1LENESAS Application Note

Renesas RA Family
Booting Encrypted Image on RA4 using MCUboot and
QSPI

Introduction

MCUboot is a secure bootloader for 32-bit MCUSs. It defines a common infrastructure for the bootloader, defines
system flash layout on microcontroller systems, and provides a secure bootloader that enables easy software
update. MCUboot is independent of operating system and hardware and relies on hardware porting layers
from the operating system it works with. The Renesas Flexible Software Package (FSP) integrates an
MCUboot port starting from FSP v3.0.0. Users can benefit from using the FSP MCUboot Module to create a
Root of Trust (RoT) for the system and perform secure booting and fail-safe application updates.

The MCUboot is maintained by Linaro in the GitHub mcu-tools page https://github.com/mcu-tools/mcuboot.
There is a \docs folder that holds the documentation for MCUboot in .md file format. This application note
refers to the above-mentioned documents wherever possible and is intended to provide additional information
that is related to using the MCUboot module with Renesas RA FSP v3.0.0 or later.

To provide confidentiality of image data while in transport to the device or while residing on an external flash,
MCUboot has support for encrypting/decrypting images on-the-fly while upgrading. When upgrading the image
from the secondary slot to the primary slot, it is automatically decrypted after validation. Image encryption is
supported by FSP v3.8.0 or later.

This application note walks the user through application project creation using the MCUboot module on
Renesas EK-RA4M3 with external QSPI flash as the secondary image storage area. The application examples
implemented image downloading to the QSPI secondary slot over USB PCDC. MCUboot with encryption also
supports internal flash encryption. The operations are very similar to the QSPI usage and are not demonstrated
in this application project.

For using MCUboot module with the internal flash in code flash linear mode without encryption support, user
can reference application project (R11AN0869).

Required Resources
Development tools and software

e The e? studio IDE v2024-01 or later.
e Renesas Flexible Software Package (FSP) v5.2.0 or later.
e SEGGER J-link® USB driver.

The above three software components: the FSP, J-Link USB drivers and e? studio are bundled in a
downloadable platform installer available on the FSP webpage at renesas.com/ra/fsp.

e Python v3.9 or later- https://www.python.org/downloads/

Hardware

o EK-RA4M3 Evaluation Kit for RA4AM3 MCU Group (http://www.renesas.com/ra/ek-ra4m3).
e Workstation running Windows® 10 and Tera Term console, or similar application.
e Two USB device cables (type-A male to micro-B male).

R11ANO868EU0100 Rev.1.00 Page 1 of 38
Apr.03.24 RENESAS

https://github.com/mcu-tools/mcuboot
http://www.renesas.com/fsp
https://www.python.org/downloads/
http://www.renesas.com/ra/ek-ra4m3

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

Prerequisites and Intended Audience

This application note assumes you have some experience with the Renesas e? studio IDE and Arm®
TrustZone® based development models with €2 studio. Users are required to read the entire FSP User’s Manual
on the MCUboot Port section and review the RA4 Basic Secure Bootloader Design using MCUboot Application
Project (R11ANO0869) prior to moving forward with this application project. In addition, the application note
assumes that you have some knowledge of cryptography. Prior knowledge of Python usage is also helpful.

The intended audience are product developers, product manufacturers, product support, or end users who are
involved with designing application systems involving usage of a secure bootloader.

Using this Application Note

Section 1 covers the general overview of MCUboot and the application upgrade methods supported by the
MCUboot. If you have worked with MCUboot module-based bootloader previously, this section can be
bypassed.

Section 2 covers the general flow of architecting a system using FSP MCUboot module. If you have previously
worked with the MCUboot system using FSP, this section can be bypassed.

Section 3 covers the walk throughs of running the initial example projects which do not include encryption
support. These example projects use swap test update mode and internal code flash for both primary and
secondary applications. Image downloader using XModem over USB PCDC is implemented in the primary and
secondary applications. MCUboot provided example keys are used for image signing and encryption support.

Section 4 covers adding encryption support to the bootloader and applications using internal code flash for
both the primary and secondary applications.

Section 5 covers updating the projects created in section 4 to use QSPI for secondary image storage. Note
that for the user’s convenience, an end solution for this section is provided for the user’s reference.

Section 6 covers using custom image signing and image encryption keys in the projects created in Section 5.

Section 7 covers production-related topics.

Contents

1. MCUDOOt FUNCHONAITIES OVEIVIEW ...t eee ettt e e e e e e e eeeeaa e e e e eeeeeeenes 4
1.1 Validate Application before Booting and Updating...........cueeeiiiiiiiiiiiiieiiiiee e 4
1.1.1 Encrypted APPlICAtiONS UPUALEeiiiiiiiiieiiieiie ettt sttt ettt e st e e b e e e snbt e e e e snnaeeeas 5
2. Architecting an Application with MCUboot Module using FSP..............uuuiiiiiiiiiiiiiiiins 5
2.1 MCU Memory Configuration using MCUboot Module With FSPccccviiiieiiiie e 5
2.2 Application Image Format for ENCrypted IMageuuueiiieiiiiiiiiiiiie e e et e e e e e srnrne e e e e e e nnnes 6
2.3 Designing Bootloader and the Initial Primary Application OVEIVIEWcceveeeiiiiiiieieeeeesiiiiiiieeeeeeennnns 6
2.4 General Guidelines using the MCUboot Module Across RA Family MCUScccuviiiiiiiiiiiiiiiiieeee s 6
2.5 CUStOMIZE the BOOLIOAUETeeeiiiiieiie ettt e e e e et bttt e e e e e s abbbe e e e e e e e e sanbbeeeeaaeeeaannes 7
AL T = (oo [Tox 1 o] g BTN o] o o] o (TP PRRPTE 7
2 0 A 1= YA o €071 (o 1 o SO SES 7
2.6.2 Make the bootloader immutable for enhanced SECUNILYcccvviiiiiiiiiiiii e 7
2.6.3 Advance the device lifecycle states prior to the deploy the product to the field...........cccooceiiriiinnne 7
3. Running the Initial EXample PrOJECLSccoiiiiiiiiie et 8
3.1 Set Up the Python Image Signing ENVIFONMENT..........couiiiiiiiiiiiieee e e e e e s s seee e e e e e s s e e e e e e e e nnnes 9
3.2 Running the Initial EXampPle PrOJECES........uuuiiiiie it s e e e e s et e e e e e e e s s e e e e e e e aennnes 9
3.2, 1 SEtUP the HAIAWAIEci ittt ettt e e e e e ot bbbt e e e e e e e e sabbbbeeeaaeeeaasnbbeeeeaaeeaaannnes 9
R11ANO868EU0100 Rev.1.00 Page 2 of 38

Apr.03.24 RENESAS

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

G0 11 1 o1 1 L= £ =T) SRS 10
3.2.3 Configure the Python Signing ENVIFONMENTuiiiiiiiiiiiiie et e e e e e e e e 10
3.2.4 ComPile All tNE PrOJECESottt e et e e e e e e sttt e e e e e e e e e s nbbereeeaaeeeaane 11
3.2.5 Debug the APPIICALIONS ...ttt e ettt e e e e e s ab bt et e e e e e e e snbbeeeeeaeeeaannes 11
3.2.6 Downloading and Running the Secondary APpPlICAtiONceveeiiiiiiiiiiieee e e 12
4. Add Encryption to the Initial EXample Project..........cooviiiiiiiiiii e 14
4.1 Configure the Bootloader for ENCryption SUPPOIuuiiiiiiiiiiiiiieiee et e e e rnibeeee e e 15
4.2 Configure the Application Project for ENCryption SUPPOIt........ccuviiiiireeiiiiiiieeee e e creeee e e e e e s s snnvneeeeee s 20
5. Use QSPI as Secondary StOrage ANBauuuuuuuuuummmiiiiiss s a e e e e e e e e e aeeas 24
5.1 Configure the Bootloader to Use QSPI for Secondary Application Storagecccceveeviiiiiiieeneeeennnns 25
5.2 Update the Primary Application Project to SUPPOrt QSPIuuviiieiiiiiiiiieeee e e e 27
6. Using Custom Signing Key and ENCryption K@Yuuuuuuiiiiiiiiissss s 29
R Y o o T= T Lo [T 35
7.1 Making the Bootloader for Cortex®-M33 IMMULIADIE..........ccuiiiiiiiie e 35
7.2 Device Lifecycle Management for Renesas RA Cortex®-M33 MCUScccceeviciiieeiiiiiieeeniiiee e 36
8. REIEIBINCESt e e 36
LS T VT =T o 1S (= T To ST o] oL A 37
REVISION HISTOMY ... ittt nnnnnnnes 38
R11ANO868EU0100 Rev.1.00 Page 3 of 38

Apr.03.24 RENESAS

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

1. MCUboot Functionalities Overview

MCUboot handles the firmware authenticity check after start-up and the firmware switch part of the firmware
update process. Downloading the new version of the firmware is out-of-scope for MCUboot. Typically,
downloading the new version of the firmware is functionality that is provided by the application project itself.
This application project provides an example of this functionality using XModem transfer protocol over USB
PCDC port to download image to the external QSPI secondary image storage area.

1.1 Validate Application before Booting and Updating

For applications using MCUboot, the MCU memory is separated into MCUboot, Primary App, Secondary App
and the Scratch Area. The following is an example of the single image MCUboot memory map when using the
internal code flash.

Scratch Area

Secondary App

Primary App

MCUboot

Figure 1. Single Image MCUboot Memory Code Flash Map

The following is an example of the single image MCUboot memory map when using external flash storage as
the secondary storage area.

Scratch Area

Plaintext
Primary App
Encrypted
mcuboot Secondary App
0x0 0x60000000

MCUboot Memory Map with QSPI

Figure 2. Single Image MCUboot Flash Memory Map with QSPI

For more information on the MCUboot memory layout, refer to the Flash Map section of the reference MCUboot
website.

The functionality of the MCUboot during booting and updating follows the process below:

The bootloader starts when CPU is released from reset. For TrustZone®-based MCUs, MCUboot is designed
to run in Secure mode with all access privileges available to it. If there are images in the Secondary App
memory marked as to be updated, the bootloader performs the following actions:

1. The bootloader will authenticate the Secondary image.

2. Upon successful authentication, the bootloader will switch to the new image based on the update method
selected. Available update methods are introduced in section 1.1.1.

3. The bootloader will boot the new image.

If there is no new image in the Secondary App memory region, the bootloader will authenticate the Primary
applications and boot the Primary image.

R11ANO868EU0100 Rev.1.00 Page 4 of 38
Apr.03.24 RENESAS

https://docs.mcuboot.com/design.html#flash-map

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

The authentication of the application is configurable in terms of the authentication methods and whether the
authentication is to be performed with MCUboot. If authentication is to be performed, the available methods
are RSA or ECDSA. The firmware image is authenticated by hash (SHA-256) and digital signature validation.
The public key used for digital signature validation can be built into the bootloader image or provisioned into
the MCU during manufacturing. In the examples included in this application project, the public key is built into
the bootloader images.

The image header needs to flag this image as ENCRYPTED (0x04) and a TLV with the key must be present
in the image.

There is a signing tool included with the MCUboot: imgtool .py. This tool provides services for creating

Root keys, key management, and signing and packaging an image with version controls. User needs to read
the MCUboot documentation to use and understand these operations.

1.1.1 Encrypted Applications Update

The major use case for encrypted image update is for external flash update image storage. External flash
content is prone to theft in many ways. It is critical to secure the external flash secondary image storage area
via encryption. Another relatively rare use case is the internal flash update image storage if the image is
downloaded via insecure channel.

Encrypted image boot is supported with swap and overwrite upgrade mode on all RA MCUs via FSP. Direct
XIP upgrade mode is not supported. The cryptographic operation for RA MCU is supported by MbedCrypto
and TinyCrypt. User can reference Table 1 for the selection of the cryptographic library.

We recommend acquiring more details on the upgrade mode by reviewing the corresponding sections in
application project (R11AN0869) as well as the MCUboot design page:

https://github.com/mcu-tools/mcuboot/blob/master/docs/design.md.

If swap upgrades are enabled, the image located in the primary slot, also having the ENCRYPTED flag set
and the corresponding Type Length Value (TLV) field present, the primary image is re-encrypted while
swapping to the secondary slot.

e Theimage is encrypted using AES-CTR-128, with a counter that starts from zero (over the payload blocks)
and increments by 1 for each 16-byte block. AES-CTR was chosen for speed/simplicity and allowing for
any block to be encrypted/decrypted without requiring knowledge of any other block (allowing for simple
resume operations on swap interruptions). MCUboot also supports AES-CTR-256, this is not supported
from FSP side.

2. Architecting an Application with MCUboot Module using FSP

This section provides an overview of the FSP MCUboot module, which integrates MCUboot as a module into
the FSP. The available upgrade modes and memory architecture design are discussed. In addition, signing
and mastering new images are discussed.

2.1 MCU Memory Configuration using MCUboot Module with FSP

For the general support information, the user can reference the MCUboot port section of the FSP User's
Manual.

It is also highly recommended that the user reviews the MCUboot encrypted image page for background on
the encryption scheme.

https://github.com/mcu-tools/mcuboot/blob/main/docs/encrypted images.md

Users can gain hands on experience in configuring the memory regions using the MCUboot module in the
walkthrough section in section 3, section 4 and section 5.

R11ANO868EU0100 Rev.1.00 Page 5 of 38
Apr.03.24 RENESAS

https://github.com/mcu-tools/mcuboot/blob/master/docs/imgtool.md
https://github.com/mcu-tools/mcuboot/blob/master/docs/design.md
https://github.com/mcu-tools/mcuboot/blob/main/docs/encrypted_images.md

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

2.2 Application Image Format for Encrypted Image
Figure 3 is a more detailed application image format that can be referenced to understand the booting process.

RA4M3 Code Flash

Scratch Area
(Trailer
Pad
Primary TLV Trailer)
slot Application 1 oo
(Plaintext) TLV Secondary
Header Application 2 slot
(Encrypted)
Bootloader
Header

Figure 3. Application Image Format

To signal the bootloader as an encrypted image, the application adds the ENCRYPTED flag in the header
area. In addition, the image encryption key is included encrypted in the Trailer area. The key that is used to
encrypt the image encryption key is shared between the image encryption process and the image decryption
process via ECIES P256 or RSA OAEP 2048.

2.3 Designing Bootloader and the Initial Primary Application Overview

A bootloader is typically designed with an existing initial primary application. The following are the general
guidelines for designing the bootloader with the initial primary application.

e Develop the bootloader and analyze the MCU memory resource allocation needed for the bootloader and
the application. The bootloader memory usage is influenced by the application image update mode,
signature type and whether to validate the Primary Image.

e The bootloader maintains a memory map of all the different images. User needs to perform the memory
usage analysis of the application and update the bootloader defined memory map for consistency and
adjust as needed.

e When changing the image authentication and image update mode, the bootloader memory allocation may
need to be adjusted.

Most of these design aspects are addressed in the walk-through in this application note.

2.4 General Guidelines using the MCUboot Module Across RA Family MCUs
The MCUboot Module is supported on all RA Family MCUs.

The cryptographic support is provided via MbedTLS (Crypto Only) module and TinyCrypt module. Both crypto
modules are supported on all RA MCUs either through software or MCU hardware. The MbedTLS (Crypto
Only) module is supported by the MCU hardware if the corresponding algorithms are supported by the
hardware crypto engine, otherwise MbedTLS software stack will be used. The MbedTLS offers more crypto
algorithms, is generally faster and has a larger memory footprint. On the other hand, the TinyCrypt module
offers a smaller number of algorithms, is slower but has a much smaller memory footprint. Users can consider
disable the image validation of the primary image prior to execution at MCU reset to reduce the boot time.

Table 1 is the typical cryptographic selection recommendations when using MCUboot with RA MCUs. If
memory footprint is a priority, users can choose the TinyCrypt module over the MbedTLS Crypto Only module
for some of these use cases. To improve the verification speed and reduce boot time when using Tiny Crypt,
user can consider disable image validation to improve verification and boot time performance.

R11ANO868EU0100 Rev.1.00 Page 6 of 38
Apr.03.24 RENESAS

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

Table 1. Typical Cryptographic Selection Recommendations for RA MCUs

Crypto RA2 No RA2 with RA4E1, RA4E1, RA6M1/M2/M3, RA8M1,

Stack Encryption | Encryption | RAGEL, RAGEL, RAG6TL, RA8D1,
RA4W1, RA4W1, RA4M2/M3, RA8T1
RA4M1, RA6T2 | RA4M1, RA6T2 | RA6M4/M5 with or | with or
No Encryption | with without without

Encryption Encryption Encryption

MbedTLS X X

(Crypto Only)

Tiny Crypt X X

(HW AES)

Tiny Crypt X X

(SW Only)

2.5 Customize the Bootloader

The following are some aspects that need to be considered when customizing the bootloader in a product
design.

e Customized method to download the application.
e Adjust the flash memory allocation in the bootloader project for the bootloader as well as the application
image.

Porting the EK-RA4M3 example bootloader and application projects to EK-RA4M2:

e The user is recommended to recreate the projects with all the stack components in e? studio. In this step,
the bootloader size and image size can be adjusted based on the MCU flash memory size and the
application image size.

e There is no code update needed when porting the included example projects to RA4M2. After the
configurator stack is created, the user can copy over the application source code under \src folder to the
newly created project \src folder.

2.6 Production Support

2.6.1 Key Provisioning

By default, the public key is embedded in the bootloader code and its hash is added to the image manifest as
a KEYHASH TLYV entry. See section 6 for more details about the public key and private key which are used for
testing purposes. For production support, the user needs to follow the example shown in key . c to add their
public key. A more secure solution is to inject the image verification public key. In addition, the user needs to
update the private key for application image signing. This application project provides examples of how to use
imgtool . py to create custom image signing keys and encryption keys in section 6.

As an alternative, the bootloader can be made independent of the included test keys by setting the
MCUBOOT_HW_KEY option. In this case the hash of the public key must be provisioned to the target device
and MCUboot must be able to retrieve the key-hash from there. For this reason, the target must provide a
definition of the boot_retrieve public_key hash() function that is declared in
boot/bootutil/include/bootutil/sign_key.h. Itis also required to use the full option for the —
public-key-format imgtool argument in order to add the whole public key (PUBKEY TLV) to the image
manifest instead of its hash (KEYHASH TLV).

During boot, the public key is validated before it is used for signature verification. MCUboot calculates the hash
of the public key from the TLV area and compares it with the key-hash that was retrieved from the device. This
way, MCUboot is independent from the public key(s). The key(s) can be provisioned any time and by different
parties.

2.6.2 Make the bootloader immutable for enhanced security
For Cortex®-M33 MCU, refer to section 7.1 to make the bootloader immutable.

2.6.3 Advance the device lifecycle states prior to the deploy the product to the field
For Cortex®-M33 MCU, user can refer to section 7.2 for the device lifecycle management of the MCU.

R11ANO868EU0100 Rev.1.00 Page 7 of 38
Apr.03.24 RENESAS

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

3. Running the Initial Example Projects

This section provides a walkthrough of running the included initial example projects. The initial projects use
internal flash for both primary and secondary applications. To demonstrate the image encryption support,
instructions on how to add encryption support to these projects and change the secondary slot from the internal
flash to external QSPI are provided in the next section.

To learn how to establish a system using MCUboot module from scratch, user can reference application project
R11ANO0869. Prior to signing the application project, the Python package needs to be installed. The instructions
on how to install the Python components used for MCUboot is included in section 3.2.3.

Unzip MCUboot_Encryption_Initial_Projects.zip you can see there are three projects:

I':E app_ra4m3_primary_enc_:{modemé

et
= app_radm3_secondary_enc_xmodem

I~ ra_mcuboot_radm3_swa p_enc_qgspi

Figure 4. Initial Example Projects
The description of these projects is provided in the following table.

Table 2. Description of the Initial Example Projects

Projects Description

app_ra4m3_primary_enc_xmodem | Primary application:
e Blinky thread blinks three LEDs (red, green, blue).
e Downloader thread implemented XModem over USB PCDC support.

app_ra4m3_secondary_enc_xmod | Secondary application:
em e Blinky thread blinks blue LED.
e Downloader thread implemented XModem over USB PCDC support.

ra_mcuboot_radm3_swap_enc_qgs | The bootloader project:

pi e The bootloader is configured with swap upgrade mode.
e Swap test mode is enabled in the secondary application.
e The maximum application image size is configured.

e All application images are plaintext.

e The secondary slot is in the internal code flash.

e Code flash is linear mode.

In this section, we will run the example projects through the following stages.
First, we will erase the MCU. Then we will download the primary application to the internal flash.

In the next stage, we can use the image downloader implemented in the primary application to download the
secondary image to the secondary slot. Upon the next reboot, the secondary image will be booted.

R11ANO868EU0100 Rev.1.00 Page 8 of 38
Apr.03.24 RENESAS

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

Code flash state 1 Code flash state 2 Code flash state 3
Not used

0xF8000

Scratch Area Scratch Area Scratch Area
0XFO000 (swap upgrade) (swap upgrade) (swap upgrade)

Blank Application 2 foati
0x80000 pplication Application 1
Acti lot Application 1 » Application 1 ’ Application 2
ctive slot laintext i laintext

0x10000 P plaintext p

Bootloader Bootloader Bootloader
0x0

Figure 5. Operational Flow with Swap Update Mode

Note that in the initial application projects, the application image size is defined as 0x70000 which is the
maximum application image size based on the example bootloader included when using internal flash for
primary and secondary image storage with code flash linear mode.

3.1 Set Up the Python Image Signing Environment
Download and Install Python v3.9 or later.

Python v3.9 or later- https://www.python.org/downloads/

Set up the Python development environment by following section 3.2, step 3.2.3. Note that this step only needs
to be performed once.

3.2 Running the Initial Example Projects

Use the following steps to run the included initial example projects. The instructions on establishing the initial
bootloader are provided in the application project R11AN0869 which is available for download on Renesas
website.

3.2.1 Set Up the Hardware

e The default jumper setting of EK-RA4M3 is used for the example projects.

e Connect J10 (USB Debug) using a USB micro to B cable from EK-RA4M3 to the development PC to
provide power and debug connection using the on-board debugger.

e Connect J11 (USB FS) using a USB micro to B cable from EK-RA4M3 to the development PC to provide
USB Device connection.

Once the EK-RA4M3 is powered up, the user needs to initialize the MCU prior to exercising the bootloader
project. This will create a clean environment to start the bootloader project verification.

Erase the entire MCU flash using J-Flash Lite.

J-Flash Lite is a free, simple graphical user interface which allows downloading into flash memory of target
systems. J-Flash Lite is part of the J-Link Software and Documentation package that is installed when the

J-Link software & documentation pack is installed.

1. Touse J-Flash Lite, connect the USB Debug port J10 to the PC and launch J-Flash Lite. Select the Device
and debug Interface and communication speed.

BN SEGGER J-Flash Lite V7.94 — x
2 g

e Interface

fr7FAaM3AF I - | [swo -Jaoooksz -~ OK

Figure 6. Launch the J-Flash Lite

R11ANO868EU0100 Rev.1.00 Page 9 of 38
Apr.03.24 RENESAS

https://www.python.org/downloads/
https://www.segger.com/downloads/jlink/

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

2. Click OK. In the next screen, select Erase Chip.

File Help
Target
Device Interface Speed
[R7FA4M3AF | [swp | [4000 kHz |

Data File (bin [hex [mot [srec [...)

| | I Erase Chip

| Program Device |

Figure 7. Select Erase Chip
3. Ensure the erase is successful.

Log

Connecting to J-Link...
Copnectins to target...
Erasing...
Done.

Figure 8. Erase Successful

3.2.2 Import the Projects
For new users, please refer to the FSP User’'s Manual section on Importing Projects into the IDE for guidelines.

Import Projects

|
Select a directory to search for existing Eclipse projects. \'—'A

(®) Select root iy llbace\MCUboot _Encrypted Initial Projectsjiig Browse...

() Select archive file:

Browse...
Projects:
app_radm3_primary_enc_xmodem (C3Workspace\MCUboot_En Select All
app_radm3_secondary_enc_xmodem JC:\Workspace\MCUboot |
[v] ra_mcuboot ra4dm3 swap_enc gspi (\Workspace\MCUboot_F _zinilil

Figure 9. Initial Example Projects

3.2.3 Configure the Python Signing Environment

If this is NOT the first time you have used the python script signing tool on your computer, you can skip to
section 3.2.4.

If this is the first time you are using the Python script signing tool on your system, you will need to install the
dependencies required for the script to work. Navigate to the

ra_mcuboot raém4 _swap_enc_qspi>ra>mcu-tools>MCUboot folder in the Project Explorer and

select Command Prompt. This will open a command window with the path set to the \mcu-
tools\MCUboot folder.

Note: In the case of imported projects, the ra\ folder is only available after the project content is generated.

R11ANO868EU0100 Rev.1.00

Page 10 of 38
Apr.03.24 RENESAS

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

i} Includes Rename... F2
o
M ri e Import...
= am ey Export...
= board
Build Project Ctrl+B
v fsp
v £ mcu-tools el F>
(> MCUboot Index >
(** ra_gen Build Targets 5
(* sre Resource Configurations >
= Debug Source >
= ra_cfg)
] Restore from Local History...
L= script - . .
'. ' . & C/C++ Project Settings Ctrl+Alt+P
5o configuration.xm . .
Renesas C/C++ Project Settings >

ILinkLog.log)

Run C/C++ Code Analysis
ra_cfg.txt
>
ra_mcuboot_rad feam
Compare With >

X| ra_mcuboot_radi
System Explorer

@ Developer Assist i_
E Command Prompt

v'| Validate

Figure 10. Open the Command Prompt

We recommend upgrading pip prior to installing the dependencies. Enter the following command to update
pip:

python -m pip install --upgrade pip

Next, in the command window, enter the following command line to install all the MCUboot dependencies:

pip3 install --user -r scripts/requirements.txt
This will verify and install any dependencies that are required.

3.2.4 Compile all the projects
Use the following sequence to build the three projects. For each of these projects, open the
configuration.xml file, click Generate Project Contents and then click to build the project.

1. ra_mcuboot_ra4m3_swap_enc_qgspi
2. app_ra4m3_primary_enc_xmodem
3. app_ra4m3_secondary_enc_xmodem

The signed image for the application projects is located under the \Debug folder:
/app_radm3_primary_enc_xmodem/Debug/app_ra4m3_primary_enc_xmodem.bin.signed

and
/app_radm3_secondary_enc_xmodem/Debug/app_ra4m3_secondary_enc_xmodem.bin.signed

3.2.5 Debug the Applications
Choose to debug from primary application project app_ra4m3_primary_enc_xmodem.

Right click on project app_ra4m3_primary_enc_xmodem and select Debug As > Debug Configurations.
Select app_radm3_primary_enc_xmodem Debug_Flat > Startup and confirm that the following
configuration exists.

R11ANO868EU0100 Rev.1.00 Page 11 of 38
Apr.03.24 RENESAS

Renesas RA Family

Booting Encrypted Image on RA4 using MCUboot and QSPI

Fi - X E - Mame: | app_radm3_primary_enc_xmaodem Debug_Flat
type filter text [] Main %* Debugger B Startup| % Source:] Common
(€] C/C+ + Application Initialization Commands 2
(€] C/C++ Remote Application Resst s Oel ondst |13
EASE Seript Ll set and Delay (seconds):
(€] GOB Hardware Debugging | Halt
7| GDB Simulator Debugging (RHE50)
3 Launch Group
v|'r | Renesas GDB Hardware Dobuqqinq]
I app_radm3_primary_enc xmodem Debug_Flat |
£ app_radm3_secondary_enc_xmodem Debug_Flat Load image and symbols
= j 2 ; 1
. £ ra_mcuboot radm3_swap._enc_qspi Debug Flat Filename Load type Offset (hex) On connect
c | Renesas Simulator Debugging (RX, RL7E) e - ~ Add...
| Program Binary [app_radm3_primary_enc_xmodemelf] Symbols anly fes
] app_radm3_primary_enc_xmodem binsigned [C\Work.. Raw Binary 10000 e
[ra_me uboot_radm3_swap_enc_gspielf [C\Workspace\... Image and Symbols 0 s
Runtime Options
|| Set program counter at (hex):
Il St hraaknnint at main i
Filter matched 11 of 13 items s Apply

Figure 11. Debug Configurations

e Under the Startup configuration, verify the Load type of app_ra4m3_primary_enc_xmodem.elf is
Symbols only rather than Image and Symbols.

e Theapp_radm3 primary_enc_xmodem.bin signed entry exists with Load type as Raw Binary and the
Offset is set to 0x10000 since that is the beginning of the primary application.

e The ra_mcuboot_ra4m3_swap_enc_qgspi -elf is added with Load type as Image and Symbols with
an Offset of 0 since the bootloader starts from 0x0.

Click Debug, then Resume the execution twice by clicking U The primary application is then booted, and
the three LEDs are blinking.

3.2.6 Downloading and Running the Secondary Application
Use the following steps to download and run the secondary application.

1. Launch Tera Term and select the enumerated COM port “USB Serial Device”. Your port number may be
different from this. Click OK.

Port: [COMS: USB Serial Device [COM5] ~ |

[o

@ Serial

Cancel Help

Figure 12. Launch Tera Term

2. Below message will be printed.

Please select from below menu options:

1 — Display image slot info
2 — Download and boot the new image (XModem>

Figure 13. Menu item

R11ANO0868EU0100 Rev.1.00
Apr.03.24

Re Page 12 of 38
KENESAS

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

3. View option 1 result. We can see Secondary Image Slot is empty.

Primary Image Slot *

01.88 (Rev: B, Build: 8>
start address: Bx0801 00860
Bx02800 (512 hytes>
size: Ax0BBB (A hytes)
BxABBRBAAB (45064 bhytes>

255.255 (Rev: 65535, Build: -1>
Becondary image start address: Bx0BAE 0066
eader size: AxFFFF (65535 hytes>
rotected TLU size: AxFFFF (65535 bhytes>
Image size: AxFFFFFFFF (-1 hytes)

Figure 14. Primary and Secondary Slot Status

4. Now use the image downloader to load the new secondary application image. Choose option 2 to
download the secondary image.

2

Blank checking the secondary slot...

NS Secondary slot blank

Start ¥Xmodem transfer...

System will automatically reset after successful download...

Figure 15. Initiate Secondary Image Download
5. Choose File > Transfer > XMODEM > Send

1 COMS - Tera Term VT

[File Jedit setup Control Window Help

MNew connection... Alt+N
slot...
Duplicate session Alt+D
Cygwin connection Alt+G set after successful download...
Log...
Send file...

> Kermit

H SCI > Receive...
Change directory... YMODEM >
Replay Log... ZMODEM >

Figure 16. Choose to use XModem

R11ANO868EU0100 Rev.1.00 Page 13 of 38
Apr.03.24 RENESAS

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

6. Select the signed secondary image binary.

T Tera Term: XMODEM Send
Look in: Debug viQ@ ¥

Name
ra
ra_gen
e

I app=r34m3=secc ndary_enc_xmodem.bin.signed |

app_radm3_secondary_enc_xmodem.elf

<
File name: . app_ra4m3_secondary_enc_xmodem bin signed
Files of type: | All(*.") v

Figure 17. Select the Sighed Secondary Image

7. It takes about 25 seconds to download the new image.

Tera Term: XMODEM Send X ‘
Filename: app_ra4m3_sec0ndary‘
Protocol: XMODEM (checksum)
Packeti: 672
Bytes transferred: 86016
Elapsed time: 0:04 (17.69KBIs)

. 18.8%

Figure 18. Download the Secondary Image using XModem

8. The primary application will reset the system once the entire secondary application is downloaded. The
menu from the secondary application is printed. Wait about two seconds prior to the output of the new
menu. The Blue LED should be blinking.

Rezetting the system

Please select from below menu options:

1 — Display image slot info
2 — Download and boot the new image (¥Modem?

Figure 19. Secondary Image is booted

9. Reset the application from the debugger, the blue LED should still be blinking. There is no revert back to
the original Primary application because the swap test mode is implemented with the secondary application.

4. Add Encryption to the Initial Example Project

In this section, we will add encryption to the application image. The bootloader is first updated and then the
application projects are configured to use the new bootloader.

The system will go through the following stages. Note that when encryption is enabled, the bootloader image
size increases to about 83 kB. With the code flash boundary at 32 kB, the bootloader image is allocated 96 kB.

R11ANO868EU0100 Rev.1.00 Page 14 of 38
Apr.03.24 RENESAS

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

Code flash state 1 Code flash state 2 Code flash state 3 Code flash state 4

Initial encrypted image Initial image is New Application is MNew Application is

is loaded to the decrypted to primary loaded to the swapped to primary
Ox100000 secondary slot slot and booted secondary slot slot and booted

0xF8000 j I
‘Application 1 Applicati
Secondary slot ey Application 1
(Encrypted) Blank (Encrypted)
0x88000 J— — ——

Application 1
(plaintext)
Active Slot

Application 1
(plaintext)
Active Slot

Application 2
(plaintext)
Active Slot

Primary slot — Blank

0x18000 —

0x0

Figure 20. Booting Encrypted Image (Secondary Image Stored in Internal Flash)

Note that the initial application is downloaded to the secondary slot as encrypted rather than downloaded to
the primary slot as plaintext image. This allows plaintext image being swapped to the secondary slot as
encrypted.

4.1 Configure the Bootloader for Encryption Support

Stay in the same Workspace from the previous section and start to configure the bootloader using the following
steps:

1. Double click and open the configuration.xml file from ra_mcuboot_ra4m3_swap_enc_qspi project.
2. Navigate to the Stacks tab, select MCUboot stack, select ECIES-P256 as the Encryption Scheme.

HAL/Common Stacks &) New Stack > =% Extend Stack > # | Rer

T port /O Port
sport)
g_ioport I/O Port (r} P
MCUboot
1
> & MCUboot Port for RA (rm_mcuboat_port)

O]

<
iSP Clocks Pins | Interrupts [Event Links Sta_cks‘ Componenui
5 . E Console m Q Smart Browseré U.' Smart Manual -
t

Property Value
w Common
» General
> TrustZone

Signature Type ECDSA P-256
Boot Record
Custom —pad
Python python

Encryption Scheme 3
» Flash Layout
» Data Sharing RSA-OAEP (RSA 2048 only)
Encryption Disabled

Figure 21. Choose ECIES-P256

R11ANO868EU0100 Rev.1.00 Page 15 of 38
Apr.03.24 RENESAS

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

3. Update the Bootloader Flash Area Size from 0x10000 to 0x18000.

v Flash Layout

TrustZone

I Bootloader Flash Area Size (Bytes) I Ox 18000
Image 1 Header Size (Bytes) 0x200
Image 1 Flash Area Size (Bytes) Ox 70000
Scratch Flash Area Size (Bytes) 0x8000

Figure 22. Update the Bootloader Flash Area Size

4. Navigate to the BSP tab and update the BSP heap size from 0x600 to 0x1000. When encryption is used,

a minimum of 0x200 heap needs to be added. This increased heap usage came from the added AES
algorithm usage.

Summary Clocks | Pins | Interrupts | Event Links | Stacks Components
'* Problems & Console | [Properties X |&% Smart Browser ' Smart Manual
EK-RA4M3
Settings Property Value
R7FAAM3AF3CFB
RA4AM3
RA4M3 Family
v RA Common
Main stack size (bytes) 0x1000
Heap size (bytes) 0x1000
MCU Vecc (mV) 3300
Figure 23. Update the Heap size to 0x1000
R11AN0868EU0100 Rev.1.00 Page 16 of 38

Apr.03.24

RENESAS

Renesas RA Family

Booting Encrypted Image on RA4 using MCUboot and QSPI

5. Right click on the bootloader project and select Properties (at the end of the menu tree).

. Export...
vi 11'5 ra_mcuboot_radm3_swap_enc_qspi [Debug — Xpo

r— Renesas FSP Export >
%5, Binaries
! Includes Build Project
2 ra Clean Project
(ra_gen Refresh F5
2 src Close Project
=* Debug Close Unrelated Projects
& ra_cfg Build Targets >
= script Index 5
=5 . .
iw configuration.xm| Build Configurations >
= llinklog.log

A Source >

= ra_cfg.txt

-| ra_mcuboot_radm3_swap_enc_qspi Debuc QO RunAs
X| ra_mcuboot_ra4m3_swap_enc_gspi Debuc #F Debug As

@ Developer Assistance

Restore from Local History...

MISRA-C >
% C/C++ Project Settings Ctrl+Alt+P

Renesas C/C++ Project Settings >
‘-?}"" Run C/C++ Code Analysis

Team >

Compare With >

B System Explorer
@ Command Prompt

v'| Validate
Configure >
Source >

Alt+Enter

Figure 24. Open the Properties Window

R11ANO0868EU0100 Rev.1.00
Apr.03.24

Re Page 17 of 38
KENESAS

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

6. Navigate to the GNU Arm Cross C Compiler > Preprocessor.

& Properties for ra_mcuboot_radm3_swap_enc_gspi [> ‘
type filter text Settings - -
Resource
"
Builders
C/C++ Build Configuration: Debug [Active] ~ Manage Configurations...
Build Variables
Environment
Loaging %) Tool Settings |®} Toolchain #* Build Steps Build Artifact | jmé Binary Parsers | @ Error Parsers
-
Tool Chain Editor (= Target Processor [[1Do not search system directories (-nostdinc)
C/C++ General (2 Optimization [[]Preprocess only (-E)

] :
MCU (& Wamings Defined symbols (-D)] & |

] i
Project Natures éﬁ Debugging | RENESAS RA
Project References v B GNU Arm Cross Assembler LE e ihi

3 Preprocessor RA_CORE=CM33
Renesas QEF “‘"I tud _RA_ORDINAL=1
Run/Debug Settings ‘;; ncu.es
Task Tags ‘: W.armngs

w5
Validation

) piccollanea
® GNU Arm Cross C Compiler
nauaes

(&2 Optimization
(&2 Warnings
(= Miscellaneous

v & GNU Arm Cross C Linker
(5 General Undefined symbols (-U)
(Libraries

L'P
=
r

(&3 Miscellaneous

v M) GNU Arm Cross Create Flash Image
= General

v B GNU Arm Cross Print Size
2 General

(?) Apply and Close Cancel

Figure 25. Add Preprocessor setting

7. Click the green ‘+' sign and add MCUBOOT_BOOTSTRAP. This preprocessor enables booting the first
encrypted image from the secondary slot when having an empty image from the primary slot. Click OK.

&) Enter Value X

Defined symbaols (-D)
|| McusooT BOOTSTRAR| |

Cancel

Figure 26. Enter Preprocessor MCUBOOT_BOOTSTRAP

R11ANO868EU0100 Rev.1.00 Page 18 of 38
Apr.03.24 RENESAS

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

8. Click Apply and Close.

% Tool Settings %3 Toolchain|

L Target Processor] Do not search system directories (-nostdinc)

L Optimization] Preprocess only (-E)
L Warnings

‘ Build Artifact‘) Binary Parsers‘ € Error Parsers‘

Defined symbols (-D) ¢

:—
&)

(%2 Debugging
v % GNU Arm Cross Assembler RENESAS RA
MCU_BOOTSTRAP
_RA_CORE=CM33
_RA_ORDINAL=1

L Preprocessor
L Includes
L Warnings
(%2 Miscellaneous
v 8 GNU Arm Cross C Compiler

"
(%% Preprocessor

232 Includes

L Optimization
L Warnings
(%2 Miscellaneous
v 83 GNU Arm Cross C Linker
L General Undefined symbols (-U) LEEARSRAIEY
(% Libraries

(%2 Miscellaneous

v 83 GNU Arm Cross Create Flash Image
(%2 General

v 83 GNU Arm Cross Print Size
(3 General v

I Apply and Close iI Cancel

Figure 27. Add Preprocessor MCUBOOT_BOOTSTRAP

9. Check Remember my decision and click Yes if below window pops up.

& settings X

% Changes made will not be reflected in the index until it is rebuilt. De you wish te
' rebuild it now?

I Remember my decision I

Figure 28. Setting option

R11ANO868EU0100 Rev.1.00 Page 19 of 38
Apr.03.24 RENESAS

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

10. Click Generate Project Contents and then compile the bootloader project. Check Always save and
generate without asking if this window pops up. Click Proceed and compile the updated bootloader.

ﬁ Generate Project Content *

.’I- = ..\.
|
L 5 4

Configuration must be saved before generating project content.

Proceed with save and generate?

1 Iwa}rs save and generate without asking

Figure 29. Configure settings for Generate Project Content
4.2 Configure the Application Project for Encryption Support
Follow the steps below to configure the application project to support image encryption.

1. Right click on the Primary Application app_ra4m3_primary_enc_xmodem, select Properties -> C/C++
Build -> Environment.

Click Add and define the New variable Name as:
MCUBOOT_IMAGE_ENC_KEY
Define the Value as:

${workspace_loc:ra_mcuboot_ra4m3_swap_enc_qgspi}/ra/mcu-tools/MCUboot/enc-
ec256-pub.pem

Tick Add to all configurations after the value setting.

Q New variable X

Name: | MCUBOOT_IMAGE_ENC_KEY

Value: ‘ spi}/ra/mcu-tools/MCUboot/enc-ec256-pub.pem ‘ Variables

Add to all configurations

Figure 30. Configure the ECDSA Public Key to be Used in Image Encryption
2. Review the Build Variable Settings and click Apply and Close.

Environment variables to set Add.
Variable Value Origin Select...
CWD ChWorkspace\MCUboot_Encrypted_Initial_Projects\app_radm3_primary_enc_xmodemiDebug BUILD SYSTEM
GCC_VERSION 13.21 BUILD SYSTEM
MCUBOOT IMAGE ENC KEY ${workspace locra meuboot radm3 swap enc gspil/ra/meu-toolsyMCUboot/enc-ec256-pub... USER: CONFIG Delete

|MCUBOOT IMAGE _SIGNING_KEY ${workspace locra_mouboot_radm3_swap_enc_gspil/ra/meu-tools/MCUboot/root-ec-p256... USER: CONFIG |
MCUBOOT_IMAGE_VERSION 1.00 USER: CONFIG
PATH CAProgram Files (xB6\Arm GNU Toolchain arm-none-eabit13.2 Rel\bin\:${renesas.build.utils... BUILD SYSTEM
PWD ChWorkspace\MCUboot_Encrypted_Initial_Projects\app_radm3_primary_enc_sxmodem\Debug BUILD SYSTEM
TCINSTALL CAProgram Files (x86J\Arm GNU Toolchain arm-none-eabil13.2 Rel1y BLILD SYSTEM
TC_VERSION 13.2.1.arm-13-7 BUILD SYSTEM
< >

\! Append variables to native environment

() Replace native environment with specified one

Restore Defaults Apply

| Apply and Close Cancel

Figure 31. Review the Application Project Encryption Support Setting

R11ANO868EU0100 Rev.1.00 Page 20 of 38
Apr.03.24 RENESAS

Renesas RA Family

Booting Encrypted Image on RA4 using MCUboot and QSPI

3. Update the \app_ra4m3_
application image location

Update below address con

primary_enc_xmodem\src\header .h file. This update takes care of the
change due to the change in the bootloader size.

figuration from:

#define PRIMARY_IMAGE_START_ADDRESS 0x00010000
#define PRIMARY_IMAGE_END_ADDRESS 0x0007FFFF
#define SECONDARY_IMAGE_START_ADDRESS 0x00080000
#define SECONDARY_IMAGE_END_ADDRESS Ox000EFFFF
To:

#define PRIMARY_IMAGE_START_ADDRESS 0x00018000
#define PRIMARY_IMAGE_END_ADDRESS 0x00087FFF
#define SECONDARY_IMAGE_START_ADDRESS 0x00088000
#define SECONDARY_IMAGE_END_ADDRESS Ox000F7FFF

4. Double click configurat

ion.xml to open the smart configurator, click Generate Project Content and

compile the Primary application.

Ensure \Debug\app_ra4

m3_primary_enc_xmodem.bin.signed.encrypted is generated.

V=

Debug
=>ra

=+ ra_gen
=% src

'ﬁ? app_ra4m3_primary_enc_xmodem.elf - [arm/le]

I appJa4Wﬁ_pﬁWmntenquodenmdns@nedendypmdl

app_ra4m3_primary_enc_xmodem.elf.in

Figure 32. Ensure the Encrypted Binary is Generated

5. Repeat previous steps 1, 2, 3 and 4 in this section for the secondary project.

6. Follow step 2, 3 in section

3.2.1 to Erase the chip.

R11ANO0868EU0100 Rev.1.00
Apr.03.24

Re Page 21 of 38
KENESAS

Renesas RA Family

Booting Encrypted Image on RA4 using MCUboot and QSPI

7. Update the Debug configuration.
Right click on the Primary application app_ra4m3_primary_enc_xmodem > Debug As > Debug
Configurations, make sure the Primary application is selected and navigate to the Startup window.
Update the Startup configuration Load image and symbols area as shown below.

e Remove the entry of app_ra4m3_primary_enc_xmodem.bin.signed.

e Click Add -> Workspace and browse to the file
app_ra4m3_primary_enc_xmodem.bin.signed.encrypted.

QAdd download module O X

Select a workspace resource

(= ra
= ra_gen

k=> SIC

I : app_ra4m3primary_enc_xmodem.bin.signed.encryptedI

lo1§ app_ra4m3_primary_enc_xmodem.elf

| app_ra4m3_primary enc xmodem.elf.in

~ [Debug ~

[E) app_ra4m3_primary_enc_xmodem.map v

@ Cancel

Click OK.

Figure 33. Startup of Debug Configuration

R11ANO868EU0100 Rev.1.00

Apr.03.24

RENESAS

Page 22 of 38

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

8. Update the Primary Image download address and Load type.
Change the Load type to of the app_rad4m3_primary_enc_xmodem.bin.signed.encrypted to
Raw Binary. Update the Offset to the secondary slot address based on the new bootloader size.

[l Main tS Debugger| E Source| [_] Common

Initialization Commands ~
[IReset and Delay (seconds): 3

[JHalt

Load image and symbols

Filename Load type Offset (hex) Add
Program Binary [app_radm3_primary_enc_xmodem.elf] Symbols only
app_ra4m3_primary_enc_xmodem.bin.signed.encrypted... IRaw Binary I {88000 | Edit..
ra_mcuboot_radm3_swap_enc_gspi.elf [(\Workspace\M... Image and Symbols 0 Remove
Move up
Move down
< >
Runtime Options
I:‘ Set program counter at (hex):
[/1 Set hreaknaint at: main N
Revert Apply

Close

Figure 34. Update the Primary Application Load Address

9. Click Debug and resume U¥ the execution twice; the Primary application will be booted, and three LEDs
should be blinking.

10. Follow steps 3 to 8 in section 3.2.6 to use the XModem downloader to download the secondary application.
11. Make sure to select the encrypted secondary image.

When downloading the seconday image, make sure to select the encrypted image.

T Tera Term: XMODEM Send X
Look in: Debug v‘ < 5 A A g
Name) b

ra
ra_gen

src
I ' aae_ra4m3isecondary_enc_xmudem.bin.siEned.encr)'pted |

| app_radm3_secondary_enc_xmodem.elf v
< >
File name: [app_radrn3_secondary_enc_xrnodern bin .signed] I Open]
Files of type: | All(*.%) v Cancel

Help

Figure 35. Select the Encrypted Secondary Image

R11ANO868EU0100 Rev.1.00 Page 23 of 38
Apr.03.24 RENESAS

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

12. After the secondary image is downloaded, it will be booted after the bootloader verified the image. The
blue LED should be blinking.

5. Use QSPI as Secondary Storage Area

In this section, we will switch the secondary image storage area from internal flash to QSPI. User can also
benefit from this section in terms of learning the key steps in the image downloader design when using
XModem. Below is the memory layout of the resulting system.

RA4M3 Code Flash

0x100000
Scratch Area
0XF8000 ,f——
RA4M3 QSPI
i 0x600E0000
Prmeny 2| Blank)
Application 1 _Secondary
0x18000 \. (Encrypted) slot
Bootloader
o0) 0x60000000

Figure 36. Using QSPI for Secondary Image Storage

Note that the primary and secondary application image sizes are increased to benefit from the usage of the
QSPIL.

There are four stages the system will go through by following the steps layout described in this section, which
is generally similar to the case of using internal flash.

RA4M3 State 1

secondary slot)

RA4M3 State 2

booted the primary image

RA4M3 State 3

RA4M3 State 4

Initial encrypted The bootloader decrypts New encrypted The bootloader decrypts the
application is the initial image and load application (app2) is new image and validate and
loaded to QSPI (the it to the primary slot and loaded to the QSPI load the new image to the

primary slot. The bootloader
boots the new image

Scratch Area Scratch Area Scratch Area Scratch Area
QSPI QsPI Qspl QsPI
Application 1 Application 1 Application 2
Blank (Plaintext) (Plaintext) (Plaintext)
Active Slot Active Slot Active Slot
Application 1 Application 2 Application 1
ooy | E Blank (W (Encrypted) (Encrypted)
Bootloader Bootloader Bootloader Bootloader
Figure 37. Functional Stages
R11ANO868EU0100 Rev.1.00 Page 24 of 38
Apr.03.24 RENESAS

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

5.1 Configure the Bootloader to Use QSPI for Secondary Application Storage
Use the following steps to update the secondary storage area to QSPI.

1. Openthe configuration.xml file from the bootloader project ra_mcuboot_rad4m3_swap_enc_qspi.
2. Click on Add External Memory Implementation, select New to add the QSPI stack:

|
& MCUboot logging

®

@ g_flashO Flash
(r_flash_hp)

\ [New > |4 MCUboot External Memory (QSPI)
4 MCUboot External Memory (Unsupported)

Figure 38. Choose QSPI from the Smart Configurator Stack Tab

3. Navigate to the Pins tab Peripherals group and select the QSPIO. First select _B only for the Pin Group
Selection, then select Quad as the Operation Mode. The correct Input/Output pins will be automatically
selected. We need to do this because the bootloader uses a minimal pin configuration rather than the pin
configuration for EK-RA4M3.

Select Pin Configuration iy Exportto CSVfile | Configure Pin Driver Warning
{ R7FABM4AFICFB.pincfg 7‘ Manage configurations... [4] Generate data: | g_bsp_pin_cfg
Pin Selection -~ 4+ = % Pin Configuration
| Type filter text ‘ Name 11N Lock Link
'l ¢ Peripherals 'I A Pin Group Selection _Bonly
Analog:ADC Operation Mode Quad
: Input/Output
¥ Analog:ANALOG bt =

Analog:DAC GPEIK = B w15
Connectivity:CAN QS;; ; E: f =]
Connectivity:ETHERC Q:o1 i |l
Connectivity:IIC Q : et — >
Connectivity:SCI ngi 5“11 'L‘A 4
Connectivity:SPl a v P30 e’ |l &
Connectivity:SSI

» + Connectivity:USB
Input:CTSU
Input:ICU
Monitoring:CAC

» Storage:OSPI

v « Storage:QSP|

Module name: QSPIO
Storage:SDHI Usage: For QSPI, same Pin Group Recommended
g
System:BUS
L2 Cocud Vsl ot ad b
Pin Function | Pin Number |
Summary |BSP | Clocks | Pins| Interrupts | Event Links | Stacks | Components

Figure 39. Configure the QSPI Pin and Operation Mode

R11ANO868EU0100 Rev.1.00 Page 25 of 38
Apr.03.24 RENESAS

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

4. Navigate to the Stacks tab, highlight the QSPI stack and update the Bus Timing Minimum QSSL Deselect
Cycles to 8 QSPICLK.

g_qspi0 QSPI (r_qspi)

Settings Property Value
APl Info | ¥ Common
Parameter Checking Default (BSP)
Support Multiple Line Program in Extended SP1 Mode Disabled
. v Module g_gspi0 QSPI (r_gspi)
':{? q_qilm(ﬂ” ['.Wi) General

» Command Definitions
+ Bus Timing
@ NCDKCLK Dinacor
| Minimum QSSL Deselect Cycles I 8 QSPCLK

se Dime

Figure 40. Update the QSPI Bus Timing Minimum QSSL Deselect Property

5. Highlight the MCUboot stack and change the Image 1 Flash Area Size Configuration using the value
indicated below. When using QSPI, a much larger image is supported.

e ey [

v Signing and Encryption Options

TrustZone

Signature Type ECDSA P-256

Boot Record

Custom --pad

Python python

Encryption Scheme ECIES-P256
® |

TrustZone

Bootloader Flash Area Size (Bytes) Ox 18000

Image 1 Header Size (Bytes) 0x200

Image 1 Flash Area Size (Bytes)

Scratch Flash Area Size (Bytes) (8000

Figure 41. Configure the QSPI Pin and Operation Mode

6. Inside the bootloader project, add these variable definitions to the beginning of hal_entry.c file after
the R_BSP_WarmStart function call:

FSP_CPP_HEADER
void R_BSP_WarmStart(bsp_warm_start_event_t event);
FSP_CPP_FOOTER

/* SREG pay-load size */

#define SREG_SIZE (0x03)

/* Status register pay-load */

#define STATUS_REG_PAYLOAD {0x01,0x40,0x00}

uint8_t data_sreg[SREG_SIZE] = STATUS_REG_PAYLOAD;

Figure 42. Add QSPI Variable Definition

R11ANO868EU0100 Rev.1.00 Page 26 of 38
Apr.03.24 RENESAS

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

7. Stay with hal_entry.c, add below code to the beginning of hal_entry() function and before the line
mcuboot_quick setup(Q);

fsp_err_t err = FSP_SUCCESS;

R_QSP1_Open(&g_gspiO_ctrl, &g_gspiO_cfg);

/* write enable for further operations */

err = R_QSPI_DirectWrite(&g_gspiO_ctrl, &(g_qgspiO_cfg.write_enable_command), 1, false);

i1T(FSP_SUCCESS == err)

{
err = R_QSPI_DirectWrite(&g_gspiO_ctrl, data_sreg, SREG_SIZE, false);
iF(FSP_SUCCESS != err)

{
while(1);

-

Figure 43. Set up the QSPI

©

Within the bootloader smart configurator, click Generate Project Content and compile the bootloader
project.

5.2 Update the Primary Application Project to Support QSPI

1. Within the primary application smart configurator, click Downloader Thread -> New Stack -> Storage ->
QSPI, add the QSPI stack.

s Run Window Help

_enc_xmodem e R ®~R R @B d~@~ ™5~ % § 5, B B Qi o~
*[ra_mcuboot_ra ¥ [app_rabmd_prim x JEEGELITE [€] main.c [Oxeffffffe [€) downioader_thre [€) menu.c [€] *hal_entry.c) = B |E= Outline X
acks Conﬁgurltion (] There is no active editor that pro'
Generate Project Content
weads & MNewThread x| Remove = Downloader Thread Stacks
- Analog > |
¢ HAL/Common - " - 2
4 g_ioport /0 Port (r_ioport) & q.f"las:DhFIash @ g_pcdcd USB PCDC (r_usb_pcdc) 4 Free Adtificial Intelligence >
4 FreeRTOS Port (rm_freertos_port) (r.fiash hp) Audie 2
g Blinky Thread ® o) ® Bootloader >
i Downloader Thread ~ CapTouch »
'g_flashD Flash (1_flash_hp) I Connectivity >
4 g_pcdc0 USB PCDC (r_usb_pcdc) E g_basic0 USB (r_usb_basic) F
47 FreeRTOS Heap 4 i
Input >
@ Menitoring E]
Y
T T Motor >
4 g_transfer) Transfer @ g_transfer] Transfer Netwerking 5
(r_dmac) USBFS FIFO 1 (r_dmac) USBFS FIFO 0
(DMA transfer request (DMA transfer request Power >
= 1 0
bjects % | New Object > @n @9 RTOS 2
Security y
® g_usb_write_complete_binary_semaphore|
Sensor]
® g_usb_read_queue Queue
3 4 Block Media Custom Impleme
System > & Block Media SD/MMC (rm_blo
> Timers > 4 Block Media SPI Flash (rm_blo
Transfer > 4 Block Media USB (rm_block_m
nmary | BSP | Clocks | Pins | Interrupts | Event Links | Stacks | Components
& Search 4 Flash (r_flash_hp)
Problems [Console @ Smart Browser (L} Smart Manual [J Memory %5 Debug | [T Properties X & FreeRTOS+FAT
wnloader Thread P LittleFs
P Vb 4 OSPI Flash (r_ospi)
- rope: alue
e i pety @ OSPIRAM (r_ospi)
v Common
General & | Q5P (rgspi)
Hocks @ SD/MMC (r_sdhi)
Stats @ Virtual EEPROM on Flash (rm_y
AP Attt :
Figure 44. Add the QSPI Stack
R11ANO868EU0100 Rev.1.00 Page 27 of 38

Apr.03.24 RENESAS

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

2. Highlight the QSPI stack and update the Bus Timing, Minimum QSSL Deselect Cycles to 8 QSPCLK.

g_qspi0 QSPI (r_gspi)

Settings Property Value
APl Info w Common
- Parameter Checking Default (BSP)
Support Multiple Line Program in Extended SPl Mode Disabled

v Module g_gspi0 QSPI (r_gspi)
General
Command Definitions
QSPKCLK Divicor 2
Minimum QSSL Deselect Cycles 8 QSPCLK I

Figure 45. Add the QSPI Stack

3. Copy below files from the gspi_source.zip to overwrite the existing files in the primary application
project. The updates related with supporting QSPI usage are explained in the updates performed column.
Table 3. Source File Updates Moving from Internal Flash to QSPI for Secondary Image Storage

Files to overwrite Updates Performed

downloader_thread_entry.c | Remove code flash initialization and add QSPI initialization

menu.c Prior to image download over USB PCDC, the flash area needs to
be erased. The update performed is to switch from erasing the code
flash to erasing the QSPI.

xmodem.c xmodem . ¢ handles downloading the new image and writing to the
secondary application storage area. The updates to this file are to
change from writing to internal flash to writing to QSPI.

header.h The header . h file has definitions on the start and end location of
the primary and secondary slot. The update to this file is to change
the secondary application starting address as well as the size of the
primary and secondary application based on the new bootloader
image size configuration and the QSPI address.

4. Copy the highlighted files gspi_source.zip to the \src folder for the primary project. These are files
supporting QSPI operations.

.h qspi_ep.h
\c| gspi_operations.c
\h| gspi_operations.h

Figure 46. QSPI related Source Files

5. Save all files. Navigate to the smart configurator, click Generate Project Content and compile the
Primary application.
6. Perform the same update steps from step 1 to 5 for the secondary application project.

R11ANO868EU0100 Rev.1.00 Page 28 of 38
Apr.03.24 RENESAS

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

7. Update the Debug Configuration of the primary application. Right click on
app_ra4m3_primary_enc_xmodem, select Debug As > Debug Configurations. Navigate to the

Startup window and update the primary image download Offset to the address of the secondary slot
0x60000000.

m Debug Configurations 0 o
Create, ge, and run config @_
El LIRS s Mame: app_radm3_primary_enc_xmodem Debug_Flat
type fiter text Main 5 Debugger B Startup [} Common | % Source
C/C++ Application Initialization Commands ,

=151

| C/C++ Remote Application
EASE Script
[T GDB Hardware Debugging [] Hait
7] GDB Simulator Debugging (RHAS50)
& Launch Group
v [£7 Renesas GDB | ﬂware Debugging
Fapp_r&m}jrimary_enc_xmdcm chug_FIatI
ic *| app_radm3_secondary_enc_xmodem Debug_Fla Load image and symbols
"] ra_mecuboot_radm3_swap_enc_qspi Debug_Flat

[[] Reset and Delay (seconds): 2

P Filename Load type Offset (hex) On connect
€7} Renesas Simulator Debugaing (RX RL78) A 4 i Add...
] Program Binary [app_radm3_primary_enc_xmodem.alf] Symbols only Yes
IE' app_radm3_primary_enc xmodem.bin.signed.encrypted ... Raw Binary G0000000 I Yes Edit...
[v1 ra_meuboot_radm3_swap_enc_aspi.elf [C\Workspace\01.. Image and Symbols 0 Yes e
Move up
s Move down
Runtime Options
[set program counter at (hex):
|wl St hraaknnint ar main bt
< >
Filter matched 11 of 13 items Revert Apply

Figure 47. Configure the Debug Configuration

8. Click Debug and resume the execution twice to boot the primary application. The three LEDs should be
blinking.

9. Follow section 3.2.6 to download the secondary signed encrypted image and exercise the secondary
application.

Note that a solution to this section is provided with this application project as
MCUboot_Encryption_QSPI_Solution.zip for user's reference.

6. Using Custom Signing Key and Encryption Key

In this section, you will generate two sets of ECDSA SECP256R1 keys using the imgtool . py tool included
with MCUboot. One set will be used for image signing support, the other pair will be used for image encryption
support.

Users can also use other key generation methods to generate the keys, for example OpenSSL. OpenSSL
encodes its keys in SEC1 format, while MCUboot uses PKCS#8. So, if the customer uses OpenSSL, a
conversion needs to take place. The command used for this conversion is inserted in line in the lab steps for
your reference.

The stack MCUboot Example Keys stack generates the example keys used in the image signing/verifying and
image encryption/decryption process. The custom keys generated in this section replace these example keys.

These are the two example key structures in the bootloader project
\ra_mcuboot_ra4m3_swap_enc_dgspi\ra\mcu-tools\MCUboot\sim\mcuboot-sys\csupport

\keys.c file.

R11ANO868EU0100 Rev.1.00 Page 29 of 38
Apr.03.24 RENESAS

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

The root_pub_der array is the public key for image verification.

const unsigned char root_pub_der[] = {
8x38, 8x59, 0x30, Ox13, 8x06, @x87, ®x2a, Ox86,
@x48, @xce, @x3d, exe2, exel, oxe6, @xes, @x2a,
@x86, Ox48, Oxce, @x3d, exe3, exel, exe7, exe3,
Bx42, Ox88, exéd, ex2a, excb, ex4@, @x3c, éxed,
@xfe, @xed, @xSb, @xad, Ox49, Ox95, Oxal, @xad,
@xld, @xae, @xed, @xdb, @xbe, @x19, @x37, Oxcd,
Bx14, Oxfb, @x2f, @x24, @x57, Ox37, OxeS, @x95,
Bx39, @x88, exd9, ex94, @xb9, @xd6, @xSa, @xeb,
exd7, @xcd, @xdS, ex3e, @xBa, @xd6, @xfe, @x48,
@xb2, @x4a, @xba, exB8l, @xbe, @xe5, @xfe, @x7d,
8x8b, @x68, @x34, Bxcc, Bx3a, Bxba, Oxfc, Bx53,
@x8e, @xfa, 8xcl, };

const unsigned int root_pub_der_len = 91;

Figure 48. Public Key used for Image Verification

The enc_key array is the private key used in the image decryption process.

unsigned char enc_key[] = {
8x38, exBl, ox43, exP2, 8xel, ox8e, ©x3@, oxl3i, oxes, exe7, ©x2a, OxBe6,
Bx48, Bxce, Ox3d, 8x82, 8x8l, exes, Ox8B8, @x2a, @x86, e@x4B, @xce, @x3d,
Bx@3, exel, exe7, exed, B8x29, Ox38, ex27, oxel, Oxel, exel, exed4, oxe,
@xfe, Oxle, Bx51, ex9d, exf8, @xfa, @xdd, @xal, 8xb7, exd9, 8xa9, Oxed,
@x64, @x3b, ex54, exde, ex3d, exde, exlf, éxeS, @x78, exdS, ex17, ex98§,
Bxa5, ©x28, ©xca, @xcc, ©xeb, @xe67, ©@x%es, @x86, @xal, exdd,

1

static unsigned int enc_key_len = 78;

Figure 49. Private Key used for Image Decryption

The matching private key for the public key root_pub_der is root-ec-p256 . pem. We will generate a custom
private key ecc_sign_private.pem to replace the usage of root-ec-p256.pem which is used in the
image signing process. The matching public key for the private key enc_key is enc-ec256-pub.pem. For
custom encryption support, we will generate a custom public key ecc_enc_public.pem to replace enc-
ec256-pub.pem which is used in the image encryption process.

v £ mcu-tools
v (= MCUboot
(= boot
= scripts
v (= sim
v (= mcuboot-sys
v [csupport
[€] keys.c
enc-ec256-priv.pem

l. enc-ecZSﬁ-Euh.Eem I

enc-rsa2048-priv.pem

enc-rsa2048-pub.pem
I. root-ec-p256.pem I
root-rsa-2048.pem
root-rsa-3072.pem

1]

o e o

® o

Figure 50. Image Signing Private Key and ECDSA SECP256R1 Public Key used in Image Encryption
Process

R11ANO868EU0100 Rev.1.00 Page 30 of 38

Apr.03.24 RENESAS

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

Use the following steps to create and replace example keys generated by the MCUboot stack:

1. In the bootloader project, copy keys.c from the MCUboot folder to the \src folder of the bootloader

project.
v (Era
P
[~ arm
= board
= fsp

v L_:{ mcu-tools
v = MCUboot

[~
EL Z’;c:ts v s >braTmc.uboot_ra4m3_swap_enc_qspi
v (= sim %% Binaries
¥ (% mcuboot-sys) Includes
¥ (= csupport l:f’ ra
€] keys.c l_ij' ra_gen
f enc-ec256-priv.pem » v (8 > src

Lt} hal_entry.c

= Debug

| =]

enc-ec256-pub.pem

 »]

enc-rsa2048-priv.pem

| =]

enc-rsa2048-pub.pem

]

root-ec-p256.pem

| »]

root-rsa-2048.pem

]

root-rsa-3072.pem

Figure 51. Copy the Example keys.c

2. Open the configurator for ra_mcuboot_rad4m3_swap_enc_qspi, right click on MCUboot Example
Keys and select Delete.

HAL/Common Stacks

% | New Stack > =—

I I T —
4 MCUboot logging % Add ASN.1 parse
TinyCrypt or Cust
Crypto (Protectec
O] Team >
A ! |
L 1 mt. rations >
@ g_flash0 Flash (r_flash_hp) @ MCUboot External V| Validate
Memory (QSPI) of Cut Ctr+X
i Copy Ctrl+C
@ @ .-'I\H sy
1 | oetete Delete
$ g_qgspi0 QSPI (r_gspi) Non-secure Callable
mport...
3 Export..
@ (@ Module Resources...
© RunAs »
1% Debug As >
< Compare With » |
Replace With >]

vent Links | Stacks Components

Figure 52. Delete the MCUboot Example Keys Stack

R11ANO0868EU0100 Rev.1.00

Apr.03.24

RENESAS

Page 31 of 38

Renesas RA Family

Booting Encrypted Image on RA4 using MCUboot and QSPI

3. Extend ra_mcuboot ra4m3_swap_enc_gspi, right click on folder \scripts. Select Command

Prompt from this folder.

v 125 ra_meuboot ra4m3 swap_enc_gspi [Debug]
‘GP Binaries
wi Includes
v (Bra
»
= arm
= board
-, fsp
»
~ 2% mcu-tools

v = MCUboot

= boot
= Mew
= sim
a Go Into
enc-ec
B enc-ec Open in New Window
8 enc-rs: Show In
8 enc-rs: Copy
g root-e
8 root-r< 3¢ Delete
8 root-re Source
i ra_gen e
= Rename..
» Debug
Import...
» ra_cfg
. ; Export...
» script
1 configuration.xr Build Project
linkLog.log Refresh
ra_cfg.bet Index
ra_mcuboot ra4 Build Targets
%] ra_mcuboot_rad Resource Configurations
@) Developer Assis
?) Developer Assis Source

Restore from Local History...

% C/C++ Project Settings
Renesas C/C++ Project Settings

% Run C/C++ Code Analysis
Team
Compare With
System Explorer

Ii Command Prompt I

| Validate

Source

Properties

Alt+Shift+W >

Ctrl+C
Delete
»

F2

Ctrl+B
F5

Ctrl+Alt+P
>

>

Alt+Enter

Figure 53. Start Command Prompt under the \MCUboot\scripts Folder

4. Under the command window, execute command:

python imgtool._py keygen -k ecc_sign_private.pem -t ecdsa-p256

5. Copy the generated ecc_sign_private.pem to folder \ra_mcuboot_ra4m3_swap_enc_gspi\src

R11ANO868EU0100 Rev.1.00
Apr.03.24 RENESAS

Page 32 of 38

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

6. Extract the public key from ecc_sign_private.pem to use in the bootloader project.
Execute command:
python imgtool.py getpub -k ecc_sign _private.pem

@

m ®

8

3

Figure 54. Generate ECDSA Public Key

7. Copy the generated content of ecdsa_pub_key from Figure 54 to array root_pub_der in
\src\keys.c. Replace the original root_pub_der content.

1€ #telif defined(MCUBOOT_SIGN_EC256)
11e #define HAVE_KEYS

11 const unsigned char root_pub_der[] = {
112 Bx38, Bx59, 8x38, Ox13, Oxes, 0x87, Ox2a, Bx86,
113 ex48, Oxce, Bx3d, ex82, exel, exes6, exes, exla,
114 0x86, ©x48, Oxce, ex3d, exe3, exel, exe7, exe3,
115 ex42, ©xee, exed, exal, Ox88, ex6e, exdb, exee,
116 exbd, @xbd, exf8, @x89, 8x37, ex3e, ex2b, exie,
11 @x43, ©x48, exd2, exc9, exaf, ex62, @xS5a, exbf,
118 @x8d, ©xa2, ©xad, ex5a, ©x56, exeb, @x2c, ex71,
119 Bxc7, Oxdd, exdd, 8xBc, Oxee, 8x9a, ©xeb, Bxas,
128 ex48, ©x48, 8x8b, @xeéb, 8x7b, ex4f, @x23, exb7,
@xdf, @xcb, ex53, ox48, @xlf, ex53, exab, Oxde,
122 @xe7, Oxe2, Ox7a, ex91, ©x33, exa9, ox8f, exal,
123 ex4f, excf, ex1s, };|
124 const unsigned int root_pub_der_len = 91;

Figure 55. Replace ECDSA Public Key

8. Execute the following command to generate the ecc private key to be used in the application image
encryption process:
python imgtool._py keygen -k ecc_enc_private_pem -t ecdsa-p256

9. Copy the generated ecc_enc_private.pem to folder \ra_mcuboot ra4m3_swap_enc_gspi\src.
10. Extract the private key to include in the bootloader.
Execute command: python imgtool._py getpriv --minimal -k ecc_enc_private.pem.

Remove superfluous fields from the ASN1 by passing it --minimal.

--minimal -k

Figure 56. Generate the Private Key used for Image Encryption

R11ANO868EU0100 Rev.1.00 Page 33 of 38
Apr.03.24 RENESAS

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

11. Copy the content of enc_priv_key array generated in Figure 56 to the array enc_key in
\src\keys.c. Replace the original enc_key array content.

279 #if def:ined(MCUBOOT_ENCRYPT_ECZE&)

unsigned char enc_key[] = {
Bx30, @x41, exe2, @xel, oxee, @x3e, ex13, exes,
ex87, 8x2a, ©xB6, Ox48, @xce, 8x3d, ex@2, exel,
Bx86, Bx88, Ox2a, ©xB6, Ox48, Oxce, Ox3d, exe3,
exel, exe7, exed, ex27, ex3e, ox25, exe2, exel,
exel, exed4, ex2e, exlf, exfd4, exda, ex3f, ex71,
@x3a, ©xf4, Ox59, exe6, exed, Oxle, @xb2, excc,
Oxbe, @x52, exf2, ex79, @x81, oxe8, Ox95, exe9,
@x58, exdS, exaS, ex85, @xcb, exSc, exbd, exsf,
Ox79, Ox85, ex97,

1
29 static unsigned int enc_key_len = 67;

Figure 57. Replace the Private Key used for Image Encryption
12. Unzip OpenSSL-1.1.1h_win32.zip (Can download at OpenSSL). Open another command line
window under folder \OpenSSL-1_.1.1h_win32.
13. Copy ecc_enc_private.pem to folder \OpenSSL-1.1.1h_win32.
14. We will derive the encryption public key in pem format using the private key using OpenSSL.
Execute command:

openssl ec -in ecc_enc_private._pem -pubout -out ecc_enc_public.pem

C:\MCUboot\training_Oct_2622\Lab_Materials\OpenSSL-1.1.1h win32>openssl ec -in ecc_enc_private.pem -pubout -out ecc_enc
public.pem

read EC key
writing EC key

Figure 58. Generate the Public Key using the Private Key

15. Copy the generated ecc_enc_public.pem to the folder
\ra_mcuboot_ra4m3_swap_enc_gspi\src.

16. Click Generate Project Content and compile the bootloader project.

17. Update the signing key configuration of the primary application project.

Configuration: |Debug [Active] ~ | | Manage Configurations...
Environment variables to set Add...
Variable Value Origin Select...
CwWD C\Workspace\MCUboot... BUILD SYSTEM
GCC_VERSION 1321 BUILD SYSTEM Edit...
MCUBOOT_IMAGE_ENC... ${workspace_locra_mcu.. USER: CONFIG Delete
MCUBOOT_IMAGE SIG... ${workspace locra_mcu.. USER: CONFIG .
MCUBOOT IMAGE VER... 1.0.0 USER: CONFIG Undefine
& cdit variable X
Name: MCUBOOT IMAGE SIGNING_KEY
Value: I‘ tﬁra4m375wapienciqspi}/’srcfeccisigniprivate.perr{ |I Variables

Cance

Restore Defaults Apply

Apply and Close Cancel

Figure 59. Configure the Application Project to use the Custom Image Signing

R11ANO868EU0100 Rev.1.00 Page 34 of 38
Apr.03.24 RENESAS

https://sourceforge.net/projects/openssl-for-windows/files/OpenSSL-1.1.1h_win32.zip/download

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

18. Update the encryption key configuration of the primary application project.

Configuration: Debug [Active] ~ | Manage Configurations...
Environment variables to set Add...
Variable Value Origin Select
CWD C\Workspace\MCUboot... BUILD SYSTEM
GCC_VERSION 13.2.1 BUILD SYSTEM Ediit...
MCUBOOT IMAGE ENC... ${workspace locra mcu.. USER: CONFIG Delete
MCUBOOT_IMAGE _SIG... ${workspace_locra_mecu.. USER: CONFIG :
MCUBOOT IMAGE VER... 1.0.0 USER: CONFIG Undefine
& Edit variable X
Name: MCUBOOT_IMAGE_ENC_KEY
Value: I‘ ot_radm3_swap_enc_gspi}/src/ecc_enc_public.pem |I Variables
C/ T\EPIGLE TIaOVE ETIVITOTITITIETTC WITT pELIIIUU orer
Restore Defaults Apply

Apply and Close Cancel

Figure 60. Configure the Application Project to use the Custom Key for the Image Encryption
Process

19. For the primary application project, navigate to the smart configurator, click Generate Project Content
and recompile the application.

20. Repeat steps 17, 18 and 19 for the secondary application project.

21. Follow steps in section 3.2.1 to erase the flash.

22. Start the Debug session from the primary application project, resume twice to boot the primary application.
The three LEDs should be blinking.
User can now use the XModem to download and verify the operation for the secondary application image.

7. Appendix

7.1 Making the Bootloader for Cortex®-M33 Immutable

To make the bootloader immutable, the flash blocks containing the bootloader must be locked from being
programmed and erased.

The RA4M3 features two sets of registers which facilitate flash block locking. Block Protect Setting (BPS)
registers feature bits that map to individual flash blocks. When a bit is set to zero, the corresponding flash
block cannot be erased or programmed. The Permanent Block Protect Setting (PBPS) Registers have a
similar bit mapping to flash blocks. When a bit is set in one of these registers, the corresponding flash block
is permanently locked from being erased and programmed so long as the same bit in the Block Protect
Setting Register is also cleared to zero. This process is irreversible. Once a flash block is permanently
locked, it cannot be unlocked again.

Based on the example bootloaders provided in this application project, the flash blocks used by the
bootloader are:

e RA4M3 Overwrite Mode: block 0-7
¢ RA4M3 Swap Mode: block 0-8

Users can refer to the RA Family MCU Securing Data at Rest using TrustZone Application Project to
understand the operational flow of setting up the Flash Block Protection.

Note that ticking the BPSO and PBPSO0 Flash Block settings will permanently lock the flash blocks. This
CANNOT be reversed. Further details can be found in sections 6.2.5 and 6.2.6 of the RA4M3 Hardware
User’'s Manual.

R11ANO868EU0100 Rev.1.00 Page 35 of 38
Apr.03.24 RENESAS

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

7.2 Device Lifecycle Management for Renesas RA Cortex®-M33 MCUs

Once the bootloader development is finished, the user may want to transition the Device Lifecycle State of the
RA Cortex®-M33 MCU to lock down the debugger and the serial programming interface.

We recommend referring to the Device Lifecycle State Transitions in the Production Flow section in the
Renesas RA Family MCU Device Lifecycle Management Key Installation Application Note to understand the
device lifecycle management options during production.

The operational overview of how to use Renesas Flash Programmer to perform these transitions is explained
in the Overview of Device Lifecycle State Transitions using Renesas Flash Programmer section.

8. References
1. Renesas RA Family MCU Securing Data at Rest using Security MPU Application Project

Renesas RA Family MCU Securing Data at Rest using Arm TrustZone Application Project

2
3. Renesas RA Family MCU Device Lifecycle Management Key Installation Application Note
4. Renesas RA Family MCU Security Design with TrustZone — IP Protection

R11ANO868EU0100 Rev.1.00 Page 36 of 38
Apr.03.24 RENESAS

https://www.renesas.com/document/apn/securing-data-rest-utilizing-renesas-security-mpu?language=en&r=1168086
https://www.renesas.com/document/apn/securing-data-rest-utilizing-renesas-security-mpu?language=en&r=1168086
https://www.renesas.com/document/apn/renesas-ra-securing-data-rest-using-arm-trustzone?language=en&r=1353811
https://www.renesas.com/document/apn/renesas-ra-family-device-lifecycle-management-key-installation?language=en&r=1353811
https://www.renesas.com/document/apn/renesas-ra-family-device-lifecycle-management-key-installation?language=en&r=1353811
https://www.renesas.com/document/apn/renesas-ra-securing-data-rest-using-arm-trustzone?language=en&r=1353811
https://www.renesas.com/document/apn/renesas-ra-securing-data-rest-using-arm-trustzone?language=en&r=1353811

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

9. Website and Support
Visit the following URLSs to learn about the RA family of microcontrollers, download tools and documentation,
and get support.

EK-RA4M3 Resources renesas.com/ra/ek-ra4ms3
RA Product Information renesas.com/ra

Flexible Software Package (FSP) renesas.com/ra/fsp

RA Product Support Forum renesas.com/ra/forum
Renesas Support renesas.com/support

R11ANO868EU0100 Rev.1.00 Page 37 of 38

Apr.03.24 RENESAS

https://www.renesas.com/ra/ek-ra4m3
https://www.renesas.com/ra
http://www.renesas.com/fsp
https://www.renesas.com/ra/forum
https://www.renesas.com/support

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

Revision History

Description

Rev. Date Page Summary

1.00 Apr.03.24 - First release document

R11ANO868EU0100 Rev.1.00 Page 38 of 38
Apr.03.24 RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external
reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states
of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power

reaches the level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or /O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity
of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V.
(Max.) and Vin (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Vix (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in
terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a

system-evaluation test for the given product.

Notice

1.

10.

11.

12.

13.
14.

(Notel)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of
your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from
the use of these circuits, software, or information.

Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in
this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims
any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse
engineering.

Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home
electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas
Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas
Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY
AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE
EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED,
WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

When using Renesas Electronics products, refer to the latest product information (data sheets, user’'s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc.
Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products
outside of such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high
reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas
Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the
possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics
products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention,
appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very
difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
WWW.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
Www.renesas.com/contact/.

© 2024 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. MCUboot Functionalities Overview
	1.1 Validate Application before Booting and Updating

	2. Architecting an Application with MCUboot Module using FSP
	2.1 MCU Memory Configuration using MCUboot Module with FSP
	2.2 Application Image Format for Encrypted Image
	2.6 Production Support

	3. Running the Initial Example Projects
	3.1 Set Up the Python Image Signing Environment
	3.2 Running the Initial Example Projects

	4. Add Encryption to the Initial Example Project
	4.1 Configure the Bootloader for Encryption Support
	4.2 Configure the Application Project for Encryption Support

	5. Use QSPI as Secondary Storage Area
	5.1 Configure the Bootloader to Use QSPI for Secondary Application Storage
	5.2 Update the Primary Application Project to Support QSPI

	6. Using Custom Signing Key and Encryption Key
	7. Appendix
	7.1 Making the Bootloader for Cortex®-M33 Immutable

	References
	9. Website and Support
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

