LENESAS Application Note

Capacitive Sensor MCU

Capacitive Touch Software Filter Sample Program

Introduction

This application note describes software filters in for capacitive touch systems.

Target Device
RA2L1 Group (R7FA2L1AB2DFP)
RX130 Group (R5F51305ADFN)
RL78/G16 Group (R5F121BCAFP)

Contents

L O 1YY 4 11 TR 4
1.1 Operation Confirmation CONAItIONSccooiiiiiiiii e e e e e e aae s 4
1.2 Correspondence Between Sample Code and Application Note ..., 5
2. Software SPECIfiCAtIONSccoiiiiiii e 6
2.1 Software Configuration DIagramc..eeiiiiiii e e e sb e e s b e e e s raaeeeeaaes 6
2.2 SOfWAIE FIEI TYPES. ... ettt e e ettt e e e e e e et e e e e e e e e s st b b aeeeaeeeesaarasreeeeaeseaansrnnees 8
D T 11T 1 (U o1 (1= R 8
2.3.1 APPLICAtION DAt ... ——————— 9
D Y o] o[o7 1o o 1 PRSI 9
2.4 Size and EXECULION TIME....cooi et e e e e e e e e e e e e e e s anbbraeeeeaeeeaanneneeeas 10
o T o VA I I] o T« J SRR 10
A £ G 1 10 I €1 (010 o T SO TOUPOTRR 10
A B S 4 7 € Ty I T T o LSS 10
B T e 1 1 1= 11
3.1 SPECITICALIONS ...ttt an 11
B T Ry B B T (= Tox (1] I I LY - PRSP 12
3.1.2 Filter Stabilization TimMe ...ttt et e e e e e e et e e e e e e e e e nnneeeeaaae s 13
3.2 Filter SPECIfICALIONSeeeiiiieiie ettt ettt e e sttt e e e st b e e e sbb e e e e anreeeeaneeeeeaae 14
3.2.1 Filter Coefficient USage NOLES........ooo ittt e e e ettt e e e e e e e e eeeeeaeeeas 14
3.3 List 0f Data fOr FIR FIlEEIS ...ccoeeeiiieieee ettt ettt e e e e e e e e e e e e st e e e e e e e e sennnanneaaeeean 15
TR I 0 o 1= = | £ USSR 15
B TR 1 [(U= SRR 15
3.3.2.1 FIR Filter Configuration Definition (fir_config 1)cccooiiii e 15
3.3.2.2 FIR filter management data (fir_Ctrl_t)ooiiiiii i 15
K 1 11 T o] PSSRSO 16
K oy B o1 <O 1 o 11 (- | PSPPSR 16
3 O o1 = 8T o 11T 17
3.5 USAQE EXAMPIE ..o s 19
S T I {1 (=T O F= = T =Y £ Ao SR 19
R30AN0427EJ0400 Rev.4.00 Page 1 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

S || 11 (T £ ST P PP P PP PPPPUPPTRPPIN 20
g S T 0T Yox 1Tz o o - PSR 20
411 DeteCtion DEIAYcccceeeeeeeeeee 22
S A 11 =Y g = o 4= 11T T I = S 22
A 11 (=Y S o =Tod1 i 03 11T LRt 23
4.2.1 Filter Processing MeThOU..........oiiiiiiiiii e 23
4.2.2 Usage Notes on Filter COEfICIENTSciiiiiiiiiiiece e e e e e 24
4.3 List Of Data fOr IIR FIlLErSeeiiiiieieeee ettt e e e e e e e e e e e e e e e e ennneeeeeeeeeeaaannes 25
T Tt B ©7o 3) -1 o (= PRSP 25
R T 1 {1 o7 11] =Y PSS 25
4.3.2.1 IR Filter Configuration Definition (iir_config t)ooooiiiiiiiii e 25
4.3.2.2 IR Filter Management Data (iir_Ctrl_t)ceooiiiiiii e 25
N 1 1 =Y Y o LTS P TP SRR 26
o o o7 =W I 1 11 - | PR PPR 26
A e <1V 1T ol 11 (= SO O OO RUPRRRRROY 27
4.5 USAQGE EXAMPIE ...t e e e e e e e e e e e e nbee e e e anes 29
S Tt B 11 Y @ P= T = o 1=y o= USSR 29
5. SiNGIE-POIE IIR FiIEEIS ...ttt 30
ST I ST o =T 1071 (o) 1 PP UPRPPPPRR 30
5,11 DeteCHON DEIAYueeeiiiiiiii s 31
5.1.2 Filter Stabilization TimME ... e e e e e e e e e e e e e s e e e e e e e e e nnnnreeeeeeee s 32
5.2 Filter SPECIfICALIONSveieiiiiii et e e e e e e e e e e e e e e e et e e e e e e e e e e e anrraraaaaaaan 33
5.2.1 Filter Processing MeEthOd.oiiiiiiiiii ettt sttt e e e e rate e e e s naeeeeaans 33
5.2.2 Usage Notes on Filter CoeffiCIENtS..........euiiiiii e 33
5.3 List of Data for Single-pole IR Filters.........c.uiiiiiiii e 34
TR I I 70 o 1< = | £ TSR PPRR 34
TR S 1 [[~ SRR 34
5.3.2.1 Single-pole IIR Filter Configuration Definition (spiir_config_t) ..o, 34
5.3.2.2 Single-pole IIR Filter Management Data (Spiir_Ctrl_t)ccooiiiiiiiiiiii e 34
5.4 Singel-pole IR FIlter AP ettt e e e e et e e e e e e e s et e e e e e e e e e e nnneeeeaaaeeas 35
5.4.1 1_CESU_SPIIr_INITIAL......eeeeee ettt et e e e e e aneeeeeaae 35
B.4.2 1 ClSU_SPIIT_fIEI oot an 36
5.5 USAGE EXAMPIEo e e e e e e 38
ST T I w11 (=T O P= = T3 L= S o PP PRR 38
T \V 1= Yo [=T o T 11 1= OSSR 39
6.1 SPECIICALIONS ...ttt e ettt e e ettt e e e sttt e e e et be e e e e bbe e e e abte e e e aneeeeeaan 39
S0t O I 1Y (Yo (o g I 1Y = USSR 40
6.1.2 Filter Stabilization TimME ..o e e e e e e e e e e e e s s st eeeeeeaeeesennsanneeaaeeas 41
6.2 Filter SPECIfICAtIONSuuuiiiiiiiiit s 42
6.2.1 Filter Processing MEthOd............oooiiiiiiii e e e 42
6.3 List of Data for Median Filters ... e e e e e e e e 43
TR I O o 1= = | £ SRR 43
B.3.2 SHIUCIUIES ...ceeiiiiee ittt ettt e e et e oottt et e e e e e e st e e et e eee e e e e nneeeeeaeeeeeaannbeeeeeaaeeaaannnsneeaaaaean 43
6.3.2.1 Median Filter Management Data (median_Ctrl_t)...........coiiiiiiiii e 43
6.4 Median Filter AP ...ttt ettt e ettt e ettt e eaee e e ae e e eaeeeante e e neeeanteeeaneeeanneeeneeeanneean 44
R30AN0427EJ0400 Rev.4.00 Page 2 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

6.4.1 r_ctsu_median_iNitial..............uuunmemm s 44
I S o1 0 [4 =Y [= o T 11 (= SRR 45
B.4.1 CISU_INSEIT SOeeiiiiieiiii s 47
6.5 USAQGE EXAMPIE ... bbb e e s e e abaeeeean 48
6.5.1 Filter CharaCteriStiCScoiueiiiiiiiii ettt e et e e et e e e sttt e e e s enteeeesanteeeesanreeeeanns 48
7. How to Use the Sample Project/Sample Code........ccoiii i 49
7.1 How to Use the SamPIe ProOjJECTcooiiiieeiee e e e e e e e e e aaeean 49
4% T RS - T o] [AN o o [=Y o) o SRR 49
% B ¥ 1o (o] o T TP PP TSP PPPRP 50
400 T T 11 TR 4 0T (U = SRR 51
AR Tt B ¥V Iy 1 o TN | o USSP 51
RS T =¥ G 1S 10 I €T o TU o T PRSPPI 52
7.1.3.3 RL78/GT0 GrOUPuveieeeiuiiiieeiieieeeeieteeeatteeeestteeeestteeeesteeeeeaseeeeeabseeasssaeeeeaasseeesssbeaeeansseeesansseeesanns 53
7.1.4 How to Import the Sample Programt e e 54
7.2 How to Use the Filter SAmple Codeuuuiiiiiiiii et e e e e 55
7.2.1 Procedure for Integration into an Existing Project............coo e 55
7.2.2 Sample Application Configuration and Operationccoccciiiiiiii i 58
7.2.3 How to Adjust Filter CharacteriStiCscoiiiiiiiiiii e 60
7.2.3.1 Fixed Point Decimal DEfiNItIONcoiiiiiiii e et e et e e e st e e e sneeeeeenes 60
A B o | 11 =Y ST PPRRSPPRR 60
A T T 1 11 1= = S U PRSPPI 61
7.2.3.4 Cascaded IIR Filter Configurationoooi i 61
7.2.3.5 SiNGIE-POIE IIR FIEI ..cccciiieeee et e e e e e e e e e e et e e e e e e e e s e anrreneeaaeeas 62
A G T\ =T L= o 11 (=SSR 62
LTS 10 o o o] i Te T Lo o104 =T o) = (o] o 1S 63
(Y] o] g T o 1] (o] YT 64
R30AN0427EJ0400 Rev.4.00 Page 3 of 64

Capacitive Sensor MCU

Capacitive Touch Software Filter Sample Program

1. Overview

This application note describes the operations of the software filter sample program and the steps required

for embedding it into an existing project.

For more details on software filters, refer to Capacitive Sensor MCU Capaciive Touch Noise Immunity

Guide (R30AN0426).

1.1 Operation Confirmation Conditions

Table 1-1 to Table 1-3 list the operation confirmation conditions of the sample program in this application

note.

Table 1-1 Operation Confirmation Conditions (RA2L1 Group)

Item

Description

Microcontroller used

RA2L1 (R7FA2L1AB2DFP)

Operating frequency High-speed on-chip oscillator 48MHz
Operating voltage 5V
Board Capacitive Touch Evaluation System with RA2L1

(Model: RTKOEG0022S01001BJ)
¢ RA2L1 CPU (Model: RTKOEG0018C01001BJ)
e Self-Capacitance Touch Button/Wheel/Slider Board
(Model: RTKOEG0019B01002BJ)

Integrated development environment

e? studio Version 2024-04 (24.4.0)

C compiler

GCC Arm Embedded 13.2.1.arm-13-7

FSP

V5.3.0

Development Assistance Tool for Capacitive
Touch Sensors

QE for Capacitive Touch V3.3.0

Emulator

Renesas E2 emulator Lite

Table 1-2 Operation Confirmation Conditions (RX130 Group)

Item Description

Microcontroller used RX130 (R5F51305ADFN)

Operating frequency High-speed on-chip oscillator 32MHz

Operating voltage 5V

Board Capacitive Touch Evaluation System with RX130

(Model: RTKOEG0003S02001BJ)
¢ RX130 CPU Board (Model: RTKOEG0004C01002BJ)
¢ Self-Capacitance Touch Button/Wheel/Slider Board

(Model: RTKOEG0007B01002BJ)

Integrated development environment

e? studio Version 2024-04 (24.4.0)

C compiler

Renesas CC-RX V3.06.00

Development Assistance Tool for Capacitive
Touch Sensors

QE for Capacitive Touch V3.3.0

Emulator

Renesas E2 emulator Lite

R30AN0427EJ0400 Rev.4.00
Jun.30.24

Page 4 of 64
RRENESAS

https://www.renesas.com/us/en/document/apn/capacitive-sensor-mcu-capacitive-touch-noise-immunity-guide
https://www.renesas.com/us/en/document/apn/capacitive-sensor-mcu-capacitive-touch-noise-immunity-guide

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

Table 1-3 Operation Confirmation Conditions (RL78/G16 Group)

Item Description

Microcontroller used RL78/G16 (R7TF100GSN2DFB)

Operating frequency High-speed on-chip oscillator 32MHz

Operating voltage 5v

Board Capacitive Touch Evaluation System with RL78/G16

(Model: RTKOEG0047S01001BJ)
¢ RL78/G16 CPU Board
(Model: RTKOEG0046C01001BJ)
o Self-Capacitance Touch Button/Wheel/Slider Board
(Model: RTKOEG0019B01002BJ)

Integrated development environment e? studio Version 2024-04 (24.4.0)
C compiler Renesas CC-RL V1.13.00

Development Assistance Tool for Capacitive QE for Capacitive Touch V3.3.0
Touch Sensors

Emulator Renesas E2 emulator Lite

Figure 1-1 shows the device connection diagram.

Power: USB

e? studio Debug IF

(QE for Capacitive Touch) RTKOEG0018C01001BJ
RTKOEG0004C01002BJ ~ RTKOEG0019B01002BJ

RTKOEG0046C01001BJ ~ RTKOEG0007B01002BJ

Figure 1-1 Device Connection Diagram

1.2 Correspondence Between Sample Code and Application Note

Please review sections 2.1 Software Configuration Diagram and 2.3 File Structure before using this
sample project.

Also review 7.2 How to Use the Filter Sample Code for details on how to embed the filter module into an
existing capacitive touch project and 7.1 How to Use the Sample Project for more details on how to use the
sample project.

Filter specifications and parameter setting methods are described in 2 Software Specifications, 3 FIR
Filters, 4 IIR Filters, 5 Single-pole IIR Filters, 6 Median Filters, and 7.2.3 How to Adjust Filter
Characteristics

R30AN0427EJ0400 Rev.4.00 Page 5 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

2. Software Specifications

This sample program operates as a software filter by applying a filter API to the data acquired by Touch API
and CTSU API. The software filters used in the program are managed by the filter API to be executed and
the filter configuration definition data. The filter configuration described in the sample program consists of an
FIR filter, IR filter, and single-pole IR filter, and Median filter.

The sample program example used in this document uses 1 button and touch detection using 5 types of
filters. As an example of how to use the sample program, we provide a sample project that uses one button
and performs touch detection applying five types of filters.

2.1 Software Configuration Diagram
Figure 2-1 shows the flow of data processing for this sample program.

Applies a software filter to the measurement data acquired by CTSU Driver (R_CTSU_DataGet()). To use
the filtered measurement data with TOUCH Middleware, use the CTSU Driver (R_CTSU_Datalnsert()) to
replace the measurement data with the filtered measurement data. Use the filtered measurement data to
perform touch judgment with TOUCH Middleware (RM_TOUCH_DataGet()).

Touch Middleware

Measurement _ Compare Chattering Touch
RAW DATA
- DATA Threshold I Remove I Detection

RM_TOUCH_DataGet()

Filter API

/Filter Sample Program®

FIR Filter

R_CTSU_Datalnsert()

IIR Filter

Single Pole
IIR Filter

Median
Filter el : Data flow

\ f — : Program flow

Figure 2-1 Data Processing Flow of Sample Program

R30AN0427EJ0400 Rev.4.00 Page 6 of 64

Capacitive Sensor MCU

Capacitive Touch Software Filter Sample Program

Table 2-1 to Table 2-3 list the components and version for each device group. Refer to FSP Configuration

for component settings.
Table 2-1 List of Components (RA2L)

Component Version
Board Support Packages Common Files v5.3.0
I/O Port v5.3.0

Arm CMSIS Version 5 — Core(M)

v5.9.0+renesas.1.fsp.5.3.0

RA2L1-RSSK Board Support Files

v5.3.0

Board support package for R7TFA2L1AB2DFP v5.3.0
Board support package for RA2L1 v5.3.0
Board support package for RA2L1 — FSP Data v5.3.0
Asynchronous General Purpose Timer v5.3.0
Capacitive Touch Sensing Unit v5.3.0
Touch v5.3.0
Table 2-2 List of Components (RX130)
Component Version
Board Support Packages v7.42
CMT driver v5.60
CTSU QE API v2.20
Touch QE API v2.20
Table 2-3 List of Components (RL78/G16)
Component Version
Board Support Packages v1.62
Capacitive Touch Sensing Unit driver v1.40
Touch middleware v1.40
UART communication v1.6.0
Interval timer v1.4.0

R30AN0427EJ0400 Rev.4.00

Page 7 of 64

Capacitive Sensor MCU

Capacitive Touch Software Filter Sample Program

2.2 Software Filter Types

Table 2-4 lists the types of filters used in the sample program as well as usage examples.

Table 2-4 Filter Types

Filter Type Usage Example Expected Noise

FIR filter FIR moving-average filter White noise, high-frequency
noise, humming noise (50Hz)

lIR filter [IR notch filter Humming noise (60Hz)

IIR low-pass filter

Humming noise (60Hz)

Single-pole IIR filter

Single-pole IR low-pass filter

Median filter

Median filter

2.3 File Structure

The following tree shows the file structure for the sample code.

an-r01an0427jj0400-capacitive-touch

—filter_sample

| —fir

| | fir_config_sample1.c
| | r_ctsu_fir_sample.c

| | r_ctsu_fir_sample.h

| | iir_config_sample1.c
| | r_ctsu_iir_sample.c
| | r_ctsu_iir_sample.h

| F—spiir

| | spiir_config_samplel.c - -
| | r_ctsu_spiir_sample.c

| | r_ctsu_spiir_sample.h

| L—median

| median_config_sample1.c
| r_ctsu_median_sample.c

| r_ctsu_median_sample.h

F—ra2l1_filter_sample
F—rx130_filter_sample

L—rl78g16_filter_sample

+ - FIR Filter Sample Module Storage Folder

- + FIR Moving-average Filter Configuration Definition Sample Source

+ - FIR Filter Sample Program Source

+ + FIR Filter Sample Program Source Header

+ = lIR Filter Sample Module Storage Folder

=+ IR Notch/Low-pass Filter Configuration Definition Sample Source

+ - lIR Filter Sample Program Source

+ - lIR Filter Sample Program Source Header

+ = Single-pole IIR Filter Sample Module Storage Folder

- Single-pole IIR low-pass Filter Configuration Definition Sample Source
+ -+ Single-pole IR Filter Sample Program Source

-+ Single-pole IR Filter Sample Program Source Header

+ = Median Filter Sample Module Storage Folder

+ + Median Filter Configuration Definition Sample Source
* Median Filter Sample Program Source

* Median Filter Sample Program Source Header

- RA2L1 Sample Project
* RX130 Sample Project
- RL78/G16 Sample Project

R30AN0427EJ0400 Rev.4.00
Jun.30.24

RRENESAS

Page 8 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

2.3.1 Application Data
This section describes the constants and global variables that are used in the sample project application.

Table 2-5 Sample Application Constants

Constant name | Value | Description
File name: ge_touch_sample.c
TOUCH_SCAN_CYCLE | ((20 * 1000) / 100) | Touch measurement cycle (20ms/100us)

Table 2-6 Sample Application Global Variables

Variable name | Type | Description

File name: ge_touch_sample.c

touch_cycle_count uint16_t Touch measurement cycle counter
touch_cycle flag volatile uint8_t Touch measurement cycle elapse flag

2.3.2 Application API
Table 2-7 shows the application APIs implemented in the sample project.

Table 2-7 Application API

Function name | Process description
File name: qe_touch_sample.c
ge_touch_main main processing
timerQ_callback AGT interrupt callback
(RA2L1 group)
r_timer_callback Timer interrupt callback
(RX130 group, RL78/G16 group9

R30AN0427EJ0400 Rev.4.00 Page 9 of 64

Capacitive Sensor MCU

Capacitive Touch Software Filter Sample Program

2.4 Size and Execution Time

2.4.1 RA2L1 Group

Table 2-8 shows the data sizes for the filtering process and execution times of each filter API for the sample
program (five touch interface configurations: Button x 1 with shielded pins).

Table 2-8 Filter Processing Data Size, Differences and Execution Time (RA2L1)

Conditions Memory Size [Bytes] Execution Time [us]
text data bss

Before adding filters 13648 16 3280

FIR filters +396 +0 +24 6.60

lIR filters +252 +0 +16 3.59

Single-pole IIR filters +220 +0 +8 1.88

Median filters +224 +0 +16 2.1

24.2 RX130 Group

Table 2-9 shows the data sizes for the filtering process and execution times of each filter API for the sample
program (five touch interface configurations: Button x 1).

Table 2-9 Filter Processing Data Size, Differences and Execution Time (RX130)

Conditions Memory Size [Bytes] Execution Time [us]
RAMDATA | ROMDATA | PROGRAM

Before adding filters 4750 2684 9984

FIR filters +20 +18 +267 5.52

lIR filters +10 +12 +221 4.09

Single-pole IIR filters +4 +6 +179 1.03

Median filters +10 +0 +238 4.63

24.3 RL78/G16 Group

Table 2-10 shows the data sizes for the filtering process and execution times of each filter API for the sample
program (five touch interface configurations: Button x 1).

Table 2-10 Filter Processing Data Size, Differences and Execution Time (RL78/G16)

Conditions Memory Size [Bytes] Execution Time [us]
RAMDATA | ROMDATA | PROGRAM

Before adding filters 1338 1318 12201

FIR filters +20 +14 +461 54.33

IR filters +10 +12 +486 53.46

Single-pole IIR filters +0 +6 +300 17.84

Median filters +10 +0 +361 18.96

R30AN0427EJ0400 Rev.4.00
Jun.30.24

RRENESAS

Page 10 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

3. FIR Filters
FIR (Finite Impulse Response) filters are regularly used to reduce random and periodic noise.

For more information, refer to “Capacitive Sensor MCU Capacitive Touch Noise Immunity Guide

(R30AN0426).

3.1 Specifications

FIR filters sample input values, output the results of the multiply-and-accumulate operation on the sampled
data and defined coefficients, and can handle different filter characteristics, such as low-pass filters and
band-pass filters, depending on the defined coefficient.

In this sample program, the FIR filter is treated as a moving average filter.

18000

17500 W\A/\

17000

——input

16500

16000

15500

15000
1 11 21 31 41 51 61 71 81 91 101

J L

FIR filter
(moving average
filter)

J L

18000

FIR moving average filter

17500

17000

16500

16000

15500

15000
1 11 21 31 41 51 61 71 81 91 101

Figure 3-1 FIR Filter Operation (moving-average filter)

R30AN0427EJ0400 Rev.4.00 Page 11 of 64

https://www.renesas.com/us/en/document/apn/capacitive-sensor-mcu-capacitive-touch-noise-immunity-guide
https://www.renesas.com/us/en/document/apn/capacitive-sensor-mcu-capacitive-touch-noise-immunity-guide

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

The FIR filter block diagram for the following FIR filter calculation is shown in Figure 3-2.

M-1

y) =) h(m) + x(n—m)
m=0

In the equation, M indicates the number of filter taps, n indicates the sample index, h(m) indicates the
coefficient, x(n — m) indicates the input data of the m sample delay, and y(n) indicates the output data.

x(n) x(n-1) - - - x(n-M-1)

h(0) h(1) h(M-2) h(M-1)

C y(n)

Figure 3-2 FIR Filter Block Diagram

3.1.1 Detection Delay

The FIR filter calculates the filter result from the sampled touch measurement values to remove noise
signals, which causes a delay in normal touch detection.

18000

—a—input

—e— F|R moving average filter

17500

17000

threthold:

16500

16000

15500

15000

Figure 3-3 Detection Delay (FIR moving-average filter)

R30AN0427EJ0400 Rev.4.00 Page 12 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

3.1.2 Filter Stabilization Time

After initialization, the FIR filter outputs calculation results that are lower than the input data until the filter

processing is performed the number of times of sampled data.

If the filter processing result is used during this period for touch detection, the reference value for touch
detection may be set lower than the original reference value, causing a continuous touch-ON state.

Therefore, the filter calculation result during this period should be discarded (instead of calling

RM_TOUCH_DataGet(), call RM_TOUCH_ScanStart() to start the next measurement).

18000

16000

14000
12000
10000
—e—input
8000
6000

4000 Stabilization Time

2000

0 10 20 30 40 50 60

—e— FIR moving average

70

Figure 3-4 Filter Stabilization Time (FIR moving-average filter)

R30AN0427EJ0400 Rev.4.00

Page 13 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

3.2 Filter Specifications
Table 3-1 lists the specifications of the FIR filters used in the sample program.

Table 3-1 FIR Filter Specifications

Item Specification Remarks
Input data type Unsigned 16-bit integer type
Output data type Unsigned 16-bit integer type
Coefficient data type Signed 16-bit integer type Fixed point with 14-bit decimal
Number of taps 1<M =9
Output results until filter Returns operation results Filter stabilization time = number of
stabilization time during filter stabilization taps
time and buffer unfilled
response

Note: Coefficient: A set of constants to be applied to the constant multipliers that make up FIR filters.
Number of taps: Number of elements in the coefficient.

3.2.1 Filter Coefficient Usage Notes
FIR filter coefficient data must be defined within a value range of -1.0 to 1.0.

FIR filters must be defined so that the sum of the coefficient data is within a value range of -2.0 to 2.0.

R30AN0427EJ0400 Rev.4.00 Page 14 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

3.3 List of Data for FIR Filters

This section explains the constants and global variables provided for FIR filters.

3.3.1 Constants
Table 3-2 shows a list of constants for FIR filters.

Table 3-2 Constants for FIR Filters

Constant name | Setting value Description

File name: r_ctsu_fir_sample.h

FIR_TAP_SIZE_MAX 9 Maximum number of taps

FIR_DATA SIZE 1 Data size to be filtered

File name: r_ctsu_fir_sample.c

FIR_TAP_SIZE_MIN 2 Minimum number of taps
FIR_CFG_DECIMAL_POINT 14 Number of fixed-point digits
MAX_FIR_COEFFICIENT_SUM 0x00008000 Maximum value of sum of coefficients
MIN_FIR_COEFFICIENT_SUM OxFFFF8000 Minimum value of sum of coefficients
MAX_FIR_COEFFICIENT 0x4000 Maximum value of coefficient
MIN_FIR_COEFFICIENT 0xC000 Minimum value of coefficient
FIR_RESULT_MAX 0x0000FFFF Maximum value of filter result
FIR_RESULT_MIN 0x00000000 Minimum value of filter result

3.3.2 Structures

The following shows the management data structures for accessing the FIR filter APIs and the structures for
defining the FIR filter configuration.

3.3.2.1 FIR Filter Configuration Definition (fir_config_t)
Table 3-3 FIR Filter Configuration Definition Structure (fir_config_t)

Member Data type Description
taps uint16_t Number of taps
p_coefficient int16_t * Pointer to FIR filter coefficient

array
Filter coefficients are stored in
h0..hM-1 order

3.3.2.2 FIR filter management data (fir_ctrl_t)
Table 3-4 FIR Filter Management Data Structure (fir_ctrl_t)

Member Data type Description

count uint16_t Stabilization wait time counter

fir_data uint16_t Delay buffer for FIR filter
[FIR_DATA SIZE][FIR_TAP_SIZE_MAX]

R30AN0427EJ0400 Rev.4.00

Jun.30.24

RRENESAS

Page 15 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

3.4 FIR Filter API

3.41 r_ctsu_fir_initial
This function initializes the management data for FIR filter processing.

Make sure you execute this function before using r_ctsu_fir_filter.

Format

fsp_err_tr_ctsu_fir_initial(fir_ctrl_t * const p_ctrl, fir_config_t const * const p_cfg);

Parameters
p_ctrl
FIR filter management data pointer

p_cfg
FIR filter configuration definition pointer

ReturnValues

FSP_SUCCESS /* Successfully completed */
FSP_ERR_INVALID ARGUMENT /* Configuration definition parameters are invalid */
Properties

Protype is declared in r_ctsu_fir_sample.h.

Description
This function initializes the management data for FIR filter processing.

An error response is returned when the configuration definition parameters are not within valid range.

Example
err = r ctsu fir initial (&g ctsu fir control, &g fir cfqg);
if (FSP_SUCCESS != err)

{
while (true) {}

}

R30AN0427EJ0400 Rev.4.00 Page 16 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

3.4.2 r_ctsu_fir_filter
This function applies the FIR filter processing.

Format

fsp_err_t r_ctsu_fir_filter (fir_ctrl_t * const p_ctrl, fir_config_t const * const p_cfg , uint16_t *p_data);

Parameters
p_ctrl
FIR filter management data pointer
p_cfg
FIR filter configuration definition pointer
p_data

FIR filter measurement result data pointer

ReturnValues

FSP_SUCCESS /* Successfully completed */
FSP_ERR_BUFFER_EMPTY /* Some filters are not yet applied because buffer is unfilled. */
Properties

Protype is declared in r_ctsu_fir_sample.h.

Description
This function applies the FIR filter processing.

The result of the operation is limited to the range of unsigned 16-bit integers (65535 to 0); if it exceeds the
range, it will be rounded to the upper or lower limit value.

After initialization, an error is returned until the processing for the number of taps indicated in the
configuration definition is completed.

Example

/* FIR moving average filter sample */
err = R CTSU DataGet (g ge ctsu instance configOl.p ctrl, filter buffer);
if (err == FSP SUCCESS)
{

err=r ctsu fir filter(&g ctsu fir control, &g fir cfg, filter buffer);

if (exrr == FSP SUCCESS)

{

R CTSU DatalInsert (g ge ctsu instance config0l.p ctrl, filter buffer);
}

Special Notes:
Filter operations are performed even when an error response is received.

When configuring multiple filters in cascade, make sure that the filter processing in the next stage is
executed even when an error response is received.

R30AN0427EJ0400 Rev.4.00 Page 17 of 64

Capacitive Sensor MCU

Capacitive Touch Software Filter Sample Program

FIR filter
r_ctsu_fir_filter

)

v

Buffering
measurement value

v

Calculate FIR filter

Wait time
is passed

yes

v
(response of apply filter) (response of buffering incomplete)

Figure 3-5 FIR Filter APl Flowchart

C

Read measurement value coefficient of FIP filter
g_fir_cfg.coefficient

R_CTSU_DataGet

Fir filter buffer

g_ctsu_fir_control.fir_data

Data buffer for reading
measurement value
filter_buffer

C

Write measurement value
R_CTSU_Datalnsert

—Input measurement value—»
<+—Apply filter———

FIR filter
r_ctsu_fir_filter

}

Figure 3-6 FIR Filter Data Flowchart

R30AN0427EJ0400 Rev.4.00

Jun.30.24

RRENESAS

Page 18 of 64

Capacitive Sensor MCU

Capacitive Touch Software Filter Sample Program

3.5 Usage Example

This sample program provides the FIR moving-average filter as an example of how to use FIR filters.

3.5.1 Filter Characteristics

Table 3-5 shows the coefficient definitions and characteristics of the sample FIR filter.

Table 3-5 Sample FIR Filter Coefficient Definition

g_fir_cfg

FIR moving-average filter

Number of taps

5

Coefficient

3276 (0.199951171875)

3276 (0.199951171875)

3276 (0.199951171875)

3276 (0.199951171875)

3276 (0.199951171875)

FIR moving average

-10
-15
-20
-25
-30

Gain[dB]

-35
-40
-45
-50

0 0.1 0.2 0.3 0.4

Figure 3-7 Sample FIR Filter Frequency Characteristics

Normalized Frequency

0.5

0.6

R30AN0427EJ0400 Rev.4.00

Jun.30.24

RRENESAS

Page 19 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

4. |IR Filters

IIR (Infinite Impulse response) filters are used regularly to reduce high-frequency components with limited
memory and small calculation load.

For more information, refer to Capacitive Sensor MCU Capacitive Touch Noise Immunity Guide

(R30AN0426)

4.1 Specifications

lIR filters sample the input and output values, output the result of the multiply-and-accumulate operation on
the sampled data and defined coefficients, and can handle different filter characteristics, such as low-pass
filters and high-pass filters, depending on the defined coefficients.

This sample project implements notch filters and low-pass filters as IIR filters.

IIR filter
(low-pass filter)

IIR filter
(notch filter)

I L 1L

18000 ——{IR fi0tch filter 17500 ——lIR low pass filler

\/\/\,-/\/\/\/\W\/\)

15000

1 1 2 31 41 51 61 8 91 101 1 1 2 i 41 5 61 71 81 9 101

Figure 4-1 IIR Filter Processing (notch filter and low-pass filter)

R30AN0427EJ0400 Rev.4.00 Page 20 of 64

https://www.renesas.com/us/en/document/apn/capacitive-sensor-mcu-capacitive-touch-noise-immunity-guide
https://www.renesas.com/us/en/document/apn/capacitive-sensor-mcu-capacitive-touch-noise-immunity-guide

Capacitive Sensor MCU

Capacitive Touch Software Filter Sample Program

The calculation formula for IIR filters is shown in the block diagram in Figure 4-2.

2 2
y) = D b xx(n—k) +) alm) «y(n—m)
k=0 m=1

n indicates the sample index, a(m) and b(k) indicate the coefficients, x(n — k) indicates the input data of the
sample delay k, y(n — m) indicates the output data of the sample delay m, and y(n) indicates the output data.

x(n)

x(n-1) ; x(n-2)
b(0) b(1 \ Y

o

\—
p—

% >§ T
za(Z)f a(1)
y(n-2) y(n-1)

Figure 4-2 IIR Filter Block Diagram

R30AN0427EJ0400 Rev.4.00

Jun.30.24

RRENESAS

Page 21 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

4.1.1 Detection Delay
With the IIR filter, delays may occur in normal detection depending on filter characteristics.

18000 —e—input

IR notch filles

17000

threthold: threthold:

16500

16000 16000

21 1 11 21

Figure 4-3 Detection Delay (lIR notch filter and low-pass filter)

4.1.2 Filter Stabilization Time

After initialization, the IIR filter outputs calculation results that deviate from the input data until a certain
number of filter processes are performed.

This period differs depending on the filter characteristics. Make sure to determine how long it takes until a
sufficiently stable calculation result is output, specify that time as the stabilization wait time, and then discard
the filter calculation results during that period.

18000 18000
16000 16000

Bprtiogaleggalttoprttepalongett g oot toettounts ipretoprttogotosgrtogpe _peegsa. s3testesstatetetent -
14000 14000
12000 12000
10000 10000

—e—input —e—input

8000 ——|IR notch filter 8000 —s—|IR pow pass filter
6000 6000
4000 4000
2000 2000

Stabilization Wait Time

0 0

0 10 20 30 40 50 60 70 0 10 20 0 40 50 60 70

Figure 4-4 Filter Stabilization Wait Time (lIR notch filter, low-pass filter)

R30AN0427EJ0400 Rev.4.00 Page 22 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

4.2 Filter Specifications
Table 4-1 lists the specifications of the IIR filters used in the sample program.

Table 4-1 IIR Filter Specifications

Item Specification Remarks
Input data type Unsigned 16-bit integer type
Output data type Unsigned 16-bit integer type
Coefficient data type Signed 16-bit integer type Fixed point with 11-bit decimal
Number of taps 2
Output results until filter Returns operation results Filter stabilization time = number of
stabilization time during filter stabilization samples specified in the configuration
time and buffer unfilled definition
response (stabilization time specification range
= number of taps to 255)

Note: Coefficient: A set of constants to be applied to the constant multipliers that make up IIR filters.

4.2.1 Filter Processing Method
This sample program alternates between processing the multiply-and-accumulate operation and buffering
the delay buffer.

Input f(7)> x(n-1) f(S)P x(n-2)]
® ® e
\b(0)/ \b(1)/ b(2)

) C))

() (9—» yn) H» Output

\
€Y) (3) (10)

/a(2)\ /a(D\
M @
L yn-2) 4@ yn-1) |

1)

Figure 4-5 IIR Filter Processing

R30AN0427EJ0400 Rev.4.00 Page 23 of 64

Capacitive Sensor MCU

Capacitive Touch Software Filter Sample Program

4.2.2 Usage Notes on Filter Coefficients
The coefficient data of the IIR filter must be defined within a value range of -2.0 to 2.0.

The signs in the calculation formulas for the IR filters may differ depending on the document and tool used.

Note that in this case, the signs of coefficients a(1) and a(2) are reversed.

Table 4-2 IIR Filter Calculation Formulas and Coefficient Signs

For- 2 2 2 2

mula | () = Y b0 +x(n—K)+ Y a(m)+y(—m) | y) =) (k) xx(n—k) = > am) = y(n—m)
k=0 m=1 k=0 m=1

b(0) | 0.9931640625 0.9931640625

b(1) | -0.61376953125 -0.61376953125

b(2) | 0.9931640625 0.9931640625

a(1) | 0.61376953125 -0.61376953125

a(2) | -0.98681640625 0.98681640625

R30AN0427EJ0400 Rev.4.00

Jun.30.24

RRENESAS

Page 24 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

4.3 List of Data for IIR Filters

This section explains the constants and global variables provided for IIR filters.

4.3.1 Constants
Table 4-3 lists the constants IIR filters.

Table 4-3 Constants for IIR Filters

Constant name | Setting value | Description

File name: r_ctsu_iir_sample.h

IIR_COEF_SIZE 5

IIR_BUFFER_SIZE 4

IIR_DATA SIZE 1 Data size to be filtered

File name: r_ctsu_iir_sample.c

IIR_SETTLINGS_MAX 255 Maximum wait time

IIR_SETTLINGS MIN 3 Minimum wait time

IIR_CFG_DECIMAL_POINT 11 Number of fixed-point digits

MAX_IIR_COEFFICIENT 0x1000 Maximum value of the coefficient
definition

MIN_IIR_COEFFICIENT 0xFO000 Minimum value of the coefficient
definition

IIR_RESULT_MAX 0x0000FFFF Maximum value of filter result

IIR_RESULT_MIN 0x00000000 Minimum value of filter result

4.3.2 Structures

The following shows the management data structures for accessing the IIR filter APIs and the structures for
defining the IIR filter configuration.

4.3.2.1 IIR Filter Configuration Definition (iir_config_t)

Table 4-4 IIR Filter Configuration Definition structure (iir_config_t)

Member Data type Description

settlings uint16_t Stabilization wait time

coefficient int16_t [IIR_COEF_SIZE] lIR filter coefficient
Coefficient storage order is b0, b1,
b2, a1, a2

4.3.2.2 IIR Filter Management Data (iir_ctrl_t)
Table 4-5 IIR Filter Management Data Structure (iir_ctrl_t)

Member Data type Description

count uint16_t Stabilization wait time counter

iir_data uint16_t [IIR_DATA_ SIZE][IIR_BUFFER_SIZE] Delay buffer for IIR filter
R30AN0427EJ0400 Rev.4.00 Page 25 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

4.4 |IR Filter API

4.4.1 r_ctsu_iir_initial

This function initializes the management data for IIR filter processing.
This function initializes management data for IIR filter processing.

Make sure you execute this function before using r_ctsu_iir_filter.

Format

fsp_err_tr_ctsu_iir_initial(iir_ctrl_t * p_ctrl , iir_config_t const * const p_cfg);

Parameters
p_ctrl
IIR filter management data pointer

p_cfg
IIR filter configuration definition pointer

ReturnValues

FSP_SUCCESS /* Successfully completed */
FSP_ERR_INVALID ARGUMENT /* Configuration definition parameters are invalid */
Properties

Protype is declared in r_ctsu_iir_sample.h.

Description
This function initializes the management data for IIR filter processing.

An error is returned if the configuration definition parameters are not within valid range.

Example
err = r ctsu iir initial(&g ctsu iir controll, &g iir cfq);
if (FSP_SUCCESS != err)

{
while (true) {}

}

R30AN0427EJ0400 Rev.4.00 Page 26 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

4.4.2 r_ctsu_iir_filter
This function applies the IIR filter processing.

Format

fsp_err_t r_ctsu_iir_filter(iir_ctrl_t * const p_ctrl , iir_config_t const * const p_cfg , uint16_t *p_data);

Parameters
p_ctrl
IIR filter management data pointer
p_cfg
lIR filter configuration definition pointer
p_data

lIR filter measurement result data pointer

ReturnValues

FSP_SUCCESS /* Successfully completed */
FSP_ERR_BUFFER_EMPTY /* Some filters are not yet applied because buffer is unfilled. */
Properties

Protype is declared in r_ctsu_iir_sample.h.

Description
This function applies the IIR filter processing.

The result of the operation is limited to the range of unsigned 16-bit integers (65535 to 0); if it exceeds
the range, it will be rounded to the upper or lower limit value.

After initialization, an error is returned while processing is performed for the stabilization wait time
indicated in the configuration definition.

Example

/* IIR notch filter sample */
err = R CTSU DataGet (g ge ctsu instance config02.p ctrl, filter buffer);
if (err == FSP SUCCESS)
{
err=r ctsu iir filter(&g ctsu iir controll, &g iir cfgl, filter buffer);
if (exrr == FSP SUCCESS)
{
R CTSU DatalInsert (g ge ctsu instance config02.p ctrl, filter buffer);
}
}

Special Notes:

Filter operations are performed even when an error response is received.

When configuring multiple filters in cascade, make sure that the filter processing in the next stage is
executed even when an error response is received.

R30AN0427EJ0400 Rev.4.00 Page 27 of 64

Capacitive Sensor MCU

Capacitive Touch Software Filter Sample Program

IR filter
r_ctsu_iir_filter

v

Calculate IIR filter

v

Buffering
measurement value
and filter results

(ot)

Wait time
is passed

yes

v
Gesponse of apply fiIteD (result of buffering incomplete)

Figure 4-6 IR Filter Execution APl Flowchart

C

Read measurement value
R_CTSU_DataGet

coefficient of IIP filter
g iir_cfg.coefficient

)

IR filter buffer

g ctsu_iir_control.iir_data

Data buffer for reading
measurement value
filter_buffer

—Input measurement value—»
<+«—Apply filter

C

Write measurement value
R_CTSU_Datalnsert

)

IIR filter
r_ctsu_iir_filter

}

Figure 4-7 IIR Filter Data Flowchart

R30AN0427EJ0400 Rev.4.00

Jun.30.24

RRENESAS

Page 28 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

4.5 Usage Example

This sample program provides a notch filter and low-pass filter as an example of how to use IIR filters.

4.5.1 Filter Characteristics
Table 4-6 shows the coefficient definitions and characteristics of the sample IIR filters.

Table 4-6 Sample IIR Filter Coefficient Definitions

g_iir_cfg1 g_iir_cfg2
IIR notch filter lIR low-pass filter
Coefficient B | 2034 (0.9931640625) 27 (0.01318359375)
-1257 (-0.61376953125) 54 (0.0263671875)
2034 (0.9931640625) 27 (0.01318359375)
Coefficient A | 1257 (0.61376953125) 3373 (1.64697265625)
-2021 (-0.98681640625) -1435 (-0.70068359375)

015 [IR notch filter

0.1

GaincldB]
> 5
(9]

-0.25

0 0.1 0.2 0.3 0.4 0.5 0.6
Normalized Frequency

" lIR low pass filter

-10
-20
-30
-40
-50
-60
-70
-80
-90

Gain[dB]

o

0.1 0.2 0.3 0.4 0.5 0.6
Normalized Frequency

Figure 4-8 Sample IIR Filter Frequency Characteristics

R30AN0427EJ0400 Rev.4.00 Page 29 of 64

Capacitive Sensor MCU

Capacitive Touch Software Filter Sample Program

5. Single-pole IIR Filters

Single-pole IR (Single-pole Infinite Impulse Response) filters are the smallest IIR filter configuration.

5.1 Specifications

Single-pole IIR filters output the results of the multiply-and-accumulate operation result on the input value,
the previous output value, and the defined coefficient, and can handle different filter characteristics, such as
low-pass filters and high-pass filters, depending on the defined coefficient.

In this sample program, the single-pole IIR filter is treated as a low-pass filter.

18000

17500

17000

16500

16000

15000

14500

17000

16500

16000

15500

15000

14500

VA

31 41 51 61

Single-pole IR Filter
(low-pass filter)

4L

—input

——single pole IIR low pass filter

Figure 5-1 Single-pole IIR Filter Processing (low-pass filter)

R30AN0427EJ0400 Rev.4.00

Jun.30.24

RRENESAS

Page 30 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

The single-pole IIR filter block diagram for the following single-pole IIR filter calculation is shown in Figure
5-2.

ymn)=bxx(n)+axyn—1)

n indicates the sample index, a and b indicate the coefficients, x(n) indicates the input data, y(n — 1)
indicates the output data of sample delay 1, and y(n) indicates the output data.

x(n) $I>—>m » y(n)
y(n-1) J

Figure 5-2 Single-pole IIR Filter Block Diagram

5.1.1 Detection Delay
With the single-pole IIR filter, delays may occur in normal touch detection.

Delay time varies depending on filter characteristics.

18000 ——input

= Single pole |IR low pass filter

17500

17000

threthold:

16500

16000

15500

15000

Figure 5-3 Detection Delay (single-pole IIR low-pass filter)

R30AN0427EJ0400 Rev.4.00 Page 31 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

5.1.2 Filter Stabilization Time
After initialization, the single-pole IIR filter outputs calculation results that deviate from the input data until a
certain number of filter processes are performed.

If the filter calculation result during this period is used for touch detection, the touch detection operation may
not work properly, so we recommend discarding the filter calculation results during this period.

This period differs depending on the filter characteristics. Make sure to determine how long it takes until a
sufficiently stable calculation result is output, and specify that time as the stabilization wait time.

18000

16000

14000

12000

—e—input

10000

8000 —e—Single pole lIR lgw pass

6000 filter

4000

2000

Stabilization Wait Time
0 = >

0 10 20 30 40 50 60 70

Figure 5-4 Filter Stabilization Wait Time (single-pole IR low-pass filter)

R30AN0427EJ0400 Rev.4.00 Page 32 of 64

Capacitive Sensor MCU

Capacitive Touch Software Filter Sample Program

5.2 Filter Specifications
Table 5-1 lists the specifications of the single-pole IIR filters used in the sample program.

Table 5-1 Single-pole IIR Filter Specifications

Item

Specification

Remarks

Input data type

Unsigned 16-bit integer type

Output data type

Unsigned 16-bit integer type

Coefficient data type

Signed 16-bit integer type

Fixed point with 14-bit decimal

Number of taps

response

Returns operation results
during filter stabilization
time and buffer unfilled

Filter stabilization time = number of
samples specified in the configuration
definition

(stabilization time specification range
=1 to 255)

Coefficient: A set of constants to be applied to the constant multipliers that make up single-pole IIR filters.

5.2.1 Filter Processing Method

Input

y(n) Output

y(n-1)

Figure 5-5 Single-pole lIR Filter Processing

5.2.2 Usage Notes on Filter Coefficients
The single-pole IIR filter coefficient data must be defined within a value range of -1.0 to 1.0.

R30AN0427EJ0400 Rev.4.00

Jun.30.24

RRENESAS

Page 33 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

5.3 List of Data for Single-pole IIR Filters

This section explains the constants and global variables provided for single-pole IIR filters.

5.3.1 Constants
Table 5-2 lists the constants for single-pole IIR filters.

Table 5-2 Single-pole IIR Filter Constants

Constant name | Setting value | Description

File name: r_ctsu_spiir_sample.h

SPIIR_COEF_SIZE 2 Array size for coefficients

SPIIR_DATA_SIZE 1 Data size to be filtered

File name: r_ctsu_spiir_sample.c

SPIIR_SETTLINGS_MAX 255 Maximum wait time

SPIIR_SETTLINGS_MIN 1 Minimum wait time

SPIIR_CFG_DECIMAL_POINT 14 Number of fixed-point digits

SPIIR_COEF_MAX 0x4000 Maximum value of the coefficient
definition

SPIIR_COEF_MIN 0xC000 Minimum value of the coefficient
definition

SPIIR_RESULT_MAX 0x0000FFFF Maximum value of filter result

SPIIR_RESULT_MIN 0x00000000 Minimum value of filter result

5.3.2 Structures

The following shows the management data structures for accessing the single-pole IIR filter APIs and the
structures for defining the single-pole IIR filter configuration.

5.3.2.1 Single-pole IIR Filter Configuration Definition (spiir_config_t)
Table 5-3 Single-pole IIR Filter Configuration Definition Structure (spiir_config_t)

Member Data type Description
settlings uint16_t Stabilization wait time
coefficient int16_t [SPIIR_COEF_SIZE] Single-pole IIR filter coefficient

5.3.2.2 Single-pole IIR Filter Management Data (spiir_ctrl_t)
Table 5-4 Single-pole IIR Filter Management Data Structure (spiir_ctrl_t)

Member Data type Description

count uint16_t Stabilization wait time counter

spiir_data uint16_t [SPIIR_DATA_SIZE] Delay buffer for single-pole IIR filter
R30AN0427EJ0400 Rev.4.00 Page 34 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

5.4 Singel-pole IIR Filter API

5.4.1 r_ctsu_spiir_initial
This function initializes the management data for single-pole IIR filter processing.

Make sure you execute this function before using r_ctsu_spiir_filter.

Format

fsp_err_tr_ctsu_spiir_initial(spiir_ctrl_t* p_ctrl, spiir_config_t const * const p_cfg);

Parameters
p_ctrl
Single-pole IIR filter management data pointer
p_cfg
Single-pole IIR filter configuration definition pointer

ReturnValues

FSP_SUCCESS /* Successfully completed */
FSP_ERR_INVALID ARGUMENT /* Configuration definition parameters are invalid */
Properties

Protype is declared in r_ctsu_spiir_sample.h.

Description
This function initializes the management data for single-pole IIR filter processing.

An error is returned when the configuration definition parameters are not within valid range.

Example
err = r ctsu spiir initial (&g ctsu spiir controll, &g spiir cfgqg);
if (FSP_SUCCESS != err)

{
while (true) {}
}

R30AN0427EJ0400 Rev.4.00 Page 35 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

5.4.2 r_ctsu_spiir_filter
This function applies the single-pole IIR filter processing.

Format

fsp_err_t r_ctsu_spiir_filter(spiir_ctrl_t * const p_ctrl, spiir_config_t const * const p_cfg,uint16_t *p_data);

Parameters
p_ctrl
Single-pole IIR filter management data pointer
p_cfg
Single-pole IIR filter configuration definition pointer
p_data

Single-pole IIR filter measurement result data pointer

ReturnValues

FSP_SUCCESS /* Successfully completed */
FSP_ERR_BUFFER_EMPTY /* Some filters are not yet applied because buffer is unfilled. */
Properties

Protype is declared in r_ctsu_spiir_sample.h.

Description
This function applies the single-pole IIR filter processing.

The result of the operation is limited to the range of unsigned 16-bit integers (65535 to 0); if it exceeds the
range, it will be rounded to the upper or lower limit value.

After initialization, an error is returned while processing is performed for the stabilization wait time
indicated in the configuration definition.

Example

/* Single Pole IIR low pass filter sample */
err = R CTSU DataGet (g ge ctsu instance config04.p ctrl, filter buffer);
if (err == FSP_SUCCESS)
{
err=r ctsu spiir filter (&g ctsu spiir controll, &g spiir cfgl,
filter buffer);
if (err == FSP SUCCESS)
{
R CTSU DatalInsert (g ge ctsu instance config04.p ctrl, filter buffer);
}
}

Special Notes:
Filter operations are performed even when an error response is received.

When configuring multiple filters in cascade, make sure that the filter processing in the next stage is
executed even when an error response is received.

R30AN0427EJ0400 Rev.4.00 Page 36 of 64

Capacitive Sensor MCU

Capacitive Touch Software Filter Sample Program

Single pole IIR filter
r_ctsu_spiir_filter
Calculate Single pole
IR filter

v

Buffering
filter results

Wait time
is passed

yes

v
Gesponse of apply fiIteD

(result of buffering incomplete)

Figure 5-6 Single-pole lIR Filter Execution APl Flowchart

Read measurement valu
R_CTSU_DataGet

D

coefficient of Single pole IIP filter
g_spiir_cfg.coefficient

Single pole IIR filter buffer
g_ctsu_spiir_control.spiir_data

Data buffer for reading
measurement value
filter_buffer

Input measurement value———»,
<+—Apply filter

rite measurement valu
R_CTSU_Datalnsert

(w

)

Single pole IR filter
r_ctsu_spiir_filter

%

Figure 5-7 Single-pole IIR Filter Data Flowchart

R30AN0427EJ0400 Rev.4.00

Jun.30.24

RRENESAS

Page 37 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

5.5 Usage Example

This sample program provides a low-pass filter as an example of how to use single-pole IIR filters.

5.5.1 Filter Characteristics
Table 5-5 shows the coefficient definitions and characteristics of the sample single-pole IIR filters.

Table 5-5 Sample Single-pole IIR Filter Coefficient Definitions

g_spiir_cfg
Single-pole lIR low-pass filter
Coefficient A | 15386 (0.9390869140625)
Coefficient B | 997 (0.06085205078125)

Single pole IIR low pass filter

-10

-15

Gain[dB]

-20
-25
-30

-35
0 0.1 0.2 0.3 04 0.5 0.6
Normalized Frequency

Figure 5-8 Sample Single-pole IIR Filter Frequency Characteristics

R30AN0427EJ0400 Rev.4.00 Page 38 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

6. Median Filters

Median filters can be used to remove pulse noise. The effectiveness of median filters against random noise
and low-period noise is limited, but they can be used in combination with FIR or IIR filters for such cases.

6.1 Specifications
Median filters sample input values and use the median value of the sampled data as the output value.

Pulsed noise is input as data that deviates greatly from the median value and is therefore removed from the
data by the median filter operation.

19000

18500

18000

17500

17000

16500 .
Noize data

16000
15500
— Ut
15000
sampling
15344|15418(17283|17424|17506|17428|17487|18518|17571|17510
15352|15344|15418|17283|17424|17506|17428|17487|18518|17571
15336[15352|15344(15418|17283|17424|17506|17428|17487]18518
use median
18000
17500
17000
16500
16000
15500
15000
Figure 6-1 Median Filter Processing
R30AN0427EJ0400 Rev.4.00 Page 39 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

6.1.1 Detection Delay

The median filter samples the touch measurement values to remove noise signals which therefore causes a
delay in normal touch detection.

19000

18500

18000

17500

et [pUT
17000

s O UtPUL
16500
16000
15500

15000

Figure 6-2 Median Filter Detection Delay

R30AN0427EJ0400 Rev.4.00 Page 40 of 64

Capacitive Sensor MCU

Capacitive Touch Software Filter Sample Program

6.1.2 Filter Stabilization Time

After initialization, the median filter outputs calculation results that are lower than the input data until the filter

processing has been performed the number of times of sampled data.

If the filter processing result is used during this period for touch detection, the touch detection operation may
not work properly, so we recommend discarding the filter operation results output during this period.

18000

16000

14000
12000
10000
8000
6000

4000 Stabilization Wait Time

2000

0 10 20 30 40 50

—e—input

—e— Median filter

60 70

Figure 6-3 Filter Stabilization Wait Time (median)

R30AN0427EJ0400 Rev.4.00

Page 41 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

6.2 Filter Specifications

Table 6-1 lists the specifications of the median filters used in the sample program.

Table 6-1 Median Filter Specifications

Item Specification Remarks
Input data type Unsigned 16-bit integer type
Output data type Unsigned 16-bit integer type
Sample reference range 3,5,7,9 Total number of input values and past
samples
Processing method Median detection with insert
sorting
Output results after filter Returns operation results Filter stabilization time = sample
initialization during filter stabilization time reference period
and buffer unfilled response

6.2.1 Filter Processing Method

The median filter samples the input data, copies the sampled data into a temporary buffer, sorts it, and
outputs the data in the middle position.

Input T Now Input data Input data i Input data
(measured value) M Input data B 1 time before B 2 times before N times before
data copy
&
sort
Temporary buffer
Minimum data (n/2)th data Maximum data
‘ Output
(Filtered result)
Figure 6-4 Median Filter Processing
R30AN0427EJ0400 Rev.4.00 Page 42 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

6.3 List of Data for Median Filters

This section explains the constants and global variables provided for median filters.

6.3.1 Constants
Table 6-2 lists the constants for median filters.

Table 6-2 Median Filter Constants

Constant name | Setting value | Description

File name: r_ctsu_median_sample.h

MEDIAN_SAMPLE_SIZE 3 Sampling size

MEDIAN_DATA_SIZE 1 Data size to be filtered

File name: r_ctsu_median_sample.c

MEDIAN_SAMPLE_SIZE_MIN 3 Minimum sample reference period

MEDIAN_SAMPLE_SIZE MAX |9 Maximum sample reference
period

6.3.2 Structures
The following shows the management data structures for accessing the median filter API.

6.3.2.1 Median Filter Management Data (median_ctrl_t)

Table 6-3 Median Filter Management Data Structure (median_ctrl_t)

Member Data type Description
count uint16_t Stabilization wait time counter
index uint16_t Median filter sampling buffer
input data storage location
median_data uint16_t Median filter sampling buffer
[MEDIAN_DATA_SIZE][MEDIAN_SAMPLE_SIZE]

R30AN0427EJ0400 Rev.4.00 Page 43 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

6.4 Median Filter API

6.4.1 r_ctsu_median_initial
This function initializes management data for median filter processing.

Make sure you execute this function before using r_ctsu_median_filter.

Format

fsp_err_tr_ctsu_median_initial(median_ctrl_t * const p_ctrl);
Parameters
p_ctrl

Median filter management data pointer

ReturnValues

FSP_SUCCESS /* Successfully completed */
FSP_ERR_INVALID_ARGUMENT /* Configuration definition parameters are invalid */
Properties

Protype is declared in r_ctsu_median_sample.h.

Description
This function initializes the management data for median filter processing.

An error is returned if the sampling size definition exceeds the valid range.

Example
err = r ctsu median initial (&g _ctsu median control);
if (FSP_SUCCESS != err)

{
while (true) {}
}

R30AN0427EJ0400 Rev.4.00 Page 44 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

6.4.2 r_ctsu_median_filter
This function applies the median filter processing.

Format

fsp_err_t r_ctsu_median_filter(median_ctrl_t * const p_ctrl , uint16_t *p_data);

Parameters
p_ctrl
Median filter management data pointer
p_data

Median filter measurement result data pointer

ReturnValues

FSP_SUCCESS /* Successfully completed */
FSP_ERR_BUFFER_EMPTY /* Some filters are not yet applied because buffer is unfilled. */
Properties

Protype is declared in r_ctsu_median_sample.h.

Description
This function applies the median filter processing.

After initialization, an error is returned while processing of sampling size is in progress.

Example

/* Median filter sample */
err = R CTSU DataGet (g _ge ctsu instance config05.p ctrl, filter buffer);
if (exrr == FSP_SUCCESS)
{
err=r ctsu median filter (&g ctsu median control, filter buffer);
if (err == FSP_SUCCESS)
{
R CTSU Datalnsert (g ge ctsu instance config05.p ctrl, filter buffer);
}
}

Special Notes:
Filter operations are performed even when an error response is received.

When configuring multiple filters in cascade, make sure that the filter processing in the next stage is
executed even when an error response is received.

R30AN0427EJ0400 Rev.4.00 Page 45 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

Median filter
r_ctsu_median_filter

sampling
measurement value

y

Copy sampling buffer

y

Sort sampling data

y

Calculate Median filter

Wait time
is passed

yes

v
(response of apply filter) (response of buffering incomplet@

Figure 6-5 Median Filter Execution APl Flowchart

Read measurement value Median filter buffer
R_CTSU_DataGet g_ctsu_median_control.median_data

A , Sampling
Data buffer for reading —Input measurement value—» Median filter
measurement value ly fil r_ctsu_median_filter
filter_buffer <« Applyfilter———— i =
A
Write measurement value Temporary buffer
R_CTSU_Datalnsert median_work
7'y
Sort
v
Sort function
ctsu_insert_sort
Figure 6-6 Median Filter Data Flowchart
R30AN0427EJ0400 Rev.4.00 Page 46 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

6.4.1 ctsu_insert_sort
This function sorts the specified data by value.

Format

static void ctsu_insert_sort(uint16_t * list , uint16_t size);

Parameters
p_list
Specified sorting data pointer
size

Number of data to be sorted

ReturnValues

None

Properties

Protype is declared in r_ctsu_median_sample.c.

Description

This function sorts the specified data in ascending order.

R30AN0427EJ0400 Rev.4.00 Page 47 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

6.5 Usage Example

This sample program provides three median filters in the sample reference period as a usage example.

6.5.1 Filter Characteristics
Table 6-4 shows the coefficient definitions and characteristics of the sample median filters.

Table 6-4 Sample Median Filter Characteristics

Sample Reference period 3(60ms)
Noise removal width 1(20ms)
Detection delay 1(20ms)
R30AN0427EJ0400 Rev.4.00 Page 48 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

7. How to Use the Sample Project/Sample Code

7.1 How to Use the Sample Project
This section explains how to use the sample project which applies the software filter sample program.

7.1.1 Sample Application

The application in the sample project uses only one button and applies five types of filters for touch
detection.

Q
=2
M

o
»o
: — FIR moving-average filter
R)
irod . IIR notch filter
= .
=25
inasd
T‘,l-‘)
)
== P IIR low-pass filter
=
_—5-)
-
;) Single-polt? IIR
low-pass filter
O Median filter
HENESAS
Ewli-fapaciiases Bulbsas / weasla /5 joer Basrd
— FIR moving- average filter
. - 1IR notch filter
= P IIR low-pass filter
) Single-polc.e IIR
low-pass filter
— Median filter
R30AN0427EJ0400 Rev.4.00 Page 49 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

7.1.2 Functions
The functions of the sample project are listed below.

® The only touch electrode used on the self-capacitance electrode board is Button 1 (TS-B1: for
RA2L1 and RL78G16, TSO: for RX130).

® Five methods are defined for the touch electrode measurement results of Button 1, and a different
software filter is applied to each method.

® You can use the serial monitoring function of QE for Capacitive Touch to check the measurement
with the software filter applied.

Table 7-1 Method Definitions and Corresponding Filters

Method Filter Description

CONFIGO1 FIR moving-average filter

CONFIG02 [IR notch filter

CONFIGO03 [IR low-pass filter

CONFIG04 Single-pole IIR low-pass filter

CONFIG05 Median filter
R30AN0427EJ0400 Rev.4.00 Page 50 of 64
Jun.30.24

RRENESAS

Capacitive Sensor MCU

Capacitive Touch Software Filter Sample Program

7.1.3 File Structure

This section explains the file structure of the sample project.

7.1.3.1 RA2L1Group

The project configuration file and Smart Configuration generation file of the development environment have

been omitted.

ra2l1_filter_sample

|
F—QE-Touch

| I ra2l1_filter_sample_log_tuning20240322151628.log
« = Touch Interface Configuration File

| L ra2l1_filter_sample.tifcfg
|

F—qe_gen

| I ge_touch_config.c

| |- ge_touch_config.h

| I ge_touch_define.h

| L ge_touch_sample.c

|

F—src
| L hal_entry.c
|
L—filter_sample
- filter_define_sample.h
F fir
I fir_config_sample1.c
I r_ctsu_fir_sample.c
L r_ctsu_fir_sample.h

=

I iir_config_sample1.c

I r_ctsu_iir_sample.c

L r_ctsu_iir_sample.h
median

I median_config_samplel.c

I r_ctsu_median_sample.c

L r_ctsu_median_sample.h

r— T T

spiir
I spiir_config_sample1.c
I r_ctsu_spiir_sample.c
L r_ctsu_spiir_sample.h

+ + QE Tuning Log

+ Touch Configuration Source
- Touch Configuration Header
* Touch Definition Header

- Touch Sample Application

* main Files

- = MCU Related Headers

- + FIR Moving-average Filter Configuration Definition Source
+ = FIR Filter Processing Source
- - FIR Filter Processing Header

- IR Filter Configuration Definition Source
- IR Filter Processing Source
- IR Filter Processing Header

- Median Filter Configuration Definition Source
- Median Filter Processing Source
- Median Filter Processing Header

+ + Single-pole IIR Low-pass Filter Configuration Definition Source
+ = Single-pole IIR Filter Processing Source
+ = Single-pole IIR Filter Processing Header

R30AN0427EJ0400 Rev.4.00
Jun.30.24

Page 51 of 64

RRENESAS

Capacitive Sensor MCU

Capacitive Touch Software Filter Sample Program

7.1.3.2 RX130 Group

The project configuration file and Smart Configuration generation file of the development environment have

been omitted.

rx130_filter_sample

|
F—QE-Touch

| I rx130_filter_sample_log_tuning20240322164158.log
+ + Touch Interface Configuration File

| L rx130_filter_sample.tifcfg
|

F—aqe_gen

| I ge_touch_config.c

| |- ge_touch_config.h

| I ge_touch_define.h

| L ge_touch_sample.c

|

| L rx130_filter_sample.c

L—filter_sample

- filter_define_sample.h

I fir
I fir_config_sample1.c
Fr_ctsu_fir_sample.c
L r_ctsu_fir_sample.h

=

I iir_config_sample1.c

I r_ctsu_iir_sample.c

L r_ctsu_iir_sample.h
median

I median_config_samplel.c

I r_ctsu_median_sample.c

L r_ctsu_median_sample.h

r— 7T T

spiir
I spiir_config_sample1.c
I r_ctsu_spiir_sample.c
L r_ctsu_spiir_sample.h

* + QE Tuning Log

+ Touch Configuration Source
+ Touch Configuration Header
+ Touch Definition Header

- Touch Sample Application

* main Files

- = MCU Related Headers

- + FIR Moving-average Filter Configuration Definition Source

- FIR Filter Processing Source
 FIR Filter Processing Header

- IR Filter Configuration Definition Source
- IR Filter Processing Source
- IR Filter Processing Header

- Median Filter Configuration Definition Source
- Median Filter Processing Source
- Median Filter Processing Header

+ + Single-pole lIR Low-pass Filter Configuration Definition Source
+ -+ Single-pole IR Filter Processing Source
+ - Single-pole IR Filter Processing Header

R30AN0427EJ0400 Rev.4.00
Jun.30.24

Page 52 of 64

RRENESAS

Capacitive Sensor MCU

Capacitive Touch Software Filter Sample Program

7.1.3.3 RL78/G16 Group

The project configuration file and Smart Configuration generation file of the development environment have

been omitted.

rl78g16_filter sample

|
F—QE-Touch

| I ri78g16_filter_sample_log_tuning20240325091840.log
+ + Touch Interface Configuration File

| L r78g16_filter_sample.tifcfg
|

F—aqe_gen

| I ge_touch_config.c

| |- ge_touch_config.h

| I ge_touch_define.h

| L ge_touch_sample.c

|

| L r78g16_filter_sample.c

L—filter_sample

- filter_define_sample.h

I fir
I fir_config_sample1.c
Fr_ctsu_fir_sample.c
L r_ctsu_fir_sample.h

=

I iir_config_sample1.c

I r_ctsu_iir_sample.c

L r_ctsu_iir_sample.h
median

I median_config_samplel.c

I r_ctsu_median_sample.c

L r_ctsu_median_sample.h

r— 7T T

spiir
I spiir_config_sample1.c
I r_ctsu_spiir_sample.c
L r_ctsu_spiir_sample.h

* + QE Tuning Log

+ Touch Configuration Source
+ Touch Configuration Header
+ Touch Definition Header

- Touch Sample Application

* main Files

- = MCU Related Headers

- + FIR Moving-average Filter Configuration Definition Source

- FIR Filter Processing Source
 FIR Filter Processing Header

- IR Filter Configuration Definition Source
- IR Filter Processing Source
- IR Filter Processing Header

- Median Filter Configuration Definition Source
- Median Filter Processing Source
- Median Filter Processing Header

+ + Single-pole lIR Low-pass Filter Configuration Definition Source
+ -+ Single-pole IR Filter Processing Source
+ - Single-pole IR Filter Processing Header

R30AN0427EJ0400 Rev.4.00
Jun.30.24

Page 53 of 64

RRENESAS

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

7.1.4 How to Import the Sample Program
Import the "xxxx_filter_sample.zip " folder (xxxx indicates the MCU Group name) included in this sample
code into your workspace using the e2studio import function.

Figure 7-1 shows how to import a sample project.

For operations after importing the project, refer to the Quick Start Guide or related Application Note
corresponding to the MCU Family you are using in your development.

¢ RA Family
Renesas RA Family RA2L1 Group Capacitive Touch Evaluation System Quick Start Guide (Q12QS0040)

e RX Family
Using QE and FIT to Develop Capacitive Touch Applications (RO1AN4516)

e RL78 Family
RL78 Family Using QE and SIS to Develop Capacitive Touch Applications (RO1AN5512)

Select \
Rename and Import and Existing C/C++ Project into the workspace E 4 E |

=
Select an import wizard:
type filter text Rename & Import Project j_

(1) Project location directory must be specified

=% Existing Projects into Workspace
(=} File System
Preferences Project name:
5])
- el iane e e B Tt et
R . . It it
= Rename & Import Existing C/C++ Project into Workspace se etautlocation
= Location: ‘ Browse...
e Renesas CS+ Project for CATSKOR/CATEKO Create Directory for Project
e Renesas CS+ Project for CC-RX and CC-RL Choose file system: | default ~
e Renesas GitHub FreeRTOS (with |oT libraries) Project
" Sample Projects on Renesas Website inccebionE
= C/C++ () Select root directory: FOWSE.d ..
= Install
(= Oomph Projects:
= Bund/Debin

| @' < Back Finish Cance

| Options
["1Keep build configuration cutput folders

@ < Back Next > Finish Cancel

Figure 7-1 Importing the Sample Project

R30AN0427EJ0400 Rev.4.00 Page 54 of 64

https://www.renesas.com/node/1403601
https://www.renesas.com/us/en/document/apn/rx-family-using-qe-and-fit-develop-capacitive-touch-applications
https://www.renesas.com/us/en/document/apn/rl78-family-using-qe-and-sis-develop-capacitive-touch-applications

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

7.2 How to Use the Filter Sample Code

7.2.1 Procedure for Integration into an Existing Project
Use the following procedure to integrate software filters into an existing capacitive touch application.

1. Copy the filter_sample folder into the target project folder.
You can delete folders from the filter_sample that do not indicate the name of the filter you are using.

2. Open "C/C++Project Settings" in the project menu and go to Paths and Symbols under C/C++ General.
Add the filter_sample folder to “Include” and “Source Locations."

| g |
| 1
|T}'PE filter text Paths and Symbols (=14 -~ 8
Resource
Builders
w C/C++ Build Configuration: | Debug [Active] ~ | | Manage Configurations...
Build Variables
Environment p
Logging (= Includes lf Symbols = Libraries (® Library Paths (2 Source Location
| Settings
Tool Chain Editor Languages Include directories
| w C/C++ General Assembly @I:S{Projl\lame}fsrc
CDdEAn_al}'Sis GNUC @IES{ProjName}fraffspfinc
i Bullde.r @J’!ﬁ{ProjName}fraffspfincfapi
z::lgzztatlon @J’!ﬁ{ProjName}fraffspfincfinstances
Forln;&er @J’!ﬁ{ProjName}fra.l’armeMSlS_S,l’CMSISICorefIncIude
Indexer @f:%{ProjName}fra_gen

Language Mappings IENE {ProjName}/ra_cfg/fsp_cfg/bsp

ﬁheck 12 /${ProjName}/ra_cfa/fsp_cfg
Paths and Symbols ook e R
FEproCessor INCIU e Pat @fs{ProjName}fﬁller_sample

Project Matures

Project References

Renesas QF
Run/Debug Settings
Task Tags
Walidation
(= Includes # Symbols =h Libraries (B Library Pathd (2 Source Location |] References
Source folders on build path: Add Folder..
= [ra2l1_fir_sample/filter_sample]
= Link Folder..
.= /radlI_fir_sample/qe_gen
(= fra2l1_fir_sample/ra Edit Filter...
< = fra2l1_fir_sample/ra_gen R
- (7= fra2l1_fir_sample/src Delete
@.
Figure 7-2 Embedding a Sample Program in an Existing Environment
R30AN0427EJ0400 Rev.4.00 Page 55 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

3. Add the filter management data in the XXX_config_sample1.c (XXX indicates the name of the folder used)
that corresponds to the method configuration of the touch interface.

Example: using the FIR filter for three methods

fir_config_sample1.c Since the FIR filter is used for three methods,
add three separate management data.

ir ctrl t g ctsu fir control;
ir ctrl t g ctsu fir control2;
ir ctrl t g ctsu fir control3;

4. Change the XXX_DATA_SIZE definition in r_ctsu_XXX_sample.h (where XXX is the name of the filter
used) to match the amount of touch measurement data in the method configuration of the touch interface
that will use the software filter.

The number of touch measurement data for a method is twice the number of TS pins for the self-
capacitance method and twice the number of matrices for the mutual capacitance method.

Define XXX_DATA_SIZE using the maximum value within the number of touch measurement data for the
method using the filter.

Example: using the FIR filter for three methods with TS pin counts of 3/4/5

r_ctsu_fir_sample.h Change the number of pins to that of the FIR filter
#define FIR DATA SIZE (5) method with the largest number of TS pins

5. Add the include specification file that corresponds to the filter to be used in the ge_touch_sample.c file (or
equivalent file) and add the filter processing implementation code (see Section 7.2.2).

Note: 1. Note that data reading and data writing back for filter processing occur in the CTSU API, not in the
Touch API
2. Note that the description of performing the filtering is required for each method of the touch
interface configuration.

Table 7-2 Include Files to be Added

Filter to be Used Include Specification File

FIR filter \fir\r_ctsu_fir_sample.h

lIR filter \iir\r_ctsu_iir_sample.h

Single-pole IIR filter \spiir\r_ctsu_spiir_sample.h

Median filter \median\r_ctsu_median_sample.h
R30AN0427EJ0400 Rev.4.00 Page 56 of 64

Capacitive Sensor MCU

Capacitive Touch Software Filter Sample Program

6. Change the num_moving_average setting of CTSU driver configuration definition (g_ge_ctsu_ctrl_ XXX for
QE for Capacitive Touch generation) in the ge_touch_config.c file (or equivalent file) to 1 to disable the
default moving averaging. No changes are required when using the default moving averaging with the

sample code.

If there are multiple touch interface configuration methods, change the CTSU driver configuration
definition for all methods.

e Example definition of touch interface configuration
ge_touch_config.c (file generated by QE for Capacitive Touch)

const ctsu cfg t g ge ctsu cfg configl0l =

{

() Change to 1
.num_moving average [g_1,
.tunning enable = true,
.p_callback = &ge_ touch callback,

(Al
}i

ctsu_instance ctrl t g ge ctsu ctrl configOl;

const ctsu_instance t g ge ctsu instance config0l

{
.p_ctrl
.p_cfg
.p_api
}i

&g ge ctsu ctrl configO0l,
&g _ge ctsu cfg configO1,
&g _ctsu on ctsu,

const ctsu cfg t g ge ctsu cfg configl2 =

{

(i) Change to 1
.num_moving average = 1,
.tunning enable = true,
.p_callback = &ge_touch callback,

(W)

}s

ctsu_instance ctrl t g ge ctsu ctrl config02;

const ctsu_instance t g ge ctsu instance config02

{

.p_ctrl =

.p_cfg
.p_api
bi

&g ge ctsu ctrl config02,
&g _qge ctsu cfg configl2,
&g ctsu on ctsu,

R30AN0427EJ0400 Rev.4.00

Jun.30.24

RRENESAS

Page 57 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

7.2.2 Sample Application Configuration and Operation

The flowchart for incorporating a filter sample program into the sample code (ge_touch_sample.c) outputted
by QE for Capacitive Touch is shown below.

(ge_touch_main)

v

Dinitialize touch and filter module

Initialize touch module
RM_TOUCH_Open

!

Initialize filter module
r_ctsu_fir_initial

A

®TOUCh measurement

Touch measurement start
RM_TOUCH_ScanStart

Y

easurement complete

v

Apply filter and
read touch status

Read measurement values
R_CTSU_DataGet

<orees >

Apply FIR filter
r_ctsu_fir_filter

<icees >

Write back filtered data
nio R_CTSU_Datalnsert

!

Read touch status
RM_TOUCH_DataGet

Y
Software wait
R_BSP_SoftwareDelay

Figure 7-3 Sample Application Flowchart

R30AN0427EJ0400 Rev.4.00 Page 58 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

This section describes the numbers indicated in Figure 7-3.

@ Initialize filter

Check the valid range for the touch interface configuration definition and initialize the filter management
data.

/* Check filter configuration & Initialize filter control data */
err = r ctsu fir initial (&g ctsu fir control, &g fir cfqg);
if (FSP_SUCCESS != err)
{
while (true) {}
}

@ Touch measurement
Perform touch measurement and wait for measurement to be completed.

@ Apply filters and get touch input status

Use the CTSU driver API to get the measurement result, write it back to the CTSU driver after applying
the filter, and then get the touch input information.

For details on the CTSU driver API, refer to v4.3.0 or later of Renesas Flexible Software Package (FSP)
User's Manual (R11UM0155).

/* FIR moving average filter sample */
err = R CTSU DataGet (g _ge ctsu instance configOl.p ctrl, filter buffer);
if (exrr == FSP_SUCCESS)
{
err=r ctsu fir filter (&g ctsu fir control, &g fir cfg, filter buffer);
if (err == FSP_SUCCESS)
{
R CTSU Datalnsert (g ge ctsu instance config0l.p ctrl, filter buffer);
err = RM TOUCH DataGet (g _ge touch instance config0Ol.p ctrl,
&button status, NULL, NULL);
if (FSP_SUCCESS == err)
{
/* TODO: Add your own code here. */
}

R30AN0427EJ0400 Rev.4.00 Page 59 of 64

Capacitive Sensor MCU

Capacitive Touch Software Filter Sample Program

7.2.3 How to Adjust Filter Characteristics

7.2.3.1 Fixed Point Decimal Definition

The coefficients of the FIR/IIR/single-pole IIR filters are defined in the form of int16_t fixed point decimals.

The number of decimal places in the fixed point definition differs depending on the filter type.

Calculate the fixed point definition as "decimal value x 2 number of fixed-point digits

Table 7-3 shows examples of fixed point definitions.

Table 7-3 Fixed Point Definition Examples

Fractional Number Number of Fixed- Decimal Remarks
Point Digits
0.199951171875 14 3276=0.199951171875 x 16384 FIR. Single-pole
IR
-0.61376953125 11 -1257=-0.61376953125 x 2048 IR

7.2.3.2 FIR Filters

Adjust the filter characteristics by changing the coefficient definition of the FIR filters.

Up to nine coefficients can be defined using a signed 16-bit fixed point with 14 fixed-point digits. They are
treated as coefficients h(0) through h(8), in that order, as shown in Figure 3-2.

The number of taps indicates the number of defined coefficient values.

const intlé t g fir coefficient]]

{

276,
3276,
3276,
3276,

276,

/*
/*
/*
/*
/*

hO : 0.199951171875 */ Specify up to nine coefficient

hl 0.199951171875 */ values using fixed decimal values
h2 : 0.199951171875 */ with 14 fixed-point digits.

h3 : 0.199951171875 */

h4 0.199951171875 */

}i

const fir config t g fir cfg =

{

.taps = 5,

.p_CoeTTICIient

}i

Specify the number of coefficient values]

= g fir coefficient,

R30AN0427EJ0400 Rev.4.00

Jun.30.24

RRENESAS

Page 60 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

7.2.3.3 IIR Filters

Adjust the filter characteristics by changing the coefficient definition of the IIR filters.

Five coefficients can be defined using a signed 16-bit fixed point with 11 fixed-point digits. They are treated
as coefficients b(0), b(1), b(2), a(1), and a(2), in that order, as shown in Figure 4-2.

After setting the coefficient, set a provisional value for the stabilization wait time and confirm the
measurement value at the reset start.

If the stabilization wait time is insufficient, the reference value for touch measurement will be low, preventing
touch detection from performing correctly. Adjust the stabilization wait time to ensure that touch
measurement is performed correctly. Specify coefficient values in the order of coefficient b then coefficient
a using fixed decimal values with 11 fixed-point digits.

const iir config t g iir cfgl =

{ Confirm the measurement value at reset start and

.settlings 4 3, adjust accordingly.

.coefficient = {
/* coefficient b */
2034, /* b0 : 0.9931640625 */(Specify coefficient values in the
-1257, /* bl : -0.61376953125 |*/ order of coefficient b then
2034, /* b2 : 0.9931640625 */ coefficient a using fixed decimal
/* coefficient a */ values with 11 fixed-point digits.
1257, /* al : 0.61376953125 */

\:2021, /* a2 : —0.98681640622} */

}

}i

7.2.3.4 Cascaded IIR Filter Configuration
Create a third-order or higher IIR filter by cascading the IIR filters.
Execute IIR filter processing at least twice consecutively from the application.

Each successive filter processing requires separate management data and a separate configuration
definition.

err = R CTSU DataGet (g _ge ctsu instance config02.p ctrl, filter buffer);
if (exrr == FSP_SUCCESS)
{

rr2=r ctsu iir filter (&g ctsu iir control2, &g iir cfg2, filter buffer

[L] EnTak nNat & Vo Vot Ko Na k)
e 5

’

rrl=r ctsu iir filter (&g ctsu iir controll, &g iir cfgl, filter_buffer]
)

hlak ol & Falal nlaNak WAy

_ _ s

R _CTSU_Datalnsert (g Successive filter processes are implemented with ffer);
err = RM TOUCH Data{ separate management data and configuration
gbutton status, NULL, NUL] definitions.
if (FSP_SUCCESS == eTrT7
{

/* TODO: Add your own code here. */
}

R30AN0427EJ0400 Rev.4.00 Page 61 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

7.2.3.5 Single-pole IIR Filter
Adjust the filter characteristics by changing the coefficient definition of the single-pole IIR filters.

Two coefficients can be defined using a signed 16-bit fixed point with 14 fixed-point digits. They are treated
as coefficients a and b, in that order, as shown in Figure 5-2.

After setting the coefficient, set a provisional value for the stabilization wait time and confirm the
measurement value at the reset start.

If the stabilization wait time is insufficient, the reference value for touch measurement will be low, preventing
touch detection from performing correctly. Adjust the stabilization wait time to ensure that touch
measurement is performed correctly.

const spiir config t g spiir cfg =

{ Confirm the measurement value at reset start and
-settlings 5 128 adjust accordingly.
.coefficient = {
/* coefficient a */ Specify coefficient values in the
15386, /* a : 0.9390869140625 order of coefficient b then
/* coefficient b */ coefficient a using fixed decimal
997, /* b : 0.06085205078125 values with 14 fixed-point digits.

b
}s

7.2.3.6 Median Filters

Change the sampling rate of the median filter to adjust the width of noise that can be removed.

#define MEDIAN SAMPLE SIZE [(3)] Specify sampling size]

R30AN0427EJ0400 Rev.4.00 Page 62 of 64

Capacitive Sensor MCU Capacitive Touch Software Filter Sample Program

8.

Supporting Documentation
Capacitive Sensor MCU Capacitive Touch Noise Immunity Guide (R30AN0426)

Renesas RA Family RA2L1 Group Capacitive Touch Evaluation System Quick Start Guide (Q12QS0040)
RA Family Using QE and FSP to Develop Capacitive Touch Applications (R01AN4934)

Using QE and FIT to Develop Capacitive Touch Applications (R0O1AN4516)

RL78 Family Using QE and SIS to Develop Capacitive Touch Applications (R01AN4516)

Renesas Website and Support Desk

Renesas Electronics Website

https://www.renesas.com/

Capacitive Touch Sensor Unit (CTSU) related links

https://www.renesas.com/rssk-touch-ra2l1

https://www.renesas.com/ge-capacitive-touch

Renesas Support Desk

https://www.renesas.com/support

R30AN0427EJ0400 Rev.4.00 Page 63 of 64

https://www.renesas.com/node/25428131
https://www.renesas.com/node/1403601
https://www.renesas.com/node/1289806
https://www.renesas.com/us/en/document/apn/rx-family-using-qe-and-fit-develop-capacitive-touch-applications
https://www.renesas.com/us/en/document/apn/rl78-family-using-qe-and-sis-develop-capacitive-touch-applications
https://www.renesas.com/
https://www.renesas.com/rssk-touch-ra2l1
https://www.renesas.com/qe-capacitive-touch
https://www.renesas.com/support

Capacitive Sensor MCU

Capacitive Touch Software Filter Sample Program

Revision History

Description
Rev. Date Page Summary
1.00 Jun.12.23 - First edition issued
2.00 Aug.31.23 Overall restructure of document
Added “Section 4. IR Filters”
Added IIR filter-related items to folder structure in Section 1.1
Corrected Figure 2.1
Added IIR filter-related items to file structure in Section 2.2
Corrected remarks regarding coefficient data type in Table 3.1
Corrected mistakes in Section 3.5.4
Added IIR filter-related items to Section
3.00 Nov.30.23 4 Added median filters related items to the folder structure in
Section 1.1
5 Updated Table 1.1 (Operation Confirmation Conditions)
6 Deleted description of planned functions from Section 2
7 Updated Table 2.1 (List of Components)
8 Added items related to median filters to the file structure and
added folder descriptions in Section 2.2
9 Added valid/invalid definitions to each filter in Table 2.2
10 Added median filters to Table 2.3
13 Added median filters to Table 2.12
19 Added median filters to Figure 2.5
24 Added median filters to Section 2.4.6
24 Added median filter initialization setting APl to Section 2.4.6
26 Added median filter special note to Section 2.4.7
28 Added data size and incremental amount to Table 2.13
28 Updated filter processing execution time in Table 2.14
31 Corrected information in Section 3.3.1
45 Corrected information in Section 4.3.1
49 Corrected information in Table 4.4
56 Added Section 5 (Median Filters)
68 Revised structure of Section 6
4.00 Jun.30.24 - Complete revision

R30AN0427EJ0400 Rev.4.00

Jun.30.24

Page 64 of 64
RRENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LS| are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an 1/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between Vi
(Max.) and Vi1 (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Viu (Min.).
7. Pronhibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of
your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the
use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infingement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. Nolicense, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas
Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas
Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’'s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc.
Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products
outside of such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you
are responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. ltis the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.
(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information

TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology, the most up-to-date
Koto-ku, Tokyo 135-0061, Japan version of a document, or your nearest sales office, please visit:
www.renesas.com www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

© 2024 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Operation Confirmation Conditions
	1.2 Correspondence Between Sample Code and Application Note

	2. Software Specifications
	2.1 Software Configuration Diagram
	2.2 Software Filter Types
	2.3 File Structure
	2.3.1 Application Data
	2.3.2 Application API

	2.4 Size and Execution Time
	2.4.1 RA2L1 Group
	2.4.2 RX130 Group
	2.4.3 RL78/G16 Group

	3. FIR Filters
	3.1 Specifications
	3.1.1 Detection Delay
	3.1.2 Filter Stabilization Time

	3.2 Filter Specifications
	3.2.1 Filter Coefficient Usage Notes

	3.3 List of Data for FIR Filters
	3.3.1 Constants
	3.3.2 Structures
	3.3.2.1 FIR Filter Configuration Definition (fir_config_t)
	3.3.2.2 FIR filter management data (fir_ctrl_t)

	3.4 FIR Filter API
	3.4.1 r_ctsu_fir_initial
	3.4.2 r_ctsu_fir_filter

	3.5 Usage Example
	3.5.1 Filter Characteristics

	4. IIR Filters
	4.1 Specifications
	4.1.1 Detection Delay
	4.1.2 Filter Stabilization Time

	4.2 Filter Specifications
	4.2.1 Filter Processing Method
	4.2.2 Usage Notes on Filter Coefficients

	4.3 List of Data for IIR Filters
	4.3.1 Constants
	4.3.2 Structures
	4.3.2.1 IIR Filter Configuration Definition (iir_config_t)
	4.3.2.2 IIR Filter Management Data (iir_ctrl_t)

	4.4 IIR Filter API
	4.4.1 r_ctsu_iir_initial
	4.4.2 r_ctsu_iir_filter

	4.5 Usage Example
	4.5.1 Filter Characteristics

	5. Single-pole IIR Filters
	5.1 Specifications
	5.1.1 Detection Delay
	5.1.2 Filter Stabilization Time

	5.2 Filter Specifications
	5.2.1 Filter Processing Method
	5.2.2 Usage Notes on Filter Coefficients

	5.3 List of Data for Single-pole IIR Filters
	5.3.1 Constants
	5.3.2 Structures
	5.3.2.1 Single-pole IIR Filter Configuration Definition (spiir_config_t)
	5.3.2.2 Single-pole IIR Filter Management Data (spiir_ctrl_t)

	5.4 Singel-pole IIR Filter API
	5.4.1 r_ctsu_spiir_initial
	5.4.2 r_ctsu_spiir_filter

	5.5 Usage Example
	5.5.1 Filter Characteristics

	6. Median Filters
	6.1 Specifications
	6.1.1 Detection Delay
	6.1.2 Filter Stabilization Time

	6.2 Filter Specifications
	6.2.1 Filter Processing Method

	6.3 List of Data for Median Filters
	6.3.1 Constants
	6.3.2 Structures
	6.3.2.1 Median Filter Management Data (median_ctrl_t)

	6.4 Median Filter API
	6.4.1 r_ctsu_median_initial
	6.4.2 r_ctsu_median_filter
	6.4.1 ctsu_insert_sort

	6.5 Usage Example
	6.5.1 Filter Characteristics

	7. How to Use the Sample Project/Sample Code
	7.1 How to Use the Sample Project
	7.1.1 Sample Application
	7.1.2 Functions
	7.1.3 File Structure
	7.1.3.1 RA2L1Group
	7.1.3.2 RX130 Group
	7.1.3.3 RL78/G16 Group

	7.1.4 How to Import the Sample Program

	7.2 How to Use the Filter Sample Code
	7.2.1 Procedure for Integration into an Existing Project
	7.2.2 Sample Application Configuration and Operation
	7.2.3 How to Adjust Filter Characteristics
	7.2.3.1 Fixed Point Decimal Definition
	7.2.3.2 FIR Filters
	7.2.3.3 IIR Filters
	7.2.3.4 Cascaded IIR Filter Configuration
	7.2.3.5 Single-pole IIR Filter
	7.2.3.6 Median Filters

	8. Supporting Documentation

