
 Application Note 

DA14592 

DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 1 
© 2025 Renesas Electronics   

 

This document presents the implementation of Crowd-Sourced Locationing (CSL) Accessory on DA14592, 

combining both solutions involving a finding network for locationing of registered devices, Apple Find My™ 

network and Google Fast Pair with Find My Device Network Extension, based on Apple Find My Network 

Accessory Specification Release R2, and Google Fast Pair specification v3.1.2 and Find My Device Network 

Extension specification v1.3, respectively. A sample project is also presented as an application example, using 

SDK v10.679.1.12 engineering release for DA14592.

 

Contents 

Contents ................................................................................................................................................................. 1 

Figures .................................................................................................................................................................... 2 

Tables ...................................................................................................................................................................... 2 

1. Terms and Definitions ................................................................................................................................... 3 

2. References...................................................................................................................................................... 4 

3. Introduction .................................................................................................................................................... 5 

3.1 Prerequisites .......................................................................................................................................... 5 

3.2 Crowd-Sourced Locationing (CSL) ........................................................................................................ 5 

3.2.1 Apple Find My™ Network ......................................................................................................... 5 

3.2.2 Google Fast Pair with Find My Device Network Extension ..................................................... 5 

4. Crowd-Sourced Locationing Accessory Application Project ................................................................... 6 

4.1 Software Architecture Overview ............................................................................................................ 6 

4.2 Folder Structure and Files ..................................................................................................................... 7 

4.3 Application Configuration ..................................................................................................................... 10 

4.4 Apple Find My™ Network Integration ................................................................................................... 16 

4.4.1 API for Application ................................................................................................................. 16 

4.4.2 Porting API ............................................................................................................................ 17 

4.4.3 Bluetooth LE Event Handling ................................................................................................ 19 

4.4.4 Bluetooth LE Advertising ....................................................................................................... 20 

4.4.5 Configuration ......................................................................................................................... 20 

4.5 Google Fast Pair Service/Find My Device Network Framework Integration ....................................... 20 

4.5.1 API for Application ................................................................................................................. 20 

4.5.2 Porting API ............................................................................................................................ 22 

4.5.3 Bluetooth LE Event Handling ................................................................................................ 23 

4.5.4 Bluetooth LE Advertising ....................................................................................................... 24 

4.5.5 Configuration ......................................................................................................................... 24 

5. CSL Accessory Task ................................................................................................................................... 24 

5.1 Application Initialization ....................................................................................................................... 24 

5.2 Application Main Task Loop ................................................................................................................ 26 

Revision History .................................................................................................................................................. 28 

 



DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 2 
   

 

Figures 

Figure 1. CSL accessory sample application ........................................................................................................... 6 
 

Tables 

Table 1. CSL accessory application project files ...................................................................................................... 7 
Table 2. Target device and application project specific configuration ....................................................................10 
Table 3. Apple Find My™ network framework specific configuration ......................................................................12 
Table 4. Google Fast Pair Service/Find My Device Network framework specific configuration for Fast Pair ........14 
Table 5. Google Fast Pair Service/Find My Device Network framework specific configuration for Find My Device 
Network ...................................................................................................................................................................15 
Table 6. Apple Find My™ network API functions ....................................................................................................17 
Table 7. Apple Find My™ network porting API functions ........................................................................................18 
Table 8. Google Fast Pair Service/Find My Device Network API functions ...........................................................21 
Table 9. Google Fast Pair Service/Find My Device Network porting API functions ...............................................22 
 

  



DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 3 
   

 

1. Terms and Definitions 

AD Advertising Data 

ADK Accessory Development Kit 

AES Advanced Encryption Standard 

AFMN Apple Find My™ Network (used in code) 

AK Account Key 

ANOS Accessory Non-Owner Service 

API Application Programming Interface 

Bluetooth LE Bluetooth® Low Energy 

CLI Command Line Interface 

CSL Crowd-Sourced Locationing 

DIS Device Information Service 

E2EE End-to-End Encrypted 

EID Ephemeral ID 

EIK Ephemeral Identity Key 

FMDN Find My Device Network (used in code) 

FMNA Find My™ Network Accessory (used in code) 

FP Fast Pair 

GAP Generic Access Profile 

GATT Generic ATTribute profile 

GFP Google Fast Pair (used in code) 

GFPS Google Fast Pair Service (used in code) 

HMAC Hash-based Message Authentication Code 

iOS Internetwork Operating System 

MFi Made for iPhone/iPod/iPad 

MTU Maximum Transmission Unit 

NVM Non-Volatile Memory 

NVMS Non-Volatile Memory Storage 

OS Operating System 

RPA Random Resolvable Private Address 

SDK Software Development Kit 

SHA Secure Hash Algorithm 

SUOTA Software Update Over-The-Air 

TLS Transport Layer Security 

UART Universal Asynchronous Receiver/Transmitter 

UTPM Unwanted Tracking Protection Mode 

UUID Universally Unique Identifier 

VES Virtual EEPROM Storage 

 

 



DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 4 
   

 

2. References 

[1] DA14592, Datasheet, Renesas Electronics. 

[2] DA14592 Getting Started with the Development Kit, https://lpccs-docs.renesas.com/um-b-166-

da1459x_getting_started/index.html. 

[3] Find My Network Accessory Specification, Release R2, Apple Inc. 

[4] Google Fast Pair Procedure, https://developers.google.com/nearby/fast-pair/specifications/service/gatt. 

[5] UM-B-179, DA14592 Apple Find My Network Accessory Reference Application, User Manual, Revision 1.1, 

Renesas Electronics. 

[6] UM-B-178, DA14592 Google Fast Pair with Find My Device Network Extension Reference Application, 

User Manual, Revision 1.1, Renesas Electronics. 

Note 1 References are for the latest published version, unless otherwise indicated. 

  

https://lpccs-docs.renesas.com/um-b-166-da1459x_getting_started/index.html
https://lpccs-docs.renesas.com/um-b-166-da1459x_getting_started/index.html
https://developers.google.com/nearby/fast-pair/specifications/service/gatt


DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 5 
   

 

3. Introduction 

The key goals of this document are: 

▪ To present a complete sample project demonstrating a Crowd-Sourced Locationing (CSL) accessory device 

supporting both Apple Find My™ network and Google Fast Pair/ Find My Device Network. 

▪ To explain extended APIs and additional configurations to what has been already presented in corresponding 

user manuals in Ref. [5] and Ref. [6], used for integration into application projects. 

3.1 Prerequisites 

Before starting your work on the Crowd-Sourced Locationing (CSL) accessory implementation on DA14592, you 

need to download and install the latest e2studio and the latest SDK DA14592 platform. These can be 

downloaded from DA14592 product page (DA14592 - SmartBond Multi-Core Bluetooth LE 5.2 SoC with 

Embedded Flash | Renesas). Additionally, for this document a Pro Development Kit (DA14592-016FDEVKT-P - 

SmartBond™ DA14592 Bluetooth® Low Energy 5.2 SoC Development Kit Pro | Renesas) is required. 

3.2 Crowd-Sourced Locationing (CSL) 

Crowd-Sourced Locationing (CSL) is made possible with systems like Apple Find My™ network and Google Find 

My Device Network, which help track lost or stolen personal items using billions of smart devices (e.g. 

smartphones, tablets etc.) around the world. The principle is that a CSL-enabled device emits a beacon signal, 

which may be detected by any passing smart device running either the Apple Find My™ Network or Google Find 

My Device Network software services, reporting the latest known location of the CSL-enabled device based on 

the reported smart device's location. 

3.2.1 Apple Find My™ Network 

Apple Find My™ network accessory specification has been introduced by Apple to ease tracking of nearby 

Bluetooth® Low Energy (Bluetooth® LE) devices. Other iOS devices are used to track down Bluetooth® LE 

devices. 

Apple Find My™ network is a Bluetooth LE service to facilitate Find My™ pairing of Bluetooth LE devices 

(accessories) with iOS devices. An accessory can only be paired with one Apple ID. A paired device becomes a 

part of Find My™ network. It starts Bluetooth LE advertising that can be picked up by nearby iOS devices on the 

network. 

Further information regarding implementation of Find My™ network technology can be found in corresponding 

specification document in Ref. [3]. Registration to Made for iPhone/iPod/iPad (MFi) portal is required. 

3.2.2 Google Fast Pair with Find My Device Network Extension 

Google Fast Pair Service and Find My Device Network extension specification has been introduced by Google to 

ease tracking of nearby Bluetooth® Low Energy (Bluetooth® LE) devices. 

Google Fast Pair Service is a Bluetooth LE service to facilitate easy pairing of Bluetooth LE devices with as little 

user interaction as possible. Built on top of it, Find My Device Network is a protocol specification introduced by 

Google, defining a Bluetooth LE message format for end-to-end encrypted messages exchanged with beacons 

in proximity, enabling them to be provisioned for Find My Device Network using Bluetooth LE advertising and 

eventually being tracked by smart devices. More information can be found in Ref. [4] and Ref. [6]. 

https://www.renesas.com/us/en/products/wireless-connectivity/bluetooth-low-energy/da14592-smartbond-multi-core-bluetooth-le-52-soc-embedded-flash
https://www.renesas.com/us/en/products/wireless-connectivity/bluetooth-low-energy/da14592-smartbond-multi-core-bluetooth-le-52-soc-embedded-flash
https://www.renesas.com/us/en/products/wireless-connectivity/bluetooth-low-energy/da14592-016fdevkt-p-smartbond-da14592-bluetooth-low-energy-52-soc-development-kit-pro
https://www.renesas.com/us/en/products/wireless-connectivity/bluetooth-low-energy/da14592-016fdevkt-p-smartbond-da14592-bluetooth-low-energy-52-soc-development-kit-pro


DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 6 
   

 

4. Crowd-Sourced Locationing Accessory Application Project 

4.1 Software Architecture Overview 

The software architecture of the CSL accessory sample application project implementing both finding network 

device locationing solutions, Apple Find My™ network and Google Fast Pair with Find My Device Network 

Extension on top of the DA14592 SDK, is shown in Figure 1. 

 
Figure 1. CSL accessory sample application 

The DA14592 application software is organized in OS tasks running on top of DA14592 SDK. All corresponding 

details for application development can be found in Ref. [2]. 

The main software modules of the CSL accessory sample application are the following: 

▪ Accessory Task: This is the main task of the application, and it is responsible, except for controlling the 

Apple Find My™ network framework and the Google Fast Pair Service/Find My Device Network framework, 

and implementing their porting APIs, also for controlling access to peripherals, such as NVM storage, battery 

level monitoring, LEDs (simulating the status of a motion detector and a sound maker) and the user interface 

with the application executing on DA14592, which includes a button and a console for writing commands and 

checking the status of the application. 

▪ Apple Find My™ network framework: It is essentially a software layer residing on top of Bluetooth LE 

manager, employing the Apple Find My™ network Bluetooth LE service as well as the underlying system 

resources (Crypto, NVM storage), to manipulate the Bluetooth LE communication and the corresponding data 

transfers, the encryption and the storage of required data based on the Apple Find My™ network accessory 

specification. 

▪ Google Fast Pair Service/Find My Device Network framework: It is essentially a software layer residing on 

top of Bluetooth LE manager, mainly employing the Google Fast Pair and Accessory Non-Owner Bluetooth LE 

services, as well as the underlying system resources (Crypto, NVM storage), to manipulate the Bluetooth LE 

communication and the corresponding data transfers, the encryption and the storage of required data based 

on the Google Fast Pair Service/Find My Device Network specification. 

 

 



DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 7 
   

 

▪ Console: This is UART CLI providing the following commands: 

• Help – to show the list of available commands. 

• Reset – to reboot the system or Reset factory – to wipe out all pairing data. 

• Pairmode – to put the device in pairing mode. 

• Stopring – to stop device ringing (applicable for Google Finde My Device Network provisioned device). 

• Userconsent – to enable user consent mode. 

• Advertise – to start/stop advertising 

• Motion – to simulate a motion detection event. 

• Serial – to read and display serial number of the accessory. 

The accessory has a few operation states that are manipulated by either the Apple Find My™ network framework 

or the Google Fast Pair Service/Find My Device Network framework. For the user, there are two states that 

mainly matter, namely paired, where Bluetooth LE advertising frames are sent to enable tracking of the 

accessory, and unpaired, where the accessory is not yet provisioned for any finding network and a pairing 

process can be initiated. The state is kept and updated accordingly in NVM storage. 

4.2 Folder Structure and Files 

Table 1 lists and briefly describes all source and header files of the CSL accessory application project. 

Table 1. CSL accessory application project files 

Tree File name Description 

csl_accessory 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

main.c File main.c contains main function and initializations of the 

system. 

accessory_task.c File accessory_task.c contains the main application task, 

which handles Bluetooth LE communication, task handlers, 

control of finding network -related operations, and user 

interface. 

console.c File console.c contains implementation for communicating 

with a terminal over UART. 

platform_devices.c File plarform_devices.c contains the definition of UART and 

GPADC controller configuration structures used by the 

application for communicating with a terminal and monitoring 

battery voltage level. 

└─ afmn_support 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

afmn_battery_state.c File afmn_battery_state.c implements functions declared in 

Apple Find My™ network framework's porting API in 

afmn_battery_state.h file, enabling access to battery level. 

afmn_ble.c (Note 2) File afmn_ble.c implements functions declared in Apple Find 

My™ network framework's porting API in afmn_ble.h file, 

enabling control of BLE operations (advertising). 

afmn_conn_params.c File afmn_conn_params.c implements functions declared in 

Apple Find My™ network framework's porting API in 

afmn_conn_params.h file, enabling access to corresponding 

connectivity parameters stored in NVM storage. 

afmn_motion_detector.c File afmn_motion_detector.c implements functions declared 

in Apple Find My™ network framework's porting API in 

afmn_motion_detector.h file, enabling motion detector 

control. 

afmn_sound_maker.c File afmn_sound_maker.c implements functions declared in 

Apple Find My™ network framework's porting API in 

afmn_sound_maker.h file, enabling control of sound maker. 

afmn_sys_ctrl.c File afmn_sys_ctrl.c implements functions declared in Apple 

Find My™ network framework's porting API in 

afmn_sys_ctrl.h file, enabling control of system resources 

(system clock frequency). 



DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 8 
   

 

Tree File name Description 

└─ config 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

app_nvparam_values.h This folder contains all configuration header files for: 

● the target device and application 

● the Apple Find My™ network framework 

● the Google Fast Pair Service/Find My Device Network 

framework 

● the NVM (eFlash/QSPI Flash) storage (partition table and 

parameters). 

app_nvparam.h 

custom_config_eflash_suota.h 

custom_config_eflash.h 

custom_config_qspi_suota.h 

custom_config_qspi.h 

platform_devices.h 

fw_version.h (Note 2) 

accessory_config.h 

afmn_config.h 

fast_pair_config.h 

EFLASH/suota/partition_table.h 

EFLASH/partition_table.h 

4M/suota/partition_table.h 

4M/partition_table.h 

└─ fp_support 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

fp_ble.c (Note 2) File fp_ble.c implements functions declared in Google Fast 

Pair Service/Find My Device Network framework's porting 

API in fp_ble.h file, enabling control of BLE operations 

(advertising). 

fp_conn_params.c File fp_conn_params.c implements functions declared in 

Google Fast Pair Service/Find My Device Network 

framework’s porting API in fp_conn_params.h file, enabling 

access to corresponding connectivity parameters stored in 

NVM storage. 

fp_motion_detector.c File fp_motion_detector.c implements functions declared in 

Google Fast Pair Service/Find My Device Network 

framework’s fp_motion_detector.h file, enabling motion 

detector control. 

fp_ring_comp.c File fp_ring_comp.c implements functions declared in Google 

Fast Pair Service/Find My Device Network framework’s 

fp_ring_comp.h file, enabling ringing components control. 

└─ mbedtls_port 

│ 

│ 

│ 

mbedtls_config.h File mbedtls_config.h includes Mbed TLS configuration 

macros. 

mbedtls_port.h 

mbedtls_port.c 

Files mbedtls_port.h and mbedtls_port.c implement Mbed 

TLS integration porting layer. 

└─ sdk 

│    └─ afmn 

│           └─ lib 

│           │ 

libfmn_adk_da1459x.a 

libfmn_adk_dbg_da1459x.a 

Apple Find My™ network libraries which contain Apple Find 

My™ network ADK ported for DA14592. 

libfmn_adk_dbg_da1459x.a should be used when running 

Apple Find My™ network accessory application in debug 

mode, as required by specific test cases. 

│           └─ include 

│           │ 

│           │ 

│           │ 

│           │ 

│           │ 

│           │ 

│           │ 

│           │ 

│           │ 

│           │ 

afmn.h File afmn.h contains top level API functions for controlling 

Apple Find My™ network framework. 

afmn_battery_state.h File afmn_battery_state.h contains declaration of functions 

used by Apple Find My™ network framework for accessing 

battery level. 

afmn_ble.h (Note 1) File afmn_ble.h contains declaration of functions used by 

Apple Find My™ network framework for controlling BLE 

operations (advertising). 

afmn_conn_params.h File afmn_conn_params.h contains declaration of functions 

used by Apple Find My™ network framework for accessing 

connectivity parameters. 

afmn_defaults.h File afmn_defaults.h contains default Apple Find My™ 

network framework configuration parameters. 



DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 9 
   

 

Tree File name Description 

│           │ 

│           │ 

│           │ 

│           │ 

│           │ 

│           │ 

│           │ 

│           │ 

│           │ 

│           │ 

│           │ 

│           │ 

│           │ 

│           │ 

afmn_errors.h File afmn_errors.h contains enumeration codes for level and 

category of errors identified by Apple Find My™ network 

framework. 

afmn_motion_detector.h File afmn_motion_detector.h contains declaration of 

functions used by Apple Find My™ network framework for 

controlling motion detector. 

afmn_sound_maker.h File afmn_sound_maker.h contains declaration of functions 

used by Apple Find My™ network framework for controlling 

sound maker. 

afmn_sys_ctrl.h File afmn_sys_ctrl.h contains declaration of functions used 

by Apple Find My™ network framework for controlling system 

resources (system clock frequency). 

afmn_os_port.h File afmn_os_port.h contains OS porting API functions used 

in Apple Find My™ network framework. 

│           └─ src 

│           │ 

│           │ 

│           │ 

afmn_conf.c File afmn_conf.c maintains the configuration structure for 

Apple Find My™ network framework. 

afmn_os_port.c File afmn_os_port.c implements functions declared in Apple 

Find My™ network framework's OS porting API in 

afmn_os_port.h. 

│           └─ wolfssl 

│                 └─ lib 

│                 └─ port 

libwolfssl_afmn_da1459x.a A port of wolfSSL/wolfCrypt crypto library for DA14592, 

optimized for use with Apple Find My™ network framework. wc_da1459x.h 

wc_da1459x.c 

└─ sdk 

│    └─ fast_pair 

│           └─ ble/services 

│           │ 

include/anos.h 

src/anos.c 

Files anos.h and anos.c contain functions for Accessory 

Non-Owner service handling. 

include/gfps.h 

src/gfps.c 

Files gfps.h and gfps.c contain functions for Google Fast Pair 

service handling. 

│           └─ include 

│           │ 

│           │ 

│           │ 

│           │ 

│           │ 

│           │ 

│           │ 

│           │ 

│           │ 

│           │ 

│           │ 

│           │ 

│           │ 

│           │ 

│           │ 

fast_pair.h File fast_pair.h contains top level API functions for controlling 

Google Fast Pair Service/Find My Device Network 

framework. 

fp_ble.h (Note 1) File fp_ble.h contains declaration of functions used by 

Google Fast Pair Service/Find My Device Network 

framework for controlling BLE operations (advertising). 

fp_conn_params.h File fp_conn_params.h contains declaration of functions 

used by Google Fast Pair Service/Find My Device Network 

framework for accessing connectivity parameters. 

fp_defaults.h File fp_defaults.h contains default Google Fast Pair 

Service/Find My Device Network framework configuration 

parameters. 

fp_motion_detector.h File fp_motion_detector.h contains declaration of functions 

used by Google Fast Pair Service/Find My Device Network 

framework for controlling motion detector. 

fp_ring_comp.h File fp_ring_comp.h contains declaration of functions used 

by Google Fast Pair Service/Find My Device Network 

framework for controlling ringing components. 

│           └─ src 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

fp_account_keys.h 

fp_account_keys.c 

Files fp_account_keys.h and fp_account_keys.c implement 

API for account keys and ephemeral identity key handling 

operations. 

fp_ano.h 

fp_ano.c 

Files fp_ano.h and fp_ano.c implement the Accessory Non-

Owner service module. 

fp_core.h 

fp_core.c 

Files fp_core.h and fp_core.c implement the main module 

responsible for initialization, Fast Pair and Find My Device 

Network advertising, factory reset and Fast Pair notification 

handling for application. 

fp_crypto.h 

fp_crypto.c 

Files fp_crypto.h and fp_crypto.c include utilities for 

encrypting/decrypting. 



DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 10 
   

 

Tree File name Description 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

fp_fmdn.h 

fp_fmdn.c 

Files fp_fmdn.h and fp_fmdn.c implement Find My Device 

Network extension module. 

fp_motion_detection.h 

fp_motion_detection.c 

Files fp_motion_detection.h and fp_motion_detection.c 

implement Find My Device Network motion detection. 

fp_procedure.h 

fp_procedure.c 

Files fp_procedure.h and fp_procedure.c implement Google 

Fast Pair service module. 

fp_utils.h 

fp_utils.c 

Files fp_utils.h and fp_utils.c include utility functions used 

internally. 

fp_notifications.h File fp_notifications.h includes list of notifications handled 

within Google Fast Pair Service/Find My Device network 

framework. 

└─ utils adv_control.h (Note 2) 

adv_control.c (Note 2) 

Files adv_control.h and adv_control.c implement functions 

for controlling Bluetooh LE advertising. 

app_params.h 

app_params.c 

Files app_params.h and app_params.c implement functions 

supporting access to application parameters stored in NVM 

storage. 

battery_monitor.h 

battery_monitor.c 

Files battery_monitor.h and battery_monitor.c implement 

functions for controlling battery level monitoring. 

fn_control.h (Note 2) 

fn_control.c (Note 2) 

Files fn_control.h and fn_control.c implement functions for 

controlling finding network operations. 

led_control.h 

led_control.c 

Files led_control.h and led_control.c implement functions for 

controlling device LED. 

motion_detector.h (Note 2) 

motion_detector.c (Note 2) 

Files motion_detector.h and motion_detector.c implement 

functions for controlling motion detector as required by 

finding networks. 

sound_maker.h (Note 2) 

sound_maker.c (Note 2) 

Files sound_maker.h and sound_maker.c implement 

functions for controlling sound maker as required by finding 

networks. 

Note 1 New files added compared to Apple Find My™ network framework and Google Fast Pair Service/Find My Device 
Network framework implementations presented in Ref. [5] and Ref. [6], respectively. 

Note 2 New files added compared to the structure of sample applications presented in Ref. [5] and Ref. [6]. 

4.3 Application Configuration 

Table 2, Table 3, Table 4 and Table 5 list and briefly describe all (compile time) configuration parameters of the 

CSL accessory application project and of each of the finding network frameworks. 

Table 2. Target device and application project specific configuration 

Definition Default value Header file Description 

configTOTAL_HEAP_SIZE 21 * 1024 

(+2 * 1024 for 

SUOTA) 

custom_config_eflash.h 

custom_config_eflash_suota.h 

custom_config_qspi.h 

custom_config_qspi_suota.h 

The OS total heap size. 

defaultBLE_PPCP_INTERVAL_MIN 525 ms custom_config_eflash.h 

custom_config_eflash_suota.h 

custom_config_qspi.h 

custom_config_qspi_suota.h 

Minimum connection 

interval. 

defaultBLE_PPCP_INTERVAL_MAX 990 ms custom_config_eflash.h 

custom_config_eflash_suota.h 

custom_config_qspi.h 

custom_config_qspi_suota.h 

Maximum connection 

interval. 

defaultBLE_MTU_SIZE 512 custom_config_eflash.h 

custom_config_eflash_suota.h 

custom_config_qspi.h 

custom_config_qspi_suota.h 

Bluetooth LE MTU size. 



DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 11 
   

 

Definition Default value Header file Description 

ACCESSORY_DEFAULT_NAME "Renesas CSL 

Accessory" 

accessory_config.h GAP device name and 

local name used in scan 

response. 

ADV_CONTROL_MULT_EVENTS_ENABLE 
(Note 1) 

1 accessory_config.h Support of multiple 

concurrent advertising 

events is enabled (using 

adv_control.h API). 

SHORT_PRESS_TIMEOUT_MS 250 accessory_config.h Short-press button timeout 

interval used for either 

stopping ringing (Google 

Find My Device Network) 

or enabling user consent 

mode. 

DOUBLE_PRESS_TIMEOUT_MS 800 accessory_config.h Double-press button 

timeout interval used for 

indicating motion detection. 

LONG_PRESS_TIMEOUT_MS 4000 accessory_config.h Long-press button timeout 

interval used for starting 

pair mode. 

VERY_LONG_PRESS_TIMEOUT_MS 8000 accessory_config.h Very-long-press button 

timeout interval used for 

factory reset. 

ADV_STOP_PRESS_TIMEOUT_MS 2000 accessory_config.h Press button timeout 

interval used to stop 

advertising. 

ACCESSORY_BATTERIES_COUNT 1 accessory_config.h Number of available 

batteries. Values >1 refer 

to the case where multiple 

battery-powered peripheral 

components are controlled. 

BATTERY_MONITOR_INTERVAL_MS 5 * 60000 accessory_config.h Interval for checking 

battery voltage level 

periodically. 

BATTERY_MONITOR_FULL_LEVEL_MV 3000 accessory_config.h Fully charged battery 

voltage level. 

BATTERY_MONITOR_EMPTY_LEVEL_MV 1700 accessory_config.h Empty battery voltage 

level. 

LOW_POWER_MODE_BATTERY_LEVEL 15 accessory_config.h Battery low power mode 

threshold (%), applicable 

only for Google Find My 

Device Network. 

ADV_CONTROL_LOW_POWER_INTERVAL_ 

MS 

10 * 60000 accessory_config.h Battery low power mode 

advertising interval, 

applicable only for Google 

Find My Device Network. 

ADV_CONTROL_LOW_POWER_ADV_ 

TIMEOUT_MS 

10 * 1000 accessory_config.h Period during which 

advertising is enabled in 

low power mode, 

applicable only for Google 

Find My Device Network. 

TX_POWER_CONN GAP_TX_POWER_4_5

_dBm 

accessory_config.h TX power used for any 

GAP connection. 

PAIRING_MODE_TIMEOUT_MS 60000 accessory_config.h Pairing mode timeout 

interval. 

SERIAL_NUMBER_LOOKUP_TIMEOUT_MS 5 * 60000 accessory_config.h Bluetooth LE serial number 

lookup timeout interval. 



DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 12 
   

 

Definition Default value Header file Description 

BEACON_TIME_STORAGE_INTERVAL_MS 12 * 60 * 60000 accessory_config.h Interval at which beacon 

time is periodically updated 

in NVM storage, applicable 

only for Google Find My 

Device Network. 

defaultBLE_DIS_SW_REVISION SW_VERSION accessory_config.h Software revision for 

Device Information 

Service. SW_VERSION is in 

sw_version.h. 

defaultBLE_DIS_FW_REVISION FW_VERSION_MAJOR 

"."  

FW_VERSION_MINOR 

"."  

FW_VERSION_REVIS

ION 

accessory_config.h Firmware revision for 

Device Information 

Service. 

USE_CONSOLE (Note 1) 1 accessory_config.h Console module is 

enabled, for sending 

commands over UART. 

FW_VERSION_MAJOR (Note 1) 1 fw_version.h Firmware major version 

number (value needs to be 

defined without brackets). 

FW_VERSION_MINOR (Note 1) 0 fw_version.h Firmware minor version 

number (value needs to be 

defined without brackets). 

FW_VERSION_REVISION (Note 1) 0 fw_version.h Firmware revision version 

number (value needs to be 

defined without brackets). 

Note 1 New configuration macros added compared to the configuration of sample applications presented in Ref. [5] and 
Ref. [6]. 

Table 3. Apple Find My™ network framework specific configuration 

Definition Default value Header file Description 

AFMN_CONFIG_FILE "afmn_config.h" custom_config_eflash.h 

custom_config_eflash_suota.h 

custom_config_qspi.h 

custom_config_qspi_suota.h 

Path of Apple Find 

My™ network 

framework 

configuration file. 

AFMN_PRODUCT_DATA { 0x00, 0x11, 0x22, 

0x33, 0x44, 0x55, 

0x66, 0x77 } 

afmn_config.h Product data 

received from Apple 

when product plan is 

submitted and 

approved. It is 8-byte 

value. 

AFMN_MANUFACTURER_NAME "Renesas" afmn_config.h Manufacturer name. 

AFMN_MODEL_NAME "DA1459x" afmn_config.h Model name. 

AFMN_ACCESSORY_CATEGORY 1 (Finder) afmn_config.h Accessory category. 

AFMN_ACCESSORY_CAPABILITY AFMN_ACCESSORY_CAPABILITY 

_PLAY_SOUND |  

AFMN_ACCESSORY_CAPABILITY 

_UT_MOTION_DETECT |  

AFMN_ACCESSORY_CAPABILITY 

_SRNM_LOOKUP_BLE 

afmn_config.h Accessory capability. 

AFMN_FW_VERSION_MAJOR FW_VERSION_MAJOR afmn_config.h Firmware major 

version number 

(value needs to be 

defined without 

brackets). 

AFMN_FW_VERSION_MINOR FW_VERSION_MINOR afmn_config.h Firmware minor 

version number 



DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 13 
   

 

Definition Default value Header file Description 

(value needs to be 

defined without 

brackets). 

AFMN_FW_VERSION_REVISION FW_VERSION_REVISION afmn_config.h Firmware revision 

version number 

(value needs to be 

defined without 

brackets). 

AFMN_CONFIG_OPTION (Note 1) AFMN_CONFIG_OPTION_ 

BLE_DB_CONTROLLED_BY_APP 

afmn_config.h Configuration option 

for Apple Find My™ 

network framework. 

In CSL accessory 

application project, 

BLE database control 

is performed by the 

application. 

AFMN_BATTERY_TYPE AFMN_BATTERY_TYPE_ 

NONRECHARGEABLE 

afmn_config.h Battery type. 

__AFMN_PAIR_RETAINED (Note 1) __attribute__((section( 

"afmn_pair_ 

retention_mem_zi"))) 

afmn_defaults.h Section where 

retained data are 

stored that are 

initialized and used 

only during Apple 

Find My™ network 

pairing process. It 

cannot be changed. 

__AFMN_UNPAIRED_RETAINED 
(Note 1) 

__attribute__((section( 

"afmn_unpaired_ 

retention_mem_zi"))) 

afmn_defaults.h Section where 

retained data are 

stored that are used 

only when the device 

is not provisioned for 

Apple Find My™ 

network. It cannot be 

changed. 

AFMN_BATTERY_LEVEL_MEDIUM 70 afmn_defaults.h Battery level 

threshold (%) for 

medium battery level. 

AFMN_BATTERY_LEVEL_LOW 30 afmn_defaults.h Battery level 

threshold (%) for low 

battery level. 

AFMN_BATTERY_LEVEL_CRITICAL 10 afmn_defaults.h Battery level 

threshold (%) for 

critical battery level. 

AFMN_ADV_TX_POWER GAP_TX_POWER_4_5_dBm afmn_defaults.h TX power used for 

GAP advertising. 

AFMN_TX_POWER_SERVICE_LEVEL 4 afmn_defaults.h TX power level set in 

Bluetooth LE TX 

Power Service. 

AFMN_SOUND_DURATION 10 s afmn_defaults.h Play sound duration 

in seconds. 

AFMN_TIMER_CLK_ACCURACY AFMN_TIMER_CLK_ 

ACCURACY_LOW 

afmn_config.h Accuracy of the OS 

timer clock source. 

Note 1 New configuration macros added, compared to Apple Find My™ network framework configuration presented in Ref. 
[5]. 



DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 14 
   

 

Table 4. Google Fast Pair Service/Find My Device Network framework specific configuration for Fast Pair 

Definition Default value Header file Description 

FAST_PAIR_CONFIG_FILE fast_pair_config.h  custom_config_eflash.h 

custom_config_eflash_suota.h 

custom_config_qspi.h 

custom_config_qspi_suota.h 

Path of Google Fast Pair 

Service/Find My Device 

Network framework 

configuration file. 

FP_MODEL_ID 0xXXXXXX fast_pair_config.h Fast Pair model ID. 

FP_BATTERY_NOTIFICATION 1 fp_defaults.h Battery level notification 

extension is enabled. 

FP_FMDN 1 fast_pair_config.h Enable the support of 

Find My Device Network 

extension. 

FP_LOCATOR_TAG 1 fast_pair_config.h Indicate that the device 

is a locator tag. 

FP_PERSONALIZED_NAME "Renesas Find My Device 

Network Accessory" or 

"Renesas Fast Pair Device" 

fast_pair_config.h Fast Pair personalized 

name displayed as name 

for paired device at 

Android. 

FP_PERSONALIZED_NAME_MAX_ 

LENGTH 

64 fp_defaults.h Max. length of Fast Pair 

personalized name. 

FP_ANTI_SPOOFING_PRIVATE_ 

KEY 

- fast_pair_config.h Assigned by Google anti-

spoofing private key for 

model ID. 

FP_ACCOUNT_KEYS_COUNT 5 fp_defaults.h Maximum number of 

stored AKs in NVM 

storage. 

FP_CALIBRATED_TX_POWER_ 

LEVEL 

-30 fast_pair_config.h TX power level 

calculated with Fast Pair 

Validator app; as 

received at 0 m (a value 

in the range [˗100, 20]). 

FP_ADVERTISE_CALIBRATED_ 

TX_POWER_LEVEL 

1 fp_defaults.h Include TX power level 

for Fast Pair frames in 

the advertising payload. 

FP_ADV_TX_POWER GAP_TX_POWER_MINUS_23_ 

dBm 

fast_pair_config.h TX power used for 

advertising Fast Pair 

frames. 

FP_BATTERIES_COUNT 1 fast_pair_config.h Number of available 

batteries. 

FP_MAX_PAIRING_FAILURES 10 fp_defaults.h Allowed number of failed 

pairing attempts. 

FP_AES_HW 1 fp_defaults.h If 1, then hardware 

crypto engine is used, 

otherwise, Mbed TLS 

library. 

FP_DIS_ENABLE (Note 1) 0 fast_pair_config.h Device Information 

Service (DIS) is 

registered by Google 

Fast Pair Service/Find 

My Device Network 

framework. In CSL 

accessory application 

project DIS is registered 

by the application. 

FP_CONFIG_OPTION (Note 1) FP_CONFIG_OPTION_ 

BLE_DB_CONTROLLED_BY_APP 

fast_pair_config.h Configuration option for 

Google Fast Pair 

Service/Find My Device 

Network framework. In 



DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 15 
   

 

Definition Default value Header file Description 

CSL accessory 

application project, BLE 

database control is 

performed by the 

application. 

__FP_RETAINED (Note 1) __RETAINED fp_defaults.h Section where retained 

data are stored that are 

initialized and used only 

after Google Fast Pair 

Service/Find My Device 

Network framework 

initialization. 

FP_TIMER_CLK_ACCURACY FP_TIMER_CLK_ 

ACCURACY_LOW 

fast_pair_config.h Accuracy of the OS timer 

clock source. 

FP_LOG_ENABLE 0 fast_pair_config.h Enable logging for 

operations related to 

Fast Pair. 

Note 1 New configuration macros added, compared to Google Fast Pair Service/Find My Device Network framework 
configuration for Fast Pair presented in Ref. [6]. 

Table 5. Google Fast Pair Service/Find My Device Network framework specific configuration for Find My Device 

Network 

Definition Default value Header file Description 

FP_FMDN_MANUFACTURER_NAME “Renesas” fast_pair_config.h Manufacturer name. 

FP_FMDN_MODEL_NAME “DA1459x” fast_pair_config.h Model name. 

FP_FMDN_ACCESSORY_CATEGORY 1 (location tracker) fast_pair_config.h Accessory category. 

FP_FMDN_ACCESSORY_ 

CAPABILITIES 

FP_FMDN_ACCESSORY_CAPABILITY 

_PLAY_SOUND |  

FP_FMDN_ACCESSORY_CAPABILITY 

_UT_MOTION_DETECT |  

FP_FMDN_ACCESSORY_CAPABILITY 

_ID_LOOKUP_BLE 

fast_pair_config.h  Capabilities of the Find My 

Device Network accessory. 

FP_FMDN_NETWORK_ID 2 fp_defaults.h Network ID for Google. 

FP_FMDN_FW_VERSION_MAJOR FW_VERSION_MAJOR (Note 1) fast_pair_config.h Firmware major version 

number (value needs to be 

defined without brackets). 

FP_FMDN_FW_VERSION_MINOR FW_VERSION_MINOR (Note 1) fast_pair_config.h Firmware minor version 

number (value needs to be 

defined without brackets). 

FP_FMDN_FW_VERSION_REVISION FW_VERSION_REVISION (Note 1) fast_pair_config.h Firmware revision version 

number (value needs to be 

defined without brackets). 

FP_FMDN_BATTERY_TYPE FP_FMDN_BATTERY_TYPE_ 

NONRECHARGEABLE 

fast_pair_config.h Battery type. 

FP_FMDN_BATTERY_LEVEL_ 

MEDIUM 

70 fp_defaults.h Battery level threshold (%) 

for medium battery level. 

FP_FMDN_BATTERY_LEVEL_ 

LOW 

30 fp_defaults.h  Battery level threshold (%) 

for low battery level. 

FP_FMDN_BATTERY_LEVEL_ 

CRITICAL 

10 fp_defaults.h  Battery level threshold (%) 

for critical battery level. 

FP_FMDN_CALIBRATED_TX_POWER_ 

LEVEL 

2 fast_pair_config.h Calibrated TX power for 

Find My Device Network 

frames as received at 0m. 

FP_FMDN_ADV_TX_POWER GAP_TX_POWER_4_5_dBm fast_pair_config.h TX power used by Provider 

after successful Find My 

Device Network 

provisioning. 



DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 16 
   

 

Definition Default value Header file Description 

FP_FMDN_RING_COMPONENTS_NUM 1 fast_pair_config.h The number of Provider 

components capable of 

ringing.  

FP_FMDN_RINGING_CAPABILITIES FP_FMDN_RINGING_VOLUME_ 

AVAILABLE 

fast_pair_config.h Ringing volume selection is 

available for Provider ringing 

components. 

FP_FMDN_USER_CONSENT_ 

TIMEOUT_MS 

5 * 60000 fp_defaults.h User consent timeout 

interval for Find My Device 

Network. 

FP_FMDN_PROVISIONING_INIT_ 

TIMEOUT_MS 

30 * 1000 fp_defaults.h Find My Device Network 

provisioning initiation 

duration (after power loss). 

FP_FMDN_NON_OWNER_PLAY_ 

SOUND_TIMEOUT_MS 

12 * 1000 fp_defaults.h Find My Device Network 

play sound duration when 

initiated by non-owner 

device. 

FP_FMDN_MOTION_DETECT_PLAY_ 

SOUND_TIMEOUT_MS 

1 * 1000 fp_defaults.h Find My Device Network 

play sound duration when 

motion is detected in 

separated state. 

FP_FMDN_LOG_ENABLE 0 fast_pair_config.h Enable logging for 

operations related to Find 

My Device Network. 

Note 1 Changes to configuration macros, compared to Google Fast Pair Service/Find My Device Network framework 
configuration for Find My Device Network presented in Ref. [6]. 

4.4 Apple Find My™ Network Integration 

The section mainly presents the API and configuration of the Apple Find My™ network framework used for 

integrating it in an application. Further information, such as how to add Product Data and MFi Token, can be 

found in Ref. [5]. 

4.4.1 API for Application 

The application can initialize and control the Apple Find My™ network framework using the top-level API defined 

in sdk\afmn\include\afmn.h. Focusing on the Apple Find My™ network accessory implementation, the functions 

which comprise that top-level API are briefly presented in this section. 

The application starts Apple Find My™ network framework by calling afmn_init(const afmn_config_t *cfg). 

This is the function that needs to be called before any other functions to initialize Apple Find My™ network 

framework. The configuration structure, which is passed (cfg) as argument, contains callback functions that are 

called during the execution of the corresponding Apple Find My™ network operations for indicating their status to 

the application. More specifically: 

▪ execution_cb – requests application to call afmn_execution(), which triggers execution of the Apple Find 

My™ network framework in application task context. 

▪ state_cb – notifies about accessory state changes. 

▪ db_reset_cb – notifies about the reset of GATT attribute database initiated by Apple Find My™ network 

framework. If AFMN_CONFIG_OPTION is set to AFMN_CONFIG_OPTION_BLE_DB_CONTROLLED_BY_APP, Bluetooth LE 

services for Apple Find My™ network need to be registered to GATT attribute database by the application, 

calling afmn_add_services_to_db(). 

▪ error_cb – notifies about an error occurred during the Apple Find My™ network framework execution. 

▪ pair_init_cb – notifies about the initiation of pairing process for Apple Find My™ network provisioning. 

▪ utc_cb – notifies about the update of UTC value by Apple Find My™ network. 

pair_init_cb and utc_cb comprise an extension to the configuration structure presented in Ref. [5]. 



DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 17 
   

 

Table 6 lists the rest of the API functions that can be called by an application integrating Apple Find My™ network 

framework. 

Table 6. Apple Find My™ network API functions 

API function Description 

void afmn_deinit(bool suspend) (Note 1) Release allocated resources for Apple Find My™ network 

framework. If argument suspend is set to true, then part of 

framework's state is maintained, so that it can be resumed 

when calling again afmn_init(). If argument suspend is set 

to false, Apple Find My™ network framework cannot be 

reinitialized, and a device reboot is needed. 

bool afmn_is_initialized(void) (Note 1) Check if Apple Find My™ network framework is initialized, so 

that the rest of API functions can be called. 

void afmn_execution(void) Trigger execution of the Apple Find My™ network framework 

in application task context. 

void afmn_factory_reset(void) Force the device into factory default settings for Apple Find 

My™ network framework. All stored pairing data is wiped 

out. 

bool afmn_handle_event(ble_evt_hdr_t *evt) (Note 1) Handle Bluetooth LE events for the Apple Find My™ network 

framework. If AFMN_CONFIG_OPTION is set to 

AFMN_CONFIG_OPTION_NORMAL, this function must be called 

instead of ble_service_handle_event(), in order for the 

registered to the Bluetooth LE framework application task to 

receive Bluetooth LE event notifications. Otherwise, if set to 

AFMN_CONFIG_OPTION_BLE_DB_CONTROLLED_BY_APP, 

ble_service_handle_event() should be called by the 

application. 

void afmn_set_scan_response(uint8_t structs_count, 

const gap_adv_ad_struct_t *structs) 

Add structures to Apple Find My™ network scan response 

data. 

void afmn_set_serial_number_lookup(bool enable) Set serial number lookup by Bluetooth LE. 

bool afmn_is_serial_number_lookup_enabled(void) Check if serial number lookup by Bluetooth LE is enabled. 

bool afmn_start_pair_mode(void) Start Apple Find My™ network pair mode. 

bool afmn_is_pair_mode(void) (Note 1) Check if Apple Find My™ network pair mode is enabled. 

AFMN_ACCESSORY_STATE afmn_get_accessory_state(void) Return current state of Apple Find My™ network accessory. 

void afmn_add_services_to_db(void) (Note 1) Create and register Bluetooth LE services for Apple Find 

My™ network to the GATT attribute database. It can be used 

when AFMN_CONFIG_OPTION is set to 

AFMN_CONFIG_OPTION_BLE_DB_CONTROLLED_BY_APP. 

void afmn_remove_services_from_db(void) (Note 1) Remove Bluetooth LE services for Apple Find My™ network 

from the GATT attribute database. It can be used when 

AFMN_CONFIG_OPTION is set to 

AFMN_CONFIG_OPTION_BLE_DB_CONTROLLED_BY_APP. 

Note 1 Changes in API, compared to Apple Find My™ network API presented in Ref. [5]. 

4.4.2 Porting API 

An Apple Find My™ network accessory requires the use of hardware components like a sound maker, a motion 

detector, and an NVM storage to support Find My™ network technology. The control of such hardware 

components, as well as the system underlying resources and Bluetooth LE operations (advertising), is performed 

using a set of functions comprising the Apple Find My™ network framework's porting API located in 

utilities\apple_fmn\include folder. The declarations of those functions are grouped in several header files, 

essentially defining the interfaces to those hardware components and system resources required by the 

framework that need to be implemented by the application on an end-product design. Except for 

afmn_os_port.h which is implemented in utilities\apple_fmn\src\afmn_os_port.c, for the rest of the functions 

declared in the porting API header files, corresponding weak function (empty or default) implementations are 

provided by Apple Find My™ network libraries, libfmn_adk_da1459x.a and libfmn_adk_dbg_da1459x.a. 

Table 7 lists and briefly describes Apple Find My™ network framework's porting API per interface type. 



DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 18 
   

 

Table 7. Apple Find My™ network porting API functions 

Interface Functions Description 

Battery Monitoring 

(afmn_battery_state.h) 

uint8_t afmn_battery_state_get_level(void) Return the battery level in the range 

0 - 100 (%). If not implemented in 

application, it always returns 100. 

Bluetooth LE operations 

(advertising) control 

(afmn_ble.h) (Note 1) 

 

If not implemented in 

application, default 

implementation involves 

control of Bluetooth LE 

advertising only for Apple 

Find My™ network 

support. 

void afmn_ble_adv_init(void) Initialize resources for Bluetooth LE 

advertising as required for Apple 

Find My™ network support. 

void afmn_ble_adv_deinit(void) Release resources for Bluetooth LE 

advertising that have been 

previously allocated with 

afmn_ble_adv_init(). 

ble_error_t afmn_ble_adv_set_params( 

const afmn_ble_adv_params_t *params) 

Set Bluetooth LE advertising 

parameters (discoverability and 

connectivity modes, interval and TX 

power level), as required for Apple 

Find My™ network support, before 

advertising is started. 

ble_error_t afmn_ble_adv_set_ad_struct( 

size_t ad_len, const gap_adv_ad_struct_t *ad, 

size_t sd_len, const gap_adv_ad_struct_t *sd) 

Set Bluetooth LE advertising and 

scan response data, as required for 

Apple Find My™ network support. 

ble_error_t afmn_ble_adv_start(void) Start Bluetooth LE advertising for 

Apple Find My™ network support. 

bool afmn_ble_adv_is_started(void) Check if Bluetooth LE advertising for 

Apple Find My™ network support is 

started. 

ble_error_t afmn_ble_adv_stop(void) Stop Bluetooth LE advertising for 

Apple Find My™ network support. 

ble_error_t afmn_ble_adv_stop_all(void) Stop sending any Bluetooth LE 

advertising packets. 

Connectivity parameters 

storage 

(afmn_conn_params.h) 

 

If not implemented in 

application, default 

implementation is empty. 

uint16_t afmn_conn_params_get_params( 

afmn_conn_params_t *params, uint8_t n) 

Read a set of Apple Find My™ 

network connectivity parameters 

from NVM storage. 

uint16_t afmn_conn_params_set_params( 

afmn_conn_params_t *params, uint8_t n) 

Write a set of Apple Find My™ 

network connectivity parameters to 

NVM storage. 

Motion detector 

(afmn_motion_detector.h) 

 

If not implemented in 

application, default 

implementation is empty. 

void afmn_motion_detector_init( 

const afmn_motion_detector_config_t *cfg) 

Initialize the motion detector for 

Apple Find My™ network. 

void afmn_motion_detector_deinit(void) De-initialize the motion detector for 

Apple Find My™ network. 

void afmn_motion_detector_enable(void) Enable the motion detector for 

Apple Find My™ network. 

void afmn_motion_detector_disable(void) Disable the motion detector for 

Apple Find My™ network. 

Sound maker 

(afmn_sound_maker.h)  

 

If not implemented in 

application, default 

implementation is empty. 

void afmn_sound_maker_init(void) Initialize the sound maker for Apple 

Find My™ network. 

void afmn_sound_maker_deinit(void) De-initialize the sound maker for 

Apple Find My™ network. 

void afmn_sound_maker_enable(void) Enable the sound maker for Apple 

Find My™ network. 

void afmn_sound_maker_disable(void) Disable the sound maker for Apple 

Find My™ network. 

System control 

(afmn_sys_ctrl.h)  

 

void afmn_sys_ctrl_set_perf( 

AFMN_SYS_CTRL_PERF perf) 

Set processing performance 

(system clock frequency) for Apple 

Find My™ network. 



DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 19 
   

 

Interface Functions Description 

If not implemented in 

application, default 

implementation is empty. 

AFMN_SYS_CTRL_PERF afmn_sys_ctrl_get_perf(void) Get current processing performance 

(system clock frequency) set for 

Apple Find My™ network. If not 

implemented in application, it 

always returns 

AFMN_SYS_CTRL_PERF_NORMAL. 

OS resources 

(afmn_os_port.h) 

 

It is implemented in 

afmn_os_port.c. 

afmn_os_queue_t afmn_os_queue_create( 

uint32_t elem_size, uint32_t max_elems) 

Create OS queue of a max number 

of elements of specified size. 

void afmn_os_queue_delete( 

afmn_os_queue_t queue) (Note 1) 

Delete OS queue. 

int afmn_os_queue_put(afmn_os_queue_t queue, 

const void * const elem, uint32_t timeout) 

Add an element to OS queue. 

int afmn_os_queue_get(afmn_os_queue_t queue, 

void * const elem, uint32_t timeout) 

Remove an element from OS 

queue. 

int afmn_os_register_task(void) Register the current task to OS, to 

be notified for calling 

afmn_os_timer_execution(). 

void afmn_os_timer_execution(void) Handle pending notifications for OS 

timer control. 

afmn_os_timer_t afmn_os_timer_create( 

AFMN_OS_TIMER_TYPE type, afmn_os_timer_cb_t cb) 

Create OS timer. 

int afmn_os_timer_start(afmn_os_timer_t timer, 

uint32_t period) 

Start OS timer. 

int afmn_os_timer_stop(afmn_os_timer_t timer) Stop OS timer. 

int afmn_os_timer_delete(afmn_os_timer_t timer) Delete OS timer. 

bool afmn_os_timer_is_active( 

afmn_os_timer_t timer) 

Check if OS time is active. 

uint32_t afmn_os_timer_get_timer_id( 

afmn_os_timer_t timer) 

Return OS timer ID. 

uint32_t afmn_os_ms_to_ticks(uint32_t ms) Convert ms to OS ticks. 

void *afmn_os_malloc(size_t size) Allocate memory in OS heap. 

void afmn_os_free(void *addr) De-allocate memory from OS heap. 

Note 1 Changes in porting API, compared to Apple Find My™ network porting API presented in Ref. [5]. 

4.4.3 Bluetooth LE Event Handling 

All Apple Find My™ network requests over Bluetooth LE are handled by the Apple Find My™ network framework 

library. Corresponding Bluetooth LE events are handled by calling afmn_handle_event() in application's OS task 

main loop. In the application's configuration header file for Apple Find My™ network framework, the path of which 

is defined by AFMN_CONFIG_FILE, if AFMN_CONFIG_OPTION is set to AFMN_CONFIG_OPTION_NORMAL, then 

afmn_handle_event() must be called instead of ble_service_handle_event(), as the latter is called internally 

in the Apple Find My™ network library, in order for the registered to the Bluetooth LE framework application task 

to receive Bluetooth LE event notifications. Otherwise, if AFMN_CONFIG_OPTION is set to 

AFMN_CONFIG_OPTION_BLE_DB_CONTROLLED_BY_APP, then ble_service_handle_event() should be called by the 

application, so that the Bluetooth LE events can be also handled by the registered instances of Bluetooth LE 

services. 

AFMN_CONFIG_OPTION value also defines (AFMN_CONFIG_OPTION is set to AFMN_CONFIG_OPTION_NORMAL) whether 

Bluetooth LE services instances required for Apple Find My™ network support are registered to Bluetooth LE 

attribute database internally by the Apple Find My™ network framework, or (AFMN_CONFIG_OPTION is set to 

AFMN_CONFIG_OPTION_BLE_DB_CONTROLLED_BY_APP) whether their registration is completely controlled by the 

application, by calling afmn_add_services_to_db() and afmn_remove_services_from_db() API functions. 



DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 20 
   

 

4.4.4 Bluetooth LE Advertising 

Apple Find My™ network advertised payload is controlled only within Apple Find My™ network framework library. 

Corresponding changes to Bluetooth LE advertising parameters and start or stop operations of Apple Find My™ 

network advertising events are performed by the framework, calling the porting API functions defined in 

utilities\apple_fmn\include\afmn_ble.h, the implementation of which is either provided by the application or it 

involves, by default (i.e. internal weak function implementations), direct calls to corresponding SDK Bluetooth LE 

functions defined in sdk\interfaces\ble\api\include\ble_gap.h. 

More details regarding the advertised payloads can be found in the Apple Find My™ network specification 

document (Ref. [3]) available in MFi portal. 

4.4.5 Configuration 

The default configuration for Apple Find My™ network framework is located in 

utilities\apple_fmn\include\afmn_defaults.h header file. The application can overwrite the default 

configuration preprocessor macro definitions using a configuration file whose path is defined by 

AFMN_CONFIG_FILE. There is a configuration structure (afmn_const_config) defined in 

utilities\apple_fmn\src\afmn_conf.c, which is initialized with the values of preprocessor macro definitions and 

referenced by the Find My™ network ADK library. In the sample application project, this configuration file, called 

afmn_config.h, is located in application's config folder, while its relative path is defined by AFMN_CONFIG_FILE in 

config\custom_config_xx.h files. The list of definitions that can be changed is presented in Table 3. 

4.5 Google Fast Pair Service/Find My Device Network Framework 
Integration 

The section mainly presents the API and configuration of the Google Fast Pair Service/Find My Device Network 

framework used for integrating it in an application. Further information, such as how to add Fast Pair Model ID 

and how to perform TX power calibration, as well as implementation details for Google Fast Pair Service/Find My 

Device Network framework, can be found in Ref. [6]. 

4.5.1 API for Application 

The application can initialize and control the Google Fast Pair Service/Find My Device Network framework using 

the top-level API defined in utilities\fast_pair\include\fast_pair.h. Focusing on the Google Fast Pair Provider 

with Find My Device Network extension implementation, the functions which comprise that top-level API are 

briefly presented in this section. 

The application starts Google Fast Pair/Find My Device Network framework by calling fp_init(fp_cfg_t *cfg). 

This is the function that needs to be called before any other to initialize Google Fast Pair Service/Find My Device 

Network framework. The configuration structure, which is passed (cfg) as argument, contains callback functions 

that are called during the execution of the corresponding Google Fast Pair Service/Find My Device Network 

operations for indicating their status to the application, as well as system’s batteries state information and control 

of advertising. More specifically: 

▪ execution_cb – requests application to call fp_execution(), which triggers execution of the Google Fast Pair 

Service/Find My Device Network framework core module in application task context. 

▪ beacon_time_cb – requests application to read and return current beacon time (in seconds), as required by 

Find My Device Network protocol related operations. 

▪ pair_status_cb – notifies about Fast Pair standard Bluetooth LE pairing status. 

▪ pair_req_status_cb – notifies about Fast Pair request status. 

▪ fmdn_prov_status_cb – notifies about Find My Device Network provisioning status. 

▪ error_cb – notifies about an error occurred during the Google Fast Pair Service/Find My Device Network 

framework execution. 

▪ batt_info – defines battery state information. 



DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 21 
   

 

▪ start_adv – indicates whether advertising will be also started upon the Google Fast Pair Service/Find My 

Device Network framework initialization. 

lists the rest of the API functions that can be called by an application integrating Google Fast Pair Service/Find 

My Device Network framework. 

Table 8. Google Fast Pair Service/Find My Device Network API functions 

API function Description 

void fp_deinit(void) (Note 1) Release allocated resources for Google Fast Pair 

Service/Find My Device Network framework. 

bool fp_is_initialized(void) (Note 1) Check if Google Fast Pair Service/Find My Device Network 

framework is initialized, so that the rest of API functions can 

be called. 

int fp_execution(void) Triggers execution of the Google Fast Pair Service/Find My 

Device Network framework core module in user application 

task context. 

int fp_factory_reset(void) Forces the device into factory default settings for Google 

Fast Pair Service/Find My Device Network framework. All 

stored keys are wiped out. 

bool fp_set_pairing_mode(bool enable) Starts or stops the Fast Pair pairing mode and informs the 

advertising state machine that the device should switch to 

discoverable pairing mode advertising. 

bool fp_is_pairing_mode(void) Informs the application whether Fast Pair mode is enabled or 

not. 

bool fp_handle_event(ble_evt_hdr_t *evt) Handles Bluetooth LE events for the Google Fast Pair 

Service/Find My Device Network framework and the 

employed Bluetooth LE services. If FP_CONFIG_OPTION is set 

to FP_CONFIG_OPTION_NORMAL, this function must be called 

instead of ble_service_handle_event(), in order for the 

registered to the Bluetooth LE framework application task to 

receive Bluetooth LE event notifications. Otherwise, if set to 

FP_CONFIG_OPTION_BLE_DB_CONTROLLED_BY_APP, 

ble_service_handle_event() should be called by the 

application. 

int fp_start_advertise(void) Starts Google Fast Pair Service/Find My Device Network 

discoverable or non-discoverable advertising based on 

whether Fast Pair pairing mode has started or not. 

int fp_stop_advertise(void) Stops Google Fast Pair Service/Find My Device Network 

discoverable or non-discoverable advertising. 

bool fp_is_advertise_stopped(void) Checks if Google Fast Pair Service/Find My Device Network 

advertising is stopped. 

int fp_add_custom_advertise(uint8_t structs_count, 

const gap_adv_ad_struct_t *structs) 

Adds custom advertise structures to Fast Pair advertising 

frames payload. 

int fp_set_scan_response(uint8_t structs_count, 

const gap_adv_ad_struct_t *structs) 

Adds structures to Google Fast Pair Service/Find My Device 

Network scan response data. 

void fp_set_acc_key_filter_ui_indication( 

bool enable) 

Sets account key filter UI indication for the Google Fast Pair 

Service/Find My Device Network framework. 

int fp_set_battery_information( 

const fp_battery_info_t info[FP_BATTERIES_COUNT]) 

Sets current battery status information for the Google Fast 

Pair Service/Find My Device Network framework. 

void fp_set_battery_ui_indication(bool enable) Sets battery UI indication for the Google Fast Pair 

Service/Find My Device Network framework. 

void fp_add_services_to_db(void) (Note 1) Create and register Bluetooth LE services for Google Fast 

Pair Service/Find My Device Network to the GATT attribute 

database. It can be used when FP_CONFIG_OPTION is set to 

FP_CONFIG_OPTION_BLE_DB_CONTROLLED_BY_APP. 

void fp_remove_services_from_db(void) (Note 1) Remove Bluetooth LE services for Google Fast Pair 

Service/Find My Device Network from the GATT attribute 



DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 22 
   

 

API function Description 

database. It can be used when FP_CONFIG_OPTION is set to 

FP_CONFIG_OPTION_BLE_DB_CONTROLLED_BY_APP. 

int fp_set_advertise_interval(uint16_t interval) Sets advertising interval for Find My Device Network frames. 

int fp_stop_ringing(void) Stops Google Fast Pair Service/Find My Device Network 

ringing process. 

bool fp_is_ringing(void) Checks if Google Fast Pair Service/Find My Device Network 

ringing is in progress. 

void fp_set_user_consent(bool enable) Enables or disables the Google Fast Pair Service/Find My 

Device Network user consent period. 

bool fp_is_fmdn_provisioned(void) Checks if Provider is Google Fast Pair Service/Find My 

Device Network provisioned. 

void fp_set_firmware_status(FP_FW_STATUS status) 
(Note 1) 

Sets Google Fast Pair Service/Find My Device Network 

firmware status to "normal", "updating", or "abnormal". 

Note 1 Changes in API, compared to Google Fast Pair Service/Find My Device Network API presented in Ref. [6]. 

4.5.2 Porting API 

A Google Fast Pair Service/Find My Device Network accessory requires the use of hardware components like a 

motion detector, a ringing component and an NVM storage. The control of such hardware components, as well 

as the system underlying resources and Bluetooth LE operations (advertising), is performed using a set of 

functions comprising the Google Fast Pair Service/Find My Device Network framework's porting API located in 

utilities\fast_pair\include folder. The declarations of those functions are grouped in several header files, 

essentially defining the interfaces to those hardware components and system resources required by the 

framework that need to be implemented by the application on an end-product design. For some of the functions 

declared in the porting API header files, corresponding weak function (empty or default) implementations are 

provided by Google Fast Pair Service/Find My Device Network framework. Table 9 lists and briefly describes the 

porting API per interface type. 

Table 9. Google Fast Pair Service/Find My Device Network porting API functions 

Interface Functions Description 

Bluetooth LE operations 

(advertising) control 

(fp_ble.h) (Note 1) 

 

If not implemented in 

application, default 

implementation involves 

control of Bluetooth LE 

advertising only for Google 

Fast Pair Service/Find My 

Device Network support. 

void fp_ble_adv_init(void) Initialize resources for Bluetooth LE 

advertising as required for Google Fast 

Pair Service/Find My Device Network 

support. 

void fp_ble_adv_deinit(void) Release resources for Bluetooth LE 

advertising that have been previously 

allocated with fp_ble_adv_init(). 

ble_error_t fp_ble_adv_set_params( 

const fp_ble_adv_params_t *params) 

Set Bluetooth LE advertising 

parameters (discoverability and 

connectivity modes, interval and TX 

power level), as required for Google 

Fast Pair Service/Find My Device 

Network support, before advertising is 

started. 

ble_error_t fp_ble_adv_set_tx_power( 

gap_tx_power_t tx_power) 

Set TX power level for Bluetooth LE 

advertising, as required for Google Fast 

Pair Service/Find My Device Network 

support. 

ble_error_t fp_ble_adv_set_ad_struct( 

size_t ad_len, const 

gap_adv_ad_struct_t *ad, size_t sd_len, 

const gap_adv_ad_struct_t *sd) 

Set Bluetooth LE advertising and scan 

response data, as required for Google 

Fast Pair Service/Find My Device 

Network support. 

ble_error_t fp_ble_adv_start(void) Start Bluetooth LE advertising for 

Google Fast Pair Service/Find My 

Device Network support. 



DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 23 
   

 

Interface Functions Description 

bool fp_ble_adv_is_started(void) Check if Bluetooth LE advertising for 

Google Fast Pair Service/Find My 

Device Network support is started. 

ble_error_t fp_ble_adv_stop(void) Stop Bluetooth LE advertising for 

Google Fast Pair Service/Find My 

Device Network support. 

ble_error_t fp_ble_adv_stop_all(void) Stop sending any Bluetooth LE 

advertising packets. 

Connectivity parameters 

storage 

(fp_conn_params.h) 

 

Implementation should always 

be provided by application. 

uint16_t fp_conn_params_get_params( 

fp_conn_params_t *params, uint8_t n) 

Read a set of Google Fast Pair 

Service/Find My Device Network 

connectivity parameters from NVM 

storage. 

uint16_t fp_conn_params_set_params( 

fp_conn_params_t *params, uint8_t n) 

Write a set of Google Fast Pair 

Service/Find My Device Network 

connectivity parameters to NVM 

storage. 

Motion detector 

(fp_motion_detector.h) 

 

If not implemented in 

application, default 

implementation is empty. 

void fp_motion_detector_init( 

const fp_motion_detector_config_t *cfg) 

Initialize the motion detector for Google 

Fast Pair Service/Find My Device 

Network. 

void fp_motion_detector_deinit(void) 
(Note 1) 

De-initialize the motion detector for 

Google Fast Pair Service/Find My 

Device Network. 

void fp_motion_detector_enable(void) Enable the motion detector for Google 

Fast Pair Service/Find My Device 

Network. 

void fp_motion_detector_disable(void) Disable the motion detector for Google 

Fast Pair Service/Find My Device 

Network. 

Ringing components 

(fp_ring_comp.h)  

 

Implementation should always 

be provided by application if 

FP_FMDN_RING_COMPONENTS_NUM 

> 0. 

void fp_ring_comp_init(void) Initialize the sound maker for Google 

Fast Pair Service/Find My Device 

Network. 

void fp_ring_comp_deinit(void) (Note 1) De-initialize the sound maker for 

Google Fast Pair Service/Find My 

Device Network. 

int fp_ring_comp_set_state( 

uint8_t comp_en_msk, 

FP_RING_COMP_VOLUME volume) 

Enable the sound maker for Google 

Fast Pair Service/Find My Device 

Network. 

Note 1 Changes in porting API, compared to Google Fast Pair Service/Find My Device Network porting API presented in 
Ref. [6]. 

4.5.3 Bluetooth LE Event Handling 

All Google Fast Pair Service/Find My Device Network requests over Bluetooth LE are handled by the framework 

implementation residing in utilities\fast_pair folder. Corresponding Bluetooth LE events are handled by calling 

fp_handle_event() in application's OS task main loop. In the application's configuration header file for Google 

Fast Pair Service/Find My Device Network framework, the path of which is defined by FP_CONFIG_FILE, if 

FP_CONFIG_OPTION is set to FP_CONFIG_OPTION_NORMAL, then fp_handle_event() must be called instead of 

ble_service_handle_event(), as the latter is called internally in the Google Fast Pair Service/Find My Device 

Network framework implementation, in order for the registered to the Bluetooth LE framework application task to 

receive Bluetooth LE event notifications. Otherwise, if FP_CONFIG_OPTION is set to 

FP_CONFIG_OPTION_BLE_DB_CONTROLLED_BY_APP, then ble_service_handle_event() should be called by the 

application, so that the Bluetooth LE events can be also handled by the registered instances of Bluetooth LE 

services. 

FP_CONFIG_OPTION value also defines (FP_CONFIG_OPTION is set to FP_CONFIG_OPTION_NORMAL) whether 

Bluetooth LE services instances required for Google Fast Pair Service/Find My Device Network support are 

registered to Bluetooth LE attribute database internally by the Google Fast Pair Service/Find My Device Network 



DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 24 
   

 

framework, or (FP_CONFIG_OPTION is set to FP_CONFIG_OPTION_BLE_DB_CONTROLLED_BY_APP) whether their 

registration is completely controlled by the application, by calling fp_add_services_to_db() and 

fp_remove_services_from_db() API functions. 

4.5.4 Bluetooth LE Advertising 

Similarly to Apple Find My™ network framework implementation, Google Fast Pair Service/Find My Device 

Network advertised payload is controlled only within the corresponding framework. Changes to Bluetooth LE 

advertising parameters and start or stop operations of Google Fast Pair Service/Find My Device Network 

advertising events are performed by the framework, calling the porting API functions defined in 

utilities\fast_pair\include\fp_ble.h, the implementation of which is either provided by the application or it 

involves, by default (i.e. internal weak function implementations), direct calls to corresponding SDK Bluetooth LE 

functions defined in sdk\interfaces\ble\api\include\ble_gap.h. 

More details regarding the advertised payloads can be found in Ref. [4] and Ref. [6]. 

4.5.5 Configuration 

The default configuration for Google Fast Pair Service/Find My Device Network framework is located in 

utilities\fast_pair\include\fp_defaults.h header file. The application can overwrite the default configuration 

preprocessor macro definitions using a configuration file whose path is defined by FP_CONFIG_FILE. In the 

sample application project, this configuration file, called fast_pair_config.h, is located in application's config 

folder, while its relative path is defined by FP_CONFIG_FILE in config\custom_config_xx.h files. The list of 

definitions that can be changed are presented in Table 4 (Google Fast Pair Service) and Table 5 (Find My 

Device Network). 

5. CSL Accessory Task 

The operations performed by the main task of the sample application can be separated in two parts: 

▪ Initialization of the application 

▪ Main task loop. 

5.1 Application Initialization 

Initialization of Bluetooth LE device as peripheral: 

ble_peripheral_start(); 

The CSL accessory task is registered to Bluetooth LE framework to receive Bluetooth LE event notifications: 

ble_register_app(); 

Device name is read from NVM storage and set as GAP device name and local name for scan response. 

read_name(MAX_NAME_LEN, name_buf); 

ble_gap_device_name_set(name_buf, ATT_PERM_READ); 

Bluetooth Device address is set to private random with address renewal duration of 1024 seconds. 

FP_CONFIG_OPTION is set to FP_CONFIG_OPTION_BLE_DB_CONTROLLED_BY_APP, and AFMN_CONFIG_OPTION is set to 

AFMN_CONFIG_OPTION_BLE_DB_CONTROLLED_BY_APP, thus preventing Bluetooth LE attribute database to be 

created (it is reset when calling ble_gap_device_name_set()) internally by the finding network frameworks, 

during initialization. 

ble_gap_address_set(&addr, 1024); 

Initialization of state and trigger functionality for buttons is used to control application state: 

user_button_init(); 



DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 25 
   

 

Finding network frameworks are initialized. Their initialization and control are abstracted with a common API, 

namely fn_control.h, easing their integration in the csl_accessory sample application project. Based on which 

finding network framework is initialized and which finding network the device is provisioned for, corresponding 

finding network -specific API functions are finally called by the fn_control.h API functions. 

fn_control_init(&fn_control_cfg); 

The configuration structure, which is passed (fn_control_cfg) as argument, contains callback functions that are 

called during the execution of the finding network operations for indicating their status to the application. More 

specifically: 

▪ accessory_state_cb – is called when the state of the accessory is updated, that is, provisioned or removed 

from a finding network. 

▪ accessory_pair_stop_cb – is called when pairing mode is stopped (applicable for Google Fast Pair Service, 

when pairing mode timeout expires). 

▪ accessory_db_reset_cb – is called when GATT attribute database is reset, either because Bluetooth LE 

services are initialized, or the device has been un-provisioned from a finding network, or Apple Find My™ 

network framework has triggered database reset. 

▪ accessory_batt_level_get_cb – is called when battery level is requested upon initialization of Google Fast 

Pair Service / Find My Device Network framework. 

Advertising is mainly controlled by the finding network frameworks and the abstraction software module, 

fn_control.c. What type of advertising will be started is transparent to the application. Depending on the 

accessory state, the advertising payload can correspond either to Apple Find My™ network pairing, nearby, and 

separated states, or Google Fast Pair Service/Find My Device Network pairing and provisioning states. The 

application only sets Bluetooth LE scan response data to the frameworks, including local name and Software 

Update Over-The-Air (SUOTA) service, so that they can be maintained across all advertising payload updates 

performed by the frameworks: 

fn_control_set_scan_response(ARRAY_LENGTH(scan_rsp_data), scan_rsp_data); 

In addition to the function calls above, which are required mainly for initiating the support of Apple Find My™ 

network and Google Fast Pair Service/Find My Device Network frameworks in the csl_accessory sample 

application project, there is also initialization of special modules used for abstracting application functionality 

related to: 

▪ Advertising control (adv_control.h/c) – stop advertising or set advertising to normal or low-power mode. 

Compared to the corresponding software module used in fast_pair_device sample project presented in Ref. 

[6], now adv_control.h API allows for the creation of multiple concurrent Bluetooth LE advertising events with 

different payloads, employing the standard/primary advertising Bluetooth LE channels, To enable that 

functionality, ADV_CONTROL_MULT_EVENTS_ENABLE is set to 1 in the application's configuration file 

accessory_config.h. API functions in adv_control.h are called by the poring API functions of Apple Find 

My™ network (afmn_ble.h) and Google Fast Pair Service/Find My Device Network (fp_ble.h) frameworks, 

▪ NVM storage control for application parameters (app_params.h/c) – write or read application parameters 

from NVM storage. 

▪ Battery level monitoring (battery_monitor.h/c) – periodically check battery voltage level. 

▪ LED control (led_control.h/c) – indicate current status of Apple Find My™ network or Google Fast Pair/Find 

My Device Network processes, simulate sound maker. 

▪ Motion detector control (motion_detector.h/c) – initialize/de-initialize and enable/disable motion detector, 

create and provide instances to consumer software modules for sharing motion detector control. 

▪ Sound maker control (sound_maker.h/c) – initialize/de-initialize and enable/disable sound maker, create and 

provide instances to consumer software modules for sharing sound maker control. 

 

 



DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 26 
   

 

Finally, there are OS timers created to facilitate the following application activities: 

▪ user_long_press_tim – timer used for handling user button long press (start pairing mode). 

▪ user_short_press_tim – timer used for handling user button short press (for example, disable sound maker 

or enter user consent mode). 

▪ user_double_press_tim – timer used for checking if user has double pressed the button to simulate the 

motion. 

▪ factory_reset_press_tim – timer used for checking whether user is long-pressing the button to perform a 

factory reset. 

▪ adv_stop_press_tim – timer used for checking if user is pressing the button to stop advertise. 

5.2 Application Main Task Loop 

Application main OS task (accessory_task), as every other OS task, notifies the watchdog and suspends it, 

while waiting for a task notification. When a notification is received, it resumes the watchdog function and 

handles the notification accordingly. The handling of notifications is divided according to the notification 

messages. More specifically, there are the following notification types: 

▪ BLE_APP_NOTIFY_MASK: This notification type handles all Bluetooth LE messages/events including GAP and 

GATT messages. Most of the GATT messages are directed to the corresponding profile. Some Bluetooth LE 

manager notifications, however, may need special handling by Apple Find My™ network or Google Fast Pair 

Service/Find My Device Network frameworks. This is done by fn_control_handle_event(), which abstracts 

corresponding calls to afmn_handle_event() and fp_handle_event(), already presented in Section 4.4.1 and 

Section 4.5.1, respectively, as well as the call to ble_service_handle_event(), required for directing 

messages/events to Bluetooth LE services (refer to Section 4.4.3 and Section 4.5.3). Essentially, any 

messages/events that are handled exclusively by the finding network frameworks, are suppressed within the 

frameworks. adv_control_handle_event() is called before fn_control_handle_event(), so that the status 

of multiple concurrent Bluetooth LE advertising events can be updated before accessed by the finding network 

frameworks. GAP/GATT messages/events that are finally handled by the sample application task are mainly: 

• BLE_EVT_GAP_CONNECTED: TX power level is set for the connection and the device is added to the list of 

connected devices waiting for connection parameters update (for example, connection interval, supervision 

timeout). 

• BLE_EVT_GAP_DISCONNECTED: The device is removed from the list of connected devices. 

▪ LED_CONTROL_NOTIF: Handled in led_control_process_notif() for controlling LED blinking. 

▪ BATTERY_MONITOR_NOTIF: Handled in battery_monitor_process_notif() for getting battery status, and in 

application task for updating battery and advertising status to Google Fast Pair Service/Find My Device 

Network framework. 

▪ UPDATE_CONN_PARAM_NOTIF: Generated by OS timer to update connection parameters after each device 

connection. 

▪ LONG_PRESS_TMO_NOTIF: Received when the user button is long pressed, to start pairing mode. 

▪ SHORT_PRESS_TMO_NOTIF: Received when the button is short pressed, in order to disable sound maker or enter 

user consent mode. 

▪ DOUBLE_PRESS_TMO_NOTIF: Received when the button is double pressed, to simulate motion detection. 

▪ FACTORY_RESET_TMO_NOTIF: Received when the user button is very long pressed, to start factory reset. 

▪ ADV_STOP_PRESS_TMO_NOTIF: Received when the button is long pressed, to stop advertising. 

▪ Set of notifications handled in fn_control_process_notif() when either of the following finding network 

operation -related notifications are received: 

• APPLE_FMN_NOTIF: Received when the Apple Find My™ network framework requests execution and 

afmn_execution() must be called. 

• AFMN_OS_TIMER_EXECUTION_NOTIF: Received when OS porting module for Apple Find My™ network 

framework related to OS timer implementation requests application to call afmn_os_timer_execution(). 



DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 27 
   

 

• SERIAL_NUMBER_TMO_NOTIF: Received when serial number lookup timeout expires, to stop serial number 

lookup consent (applicable for Apple Find My™ network). 

• BEACON_TIME_TMO_NOTIF: Generated by OS timer to store the beacon time in NVM storage as indicated by 

Find My Device Network specification. 

• GOOGLE_FAST_PAIR_NOTIF: Received when the Google Fast Pair Service/Find My Device Network 

framework requests execution and fp_execution() must be called. 

• FINDER_NETWORK_STATE_NOTIF: Received when accessory state is changed, that is, provisioned or removed 

from a finding network, to allow for reinitializing a finding network framework, accordingly. 

▪ CONSOLE_NOTIF: Handled in console_process_notif() when a new character is received over UART for CLI 

commands. 

Regarding the interaction with the finding network frameworks, the main application task controls their operations 

mainly by calling the top-level API functions listed in utils\fn_control.h header file, which subsequently results in 

calls to corresponding finding network API functions (in afmn.h and fast_pair.h) depending on the accessory 

current state. To receive notifications by the framework about the current status of the underlying finding 

networks functionality, it also registers callback functions as arguments to fn_control_init(). See Section 5.1. 

The rest of CSL accessory application's top-level API in utils\fn_control.h is summarized: 

▪ fn_control_set_scan_response(): sets custom scan response for the application (i.e. local device name and 

SUOTA service UUID). 

▪ fn_control_get_finder_network_state(): returns the current state of the accessory. 

▪ fn_control_handle_event(): handles Bluetooth LE events for the finding network frameworks. 

▪ fn_control_stop_ringing(): stops ringing (disables sound maker), called when button is single pressed by 

user. 

▪ fn_control_factory_reset(): cleans pairing data stored in NVM storage, called when button is very-long 

pressed (8 s) by user. 

▪ fn_control_set_pairing_mode(): sets the device pairing mode, called when button is long pressed (4 s) by 

user. 

▪ fn_control_is_pairing_mode(): returns true if pairing process is in progress. 

▪ fn_control_set_user_consent(): sets user consent mode as required by the finding networks to allow for 

controlling access to specific information, called when button is single pressed by user. 

  



DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 28 
   

 

Revision History 

Revision Date Description 

Draft Feb 14, 2025 Draft version 

  



DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 29 
   

 

Status Definitions 

Status Definition 

DRAFT The content of this document is under review and subject to formal approval, which may result in modifications or additions.  

APPROVED 

or unmarked 

The content of this document has been approved for publication.  

RoHS Compliance 

Renesas Electronics’ suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the 
restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request. 

  



DA14592 Crowd-Sourced Locationing (CSL) Accessory 

 

AN   Draft 
Feb 19, 2025 

 
CFR0014 

Page 30 
   

 

Important Notice and Disclaimer 

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA 
(INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, 
SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, 
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. 

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate 
products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other 
safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for 
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other 
Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its 
representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject 
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any 
applicable warranties or warranty disclaimers for these products. 

© 2025 Renesas Electronics Corporation. All rights reserved. 

 
 

Corporate Headquarters 

TOYOSU FORESIA, 3-2-24 Toyosu 

Koto-ku, Tokyo 135-0061, Japan 

www.renesas.com 

Contact Information 

For further information on a product, technology, the most up-to-date 

version of a document, or your nearest sales office, please visit: 

https://www.renesas.com/contact/ 

Trademarks 

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. 

All trademarks and registered trademarks are the property of their respective owners. 

 

(Rev.1.0 Mar 2020) 

https://www.renesas.com/
https://www.renesas.com/contact/

	Contents
	Figures
	Tables
	1. Terms and Definitions
	2. References
	3. Introduction
	3.1 Prerequisites
	3.2 Crowd-Sourced Locationing (CSL)
	3.2.1 Apple Find My™ Network
	3.2.2 Google Fast Pair with Find My Device Network Extension


	4. Crowd-Sourced Locationing Accessory Application Project
	4.1 Software Architecture Overview
	4.2 Folder Structure and Files
	4.3 Application Configuration
	4.4 Apple Find My™ Network Integration
	4.4.1 API for Application
	4.4.2 Porting API
	4.4.3 Bluetooth LE Event Handling
	4.4.4 Bluetooth LE Advertising
	4.4.5 Configuration

	4.5 Google Fast Pair Service/Find My Device Network Framework Integration
	4.5.1 API for Application
	4.5.2 Porting API
	4.5.3 Bluetooth LE Event Handling
	4.5.4 Bluetooth LE Advertising
	4.5.5 Configuration


	5. CSL Accessory Task
	5.1 Application Initialization
	5.2 Application Main Task Loop

	Revision History

