
 Application Note

R11AN0868EU0110 Rev.1.10 Page 1 of 45

Jan.09.26

Renesas RA Family

Booting Encrypted Image on RA4 using MCUboot and
QSPI

Introduction

MCUboot is a secure bootloader for 32-bit MCUs. It defines a common infrastructure for the bootloader, defines
system flash layout on microcontroller systems, and provides a secure bootloader that enables easy software
update. MCUboot is independent of operating system and hardware and relies on hardware porting layers
from the operating system it works with. The Renesas Flexible Software Package (FSP) integrates an
MCUboot port starting from FSP v3.0.0. Users can benefit from using the FSP MCUboot Module to create a
Root of Trust (RoT) for the system and perform secure booting and fail-safe application updates.

The MCUboot is maintained by Linaro in the GitHub mcu-tools page https://github.com/mcu-tools/mcuboot.
There is a \docs folder that holds the documentation for MCUboot in .md file format. This application note

refers to the above-mentioned documents wherever possible and is intended to provide additional information
that is related to using the MCUboot module with Renesas RA FSP v3.0.0 or later.
To provide confidentiality of image data while in transport to the device or while residing on an external flash,
MCUboot has support for encrypting/decrypting images on-the-fly while upgrading. When upgrading the image
from the secondary slot to the primary slot, it is automatically decrypted after validation. Image encryption is
supported by FSP v3.8.0 or later.

This application note walks the user through application project creation using the MCUboot module on
Renesas EK-RA4M3 with external QSPI flash as the secondary image storage area. The application examples
implemented image downloading to the QSPI secondary slot over USB PCDC. MCUboot with encryption also
supports internal flash encryption. The operations are very similar to the QSPI usage and are not demonstrated
in this application project.

For using MCUboot module with the internal flash in code flash linear mode without encryption support, user
can reference application project (R11AN0869).

Required Resources

Development tools and software

• The e2 studio IDE v2025-10 or later.

• Renesas Flexible Software Package (FSP) v6.2.0 or later.

• SEGGER J-link® USB driver.

The above three software components: the FSP, J-Link USB drivers and e2 studio are bundled in a
downloadable platform installer available on the FSP webpage at renesas.com/ra/fsp.

• Python v3.9 or later- https://www.python.org/downloads/

Hardware

• EK-RA4M3 Evaluation Kit for RA4M3 MCU Group (http://www.renesas.com/ra/ek-ra4m3).

• Workstation running Windows® 10/11 and Tera Term console, or similar application.

• Two USB device cables (type-A male to micro-B male).

https://github.com/mcu-tools/mcuboot
http://www.renesas.com/fsp
https://www.python.org/downloads/
http://www.renesas.com/ra/ek-ra4m3

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 2 of 45

Jan.09.26

Prerequisites and Intended Audience

This application note assumes you have some experience with the Renesas e2 studio IDE and Arm®
TrustZone® based development models with e2 studio. Users are required to read the entire FSP User’s Manual
on the MCUboot Port section and review the RA4 Basic Secure Bootloader Design using MCUboot Application
Project (R11AN0869) prior to moving forward with this application project. In addition, the application note
assumes that you have some knowledge of cryptography. Prior knowledge of Python usage is also helpful.

The intended audience are product developers, product manufacturers, product support, or end users who are
involved with designing application systems involving usage of a secure bootloader.

Using this Application Note

Section 1 covers the general overview of MCUboot and the application upgrade methods supported by the
MCUboot. If you have worked with MCUboot module-based bootloader previously, this section can be
bypassed.

Section 2 covers the general flow of architecting a system using FSP MCUboot module. If you have previously
worked with the MCUboot system using FSP, this section can be bypassed.

Section 3 covers the walk throughs of running the initial example projects which do not include encryption
support. These example projects use swap test update mode and internal code flash for both primary and
secondary applications. Image downloader using XModem over USB PCDC is implemented in the primary and
secondary applications. MCUboot provided example keys are used for image signing and encryption support.

Section 4 covers adding encryption support to the bootloader and applications using internal code flash for
both the primary and secondary applications.

Section 5 covers updating the projects created in section 4 to use QSPI for secondary image storage. Note
that for the user’s convenience, an end solution for this section is provided for the user’s reference.

Section 6 covers using custom image signing and image encryption keys in the projects created in Section 5.

Section 7 covers production-related topics.

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 3 of 45

Jan.09.26

Contents

1. MCUboot Functionalities Overview .. 5

1.1 Validate Application Before Booting and Updating ... 5

1.1.1 Encrypted Applications Update ... 6

2. Architecting an Application with MCUboot Module using FSP .. 6

2.1 MCU Memory Configuration using MCUboot Module with FSP ... 6

2.2 Application Image Format for Encrypted Image .. 7

2.3 Designing Bootloader and the Initial Primary Application Overview ... 7

2.4 General Guidelines using the MCUboot Module Across RA Family MCUs .. 7

2.5 Customize the Bootloader ... 8

2.6 Production Support .. 8

2.6.1 Key Provisioning .. 8

2.6.2 Make the bootloader immutable for enhanced security .. 8

2.6.3 Advance the device lifecycle states prior to the deploy the product to the field 8

3. Running the Initial Example Projects ... 9

3.1 Set Up the Python Image Signing Environment .. 13

3.2 Running the Initial Example Projects... 13

3.2.1 Set Up the Hardware ... 14

3.2.2 Import the Projects .. 15

3.2.3 Configure the Python Signing Environment .. 15

3.2.4 Compile all the projects ... 16

3.2.5 Debug the Applications ... 17

3.2.6 Downloading and Running the Secondary Application ... 17

4. Add Encryption to the Initial Example Project... 19

4.1 Configure the Bootloader for Encryption Support ... 20

4.2 Configure the Application Project for Encryption Support ... 24

5. Use QSPI as Secondary Storage Area .. 29

5.1 Configure the Bootloader to Use QSPI for Secondary Application Storage ... 30

5.2 Update the Primary Application Project to Support QSPI ... 34

6. Using Custom Signing Key and Encryption Key ... 36

7. Appendix ... 42

7.1 Making the Bootloader for Cortex®-M33 Immutable .. 42

7.2 Device Lifecycle Management for Renesas RA Cortex®-M33 MCUs ... 43

8. References .. 43

9. Website and Support ... 44

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 4 of 45

Jan.09.26

Revision History .. 45

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 5 of 45

Jan.09.26

1. MCUboot Functionalities Overview

MCUboot handles the firmware authenticity check after start-up and the firmware switch part of the firmware
update process. Downloading the new version of the firmware is out-of-scope for MCUboot. Typically,
downloading the new version of the firmware is functionality that is provided by the application project itself.
This application project provides an example of this functionality using XModem transfer protocol over USB
PCDC port to download image to the external QSPI secondary image storage area.

1.1 Validate Application Before Booting and Updating

For applications using MCUboot, the MCU memory is separated into MCUboot, Primary App, Secondary App
and the Scratch Area. The following is an example of the single image MCUboot memory map when using the
internal code flash.

Figure 1. Single Image MCUboot Memory Code Flash Map

The following is an example of the single image MCUboot memory map when using external flash storage as
the secondary storage area.

Figure 2. Single Image MCUboot Flash Memory Map with QSPI

For more information on the MCUboot memory layout, refer to the Flash Map section of the reference MCUboot
website.

The functionality of the MCUboot during booting and updating follows the process below:

The bootloader starts when CPU is released from reset. For TrustZone®-based MCUs, MCUboot is designed
to run in Secure mode with all access privileges available to it. If there are images in the Secondary App
memory marked as to be updated, the bootloader performs the following actions:

1. The bootloader will authenticate the Secondary image.
2. Upon successful authentication, the bootloader will switch to the new image based on the selected update

method. Available update methods are introduced in section 1.1.1.
3. The bootloader will boot the new image.

If there is no new image in the Secondary App memory region, the bootloader will authenticate the Primary
applications and boot the Primary image.

Encrypted

Plaintext

https://docs.mcuboot.com/design.html#flash-map

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 6 of 45

Jan.09.26

The authentication of the application is configurable in terms of the authentication methods and whether the
authentication is to be performed with MCUboot. If authentication is to be performed, the available methods
are RSA or ECDSA. The firmware image is authenticated by hash (SHA-256) and digital signature validation.
The public key used for digital signature validation can be built into the bootloader image or provisioned into
the MCU during manufacturing. In the examples included in this application project, the public key is built into
the bootloader images.

The image header needs to flag this image as ENCRYPTED (0x04) and a TLV with the key must be present
in the image.

There is a signing tool included with the MCUboot: imgtool.py. This tool provides services for creating

Root keys, key management, and signing and packaging an image with version controls. User needs to read
the MCUboot documentation to use and understand these operations.

1.1.1 Encrypted Applications Update

The major use case for encrypted image update is for external flash update image storage. External flash
content is prone to theft in many ways. It is critical to secure the external flash secondary image storage area
via encryption. Another relatively rare use case is the internal flash update image storage if the image is
downloaded via insecure channel.

Encrypted image boot is supported with swap and overwrite upgrade mode on all RA MCUs via FSP. Direct
XIP upgrade mode is not supported. The cryptographic operation for RA MCU is supported by MbedCrypto
and TinyCrypt. User can reference Table 1 for the selection of the cryptographic library.

We recommend acquiring more details on the upgrade mode by reviewing the corresponding sections in
application project (R11AN0869) as well as the MCUboot design page:

https://github.com/mcu-tools/mcuboot/blob/master/docs/design.md.

If swap upgrades are enabled, the image located in the primary slot, also having the ENCRYPTED flag set
and the corresponding Type Length Value (TLV) field present, the primary image is re-encrypted while
swapping to the secondary slot.

• The image is encrypted using AES-CTR-128, with a counter that starts from zero (over the payload blocks)

and increments by 1 for each 16-byte block. AES-CTR was chosen for speed/simplicity and allowing for

any block to be encrypted/decrypted without requiring knowledge of any other block (allowing for simple

resume operations on swap interruptions). MCUboot also supports AES-CTR-256, this is not supported

from FSP side.

2. Architecting an Application with MCUboot Module using FSP

This section provides an overview of the FSP MCUboot module, which integrates MCUboot as a module into
the FSP. The available upgrade modes and memory architecture design are discussed. In addition, signing
and mastering new images are discussed.

2.1 MCU Memory Configuration using MCUboot Module with FSP

For the general support information, the user can reference the MCUboot port section of the FSP User’s
Manual.

It is also highly recommended that the user reviews the MCUboot encrypted image page for background on
the encryption scheme.

https://github.com/mcu-tools/mcuboot/blob/main/docs/encrypted_images.md

Users can gain hands on experience in configuring the memory regions using the MCUboot module in the
walkthrough section in section 3, section 4 and section 5.

https://github.com/mcu-tools/mcuboot/blob/master/docs/imgtool.md
https://github.com/mcu-tools/mcuboot/blob/master/docs/design.md
https://github.com/mcu-tools/mcuboot/blob/main/docs/encrypted_images.md

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 7 of 45

Jan.09.26

2.2 Application Image Format for Encrypted Image

Figure 3 is a more detailed application image format that can be referenced to understand the booting process.

Figure 3. Application Image Format

To signal the bootloader as an encrypted image, the application adds the ENCRYPTED flag in the header
area. In addition, the image encryption key is stored in encrypted form within the trailer area. The key that is
used to encrypt the image encryption key is shared between the image encryption process and the image
decryption process via ECIES P256 or RSA OAEP 2048.

2.3 Designing Bootloader and the Initial Primary Application Overview

A bootloader is typically designed with an existing initial primary application. The following are the general
guidelines for designing the bootloader with the initial primary application.

• Develop the bootloader and analyze the MCU memory resource allocation needed for the bootloader and

the application. The bootloader memory usage is influenced by the application image update mode,

signature type and whether to validate the Primary Image.

• The bootloader maintains a memory map of all the different images. User needs to perform the memory

usage analysis of the application and update the bootloader defined memory map for consistency and

adjust as needed.

• When changing the image authentication and image update mode, the bootloader memory allocation may

need to be adjusted.

Most of these design aspects are addressed in the walk-through in this application note.

2.4 General Guidelines using the MCUboot Module Across RA Family MCUs

The MCUboot module is supported on all RA Family MCUs.

The cryptographic support is provided via MbedTLS (Crypto Only) module and TinyCrypt module. Both crypto
modules are supported on all RA MCUs either through software or MCU hardware. The MbedTLS (Crypto
Only) module is supported by the MCU hardware if the corresponding algorithms are supported by the
hardware crypto engine, otherwise MbedTLS software stack will be used. The MbedTLS offers more crypto
algorithms, is generally faster and has a larger memory footprint. On the other hand, the TinyCrypt module
offers a smaller number of algorithms, is slower but has a much smaller memory footprint. Users can consider
disable the image validation of the primary image prior to execution at MCU reset to reduce the boot time.

Table 1 is the typical cryptographic selection recommendations when using MCUboot with RA MCUs. If
memory footprint is a priority, users can choose the TinyCrypt module over the MbedTLS Crypto Only module
for some of these use cases. To improve the verification speed and reduce boot time when using Tiny Crypt,
user can consider disable image validation to improve verification and boot time performance.

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 8 of 45

Jan.09.26

Table 1. Typical Cryptographic Selection Recommendations for RA MCUs

Crypto

Stack

RA2 No

Encryption

RA2 with

Encryption

RA4E1,

RA6E1,

RA4W1,

RA4M1, RA6T2

No Encryption

RA4E1,

RA6E1,

RA4W1,

RA4M1, RA6T2

with

Encryption

RA6M1/M2/M3,

RA6T1,

RA4M2/M3,

RA6M4/M5 with or

without

Encryption

RA8M1,

RA8D1,

RA8T1,

with or

without

Encryption

MbedTLS

(Crypto Only)

 x x

Tiny Crypt

(HW AES)

 x x

Tiny Crypt

(SW Only)

x x

2.5 Customize the Bootloader

The following are some aspects that need to be considered when customizing the bootloader in a product
design.

• Customized method to download the application.

• Adjust the flash memory allocation in the bootloader project for the bootloader as well as the application

image.

Porting the EK-RA4M3 example bootloader and application projects to EK-RA4M2:

• The user is recommended to recreate the projects with all the stack components in e2 studio. In this step,

the bootloader size and image size can be adjusted based on the MCU flash memory size and the

application image size.

• There is no code update needed when porting the included example projects to RA4M2. After the

configurator stack is created, the user can copy over the application source code under \src folder to the

newly created project \src folder.

2.6 Production Support

2.6.1 Key Provisioning

By default, the public key is embedded in the bootloader code, and its hash is added to the image manifest as
a KEYHASH TLV entry. See section 6 for more details about the public key and private key which are used for

testing purposes. For production support, the user needs to follow the example shown in key.c to add their

public key. A more secure solution is to inject the image verification public key. In addition, the user needs to
update the private key for application image signing. This application project provides examples of how to use
imgtool.py to create custom image signing keys and encryption keys in section 6.

As an alternative, the bootloader can be made independent of the included test keys by setting the
MCUBOOT_HW_KEY option. In this case the hash of the public key must be provisioned to the target device

and MCUboot must be able to retrieve the key-hash from there. For this reason, the target must provide a
definition of the boot_retrieve_public_key_hash() function that is declared in

boot/bootutil/include/bootutil/sign_key.h. It is also required to use the full option for the –

public-key-format imgtool argument in order to add the whole public key (PUBKEY TLV) to the image

manifest instead of its hash (KEYHASH TLV).

During boot, the public key is validated before it is used for signature verification. MCUboot calculates the hash
of the public key from the TLV area and compares it with the key-hash that was retrieved from the device. This
way, MCUboot is independent from the public key(s). The key(s) can be provisioned any time and by different
parties.

2.6.2 Make the bootloader immutable for enhanced security

For Cortex®-M33 MCU, refer to section 7.1 to make the bootloader immutable.

2.6.3 Advance the device lifecycle states prior to the deploy the product to the field

For Cortex®-M33 MCU, user can refer to section 7.2 for the device lifecycle management of the MCU.

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 9 of 45

Jan.09.26

3. Running the Initial Example Projects

This section provides a walkthrough of running the included initial example projects. The initial projects use
internal flash for both primary and secondary applications. To demonstrate the image encryption support,
instructions on how to add encryption support to these projects and change the secondary slot from the internal
flash to external QSPI are provided in the next section.

To learn how to establish a system using MCUboot module from scratch, user can reference application project
R11AN0869. Prior to signing the application project, the Python package needs to be installed. The instructions
on how to install the Python components used for MCUboot is included in section 3.3.3.

Unzip MCUboot_Encryption_Initial_Projects.zip you can see there are four projects:

Figure 4. Initial Example Projects

The description of these projects is provided in the following table.

Table 2. Description of the Initial Example Projects

Projects Description

app_ra4m3_primary_enc_xmodem Primary application:

• Blinky thread blinks three LEDs (red, green, blue).

• Downloader thread implemented XModem over USB PCDC

support.

app_ra4m3_secondary_enc_xmodem Secondary application:

• Blinky thread blinks blue LED.

• Downloader thread implemented XModem over USB PCDC

support.

ra_mcuboot_ra4m3_swap_enc_qspi The bootloader project:

• The bootloader is configured with swap upgrade mode.

• Swap test mode is enabled in the secondary application.

• The maximum application image size is configured.

• All application images are plaintext.

• The secondary slot is in the internal code flash.

• Code flash is linear mode.

solution_mcuboot_ra4m3_qspi The FSP Solution Project (Advanced), supported from FSP

v6.0.0:

• The FSP Solution Project (Advanced) is a chain of projects

that includes both the bootloader and the primary application

project.

• It manages the Clock configuration and Memories settings for

both the bootloader and the primary application project.

In this section, we will run the example projects through the following stages.

First, we will erase the MCU. Then we will download the primary application to the internal flash.

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 10 of 45

Jan.09.26

In the next stage, we can use the image downloader implemented in the primary application to download the
secondary image to the secondary slot. Upon the next reboot, the secondary image will be booted.

Figure 5. Operational Flow with Swap Update Mode

Note that in the initial application projects, the application image size is defined as 0x70000 which is the
maximum application image size based on the example bootloader included when using internal flash for
primary and secondary image storage with code flash linear mode.

3.1 Memory Partition using the Solution Project

Although the provided sample projects are ready-to-run, this chapter briefly explains the memory partition
configuration in the FSP Solution project. Starting from FSP v6.0.0, an FSP Solution Project is required to
define the bootloader slots.

The Renesas FSP Solution project (Advanced) is a chain of projects, specifically consisting of the
bootloader and the application project. For instructions on how to create a Renesas FSP Solution Project
(Advanced), refer to the application project R11AN1048.

After creating the Solution project, the bootloader slots can be configured from the Memories tab in
solution.xml. Figure 6 illustrates the default Memories tab generated during the creation of the Solution

project.

Figure 6. The Default Memories Tab in solution.xml

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 11 of 45

Jan.09.26

The bootloader slots definitions shown in Table 3, which are used in the
MCUboot_Encryption_Initial_Projects sample, will be used to illustrate how to build a complete

FLASH map for an MCUboot project using the following steps. The same procedure can be applied to create
a QSPI_FLASH partition.

1. Open solution.xml then navigate to Memories tab and select the FLASH region.

2. Click Add Partition, as shown in Figure 7. The New Partition dialog appears.

Figure 7. Example of Add Partition in Memories Tab

3. Enter the partition parameters according to the bootloader slot definitions in Table 3.

Example for Image 0 Primary Header:

Name: __BL_0_P_H

Start: 0x00010000

Size: 0x200

Core: CM33

Security: Secure.

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 12 of 45

Jan.09.26

4. Click OK. The Image 0 Primary Header (__BL_0_P_H) is added successfully, as shown in Figure 8.

Figure 8. Example of the __BL_0_P_H Partition Successfully Added to FLASH

5. Repeat Steps 1–3 for all remaining partitions until the FLASH layout is complete.

Figure 9 shows the complete layout as defined in Table 3.

Figure 9. Example of a Completed MCUboot Internal Code Flash Layout

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 13 of 45

Jan.09.26

6. After completing the FLASH layout, right-click the Solution project and select Build Project to apply
the updated memory partitions.

Note: If an error related to RAM region overflow appears in the Console tab, adjust the RAM partition sizes
in the Memory Partition settings of the Solution Project and rebuild.

• For the Bootloader Project, adjust the RAM_CM33_B size.

• For the Application Project, adjust the RAM_CM33_S size

 Table 3. MCUBoot Memory Partition for Internal Code Flash

Start
Address

Size
Memory Partition

Labels
Flash Map

Definition of Memory
Partition Labels

0x000F0000

0x8000

__BL_S
Scratch Area

Scratch area

0x00080200

0x6FE00

__BL_0_S_I

Trailer

Image 0 Secondary slot

TLV

app_secondary.bin.signed

0x00080000 0x200 __BL_0_S_H Header Image 0 Secondary Header

0x00010200

0x6FE00

FLASH_CM33_S

Trailer

Image 0 Primary slot

TLV

app_primary.bin.signed

0x00010000 0x200 __BL_0_P_H Header Image 0 Primary Header

0x00000000

0x10000

FLASH_CM33_B
MCUBoot

Bootloader area

In addition, refer to the renesas.github.io: MCUBoot Port for more details on creating an MCUboot project
with the FSP Solution and for information on the MCUboot memory partition labels.

3.2 Set Up the Python Image Signing Environment

Download and Install Python v3.9 or later.

Python v3.9 or later- https://www.python.org/downloads/

Set up the Python development environment by following section 3.3, step 3.3.3. Note that this step only needs
to be performed once.

3.3 Running the Initial Example Projects

Use the following steps to run the included initial example projects. The instructions on establishing the initial
bootloader are provided in the application project R11AN0869 which is available for download on Renesas
website.

https://renesas.github.io/fsp/group___r_m___m_c_u_b_o_o_t___p_o_r_t.html
https://www.python.org/downloads/

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 14 of 45

Jan.09.26

3.3.1 Set Up the Hardware

• The default jumper setting of EK-RA4M3 is used for the example projects.

• Connect J10 (USB Debug) using a micro-USB device cable from EK-RA4M3 to the development PC to

provide power and debug connection using the on-board debugger.

• Connect J11 (USB FS) using a micro-USB device cable from EK-RA4M3 to the development PC to provide

USB Device connection.

• Placing the J12 jumper on pins 2-3 configures the EK-RA4M3 board’s USB Full-Speed port for device

mode.

Once the EK-RA4M3 is powered up, the user needs to initialize the MCU prior to exercising the bootloader
project. This will create a clean environment to start the bootloader project verification.

Erase the entire MCU flash using J-Flash Lite.

J-Flash Lite is a free, simple graphical user interface which allows downloading into flash memory of target
systems. J-Flash Lite is part of the J-Link Software and Documentation package that is installed when the

J-Link software & documentation pack is installed.

1. To use J-Flash Lite, connect the USB Debug port J10 to the PC and launch J-Flash Lite. Select the

Device and debug Interface and communication speed.

Figure 10. Launch the J-Flash Lite

2. Click OK. In the next screen, select Erase Chip.

Figure 11. Select Erase Chip

https://www.segger.com/downloads/jlink/

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 15 of 45

Jan.09.26

3. Ensure the erase is successful.

Figure 12. Erase Successful

3.3.2 Import the Projects

For new users, please refer to the FSP User’s Manual section on Importing Projects into the IDE for guidelines.

Figure 13. Initial Example Projects

3.3.3 Configure the Python Signing Environment

If this is NOT the first time you have used the python script signing tool on your computer, you can skip this
section and proceed to section 3.3.4.

If this is the first time you are using the Python-based signing tool on your system, you must install the required
dependencies before running the script.

1. Generate Project Contents for ra_mcuboot_ra4m3_swap_enc_qspi project by double click to

configuration.xml file under ra_mcuboot_ra4m3_swap_enc_qspi folder and click Generate

Project Content.

2. After ra folder is generated. In the Project Explorer navigate to:
ra_mcuboot_ra4m3_swap_enc_qspi > ra > mcu-tools > MCUboot

3. Right click to MCUboot folder and select Command Prompt as shown in Figure 14. This will open a

command window with the path set to the \mcu-tools\MCUboot folder.

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 16 of 45

Jan.09.26

Figure 14. Open the Command Prompt

We recommend upgrading pip prior to installing the dependencies. Enter the following command to update
pip:

python -m pip install --upgrade pip

Next, in the command window, enter the following command line to install all the MCUboot dependencies:

pip3 install --user -r scripts/requirements.txt

This will verify and install any dependencies that are required.

3.3.4 Compile all the projects

Use the following sequence to build the examples projects under folder
\MCUboot_Encryption_Initial_Projects:

1. Build the Solution Project

• Right-click on the Solution Project: solution_mcuboot_ra4m3_qspi.

• Select Build Project. This action will build all projects that belong to the Solution Project chain, including:

- ra_mcuboot_ra4m3_swap_enc_qspi

- app_ra4m3_primary_enc_xmodem

2. Build the Secondary Project

• Select Build Project for the Secondary Application: app_ra4m3_secondary_enc_xmodem. Open the

configuration.xml file, click Generate Project Contents and then click to build the project.

The signed image for the application projects is located under the \Debug folder:
/app_ra4m3_primary_enc_xmodem/Debug/app_ra4m3_primary_enc_xmodem.bin.signed

and

/app_ra4m3_secondary_enc_xmodem/Debug/app_ra4m3_secondary_enc_xmodem.bin.signed

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 17 of 45

Jan.09.26

3.3.5 Debug the Applications

Choose to debug from primary application project app_ra4m3_primary_enc_xmodem.

Right click on project app_ra4m3_primary_enc_xmodem and select Debug As > Debug Configurations.

Select app_ra4m3_primary_enc_xmodem Debug_Flat > Startup and confirm that the following
configuration exists.

Figure 15. Debug Configurations

• Under the Startup configuration, verify the Load type of app_ra4m3_primary_enc_xmodem.elf is

Symbols only rather than Image and Symbols.

• The app_ra4m3_primary_enc_xmodem.bin signed entry exists with Load type as Raw Binary and the

Offset is set to 0x10000 since that is the beginning of the primary application.

• The ra_mcuboot_ra4m3_swap_enc_qspi.elf is added with Load type as Image and Symbols with

an Offset of 0 since the bootloader starts from 0x0.

Click Debug, then Resume the execution twice by clicking . The primary application is then booted, and
the three LEDs are blinking.

3.3.6 Downloading and Running the Secondary Application

Use the following steps to download and run the secondary application.

1. Launch Tera Term and select the enumerated COM port “USB Serial Device”. Your port number may be

different from this. Click OK.

Figure 16. Launch Tera Term

2. Below message will be printed.

Figure 17. Menu item

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 18 of 45

Jan.09.26

3. View option 1 result. We can see Secondary Image Slot is empty.

Figure 18. Primary and Secondary Slot Status

4. Now use the image downloader to load the new secondary application image. Choose option 2 to

download the secondary image.

Figure 19. Initiate Secondary Image Download

5. Choose File > Transfer > XMODEM > Send

Figure 20. Choose to use XModem

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 19 of 45

Jan.09.26

6. Select the signed secondary image binary.

Figure 21. Select the Signed Secondary Image

7. It takes a few seconds to download a new image.

Figure 22. Download the Secondary Image using XModem

8. The primary application will reset the system once the entire secondary application is downloaded.

The menu from the secondary application is printed. Wait about two seconds prior to the output of the

new menu. The Blue LED should be blinking.

Figure 23. Secondary Image is booted

Reset the application from the debugger, the blue LED should still be blinking. There is no revert back

to the original Primary application because the swap test mode is implemented with the secondary

application.

4. Add Encryption to the Initial Example Project

In this section, we will add encryption to the application image. The bootloader is first updated and then the
application projects are configured to use the new bootloader.

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 20 of 45

Jan.09.26

The system will go through the following stages. Note that when encryption is enabled, the bootloader image
size increases to about 83 kB. With the code flash boundary at 32 kB, the bootloader image is allocated 96 kB.

Figure 24. Booting Encrypted Image (Secondary Image Stored in Internal Flash)

Note that the initial application is downloaded to the secondary slot as encrypted rather than downloaded to
the primary slot as plaintext image. This allows plaintext image being swapped to the secondary slot as
encrypted.

4.1 Configure the Bootloader for Encryption Support

Stay in the same Workspace from the previous section and start to configure the bootloader using the following
steps:

1. Double click and open the configuration.xml file from ra_mcuboot_ra4m3_swap_enc_qspi project.

2. Navigate to the Stacks tab, select MCUboot stack, and in the Properties panel set the Encryption

Scheme to ECIES-P256 as shown in Figure 25.

Figure 25. Choose ECIES-P256

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 21 of 45

Jan.09.26

3. Navigate to the BSP tab in ra_mcuboot_ra4m3_swap_enc_qspi\configuration.xml and

update the BSP heap size from 0x600 to 0x1000 as illustrated in Figure 26 . When encryption is used,

a minimum of 0x200 heap needs to be added. This increased heap usage came from the added AES

algorithm usage.

Figure 26. Update the Heap size to 0x1000

4. Right click on the bootloader project and select Properties (at the end of the menu tree).

Figure 27. Open the Properties Window

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 22 of 45

Jan.09.26

5. Navigate to the GNU Arm Cross C Compiler > Preprocessor.

Figure 28. Add Preprocessor setting

6. Click the green ‘+’ sign and add MCUBOOT_BOOTSTRAP. This preprocessor enables booting the first

encrypted image from the secondary slot when having an empty image from the primary slot. Click

OK.

Figure 29. Enter Preprocessor MCUBOOT_BOOTSTRAP

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 23 of 45

Jan.09.26

7. Click Apply and Close.

Figure 30. Add Preprocessor MCUBOOT_BOOTSTRAP

8. Check Remember my decision and click Yes if below window pops up.

Figure 31. Setting option

9. Click Generate Project Contents to apply all configuration settings.

10. Update the Bootloader Flash Area Size and primary image in the solution_mcuboot_ra4m3_qspi

project:

Double click to solution.xml and navigate to Memories tab.

Under FLASH map, change FLASH_CM33_B from 0x10000 to 0x18000 as shown in Figure 32.

Note: After modifying the size of FLASH_CM33_B, the sizes of the remaining FLASH regions may
adjust dynamically. Ensure that only the FLASH_CM33_B region is changed in this step.

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 24 of 45

Jan.09.26

Figure 32. Update the Bootloader Flash Area Size

11. Rebuild the solution_mcuboot_ra4m3_qspi project to apply the changes. Note that any

configuration change made in the Solution Project must be rebuilt for the updates to propagate to all

projects in the solution chain.

4.2 Configure the Application Project for Encryption Support

Follow the steps below to configure the application project to support image encryption.

1. Right click on the Primary Application app_ra4m3_primary_enc_xmodem, select Properties -> C/C++

Build -> Environment.

Click Add and define the New variable Name as:

MCUBOOT_IMAGE_ENC_KEY

Define the Value as:

${workspace_loc:ra_mcuboot_ra4m3_swap_enc_qspi}/ra/mcu-tools/MCUboot/enc-

ec256-pub.pem

Tick Add to all configurations after the value setting.

Figure 33. Configure the ECDSA Public Key to be Used in Image Encryption

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 25 of 45

Jan.09.26

2. Review the Build Variable Settings and click Apply and Close.

Figure 34. Review the Application Project Encryption Support Setting

3. Update the \app_ra4m3_primary_enc_xmodem\src\header.h file. This update takes care of

the application image location change due to the change in the bootloader size.

Update below address configuration from:

#define PRIMARY_IMAGE_START_ADDRESS 0x00010000

#define PRIMARY_IMAGE_END_ADDRESS 0x0007FFFF

#define SECONDARY_IMAGE_START_ADDRESS 0x00080000

#define SECONDARY_IMAGE_END_ADDRESS 0x000EFFFF

To:

#define PRIMARY_IMAGE_START_ADDRESS 0x00018000

#define PRIMARY_IMAGE_END_ADDRESS 0x00087FFF

#define SECONDARY_IMAGE_START_ADDRESS 0x00088000

#define SECONDARY_IMAGE_END_ADDRESS 0x000F7FFF

4. Double click configuration.xml to open the smart configurator, click Generate Project Content

and compile the Primary application app_ra4m3_primary_enc_xmodem.

Ensure \Debug\app_ra4m3_primary_enc_xmodem.bin.signed.encrypted is generated.

Figure 35. Ensure the Encrypted Binary is Generated

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 26 of 45

Jan.09.26

5. Repeat previous steps 1, 2, 3 and 4 in this section for the app_ra4m3_secondary_enc_xmodem

project.

6. Follow step 2, 3 in section 3.3.1 to Erase the chip.

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 27 of 45

Jan.09.26

7. Update the Debug configuration.

Right click on the Primary application app_ra4m3_primary_enc_xmodem > Debug As > Debug

Configurations, make sure the Primary application is selected and navigate to the Startup window.

Update the Startup configuration Load image and symbols area as shown below.

• Remove the entry of app_ra4m3_primary_enc_xmodem.bin.signed.

• Click Add -> Workspace and browse to the file

app_ra4m3_primary_enc_xmodem.bin.signed.encrypted.

Figure 36. Startup of Debug Configuration

Click OK.

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 28 of 45

Jan.09.26

8. Update the Primary Image download address and Load type.

Change the Load type to of the app_ra4m3_primary_enc_xmodem.bin.signed.encrypted to

Raw Binary. Update the Offset to the secondary slot address based on the new bootloader size.

Figure 37. Update the Primary Application Load Address

9. Click Debug and resume the execution twice; the Primary application will be booted, and three

LEDs should be blinking.

10. Follow steps 3 to 8 in section 3.3.6 to use the XModem downloader to download the secondary

application.

11. Make sure to select the encrypted secondary image.

When downloading the seconday image, make sure to select the encrypted image.

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 29 of 45

Jan.09.26

Figure 38. Select the Encrypted Secondary Image

12. After the secondary image is downloaded, it will be booted after the bootloader verified the image. The

blue LED should be blinking.

5. Use QSPI as Secondary Storage Area

In this section, we will switch the secondary image storage area from internal flash to QSPI. User can also
benefit from this section in terms of learning the key steps in the image downloader design when using
XModem. Below is the memory layout of the resulting system.

Figure 39. Using QSPI for Secondary Image Storage

Note that the primary and secondary application image sizes are increased to benefit from the usage of the
QSPI.

There are four stages the system will go through by following the steps layout described in this section, which
is generally similar to the case of using internal flash.

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 30 of 45

Jan.09.26

Figure 40. Functional Stages

5.1 Configure the Bootloader to Use QSPI for Secondary Application Storage

Use the following steps to update the secondary storage area to QSPI.

1. Open the configuration.xml file from the bootloader project

ra_mcuboot_ra4m3_swap_enc_qspi.

2. Click on Add External Memory Implementation, select New to add the QSPI stack:

Figure 41. Choose QSPI from the Smart Configurator Stack Tab

3. Navigate to the Pins tab Peripherals group and select the QSPI0. First select _B only for the Pin Group

Selection, then select Quad as the Operation Mode. The correct Input/Output pins will be automatically

selected. We need to do this because the bootloader uses a minimal pin configuration rather than the pin

configuration for EK-RA4M3.

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 31 of 45

Jan.09.26

Figure 42. Configure the QSPI Pin and Operation Mode

4. Navigate to the Stacks tab, highlight the QSPI stack and update the Bus Timing Minimum QSSL Deselect

Cycles to 8 QSPICLK.

Figure 43. Update the QSPI Bus Timing Minimum QSSL Deselect Property

5. Click Generate Project Contents to apply the configuration changes.

6. When using QSPI, a much larger image is supported. Specifically, the image size can be up to twice as

large as when using the internal code flash to store the image. Refer to Table 4 for the MCUboot flash

map configuration when the secondary slot is allocated in external QSPI flash.

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 32 of 45

Jan.09.26

Table 4. Memory Partition Labels for MCUboot Internal and External Flash Maps

As mentioned in Section 3.1, the memory map is configured in the Memories tab of the Solution project,
which in this application is the solution_mcuboot_ra4m3_qspi project.

Follow the procedure described in section 3.1 and the definitions in Table 4 to complete the bootloader slot
configuration, with secondary slots located in external flash. The completed Memories configuration in
solution.xml for the solution_mcuboot_ra4m3_qspi project is shown in in Figure 44.

Note: Any modification made in the Solution project must be rebuilt to ensure that the changes are
propagated to all dependent projects.

Memory Partition Labels Internal Flash Map Definition of Memory Partition Labels

__BL_S
Scratch Area

Scratch area

FLASH_CM33_S

Trailer

Image 0 Primary Image

TLV

app_primary.encrypted

__BL_0_P_H Header Image 0 Primary Header

FLASH_CM33_B
MCUBoot

Bootloader area

Memory Partition Labels External Flash Map Definition of Memory Partition Labels

__BL_0_S_I

Trailer

Image 0 Secondary Image

TLV

app_secondary.encrypted

__BL_0_S_H Header Image 0 Secondary Header

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 33 of 45

Jan.09.26

Figure 44. Memory Partition for Primary and Secondary Image Storage with External Code Flash

7. Inside the ra_mcuboot_ra4m3_swap_enc_qspi, add these variable definitions to the beginning of

hal_entry.c:

 /* SREG pay-load size */

#define SREG_SIZE (0x03)

/* Status register pay-load */

#define STATUS_REG_PAYLOAD {0x01,0x40,0x00}

uint8_t data_sreg[SREG_SIZE] = STATUS_REG_PAYLOAD;

Figure 45. Add QSPI Variable Definition

8. Stay with hal_entry.c, add below code to the beginning of hal_entry() function and before the line

mcuboot_quick_setup();

fsp_err_t err = FSP_SUCCESS;

R_QSPI_Open(&g_qspi0_ctrl, &g_qspi0_cfg);

/* write enable for further operations */

err = R_QSPI_DirectWrite(&g_qspi0_ctrl, &(g_qspi0_cfg.write_enable_command), 1, false);

if(FSP_SUCCESS == err)

{

 err = R_QSPI_DirectWrite(&g_qspi0_ctrl, data_sreg, SREG_SIZE, false);

 if(FSP_SUCCESS != err)

 {

 while(1);

 }

}

Figure 46. Set up the QSPI

9. Within the bootloader smart configurator, click Generate Project Content and compile the bootloader

project.

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 34 of 45

Jan.09.26

5.2 Update the Primary Application Project to Support QSPI

1. Within the app_ra4m3_primary_enc_xmodem project, in smart configurator, click Downloader

Thread -> New Stack -> Storage -> QSPI, add the QSPI stack.

Figure 47. Add the QSPI Stack

2. Highlight the QSPI stack and update the Bus Timing, Minimum QSSL Deselect Cycles to 8

QSPCLK.

Figure 48. Add the QSPI Stack

3. Copy all the files listed in Table 5 below from qspi_source.zip and overwrite the existing files in

the following directory of the primary application project app_ra4m3_primary_enc_xmodem/src.

The updates related with supporting QSPI usage are explained in the Updates Performed column.

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 35 of 45

Jan.09.26

Table 5. Source File Updates Moving from Internal Flash to QSPI for Secondary Image Storage

Files to overwrite Updates Performed

downloader_thread_entry.c Remove code flash initialization and add QSPI initialization

menu.c Prior to image download over USB PCDC, the flash area needs to
be erased. The update performed is to switch from erasing the code
flash to erasing the QSPI.

xmodem.c xmodem.c handles downloading the new image and writing to the

secondary application storage area. The updates to this file are to
change from writing to internal flash to writing to QSPI.

header.h The header.h file has definitions on the start and end location of

the primary and secondary slot. The update to this file is to change
the secondary application starting address as well as the size of the
primary and secondary application based on the new bootloader
image size configuration and the QSPI address.

10. Copy the highlighted files shown in Figure 49 from qspi_source.zip to the \src folder for the

primary project. These are files supporting QSPI operations.

Figure 49. QSPI related Source Files

4. Save all files. Navigate to the smart configurator in app_ra4m3_primary_enc_xmodem project, click

Generate Project Content and compile the Primary application.

11. Perform the same update steps from step 1 to 5 for the secondary application project. Except for

step 4, we need to copy over all the files from \qspi_source folder to \src folder of the secondary

application.

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 36 of 45

Jan.09.26

5. Update the Debug Configuration of the primary application. Right click on
app_ra4m3_primary_enc_xmodem, select Debug As > Debug Configurations. Navigate to the

Startup window and update the primary image download Offset to the address of the secondary slot

0x60000000.

Figure 50. Configure the Debug Configuration

6. Click Debug and resume the execution twice to boot the primary application. The three LEDs should

be blinking.

7. Follow section 3.3.6 to download the secondary signed encrypted image and exercise the secondary

application.

Note that a solution to this section is provided with this application project as
MCUboot_Encryption_QSPI_Solution.zip for user’s reference.

6. Using Custom Signing Key and Encryption Key

In this section, you will generate two sets of ECDSA SECP256R1 keys using the imgtool.py tool included

with MCUboot. One set will be used for image signing support, the other pair will be used for image encryption
support.

Users can also use other key generation methods to generate the keys, for example OpenSSL. OpenSSL
encodes its keys in SEC1 format, while MCUboot uses PKCS#8. So, if the customer uses OpenSSL, a
conversion needs to take place.

The MCUboot Example Keys stack provides the example keys used in the image signing/verifying and image
encryption/decryption process. The custom keys generated in this section replace these example keys.

These are the two example key structures in the bootloader project
\ra_mcuboot_ra4m3_swap_enc_qspi\ra\mcu-tools\MCUboot\sim\mcuboot-sys\csupport

\keys.c file.

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 37 of 45

Jan.09.26

The root_pub_der array is the public key for image verification.

Figure 51. Public Key used for Image Verification

The enc_key array is the private key used in the image decryption process.

Figure 52. Private Key used for Image Decryption

The matching private key for the public key root_pub_der is root-ec-p256.pem. We will generate a custom

private key ecc_sign_private.pem to replace the usage of root-ec-p256.pem which is used in the

image signing process. The matching public key for the private key enc_key is enc-ec256-pub.pem. For

custom encryption support, we will generate a custom public key ecc_enc_public.pem to replace enc-

ec256-pub.pem which is used in the image encryption process.

Figure 53. Image Signing Private Key and ECDSA SECP256R1 Public Key used in Image Encryption

Process

▪ This is not the image encryption key but the key
material used in the image encryption process.

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 38 of 45

Jan.09.26

Use the following steps to create and replace example keys generated by the MCUboot stack:

1. In the bootloader project, copy keys.c from the MCUboot folder to the \src folder of the bootloader

project.

Figure 54. Copy the Example keys.c

2. Open the configurator for ra_mcuboot_ra4m3_swap_enc_qspi, right click on MCUboot Example

Keys and select Delete.

Figure 55. Delete the MCUboot Example Keys Stack

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 39 of 45

Jan.09.26

3. Extend ra_mcuboot_ra4m3_swap_enc_qspi, right click on folder \scripts. Select Command

Prompt from this folder.

Figure 56. Start Command Prompt under the \MCUboot\scripts Folder

4. Under the command window, execute command:

python imgtool.py keygen -k ecc_sign_private.pem -t ecdsa-p256

5. Copy the generated ecc_sign_private.pem to folder \ra_mcuboot_ra4m3_swap_enc_qspi\src

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 40 of 45

Jan.09.26

6. Extract the public key from ecc_sign_private.pem to use in the bootloader project.

Execute command:

python imgtool.py getpub -k ecc_sign_private.pem

Figure 57. Generate ECDSA Public Key

7. Copy the generated content of ecdsa_pub_key from Figure 57 to array root_pub_der in

\src\keys.c. Replace the original root_pub_der content.

Figure 58. Replace ECDSA Public Key

8. Execute the following command to generate the ecc private key to be used in the application image

encryption process:

python imgtool.py keygen -k ecc_enc_private.pem -t ecdsa-p256

9. Copy the generated ecc_enc_private.pem to folder

\ra_mcuboot_ra4m3_swap_enc_qspi\src.

10. Extract the private key to include in the bootloader.

Execute command: python imgtool.py getpriv --minimal -k ecc_enc_private.pem.

Remove superfluous fields from the ASN1 by passing it --minimal.

Figure 59. Generate the Private Key used for Image Encryption

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 41 of 45

Jan.09.26

11. Copy the content of enc_priv_key array generated in Figure 59 to the array enc_key in

\src\keys.c. Replace the original enc_key array content.

Figure 60. Replace the Private Key used for Image Encryption

12. We will derive the encryption public key in PEM format from the encryption private key using imgtool.

Execute the following command:

python imgtool.py getpub -k ecc_enc_private.pem -e pem > ecc_enc_public.pem

Figure 61. Generate the Public Key using the Private Key

The ecc_enc_public.pem file created under /ra_mcuboot_ra4m3_swap_enc_qspi/ra/mcu-
tools/MCUboot/scripts.

13. Copy the generated ecc_enc_public.pem to the folder

\ra_mcuboot_ra4m3_swap_enc_qspi\src.

14. Click Generate Project Content and compile the bootloader project.

15. Update the signing key configuration of the primary application project.

Figure 62. Configure the Application Project to use the Custom Image Signing

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 42 of 45

Jan.09.26

16. Update the encryption key configuration of the primary application project.

Figure 63. Configure the Application Project to use the Custom Key for the Image Encryption

Process

17. For the primary application project, navigate to the smart configurator, click Generate Project Content

and recompile the application.

18. Repeat steps 15, 16 and 17 for the app_ra4m3_secondary_enc_xmodem application project.

19. Follow steps in section 3.3.1 to erase the flash.

20. Start the Debug session from the primary application project, resume twice to boot the primary application.

The three LEDs should be blinking.

User can now use the XModem to download and verify the operation for the secondary application image.

7. Appendix

7.1 Making the Bootloader for Cortex®-M33 Immutable

To make the bootloader immutable, the flash blocks containing the bootloader must be locked from being
programmed and erased.

The RA4M3 features two sets of registers which facilitate flash block locking. Block Protect Setting (BPS)
registers feature bits that map to individual flash blocks. When a bit is set to zero, the corresponding flash
block cannot be erased or programmed. The Permanent Block Protect Setting (PBPS) Registers have a
similar bit mapping to flash blocks. When a bit is set in one of these registers, the corresponding flash block
is permanently locked from being erased and programmed so long as the same bit in the Block Protect
Setting Register is also cleared to zero. This process is irreversible. Once a flash block is permanently
locked, it cannot be unlocked again.

Based on the example bootloaders provided in this application project, the flash blocks used by the
bootloader are:

• RA4M3 Overwrite Mode: block 0-7

• RA4M3 Swap Mode: block 0-8

Users can refer to the RA Family MCU Securing Data at Rest using TrustZone Application Project to
understand the operational flow of setting up the Flash Block Protection.

Note that ticking the BPS0 and PBPS0 Flash Block settings will permanently lock the flash blocks. This
CANNOT be reversed. Further details can be found in sections 6.2.5 and 6.2.6 of the RA4M3 Hardware
User’s Manual.

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 43 of 45

Jan.09.26

7.2 Device Lifecycle Management for Renesas RA Cortex®-M33 MCUs

Once the bootloader development is finished, the user may want to transition the Device Lifecycle State of the
RA Cortex®-M33 MCU to lock down the debugger and the serial programming interface.

We recommend referring to the Device Lifecycle State Transitions in the Production Flow section in the
Renesas RA Family MCU Device Lifecycle Management Key Installation Application Note to understand the
device lifecycle management options during production.

The operational overview of how to use Renesas Flash Programmer to perform these transitions is explained
in the Overview of Device Lifecycle State Transitions using Renesas Flash Programmer section.

8. References

1. Renesas RA Family MCU Securing Data at Rest using Security MPU Application Project

2. Renesas RA Family MCU Securing Data at Rest using Arm TrustZone Application Project

3. Renesas RA Family MCU Device Lifecycle Management Key Installation Application Note

4. Renesas RA Family MCU Security Design with TrustZone – IP Protection

https://www.renesas.com/document/apn/securing-data-rest-utilizing-renesas-security-mpu?language=en&r=1168086
https://www.renesas.com/document/apn/securing-data-rest-utilizing-renesas-security-mpu?language=en&r=1168086
https://www.renesas.com/document/apn/renesas-ra-securing-data-rest-using-arm-trustzone?language=en&r=1353811
https://www.renesas.com/document/apn/renesas-ra-family-device-lifecycle-management-key-installation?language=en&r=1353811
https://www.renesas.com/document/apn/renesas-ra-family-device-lifecycle-management-key-installation?language=en&r=1353811
https://www.renesas.com/document/apn/renesas-ra-securing-data-rest-using-arm-trustzone?language=en&r=1353811
https://www.renesas.com/document/apn/renesas-ra-securing-data-rest-using-arm-trustzone?language=en&r=1353811

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 44 of 45

Jan.09.26

9. Website and Support

Visit the following URLs to learn about the RA family of microcontrollers, download tools and documentation,
and get support.

EK-RA4M3 Resources renesas.com/ra/ek-ra4m3

RA Product Information renesas.com/ra

Flexible Software Package (FSP) renesas.com/ra/fsp

RA Product Support Forum renesas.com/ra/forum

Renesas Support renesas.com/support

https://www.renesas.com/ra/ek-ra4m3
https://www.renesas.com/ra
http://www.renesas.com/fsp
https://www.renesas.com/ra/forum
https://www.renesas.com/support

Renesas RA Family Booting Encrypted Image on RA4 using MCUboot and QSPI

R11AN0868EU0110 Rev.1.10 Page 45 of 45

Jan.09.26

Revision History

Rev. Date

Description

Page Summary

1.00 Apr.03.24 - First release document

1.10 Jan.09.26 - Update to FSPv6.2.0

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external

reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states

of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power

reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity

of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in

terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic

values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a

system-evaluation test for the given product.

© 2025 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of

your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from

the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in

this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,

manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims

any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse

engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas

Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas

Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics

hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but

not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS

ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING

RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,

HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY

AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE

EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED,

WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT

LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc.

Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products

outside of such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high

reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas

Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the

possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics

products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention,

appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very

difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

 subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. MCUboot Functionalities Overview
	1.1 Validate Application Before Booting and Updating
	1.1.1 Encrypted Applications Update

	2. Architecting an Application with MCUboot Module using FSP
	2.1 MCU Memory Configuration using MCUboot Module with FSP
	2.2 Application Image Format for Encrypted Image
	2.3 Designing Bootloader and the Initial Primary Application Overview
	2.4 General Guidelines using the MCUboot Module Across RA Family MCUs
	2.5 Customize the Bootloader
	2.6 Production Support
	2.6.1 Key Provisioning
	2.6.2 Make the bootloader immutable for enhanced security
	2.6.3 Advance the device lifecycle states prior to the deploy the product to the field

	3. Running the Initial Example Projects
	3.1 Memory Partition using the Solution Project
	3.2 Set Up the Python Image Signing Environment
	3.3 Running the Initial Example Projects
	3.3.1 Set Up the Hardware
	1.1.1
	3.3.2 Import the Projects
	1.1.1
	3.3.3 Configure the Python Signing Environment
	3.3.4 Compile all the projects
	3.3.5 Debug the Applications
	3.3.6 Downloading and Running the Secondary Application

	4. Add Encryption to the Initial Example Project
	4.1 Configure the Bootloader for Encryption Support
	4.2 Configure the Application Project for Encryption Support

	5. Use QSPI as Secondary Storage Area
	5.1 Configure the Bootloader to Use QSPI for Secondary Application Storage
	5.2 Update the Primary Application Project to Support QSPI

	6. Using Custom Signing Key and Encryption Key
	7. Appendix
	7.1 Making the Bootloader for Cortex®-M33 Immutable
	7.2 Device Lifecycle Management for Renesas RA Cortex®-M33 MCUs

	8. References
	9. Website and Support
	Revision History

