
 APPLICATION NOTE

R01AN4159EJ0103 Rev.1.03 Page 1 of 50
Dec 21, 2018

Bluetooth® Low Energy Protocol Stack
Sensor Application
Introduction
This application note explains the sample program, which runs on Bluetooth® Low Energy microcontroller RL78/G1D
device and transmits sensor measured data to a remote device.

The sample program contains not only the code files and firmware of the sensor application for RL78/G1D but also
Android application to confirm sensor measured data transmitted by the sensor application.

The sensor application works as a server role of GATT based profile. On the other hand, the Android application works
as a client role of GATT based profile.

By using the Android application, you can check sensor measured data with a line graph and control GPIO of
RL78/G1D with a GUI.

Target Device
RL78/G1D (R5F11AGJ)

Related Documents

Document Name Document No.

RL78/G1D

 User's Manual: Hardware R01UH0515

 RL78/G1D Evaluation Board

 User's Manual R30UZ0048

 E1 Emulator

 User's Manual R20UT0398

 Additional Document for User’s Manual (Notes on Connection of RL78) R20UT1994

 Renesas Flash Programmer V3.05 Flash memory programming software

 User's Manual R20UT4307

 CC-RL Compiler

 User's Manual R20UT3123

 Bluetooth Low Energy Protocol Stack

 User's Manual R01UW0095

 API Reference Manual: Basics R01UW0088

 Security Library Application Note R01AN3777

R01AN4159EJ0103
Rev.1.03

Dec 21, 2018

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 2 of 50
Dec 21, 2018

Contents

1. Overview ... 4

2. Specification ... 6
2.1 Software Composition .. 6
2.2 Digital and Analog Interface ... 7
2.3 Sensor Profile .. 8

2.3.1 Sensor Service .. 9
2.3.2 Accessing to Sensor Service ... 13

3. Operating Procedure .. 15
3.1 Environment .. 15
3.2 Slide Switch Setting .. 16
3.3 Writing a Firmware .. 17
3.4 Connecting Sensors ... 20
3.5 Installing Application .. 22
3.6 Establishing a Connection ... 23
3.7 Controlling GPIO ... 24
3.8 Confirming Sensor Measurement Data ... 25
3.9 Confirming Sensor Measurement Log .. 26

4. Building Procedure .. 27
4.1 File Composition ... 27
4.2 Getting Libraries ... 30
4.3 Building a Firmware .. 31
4.4 Configuring Peripherals ... 32

5. Sensor Control ... 33
5.1 Sensor Initialization .. 34
5.2 Sensor Profile Start ... 35
5.3 Sensor Operation Start ... 36
5.4 Sensor Measurement Data Notification .. 37
5.5 Sensor Profile Stop ... 38

6. Functions .. 39
6.1 Sensor Profile .. 39

6.1.1 R_SENS_Enable .. 39
6.1.2 R_SENS_Disable ... 39
6.1.3 R_SENS_SetData .. 39
6.1.4 R_SENS_Indication ... 40
6.1.5 R_SENS_Notification .. 40
6.1.6 R_SENS_Response .. 40

6.2 Device Driver ... 41

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 3 of 50
Dec 21, 2018

6.2.1 R_ISL29125_Init... 41
6.2.2 R_ISL29125_SetModeSync .. 42
6.2.3 R_ISL29125_SetMode ... 42
6.2.4 R_ISL29125_GetResultSync .. 43
6.2.5 R_ISL29125_GetResult ... 43

6.3 I2C Driver .. 44
6.3.1 R_IICA0_Create ... 44
6.3.2 R_IICA0_RegisterCallback ... 44
6.3.3 R_IICA0_Write ... 45
6.3.4 R_IICA0_Read.. 46

6.4 A/D Converter Driver ... 47
6.4.1 R_ADC_Create... 47
6.4.2 R_ADC_GetChannel ... 47
6.4.3 R_ADC_GetResultSync .. 47

7. Appendix ... 48
7.1 UART for Debug .. 48

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 4 of 50
Dec 21, 2018

1. Overview
Figure 1-1 shows the overview of the sample program.

The sample program is capable of controlling GPIO, A/D conversion, and I2C communication. In addition, it has a
GATT based profile to control those operation. Remote device can control GPIO and sensor operation by
communicating with RL78/G1D through the profile.

In evaluation, RL78/G1D Evaluation Board and sensors having analog output interface and/or I2C interface are used.
Android device is also used as a remote device. Android application BleSensor for evaluation is included in this
application note.

Upon start the sample program, RL78/G1D executes Advertising automatically. By operating BleSensor, you can
establish a connection to RL78/G1D and then control GPIO and confirm measurement data of sensors.

By operating the GPIO control display of BleSensor, you can change a signal level of each output mode port and check
a signal level of each input mode port.

By operating the sensor measurement display of BleSensor, you can check sensor measurement data both of A/D
converter and sensors connected by I2C with a line graph.

Figure 1-1 Overview of the sample program

Regarding the specification of a profile to control GPIO and sensors, refer to the following section.

section 2.3 "Sensor Profile"

Regarding the operation procedure such as writing a firmware to RL78/G1D, connecting sensors, and installing an
Android application, refer to the following chapter.

chapter 3 "Operating Procedure"

A/D converter driver is implemented in the sample program. By connecting an analog output sensor to RL78/G1D, you
can check the measurement result without modifying the sample program.

Regarding the specification of A/D converter driver, refer to the following section.

section 6.4 "A/D Converter Driver"

I2C driver is implemented in the sample program. This driver provides a function to access registers of device having
I2C interface. You can connect various sensor device to RL78/G1D, and then control its operation and get its
measurement data by using this driver. Note that the register specification of sensor device is different from each other,
so it is necessary to refer its specification document.

Regarding the specification of I2C converter driver, refer to the following section.

section 6.3 "I2C Driver"

Analog Signal Output Sensor

RL78/G1D Evaluation Board Android Device

GPIO control Sensor measurement

Android application (BleSensor)

Bluetooth low energy

controls I/O ports of RL78/G1D

displays graph of sensor data

Communicate by using Sensor Profile
to controls GPIO and sensors

I2C Slave Sensor Device

A/D conv. I2C comm.

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 5 of 50
Dec 21, 2018

In the default implementation of the sample program, device drive for RGB light sensor Renesas ISL29125 is enabled.

If you use another sensor device, it is necessary to implement a device driver to use it.

Regarding the specification of ISL29125 device driver, refer to the following section.

section 6.2 "Device Driver"

Regarding the operation sequence of ISL29125 device driver, refer to the following chapter.

chapter 5 "Sensor Control"

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 6 of 50
Dec 21, 2018

2. Specification
2.1 Software Composition
This section explains the software composition of the sample program.

BLE application: manages BLE communication

Sensor application: manages GPIO and sensors

Security Library: controls security of BLE communication

Sensor Profile: controls GATT of BLE communication

BLE Protocol Stack: provides BLE protocol functionalities

Kernel: provides Kernel functionalities

Data Flash Library: controls Data Flash

Device Driver: controls I2C slave device

Peripheral Drivers: controls RL78/G1D peripheral functions

BLE Protocol Stack, Kernel, Data Flash Library are provided in library files.

BLE application and Sensor application as well as Security Library, Sensor Profile, Device Driver and Peripheral
Drivers are provided in code files, and you can customize them if necessary.

Figure 2-1 Overview of The Sample Program

The sample program of this application note was made by customized the following sample program. Regarding the
sequence of BLE communication and the specification of Security Library, refer to the following application note.

 Bluetooth Low Energy Protocol Stack Embedded Configuration Sample Program (R01AN3319)
https://www.renesas.com/document/scd/bluetooth-low-energy-protocol-stack-embedded-configuration-
sample-program

Libraries for evaluating the sample program are included in the package. It is recommended to get the latest libraries
when you develop an application. Regarding the detail, refer to the section 4.2 "Getting Libraries".

RL78/G1D
(Bluetooth Low Energy microcontroller)

BLE Protocol Stack

Kernel (RWKE)

Device Driver

Code Generator Plug-in
Peripheral Driver

BLE application

Data Flash Library

Sensor application

Security Library Sensor Profile

https://www.renesas.com/document/scd/bluetooth-low-energy-protocol-stack-embedded-configuration-sample-program
https://www.renesas.com/document/scd/bluetooth-low-energy-protocol-stack-embedded-configuration-sample-program

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 7 of 50
Dec 21, 2018

2.2 Digital and Analog Interface
Figure 2-2 shows the digital and analog interface of RL78/G1D which is used by the sample program.

I2C master: control and get status of I2C slave device

A/D converter: get analog input signal level from sensor

GPIO output: output digital signal

GPIO input: get digital signal

External Input Interrupt: detect edge of digital signal

UART for debug: output message for debugging to a host machine

By changing a setting of Code Generator Plug-in described later, you can change interface used by the sample program.

Figure 2-2 Digital and Analog Interface Used

RL78/G1D

I2C Slave Device
(sensor or LCD, etc)

Analog Output Device
(Sensor, etc)

Simple Digital Input Device
(LED, etc)

Simple Digital Output Device
(Switch, etc)

I2C Master

A/D Converter

GPIO Output (8pins)

GPIO Input (8pins)
Interrupt Input (3pins)

Host Machine (PC)
UART for Debug (Tx)

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 8 of 50
Dec 21, 2018

2.3 Sensor Profile
This section explains the GATT based profile to control GPIO and sensors.

The specification of the GATT based profile implemented in the sample program is shown below.

Roles:

- A device for controlling GPIO and/or sensor is a server role of the sensor profile.

A server role has a sensor service.

In this application note, RL78/G1D is the server role.

- A device for connecting to a sensor profile server is a client role of the sensor profile.

A client role accesses to a sensor service of the server role to control GPIO and sensor.

In this application note, Android device is the client role.

Service and Characteristic:

- Sensor Service consists of several characteristics to control GPIO and sensor.

- The client role gets a characteristic value by Characteristic Value Read and changes the value by
Characteristic Value Write.

- The server role notifies a characteristic value to the client role by Notification or Indication.

Figure 2-3 Sensor Profile

RL78/G1D
as a Sensor Profile Server

Sensor Service

Characteristic
having a Read attribute

(status of GPIO and sensor)

Characteristic
having a Write attribute

(settings of GPIO and sensor)

Characteristic
having an Indication attribute

(GPIO interruption)

Characteristic
having a Notification attribute

(sensor measurement data)

Android device
as a

Sensor Profile Client

Inidication: send a chacacteristic
value to and then wait a response

Notification: send a characteristic
value

Write: update a characteristic
value by requesting from a client

Read: respond a characteristic value
by requesting from a client

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 9 of 50
Dec 21, 2018

2.3.1 Sensor Service
Table 2-1 shows the specification of Sensor Service.

Table 2-1 Sensor Service Specification

Attribute Handle Attribute Type Attribute Value

Renesas Sensor Service
0x000C Primary Service Declaration (0x2800) UUID: 7C570001-1449-4D27-9206-BCFDEA46A0FF

GPIO Mode Characteristic
0x000D Characteristic Declaration (0x2803) Properties: Read (0x02)

Value Handle: 0x000E
UUID: 7C570002-1449-4D27-9206-BCFDEA46A0FF

0x000E GPIO Mode GPIO Mode (4byte)
GPIO Value Characteristic

0x000F Characteristic Declaration (0x2803) Properties: Read, Write (0x0A)
Value Handle: 0x0010
UUID: 7C570003-1449-4D27-9206-BCFDEA46A0FF

0x0010 GPIO Value GPIO Value (4byte)
GPIO Interrupt Input Characteristic

0x0011 Characteristic Declaration (0x2803) Properties: Indication (0x20)
Value Handle: 0x0012
UUID: 7C570004-1449-4D27-9206-BCFDEA46A0FF

0x0012 GPIO Interrupt Input GPIO Interrupt Input (1byte)
0x0013 Client Characteristic Configuration

Descriptor (0x2902)
Properties: Read, Write (0x0A)
Indication Configuration (2byte)

Sensor Availability Characteristic
0x0014 Characteristic Declaration (0x2803) Properties: Read (0x02)

Value Handle: 0x0015
UUID: 7C570005-1449-4D27-9206-BCFDEA46A0FF

0x0015 Sensor Availability Sensor Availability (1byte)
Sensor Operation Characteristic

0x0016 Characteristic Declaration (0x2803) Properties: Read, Write (0x0A)
Value Handle: 0x0017
UUID: 7C570006-1449-4D27-9206-BCFDEA46A0FF

0x0017 Sensor Operation Sensor Operation (1byte)
Sensor Notification Interval Characteristic

0x0018 Characteristic Declaration (0x2803) Properties: Read, Write (0x0A)
Value Handle: 0x0019
UUID: 7C570007-1449-4D27-9206-BCFDEA46A0FF

0x0019 Sensor Notification Interval Sensor Notification Interval (2byte)
Sensor Value Characteristic

0x001A Characteristic Declaration (0x2803) Properties: Notification (0x10)
Value Handle: 0x001B
UUID: 7C570008-1449-4D27-9206-BCFDEA46A0FF

0x001B Sensor Value Sensor Value (16byte)
0x001C Client Characteristic Configuration

Descriptor (0x2902)
Properties: Read, Write (0x0A)
Notification Configuration (2byte)

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 10 of 50
Dec 21, 2018

GPIO Mode

Each bit of this value indicates a digital input / output mode of port. A bit of unused port is always 0.

0: Output
1: Input

Table 2-2 GPIO Mode
Attribute Handle: 0x000E Properties: Read Size: 4byte

 b0 b1 b2 b3 b4 b5 b6 b7
[0] PM10 PM11 PM12 PM13 PM14 PM15 PM16 reserved
[1] PM00 PM01 PM02 PM03 PM20 PM21 PM22 PM23
[2] PM30 PM40 PM60 PM61 reserved reserved reserved reserved
[3] PM120 PM121 PM122 PM123 PM124 reserved PM137 PM147

GPIO Value

Each bit of this value indicates a digital input / output value of port. A bit of unused port is always 0. A client can
change an output value of output mode port by writing to this value. To read an input value of input mode port, write
and then read this value.

0: Low
1: High

Table 2-3 GPIO Value
Attribute Handle: 0x0010 Properties: Read, Write Size: 4byte

 b0 b1 b2 b3 b4 b5 b6 b7
[0] P10 P11 P12 P13 P14 P15 P16 reserved
[1] P00 P01 P02 P03 P20 P21 P22 P23
[2] P30 P40 P60 P61 reserved reserved reserved reserved
[3] P120 P121 P122 P123 P124 reserved P137 P147

GPIO Interrupt Input

Each bit of this value indicates interrupt input status. Upon occurring an interrupt input, GPIO Value is also updated.

0: No Interrupt
1: Interrupt Generated

Table 2-4 GPIO Interrupt Input
Attribute Handle: 0x0012 Properties: Indication Size: 1byte

 b0 b1 b2 b3 b4 b5 b6 b7
[0] INTP0

(P137)
reserved reserved INTP3

(P30)
reserved INTP5

(P16)
INTP6
(P140)

reserved

GPIO Interrupt Input Indication Configuration

This value controls whether a server role notifies the GPIO Interrupt Input by Indication.

0x0000: stops Indication
0x0002: starts Indication

Table 2-5 GPIO Interrupt Input Indication Configuration
Attribute Handle: 0x0013 Properties: Read, Write Size: 2byte

 b0:7
[0] Indication Configuration (LSB)
[1] Indication Configuration (MSB)

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 11 of 50
Dec 21, 2018

Sensor Availability

Each bit of this value indicates whether sensor is available or not.

0: Not Available
1: Available

Table 2-6 Sensor Availability
Attribute Handle: 0x0015 Properties: Read Size: 1byte

 b0 b1 b2 b3 b4 b5 b6 b7
[0] Sensor 0 Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7

Sensor Operation

Each bit of this value controls sensor operation. A client can change each sensor's operation by writing to this value. A
client should write to this value only when Notification of Sensor Value is stopped. If a client writes to this value, it is
ignored.

0: Stop
1: Start

Table 2-7 Sensor Operation
Attribute Handle: 0x0017 Properties: Read, Write Size: 1byte

 b0 b1 b2 b3 b4 b5 b6 b7
[0] Sensor 0 Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7

Sensor Notification Interval

This value indicates a notification interval of a sensor measurement value in units of 10 milliseconds. A client can
change the interval by writing to this value. A client should write an interval value greater than connection interval. If a
client writes to a value less than connection interval, connection interval is set to this value.

Table 2-8 Sensor Notification Interval
Attribute Handle: 0x0019 Properties: Read, Write Size: 2byte

 b0:7
[0] Sensor Notification Interval (LSB)
[1] Sensor Notification Interval (MSB)

Sensor Value

This value indicates measurement value of each sensor. A measurement value of unused sensor is always 0.

Table 2-9 Sensor Value
Attribute Handle: 0x001B Properties: Notification Size: 16byte

 b0:7
[0] measurement value of sensor 0 (LSB)
[1] measurement value of sensor 0 (MSB)
[2] measurement value of sensor 1 (LSB)
[3] measurement value of sensor 1 (MSB)
: :

[12] measurement value of sensor 6 (LSB)
[13] measurement value of sensor 6 (MSB)
[14] measurement value of sensor 7 (LSB)
[15] measurement value of sensor 7 (MSB)

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 12 of 50
Dec 21, 2018

Sensor Value Notification Configuration

This value controls whether a server role notifies the Sensor Value by Notification.

0x0000: stops Notification
0x0001: starts Notification

Table 2-10 Sensor Value Notification Configuration
Attribute Handle: 0x001C Properties: Read, Write Size: 2byte

 b0:7
[0] Notification Configuration (LSB)
[1] Notification Configuration (MSB)

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 13 of 50
Dec 21, 2018

2.3.2 Accessing to Sensor Service
Figure 2-4 shows an example flow chart of accessing sensor service to control GPIO of RL78/G1D by a remote device.

At first, a remote device gets I/O mode and signal level of ports and then permit RL78/G1D to send interruption.

To change signal level of each port, a remote device writes it to "GPIO Value" characteristic. Similarly, to get signal
level of each port, a remote device reads it from "GPIO Value" characteristic.

When input interruption occurs, RL78/G1D notifies a remote device by "GPIO Interrupt Input" characteristic.

Figure 2-4 Example of Controlling GPIO

<<GPIO Interrupt Input Indication Configuration>>
permit interruption Indication

<GPIO Value>>
get port value

start

<GPIO Value>>
change port output level

<<GPIO Mode>>
gets port I/O mode

<GPIO Value>>
get port signal level

<GPIO Value>>
get port level

change port output level?

get port input level?

receive interruption Indication?

true

true

true

false

false

false

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 14 of 50
Dec 21, 2018

Figure 2-5 shows an example flow chart of accessing sensor service to get sensor measurement data by a remote device.

At first, a remote device gets which sensor is available and starts sensor operation, and then permits to send
measurement data. And if necessary, it changes notification interval of sending measurement data.

Measurement data is sent by "Sensor Value" characteristic periodically.

If a remote device does not need measurement data, it prohibits to send data and stops sensor operation.

Figure 2-5 Example of Controlling Sensor

<<Sensor Operation>>
start sensor operation

<<Sensor Operation>>
stop sensor operation

start

<Sensor Value>>
receive sensor data Notification

<<Sensor Availability>>
get available sensor number

<Sensor Notification Interval>>
set data Notification interval

<<Sensor Value Notification Configuration>>
prohibit sensor data Notification

continue sensor operation?

false
true

<<Sensor Value Notification Configuration>>
permit sensor data Notification

<<Sensor Operation>>
confirm sensor operation starts

<<Sensor Operation>>
confirm sensor operation stops

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 15 of 50
Dec 21, 2018

3. Operating Procedure
This chapter explains the operating procedure of the sample program.

3.1 Environment
The necessary hardware and software environment for compiling and evaluating the sample program is as follow:

- Hardware Environment

- Host

 PC/ATTM compatible computer

- Device

 RL78/G1D Evaluation Board (RTK0EN0001D01001BZ)

- Android device (Version 4.4 KitKat or later)

- Analog signal output sensor Note

- I2C slave sensor device Note

Note: Regarding sensors used for evaluation , refer to section 3.4 "Connecting Sensors".

- Tool

 Renesas On-chip Debugging Emulator E1 (R0E000010KCE00)

- Software Environment

- Windows®10

- Renesas CS+ for CC V6.01.00 / Renesas CC-RL V1.06.00

- Renesas Flash Programmer v3.05.01

- Tera Term Pro (or Terminal software which can connect to serial port)

- UART-USB conversion device driver

Note: It may be that device driver for UART-USB conversion IC FT232RL is requested when you connect RL78/G1D
Evaluation Board to Host first time. In this case, you can get the device driver from below website.

- FTDI (Future Technology Devices International) - Drivers

http://www.ftdichip.com/Drivers/D2XX.htm

- Software Library

- BLE Protocol Stack: Bluetooth Low Energy Protocol Stack V1.21

- Data Flash Library: EEPROM Emulation Library Pack02 for CC-RL Compiler Ver1.01

Note: There software libraries are included in the package. And you can get them from Renesas web site. To get the
libraries, refer to section 4.2 "Getting Libraries".

http://www.ftdichip.com/Drivers/D2XX.htm

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 16 of 50
Dec 21, 2018

3.2 Slide Switch Setting
Figure 3-1 shows the slide switches of RL78/G1D Evaluation Board.

Figure 3-1 Slide Switches of RL78/G1D Evaluation Board

Table 3-1 shows the slide-switch setting to evaluate the sample program.

Table 3-1 Slide Switch Settings

Switch Setting Description
SW7 2-3 connected (right) Power is supplied from DC/USB VBUS via a regulator.

If 1-2 is connected (left), power is directly supplied from a battery.
SW8 2-3 connected (right) Power is supplied from USB VBUS to a regulator.

If 1-2 is connected, power is supplied from DC to a regulator.
SW9 2-3 connected (right) Connected to the USB device.
SW10 1-2 connected (left) Power is supplied to the module.
SW11 2-3 connected (right) Power is supplied from a source other than the E1 debugger (3.3V).
SW12 2-3 connected (right) Unused
SW13 1-2 connected (left) USB interface is connected

Regarding the slide-switch of the evaluation board, refer to the section 6.1 "Power Line System" in RL78/G1D
Evaluation Board User's Manual (R30UZ0048).

SW13SW10 SW9 SW11 SW7

SW8SW12

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 17 of 50
Dec 21, 2018

3.3 Writing a Firmware
Figure 3-2 shows the overview of writing a firmware.

To write a firmware, use the E1 Emulator connected to host machine, and then execute Renesas Flash Programmer on
the host machine.

Figure 3-2 Overview of writing a firmware to RL78/G1D

Regarding the details of E1 Emulator, refer to E1 Emulator User's Manual (R20UT0398) and E1 Emulator Additional
Document for User's Manual (Notes on Connection of RL78) (R20UT1994).

How to write a firmware to RL78/G1D evaluation board is shown below.

1. Connect E1 emulator to the evaluation board and to host machine.

2. Supply power to the evaluation board via a DC jack or USB interface.

3. Start Renesas Flash Programmer and create a project in accordance with the following steps.

Once you created a project, you can skip to execute these steps.

3-1. Select [File][Create a new project].

3-2. Select [RL78] as a Microcontroller, input a project name and click [Connect] in [Create New Project]
dialog.

Host machine

RL78/G1D Evaluation Board

E1 Emulator

Write a firmware
Renesas Flash Programmer

Firmware

Input file

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 18 of 50
Dec 21, 2018

3-3. Confirm [Operation completed] message in Log output panel.

4. Prevent erasing Block 254, 255 in Code Flash memory according to the following steps.

In RL78/G1D Module, Shipping Check Flag is written in Block 254 and Device Address is written in Block 255
respectively.

4-1. Select [Operation Setting] tab and select [Erase Selected Blocks] at [Erase Option].

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 19 of 50
Dec 21, 2018

4-2. Select [Block Setting] tab and uncheck each [Erase], [P.V] of Block254, 255.

5. Select [Operation] table and specify the following firmware at [Program File].

- ROM_File/R5F11AGJ_Sensor.hex

6. Click [Start] button to start writing the firmware.

7. Disconnect E1 Emulator and Power Supply from the evaluation board.

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 20 of 50
Dec 21, 2018

3.4 Connecting Sensors
Figure 3-3 shows the external extension Interface CN4 of RL78/G1D Evaluation Board. And CN4 consists of Pin1 to
Pin26.

Figure 3-3 External Extension Interface of RL78/G1D Evaluation Board

Table 3-2 shows the external extension interface of RL78/G1D Evaluation Board.

The sample program uses digital I/O ports, analog input port for A/D converter, and serial data bus and clock for I2C
master of RL78/G1D. In addition, it uses LEDs and switches of the evaluation board.

Table 3-2 External Extension Interface of RL78/G1D Evaluation Board

Pin port of RL78/G1D I/O of Board RL78/G1D Functionality used by the program
1 P30/INTP3 FT232RL P30/INTP3 Digital Input, Interrupt Input
2 VCC - - -
3 P61/SDAA0 - SDAA0 Serial Data Bus for I2C master
4 GND - - -
5 P23/ANI3 SW3 Note2 P23 Digital Input
6 P10/SCK00/SCL00 SW6-1 P10 Digital Input
7 P147/ANI18 LED2 P147 Digital Output
8 GPIO1/TXSELL_RF SW6-2 Note1 - -
9 P03/ANI16/RxD1 LED3 P03 Digital Output
10 GPIO0/TXSELH_RF SW6-3 Note1 - -
11 P60/SCLA0 LED4 SCLA0 Serial Clock for I2C master
12 P02/ANI17/TxD1 SW6-4 P02 Digital Input
13 P22/ANI2 SW4 P22 Digital Input
14 P12/SO00/TxD0/TOOLTxD - TxD0 UART for debug
15 P120/ANI19 LED1 ANI19 Analog Input for A/D conversion
16 P11/SI00/RxD0/TOOLRxD/SDA00 FT232RL - -
17 VCC - - -
18 - SW1 Note1 - -
19 GND - - -
20 P16/TI01/TO01/INTP5 SW2 P16/INTP5 Digital Input, Interrupt Input
21 P40/TOOL0 - - -
22 RESET - - -
23 - - - -
24 5V - - -
25 GND - - -
26 GND - - -

Note1: SW1, SW3, SW6-2 and SW6-3 cannot be used, because they are not connected to RL78/G1D.
Note2: To use SW3, external pull-up resistor is required.

25

CN4

26
1
2

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 21 of 50
Dec 21, 2018

Connect sensor to RL78/G1D Evaluation Board. You can evaluate the sample program without sensor.

- I2C slave sensor device Note

RGB Light sensor - Renesas ISL29125
https://www.renesas.com/products/sensor-products/light-proximity-sensors/ambient-light-sensors/ambient-
light-digital-sensors/isl29125-digital-red-green-and-blue-color-light-sensor-ir-blocking-filter

e.g. SparkFun RGB Light sensor ISL29125
https://www.sparkfun.com/products/12829

- Analog signal output device

variable resistor 50k ohm

Note: In the sample program, the device driver for RGB Light Sensor ISL29125 is implemented. If you use another
device, it is necessary to replace it with new device driver.

Regarding the degign information of controlling sensor, refer to the following chapters.

chapter 5 "Sensor Control"

chapter 6 "Functions"

Connect ISL29125 module and a variable resistor to RL78/G1D Evaluation Board in accordance with Figure 3-4.

Figure 3-4 Connecting Sensors with RL78/G1D Evaluation Board

RL78/G1D
Evaluation

Board

ISL29125

Variable Resistor

Pin11 - SCLA0

Pin15 - ANI19

Pin3 - SDAA0

SCL

b

SDA

Vcc

GND

Vcc
3.3V

GND
GND

a

c

CN4

https://www.renesas.com/products/sensor-products/light-proximity-sensors/ambient-light-sensors/ambient-light-digital-sensors/isl29125-digital-red-green-and-blue-color-light-sensor-ir-blocking-filter
https://www.renesas.com/products/sensor-products/light-proximity-sensors/ambient-light-sensors/ambient-light-digital-sensors/isl29125-digital-red-green-and-blue-color-light-sensor-ir-blocking-filter
https://www.sparkfun.com/products/12829

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 22 of 50
Dec 21, 2018

3.5 Installing Application
Install Android application BleSensor to Android device.

How to install BleSensor is shown below.

1. To install BleSensor. allow installation of application from unknown sources in "Settings"  "Security" 
"Unknown sources".

2. Send the following package file from PC to Android device by e-mail.

- Android_File/BleSensor.apk

3. Receive the e-mail by Android device and execute the attached package file.

4. Start to install BleSensor.

Figure 3-5 Installing Android Application

5. Confirm that installing BleSensor is completed.

6. If you use Android OS 6 or later, you should give some permissions to BleSensor.

Go to "Settings"  "Apps & notifications"  "App info"  "BleSensor"  "Permissions" and then enable
"Location" and "Storage".

Figure 3-6 Permission Settings

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 23 of 50
Dec 21, 2018

3.6 Establishing a Connection
Establish a BLE connection between Android device and RL78/G1D by using BleSensor.

How to establish a connection is shown below.

1. Enable Bluetooth in "Settings"  "Bluetooth".

2. Start Android application installed in section 3.5.

It shows the device search display and starts Scan to search devices automatically.

In this display, connectable deices and their RSSI: Received Signal Strength Indicator are displayed.

Figure 3-7 Device Search Display

3. Select "RL78/G1D Sensor" in the result of searching device to establish a connection.

If a connection is established to a device which does not have the sensor service, the application disconnects and
restarts to search devices.

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 24 of 50
Dec 21, 2018

3.7 Controlling GPIO
Control GPIO of RL78/G1D by operating Android device.

How to control GPIO is shown below.

1. Upon establishing a connection to RL78/G1D, Android application shows the GPIO control display.

In this display, port name, I/O port mode, and digital signal level of each port are displayed respectively.

Figure 3-8 GPIO Control Display

2. By changing signal level of output port "P03" in the GPIO control display, you can see that LED3 light state of
the evaluation board is changed.

3. By pushing SW2 on the evaluation board, you can see that signal level of input port "P16" in the GPIO control

display is changed.

If you push the SW2, P16 becomes low level. If you release the SW2, P16 becomes high level.

4. By pushing SW4 on the board and tap Read button in the display, you can see that signal level of input port
"P22" is changed to Low.

Then, by releasing the SW4 and tap Read button, you can see that signal level of "P22" is High.

SW2LED3SW4

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 25 of 50
Dec 21, 2018

3.8 Confirming Sensor Measurement Data
Confirm measurement data of sensor connected to RL78/G1D evaluation board.

How to confirm sensor measurement data is shown below.

1. By selecting SENSOR TAB on the GPIO control display, Android application shows Sensor Measurement
display.

In this display, line graph of measurement data, check-box to control each sensor operation, slider to change a
notification interval are displayed.

The following sensors are assigned to each sensor number.

Sensor 0: A/D converter

Sensor 1: ISL29125 RGB Light Sensor (Green)

Sensor 2: ISL29125 RGB Light Sensor (Red)

Sensor 3: ISL29125 RGB Light Sensor (Blue)

Sensor measurement data is saved as a CSV: Comma Separated Values formatted log file.

Figure 3-9 Sensor Measurement Display

2. By putting a check in Sensor0, RL78/G1D starts A/D conversion. Conversion result is displayed by black line in
the graph.

By turning a variable resistor, you can see that the result of A/D conversion changes.

3. By putting a check in Sensor1, Sensor2, Sensor3 respectively, RGB Light sensor starts to measure each
brightness of G: Green, R: Red, and B: Blue respectively. Each measurement result is displayed by green, red
and blue line in the graph.

By changing a brightness around the RGB light sensor, you can see that measurement result changes.

4. By moving slider, RL78/G1D changes the interval of sending measurement data.

5. By selecting GPIO TAB, Android application shows GPIO control display again.

6. If you push a back button of Android device, the application disconnects and goes back to the device search
display.

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 26 of 50
Dec 21, 2018

3.9 Confirming Sensor Measurement Log
Confirm sensor measurement data log saved in Android device.

How to confirm sensor measurement data log is shown below.

1. Connect Android device to PC and select MTP format.

2. Start Explorer on PC. Confirm that there is a folder BleSensor in an internal storage of Android device, and there
may be a log file named with the following name format. In the name format, Y,M,D,H,M, and S are the date
and time of stablishing a connection.

File Name Format: log_YYYY_MM_DD_HH_MM_SS.csv

3. Measurement data in the log file is recorded with the following format. You can confirm the log content by
using text editor or spread sheet software. In data format, timestamp is a date and time of receiving measurement
data, sensor0 to sensor7 are unsigned 2byte measurement data of each sensor.

Data Format: timestamp,sensor0,sensor1,sensor2,sensor3,sensor4,sensor5, sensor6,sensor7

Figure 3-10 shows an example of sensor measurement log which is output by BleSensor.

Figure 3-10 Example Log of Sensor Measurement Data

2018/06/05 11:04:46,380,0,0,0,0,0,0,0

2018/06/05 11:04:47,380,1165,0,0,0,0,0,0

2018/06/05 11:04:47,380,1156,797,0,0,0,0,0

2018/06/05 11:04:48,380,1005,773,604,0,0,0,0

2018/06/05 11:04:49,380,948,654,562,0,0,0,0

2018/06/05 11:04:50,380,1161,819,594,0,0,0,0

2018/06/05 11:04:51,380,1089,790,634,0,0,0,0

2018/06/05 11:04:52,381,1106,790,622,0,0,0,0

2018/06/05 11:04:53,494,1090,779,627,0,0,0,0

date and time
sensor1～sensor3: RGB light sensor measurement result

sensor4 to sensor7: not connected, always 0

sensor0: A/D conversion result

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 27 of 50
Dec 21, 2018

4. Building Procedure
This chapter explains the building procedure of the sample program.

4.1 File Composition
In the package of the sample program, not only code files and firmware for RL78/G1D but also package file and project
for Android device are included.

Although libraries of BLE Protocol Stack and Data Flash Library are included in the package, it is recommended to use
the latest libraries when you develop an application.

To get the libraries, refer to section 4.2 "Getting Libraries".

File and folder composition of the sample program is shown below.

 Android_BleSensor
 ├─Android_BleSensor_V1_0_5.pdf document for Android application BleSensor
 └─Android_BleSensor_V1_0_5.zip project for Android application BleSensor
 RL78G1D_Sensor
 ├─Android_File
 │ BleSensor.apk installation package of Android application BleSensor
 ├─ROM_File
 │ R5F11AGJ_Sensor.hex firmware for evaluation
 │ R5F11AGJ_Sensor(console_lvl4).hex firmware for evaluation, UART for debug is enabled
 └─Project_Source
 ├─bleip
 │ └─src
 │ ├─common
 │ │ co_bt.h
 │ └─rwble
 │ rwble.h
 │ rwble_config.h
 ├─rBLE
 │ └─src
 │ ├─include
 │ │ rble.h BLE Protocol Stack
 │ │ rble_api.h Its library files are included.
 │ │ rble_rwke.h When you develop, get the latest libraries.
 │ ├─sample_app
 │ │ │ console.c
 │ │ │ console.h
 │ │ │ rble_sample_app_peripheral.c BLE Application
 │ │ │ rble_sample_app_peripheral.h
 │ │ │ rble_sample_app_sensor.c Sensor Application
 │ │ │ rble_sample_app_sensor.h If you use other I2C device, modify this.
 │ │ └─seclib
 │ │ secdb.c Security Library
 │ │ secdb.h
 │ │ seclib.c
 │ │ seclib.h
 │ └─sample_profile
 │ └─sen
 │ sens.c Sensor Profile
 │ sens.h
 └─renesas
 ├─lib
 │ BLE_CONTROLLER_LIB_CCRL.lib BLE Protocol Stack

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 28 of 50
Dec 21, 2018

 │ BLE_HOST_lib_CCRL.lib Its library files are included.
 │ BLE_rBLE_lib_CCRL.lib When you develop, get the latest libraries.
 ├─src
 │ │ types.h
 │ ├─arch
 │ │ └─rl78
 │ │ │ arch.h
 │ │ │ arch_main.c
 │ │ │ config.h
 │ │ │ db_handle.h
 │ │ │ hw_config.h
 │ │ │ ke_conf.c
 │ │ │ main.c
 │ │ │ prf_config.c
 │ │ │ prf_config.h
 │ │ │ prf_config_host.c
 │ │ │ prf_sel.h
 │ │ │ rble_core_config.c
 │ │ │ rble_core_config.h
 │ │ │ rwble_mem.c
 │ │ │ rwble_mem.h
 │ │ │ rwke_api.h
 │ │ └─ll
 │ │ ll.h
 │ ├─cg_src
 │ │ r_cg_adc.c Peripheral Driver
 │ │ r_cg_adc.h These are generated by Code Generator Plug-in
 │ │ r_cg_adc_user.c
 │ │ r_cg_iica.c
 │ │ r_cg_iica.h
 │ │ r_cg_iica_user.c
 │ │ r_cg_intp.c
 │ │ r_cg_intp.h
 │ │ r_cg_macrodriver.h
 │ │ r_cg_port.c
 │ │ r_cg_port.h
 │ │ r_cg_sau.c
 │ │ r_cg_sau.h
 │ │ r_cg_sau_user.c
 │ │ r_cg_userdefine.h
 │ ├─compiler
 │ │ │ compiler.h
 │ │ │ iodefine.h
 │ │ └─ccrl
 │ │ cstart.asm
 │ ├─driver
 │ │ ├─dataflash
 │ │ │ │ dataflash.c
 │ │ │ │ dataflash.h
 │ │ │ │ eel_descriptor_t02.c
 │ │ │ │ eel_descriptor_t02.h
 │ │ │ │ fdl_descriptor_t02.c
 │ │ │ │ fdl_descriptor_t02.h
 │ │ │ └─cc_rl
 │ │ │ eel.h Data Flash Library

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 29 of 50
Dec 21, 2018

 │ │ │ eel.lib Its library files are included.
 │ │ │ eel_types.h When you develop, get the latest libraries.
 │ │ │ fdl.h
 │ │ │ fdl.lib
 │ │ │ fdl_types.h
 │ │ ├─peak
 │ │ │ peak.h
 │ │ │ peak_isr.c
 │ │ ├─pktmon
 │ │ │ pktmon.h
 │ │ ├─plf
 │ │ │ plf.c
 │ │ │ plf.h
 │ │ ├─port
 │ │ │ port.h
 │ │ ├─rf
 │ │ │ rf.h
 │ │ └─serial
 │ │ serial.h
 │ └─sensor
 │ ISL29125.c Device Driver
 │ ISL29125.h If you use other I2C device, add driver for it.
 └─tools
 └─project
 └─CS_CCRL
 └─BLE_Peripheral
 │ BLE_Peripheral.mtpj
 └─R5F11AGJ_Sensor
 R5F11AGJ_Sensor.mtsp

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 30 of 50
Dec 21, 2018

4.2 Getting Libraries
To compile a firmware of the sample program, libraries are required. Although these libraries are included in the
package, it is recommended to get the latest libraries when you develop an application.

How to get and set the latest libraries is shown below.

1. Download the library package from the following URL.

BLE Protocol Stack:

Bluetooth Low Energy Protocol Stack V1.21
https://www.renesas.com/document/lbr/bluetooth-low-energy-protocol-stack-ver121

Data Flash Library:

EEPROM Emulation Library Pack02 Package Ver.2.00(for CA78K0R/CC-RL Compiler) for RL78 Family
https://www.renesas.com/document/upr/eeprom-emulation-library-pack02-package-ver200for-ca78k0rcc-rl-
compiler-rl78-family

2. Copy the following files included in the downloaded library packages.

BLE Protocol Stack:

BLE_Software_Ver_x_xx/RL78_G1D/Project_Source/rBLE/src/include/rble.h
BLE_Software_Ver_x_xx/RL78_G1D/Project_Source/rBLE/src/include/rble_api.h
BLE_Software_Ver_x_xx/RL78_G1D/Project_Source/renesas/lib/BLE_CONTROLLER_LIB_CCRL.lib
BLE_Software_Ver_x_xx/RL78_G1D/Project_Source/renesas/lib/BLE_HOST_lib_CCRL.lib
BLE_Software_Ver_x_xx/RL78_G1D/Project_Source/renesas/lib/BLE_rBLE_lib_CCRL.lib

Data Flash Library:

EEL/CCRL_100/EEL/lib/eel.lib
EEL/CCRL_100/EEL/lib/eel.h
EEL/CCRL_100/EEL/lib/eel_types.h
EEL/CCRL_100/FDL/lib/librl78/fdl.lib
EEL/CCRL_100/FDL/lib/incrl78/fdl.h
EEL/CCRL_100/FDL/lib/incrl78/fdl_types.h

3. Place the above files to the following library folders.

Project_Source
├─rBLE
│ └─src
│ └─include
│
│

rble.h Protocol Stack rBLE definitions - header file
│

rble_api.h Protocol Stack rBLE API - header file
└─renesas
 ├─lib
 │
 │

BLE_CONTROLLER_LIB_CCRL.lib Protocol Stack Controller Layer - library file
 │

BLE_HOST_lib_CCRL.lib Protocol Stack Host Layer - library file
 │

BLE_rBLE_lib_CCRL.lib Protocol Stack rBLE Layer - library file
 └─src
 └─driver
 └─dataflash
 └─cc_rl
 eel.h Data Flash Library EEPROM Emulation - header file
 eel.lib Data Flash Library EEPROM Emulation - library file
 eel_types.h Data Flash Library EEPROM Emulation type definition -

 fdl.h Data Flash Library - header file
 fdl.lib Data Flash Library - library file
 fdl_types.h Data Flash Library type definition - header file

https://www.renesas.com/document/lbr/bluetooth-low-energy-protocol-stack-ver121
https://www.renesas.com/document/upr/eeprom-emulation-library-pack02-package-ver200for-ca78k0rcc-rl-compiler-rl78-family
https://www.renesas.com/document/upr/eeprom-emulation-library-pack02-package-ver200for-ca78k0rcc-rl-compiler-rl78-family

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 31 of 50
Dec 21, 2018

4.3 Building a Firmware
You can use CS+ for CC to build a firmware of the sample program. As a result of building, HEX-formatted firmware
named R5F11AGJ_Sensor.hex is generated.

How to build a firmware by using CS+ for CC is shown below.

1. Start CS+ for CC and open the project named BLE_Peripheral.mtpj in the following folder by [File][Open…].

- Project_Source/renesas/tools/project/CS_CCRL/BLE_Peripheral

2. To build a firmware, select [Build][Rebuild Project].

3. Confirm that no error occurs, it succeeds in building a firmware.

4. Confirm that the firmware named R5F11AGJ_Sensor.hex is generated in the following folder.

- Project_Source/renesas/tools/project/CS_CCRL/BLE_Peripheral/R5F11AGJ_Sensor/DefaultBuild

Confirm there is no error

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 32 of 50
Dec 21, 2018

4.4 Configuring Peripherals
To control peripheral functions of RL78/G1D, you can use drivers generated by Code Generator Plug-in of CS+ for CC.

By default setting, the sample program uses the following peripheral functions.

Common/Clock Generator: e.g. Operation mode setting and High-speed OCO clock setting

Port Function: e.g. In/Out, Default output, and Pull-up setting

Interrupt Function: e.g. Edge detection setting

A/D Converter: e.g. Analog input selection, VREF(+,-) setting, and Resolution setting

Serial Interface IICA: e.g. Transfer clock setting

Serial Array Unit: e.g. Transmit and Receive settings and Baud rate setting

Figure 4-1 shows Code Generator Plug-in of CS+ for CC.

There is each peripheral function setting in the Code Generator of Project Tree. You can change its settings After
changing the settings, click the "Generate Code" button to update code files.

Figure 4-1 Code Generator Plug-In

Regarding the specification of generated functions, refer to Smart Manual of CS+ for CC.

To display Smart Manual, select [View][Smart Manual] in menu bar.

Select a peripheral function

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 33 of 50
Dec 21, 2018

5. Sensor Control
This chapter explains the operation of the following modules.

Code files of each module are shown below.

BLE application: Project_Source/rBLE/src/sample_app/rble_sample_app_peripheral.c
Security Library: Project_Source/rBLE/src/sample_app/seclib/seclib.c
Sensor application: Project_Source/rBLE/src/sample_app/r_sample_app_sensor.c
Sensor Profile: Project_Source/rBLE/src/sample_profile/sen/sens.c
ISL29125 driver: Project_Source/renesas/src/sensor/ISL29125.c
Peripheral Driver (IICA0): Project_Source/renesas/src/cg_src/r_cg_iica.c, r_cg_iica_user.c
Peripheral Driver (ADC): Project_Source/renesas/src/cg_src/r_cg_adc.c, r_cg_adc_user.c

Figure 5-1 Module Related to Control Sensor

Figure 5-2 show the flow chart of sensor application.

BLE application executes an operation to connect, disconnect, and encrypts and decrypts data.

Regarding operations of Sensor application, refer to the following pages.

Figure 5-2 Flow Chart of Sensor Application

Peripheral Driver

RL78/G1D

BLE Protocol Stack

ISL29125 driver

BLE application Sensor application

Security Library Sensor Profile

I2C ADC

notify measurement data

Sensor Initialization

Establish a connection
and start encryption

stop Sensor Profile

start Sensor Profile

disconnect

MCU Reset

start sensor operation

refer to section 5.1

refer to section 5.2

refer to section 5.3

refer to section 5.4

refer to section 5.5

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 34 of 50
Dec 21, 2018

5.1 Sensor Initialization
Figure 5-3 shows the sensor initialization sequence.

This sequence is executed only once after resetting RL78/G1D. Sensor application initializes peripherals of RL78/G1D
such as A/D converter and I2C.

Figure 5-3 Sensor Initialization

The device driver for RGB light sensor ISL29125 is implemented in the sample program.

If you use another I2C device, it is necessary to implement a device driver for each device and replace ISL29125 driver
with it.

sensor_init()

R_ADC_Create()

R_IICA0_Create()

R_ISL29125_Init()

R_IICA0_Read()

I2C Read
R_IICA0_Write()

I2C Write

Sensor application
Device Driver
(ISL29125)

Peripheral Driver
(ADC and IICA0)

Initialize
ISL29125

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 35 of 50
Dec 21, 2018

5.2 Sensor Profile Start
Figure 5-4 shows the sensor profile start sequence.

This sequence is executed after establishing a connection to a remote device.

Sensor application starts sensor profile and updates characteristics values of sensor service to the latest status.

By starting sensor profile, a remote device can access to the sensor service.

Figure 5-4 Sensor Profile Start

RBLE_GAP_EVENT_CONNECTION_COMP
SEN_MSG_ENABLE

sen_msg_enable()

R_SENS_Enable()
RBLE_GATT_Enable()

SENS_EVENT_ENABLE_COMP

sen_profile_callback()

R_SENS_SetData()

APP_MSG_SENSOR_ENABLED

RBLE_GAP_EVENT_BONDING_COMP
or RBLE_SM_ENC_START_IND

SEN_MSG_ENCRYPTED

sen_msg_encrypted()

Senso application BLE application Sensor Profile BLE Protocol Stack

update Characteristic Value

connected

start
encryption

start Profile

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 36 of 50
Dec 21, 2018

5.3 Sensor Operation Start
Figure 5-5 shows the sensor operation start sequence.

This sequence is executed by the request from a remote device.

Sensor application starts the measurement operation of ISL29125 by the request from a remote device. After starting
ISL29125 operation, it updates a characteristic value for indicating a sensor operation status.

Figure 5-5 Sensor Operation Start

The device driver for RGB light sensor ISL29125 is implemented in the sample program.

If you use another I2C device, it is necessary to implement a device driver for each device and replace ISL29125 driver
with it.

SENS_EVENT_CHANGE_REQ
(SENS_HDL_SENSOR_OPERATION_CHAR_VAL)

sen_profile_callback()

R_SENS_Response()

 SEN_MSG_SENSOR_CONTROL

sensor_control()

R_ISL29125_SetMode()

R_IICA0_Write()

I2C Write

isl29125_callback()

isl29125_callback()

 KE_EVT_USR_2

sen_evt_isl29125()

R_SENS_SetData()

Sensor ProfileSensor application
Device Driver
(ISL29125)

Peripheral Driver
(ADC and IICA0)

request to
start sensor

operation

respond to
the request

update
status of
sensor

operation

start
ISL29125
operation

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 37 of 50
Dec 21, 2018

5.4 Sensor Measurement Data Notification
Figure 5-6 shows the sensor measurement data notification sequence.

This sequence is executed by the permission from a remote device.

Sensor application notifies measurement data of A/D conversion and ISL29125 periodically by the request from a
remote device.

Figure 5-6 Sensor Measurement Data Notification

The device driver for RGB light sensor ISL29125 is implemented in the sample program.

If you use another I2C device, it is necessary to implement a device driver for each device and replace ISL29125 driver
with it.

SENS_EVENT_CHANGE_REQ
(SENS_HDL_SENSOR_VALUE_CHAR_CFG)

sen_profile_callback()

R_SENS_SetData()

R_SENS_Response()

 SEN_MSG_SENSOR_MEASURE

repeat to send measurement data

sensor_measure()

R_ADC_GetResultSync()

A/D Conversion
R_ISL29125_GetResult()

R_IICA0_Read()

I2C Read

iica0_callback()

isl29125_callback()

 KE_EVT_USR_2

sen_evt_isl29125()

 SEN_MSG_SENSOR_RESULT

sen_msg_sensor_result()

R_SENS_SetData()

R_SENS_Notification()

 SEN_MSG_SENSOR_MEASURE

Sensor application
Device Driver
(ISL29125)

Peripheral Driver
(ADC and IICA0) Sensor Profile

permit to
send

Notification

respond to
the

permission

send
measurement

datawait notification interval
by kernel timer

get
measurement

result of
ISL29125

get A/D
conversion

result

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 38 of 50
Dec 21, 2018

5.5 Sensor Profile Stop
Figure 5-7 shows the sensor profile stop sequence.

This sequence is executed after disconnection.

Sensor application stops sensor profile and notifies that sensor profile stopped. And then BLE application restarts
Advertising.

Figure 5-7 Sensor Profile Stop

RBLE_GAP_EVENT_DISCONNECT_COMP
SEN_MSG_DISABLE

sen_msg_disable()

R_SENS_Disable()

SENS_EVENT_DISABLE_COMP

sen_profile_callback()

APP_MSG_SENSOR_DISABLED

RBLE_GAP_Broadcast_Enable()

Senso application BLE application Sensor Profile BLE Protocol Stack

disconnected

restart
Advertising

stop Sensor
Profile

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 39 of 50
Dec 21, 2018

6. Functions
This chapter explains the function specifications of each module such as sensor profile, device driver and I2C driver.

When you implement a device driver for using another I2C device, refer to this chapter as necessary.

6.1 Sensor Profile
The specification of sensor profile is shown below.

Regarding the implementation of sensor profile, refer to the following file.

Sensor Profile: Project_Source/rBLE/src/sample_profile/sen/sens.c

6.1.1 R_SENS_Enable
RBLE_STATUS R_SENS_Enable(uint16_t conhdl, SENS_EVENT_HANDLER callback);
This function enables sensor profile server.
It is necessary to execute after each establishing a connection.
When sensor profile server event occurs, sensor Profile executes a callback function registered by this function.

Parameters:

conhdl Connection Handle
Set a handle notified by RBLE_GAP_EVENT_CONNECTION_COMP event

callback

Callback function to notify that sensor profile server event occurs

void (*SENS_EVENT_HANDLER)(SENS_EVENT *event);

event Sensor Profile Server Event
Regarding the definition of SENS_EVENT structure, refer to sens.h.

Return:

RBLE_OK Success
others Regarding the definitions of error codes, refer to RBLE_STATUS_enum in rble.h.

6.1.2 R_SENS_Disable
RBLE_STATUS R_SENS_Disable(uint16_t conhdl);
This function disables sensor profile server.
It is necessary to execute after each disconnection.

Parameters:

 conhdl Connection Handle
Set the connection handle same as set by R_SENS_Enable()

Return:

RBLE_OK Success
others Regarding the definitions of error codes, refer to RBLE_STATUS_enum in rble.h.

6.1.3 R_SENS_SetData
void R_SENS_SetData(uint16_t charhdl, void* charval);
This function changes a characteristic value of sensor service.

Parameters:

charhdl Attribute Handle of Characteristic Value to be changed
charval New Characteristic Value

Return:
 None

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 40 of 50
Dec 21, 2018

6.1.4 R_SENS_Indication
void R_SENS_Indication(uint16_t charhdl);
This function sends an Indication to remote device.
After remote device permits to send an Indication, own device can send it.

Parameters:
 charhdl Attribute Handle of Characteristic Value to be sent by Indication
Return:
 None

6.1.5 R_SENS_Notification
void R_SENS_Notification(uint16_t charhdl);
This function sends a Notification to remote device.
After remote device permits to send a Notification, own device can send it.

Parameters:
 charhdl Attribute Handle of Characteristic Value to be sent by Notification
Return:
 None

6.1.6 R_SENS_Response
void R_SENS_Response(uint16_t charhdl, uint8_t status);
This function sends a Response for a Write Request from remote device.
When a Write Request is received, it is necessary to send a Response by executing this function.

Parameters:

charhdl Attribute Handle of Characteristic Value to be written

status Status Code for a Write Request
Regarding the definitions, refer to RBLE_ATT_ERR_CODE_enum in rble_api.h.

Return:
 None

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 41 of 50
Dec 21, 2018

6.2 Device Driver
The device driver for controlling RGB light sensor ISL29125 is implemented in the sample program. It uses I2C driver
and accesses registers of ISL29125 by I2C communication.

If you use another I2C device, it is necessary to implement a device driver for each device and replace ISL29125 driver
with it.

The specification of ISL29125 driver is shown below.

Regarding the implementation of ISL29125 driver, refer to the following file.

ISL29125: Project_Source/renesas/src/sensor/ISL29125.c

6.2.1 R_ISL29125_Init
uint8_t R_ISL29125_Init(r_isl29125_calback_t callback);
This function initializes ISL29125.
This function check if the device is connected to RL78/G1D via I2C, and then executes device reset and configuration.
Moreover, it executes the initialization sequence defined by the device specification such as a calibration.
After an asynchronous device control finishes, callback function registered by this function is executed.

Parameters:

 callback

Callback function to notify that asynchronous device control is finished.

void (*r_isl29125_calback_t)
(r_isl29125_opcode_t opcode, uint8_t status, void* data);

opcode Operation Code to identify each device control operation

status
status of device control operation
0 Success
others Failed

data returned data from device control operation
Return:

0 Success
others Device not present, Device or I2C error, or other error

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 42 of 50
Dec 21, 2018

6.2.2 R_ISL29125_SetModeSync
uint8_t R_ISL29125_SetModeSync(uint8_t mode);

This function sets the operation setting registers of ISL29125.
Device operation mode such as run mode or standby mode is changed in accordance with the argument mode.
And, additional settings to be required by the device specification are set.
This function returns after completion of setting operation mode. A callback function registered by R_ISL29125_Init()
is not executed.

Parameters:
 mode device mode setting
Return:

0 Success
others Device or I2C error, or other error

6.2.3 R_ISL29125_SetMode
uint8_t R_ISL29125_SetMode(uint8_t mode);

This function sets the operation setting registers of ISL29125.
Device operation mode such as run mode or standby mode is changed in accordance with the argument mode.
And, additional settings to be required by the device specification are set.
This function returns without waiting completion of setting operation mode. Completion of setting is notified by a
callback function registered by R_ISL29125_Init().

Parameters:
 mode device mode setting
Return:

0 Success
others Device or I2C error, or other error

Figure 6-1 Sequence of R_ISL29125_SetModeSync() and R_ISL29125_SetMode()

R_ISL29125_SetModeSync()

R_IICA0_Write(sync = IICA0_SYNC)

I2C Write

R_ISL29125_SetMode()

R_IICA0_Write(sync = IICA0_ASYNC)

I2C Write

callback
callback

Sensor application Device Driver I2C Driver

return from functionreturn from function

return from function

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 43 of 50
Dec 21, 2018

6.2.4 R_ISL29125_GetResultSync
uint8_t R_ISL29125_GetResultSync(r_isl29125_result_t* result);

This function gets the measurement result of ISL29125.
Measurement result is stored in a buffer specified by the argument result.
This function returns after completion of getting result. A callback function registered by R_ISL29125_Init() is not
executed.

Parameters:
 result sensor measurement result
Return:

0 Success
others Device or I2C error, or other error

6.2.5 R_ISL29125_GetResult
uint8_t R_ISL29125_GetResult(void);

This function gets the measurement result of ISL29125.
This function returns without waiting completion of getting result. The measurement result is notified by a callback
function registered by R_ISL29125_Init().

Parameters:
 None
Return:

0 Success
others Device or I2C error, or other error

Figure 6-2 Sequence of R_ISL29125_GetResultSync() and R_ISL29125_GetResult()

R_ISL29125_GetResultSync()

R_IICA0_Read(sync = IICA0_SYNC)

I2C Read

R_ISL29125_GetResult()

R_IICA0_Read(sync = IICA0_ASYNC)

I2C Readreturn from function

callback
callback

return from function

Sensor application Device Driver I2C Driver

return from function

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 44 of 50
Dec 21, 2018

6.3 I2C Driver
The device driver to use serial interface IICA of RL78/G1D is implemented in the sample program. By using this
driver, RL78/G1D works as a I2C master and accesses sensor working as an I2C slave.

The specification of I2C driver is shown below.

Regarding the implementation of I2C driver, refer to the following files.

I2C driver: Project_Source/renesas/src/cg_src/r_cg_iica.c, r_cg_iica_user.c

6.3.1 R_IICA0_Create
void R_IICA0_Create(void);
This function initializes Serial Interface IICA of RL78/G1D.
Parameters:
 None
Return:
 None

6.3.2 R_IICA0_RegisterCallback
void R_IICA0_RegisterCallback(iica0_user_calback_t callback);
This function registers a callback function to notify that IICA0 operation is completed.
After the following timing, IICA interrupt handler executes a callback function registered by this function.
- I2C write completion
- I2C read completion
- I2C error

Parameters:

 callback

Callback function to notify that I2C access is completed

void (*iica0_user_calback_t)(iica0_rw_calltype_t type, uint8_t flag);

type
IICA0_SENDEND I2C write completion
IICA0_RECEIVEEND I2C read completion
IICA0_ERROR I2C error

flag
refer to r_cg_macrodriver.h
MD_OK Success
other than MD_OK Error

Return:
 None

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 45 of 50
Dec 21, 2018

6.3.3 R_IICA0_Write
MD_STATUS R_IICA0_Write(uint8_t adr, void* buf, uint16_t len, iica0_rw_sync_t sync);
This function writes data to register of I2C slave device.
The address of I2C slave device is specified by adr.
Data in the buffer buf[1] and following is written to the register of address specified in buf[0].
Regarding I2C communication, refer to Figure 6-3.

This function should be executed when interrupt enables. And this function cannot be executed by interrupt handler.
Parameters:

adr Device Address set 7bit device address

buf Data Buffer set register address to buf[0]
set data to buf[1] and the following

len Access Length (byte) set the sum of register address (1byte) and data length
(len >= 2)

sync

Synchronous Setting
IICA0_SYNC This function returns after completion of I2C access.

IICA0_ASYNC This function returns without waiting completion of I2C access.
Completion of I2C access is notified by callback function.

Return:

refer to r_cg_macrodriver.h
MD_OK Success
other than MD_OK Error

Figure 6-3 I2C Accessing by R_IICA0_Write

…

0 …

ST
AR

T

ST
O

P

AC
K

AC
K

buf[0] buf[1]

AC
K

adr buf[len-1]
Device Address Register Address Data 0 Data (len-2)

W
R

IT
E

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 46 of 50
Dec 21, 2018

6.3.4 R_IICA0_Read
MD_STATUS R_IICA0_Read(uint8_t adr, void* buf, uint16_t len, iica0_rw_sync_t sync);
This function reads data from register of I2C slave device.
The address of I2C slave device is specified by adr.
Data is read from the register of address specified in buf[0] and then stored to the buffer buf[1] and the following.
Regarding I2C communication, refer to Figure 6-4.

This function should be executed when interrupt enables. And this function cannot be executed by interrupt handler.
Parameters:

adr Device Address set 7bit device address
buf Data Buffer set register address to buf[0]

len Access Length (byte) set the sum of register address (1byte) and data length
(len >= 2)

sync

Synchronous Setting
IICA0_SYNC This function returns after completion of I2C access.

IICA0_ASYNC This function returns without waiting completion of I2C access.
Completion of I2C access is notified by callback function.

Return:

refer to r_cg_macrodriver.h
MD_OK Success
other than MD_OK Error

Figure 6-4 I2C Accessing by R_IICA0_Read

…

0 1 …

ST
O

P

AC
K

AC
K

AC
K

ST
AR

Tbuf[0] buf[1]adr

AC
K

ST
AR

T adr
Data (len-2)
buf[len-1]

Device Address Register Address Device Address Data 0

W
R

IT
E

R
EA

D

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 47 of 50
Dec 21, 2018

6.4 A/D Converter Driver
The A/D converter driver to use A/D converter of RL78/G1D is implemented in the sample program. You can change a
configuration of A/D converter by operating a Code Generator Plug-in of CS+ for CC.

The specification of A/D converter driver is shown below.

Regarding the implementation of A/D converter driver, refer to the following files.

- A/D converter ：Project_Source/renesas/src/cg_src/r_cg_adc.c, and r_cg_adc_user.c

6.4.1 R_ADC_Create
void R_ADC_Create(void);
This function initializes the A/D converter of RL78/G1D.
Parameters:
 None
Return:
 None

6.4.2 R_ADC_GetChannel
uint8_t R_ADC_GetChannel(void);
This function gets a selected analog input channel of A/D converter.
Parameters:
 None
Return:

Analog Input Channel
Regarding the returned analog input channel value, refer to subsection 12.3.7 "Analog input channel specification
register (ADS)" in RL78/G1D User's Manual: Hardware (R01UH0515).

6.4.3 R_ADC_GetResultSync
uint8_t R_ADC_GetResultSync(uint16_t* result);
This function A/D conversion and return the result by argument.
Parameters:
 result A/D conversion result
Return:

0 Success
others Error

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 48 of 50
Dec 21, 2018

7. Appendix
7.1 UART for Debug
Functions to output message for debugging are implemented in the sample program.

Table 7-1 shows the functions of UART for debug. You can use them as necessary.

Table 7-1 Functions of UART for Debug

Function Example Use-case
PrintError() for reporting implementation problem
PrintWarning() for warning unexpected operation
PrintInfo() for checking parameters used by application
PrintLog() for checking sequence of application

To enable these functions, change the macro CONSOLE_LVL defined in the following file.

- Project_Source/rBLE/src/sample_app/console.h

console.h (line 63):

Depending on the CONSOLE_LVL, each function displayed in Table 7-2 is enabled.

Table 7-2 CONSOLE_LVL

CONSOLE_LVL Usable function of UART for debug
0 UART for debug is disabled
1 PrintError() only
2 PrintError() and PrintWarning
3 PrintError(), PrintWarning() and PrintInfo()
4 PrintError(), PrintWarning(), PrintInfo() andPrintLog()

You can confirm message output from UART for debug by a terminal software on PC. Table 7-3 shows the serial
communication setting for a terminal software.

Table 7-3 Serial Communication Setting for Terminal Software

Item Setting
Serial Port Port USB Serial Port

Note that COM number is different from each
evaluation board

Baud rate 1,000,000bps
Data Bit Length 8bit
Parity None
Stop Bit Length 1bit
Flow Control None

New Line Receive LF
Terminal Size Horizontal over than 128 characters

63: #define CONSOLE_LVL (0) Change either 1 to 4

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 49 of 50
Dec 21, 2018

When Tera Term is used as terminal software, there is no "1,000,000bps" in the drop-down list of Baud Rate. Thus, it is
necessary to enter "1000000" to the input box of Baud Rate directly.

Figure 7-1 shows an example message that is output by the sample program built with CONSOLE_LVL=4.

You can customize message content as necessary.

Figure 7-1 Example Message of UART for Debug

In this example message, "Connected" means that a connection is established, "Pairing completed" means that pairing
is completed, and "Sensor Notification Enabled" means that operation to notify sensor measurement data is started.

Key "1000000" directly

Bluetooth® Low Energy Protocol Stack Sensor Application

R01AN4159EJ0103 Rev.1.03 Page 50 of 50
Dec 21, 2018

Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.
For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well
as any technical updates that have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
¾ The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
¾ The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
¾ The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
¾ When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
¾ The characteristics of Microprocessing unit or Microcontroller unit products in the same group but

having a different part number may differ in terms of the internal memory capacity, layout pattern,
and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a
product with a different part number, implement a system-evaluation test for the given product.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

SALES OFFICES

© 2018 Renesas Electronics Corporation. All rights reserved.
Colophon 7.1

(Rev.4.0-1 November 2017)

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by

you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are

not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause

serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all

liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or

other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury

or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult

and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and

sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics

products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable

laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or

transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third

party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

	1. Overview
	2. Specification
	2.1 Software Composition
	2.2 Digital and Analog Interface
	2.3 Sensor Profile
	2.3.1 Sensor Service
	2.3.2 Accessing to Sensor Service

	3. Operating Procedure
	3.1 Environment
	3.2 Slide Switch Setting
	3.3 Writing a Firmware
	3.4 Connecting Sensors
	3.5 Installing Application
	3.6 Establishing a Connection
	3.7 Controlling GPIO
	3.8 Confirming Sensor Measurement Data
	3.9 Confirming Sensor Measurement Log

	4. Building Procedure
	4.1 File Composition
	4.2 Getting Libraries
	4.3 Building a Firmware
	4.4 Configuring Peripherals

	5. Sensor Control
	5.1 Sensor Initialization
	5.2 Sensor Profile Start
	5.3 Sensor Operation Start
	5.4 Sensor Measurement Data Notification
	5.5 Sensor Profile Stop

	6. Functions
	6.1 Sensor Profile
	6.1.1 R_SENS_Enable
	6.1.2 R_SENS_Disable
	6.1.3 R_SENS_SetData
	6.1.4 R_SENS_Indication
	6.1.5 R_SENS_Notification
	6.1.6 R_SENS_Response

	6.2 Device Driver
	6.2.1 R_ISL29125_Init
	6.2.2 R_ISL29125_SetModeSync
	6.2.3 R_ISL29125_SetMode
	6.2.4 R_ISL29125_GetResultSync
	6.2.5 R_ISL29125_GetResult

	6.3 I2C Driver
	6.3.1 R_IICA0_Create
	6.3.2 R_IICA0_RegisterCallback
	6.3.3 R_IICA0_Write
	6.3.4 R_IICA0_Read

	6.4 A/D Converter Driver
	6.4.1 R_ADC_Create
	6.4.2 R_ADC_GetChannel
	6.4.3 R_ADC_GetResultSync

	7. Appendix
	7.1 UART for Debug

