communication with BLE MCU.

Timer

The timeout function is required in the RSCIP driver. (Refer to the RSCIP implementation in rBLE_Host).

Serial communication driver

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 68 of 125
Jul 31, 2017

The serial communication driver using UART or CSI or IIC should be prepared by the user.
In addition, the following functions are required in the serial communication driver as an interface between the
RSCIP driver and serial communication driver.

•
Function BOOL serial_init (void)
Overview Serial communication driver initialization function

Description
This function initializes the serial communication driver.
Initialize the serial communication driver in settings that are described in the Bluetooth
Low Energy Protocol Stack User’s Manual.

Arguments None

Return value
TRUE Initialization is completed successfully
FALSE Initialization is completed with some errors

Function BOOL serial_write (uint8_t *bufptr, uint16_t size)
Overview Serial communication driver transmit function

Description

This function is a non-blocking function that transmits specified size of data via the serial
communication line.
The transmit data size is specified by the argument ‘size’ and transmit data is stored in
the area pointed by the argument ‘*bufprt’.
When the transmission of data is completed, call following transmit0 completion
notification function (RSCIP_Uart_Tx_Done) to RSCIP driver.
void RSCIP_Uart_Tx_Done(void);
If the method other than the two-wire UART connection is used, follow the transmit
handshake procedure that is described in the Bluetooth Low Energy Protocol Stack
User's Manual.

Arguments
uint8_t *bufptr Pointer to the transmit data buffer
uint16_t size Data size to be transmitted

Return Value
TRUE Transmission is completed successfully
FALSE Transmission is completed with some errors

This function may be called from an interrupt.
In the sample program, transmit processing is performed by rBLE_Run function, which
is called from main loop, except the minimum required processing that should be done
in this function.

Function BOOL serial_read (uint8_t *bufptr, uint16_t size)
Overview Serial communication driver receive function

Description

This function is a non-blocking function that receives specified size of data via the serial
communication line.
The receive data size is specified by the argument ‘size’. Store received data into the
area pointed by the argument ‘*bufprt’.
When the reception of data is completed, call following receive completion notification
function (RSCIP_Uart_Rx_Done) to RSCIP driver.
void RSCIP_Uart_Rx_Done (void);
If the method other than the two-wire UART connection is used, follow the receive
handshake procedure that is described in the Bluetooth Low Energy Protocol Stack
User's Manual.
In addition, after calling the RSCIP receive completion notification function, call the
following RSCIP get receive status function and check its return value in order to
determine whether or not to receive data continuously.
BOOL RSCIP_Uart_Rx_Idle (void);
FALSE indicates that the packet reception is not completed.
TRUE indicates that the packet reception is completed, and the driver is waiting for the
beginning of the next packet.

Arguments uint8_t *bufptr pointer to the receive data buffer

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 69 of 125
Jul 31, 2017

uint16_t size data size to be received

Return Value
TRUE Reception is completed successfully
FALSE Reception is completed with some errors

Supplement

This function may be called from an interrupt.
In the sample program, receive processing is performed by rBLE_Run function, which is
called from main loop, except the minimum required processing that should be done in
this function.

Function void serial_exit (void)
Overview Serial communication driver exit function

Description
This function does the exit procedure of the serial communication driver.
Do the exit procedure of the serial communication driver.

Arguments none
Return Value none

In the Modem configuration, the following connection methods are available as the serial communication line.
Refer to the Bluetooth Low Energy Protocol Stack User's Manual for more details of the connection method.

Implement the driver that fits with your system resources, refer to the flow chart of the serial communication procedure
examples,

Hardware Connection method Example of transmit procedure Example of receive procedure
UART 2-wire Refer to 7.2.1 Transmit Procedure

Example using the UART 2-wire
Connection Method, below.

Refer to (2) Receive Procedure
Example using the UART Two-wire
Connection Method, below.

3-wire Refer to 7.2.3 Transmit Procedure
Example using the UART 3-wire
Connection Method, below.

Refer to 7.2.5 Receive Procedure
Example using the UART 3-wire and
2-wire with Branch Connection
Methods, below. 2-wire with branch Refer to 7.2.4 Transmit Procedure

Example using the UART 2-wire with
Branch Connection Method, below.

CSI 4-wire Refer to 7.2.6 Transmit Procedure
Example using the CSI 4-wire
Connection Method below.

Refer to 7.2.8 Receive Procedure
Example using the CSI 4-wire and
5-wire Connection Method, below.

5-wire Refer to 7.2.7 Transmit Procedure
Example using the CSI 5-wire
Connection Method, below.

IIC 3-wire Refer to 7.2.6 Transmit Procedure
Example using the IIC 3-wire
Connection Method below.

Refer to 7.2.8 Receive Procedure
Example using the IIC 3-wire
Connection Method, below.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 70 of 125
Jul 31, 2017

7.2.1. Transmit Procedure Example using the UART 2-wire Connection Method
The following flowchart shows an example of transmit procedure using the UART 2-wire connection method.

As a prerequisite, UART hardware in this example starts transmission by writing the transmit data address, transmit
data size and start command into UART registers, and generates an interrupt after the transmission of specified data is
completed.

7.2.2. Receive Procedure Example using the UART Two-wire Connection Method
The following flowchart shows an example of receive procedure using the UART 2-wire connection, 3-wire connection
or 2-wire with branch connection methods.

As a prerequisite, UART hardware in this example starts reception by writing the receive buffer address, receive data
size and start command into UART registers, and generates an interrupt after the reception of specified size of data is
completed.

* RSCIP_Uart_Rx_Done function calls the serial_read function to start the next reception operation.

Write the start address and size of transmit data given by arguments,
and write start command into UART registers.

Transmission starts.

serial_write
[Software]

Transmission ends.

Call RSCIP_Uart_Tx_Done. Transmit End
Interrupt Routine

[Software]

UART
[Hardware]

The UART notifies the completion by an interrupt.

The UART transmits specified size of data continuously.

Write the receive buffer address and receive data size of given
by arguments and write start command into the UART registers.

Reception starts.

serial_read
[Software]

Reception ends.

Call RSCIP_Uart_Rx_Done. Receive End
Interrupt Routine

[Software]

UART
[Hardware]

The UART notifies the completion by an interrupt.

The UART receives specified size of data continuously.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 71 of 125
Jul 31, 2017

7.2.3. Transmit Procedure Example using the UART 3-wire Connection Method
The following flowchart shows an example of transmit procedure using the UART 3-wire connection method.

As a prerequisite, UART hardware in this example starts transmission by writing the transmit data address, transmit
data size and start command into UART registers, and generates an interrupt after the transmission of specified data is
completed. Also, the receive procedure example described in 7.2.5 below is used.

In addition, for reliable communication, it is necessary to add the timeout process, in which carry out monitoring during
handshake procedure and re-execute the handshake procedure if a timeout occurs..

* Receive End Interrupt Routine is used in receive procedure example.

Save the start address and size of transmit data given by arguments
to global variables.

Transmission starts.

serial_write
[Software]

Write the start address and size of transmit data saved in (a) above
and write start command into UART registers.

Transmission ends.

Call RSCIP_Uart_Tx_Done.

Transmit End
Interrupt Routine

[Software]

UART
[Hardware] The UART notifies the transmit completion by an interrupt.

The UART transmits specified size of data continuously.

After initializing the WAKEUP signal to an inactive level,
change it to an active level to notify a send request to BLE MCU.

REQ byte (0x88) or data is received.

The UART notifies the receive completion by an interrupt.

UART
[Hardware]

Change the WAKEUP signal to active level. Receive End
Interrupt Routine

[Software]
(Refer to (5) below)

(a)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 72 of 125
Jul 31, 2017

7.2.4. Transmit Procedure Example using the UART 2-wire with Branch Connection Method
The following flow chart shows an example of transmit procedure using the UART 2-wire with branch connection
method.

As a prerequisite, UART hardware in this example starts transmission by writing the transmit data address, transmit
data size and start command into UART registers, and generates an interrupt after the transmission of specified data is
completed. Also, the receive procedure example described in 7.2.5 below is used.

In addition, for reliable communication, it is necessary to add the timeout process, in which carry out monitoring during
handshake procedure and re-execute the handshake procedure if a timeout occurs.

* Receive End Interrupt Routine is used in receive procedure example.

Save the start address and size of transmit data given by arguments
to global variables.

Write the start address and size of transmit data saved in (a) above
and write start command into UART registers.

Transmission starts.

serial_write
[Software]

Transmission ends.

Call RSCIP_Uart_Tx_Done.

Transmit End
Interrupt Routine

[Software]

UART
[Hardware]

The UART notifies the transmit completion by an interrupt.

The UART transmits specified size of data continuously.

Write the start address of transmit data buffer containing REQ byte (0xC0)
and size (1 byte) and write start command into UART registers.

The REQ byte notifies a send request to BLE MCU.

Receive End
Interrupt Routine

[Software]
(Refer to (5) below)

UART
[Hardware]

REQ byte (0xC0) is transmitted.

ACK byte (0x88) or data is received.

The UART notifies the receive completion by an interrupt.

(a)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 73 of 125
Jul 31, 2017

7.2.5. Receive Procedure Example using the UART 3-wire and 2-wire with Branch
Connection Methods

The following flowchart shows an example of receive procedure using the UART 3-wire connection and 2-wire with
branch connection methods.

As a prerequisite, UART hardware in this example starts reception by writing the receive buffer address, receive data
size and start command into UART registers, and generates an interrupt after the reception of specified size of data is
completed.

* RSCIP_Uart_Rx_Done function calls the serial_read function to start the next reception operation.

Save the receive buffer address and receive data size given
by arguments to global variables.

Reception starts.

serial_read
[Software]

Reception ends.

Call RSCIP_Uart_Rx_Done.

Receive End
Interrupt Routine

[Software]

UART
[Hardware]

 The UART notifies the completion by an interrupt.

The UART receives specified size of data continuously.

Yes

No Does RSCIP_Uart_Rx_Idle return true ? &&
Is the first byte of received data ACK byte (0x88) ?

Write the receive buffer address and receive data size given
by arguments and write start command into the UART registers.

Write the receive buffer address and receive data size saved
in (a) above and write start command into UART registers again.

(a)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 74 of 125
Jul 31, 2017

7.2.6. Transmit Procedure Example using the CSI 4-wire Connection Method
The following flowchart shows an example of transmit procedure using the CSI 4-wire connection method.

As a prerequisite, CSI hardware in this example starts transmission by writing the transmit data address, transmit data
size and start command into CSI registers, and generates an interrupt after the transmission of specified data is
completed. It is assumed that an input port of APP MCU are connected to the SDIR signal and also an interrupt is
generated by dual edge detection (both the falling edge and rising edge) of the SDIR signal.

In addition, for reliable communication, it is necessary to add the timeout process, in which carry out monitoring during
handshake procedure and re-execute the handshake procedure if a timeout occurs.

* The edge detection interrupt service routine is used more than once in the transmission operation.
* The edge detection interrupt service routine is also used in the receive operation.

Save the start address and size of transmit data given by arguments
to global variables.

Transmission starts.

serial_write
[Software]

Transmission ends.

Call RSCIP_Uart_Tx_Done. Transmit End
Interrupt Routine

[Software]

Port
[Hardware]

The edge detection is notified by an interrupt.

Edge detection
interrupt service routine

[Software]

A falling edge of the SDIR signal (Pulse) is detected.

CSI
[Hardware]

 The CSI notifies the transmit completion by an interrupt.

The CSI transmits specified size of data continuously.

Yes
No

Is communication state variable IDLE state ?

After detection of a rising edge of the SDIR signal (High) during receive
operation, set the communication state variable to TX state.

Set communication state variable to TX state.

Start transmission of the first byte in the transmit buffer.

Start transmission of the first byte in the transmit buffer.

The CSI transmits the first byte in the transmit buffer.

CSI
[Hardware]

Edge detection
interrupt service routine

[Software]

Set communication state variable to IDLE state.

Write the (transmit data address + 1) and (transmit data size - 1)
and write start command into UART registers.

Start transmission of the second and subsequent byte in the transmit buffer.
The transmit data address and transmit data size was saved in (a) above.

(a)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 75 of 125
Jul 31, 2017

7.2.7. Transmit Procedure Example using the CSI 5-wire Connection Method
The following flowchart shows an example of transmit procedure using the CSI 4-wire connection method.

As a prerequisite, CSI hardware in this example starts transmission by writing the transmit data address, transmit data
size and start command into CSI registers, and generates an interrupt after the transmission of specified data is
completed. It is assumed that an input port of APP MCU are connected to the SDIR signal and also an interrupt is
generated by dual edge detection (both the falling edge and rising edge) of the SDIR signal.

In addition, for reliable communication, it is necessary to add the timeout process, in which carry out monitoring during
handshake procedure and re-execute the handshake procedure if a timeout occurs.

* The edge detection interrupt service routine is used more than once in the transmission operation.
* The edge detection interrupt service routine is also used in the receive operation.

Save the start address and size of transmit data given by arguments
to global variables.

Transmission starts.

serial_write
[Software]

Transmission ends.

Call RSCIP_Uart_Tx_Done.
Transmit End

Interrupt Routine
[Software]

Port
[Hardware]

The falling edge detection is notified by an interrupt.

Edge detection
interrupt service routine

[Software]

A falling edge of the SDIR signal (Pulse), that notifies
transmit permission response, is detected.

CSI
[Hardware]

The CSI notifies the transmit completion by an interrupt.

The CSI transmits specified size of data continuously.

Yes
No

After detection of a rising edge of the SDIR signal (High) during receive
operation, set the communication state variable to TX state.

Set communication state variable to TX state.

Change the WAKEUP signal to an active level
to notify a transmit request to BLE MCU.

Edge detection
interrupt service routine

[Software] Write the start address and size of transmit data saved in (a) above
and write start command into CSI registers to start transmission.

After initializing the WAKEUP signal to an inactive level,
change it to an active level to notify a transmit request to BLE MCU.

Change the WAKEUP signal to inactive level.

Is communication state variable IDLE state ?

(a)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 76 of 125
Jul 31, 2017

7.2.8. Receive Procedure Example using the CSI 4-wire and 5-wire Connection Method
The following flowchart shows an example of receive procedure using the CSI 4-wire and 5-wire connection method.

As a prerequisite, CSI hardware in this example start reception by writing the receive buffer address, receive data size
and start command into CSI registers, and generates an interrupt after the reception of specified data is completed. It is
assumed that an input port of APP MCU are connected to the SDIR signal and also an interrupt is generated by dual
edge detection (both the falling edge and rising edge) of the SDIR signal.

Save the receive buffer address and receive data size given
by arguments to global variables.

Reception starts.

serial_read
[Software]

Transmission ends.

Call RSCIP_Uart_Rx_Done. Receive End
Interrupt Routine

[Software]

Port
[Hardware]

The falling edge detection is notified by an interrupt.

Write the start address of transmit data buffer containing ACK byte (0x88)
and size (1 byte) and write start command into CSI registers.

Edge detection
interrupt service routine

[Software]

A falling edge of the SDIR signal (Pulse), that notifies transmit request,
is detected.

Transmit an ACK byte (0x88). CSI
[Hardware]

Port
[Hardware]

The falling edge detection is notified by an interrupt.

A raising edge of the SDIR signal (Low), that notifies ready to transmit,
is detected.

Write the receive buffer address and receive data size saved in (a)
and write start command into the CSI registers to start transmission.

Edge detection
interrupt service routine

[Software]

CSI
[Hardware]

 The CSI notifies the completion by an interrupt.

The CSI receives specified size of data continuously.

Yes
No

Does RSCIP_Uart_Rx_Idle return true ?

Port
[Hardware]

The raising edge detection is notified by an interrupt.

A raising edge of the SDIR signal (High), that notifies transmit completion,
 is detected.

Yes
No

Is communication state variable IDLE state ?

Set communication state variable to IDLE state.

Edge detection
interrupt service routine

[Software]

Set communication state variable to RX state.

(a)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 77 of 125
Jul 31, 2017

* RSCIP_Uart_Rx_Done function calls the serial_read function to start the next reception operation.
* The edge detection interrupt service routine is used more than once in the transmission operation.
* The edge detection interrupt service routine is also used in the receive operation.

7.2.9. Transmit Procedure Example using the IIC 3-wire Connection Method
The following flowchart shows an example of receive procedure using the IIC 3-wire connection method.

As a prerequisite, IIC hardware to generate an interrupt after reception of 1 byte data.

In addition, for reliable communication, it is necessary to add the timeout process, in which carry out monitoring during

handshake procedure and re-execute the handshake procedure if a timeout occurs.

7.2.10. Receive Procedure Example using the IIC 3-wire Connection Method
The following flowchart shows an example of transmit procedure using the IIC 3-wire connection method.

As a prerequisite, IIC hardware to generate an interrupt after transmission of 1 byte data. It is assumed that an input port
of APP MCU are connected to the REQ signal and also an interrupt is generated by falling edge detection of the REQ
signal.

Save the start address and size of transmit data given by arguments
to global variables.

Transmission starts.

serial_write
[Software]

Transmission ends.

Call RSCIP_Uart_Tx_Done

Create the Stop Condition.

IIC interrupt service
routine

[Software]

Yes
No

Is communication state variable IDLE state?

Set communication state variable to TX_ACK wait state.

Create the Start Condition.

Set communication state variable to TX going state. (Only first time)

Start transmission of the next one byte data.

Set communication state variable to IDLE state.

Start transmission of the slave address with write-bit data byte.

Detected ACK?

Yes

Remaining data?
Yes

No

No

Reception end wait

IIC
[Hardware]

The IIC transmits the one byte in the transmit buffer.

The notification by IIC interrupt after ACK clock output.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 78 of 125
Jul 31, 2017

Edge detection
interrupt service routine

[Software]

IIC interrupt service
routine

[Software]

Save the receive buffer address and receive data size given
by arguments to global variables.

Reception starts.

serial_read
[Software]

Port
[Hardware]

The falling edge detection is notified by an interrupt.

Create the Start Condition.

A falling edge of the REQ signal is detected.

Start transmission of the slave address with Read-bit data byte.

Yes
No

Is communication state variable IDLE state ?

 Set communication state variable to RX_ACK wait state.

The IIC transmits the one byte in the transmit buffer.

The notification by IIC interrupt after ACK clock output.

IIC
[Hardware]

Set communication state variable to RX going state.

Detected ACK?

 Yes
No

Set to IIC 8 clocks interrupt mode.

Release the wait.

The IIC read clock to generate, and notified by the interrupt after the
data reception.

Reception buffer full?

Save the receive buffer address and receive data size given
by arguments to global variables.

Call RSCIP_Uart_Rx_Done

REQ signal equal High?

Set to automatic ACK disabled (receiving end) and
IIC 9 clocks interrupt mode.

Yes
No

Yes

Create the Stop Condition.

IIC
[Hardware]

IIC interrupt service
routine

[Software]

Call RSCIP_Uart_Rx_Done or RSCIP_Uart_Rx_Error

No

Reception last byte?

No

Set communication state variable to IDLE state.

Yes

Waiting to transmission?

Reception ends.

Transmission starts.

No
Yes

serial_read
[Software]

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 79 of 125
Jul 31, 2017

7.3. Porting of the Sample Program
When porting the sample program to APP MCU, there are modules that should be newly developed by the user and
modules that can be reused directly.

Table 7-1 shows the classification of them.

Table 7-1 How to port a sample program

Folder Name Classification Porting Details
BLE_Sample\src\Platform\G1D_cs_iar\ new

development
With reference to the sample program, this module
should be newly developed by the user, to meet the
resources in the APP MCU.

BLE_Sample\src\rBLE\src\host reuse This module can be reused directly.
BLE_Sample\src\rBLE\src\include reuse This module can be reused directly.
BLE_Sample\src\rBLE\src\rscip reuse This module can be reused directly.
BLE_Sample\src\rBLE\src\sample_app new

development
With reference to API usage in the sample program,
this module should be newly developed by the user.

It is to be noted that the reference value of the size of the reusable sample program are shown in Table 7-2. These
values are the result of compiling for the RL78/G1D.

Build Environment: CS+ for CC V4.00.00 / RL78 compiler CC-RL V1.03.00

Table 7-2 ROM size / RAM size

Components ROM size RAM size
rBLE (BLE_Sample\src\rBLE\src\host) 52,519 bytes 2,898 bytes
RSCIP (BLE_Sample\src\rBLE\src\rscip 4,279 bytes 1,268 bytes

When you implement the following measures, it is possible to reduce the RAM size about 2KB.

1) BLE_Sample\src\rBLE\src\host\rble_host.c
Before changing: #define MAX_BUFF_NUM 8
(Follows)
After changing: #define MAX_BUFF_NUM 2

[Note] You cannot call the command more than MAX_BUFF_NUM continuously.

2) BLE_Sample\src\rBLE\src\host\rble_if_api_cb.c
Before changing: static uint8_t rBLE_Over_Packet_Temp[0x256];
(Follows)
After changing: static uint8_t rBLE_Over_Packet_Temp[1];

[Note] You cannot handle data more than 128-byte in RBLE_VS_Flash_Access API.
If you call the API, illegal memory access occurs.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 80 of 125
Jul 31, 2017

7.4. How to use the Direct Test Mode
Direct Test Mode is performed by the Vendor Specific (VS) command. Figure 7-5 shows the Vendor Specific (VS)
command menu. The menu items from 2 to 5 are related to the Direct Test Mode.

After this section, the commands related to the Direct Test Mode are explained.

[Note]

About the details of Direct Test Mode, refer to the ‘Chapter 8. Vendor Specific’ in the ‘API Reference Manual: Basics’

Figure 7-5 Vendor Specific (VS) command menu

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 81 of 125
Jul 31, 2017

7.4.1. Direct Test Mode (Receiver)
Using the VS menu number 2 ‘VS Test_Rx_Start’, you can start the Direct Test Mode (Receiver).

Figure 7-6 Log of Direct Test Mode (Receiver) Start

Using the VS menu number 2 ‘VS Test_Rx_Start’, you can set the receive frequency (channel number). If no argument
is given, it displays the usage of this command. Figure 7-6 shows the log of execution, when the receive frequency is
channel 39 (2,480MHz).

If you want to terminate the execution of Direct Test Mode (Receiver), use the VS menu number 4 ‘VS Test_End’.
Figure 7-7 shows the log after execution of Direct Test Mode (Receiver). The number of received packets is displayed
after this test. The data have been received zero times in Figure 7-7 and 3,235 times in Figure 7-8.

Figure 7-7 Log of Direct Test Mode (Receiver) End

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 82 of 125
Jul 31, 2017

Figure 7-8 Log of Direct Test Mode (Receiver) End (cont.)

7.4.2. Direct Test Mode (Transmitter)
Using the VS menu number 3 ‘VS Test_Tx_Start’, you can start the Direct Test Mode (Transmitter).

Figure 7-9 Log of Direct Test Mode (Transmitter) Start

Using the VS menu number 3 ‘VS Test_Tx_Start’, you can set the transmit frequency (channel number), data size and
data type as arguments. If no argument is given, it displays the usage of this command. Figure 7-9 shows the log of
execution, when the transmit frequency is channel 0 (2,420MHz), data size is 27 bytes and data type is ALL0.

If you want to terminate the execution of Direct Test Mode (Transmitter), use the VS menu number 4 ‘VS Test_End’.
Figure 7-10 shows the log after execution of Direct Test Mode (Transmitter). The number of received packets is

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 83 of 125
Jul 31, 2017

displayed after this test and it is always 0.

Figure 7-10 Log of Direct Test Mode (Transmitter) End

7.4.3. Direct Test Mode (Parameter Set)
Using the VS menu number 5 ‘VS Test_Set_Parameter’, you can set the parameters for the Direct Test Mode (Receiver)
and Direct Test Mode (Transmitter) menu items.

Figure 7-11 Log of Direct Test Mode Parameter Set

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 84 of 125
Jul 31, 2017

Using the VS menu number 5 ‘VS Test_Set_Parameter’, you can set the number of packet receptions, the number of
packet transmissions, enable or disable of burst transfer as arguments. If no argument is given, it displays the usage of
this command. Figure 7-11 shows the log of execution, when the number of packet receptions is 10000 times, the
number of packet transmissions is 20 time and burst transfer is disabled.

Figure 7-12 Log of Direct Test Mode (Receiver) after Direct Test Mode Parameter Set

Figure 7-13 shows the log of the Direct Test Mode (Transmitter) after setting of the above parameters. The direct test
mode has automatically finished after sending 20 packets.

Figure 7-13 Log of Direct test mode (transmitter) after Direct Test Mode Parameter Set

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 85 of 125
Jul 31, 2017

7.5. Sample Custom Profile
This section explains the Sample Custom Profile (SCP) by using the GATT API below.

To use Sample Custom Profile (SCP), add "USE_SAMPLE_PROFILE" to the macro definition in the compile option of
a project.

7.5.1. Sample Custom Profile Specification
Sample Custom Profile (SCP) defines two roles: Client Role and Server Role.

Table 7-3 shows the service characteristics of the SCP.

Table 7-3 Sample Custom Profile Characteristic/Descriptor

Characteristic Name Properties Format Description
Notify Characteristic Notify uint8_t[] This characteristic is used to send any

notification. The length of notification is from 0 to
20 bytes and can be specified by the Notify
Length Characteristic.

Notify Characteristic - Client
Characteristic Configuration
descriptor

Read/Write uint16_t This characteristic descriptor is used to specify
ON/OFF of notification.

Indicate Characteristic Indicate uint8_t[] This characteristic is used to send any indication.
The length of indication is from 0 to 20 bytes and
can be specified by the Indication Length
Characteristic.

Indicate Characteristic - Client
Characteristic Configuration
descriptor

Read/Write uint16_t This characteristic descriptor is used to specify
ON/OFF of indication.

Interval Characteristic Read/Write uint16_t This characteristic is used to specify the transmit
interval of indication/notification. (unit: 10 ms)

Notify Length Characteristic Read/Write uint8_t This characteristic is used to specify the transmit
data size of notification.

Indicate Length Characteristic Read/Write uint8_t This characteristic is used to specify the transmit
data size of indication.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 86 of 125
Jul 31, 2017

7.5.2. File Structure Corresponding to Sample Custom Profile
The following figure shows the file structure corresponding to the sample custom profile.

Renesas
└ BLE_Software_Ver_X_XX
 ├ BLE_Sample Sample program folder for PC
 │ └ src
 │ └ rBLE BLE sample program folder
 │ └ src
 │ ├ include
 │ │ ├ rble_api_custom.h Custom profile additional API header file
 │ │ └ rble_app.h Sample program header file
 │ ├ sample_profile Sample profile folder
 │ │ ├ db_handle.h Attribute database handles header file
 │ │ └ scp Sample custom profile folder
 │ │ ├ scpc.c Sample custom profile client file
 │ │ └ scps.c Sample custom profile server file
 │ └ sample_app
 │ ├ rble_sample_app.c Sample program file
 │ └ rble_sample_custom.c Sample program file (Sample Custom Profile)
 └ RL78_G1D BLE software folder for BLE MCU
 └ Project_Source
 ├ rBLE rBLE folder
 │ └ src
 │ ├ include
 │ │├ rble_api_custom.h Custom profile additional API header file
 │ │└ rble_app.h Sample program header file
 │ ├ sample_profile Sample profile folder
 │ │└ scp Sample custom profile folder
 │ │ ├scpc.c Sample custom profile client file
 │ │ └scps.c Sample custom profile server file
 │ └ sample_app
 │ ├ rble_sample_app.c Sample program file
 │ └ rble_sample_custom.c Sample program file (Sample Custom Profile)
 └ renesas
 └ src
 └ arch
 └ rl78
 ├ prf_config.c Parameter file for profile
 ├ prf_config.h Parameter header file for profile
 ├ prf_sel.h Profile selection configuration header file
 └ db_handle.h Attribute database handles header file

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 87 of 125
Jul 31, 2017

7.5.3. API Functions defined for Sample Custom Profile
This section describes the API functions defined for the SCP (Sample Custom Profile) in detail.

7.5.3.1. RBLE_SCP_Clinet_Enable

RBLE_STATUS RBLE_SCP_Client_Enable (uint16_t conhdl, uint8_t con_type,
 RBLE_SCS_CONTENT *scs, RBLE_SCPC_EVENT_HANDLER call_back)

This function is used to enable the SCP Client role.
When connecting to the SCP Server device for the first time, set con_type to RBLE_SCP_CON_CFG, and
perform the configuration connection to discover service on the SCP Server device.
The result is notified by the client role enable completion event RBLE_SCP_EVENT_CLIENT_ENABLE_COMP,
save the obtained service information at this time.
When connecting to the SCP Server device for the second or subsequent time, set con_type to
RBLE_SCP_CON_NORMAL, and perform the normal connection by using saved service information. The
service discovery is skipped and the Client role can be enabled in shorter time.

Parameters:

conhdl Connection handle

con_type Connection type

scs
SCP handle information
(This parameter is valid if setting RBLE_SCP_CON_NORMAL to con_type.)

call_back Callback function for event notification

Return:

RBLE_OK Success

RBLE_PARAM_ERR Failure (Wrong parameter)

RBLE_STATUS_ERROR Failure (The state of the SCP Client is not “Disabled”)

7.5.3.2. RBLE_SCP_Clinet_Disable

RBLE_STATUS RBLE_SCP_Client_Disable (uint16_t conhdl)

This function is used to disable the SCP Client role.
The result is notified by the client role disable completion event RBLE_SCP_EVENT_CLIENT_DISABLE_COMP.

Parameters:

 conhdl Connection handle

Return:

RBLE_OK Success

RBLE_PARAM_ERR Failure (Wrong parameter)

RBLE_STATUS_ERROR Failure (The state of the SCP Client is not “Enabled”)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 88 of 125
Jul 31, 2017

7.5.3.3. RBLE_SCP_Clinet_Read_Char

RBLE_STATUS RBLE_SCP_Client_Read_Char (uint16_t conhdl, uint8_t char_code)

This function is used to read characteristic value or descriptor specified by char_code.
The result is notified by the read characteristic response event
RBLE_SCP_EVENT_CLIENT_READ_CHAR_RESPONSE.

Parameters:

conhdl Connection handle

char_code

Characteristic value or configuration descriptor to be read:
RBLE_SCP_SCS_NTF_CFG Read Notify ClientConfiguration descriptor
RBLE_SCP_SCS_IND_CFG Read Indicate ClientConfiguration descriptor
RBLE_SCP_SCS_INTERVAL Read Interval characteristic value
RBLE_SCP_SCS_NTF_LEN Read Notify Length characteristic value
RBLE_SCP_SCS_IND_LEN Read Indicate Length characteristic value

Return:

RBLE_OK Success

RBLE_PARAM_ERR Failure (Wrong parameter)

RBLE_STATUS_ERROR Failure (The state of the SCP Client is not “Enabled”)

7.5.3.4. RBLE_SCP_Clinet_Write_Char

RBLE_STATUS RBLE_SCP_Client_Write_Char (uint16_t conhdl, uint8_t char_code,
 uint8_t *write_value)
This function is used to write characteristic value or descriptor specified by char_code.
The result is notified by the write characteristic response event
RBLE_SCP_EVENT_CLIENT_WRITE_CHAR_RESPONSE.
Parameters:

conhdl Connection handle

char_code

Characteristic value or configuration descriptor to be written:
RBLE_SCP_SCS_NTF_CFG Write Notify ClientConfiguration descriptor
RBLE_SCP_SCS_IND_CFG Write Indicate ClientConfiguration descriptor
RBLE_SCP_SCS_INTERVAL Write Interval characteristic value
RBLE_SCP_SCS_NTF_LEN Write Notify Length characteristic value
RBLE_SCP_SCS_IND_LEN Write Indicate Length characteristic value

Return:

RBLE_OK Success

RBLE_PARAM_ERR Failure (Wrong parameter)

RBLE_STATUS_ERROR Failure (The state of the SCP Client is not “Enabled”)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 89 of 125
Jul 31, 2017

7.5.3.5. RBLE_SCP_Server_Enable

RBLE_STATUS RBLE_SCP_Server_Enable (uint16_t conhdl, uint8_t con_type,
 RBLE_SCP_SERVER_PARAM *param, RBLE_SCPS_EVENT_HANDLER call_back)

This function is used to enable the SCP Server role.
If the Client will write the notification/indication configuration descriptor later, set RBLE_SCP_CON_CFG to the
con_type and perform the configuration connection.
If the Server writes (initializes) the notification/indication configuration descriptor, set RBLE_SCP_CON_NORMAL
to the con_type, set the initial value to the param and perform the normal connection.
The result is notified by the server role enable completion event
RBLE_SCP_EVENT_SERVER_ENABLE_COMP.

Parameters:

Conhdl Connection handle

con_type Connection type

Param

Initial value (This parameter is valid if the con_type is RBLE_SCP_CON_NORMAL)

data_ntf_en Initial value for Notify ClientConfiguration descriptor

data_ind_en Initial value for Indicate ClientConfiguration descriptor

call_back Callback function for event notification

Return:

RBLE_OK Success

RBLE_PARAM_ERR Failure (Wrong parameter)

RBLE_STATUS_ERROR Failure (The state of the SCP Server is not “Disabled”)

7.5.3.6. RBLE_SCP_Server_Disable

RBLE_STATUS RBLE_SCP_Server_Disable(uint16_t conhdl,)

This function is used to disable the SCP Server role.
The result is notified by the server role disable completion event
RBLE_SCP_EVENT_SERVER_DISABLE_COMP.

Parameters:

 conhdl Connection handle

Return:

RBLE_OK Success

RBLE_PARAM_ERR Failure (Wrong parameter)

RBLE_STATUS_ERROR Failure (The state of the SCP Server is not “Enabled”)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 90 of 125
Jul 31, 2017

7.5.3.7. RBLE_SCP_Server_Send_Notify

RBLE_STATUS RBLE_SCP_Server_Send_Notify (uint16_t conhdl,
 RBLE_SCP_NOTIFY_INFO *notify_info)

This function is used for the Server to send the notification data.
The result is notified by the server role send notification completion event
RBLE_SCP_EVENT_SERVER_SEND_NOTIFY_COMP.

Parameters:

conhdl Connection handle

notify_info

Notification data

data_len Data size

data[] Data

Return:

RBLE_OK Success

RBLE_PARAM_ERR Failure (Wrong parameter)

RBLE_STATUS_ERROR Failure (The state of the SCP Server is not “Enabled”)

7.5.3.8. RBLE_SCP_Server_Send_Indicate

RBLE_STATUS RBLE_SCP_Server_Send_Indicate (uint16_t conhdl, RBLE_SCP_IND_INFO *ind_info)

This function is used for the Server to send the indication data.
The result is notified by the server role send indication completion event
RBLE_SCP_EVENT_SERVER_SEND_IND_COMP.

Parameters:

conhdl Connection handle

ind_info

Indication data

data_len data_len

data[] data[]

Return:

RBLE_OK Success

RBLE_PARAM_ERR Failure (Wrong parameter)

RBLE_STATUS_ERROR Failure (The state of the SCP Server is not “Enabled”)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 91 of 125
Jul 31, 2017

7.5.4. Events defined for Sample Custom Profile
This section describes the events defined for the SCP (Sample Custom Profile) in detail

Table 7-4 Events Used by the SCP

Role Event Name Description Parameter Structure

Server

RBLE_SCP_EVENT_SERVER
_ENABLE_COMP

Enable
Completion

Event

struct RBLE_SCP_Server_Enable_t{
 uint16_t conhdl;
 RBLE_STATUS status;
 uint8_t reserved;
} server_enable;

RBLE_SCP_EVENT_SERVER
_DISABLE_COMP

Disable
Completion

Event

struct RBLE_SCP_Server_Disable_t{
 uint16_t conhdl;
 RBLE_STATUS status;
 uint8_t reserved;
 RBLE_SCP_SERVER_PARAM server_info;
} server_disable;

RBLE_SCP_EVENT_SERVER
_ERROR_IND

Error
Indication

Event
(Unused)

struct RBLE_SCP_Server_Error_Ind_t{
 uint16_t conhdl;
 RBLE_STATUS status;
 uint8_t reserved;
}error_ind;

RBLE_SCP_EVENT_SERVER
_SEND_NOTIFY_COMP

Notification
Send

Completion
Event

struct RBLE_SCP_Server_Send_Notify_t{
 uint16_t conhdl;
 RBLE_STATUS status;
 uint8_t reserved;
 }send_notify;

RBLE_SCP_EVENT_SERVER
_SEND_IND_COMP

Indication
Send

Completion
Event

struct RBLE_SCP_Server_Send_Indicate_t{
 uint16_t conhdl;
 RBLE_STATUS status;
 uint8_t reserved;
}send_ind;

RBLE_SCP_EVENT_SERVER
_CHG_INDNTF_IND

Client
Configuration

Changed
Event

struct RBLE_SCP_Server_Cfg_Indntf_Ind_t{
 uint16_t conhdl;
 uint8_t char_code;
 uint8_t reserved;
 uint16_t cfg_val;
}cfg_indntf;

RBLE_SCP_EVENT_SERVER
_CHG_CHAR_IND

Characteristic
Changed

Event

struct RBLE_SCP_Server_Write_Chara_Ind_t{
 uint16_t conhdl;
 uint8_t char_code;
 uint8_t reserved;
 uint8_t value[RBLE_SCPC_WRITE_CHAR_MAX];
}write_char;

RBLE_SCP_EVENT_SERVER
_COMMAND_DISALLOWED_IND

Command
Disallowed
Notification

Event
(Unused)

struct
RBLE_SCP_Server_Command_Disallowed_Ind_t{
 RBLE_STATUS status;
 uint8_t reserved;
 uint16_t opcode;
}cmd_disallowed_ind;

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 92 of 125
Jul 31, 2017

Client

RBLE_SCP_EVENT_CLIENT
_ENABLE_COMP

Enable
Completion

Event

struct RBLE_SCP_Client_Enable_t{
 uint16_t conhdl;
 RBLE_STATUS status;
 uint8_t reserved;
 RBLE_SCS_CONTENT scs;
}client_enable;

RBLE_SCP_EVENT_CLIENT
_DISABLE_COMP

Disable
Completion

Event

struct RBLE_SCP_Client_Disable_t{
 uint16_t conhdl;
 RBLE_STATUS status;
 uint8_t reserved;
}client_disable;

RBLE_SCP_EVENT_CLIENT
_ERROR_IND

Error
Indication

Event
(Unused)

struct RBLE_SCP_Client_Error_Ind_t{
 uint16_t conhdl;
 RBLE_STATUS status;
 uint8_t reserved;
}error_ind;

RBLE_SCP_EVENT_CLIENT
_NOTIFY

Notification
Received

Event

struct RBLE_SCP_Client_Notify_Ind_t{
 uint16_t conhdl;
 uint8_t data_len;
 uint8_t data[];
}notify;

RBLE_SCP_EVENT_CLIENT
_INDICATE

Indicatation
Received

Event

struct RBLE_SCP_Client_Indicate_Ind_t{
 uint16_t conhdl;
 uint8_t data_len;
 uint8_t data[];
}ind;

RBLE_SCP_EVENT_CLIENT
_READ_CHAR_RESPONSE

Read
Characteristic

Response
Event

struct RBLE_SCP_Client_Read_Char_Response_t{
 uint16_t conhdl;
 uint8_t att_code;
 RBLE_ATT_INFO_DATA data;
}rd_char_resp;

RBLE_SCP_EVENT_CLIENT
_WRITE_CHAR_RESPONSE

Write
Characteristic

Response
Event

struct RBLE_SCP_Client_Write_Char_Response_t{
 uint16_t conhdl;
 uint8_t att_code;
}wr_char_resp;

RBLE_SCP_EVENT_CLIENT
_COMMAND_DISALLOWED_IND

Command
Disallowed
Notification

Event
(Unused)

struct
RBLE_SCP_Client_Command_Disallowed_Ind_t{
 RBLE_STATUS status;
 uint8_t reserved;
 uint16_t opcode;
}cmd_disallowed_ind;

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 93 of 125
Jul 31, 2017

7.5.5. Usage of the Sample Program for Sample Custom Profile
This section explains usage of the Sample Program for Sample Custom Profile (SCP).

By default, the sample program for Server role is intended to run in the Embedded configuration and the sample
program for Client role is intended to run in the Modem configuration. Therefore, the Sample program for Server role
operates without any external command control.

Refer to Usage of the Sample Program for Server role in detail.

If you want to run the Sample Program for Client role in Embedded configuration, disable the definition of
USE_CUSTOM_DEMO macro in prf_sel.h file.

7.5.5.1. Usage of the Sample Program for Client role

This section explains usage of the Sample Program for Client role.

After connecting to the Server device using GAP command, the following steps allow you to use commands for SCP.

(1) Select Profile Test (In case of Figure 7-14, Enter 2)

Figure 7-14 Initial Menu (the Sample Program for Client role)

(2) Select Sample Custom Profile (In case of Figure 7-15, Enter 7)

Figure 7-15 Profile Test Menu (the Sample Program for Client role)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 94 of 125
Jul 31, 2017

Figure 7-16 Sample Custom Test Menu (the Sample Program for Client role)

The following table explains commands provided by the Sample Program for Client role.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 95 of 125
Jul 31, 2017

Command
No.

Operation Parameters Description Example

1 Server Enable ‐ Controls the Server. ‐
2 Server Disable ‐ Controls the Server. ‐
3 Server Send Notify ‐ Controls the Server. ‐
4 Server Send Indicate ‐ Controls the Server. ‐
5 Client Enable ‐ Enables Client role, by calling

RBLE_SCP_Client_Enable API.
(This command always performs configuration
connection using SCP_CON_CFG parameter.)

5

6 Client Disable ‐ Disables Client role, by calling
RBLE_SCP_Client_Disable API.

6

7 Client Read Char char_code Reads characteristic value, by calling
RBLE_SCP_Client_Read_Char API.
The parameter specifies characteristic value or
characteristic descriptor to be read.
0: Client Characteristic Configuration of Notify
(RBLE_SCP_SCS_NTF_CFG)
1: Client Characteristic Configuration of Indicate
(RBLE_SCP_SCS_IND_CFG)
2: Characteristic value of Interval
(RBLE_SCP_SCS_INTERVAL)
3: Characteristic value of Notify Length
(RBLE_SCP_SCS_NTF_LEN)
4: Characteristic value of Indicate Length
 (RBLE_SCP_SCS_IND_LEN)

7 2

8 Client Write Char char_code
data

Writes characteristic value, by calling
RBLE_SCP_Client_Write_Char API.
The first parameter specifies characteristic value or
characteristic descriptor to be writen, and the second
parameter specifies data to be written.
0: Client Characteristic Configuration of Notify
(RBLE_SCP_SCS_NTF_CFG)
1: Client Characteristic Configuration of Indicate
(RBLE_SCP_SCS_IND_CFG)
2: Characteristic value of Interval
(RBLE_SCP_SCS_INTERVAL)
3: Characteristic value of Notify Length
(RBLE_SCP_SCS_NTF_LEN)
4: Characteristic value of Indicate Length
 (RBLE_SCP_SCS_IND_LEN)

8 1 2

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 96 of 125
Jul 31, 2017

7.5.5.2. Usage of the Sample Program for Server role

This section explains usage of the Sample Program for Server role.

When you power on the Server device, it waits for a connect request from the Client device automatically.

When the Client device has been connected to the Server device, the Server device enables the Server role of SCP
automatically and becomes ready to accept requests from the Client device.

Write the Notify and/or Indicate characteristic from the Client device. Then, if you push SW2 switch on the RL78/G1D
evaluation board, it takes effect and the Server starts sending the notification and /or indication. If you push the SW2
switch again, the Server stops sending.

The notification and/or Indication are sent depending on the Interval, Notify Length and Indicate Length characteristics
respectively.

Note that the unit of Interval characteristic value is 10 milliseconds.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 97 of 125
Jul 31, 2017

7.6. Simple Sample Profile
This section describes about the simple sample profile. To use the profile, you need to add
“USE_SIMPLE_SAMPLE_PROFILE” macro definition to a project configuration.

7.6.1. Characteristic Specification
Table 7-5 shows the simple sample profile characteristic specification.

Table 7-5 Simple Sample Profile Characteristics

Characteristic Name Properties Format Note
Switch State Characteristic
UUID: 5BC18D80-A1F1-40AF-9043-C43692C18D7A

Notify uint8_t Notify SW4 state
(PUSH/RELEASE). 0x00 is
RELEASE, 0x01 is PUSH.

- Client Characteristic Configuration Read/Write uint16_t Enable/Disable Notify.
LED Control Characteristic
UUID: 5BC143EE-A1F1-40AF-9043-C43692C18D7A

Read/Write uint8_t Set/Get LED4 state
(ON/OFF). 0x00 is OFF,
0x01 is ON.

7.6.2. File Structure
Following shows the simple sample profile related files.

Renesas
└ BLE_Software_Ver_X_XX
 └ RL78_G1D
 └ Project_Source
 ├ rBLE
 │ └ src
 │ └ sample_simple Simple Sample Profile, Simple Sample Program folder
 │ ├ sam Simple Sample Profile folder
 │ │ ├ sams.c Simple Sample Profile source file
 │ │ └ sams.h Simple Sample Profile header file
 │ ├ console.c Console Driver source file
 │ ├ console.h Console Driver header file
 │ ├ rble_sample_app_peripheral.c Simple Sample Program source file
 │ └ rble_sample_app_peripheral.h Simple Sample Program header file
 └ renesas
 └ src
 └ arch
 └ rl78
 ├ prf_config.c Parameter source file for profile
 ├ prf_config.h Parameter header file for profile
 ├ ke_conf_simple.c RWKE task definition file
 └ db_handle.h Attribute database handles header file

7.6.3. Details of Simple Sample Profile
The simple sample profile is identical with “Embedded Configuration Sample Application (r01an3319)” Peripheral role
sample application. Refer “Embedded Configuration Sample Application (r01an3319)” application note for the details.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 98 of 125
Jul 31, 2017

7.7. Sample Program for the Direct Test Mode with RF Tester

The BLE software includes the Sample Program that supports the Direct Test Mode (DTM).

The RL78/G1D evaluation board and the RF Conformance Tester, which is used for Bluetooth Qualification Test, are
connected through a 2-wire UART interface.

To use the Sample Program for DTM:
(1) Change the following macro definition from 0 to 1
(2) Rebuild (recompile) the Sample Program.

The file structure corresponding to this Sample Program is shown below.

Renesas
└ BLE_Software_Ver_X_XX
 └ RL78_G1D BLE software folder for the BLE MCU
 └ Project_Source
 ├ bleip BLE stack folder
 │ └ src
 │ └ rwble
 │ └ rwble_config.h BLE stack configuration header file
 └ renesas
 └ src
 ├ arch
 │ └ rl78
 │ ├ arch_main.c BLE software main file
 │ └ ke_conf.c RWKE task management file
 └ driver
 ├ DTM2Wire
 │ ├ DTM2Wire.c 2-wire UART Direct Test Mode driver file
 │ └ DTM2Wire.h 2-wire UART Direct Test Mode driver header file
 └ uart
 ├ uart.c UART driver file
 └ uart.h UART driver header file

The Sample Program for DTM automatically determines its operating mode immediately after the system reset. There
are two operating modes: DTM mode and Normal operating mode. When this sample program starts with DTM mode,
the baud rate of 2-wire UART interface is set 9,600 baud.

Determination conditions of the operating mode is different depending on the configurations (Embedded or Modem).

(1) In the Modem configuration

The Sample Program operates in DTM mode, if the first data is received successfully (without any errors) through the
two-wire UART interface after the system reset. Otherwise the Sample Program operates in normal operation mode.

(2) In the Embedded configuration

The Sample Program operates in DTM mode, if you power on the RL78/G1D evaluation board while pressing SW2
switch on the board. Otherwise the Sample Program operates in normal operation mode.

The startup sequence in each configuration is shown in Figure 7-17, Figure 7-18 and Figure 7-19.

#define __DTM2WIRE_UART_USE__ 0

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 99 of 125
Jul 31, 2017

Figure 7-17 Startup sequence in Modem configuration

 Embedded

ModeFlg INITModeFlg INIT

RESET

No Push
SW2 ?

ModeFlg DTMModeFlg DTMModeFlg NORMALModeFlg NORMAL

N

Y

Figure 7-18 Startup sequence in Embedded configuration

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 100 of 125
Jul 31, 2017

 Modem,Embedded

ModeFlg
NORMAL

Running DTM DriverRunning ｒBLE Driver

N

Y

DTM Driver:2WireUART Support

Figure 7-19 Operation after operating mode determination

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 101 of 125
Jul 31, 2017

7.8. Printf program in the Embedded configuration

At the Sample program in the Embedded Configuration, an access of Standard IO is materialized by the “console.c”.

When "printf" function is used, "printf" function in a standard library is not called, but the "Printf" function defined in
the “console.c“ is called by the following macro definitions.

#define printf Printf

The “Printf” function writes a formatted string to the buffer and outputs this buffer to serial port. The size of this buffer
is set by the following macro definitions.

#define STREAM_MEMORY_MAX_LINE_SIZE 80

Therefore if you need output the data which is over 80 bytes, you should adjust buffer size by this macro definition.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 102 of 125
Jul 31, 2017

7.9. FW Update Sample Program

This section explains the FW Update Sample Program.

In FW Update, One device sends FW Update data(Sender device). The other device receives FW Update data and
update FW(Receiver device).

The operation image of FW Update is shown in Figure 7-20.

Update data

Control PC

電
源

O
FF

時
は

U

SB
ケ
ー
ブ
ル
を
抜
く

Sender device
(Modem

configuration)

Receiver device
(Embedded

configuration)

Send
Update data

Response

電
源

O
FF

時
は

U

SB
ケ

ー
ブ

ル
を

抜
く

Figure 7-20 Operation image of FW Update

In the FW Update Sample Program, the Sender device is Modem configuration and the Receiver device is Embedded
configuration. Table 7-1

7.9.1. FW Update Profile Specification
FW Update Profile defines two roles: Sender Role and Receiver Role.

Table 7-6 shows the service characteristics of the FW update profile.

Table 7-6 FW Update Profile Characteristic/Descriptor

Characteristic Name Properties format Description
Data Control Characteristic Write uint8_t[] Control information of data transmission is written

by the Write Request.
Data Characteristic Write

without
Response

uint8_t[] Update data of 1 to 20 bytes are written by the
Write Command.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 103 of 125
Jul 31, 2017

7.9.2. File Structure Corresponding to FW Update Profile

The file structure corresponding to this FW Update Sample Program is shown below.

BLE_Software_Ver_X_XX
 ├ BLE_Sample Sample Program folder for PC
 │ ├ src
 │ │ └ rBLE rBLE folder
 │ │ └ src
 │ │ ├ include
 │ │ │ └ rble_api_fwup.h FW Update profile header file
 │ │ ├ sample_profile Sample profile folder
 │ │ │ └ fwup FW Update profile folder
 │ │ │ └ fwups.c FW Update profile sender file
 │ │ └ sample_app
 │ │ ├ rble_sample_app.c Sample Program file
 │ │ └ rble_fw_up_sender_app.c Sample Program file for FW Update(Sender)
 │ └ Fwup Sample folder for FW Update
 │ ├ bin Binary data folder
 │ │ ├ ca78k0r Folder of Binary which Base hex file that was built with CA78K0R
 │ │ │ ├ RL78_G1D_CE(PXP,FMP,ANP).bin Binary file for Embedded configuration (PXP/FMP/ANP)
 │ │ │ └ RL78_G1D_CE(HTP,BLP,HRP).bin Binary file for Embedded configuration (HTP/BLP/HRP)
 │ │ ├ ccrl Folder of Binary which Base hex file that was built with CC-RL
 │ │ │ ├ RL78_G1D_CCE(PXP,FMP,ANP).bin Binary file for Embedded configuration (PXP/FMP/ANP)
 │ │ │ └ RL78_G1D_CCE(HTP,BLP,HRP).bin Binary file for Embedded configuration (HTP/BLP/HRP)
 │ │ └ iar_v2 Folder of Binary which Base hex file that was built with IAR Embedded

Workbench v2
 │ │ ├ RL78_G1D_IE(PXP,FMP,ANP).bin Binary file for Embedded configuration (PXP/FMP/ANP)
 │ │ └ RL78_G1D_IE(HTP,BLP,HRP).bin Binary file for Embedded configuration (HTP/BLP/HRP)
 │ └ hex Hex data folder
 │ ├ Sender ROM file for Sender device
 │ │ ├ RL78_G1D_CM(Sender).hex ROM file for Embedded configuration that was built with CA78K0R
 │ │ ├ RL78_G1D_CCM(Sender).hex ROM file for Embedded configuration that was built with CC-RL
 │ │ └ RL78_G1D_IM_V2(Sender).hex ROM file for Embedded configuration that was built with IAR Embedded

Workbench v2
 │ └ Receiver ROM file for Receiver device
 │ ├ ca78k0r Folder of ROM file that was built with CA78K0R
 │ │ └ Embedded ROM file folder for Embedded configuration
 │ │ ├ RL78_G1D_CE(PXP,FMP,ANP).hex ROM file for Embedded configuration (PXP/FMP/ANP)
 │ │ └ RL78_G1D_CE(HTP,BLP,HRP).hex ROM file for Embedded configuration (HTP/BLP/HRP)
 │ ├ ccrl Folder of ROM file that was built with CC-RL
 │ │ └ Embedded ROM file folder for Embedded configuration
 │ │ ├ RL78_G1D_CCE(PXP,FMP,ANP).hex ROM file for Embedded configuration (PXP/FMP/ANP)
 │ │ └ RL78_G1D_CCE(HTP,BLP,HRP).hex ROM file for Embedded configuration (HTP/BLP/HRP)
 │ └ iar_v2 Folder of ROM file that was built with IAR Embedded Workbench v2
 │ └ Embedded ROM file folder for Embedded configuration
 │ ├ RL78_G1D_IE(PXP,FMP,ANP).hex ROM file for Embedded configuration (PXP/FMP/ANP)
 │ └ RL78_G1D_IE(HTP,BLP,HRP).hex ROM file for Embedded configuration (HTP/BLP/HRP)
 └ RL78_G1D BLE software folder for the BLE MCU
 └ Project_Source
 └ rBLE rBLE folder
 └ src
 ├ include
 │ └ rble_api_fwup.h FW Update profile header file
 ├ sample_profile Sample profile folder
 │ └ fwup FW Update profile folder
 │ └ fwupr.c FW Update profile receiver file
 └ sample_app Sample Program file
 └ rble_fw_up_receiver_app.c Sample Program file for FW Update(Receiver)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 104 of 125
Jul 31, 2017

Procedures of operating the FW Update Sample Program are shown in the following.

(1) Write one of the following HEX file to the RL78/G1D Evaluation Board which operate as the Sender device.

Stored folder: BLE_Software_Ver_X_XX\BLE_Sample\Fwup\hex\Sender

File name:
 RL78_G1D_CM(Sender).hex
 RL78_G1D_CCM(Sender).hex

 RL78_G1D_IM_V2(Sender).hex
(2) Write the HEX file that are stored in following folder to the RL78/G1D Evaluation Board which operate as the

Receiver device.

Stored folder: BLE_Software_Ver_X_XX\BLE_Sample\Fwup\hex\Receiver\<development environment>

CS+ for CA, CX (CA78K0R) : ca78k0r

e2 studio / CS+ for CC (CC-RL) : ccrl

IAR Embedded Workbench V2 : iar_v2

 [Note] Please choose the Hex file suitable for development environment.

(3) Store the FW updates data in the following folder. The FW update data uses what converted HEX file to binary
format.

Folder name: BLE_Software_Ver_X_XX\BLE_Sample\project\windows\Exe

[Note] HEX file uses the same development environment as what was written to Receiver device. For example,
when you write 'RL78_G1D_CE(PXP,FMP,ANP).hex' to the Receiver device, you store the data which
converted 'RL78_G1D_CE(HTP,BLP,HRP).hex' to binary data(RL78_G1D_CE(HTP,BLP,HRP).bin).

Binary data which already converted are stored following folder for sample binary data.
Folder name: BLE_Software_Ver_X_XX\BLE_Sample\Fwup\bin

(4) Start the Sample Program of the Sender device. At this time, the baud rate specifies the 76800bps according to
the HEX file written to Sender device. How to start the Sample Program is shown in 5.1.

(5) Start the Sample Program of the Receiver device. How to start the Sample Program is shown in 5.3.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 105 of 125
Jul 31, 2017

7.9.3. API Functions defined for FW Update Profile
This section describes the API functions defined for the FWUP (FW Update Profile) in detail.

(1) RBLE_FWUP_Sender_Enable

RBLE_STATUS RBLE_FWUP_Sender_Eneble (uint16_t conhdl,
 uint8_t con_type,
 RBLE_FWUS_CONTENT *fwus,
 RBLE_FWUPS_EVENT_HANDLER call_back)
This function is used to enable the FWUP Sender role.
When connecting to the FWUP Receiver device for the first time, set con_type to RBLE_FWUP_CON_CFG, and
perform the configuration connection to discover service on the FWUP Receiver device.
The result is notified by the Sender role enable completion event
RBLE_FWUP_EVENT_SENDER_ENABLE_COMP, save the obtained service information at this time.
When connecting to the FWUP Receiver device for the second or subsequent time, set con_type to
RBLE_FWUP_CON_NORMAL, and perform the normal connection by using saved service information. The
service discovery is skipped and the Sender role can be enabled in shorter time.
Parameters:

conhdl Connection handle
con_type Connection type

fwus
FWUP handle information
(This parameter is valid if setting RBLE_FWUP_CON_NORMAL to con_type)

call_back Callback function for event notification
Return:

RBLE_OK Success
RBLE_PARAM_ERR Failure (Wrong parameter)

RBLE_STATUS_ERROR Failure (The state of the FWUP Sender is not “Disabled”)

(2) RBLE_FWUP_Sender_Disable

RBLE_STATUS RBLE_FWUP_Sender_Disable (uint16_t conhdl)
This function is used to disable the FWUP Sender role.
The result is notified by the client role disable completion event
RBLE_FWUP_EVENT_SENDER_DISABLE_COMP.
Parameters:
 conhdl Connection handle
Return:

RBLE_OK Success
RBLE_PARAM_ERR Failure (Wrong parameter)

RBLE_STATUS_ERROR Failure (The state of the FWUP Sender is not “Enabled”)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 106 of 125
Jul 31, 2017

(3) RBLE_FWUP_Sender_Write_Data_Cntl

RBLE_STATUS RBLE_FWUP_Sender_Write_Cntl (uint16_t conhdl,
 uint8_t type,
 uint8_t block_num,
 uint16_t data_size)
Data Control Characteristic is set.
The block_num and the data_size are effective only if the type is set to RBLE_FWUP_DATA_SEND_START.
The result is notified by the write characteristic data response event
RBLE_FWUP_EVENT_SENDER_WRITE_CHAR_RES.
Parameters:

conhdl Connection handle

type

Specifying a control command type
RBLE_FWUP_DATA_SEND_START Data transmission start
RBLE_FWUP_DATA_SEND_COMP Data transmission completion
 (with specified size)
RBLE_FWUP_DATA_CHECK_WRITE Data write confirmation
RBLE_FWUP_DATA_SEND_FINISH Data transmission completion (all data)
RBLE_FWUP_DATA_CHECK_UPDATE FW Update completion confirmation

block_num
Specifying the write block number of the code flash (0 to 255)
This parameter is effective only if the type is set to
BLE_FWUP_DATA_SEND_START.

data_size
Specifying the write data size to the code flash (4 to 1024 in increments of 4 bytes)
This parameter is effective only if the type is set to
BLE_FWUP_DATA_SEND_START.

Return:

RBLE_OK Success
RBLE_PARAM_ERR Failure (Wrong parameter)

RBLE_STATUS_ERROR Failure (The state of the FWUP Sender is not “Enabled”)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 107 of 125
Jul 31, 2017

(4) RBLE_FWUP_Sender_Write_Data

RBLE_STATUS RBLE_FWUP_Sender_Write_Data (uint16_t conhdl,
 uint8_t *data,
 uint8_t data_size)
Data Characteristic is set.
Parameters:

conhdl Connection handle
*data Specifying the beginning address of the write data to Receiver
data_size Specifying the setting data size (1 to 20 bytes)

Return:

RBLE_OK Success
RBLE_PARAM_ERR Failure (Wrong parameter)

RBLE_STATUS_ERROR Failure (The state of the FWUP Sender is not “Enabled”)

(5) RBLE_FWUP_Receiver_Enable

RBLE_STATUS RBLE_FWUP_Receiver_Enable (uint16_t conhdl,
 RBLE_FWUPR_EVENT_HANDLER call_back)
This function is used to enable the FWUP Receiver role.
The result is notified by the Receiver role enable completion event
RBLE_FWUP_EVENT_RECEIVER_ENABLE_COMP.
Parameters:

conhdl Connection handle
call_back Callback function for event notification

Return:

RBLE_OK Success
RBLE_PARAM_ERR Failure (Wrong parameter)

RBLE_STATUS_ERROR Failure (The state of the FWUP Receiver is not “Disabled”)

(6) RBLE_FWUP_Receiver_Disable

RBLE_STATUS RBLE_FWUP_Receiver_Disable (uint16_t conhdl)
This function is used to disable the FWUP Receiver role.
The result is notified by the Receiver role disable completion event
RBLE_FWUP_EVENT_RECEIVER_DISABLE_COMP.
Parameters:
 conhdl Connection handle
Return:

RBLE_OK Success
RBLE_PARAM_ERR Failure (Wrong parameter)

RBLE_STATUS_ERROR Failure (The state of the FWUP Receiver is not “Enabled”)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 108 of 125
Jul 31, 2017

(7) RBLE_FWUP_Receiver_Send_Data_Cntl_Res

RBLE_STATUS RBLE_FWUP_Receiver_Send_Data_Cntl_Res (uint16_t conhdl,
 RBLE_STATUS status)
This function sends response to write request of Data Control characteristic.
The status is set the result in accordance with the control command that is set in Data Control characteristic.
RBLE_FWUP_DATA_SEND_START If block number and the size is correct, set to RBLE_OK.
 Otherwise RBLE_ERR.
RBLE_FWUP_DATA_SEND_COMP If specified size data is received, set to RBLE_OK.
and RBLE_FWUP_DATA_SEND_FINISH Otherwise RBLE_ERR.
RBLE_FWUP_DATA_CHECK_WRITE If flash write is successfully finished, set to RBLE_OK.
 Otherwise RBLE_ERR.
RBLE_FWUP_DATA_CHECK_UPDATE If FW Update is successfully finished, set to RBLE_OK.
 Otherwise RBLE_ERR.
Parameters:

conhdl Connection handle

status
The result for received command
RBLE_OK Success
RBLE_ERR Failure

Return:

RBLE_OK Success
RBLE_PARAM_ERR Failure (Wrong parameter)

RBLE_STATUS_ERROR Failure (The state of the FWUP Receiver is not “Enabled”)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 109 of 125
Jul 31, 2017

7.9.4. Events defined for FW Update Profile
This section describes the events defined for the FWUP (FW Update Profile) in detail.

Table 7-7 Events Used by the FWUP

Role Event Name Description Parameter Structure

Receiver

RBLE_FWUP_EVENT_RECEIVER
_ENABLE_COMP

Enable
Completion

Event

struct RBLE_FWUP_Receiver_Enable_t{
 uint16_t conhdl;
 RBLE_STATUS status;
 }receiver_enable;

RBLE_FWUP_EVENT_RECEIVER
_DISABLE_COMP

Disable
Completion

Event

struct RBLE_FWUP_Receiver_Disable_t{
 uint16_t conhdl;
 RBLE_STATUS status;
}receiver_disable;

RBLE_FWUP_EVENT_RECEIVER
_CHG_DATA_CNTL_IND

Data Control
Change Event

struct RBLE_FWUP_Receiver_Chg_Data_Cntl_Ind_t{
 uint16_t conhdl;
 uint8_t type;
 uint8_t block_num;
 uint16_t data_size;
}data_cntl_ind;

RBLE_FWUP_EVENT_RECEIVER
_CHG_DATA_IND

Data Change
Event

struct RBLE_FWUP_Receiver_Chg_Data_Ind_t{
 uint16_t conhdl;
 uint8_t data_size;
 uint8_t data[RBLE_FWUP_DATA_MAX];
}data_ind;

Sender

RBLE_FWUP_EVENT_SENDER
_ENABLE_COMP

Enable
Completion

Event

struct RBLE_FWUP_Sender_Enable_t{
 uint16_t conhdl;
 RBLE_STATUS status;
 uint8_t reserved;
 RBLE_FWUS_CONTENT fwus;
}sender_enable;

RBLE_FWUP_EVENT_SENDER
_DISABLE_COMP

Disable
Completion

Event

struct RBLE_FWUP_Sender_Disable_t{
 uint16_t conhdl;
 RBLE_STATUS status;
}sender_disable;

RBLE_FWUP_EVENT_SENDER
_WRITE_CHAR_RES

Write
Characteristic

Response
Event

struct RBLE_FWUP_Sender_Write_Char_Res_t{
 uint16_t conhdl;
 uint8_t att_code;
}wr_char_resp;

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 110 of 125
Jul 31, 2017

7.9.5. Usage of the Sample Program for FW Update Profile

 When started the Sample Program of the Sender device or the Receiver device according to 7.9.2, the following
content is displayed at console.

Figure 7-21 Console of Sample Program

 [Note] ‘5.FW Update Start’ command is not displayed on a console of the Receiver device.

Procedures of control the Sample Program are shown in the following.

(1) The Sender device(Master) gets BD address of the Receiver device by using procedure of 5.5.

(2) Push the SW2(red frame of Figure 7-22) for the Receiver device become FW Update mode.

 [Note]Until FW Update is complete after press the SW2, the Receiver device will not be able to receive command
from console.

Figure 7-22 Selector switch to the FW Update mode

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 111 of 125
Jul 31, 2017

(3) Send ‘5. FW Update Start’ command to Sender device with binary file num.

 Following table is correspondence of file num and file name.

num file name
0 RL78_G1D_CE(PXP,FMP,ANP).bin
1 RL78_G1D_CE(HTP,BLP,HRP).bin
2 RL78_G1D_IE(PXP,FMP,ANP).bin
3 RL78_G1D_IE(HTP,BLP,HRP).bin
4 RL78_G1D_CCE(PXP,FMP,ANP).bin
5 RL78_G1D_CCE(HTP,BLP,HRP).bin

 Figure 7-23 is example of sending binary file of ‘RL78_G1D_CE(PXP,FMP,ANP).bin.

Figure 7-23 Console log when sending ‘FW update Start’ command.(Sender device)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 112 of 125
Jul 31, 2017

(4) After sending ‘5.FW Update Start’ command, the Sample Program operates automatically until FW Update is
completed.

Figure 7-24 is console log when FW Update is in operation.

[Note] While FW Update is in operation, the Sample Program repeats create connection, data send and disconnect.

Figure 7-24 Console log when FW Update is in operation.

(5) When FW Update is completed, ‘fw update finish’ is displayed on a console of Sender device.

 The Receiver device is reset and can send a command from console.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 113 of 125
Jul 31, 2017

7.10. Project Setting to use FW Update Sample Program

Procedures of setting project to use FW update sample program are shown in the following.

7.10.1. Receiver device
7.10.1.1. Project Settings of IAR Embedded Workbench V2.20.1

The setup procedures of the project in IAR Embedded Workbench V2.20.1 are shown in the following.

(1) Starting the project of Embedded or Modem configuration.

(2) Select [Project][Option][C/C++Compiler][Preprocessor].

Change the Defined symbol form ‘noUSE_FW_UPDATE_PROFILE’ to ‘USE_FW_UPDATE_PROFILE’.

Figure 7-25 Setting of Defined symbols.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 114 of 125
Jul 31, 2017

(3) Select [Linker][Config]

 Embedded Configuration
Change the linker configuration file from ‘lnkr5f11agj.icf’ to ‘lnkr5f11agj_fw.icf’.

 Modem Configuration
Change the linker configuration file from ‘lnkr5f11agj.icf’ to ‘lnkr5f11agj_fw_mdm.icf’.

Figure 7-26 Setting of Linker configuration file(Embedded Configuration)

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 115 of 125
Jul 31, 2017

(4) If need setting of force link, Select [Input] and set function which need force link.

About force link is shown 7.10.3.

If change profile by using FW Update function, Must set following function at ‘Keep symbols’.

 Embedded： ?F_DIV

 ?F_MUL

 ?F_SL2F

 ?F_UL2F

 ?SL_RSH_L03

 ?UL_RSH_L03

 ?0EI_VSWITCH_L10

 ?0SI_VSWITCH_L10

 ?1EC_VSWITCH_L10

 ?1SI_VSWITCH_L10

 ?2SI_VSWITCH_L10

 ?3SI_VSWITCH_L10

 ?I_VSWITCH_L10

 ___iar_copy_init2

 ___iar_packbits_init_near_single2

 Modem： ?I_VSWITCH_L10

 ?3SI_VSWITCH_L10

 ?2SI_VSWITCH_L10

 ?0SI_VSWITCH_L10

 ___iar_copy_init2

 ___iar_packbits_init_near_single2

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 116 of 125
Jul 31, 2017

Figure 7-27 Setting of Keep symbols.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 117 of 125
Jul 31, 2017

(5) Select [General Options][Library Options]

 Embedded Configuration
Change the Printf formatter from 'Large' to 'Small'.

Figure 7-28 Setting of Library Options (Embedded Configuration)

(6) Click ‘OK’ and finish option setting.

(7) Run Build.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 118 of 125
Jul 31, 2017

7.10.1.2. Project Settings of e2 studio

The setup procedures of the project in e2 studio are shown in the following.

(1) Launch the e2 studio, and open the workspace.

(2) From the [Project Explorer], right-click the project of rBLE_Emb or rBLE_Mdm, select the [Renesas Tool
Settings] in the context menu.

(3) From the left tree of [Tool Settings] tab, select [Compiler][Source], and change the following definitions from
the right pane of the [Macro definition].

noUSE_FW_UPDATE_PROFILE  USE_FW_UPDATE_PROFILE

Figure 7-29 Setting of Macro definition.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 119 of 125
Jul 31, 2017

(4) From the left tree of [Tool Settings] tab, select [Linker][Section], and click the [Import] button of the right pane,
then select the following section information file for FW update.

Embedded ：renesas\tools\project\e2studio\BLE_Embedded \rBLE_Emb\sect_emb_fwup.esi

Modem ：renesas\tools\project\e2studio\BLE_Modem \rBLE_Mdm\sect_mdm_fwup.esi

Figure 7-30 Import of section information file

(5) Click ‘OK’ and finish tool settings.

(6) Run Build.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 120 of 125
Jul 31, 2017

7.10.2. Sender device
The setup procedures of the project for Sender device are shown in the following.

The Sender device received FW Update data from the Sample Program at Windows.

So change operating frequency to 32MHz and change UART baud rate to 76,800bps.

[Note] It is possible to do FW Update at low clock, but FW Update time will be long.

(1) Change UART baud rate

To change the UART driver in order to 76,800bps the UART baud rate.

The serial_init() function in ‘Renesas\RL78_G1D\Project_Source\renesas\src\driver\uart\uart.c’ is changed following
processing.

[Note] red word is a changing point.

 #if (1)
 #ifndef CONFIG_EMBEDDED
 /* MCK = fclk/n = 1MHz */
 write_sfr(SPS0L, (uint8_t)((read_sfr(SPS0L) | UART_VAL_SPS_2MHZ)));

 /* baudrate 4800bps(when MCK = 1MHz) */
 write_sfrp(UART_TXD_SDR, (uint16_t)0x1800U);
 write_sfrp(UART_RXD_SDR, (uint16_t)0x1800U);
 #else /*CONFIG_EMBEDDED*/
 ・・・
 #if SERIAL_U_2WIRE
 #if (1)
 #ifndef CONFIG_EMBEDDED
 /* if baudrate is 4800bps, set enable */
 stop_flg = false;
 #else /*CONFIG_EMBEDDED*/
 ・・・

(2) Change operating frequency

 To change operating frequency is shown in Bluetooth Low Energy Protocol Stack User’s Manual.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 121 of 125
Jul 31, 2017

7.10.3. Notes of making FW Update Environment
・force link of function

 In FW Update, update code area of Application and profile.

 So it is impossible to change link of runtime library or standard library before and after the FW Update.

[Note] If link of runtime library or standard library is changed, can’t use runtime library or standard library from
excluded area of FW Update.

If link of runtime library or standard library is changed, you need to link to the required function of runtime library or
standard library using forced link in the FW of before FW Update.

Way of forcing link is shown in 7.10.1.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 122 of 125
Jul 31, 2017

7.11. References
1. Bluetooth Core Specification v4.2, Bluetooth SIG

2. Find Me Profile Specification v1.0, Bluetooth SIG

3. Immediate Alert Service Specification v1.0, Bluetooth SIG

4. Proximity Profile Specification v1.0, Bluetooth SIG

5. Link Loss Service Specification v1.0, Bluetooth SIG

6. Tx Power Service Specification v1.0, Bluetooth SIG

7. Health Thermometer Profile Specification v1.0, Bluetooth SIG

8. Health Thermometer Service Specification v1.0, Bluetooth SIG

9. Device Information Service Specification v1.1, Bluetooth SIG

10. Blood Pressure Profile Specification v1.0, Bluetooth SIG

11. Blood Pressure Service Specification v1.0, Bluetooth SIG

12. HID over GATT Profile Specification v1.0, Bluetooth SIG

13. HID Service Specification v1.0, Bluetooth SIG

14. Battery Service Specification v1.0, Bluetooth SIG

15. Scan Parameters Profile Specification v1.0, Bluetooth SIG

16. Scan Parameters Service Specification v1.0, Bluetooth SIG

17. Heart Rate Profile Specification v1.0, Bluetooth SIG

18. Heart Rate Service Specification v1.0, Bluetooth SIG

19. Cycling Speed and Cadence Profile Specification v1.0, Bluetooth SIG

20. Cycling Speed and Cadence Service Specification v1.0, Bluetooth SIG

21. Cycling Power Profile Specification v1.0, Bluetooth SIG

22. Cycling Power Service Specification v1.0, Bluetooth SIG

23. Glucose Profile Specification v1.0, Bluetooth SIG

24. Glucose Service Specification v1.0, Bluetooth SIG

25. Time Profile Specification v1.0, Bluetooth SIG

26. Current Time Service Specification v1.0, Bluetooth SIG

27. Next DST Change Service Specification v1.0, Bluetooth SIG

28. Reference Time Update Service Specification v1.0, Bluetooth SIG

29. Alert Notification Service Specification v1.0, Bluetooth SIG

30. Alert Notification Profile Specification v1.0, Bluetooth SIG

31. Location and Navigation Service Specification v1.0, Bluetooth SIG

32. Location and Navigation Profile Specification v1.0, Bluetooth SIG

33. Phone Alert Status Service Specification v1.0, Bluetooth SIG

34. Phone Alert Status Profile Specification v1.0, Bluetooth SIG

35. Bluetooth SIG Assigned Numbers https://www.bluetooth.com/specifications/assigned-numbers/

36. Services & Characteristics UUID https://www.bluetooth.com/specifications/assigned-numbers/

37. Personal Health Devices Transcoding White Paper v1.2, Bluetooth SIG

https://www.bluetooth.com/specifications/assigned-numbers
https://www.bluetooth.com/specifications/assigned-numbers/

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 123 of 125
Jul 31, 2017

7.12. Terminology
Term Description

Service A service is provided from a GATT server to a GATT client. The GATT server
exposes some characteristics as the interface.
The service prescribes how to access the exposed characteristics.

Profile A profile enables implementation of a use case by using one or more services.
The services used are defined in the specifications of each profile.

Characteristic A characteristic is a value used to identify services. The characteristics to be
exposed and their formats are defined by each service.

Role Each device takes the role prescribed by the profile or service in order to
implement the specified use case.

Client Characteristic
Configuration Descriptor

This is used to control the transmission (notification / indication) of the
characteristic values from the GATT server with a client characteristic
configuration descriptor.

Connection Handle This is the handle determined by the controller stack and is used to identify
connection with a remote device. The valid handle range is between 0x0000 and
0x0EFF.

Universally Unique Identifier
(UUID)

This is an identifier for uniquely identifying an item. In the BLE standard, a 16-bit
UUID is defined for identifying services and their characteristics.

Bluetooth Device Address (BD
Address)

This is a 48-bit address for identifying a Bluetooth device. The BLE standard
defines both public and random addresses, and at least one or the other must
be supported

Public Address This is an address that includes an allocated 24-bit OUI (Organizationally
Unique Identifier) registered with the IEEE.

Random Address This is an address that contains a random number and belongs to one of the
following three categories:
• Static Address
• Non-Resolvable Private Address
Resolvable Private Address

Static Address This is an address whose 2 most significant bits are both 1, and whose
remaining 46 bits form a random number other than all 1’s or all 0’s. This static
address cannot be changed until the power is switched off.

Non-resolvable private Address This is an address whose 2 most significant bits are both 0, and whose
remaining 46 bits form a random number other than all 1’s or all 0’s. Static
addresses and public addresses must not be equal.
This type of address is used to make tracking by an attacker difficult by
changing the address frequently.

Resolvable private Address This is an address generated from an IRK and a 24-bit random number. Its 2
most significant bits are 0 and 1, and the remaining higher 22 bits form a
random number other than all 1’s or all 0’s. The lower 24 bits are calculated
based on an IRK and the higher random number.
This type of address is used to make tracking by an attacker difficult by
changing the address frequently.
By allocating an IRK to the peer device, the peer device can identify the
communicating device by using that IRK.

Broadcaster This is one of the roles of GAP. It is used to transmit advertising data.

Observer This is one of the roles of GAP. It is used to receive advertising data.

Central This is one of the roles of GAP. It is used to establish a physical link. In the link
layer, it is called Master.

Peripheral This is one of the roles of GAP. It is used to accept the establishment of a
physical link. In the link layer, it is called Slave.

Advertising Advertising is used to transmit data on a specific channel for the purpose of
establishing a connection or performing data transmission.

Scan Scans are used to receive advertising data. There are two types of scans:
Passive scan, in which data is simply received, and active scan, in which
additional information is requested by sending SCAN_REQ.

White List By registering known devices that are connected or bonded to a White List, it is
possible to filter devices that can accept advertising data or connection
requests.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 124 of 125
Jul 31, 2017

Device Name This is a user-friendly name freely assigned to a Bluetooth device to identify it.
In the BLE standard, the device name is exposed to the peer device by the
GATT server as a GAP characteristic.

Reconnection Address If a non-resolvable private address is used and the address is changed
frequently, not only attackers but also the peer device will have difficulty
identifying the device. Therefore, the address to be used at reconnection is
reported by setting a new reconnection address as the exposed reconnection
address characteristic.

Scan Interval This is the interval for receiving advertising data.

Scan Window This is the period of time during which advertising data is received at the scan
interval.

Connection Interval This is the interval for transmitting and receiving data periodically following
connection establishment.

Connection Event This is the period of time during which data is transmitted and received at the
connection interval.

Slave Latency This is the period of time during which data is transmitted and received at the
connection interval.

Supervision Timeout This is the timeout interval after which the link is considered to have been lost
when no response is received from the peer device.

Passkey Entry This is a pairing method whereby a six-digit number is input by each device to
the other, or a six-digit number is displayed by one of the devices and that
number is input to the other device.

Just Works This is a pairing method that does not require user action.

OOB This is a pairing method whereby pairing is performed by using data obtained by
a communication method other than Bluetooth.

Identity Resolving Key (IRK) This is a 128-bit key used to generate and resolve resolvable private addresses.

Connection Signature Resolving
Key (CSRK)

This is a 128-bit key used to create data signatures and verify the signature of
incoming data.

Long Term Key (LTK) This is a 128-bit key used for encryption. The key size to be used is the size
agreed on during pairing.

Short Term Key (STK) This is a 128-bit key used for encryption during key exchange. It is generated
using TK.

Temporary Key (TK) This is a 128-bit key used required for STK generation. In the case of Just
Works, the TK value is 0. In the case of Passkey Entry, it is the 6-digit number
that was input, and in the case of OOB, it is the OOB data.

Bluetooth® Low Energy Protocol Stack Sample Program

R01AN1375EJ0120 Rev.1.20 Page 125 of 125
Jul 31, 2017

Website and support

Renesas Electronics Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

Bluetooth is a registered trademark of Bluetooth SIG, Inc. U.S.A.

EEPROM is a trademark of Renesas Electronics Corporation.

Windows, Windows NT and Windows XP are registered trademarks or trademarks of Microsoft Corporation in
the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

Revision Record

Rev. Issued on
Description
Page Summary

1.01 Feb 15, 2013 - First edition issued
1.10 Mar 27, 2013 - The descriptions on the following topics are added:

* Compliant with the BLE S/W Ver.2.0
* Serial communication
* Custom profile
* 2-wire DTM

1.11 Apr 12, 2013 - Replace the captured images from the command prompt
screen

1.12 Jun 28, 2013 2 Update folder organization
1.13 Nov 29, 2013 -

2
10
-

37
41
45
49
52
101
122

Compliant with the BLE S/W Ver.2.3
Update folder organization
Added note to Usage of Sample Program
The usages of the following profiles are added
* Heart Rate Profile
* Cycling Speed and Cadence Profile
* Cycling Power Profile
* Alert Notification Profile
* Location and Navigation Profile
Printf program in the Embedded configuration is added
References specifications are added

1.14 Sep 19, 2014 -
-
4
4
5

8

102
113

-

Compliant with the Bluetooth specification v4.1
Compliant with the BLE S/W Ver0.5
Update version of VC++
Delete folder organization
Update Operating Environment and Development
Environment
Update folder pass of EXE file.
FW Update Sample Program is added
FW Update Environment is added
Clerical error correction

1.15 Jan 30, 2015 -
120

Compliant with the BLE S/W Ver0.9
Changed the UART baud rate for FW Update.

1.16 Apr 17, 2015 - Compliant with the BLE S/W Ver1.0
-

Add IIC interface of serial communication

1.17 Jul 10, 2015 -
97

Compliant with the BLE S/W Ver1.01
Change the mode switching specification in the Modem
Configuration

1.18 Oct 30, 2015 -
5, 118

97

Compliant with the BLE S/W Ver1.1
The description related CS+ for CC / e2 studio (CC-RL) are
added.
The description for the baud rate information of DTM mode is
added.

1.19 Aug 31, 2016 -
-

Compliant with the BLE S/W Ver1.2
Description is changed from CD to package.
Version information for Renesas Flash Programmer is

A-2

5
8
9

67

79
86

103
113

changed.
“5.1 How to Change Parameters” is moved from Appendix.
“UART 2-wire Branch Connection” is added in Table 5-1
Heading level of “7.2 Requirements and Flow Chart of Serial
Communication Driver on APP MCU” is changed.
Reference value of ROM/RAM size is added.
File structure for Sample Custom Profile is updated.
File structure for F/W update is updated.
The description for F/W update of IAR V2 is added.

1.20 Jul 31, 2017 - Update supported Windows / Visual Studio version.
Remove IAR V1 description.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.
For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well
as any technical updates that have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
¾ The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
¾ The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
¾ The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
¾ When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
¾ The characteristics of Microprocessing unit or Microcontroller unit products in the same group but

having a different part number may differ in terms of the internal memory capacity, layout pattern,
and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a
product with a different part number, implement a system-evaluation test for the given product.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

SALES OFFICES

© 2018 Renesas Electronics Corporation. All rights reserved.
Colophon 7.1

(Rev.4.0-1 November 2017)

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by

you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are

not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause

serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all

liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or

other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury

or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult

and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and

sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics

products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable

laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or

transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third

party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

	1. Overview
	2. Applicability
	3. Installation
	3.1. Contents
	3.2. Installation Procedure

	4. Sample Program
	4.1. Operating Environment and Development Environment
	4.2. Structure

	5. Usage of Console-based Sample Program
	5.1. How to Change Parameters
	5.2. Start the Sample Program in Modem Configuration
	5.3. Start the Sample Program in Embedded Configuration
	5.4. Usage of Console-based Sample Program
	5.5. Generic Access Profile (GAP)
	5.6. Security Manager (SM)
	5.7. Generic Attribute Profile (GATT)
	5.8. Find Me Profile (FMP)
	5.9. Proximity Profile (PXP)
	5.10. Health Thermometer Profile (HTP)
	5.11. Blood Pressure Profile (BLP)
	5.12. HID over GATT Profile (HOGP)
	5.13. Scan Parameters Profile (ScPP)
	5.14. Heart Rate Profile (HRP)
	5.15. Cycling Speed and Cadence Profile (CSCP)
	5.16. Cycling Power Profile (CPP)
	5.17. Alert Notification Profile (ANP)
	5.18. Location and Navigation Profile (LNP)
	5.19. Vendor Specific (VS)

	6. Usage of Simple Sample Program
	6.1. Configuration
	6.2. HEX File Preparation
	6.3. Behavior
	6.4. Check with Android Device
	6.5. Check with iOS Device

	7. Appendix
	7.1. Transmit and Receive Operations in the Sample Program for the Computer
	7.2. Requirements and Flow Chart of Serial Communication Driver on APP MCU
	7.2.1. Transmit Procedure Example using the UART 2-wire Connection Method
	7.2.2. Receive Procedure Example using the UART Two-wire Connection Method
	7.2.3. Transmit Procedure Example using the UART 3-wire Connection Method
	7.2.4. Transmit Procedure Example using the UART 2-wire with Branch Connection Method
	7.2.5. Receive Procedure Example using the UART 3-wire and 2-wire with Branch Connection Methods
	7.2.6. Transmit Procedure Example using the CSI 4-wire Connection Method
	7.2.7. Transmit Procedure Example using the CSI 5-wire Connection Method
	7.2.8. Receive Procedure Example using the CSI 4-wire and 5-wire Connection Method
	7.2.9. Transmit Procedure Example using the IIC 3-wire Connection Method
	7.2.10. Receive Procedure Example using the IIC 3-wire Connection Method

	7.3. Porting of the Sample Program
	7.4. How to use the Direct Test Mode
	7.4.1. Direct Test Mode (Receiver)
	7.4.2. Direct Test Mode (Transmitter)
	7.4.3. Direct Test Mode (Parameter Set)

	7.5. Sample Custom Profile
	7.5.1. Sample Custom Profile Specification
	7.5.2. File Structure Corresponding to Sample Custom Profile
	7.5.3. API Functions defined for Sample Custom Profile
	7.5.3.1. RBLE_SCP_Clinet_Enable
	7.5.3.2. RBLE_SCP_Clinet_Disable
	7.5.3.3. RBLE_SCP_Clinet_Read_Char
	7.5.3.4. RBLE_SCP_Clinet_Write_Char
	7.5.3.5. RBLE_SCP_Server_Enable
	7.5.3.6. RBLE_SCP_Server_Disable
	7.5.3.7. RBLE_SCP_Server_Send_Notify
	7.5.3.8. RBLE_SCP_Server_Send_Indicate

	7.5.4. Events defined for Sample Custom Profile
	7.5.5. Usage of the Sample Program for Sample Custom Profile
	7.5.5.1. Usage of the Sample Program for Client role
	7.5.5.2. Usage of the Sample Program for Server role

	7.6. Simple Sample Profile
	7.6.1. Characteristic Specification
	7.6.2. File Structure
	7.6.3. Details of Simple Sample Profile

	7.7. Sample Program for the Direct Test Mode with RF Tester
	7.8. Printf program in the Embedded configuration
	7.9. FW Update Sample Program
	7.9.1. FW Update Profile Specification
	7.9.2. File Structure Corresponding to FW Update Profile
	7.9.3. API Functions defined for FW Update Profile
	7.9.4. Events defined for FW Update Profile
	7.9.5. Usage of the Sample Program for FW Update Profile

	7.10. Project Setting to use FW Update Sample Program
	7.10.1. Receiver device
	7.10.1.1. Project Settings of IAR Embedded Workbench V2.20.1
	7.10.1.2. Project Settings of e2 studio

	7.10.2. Sender device
	7.10.3. Notes of making FW Update Environment

	7.11. References
	7.12. Terminology

	Revision Record

