
 APPLICATION NOTE

R01AN3201EJ0100 Rev.1.00 Page 1 of 89
May. 17, 2017

RZ/A1LU Group
Example of Writing to Serial Flash Memory
Using the SPI Multi-I/O Bus Controller
Abstract
This application note describes a sample program that performs write accesses to serial flash memory using the
RZ/A1LU microcontroller's SPI multi-I/O bus controller (hereinafter called "SPIBSC").

Products
RZ/A1LU

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

R01AN3201EJ0100
Rev.1.00

May. 17, 2017

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 2 of 89
May. 17, 2017

Contents

1. Specifications ... 4

2. Operation Confirmation Conditions ... 5

3. Reference Application Notes .. 5

4. Peripheral Functions ... 6

5. Hardware ... 9
5.1 Hardware Configuration ... 9
5.2 Pins Used ... 10

6. Software .. 11
6.1 Operation Overview .. 11
6.2 Accessing Serial Flash Memory Using the SPIBSC .. 11
6.3 External Address Space Read Mode and SPI Operating Mode Switching 12

6.3.1 Switching from External Address Space Read Mode to SPI Operating Mode 12
6.3.2 Switching from SPI Operating Mode to External Address Space Read Mode 14

6.4 SPIBSC Operating Mode Switching Processing Implementation .. 15
6.4.1 Implementation of Switching Processing from External Address Space Read Mode to

SPI Operating Mode .. 15
6.4.2 Implementation of Switching Processing from SPI Operating Mode to External

Address Space Read Mode .. 21
6.5 The MMU Translation Table ... 23
6.6 Sample Commands ... 24

6.6.1 XREAD Command ... 25
6.6.2 ERASE Command ... 26
6.6.3 WRITE Command .. 27
6.6.4 SREAD Command ... 29

6.7 Peripheral Functions and Memory Allocation in Sample Code ... 30
6.7.1 Setting for Peripheral Functions ... 30
6.7.2 Memory Mapping .. 31
6.7.3 Section Assignment in Sample Code ... 32

6.8 Interrupt Used .. 36
6.9 Constants ... 37
6.10 Structures and Unions .. 40
6.11 Variables .. 46
6.12 Functions ... 47
6.13 Function Specifications .. 50
6.14 Flowcharts ... 65

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 3 of 89
May. 17, 2017

6.14.1 SPIBSC Sample Code Main Processing ... 65
6.14.2 Processing for Switching to SPI Operating Mode ... 66
6.14.3 Processing for Switching to External Address Space Read Mode 67
6.14.4 XREAD Command Processing .. 68
6.14.5 ERASE Command Processing ... 69
6.14.6 WRITE Command Processing ... 71
6.14.7 SREAD Command Processing .. 73
6.14.8 Modification of the MMU Translation Table Used in SPI Operating Mode 75
6.14.9 Modification of the MMU Translation Table Used in External Address Space Read

Mode ... 76
6.14.10 Serial Flash Memory Write Enable .. 77
6.14.11 Serial Flash Memory Wait for Write Completion .. 78
6.14.12 Clear Serial Flash Memory Protection .. 79

7. Using this Sample Code .. 80
7.1 Starting the Sample Code .. 80

8. Application Example .. 81
8.1 Modifying the Sample Code when the Serial Flash Memory Used is Changed 81

8.1.1 Changes to the R_SFLASH_EraseSector() Sector Erase Function 81
8.1.2 Changes to the R_SFLASH_ByteProgram() Write Function .. 82
8.1.3 Changes to the R_SFLASH_ByteRead() Read Function ... 83

8.2 Output Signals During Command Issue to Serial Flash Memory .. 85

9. Notes ... 87
9.1 Regarding Interrupts that Occur During Sample Command Execution 87

10. Sample Code .. 88

11. Reference Documents ... 88

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 4 of 89
May. 17, 2017

1. Specifications
After booting in boot mode 1 (serial flash boot) from serial flash memory allocated to the SPI multi-I/O bus space, this
sample code switches the SPIBSC to SPI operating mode and issues commands to the serial flash memory to perform
the processing for read/write accesses and other operations.

At the same time as performing the SPIBSC setup, this sample code also performs maintenance processing for the
memory management unit, primary cache (L1 cache), and secondary cache (L2 cache).

In this application note, "SCIF" refers to the serial communication interface with FIFO, "PORT" refers to the general-
purpose I/O ports, "STB" refers to power-down modes, and "MMU" refers to the memory management unit.

Table 1.1 lists the Peripheral Functions Used and Their Application and Figure 1.1 shows the Operating Environment
used to run this sample code.

Table 1.1 Peripheral Functions Used and Their Application

Peripheral Function Application
SPI multi-I/O bus controller (SPIBSC) Perform the control for switching between external address space

read mode and SPI operating mode, and is used for reads and
writes to serial flash memory.

Serial communication interface with
FIFO (SCIF)

Communicate between SCIF channel 0 and the host PC.

General-purpose I/O ports (PORT) Switch multiplexed pin functions for SPIBSC and SCIF channel 0.
Power-down modes (STB) Cancel the module standby state of the SPIBSC. *1
Memory management unit (MMU),
L1 cache, L2 cache

Perform MMU translation table operations and L1 and L2 cache
maintenance processing when switching the SPIBSC operating
mode.

Note: 1. The SPIBSC module standby state is canceled by the startup on-chip ROM program that is
executed during the serial flash boot operation.

Figure 1.1 Operating Environment

SDRAM

CAN CAN

ON
OFF 5V

U
SB

2
U

SB
1

RL78

LED

J17: ARM JTAG
20 connector

RZ/A1LU

Serial flash memory

RZ/A1LU AVB board
RTK772103FC00000BR

(JASMINE board)

MESSAGE

Terminal software
(Displays results from sample code)

USB cable
(USB to serial conversion)Micro

USB

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 5 of 89
May. 17, 2017

2. Operation Confirmation Conditions
The sample program accompanying this application note has been run and confirmed under the conditions below.

Table 2.1 Operation Confirmation Conditions

Item Contents
Microcontroller used RZ/A1LU
Operating frequency* CPU clock (Iφ): 400 MHz

Internal bus clock (Bφ): 133.33 MHz
Peripheral clock (P1φ): 66.67 MHz
Peripheral clock (P0φ): 33.33 MHz

Operating voltage Power supply voltage (I/O): 3.3 V
Power supply voltage (internal): 1.18 V

Integrated development
environment

ARM® integrated development environment
ARM Development Studio 5 (DS-5™) Version 5.24

C compiler ARM C/C++ Compiler/Linker/Assembler Ver.5.06 update 2 [Build 183]
Compiler options:
-O3 -Ospace --cpu=Cortex-A9 --littleend --arm --apcs=/interwork
--no_unaligned_access --fpu=vfpv3_fp16 -g --asm

Operating mode Boot mode 1
(Serial flash boot)

Board used RZ/A1LU AVB board
RTK772103FC00000BR (Referred to as the JASMINE board in this document)

Terminal software
communication settings

• Communication speed: 115,200 bps
• Data length: 8 bits
• Parity: None
• Stop-bit length: 1 bit
• Flow control: None

Device used
(functions on board used)

• Serial flash memory (connected to the SPI multi-I/O bus space)
 Manufacturer: Macronix International Co., Ltd.
 Part No.: MX25L51245G

• RL78/G1C (Convert between USB communication and serial communication
to communicate with the host PC.)

• LED1
Note: * The operating frequency used in clock mode 0 (Clock input of 13.33MHz from EXTAL pin)

3. Reference Application Notes
Documents related to this application note are listed below.

• RZ/A1H Group I/O definition header file iodefine.h (R01AN1860EJ)
• RZ/A1H Group Example of Initialization (R01AN1864EJ)
• RZ/A1LU Group Example of Booting from Serial Flash Memory (R01AN3093EJ)

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 6 of 89
May. 17, 2017

4. Peripheral Functions
This section describes the operating modes of the RZ/A1LU's SPIBSC. See the "RZ/A1L Group, RZ/A1LU Group, and
RZ/A1LC Group Users' Manual: Hardware" for details.

As listed in Table 4.1, the SPIBSC supports two modes: external address space read mode and SPI operating mode. By
switching between these two modes and accessing the serial flash memory, the following operations are possible: read
access, erase access, write access, and access to the serial flash memory's registers.

Table 4.1 Serial Flash Memory Access Using the SPIBSC

Operating Mode Description
External address space
read mode
(CMNCR.MD = 0)

• Used for read access to the SPI multi-I/O bus space (H'1800_0000 to
H'1BFF_FFFF)

• The bus master can directly access data from serial flash memory (direct
instruction code fetches from the CPU are possible)

• The range over which direct read access is possible is up to the 64 MB of the
SPI multi-I/O bus space (SPIBSC register control is required for accesses in
excess of 64 MB)

SPI operating mode
(CMNCR.MD = 1)

• Arbitrary commands can be issued to the serial flash memory by setting the
SPIBSC related registers in software.

• Used for erase access, write access, and access to the serial flash memory
registers (status register, configuration register, and others).

• Read access to a 4 GB space when 1 serial flash memory chip is connected
and to an 8 GB space when 2 chips are connected is possible.

• When set to SPI operating mode, access to the SPI multi-I/O bus space is not
possible.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 7 of 89
May. 17, 2017

In external address space read mode, instructions stored in serial flash memory can be executed directly by converting
read accesses to the SPI multi-I/O bus space to which the serial flash memory is connected to SPI communication (read
command issue, address output, and dummy cycle output). In the RZ/A1LU, this is used with serial flash boot mode
(boot mode 1), which use serial flash memory as the boot device.

Note: In external address space read mode, the serial flash memory data can be cached in the read cache

by setting the RBE bit in the data read control register (DRCR). If the data requested by the CPU is
held in the read cache, the access to the external serial flash memory is not performed and the data
in the read cache is returned to the CPU.

Figure 4.1 Serial Flash Memory Access in External Address Space Read Mode

RZ/A1LU

CPU

Access to the SPI
Multi-I/O bus space
(H'1800_0000 to
H'1BFF_FFFF)

SPI Multi-I/O
bus controller
(SPIBSC)

Read cache

Access by converting to
serial flash memory
addresses according to the
transfer format set in the
SPIBSC related registers.

Serial flash
memory

H'0000_0000

H'03FF_FFFF

Data read out from the
serial flash memory

Instruction codes can
be fetched directly
from serial flash
memory

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 8 of 89
May. 17, 2017

SPI operating mode is used for access to the serial flash memory registers (status register, configuration register, and
other registers) and for the write accesses (write command issue, address output, and write data output) used when
writing data. When serial flash memory is used as the storage device, the serial flash memory is accessed using SPI
operating mode.

Note: While an area of 4 GB in serial flash memory (8 GB if two devices are used) can be accessed in SPI

operating mode, in external address space read mode, the 64 MB area (H'1800_0000 to
H'1BFF_FFFF) allocated as the SPI multi-I/O bus space can be accessed directly.

Figure 4.2 Serial Flash Memory Access in SPI Operating Mode

RZ/A1LU

CPU

Access to serial flash
memory (H'0000_0000 to
H'FFFF_FFFF)

SPI Multi-I/O
bus controller
(SPIBSC)

SMRDR
register

Serial flash memory is
accessed according to
the format specified in the
SPIBSC related registers.

Serial flash
memory

H'0000_0000

H'FFFF_FFFF

Data read out from the
serial flash memory

In read operations, the
data stored in the SMRDR
register is read out.

SMWDR
register Data written to serial flash

memory
In write operations, data
is written to the SMWDR.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 9 of 89
May. 17, 2017

5. Hardware
5.1 Hardware Configuration
Figure 5.1 shows the Circuit Diagram for the case where the system boots from serial flash memory (MX25L51245G)
in boot mode 1 and read and write accesses to the serial flash memory are performed.

Figure 5.1 Circuit Diagram

RZ/A1LU

 P4_4/SPBCLK_0

 P4_5/SPBSSL_0

 P4_6/SPBMO0_0/SPBIO00_0

 P4_7/SPBMI0_0/SPBIO10_0

Serial flash memory
MX25L51245G

SCLK

SI/SIO0

CS#

SO/SIO1Boot mode 1

MD_BOOT0

MD_BOOT1

 P4_2/SPBIO20_0

 P4_3/SPBIO30_0

WP#/SIO2

NC/SIO3

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 10 of 89
May. 17, 2017

5.2 Pins Used
Table 5.1 lists the Pins and Their Functions.

Table 5.1 Pins and Their Functions

Pin Name I/O Description
SPBCLK_0 Output Clock output
SPBSSL_0 Output Slave select
SPBMO0_0/SPBIO00_0 I/O Master send data / data 0
SPBMI0_0/SPBIO10_0 I/O Master input data / data 1
SPBIO20_0 I/O Data 2
SPBIO30_0 I/O Data 3
MD_BOOT1 Input Select boot mode

MD_BOOT1: "H", MD_BOOT0: "L"
(Set to boot mode 1)
After boot-up, MD_BOOT0 is switched to the function of the
serial receive data signal as RxD0 (Note).

MD_BOOT0/RxD0 Input

P8_12 Output Turns LED1 on and off.
TxD0 Output Serial transmit data signal
Note: The MD_BOOT0 and RxD0 functions are multiplexed on the P0_0 pin. When the power-on reset is

canceled, this pin operates as MD_BOOT0 and is used as a pin that determines the boot mode. The
sample code performs input pin selection control with the multiplexer/demultiplexer (SN74CB3Q3257)
on the JASMINE board. A boot function selection signal is input from the switch on the board when
the power-on reset is canceled and then the pin is pulled up after the power-on reset has canceled to
set the pin to operate as the RxD0 function.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 11 of 89
May. 17, 2017

6. Software
6.1 Operation Overview
After starting the program in serial flash boot mode using the SPIBSC external address space read mode, this sample
code performs serial flash memory erase, write, and read access processing according to command character strings
input from the terminal. See section 6.6, Sample Commands, for the commands provided by this sample code.

When started by the serial flash boot operation, this sample code sets the system so that programs stored in serial flash
memory connected to the SPI multi-I/O bus space by the SPIBSC to external address space read mode can be executed
directly. When an erase or write operation is performed on the serial flash memory, that processing is performed by
switching the SPIBSC to SPI operating mode to set the SPIBSC registers and issuing commands to the serial flash
memory.

6.2 Accessing Serial Flash Memory Using the SPIBSC
Since the SPI multi-I/O bus space cannot be accessed when the SPIBSC is in SPI operating mode, it is necessary to
assure that software does not access code or data allocated to the SPI multi-I/O bus space.

Processing that must be executed after setting the system to SPI operating mode, must be copied to another memory
space that is not the SPI multi-I/O bus space. If interrupt handling is used, care is required to allocate the interrupt
vector and any interrupt handlers that are used to a memory space other than the SPI multi-I/O bus space.

Also note that to speed up processing, the ARM Cortex-A9 processor supports branch prediction and speculative
execution. When there is a conditional branch instruction, before the condition is confirmed, the branch target
instruction fetch and/or a data access may occur due to the branch prediction/speculative execution operation, and it is
possible that, when the prediction fails, an access that would not be performed is actually performed. When having
switched to SPI operating mode to perform processing such as an erase or write access to serial flash memory after
executing a program in external address space read mode, it is possible that an access to SPI multi-I/O bus space while
in SPI operating mode may occur due to the branch prediction/speculative execution operation and the program may not
operate correctly. When switching the operating mode, this sample code sets the "access disabled/enabled" and
"execution disabled/enabled" attributes with the SPI multi-I/O bus space MMU translation table so that illegal accesses
to the SPI multi-I/O bus space do not occur. This processing is described in detail in section 6.3, External Address
Space Read Mode and SPI Operating Mode Switching.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 12 of 89
May. 17, 2017

6.3 External Address Space Read Mode and SPI Operating Mode Switching
The SPIBSC can be switched between external address space read mode and SPI operating mode using the following
procedures.

Note that since the SPIBSC operating mode switching processing cannot be executed from serial flash memory
allocated to the SPI multi-I/O bus space, it must be executed from another memory space. In this sample code, the
processing in sections 6.3.1 and 6.3.2 is transferred to on-chip large-capacity RAM and that processing is executed from
on-chip large-capacity RAM.

For details on the procedures for modifying the MMU translation table, see the "TLB maintenance operations and the
memory order model" section in the "ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition Issue C"
manual provided by ARM, Inc.

6.3.1 Switching from External Address Space Read Mode to SPI Operating Mode
The following is the procedure for switching to the SPIBSC SPI operating mode.

1. Modify the MMU translation table for the SPI multi-I/O bus space
Set the MMU translation table settings for the SPI multi-I/O bus space to the access disabled and execution disabled
attributes so that access to the SPI multi-I/O bus space do not occur even if speculative execution is performed by
the Cortex-A9.

2. Perform L1 data cache cleaning (write back) and invalidation processing
L1 data cache cleaning and invalidation is performed to invalidate the SPI multi-I/O bus space data and the contents
of the MMU translation table held in the cache.

3. Execute a DSB instruction
A DSB instruction is executed to assure that the L1 data cache cleaning operation in step 2 above has completed.

4. Perform L2 cache cleaning (write back) and invalidate processing
L2 cache cleaning and invalidation is performed to invalidate the SPI multi-I/O bus space instruction and data held
in the cache.

5. Perform Cache Sync
This is performed to assure that the L2 cache maintenance processing in step 4 above has completed.

6. Invalidate the TLB
The MMU translation table settings are changed, so the translation lookaside buffer (TLB) is invalidated.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 13 of 89
May. 17, 2017

7. Invalidate the L1 instruction cache

The MMU translation table settings are changed, so the L1 instruction cache is invalidated.
8. Execute a DSB instruction

A DSB instruction is executed to assure that the L1 instruction cache invalidation operation in step 7 above has
completed.

9. Execute an ISB instruction
An ISB instruction is executed to assure that instructions executed after this point reference the modified MMU
translation table.

10. Switch the SPIBSC from external address space read mode to SPI operating mode
The TEND bit in the common status register (CMNSR) is read to verify that no access to serial flash memory is
occurring. Then, 1 is written to the MD bit in the common control register (CMNCR) and a dummy read of the
CMNCR register is performed to switch to SPI operating mode.

Note: If interrupts are enabled, it is necessary to take measures such as copying the interrupt handlers from serial flash

memory to another memory space, so that accesses to the SPI multi-I/O bus space do not occur after switching
from external address space read mode to SPI operating mode. In this sample code, interrupts are disabled
before switching to SPI operating mode and interrupts are enabled before switching to external address space
read mode, so that such accesses to serial flash memory do not occur.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 14 of 89
May. 17, 2017

6.3.2 Switching from SPI Operating Mode to External Address Space Read Mode
The following is the procedure for switching to the SPIBSC external address space read mode.

1. Switch the SPIBSC from SPI operating mode to external address space read mode.
Verify that no accesses to serial flash memory have occurred by reading the TEND bit in the common status register
(CMNSR). Write a 1 to the RCF bit in the data read control register (DRCR), perform a dummy read of the DRCR
register, and clear the SPIBSC read cache. Write a 0 to the MD bit in the common control register (CMNCR),
perform a dummy read of the CMNCR register, and switch to external address space read mode.

2. Modify the MMU translation table for the SPI multi-I/O bus space
Set the MMU translation table settings for the SPI multi-I/O bus space to the access enabled and execution enabled
attributes and set the SPI multi-I/O bus space to the access enabled state.

3. Perform L1 data cache cleaning (write back) and invalidation processing
L1 data cache cleaning and invalidation is performed to invalidate the SPI multi-I/O bus space data and the contents
of the MMU translation table held in the cache.

4. Execute a DSB instruction
A DSB instruction is executed to assure that the L1 data cache cleaning operation in step 3 above has completed.

5. Perform L2 cache cleaning and invalidate processing
L2 cache cleaning and invalidation is performed to invalidate the SPI multi-I/O bus space instruction and data held
in the cache.

6. Perform Cache Sync
This is performed to assure that the L2 cache maintenance processing in step 5 above has completed.

7. Invalidate the TLB
The translation lookaside buffer (TLB) is invalidated to change the MMU translation table settings.

8. Invalidate the L1 instruction cache
The L1 instruction cache is invalidated to change the MMU translation table settings.

9. Execute a DSB instruction
A DSB instruction is executed to assure that the L1 instruction cache invalidation operation in step 8 above has
completed.

10. Execute an ISB instruction
An ISB instruction is executed to assure that instructions executed after this point reference the modified MMU
translation table.

Notes: 1. The processing in steps 5 and 6 above are not required when both the following conditions are met.

If the MMU translation table is allocated not to external memory but to on-chip large-capacity RAM.
If the processing in steps 5 and 6 above were performed during the processing for switching from external
address space read mode to SPI operating mode and coherency of the cache and the serial flash memory are
assured.

 2. If interrupts were disabled in the processing of section 6.3.1, in the processing following the above, the user
should enable any interrupts that will be used.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 15 of 89
May. 17, 2017

6.4 SPIBSC Operating Mode Switching Processing Implementation
This section shows the implementations of the various processing steps mentioned in section 6.3, External Address
Space Read Mode and SPI Operating Mode Switching.

6.4.1 Implementation of Switching Processing from External Address Space Read Mode
to SPI Operating Mode

1. MMU translation table modification implementation

This section presents an example of the implementation of the modification processing for the MMU translation
table used when switching from external address space read mode to SPI operating mode. This is implemented in
the Change_MMU_TTbl_SpibscSpi() function in this sample code, and Figure 6.1 and Figure 6.2 present excerpts
from that processing. The start address and end address of the SPI multi-I/O bus space are specified with the
variables start_addr and end_addr respectively as the arguments to the Change_MMU_TTbl_SpibscSpi() function.

static int32_t Change_MMU_TTbl_SpibscSpi(uint32_t start_addr, uint32_t end_addr)
{
 uint32_t index_start; /* Start address table index */
 uint32_t index_end; /* End address table index */
 uint32_t index; /* Loop variable: table index */
 mmu_ttbl_desc_section_t desc; /* Loop variable: descriptor */

 index_start = MMU_TTbl_GetIndex(start_addr); /* Get start address table index */
 index_end = MMU_TTbl_GetIndex(end_addr); /* Get end address table index */

 for(index = index_start; index <= index_end; index++)
 {
 /* Get descriptor from translation table */
 MMU_TTbl_GetDesc(index, &desc);

 /* Modify memory attribute descriptor */
 desc.AP1_0 = 0x0u; /* AP[2:0] = b'000 (No access) */
 desc.AP2 = 0x0u;
 desc.XN = 0x1u; /* XN = 1 (Execute never) */

 /* Write descriptor back to translation table */
 MMU_TTbl_SetDesc(index, &desc);
 }

 return 0;
}

Figure 6.1 MMU Translation Table Modification Processing when Switching to SPI Operating Mode

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 16 of 89
May. 17, 2017

/* Definition of the short-descriptor translation table first-level descriptor format (section) */

typedef struct {

 uint32_t b0 : 1 ; /* bit 0 : - (0) */

 uint32_t b1 : 1 ; /* bit 1 : - (1) */

 uint32_t B : 1 ; /* bit 2 : B Memory region attribute bit */

 uint32_t C : 1 ; /* bit 3 : C Memory region attribute bit */

 uint32_t XN : 1 ; /* bit 4 : XN Execute-never bit */

 uint32_t Domain : 4 ; /* bit 8-5 : Domain Domain field */

 uint32_t b9 : 1 ; /* bit 9 : IMP IMPLEMENTATION DEFINED */

 uint32_t AP1_0 : 2 ; /* bit 11-10 : AP[1:0] Access permissions bits:bit1-0 */

 uint32_t TEX : 3 ; /* bit 14-12 : TEX[2:0] Memory region attribute bits */

 uint32_t AP2 : 1 ; /* bit 15 : AP[2] Access permissions bits:bit2 */

 uint32_t S : 1 ; /* bit 16 : S Shareable bit */

 uint32_t nG : 1 ; /* bit 17 : nG Not global bit */

 uint32_t b18 : 1 ; /* bit 18 : - (0) */

 uint32_t NS : 1 ; /* bit 19 : NS Non-secure bit */

 uint32_t base_addr : 12; /* bit 31-20 : PA[31:20] PA(physical address) bits:bit31-20 */

} mmu_ttbl_desc_section_t;

/* Definition of the base address for the MMU translation table */

#define TTB ((uint32_t)&Image$$TTB$$ZI$$Base) /* using linker symbol */

uint32_t MMU_TTbl_GetIndex(uint32_t addr)

{

 uint32_t index;

 index = addr >> 20;

 return index;
}

int32_t MMU_TTbl_GetDesc(uint32_t index, mmu_ttbl_desc_section_t * pdesc)
{
 mmu_ttbl_desc_section_t * table;

 /* ==== Get descriptor value from translation table ==== */
 table = (mmu_ttbl_desc_section_t *)TTB;
 *pdesc = table[index];

 return 0;
}

int32_t MMU_TTbl_SetDesc(uint32_t index, mmu_ttbl_desc_section_t * pdesc)
{
 mmu_ttbl_desc_section_t * table;

 /* ==== Set descriptor value in translation table ==== */
 table = (mmu_ttbl_desc_section_t *)TTB;
 table[index] = *pdesc;

 return 0;
}

Figure 6.2 MMU Translation Table Setting Processing

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 17 of 89
May. 17, 2017

2. L1 data cache cleaning and invalidation processing implementation

Figure 6.3 and Figure 6.4 show the implementation for L1 Data Cache Cleaning and Invalidation Processing. This is
implemented in the L1_D_CacheWritebackFlushAll() function in this sample code.

void L1_D_CacheWritebackFlushAll(void)

{

 /* ==== Invalidate and clean all D cache by set/way ==== */

 L1_D_CacheOperationAsm(L1CACHE_WB_FLUSH); /* L1CACHE_WB_FLUSH == 2 */

}

;**

; Function Name : L1_D_CacheOperationAsm

; Description : r0 = 0 : DCISW. Invalidate data or unified cache line by set/way.

; : r0 = 1 : DCCSW. Clean data or unified cache line by set/way.

; : r0 = 2 : DCCISW. Clean and Invalidate data or unified cache line by set/way.

;**

L1_D_CacheOperationAsm FUNCTION

 PUSH {r4-r11}

 MRC p15, 1, r6, c0, c0, 1 ;;; Read CLIDR

 ANDS r3, r6, #0x07000000 ;;; Extract coherency level

 MOV r3, r3, LSR #23 ;;; Total cache levels << 1

 BEQ Finished ;;; If 0, no need to clean

 MOV r10, #0 ;;; R10 holds current cache level << 1

Loop1

 ADD r2, r10, r10, LSR #1 ;;; R2 holds cache "Set" position

 MOV r1, r6, LSR r2 ;;; Bottom 3 bits are the Cache-type for this level

 AND r1, r1, #7 ;;; Isolate those lower 3 bits

 CMP r1, #2

 BLT Skip ;;; No cache or only instruction cache at this level

 MCR p15, 2, r10, c0, c0, 0 ;;; Write the Cache Size selection register (CSSELR)

 ISB ;;; ISB to sync the change to the CacheSizeID reg

 MRC p15, 1, r1, c0, c0, 0 ;;; Reads current Cache Size ID register (CCSIDR)

 AND r2, r1, #7 ;;; Extract the line length field

 ADD r2, r2, #4 ;;; Add 4 for the line length offset (log2 16 bytes)

 LDR r4, =0x3FF

 ANDS r4, r4, r1, LSR #3 ;;; R4 is the max number on the way size (right aligned)

 CLZ r5, r4 ;;; R5 is the bit position of the way size increment

 LDR r7, =0x7FFF

 ANDS r7, r7, r1, LSR #13 ;;; R7 is the max number of the index size (right aligned)

Loop2

 MOV r9, r4 ;;; R9 working copy of the max way size (right aligned)

Figure 6.3 L1 Data Cache Cleaning and Invalidation Processing (1/2)

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 18 of 89
May. 17, 2017

Loop3

 ORR r11, r10, r9, LSL r5 ;;; Factor in the Way number and cache number into R11

 ORR r11, r11, r7, LSL r2 ;;; Factor in the Set number

 CMP r0, #0

 BNE Dccsw

 MCR p15, 0, r11, c7, c6, 2 ;;; Invalidate by Set/Way (DCISW)

 B Count

Dccsw

 CMP r0, #1

 BNE Dccisw

 MCR p15, 0, r11, c7, c10, 2 ;;; Clean by set/way (DCCSW)

 B Count

Dccisw

 MCR p15, 0, r11, c7, c14, 2 ;;; Clean and Invalidate by set/way (DCCISW)

Count

 SUBS r9, r9, #1 ;;; Decrement the Way number

 BGE Loop3

 SUBS r7, r7, #1 ;;; Decrement the Set number

 BGE Loop2

Skip

 ADD r10, r10, #2 ;;; increment the cache number

 CMP r3, r10

 BGT Loop1

Finished

 DSB

 POP {r4-r11}

 BX lr

 ENDFUNC

Figure 6.4 L1 Data Cache Cleaning and Invalidation Processing (2/2)

3. DSB instruction implementation

The DSB instruction used to guarantee that the L1 data cache cleaning and invalidation processing has completed is
implemented in the L1_D_CacheOperationAsm() function.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 19 of 89
May. 17, 2017

4. L2 cache cleaning and invalidation processing implementation

Figure 6.5 shows an example of the implementation of the L2 Cache Cleaning and Invalidation Processing.

#define L2CACHE_8WAY (0x000000FFuL) /* All entries(8way) in the L2 cache */

void L2CacheWritebackFlushAll(void)

{

 /* ==== Clean and Invalidate all cache by Way ==== */

 L2C.REG7_CLEAN_INV_WAY = L2CACHE_8WAY; /* Set 1 to Way bits[7:0] of the reg7_clean_inv_way */

 while ((L2C.REG7_CLEAN_INV_WAY & L2CACHE_8WAY)

 != 0x00000000uL) /* Wait until Way bits[7:0] is cleared */

 {

 }

 /* ==== Cache Sync ==== */

 L2C.REG7_CACHE_SYNC = 0x00000000uL; /* Ensures completion of the operation */

}

Figure 6.5 L2 Cache Cleaning and Invalidation Processing

5. Cache sync processing implementation

The cache sync processing used to guarantee that the L2 cache cleaning and invalidation processing is implemented
in the L2CacheWritebackFlushAll() function.

6. TLB invalidation processing implementation

Figure 6.6 shows an example of the implementation of the TLB Invalidation Processing. This processing is
implemented in the TLB_FlushAll() function in this sample code.

TLB_FlushAll FUNCTION

 MOV r0,#0

 MCR p15, 0, r0, c8, c7, 0 ;;; Cortex-A9 I-TLB and D-TLB invalidation (TLBIALL)

 DSB

 ISB

 BX lr

 ENDFUNC

Figure 6.6 TLB Invalidation Processing

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 20 of 89
May. 17, 2017

7. L1 instruction cache invalidation processing implementation

Figure 6.7 shows an example of the implementation of the L1 Instruction Cache Invalidation Processing. This is
implemented in the L1_I_CacheFlushAllAsm() function in this sample code.

L1_I_CacheFlushAllAsm FUNCTION

 MOV r0, #0

 MCR p15, 0, r0, c7, c5, 0 ;;; ICIALLU

 DSB

 ISB

 BX lr

 ENDFUNC

Figure 6.7 L1 Instruction Cache Invalidation Processing

8. DSB instruction implementation

The DSB instruction used to guarantee that the L1 instruction cache invalidation processing has completed is
implemented in the L1_I_CacheFlushAllAsm() function.

9. ISB instruction implementation

The ISB instruction used to guarantee that all following instructions reference the post-modification MMU
translation table is implemented in the L1_I_CacheFlushAllAsm() function.

10. Implementation of switching the SPIBSC from external address space read mode to SPI operating mode

The processing that switches to SPI operating mode is performed by writing a 1 to the MD bit in the SPIBSC
common control register (CMNCR). This is implemented in the R_SFLASH_Spimode() function in this sample
code.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 21 of 89
May. 17, 2017

6.4.2 Implementation of Switching Processing from SPI Operating Mode to External

Address Space Read Mode

1. Implementation of switching the SPIBSC from SPI operating mode to external address space read mode

Clear the SPIBSC read cache by setting the RCF bit in the SPIBSC data read control register (DRCR) to 1 and write
a 0 to the MD bit in the common control register (CMNCR) to switch to external address space read mode. This is
implemented in the R_SFLASH_Exmode() function in this sample code.

2. MMU translation table modification implementation

This section presents an example of the implementation of the processing for modifying the MMU translation table
when switching from SPI operating mode to external address space read mode. This is implemented in the
Change_MMU_TTbl_SpibscXip() function in this sample code and an excerpt of this processing is shown in Figure
6.8. The start address and end address of the SPI multi-I/O bus space are specified with the start_addr and end_addr
arguments to the Change_MMU_TTbl_SpibscXip() function. The processing to set up the MMU translation table is
implemented in the MMU_TTbl_GetIndex(), MMU_TTbl_GetDesc(), and MMU_TTbl_SetDesc() functions. See
Figure 6.2 for more information on those functions.

static int32_t Change_MMU_TTbl_SpibscXip(uint32_t start_addr, uint32_t end_addr)
{
 uint32_t index_start; /* Start address table index */
 uint32_t index_end; /* End address table index */
 uint32_t index; /* Loop variable: table index */
 mmu_ttbl_desc_section_t desc; /* Loop variable: descriptor */

 index_start = MMU_TTbl_GetIndex(start_addr); /* Get start address table index */
 index_end = MMU_TTbl_GetIndex(end_addr); /* Get end address table index */

 for(index = index_start; index <= index_end; index++)
 {
 /* Get descriptor from translation table */
 MMU_TTbl_GetDesc(index, &desc);

 /* Modify memory attribute descriptor */
 desc.AP1_0 = 0x3u; /* AP[2:0] = b'011 (Full access) */
 desc.AP2 = 0x0u;
 desc.XN = 0x0u; /* XN = 0 (Executable) */

 /* Write descriptor back to translation table */
 MMU_TTbl_SetDesc(index, &desc);
 }

 return 0;
}

Figure 6.8 MMU Translation Table Modification Processing when Switching to External Address
Space Read Mode

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 22 of 89
May. 17, 2017

3. L1 data cache cleaning and invalidation processing implementation

Figure 6.3 and Figure 6.4 show the implementation for L1 Data Cache Cleaning and Invalidation Processing. This is
implemented in the L1_D_CacheWritebackFlushAll() function in this sample code.

4. DSB instruction implementation

An example of the implementation of the L1 data cache cleaning and invalidation processing is shown. This is
implemented in the L1_D_CacheWritebackFlushAll() function in this sample code.

5. L2 cache cleaning and invalidation processing implementation

Figure 6.5 shows an example of the implementation of the L2 Cache Cleaning and Invalidation Processing.

6. Cache sync processing implementation

An example of the implementation of the L2 cache cleaning and invalidation processing is shown. This is
implemented in the L2CacheWritebackFlushAll() function in this sample code.

7. TLB invalidation processing implementation

Figure 6.6 shows an example of the implementation of the TLB Invalidation Processing. This processing is
implemented in the TLB_FlushAll() function in this sample code.

8. L1 instruction cache invalidation processing implementation

Figure 6.7 shows an example of the implementation of the L1 Instruction Cache Invalidation Processing. This is
implemented in the L1_I_CacheFlushAllAsm() function in this sample code.

9. DSB instruction implementation

An example of the implementation of the L1 instruction cache invalidation processing is shown. This is
implemented in the L1_I_CacheFlushAllAsm() function in this sample code.

10. ISB instruction implementation

An example of the implementation of the L1 instruction cache invalidation processing is shown. This is
implemented in the L1_I_CacheFlushAllAsm() function in this sample code.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 23 of 89
May. 17, 2017

6.5 The MMU Translation Table
In this sample code, the descriptor type of the first level descriptors in the MMU translation table are set to "section",
and the information for 1 MB memory areas is specified with 32-bit descriptor. Also, the system is set up with the
translation table base control register (TTBCR) and translation table base register 0 (TTBR0), so that a 16 KB (4096
entry) translation table area is managed by the MMU using TTBR0. The 16 KB area from location H'2003_4000 to
location H'2003_7FFF is used as this MMU translation table storage area. Attributes in 1 MB units, such as the cache
enabled/disabled state, the memory type attribute, the executable attribute, and the accessible attribute, are specified
with the MMU translation table for the 4 GB address space from location H'0000_0000 to location H'FFFF_FFFF.

In this sample code, when switching the SPIBSC operating mode, the information in the MMU translation table for the
SPI multi-I/O bus space is modified. Figure 6.9 shows the MMU Translation Table Settings Used in This Sample Code.
When switching the SPIBSC to SPI operating mode, the MMU translation table AP[2:0] bits are set to B'000 (no
access) and the XN bit is set to 1 (execute never). When switching the SPIBSC to external address space read mode, the
MMU translation table AP[2:0] bits are set to B'011 (full access) and the XN bit is set to 0 (executable). Note that for
domains set to manager, no attribute access check is performed for the XN bit and no access check for setting the
AP[2:0] bits is performed. To protect accesses due to setting the MMU translation table entries, the domain must be set
to client.

Figure 6.9 MMU Translation Table Settings Used in This Sample Code

First level descriptor (section)

...

H'2003_4000

Allocation
address index number*

H'2003_4004

H'2003_4008

[1]

First level descriptor (section)

...

First level descriptor (section)

...

First level descriptor (section)

First level descriptor (section)

First level descriptor (section)

H'2003_4600

[447]H'2003_46FC

H'2003_7FFC

[4093]

[4094]

[4095]

Attribute settings for locations H'0000_0000 to H'000F_FFFF.

Attribute settings for locations H'0020_0000 to H'002F_FFFF.

Attribute settings for locations H'FFE0_0000 to H'FFEF_FFFF

Attribute settings for locations H'FFF0_0000 to H'FFFF_FFFF

Attribute settings for locations H'FFD0_0000 to H'FFDF_FFFF

Attribute settings for locations H'1800_0000
to H'18FF_FFFF.

Section base address
PA[31:20]

N
S

0 n
G

S TEX
[2:0]

AP
[1:0]

I
M
P

Domain X
N

C B 1A
P
[2]

0
01234589101114151617181920b31 12

MMU Translation Table

First level attribute (section attribute type) format

...

...

...

...

...

Attribute settings for locations H'1B00_0000
to H'1BFF_FFFF

Attribute settings
for SPI Multi-I/O
bus address
space

H'2003_7FF4

[0]

: Places modified by the MMU translation table modification function.

External address
space read mode

SPI operating mode

0

0

11

00

0

1

External address space read mode translation table: AP[2:0] = B'011 (full access), XN = 0 (executable)
 SPI operating mode translation table: AP[2:0] = B'000 (no access), XN = 1 (execute never)

H'2003_7FF8

Attribute settings for locations H'0010_0000 to H'001F_FFFF.First level descriptor (section)

First level descriptor (section)

index number: MMU translation table descriptor entry number
The MMU translation table consists of 4,096 entries numbered 0 to
4,095, and for the SPI Multi-I/O bus space (64 MB), the index number
indicates a value from 384 to 447.Data
Virtual address

...

[2]

[384]

...

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 24 of 89
May. 17, 2017

6.6 Sample Commands
This sample code provides commands to perform erase, write, and read processing for the serial flash memory. These
commands are executed when input from the terminal.

After a reset is canceled, when starting up with the serial flash boot operation, the boot program in internal ROM sets
the SPIBSC to external address space read mode and executes this sample code with direct read accesses to the serial
flash memory. When using these commands to perform erase or write operations on the serial flash memory, since it is
necessary to access the serial flash memory in SPI operating mode, this sample code is written so that the procedures
described in section 6.3, External Address Space Read Mode and SPI Operating Mode Switching, are performed when
executing these commands. For the processing for reading from serial flash memory, this sample code provides two
commands: one that performs the read processing in SPI operating mode and one that performs the read processing in
external address space read mode. After executing the processing for each command, this sample code sets the SPIBSC
operating mode to external address space read mode. Table 6.1 lists the Processing Performed by this Sample Command.

The basic command input procedures for operating this sample code are listed below.

1. From the terminal, enter "SPIBSC" + <Enter>. This switches to sample code processing.
2. From the terminal, enter "XREAD" + <Enter>. The CPU reads directly from serial flash memory connected to the

SPI multi-I/O bus space.
3. From the terminal, enter "ERASE" + <Enter>. This erases the data in the serial flash memory.
4. From the terminal, enter "WRITE" + <Enter>. This writes data to the serial flash memory.
5. From the terminal, enter "SREAD" + <Enter>. This reads data from the serial flash memory.

Table 6.1 Processing Performed by this Sample Command

Sample Processing Description Command
Direct read (XIP)
processing of the SPI
multi-I/O bus space

Directly reads, and displays on the terminal, the data in serial
flash memory connected to the SPI multi-I/O bus space in
external address space read mode.

XREAD

Erase processing Erases the serial flash memory. In particular, after switching to
SPI operating mode, this function issues an erase command to
the serial flash memory using the R_SFLASH_EraseSector()
function.
After the erase completes, this sample command operates in
external address space read mode.

ERASE

Write processing After switching to SPI operating mode, uses the
R_SLASH_ByteProgram() function to issue a program command
to the serial flash memory and write the test data using software
processing. After the write processing completes, this sample
command operates in external address space read mode.

WRITE

Read processing using
SPI operating mode

After switching to SPI operating mode, uses the
R_SLASH_ByteRead() function to issue a memory read
command to the serial flash memory and read data using
software processing. The read data is then displayed on the
terminal. After the read processing completes, this sample
command operates in external address space read mode.

SREAD

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 25 of 89
May. 17, 2017

6.6.1 XREAD Command
The XREAD command allows an address (H'1800_0000 to H1BFF_FFFF) in the SPI multi-I/O bus space and a byte
count to be specified from the terminal. The CPU directly reads the specified number of bytes of data starting at the
specified start address and displays the read data on the terminal.

Figure 6.10 shows an example of the Terminal Output Example when XREAD Command Executed.

SPIBSC> XREAD --- [1]
Please input start address (hex) ?
18000000 --- [2]
Please input size ?
256 --- [3]

address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F --- [4]

0x18000000 : 18 f0 9f e5 18 f0 9f e5 18 f0 9f e5 18 f0 9f e5
0x18000010 : 18 f0 9f e5 18 f0 9f e5 18 f0 9f e5 18 f0 9f e5
0x18000020 : 00 40 00 18 60 40 00 18 64 40 00 18 68 40 00 18

(Omitted)

0x180000D0 : ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x180000E0 : ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x180000F0 : ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

SPIBSC>

Figure 6.10 Terminal Output Example when XREAD Command Executed

[1] When "XREAD" + <Enter> are entered, the XREAD command is started.
[2] When the "Please input start address (hex)?" prompt is displayed, enter the read start address in hexadecimal and

press <Enter>.
(The allowable range for the address is from H'1800_0000 to H'1BFF_FFFF.)

[3] When the "Please input size?" prompt is displayed, enter the number of bytes to read (as a decimal value) and press
<Enter>.
(The byte count values that may be entered are from 1 to 4096. Also, the command terminates with an error if a read
address outside the range H'1800_0000 to H1BFF_FFFF is specified.)

[4] The result of the CPU directly reading, in external address space read mode, the area with the specified address and
byte count is displayed.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 26 of 89
May. 17, 2017

6.6.2 ERASE Command
The ERASE command allows an address (H'0010_0000 to H03FF_FFFF) in serial flash memory and a byte count (1 to
1048576) to be specified from the terminal. The command calculates the block count (the block size is 4 KB) to be
erased from the specified byte count and calls the R_SFLASH_EraseSector() function to erase that data in the serial
flash memory.

Figure 6.11 shows an example of the Terminal Output Example when ERASE Command Executed.

SPIBSC> ERASE --- [1]
Please input start address (hex) ?
100000 --- [2]
Please input size ?
256 --- [3]

 ERASE command: success --- [4]
 Erased 4096 bytes data from 0x00100000 to 0x00100FFF.

SPIBSC>

Figure 6.11 Terminal Output Example when ERASE Command Executed

[1] When "ERASE" + <Enter> are entered, the ERASE command is started.
[2] When the "Please input start address (hex)?" prompt is displayed, enter the erase start address in hexadecimal and

press <Enter>.
(The allowable range for the address is from H'0010_0000 to H'03FF_FFFF. The 1 MB area in serial flash memory
from H'0000_0000 to H'000F_FFFF holds this sample code and may not be erased.)

[3] When the "Please input size?" prompt is displayed, enter the number of bytes to erase (as a decimal value) and press
<Enter>.
(The byte count values that may be entered are from 1 to 1048576. Also, the command terminates with an error if
the start address plus the byte count exceeds the range H'0010_0000 to H'03FF_FFFF.)

[4] The command then erases an area with the specified address and byte count. The ERASE command terminates after
displaying the result of command execution.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 27 of 89
May. 17, 2017

6.6.3 WRITE Command
The WRITE command allows an address (H'0010_0000 to H'03FF_FFFF) in serial flash memory and a byte count (1 to
1048576) to be specified from the terminal and it writes the specified number of bytes of data to serial flash memory
starting at the specified address. It also acquires the initial value (0 to 255) for the write data from the terminal, and uses
that initial value to generate consecutive data in the amount specified to write. It calls the R_SFLASH_ByteProgram()
function to write that data to serial flash memory. It then calls the R_SFLASH_ByteRead() function to read back that
data from serial flash memory and verify the written data.

Note that before using the WRITE command, the user must use the ERASE command to erase the area in serial flash
memory that is to be written. If the area is not erased, the intended values will not be written to the serial flash memory.

Figure 6.12 shows an example of the Terminal Output Example when WRITE Command Executed.

SPIBSC> WRITE --- [1]
Please input start address (hex) ?
100000 --- [2]
Please input size ?
256 --- [3]
Please input start value to write ?
1 --- [4]

Are you sure data is erased before write operation (Y/N)?
Y --- [5]

 WRITE command: success --- [6]
 Wrote 256 bytes data from 0x00100000 to 0x001000FF.
 Verify OK.

SPIBSC>

Figure 6.12 Terminal Output Example when WRITE Command Executed

[1] When "WRITE" + <Enter> are entered, the WRITE command is started.
[2] When the "Please input start address (hex)?" prompt is displayed, enter the write start address in hexadecimal and

press <Enter>.
(The allowable range for the address is from H'0010_0000 to H'03FF_FFFF, and the value must be a multiple of 256
bytes (the page size). The 1 MB area in serial flash memory from H'0000_0000 to H'000F_FFFF holds this sample
code and may not be written.)

[3] When the "Please input size?" prompt is displayed, enter the number of bytes to write (as a decimal value) and press
<Enter>.
(The byte count values that may be entered are from 1 to 1048576. Also, the command terminates with an error if
the start address plus the byte count exceeds the range H'0010_0000 to H'03FF_FFFF.)

[4] When the "Please input start value to write?" prompt is displayed, enter the starting value of the consecutive data to
write and press <Enter>.
(The allowable range for this value is 0 to 255. The command generates consecutive data in the range 0 to 255.)

[5] When the "Are you sure data is erased before the write operation (Y/N)?" prompt is displayed, enter "Y" or "N" and
then press <Enter>. If an ERASE command was performed before executing this command, enter Y. If N is entered
this command will exit without performing the write operation.

[6] The command performs a write operation for the specified address and number of bytes. After displaying the result
of executing the command, the WRITE command terminates. The result of the verification following execution of
the command is also displayed.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 28 of 89
May. 17, 2017

If an error occurs during verification, processing continues until writing of the specified number of bytes of write data
completes and on the "Verify NG:" output line, "<number of verify error bytes>/<number of bytes written>" is
displayed. Verification is performed in order of increasing addresses, and if one or more verification errors occur, the
information for the address at which the first verification error occurs is displayed. This information consists of the
write address, written value, and read value.

Figure 6.13 shows an example of Terminal Output during WRITE Command Execution when a Verification Error
Occurs.

SPIBSC> WRITE
Please input start address (hex) ?
100000
Please input size ?
256
Please input start value to write ?
1

Are you sure data is erased before write operation (Y/N)?
Y

 WRITE command: success
 Wrote 256 bytes data from 0x00100000 to 0x001000FF.
 Verify NG : 7 / 256
 Verify error data : address=0x00100000, write=0x11, read=0x01

SPIBSC>

Figure 6.13 Terminal Output during WRITE Command Execution when a Verification Error Occurs

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 29 of 89
May. 17, 2017

6.6.4 SREAD Command
The SREAD command allows an address (H'0000_0000 to H'03FF_FFFF) in serial flash memory and a number of
bytes to read (1 to 4096) to be specified from the terminal. After switching the SPIBSC to SPI operating mode, it calls
the R_SFLASH_ByteRead() function to read from serial flash memory and displays the read data on the terminal.

Figure 6.14 shows an example of the Terminal Output Example when SREAD Command Executed.

SPIBSC> SREAD --- [1]
Please input start address (hex) ?
100000 --- [2]
Please input size ?
256 --- [3]

address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F --- [4]

0x00100000 : 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10
0x00100010 : 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20
0x00100020 : 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30

(Omitted)

0x001000D0 : d1 d2 d3 d4 d5 d6 d7 d8 d9 da db dc dd de df e0
0x001000E0 : e1 e2 e3 e4 e5 e6 e7 e8 e9 ea eb ec ed ee ef f0
0x001000F0 : f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff 00

SPIBSC>

Figure 6.14 Terminal Output Example when SREAD Command Executed

[1] When "SREAD" + <Enter> are entered, the SREAD command is started.
[2] When the "Please input start address (hex)?" prompt is displayed, enter the read start address in hexadecimal and

press <Enter>.
(The allowable range for the address is from H'0000_0000 to H'03FF_FFFF.)

[3] When the "Please input size?" prompt is displayed, enter the number of bytes to read (as a decimal value) and press
<Enter>.
(The byte count values that may be entered are from 1 to 4096. Also, the command terminates with an error if the
start address plus the byte count exceeds the range H'0000_0000 to H'03FF_FFFF.)

[4] The command displays the result of reading in SPI operating mode the specified number of bytes from the specified
address.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 30 of 89
May. 17, 2017

6.7 Peripheral Functions and Memory Allocation in Sample Code
6.7.1 Setting for Peripheral Functions
Table 6.2 lists the Setting for Peripheral Functions during execution of this sample code.

Table 6.2 Setting for Peripheral Functions

Module Settings
CPG CPU clock (Iφ): 400 MHz

Internal bus clock (Bφ): 133.33 MHz
Peripheral clock 1 (P1φ): 66.67 MHz
Peripheral clock 0 (P0φ): 33.33 MHz

SPIBSC Settings to set the SPIBSC to external address space read mode and settings for signal
generation so that the CPU can directly read from the serial flash memory connected to
the SPI multi-I/O bus space.

PORT Settings for the PORT4 multiplexed pin functions:
P4_4: SPBCLK_0
P4_5: SPBSSL_0
P4_6: SPBMO0_0/SPBIO00_0
P4_7: SPBMI0_0/SPBIO10_0
P4_2: SPBIO20_0
P4_3: SPBIO30_0

STB Clock supply to peripheral functions and write enable of the internal RAM used for data
retention
Provides clock supply with STBCR2 to STBCR12 and provides clock supply for all
peripheral functions that support stop control.

SCIF The SCIF channel 0 is set to asynchronous mode.
• Data length: 8 bits
• Number of stop bits: 1
• Parity: none
When P1φ is 66.67 MHz, the clock source is not divided, the bit rate value is set to 17,
and other settings are set so that the bit rate becomes 115,200 bps.
The error margin is 0.46%.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 31 of 89
May. 17, 2017

6.7.2 Memory Mapping
Figure 6.15 shows the RZ/A1LU Group Address Space and JASMINE board Memory Mapping.

Figure 6.15 RZ/A1LU Group Address Space and JASMINE board Memory Mapping

Normal
space

CS3 space (64MB)

CS2 space (64MB)

CS1 space (64MB)

CS4 space (64MB)

H'FFFF FFFF

H'6030 0000

H'6000 0000

CS0 space (64MB)

H'5C00 0000

Mirror
space

RZ/A1LU group
Address space

Others
(509MB)

H'5800 0000

CS3 space (64MB)

CS2 space (64MB)

CS1 space (64MB)

CS4 space (64MB)

H'5000 0000

H'4400 0000

H'4000 0000

CS0 space (64MB)

H'2000 0000

H'1C00 0000

Others
(2557MB)

H'1800 0000

H'1000 0000

SPI multi-I/O-bus
space 1 (64MB)

SPI multi-I/O-bus
space 2 (64MB)

Large-capacity on-
chip RAM (3MB)

H'4C00 0000

H'4800 0000

H'2030 0000

SPI multi-I/O-bus
space 2 (64MB)

SPI multi-I/O-bus
space 1 (64MB)

Large-capacity on-
chip RAM (3MB)

H'0000 0000

H'0C00 0000

H'0800 0000

H'0400 0000

CS3 mirror space

−

−

−

−

JASMINE board
Memory map

Others
(509MB)

SDRAM (64MB)

−

−

−

−

Others
(2557MB)

SPI multi-I/O-bus
mirror space 1

−

Large-capacity on-
chip RAM mirror

−

Serial flash memory
(64MB)

Large-capacity on-
chip RAM (3MB)

CS5 space (64MB) −
H'1400 0000

CS5 space (64MB) −

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 32 of 89
May. 17, 2017

6.7.3 Section Assignment in Sample Code
Table 6.3 lists the Sections Used by the SPIBSC Initialization Program and Table 6.4 to Table 6.6 list the Sections Used
by Application Programs.

Table 6.3 Sections Used by the SPIBSC Initialization Program

Section Name Description Type
Loading
Area

Execution
Area

VECTOR_TABLE Exception processing vector table Code S-FLASH S-FLASH
CODE_SPIBSC_INIT1 Code area for SPIBSC initial setting

program 1
Code S-FLASH LRAM

CODE_IO_REGRW Program code area for read/write
functions of I/O register

Code S-FLASH LRAM

CODE_SPIBSC_INIT2 Code area for SPIBSC initial setting
program 2

Code S-FLASH LRAM

DATA_SPIBSC_INIT2 Initialized data area for SPIBSC initial
setting program 2

RW Data S-FLASH LRAM

BSS_SPIBSC_INIT2 Uninitialized data area for SPIBSC initial
setting program 2

ZI Data  LRAM

RESET_HANDLER Program code area of reset handler
processing

Code S-FLASH S-FLASH

CODE Default program code area
Code type sections for which no section is
defined by the C code are all allocated to
this area.

Code S-FLASH S-FLASH

SVC_STACK Stack area ZI Data  LRAM
Note: For the loading areas and execution areas in the table, S-FLASH indicates the serial flash memory

area and LRAM indicates the on-chip large-capacity RAM area.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 33 of 89
May. 17, 2017

Table 6.4 Sections Used by Application Programs (1/3)

Section Name Description Type
Loading
Area

Execution
Area

VECTOR_TABLE Exception processing vector table Code S-FLASH S-FLASH
RESET_HANDLER Program code area for reset handlers

This area consists of the following
sections.
• INITCA9CACHE (L1 cache settings)
• INIT_TTB (MMU settings)
• RESET_HGANDLER (Reset handler)

Code S-FLASH S-FLASH

CODE_BASIC_SETUP Program code area to enable write for the
on-chip data retention RAM.

Code S-FLASH S-FLASH

InRoot This area consists of sections located in
the root area such as C standard library.

Code
or
RO Data

S-FLASH S-FLASH

CODE_FPU_INIT Program code area for NEON and VFP
initialization
This area consists of the following
sections.
• CODE_FPU_INIT
• FPU_INIT

Code S-FLASH S-FLASH

CODE_RESET Program code area for hardware
initialization
This area consists of the following
sections.
• CODE_RESET (Startup processing)
• INIT_VBAR (Vector base initialization)

Code S-FLASH S-FLASH

CODE Default program code area
Code type sections for which no section is
defined by the C code are all allocated to
this area.

Code S-FLASH S-FLASH

CONST Default constant data area
RO Data type sections for which no
section is defined by the C code are all
allocated to this area.

RO Data S-FLASH S-FLASH

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 34 of 89
May. 17, 2017

Table 6.5 Sections Used by Application Programs (2/3)

Section Name Description Type
Loading
Area

Execution
Area

VECTOR_MIRROR_
TABLE

Exception handling vector table
(Section used for copying to on-chip
large-capacity RAM and executing)

Code S-FLASH LRAM

CODE_HANDLER_
JMPTBL

Program code area for user-defined
functions used as IRQ interrupt handlers

Code S-FLASH LRAM

CODE_HANDLER Program code area for IRQ interrupt
handlers
This area consists of the following
sections.
• CODE_HANDLER
• IRQ_FIQ_HANDLER

Code S-FLASH LRAM

CODE_IO_REGRW Program code area for I/O register
read/write functions

Code S-FLASH LRAM

CODE_CACHE_
OPERATION

Program code area for L1 and L2 cache
setup processing*3

Code S-FLASH LRAM

DATA_HANDLER_
JMPTBL

Registered table data for user-defined
functions used as IRQ interrupt handlers

RW Data S-FLASH LRAM

ARM_LIB_STACK Application stack area ZI Data  LRAM
IRQ_STACK IRQ mode stack area ZI Data  LRAM
FIQ_STACK FIQ mode stack area ZI Data  LRAM
SVC_STACK Supervisor mode (SVC) stack area ZI Data  LRAM
ABT_STACK Abort mode (ABT) stack area ZI Data  LRAM
TTB MMU translation table area ZI Data  LRAM
ARM_LIB_HEAP Application heap area ZI Data  LRAM
DATA Data area with default initialization

RW Data type sections for which no
section is defined by the C code are all
allocated to this area.

RW Data S-FLASH LRAM

BSS Data area without default initialization
ZI Data type sections for which no section
is defined by the C code are all allocated
to this area.

ZI Data  LRAM

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 35 of 89
May. 17, 2017

Table 6.6 Sections Used by Application Programs (3/3)

Section Name Description Type
Loading
Area

Execution
Area

CODE_SPIBSC_
WRITE_OPERATION

Program code for SPIBSC mode
switching

Code S-FLASH LRAM

CONST_SPIBSC_
WRITE_OPERATION

Constant data area for SPIBSC mode
switching

RO Data S-FLASH LRAM

DATA_SPIBSC_
WRITE_OPERATION

Initialized data area for SPIBSC mode
switching

RW Data S-FLASH LRAM

BSS_SPIBSC_
WRITE_OPERATION

Uninitialized data area for SPIBSC mode
switching

ZI Data  LRAM

CODE_MMU_
OPERATION

Program code for MMU translation table
modification processing

Code S-FLASH LRAM

CONST_MMU_
OPERATION

Constant data area for MMU translation
table modification processing

RO Data S-FLASH LRAM

DATA_MMU_
OPERATION

Initialized data area for MMU translation
table modification processing

RW Data S-FLASH LRAM

BSS_MMU_
OPERATION

Uninitialized data area MMU translation
table modification processing

ZI Data  LRAM

Notes: 1. For the loading areas and execution areas in the table, S-FLASH indicates the serial flash memory
area and LRAM indicates the on-chip large-capacity RAM area.

 2. Although as a rule, the section uses the same name as the area, the following areas contain
multiple sections: RESET_HANDLER, InRoot, CODE_FPU_INIT, CODE_RESET, CODE, CONST,
CODE_HANDLER, DATA, and BSS. See the ARM compiler tool chain manuals for more
information on areas and sections.

 3. This section must be allocated to a cache disabled area.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 36 of 89
May. 17, 2017

6.8 Interrupt Used
Table 6.7 lists the Interrupt Used in This Sample Code.

Table 6.7 Interrupt Used in This Sample Code

Interrupt Source (Interrupt ID) Priority Processing Overview
OSTM0 (134) 5 Generates an interrupt every 500 ms.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 37 of 89
May. 17, 2017

6.9 Constants
Table 6.8 to Table 6.10 list the Constants Used in This Sample Code.

Table 6.8 Constants Used in This Sample Code (1/3)

Constant Name
Setting
Value Description

SPIBSC_1BIT 0 Sets the bit width used for commands, optional
commands, addresses, option data, and transfer data to
1 bit.

SPIBSC_4BIT 2 Sets the bit width used for commands, optional
commands, addresses, option data, and transfer data to
4 bits.

SPIBSC_CMNCR_BSZ_SINGLE 0 Sets the number of serial flash memory devices
connected to the channel to 1 device.

SPIBSC_CMNCR_BSZ_DUAL 1 Sets the number of serial flash memory devices
connected to the channel to 2 devices.

SPIBSC_OUTPUT_DISABLE 0 Specifies that command, optional command, address,
and option data are not output.

SPIBSC_OUTPUT_ENABLE 1 Specifies that command, optional command, address,
and option data are output.

SPIBSC_OUTPUT_ADDR_24 0x07 Outputs 24-bit addresses.
SPIBSC_OUTPUT_ADDR_32 0x0f Outputs 32-bit addresses.
SPIBSC_OUTPUT_OPD_3 0x08 Outputs the option data enable OPD3.
SPIBSC_OUTPUT_OPD_32 0x0c Outputs the option data enable OPD3 and OPD2.
SPIBSC_OUTPUT_OPD_321 0x0e Outputs the option data enable OPD3, OPD2, and

OPD1.
SPIBSC_OUTPUT_OPD_3210 0x0f Outputs the option data enable OPD3, OPD2, OPD1,

and OPD0.
SPIBSC_OUTPUT_SPID_8 0x08 Sets the transfer data enable to 8 (or 16) bits in SPI

operating mode.
SPIBSC_OUTPUT_SPID_16 0x0c Sets the transfer data enable to 16 (or 32) bits in SPI

operating mode.
SPIBSC_OUTPUT_SPID_32 0x0f Sets the transfer data enable to 32 (or 64) bits in SPI

operating mode.
SPIBSC_SPISSL_NEGATE 0 Sets the SPBSSL signal status after a transfer complete

to negated in SPI operating mode.
SPIBSC_SPISSL_KEEP 1 Sets the SPBSSL signal levels between a transfer

complete until the start of the next access to be held in
SPI operating mode.

SPIBSC_SPIDATA_DISABLE 0 Sets data read/write operations to disabled in SPI
operating mode.

SPIBSC_SPIDATA_ENABLE 1 Sets data read/write operations to enabled in SPI
operating mode.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 38 of 89
May. 17, 2017

Table 6.9 Constants Used in This Sample Code (2/3)

Constant Name
Setting
Value Description

SPIBSC_DUMMY_CYC_DISABLE 0 Sets dummy cycle insertion to disabled.
SPIBSC_DUMMY_CYC_ENABLE 1 Sets dummy cycle insertion to enabled.
SPIBSC_DUMMY_1CYC 0 Sets the number of dummy cycles output to the serial

flash memory in external address space read mode and
SPI operating mode to 1.

SPIBSC_DUMMY_2CYC 1 Sets the number of dummy cycles output to the serial
flash memory in external address space read mode and
SPI operating mode to 2.

SPIBSC_DUMMY_3CYC 2 Sets the number of dummy cycles output to the serial
flash memory in external address space read mode and
SPI operating mode to 3.

SPIBSC_DUMMY_4CYC 3 Sets the number of dummy cycles output to the serial
flash memory in external address space read mode and
SPI operating mode to 4.

SPIBSC_DUMMY_5CYC 4 Sets the number of dummy cycles output to the serial
flash memory in external address space read mode and
SPI operating mode to 5.

SPIBSC_DUMMY_6CYC 5 Sets the number of dummy cycles output to the serial
flash memory in external address space read mode and
SPI operating mode to 6.

SPIBSC_DUMMY_7CYC 6 Sets the number of dummy cycles output to the serial
flash memory in external address space read mode and
SPI operating mode to 7.

SPIBSC_DUMMY_8CYC 7 Sets the number of dummy cycles output to the serial
flash memory in external address space read mode and
SPI operating mode to 8.

SPIBSC_SDR_TRANS 0 Sets the transfer mode in SPI operating mode to SDR
transfer.

SPIBSC_DDR_TRANS 1 Sets the transfer mode in SPI operating mode to DDR
transfer.

SF_REQ_PROTECT 0 Sets the register setting information in the serial flash
memory to protected.

SF_REQ_UNPROTECT 1 Sets the register setting information in the serial flash
memory to protection disabled.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 39 of 89
May. 17, 2017

Table 6.10 Constants Used in This Sample Code (3/3)

Constant Name Setting Value Description
SF_PAGE_SIZE 256 Serial flash memory page size
SF_SECTOR_SIZE 4 * 1024 Serial flash memory sector size
SF_NUM_OF_SECTOR 16384 Serial flash memory sector count
SPIBSC_ADDR_START 0x18000000 SPI multi-I/O bus space start address
SPIBSC_ADDR_END 0x1BFFFFFF SPI multi-I/O bus space end address
FLASH_ADDR_START 0x00000000 Serial flash memory start address
FLASH_ADDR_END 0x03FFFFFF Serial flash memory end address
FLASH_PROTECT_SIZE 0x00100000 The size of the erase and write protected area in

serial flash memory used in the SPIBSC sample
command.
(An area of 1 MB is protected so that erase and write
operations are not performed on the area in serial
flash memory from H'0000_0000 to H'000F_FFFF.
This area is protected so that the storage area for
this sample code itself is not modified.)

FLASH_SECTOR_BASE_MASK ~(SF_SECTOR_
SIZE - 1)

Mask value used to calculate serial flash memory
sector start addresses.

FLASH_PAGE_OFFSET_MASK SF_PAGE_SIZE
- 1

Mask value used to calculate serial flash memory
offset from page start addresses.

SPIBSC_WRITE_PAGE_BUF_
SIZE

SF_SECTOR
_SIZE

Size of the write buffers used in the SPIBSC sample
command.

SPIBSC_READ_BUF_SIZE SF_SECTOR
_SIZE << 4

Size of the read buffers used in the SPIBSC sample
command.

ARGUMENT_BUF_SIZE 128 Size of the buffers used to store text entered from
the terminal console in the SPIBSC sample
command.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 40 of 89
May. 17, 2017

6.10 Structures and Unions
Table 6.11 to Table 6.15 list the structures used in this sample code.

Table 6.16 lists the structure used in MMU translation table first-level descriptor.

Table 6.11 SPIBSC SPI Operating Mode Structure (st_spibsc_spimd_reg_t) (1/5)

Member Name Description
uint32_t cdb Command bit width

• Specifies the command bit width in SPI operating mode.
• Allowable values:

SPIBSC_1BIT: 1 bit
SPIBSC_4BIT: 4 bits

• The value stored in this member is set into the CDB[1:0] bits in the SPI mode
enable setting register (SMENR).

uint32_t ocdb Optional command bit width
• Specifies the optional command bit width in SPI operating mode.
• Allowable values:

SPIBSC_1BIT: 1 bit
SPIBSC_4BIT: 4 bits

• The value stored in this member is set into the OCDB[1:0] bits in the SPI
mode enable setting register (SMENR).

uint32_t adb Address bit width
• Specifies the address bit width in SPI operating mode.
• Allowable values:

SPIBSC_1BIT: 1 bit
SPIBSC_4BIT: 4 bits

• The value stored in this member is set into the ADB[1:0] bits in the SPI mode
enable setting register (SMENR).

uint32_t opdb Option data bit width
• Specifies the option data bit width in SPI operating mode.
• Allowable values:

SPIBSC_1BIT: 1 bit
SPIBSC_4BIT: 4 bits

• The value stored in this member is set into the OPDB[1:0] bits in the SPI
mode enable setting register (SMENR).

uint32_t spidb Transfer data bit width
• Specifies the transfer data width in SPI operating mode.
• Allowable values:

SPIBSC_1BIT: 1 bit
SPIBSC_4BIT: 4 bits

• The value stored in this member is set into the SPIDB[1:0] bits in the SPI
mode enable setting register (SMENR).

uint32_t cde Sets whether or not commands are output in SPI operating mode.
• Allowable values:

SPIBSC_OUTPUT_DISABLE: Commands not output
SPIBSC_OUTPUT_ENABLE: Commands are output

• The value stored in this member is set into the CDE bit in the SPI mode
enable setting register (SMENR).

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 41 of 89
May. 17, 2017

Table 6.12 SPIBSC SPI Operating Mode Structure (st_spibsc_spimd_reg_t) (2/5)

Member Name Description
uint32_t ocde Optional command enable

• Sets whether or not optional commands are output in SPI operating mode.
• Allowable values:

SPIBSC_OUTPUT_DISABLE: Output disabled.
SPIBSC_OUTPUT_ENABLE: Output enabled.

• The value stored in this member is set into the OCDE bit in the SPI mode
enable setting register (SMENR).

uint32_t ade Address enable
• Sets whether or not addresses are output in SPI operating mode.
• Allowable values:

SPIBSC_OUTPUT_DISABLE: Output disabled.
SPIBSC_OUTPUT_ADDR_24: The ADR[23:0] bits are output.
SPIBSC_OUTPUT_ADDR_32: The ADR[31:0] bits are output.

• The value stored in this member is set into the ADE[3:0] bits in the SPI mode
enable setting register (SMENR).

uint32_t opde Option data enable
• Sets whether or not the option data is output in SPI operating mode.
• Allowable values:

SPIBSC_OUTPUT_DISABLE: Output disabled.
SPIBSC_OUTPUT_OPD_3: OPD3 is output.
SPIBSC_OUTPUT_OPD_32: OPD3 and OPD2 are output.
SPIBSC_OUTPUT_OPD_321: OPD3, OPD2, and OPD1 are output.
SPIBSC_OUTPUT_OPD_3210: OPD3, OPD2, OPD1, and OPD0 are output.

• The value stored in this member is set into the OPDE[3:0] bits in the SPI
mode enable setting register (SMENR).

uint32_t spide Transfer data enable
• Sets whether or not data transfers are performed in SPI operating mode.
• Allowable values:

SPIBSC_OUTPUT_DISABLE: Transfers disabled.
SPIBSC_OUTPUT_SPID_8: 8 (or 16) bits are transferred.
SPIBSC_OUTPUT_SPID_16: 16 (or 32) bits are transferred.
SPIBSC_OUTPUT_SPID_32: 32 (or 64) bits are transferred.

• The value stored in this member is set into the SPIDE[3:0] bits in the SPI
mode enable setting register (SMENR).

uint32_t sslkp SPBSSL signal level hold
• Sets the SPBSSL signal states after transfer completion in SPI operating

mode.
• Allowable values:

SPIBSC_SPISSL_NEGATE: Signals are negated when a transfer
 completes.
SPIBSC_SPISSL_KEEP: SPBSSL signal levels are retained from
 transfer completion until the next transfer
 starts.

• The value stored in this member is set into the SSLKP bit in the SPI mode
control register (SMCR).

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 42 of 89
May. 17, 2017

Table 6.13 SPIBSC SPI Operating Mode Structure (st_spibsc_spimd_reg_t) (3/5)

Member Name Description
uint32_t spire Data read enable

• Sets whether or not data is read in SPI operating mode.
• Allowable values:

SPIBSC_SPIDATA_DISABLE: Data is not read.
SPIBSC_SPIDATA_ENABLE: Data is read.

• The value stored in this member is set into the SPIRE bit in the SPI mode
control register (SMCR).

uint32_t spiwe Data write enable
• Sets whether or not data is written in SPI operating mode.
• Allowable values:

SPIBSC_SPIDATA_DISABLE: Data is not written.
SPIBSC_SPIDATA_ENABLE: Data is written.

• The value stored in this member is set into the SPIWE bit in the SPI mode
control register (SMCR).

uint32_t dme Dummy cycle enable
• Sets whether or not dummy cycles are inserted in SPI operating mode.
• Allowable values:

SPIBSC_DUMMY_CYC_DISABLE: Dummy cycles not inserted.
SPIBSC_DUMMY_CYC_ENABLE: Dummy cycles inserted.

• The value stored in this member is set into the DME bit in the SPI mode
enable setting register (SMENR).

uint32_t addre Address DDR enable
• Selects SDR or DDR transfer for address output in SPI operating mode.
• Allowable values:

SPIBSC_SDR_TRANS: SDR transfer
SPIBSC_DDR_TRANS: DDR transfer

• The value stored in this member is set into the ADDRE bit in the SPI mode
DDR enable register (SMDRENR).

uint32_t opdre Option data DDR enable
• Selects SDR or DDR transfer for option data output in SPI operating mode.
• Allowable values:

SPIBSC_SDR_TRANS: SDR transfer
SPIBSC_DDR_TRANS: DDR transfer

• The value stored in this member is set into the OPDRE bit in the SPI mode
DDR enable register (SMDRENR).

uint32_t spidre Transfer data DDR enable
• Selects SDR or DDR transfer for data transferred in SPI operating mode.
• Allowable values:

SPIBSC_SDR_TRANS: SDR transfer
SPIBSC_DDR_TRANS: DDR transfer

• The value stored in this member is set into the SPIDRE bit in the SPI mode
DDR enable register (SMDRENR).

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 43 of 89
May. 17, 2017

Table 6.14 SPIBSC SPI Operating Mode Structure (st_spibsc_spimd_reg_t) (4/5)

Member Name Description
uint8_t dmdb Dummy cycle bit width

• Sets the bit width for dummy cycles in SPI operating mode.
• Allowable values:

SPIBSC_1BIT: 1 bit
SPIBSC_4BIT: 4 bits

• The value stored in this member is set into the DMDB[1:0] bits in the SPI
mode dummy cycle setting register (SMDMCR).

uint8_t dmcyc Dummy cycle count
• Sets the number of dummy cycles in SPI operating mode.
• Allowable values:

SPIBSC_DUMMY_1CYC: 1 cycle
SPIBSC_DUMMY_2CYC: 2 cycles
SPIBSC_DUMMY_3CYC: 3 cycles
SPIBSC_DUMMY_4CYC: 4 cycles
SPIBSC_DUMMY_5CYC: 5 cycles
SPIBSC_DUMMY_6CYC: 6 cycles
SPIBSC_DUMMY_7CYC: 7 cycles
SPIBSC_DUMMY_8CYC: 8 cycles

• The value stored in this member is set into the DMCYC[2:0] bits in the SPI
mode dummy cycle setting register (SMDMCR).

uint8_t cmd Command
• Sets the command output in SPI operating mode.
• The value stored in this member is set into the CMD[7:0] bits in the SPI

mode command setting register (SMCMR).
uint8_t ocmd Optional command

• Sets the optional command output in SPI operating mode.
• The value stored in this member is set into the OCMD[7:0] bits in the SPI

mode command setting register (SMCMR).
uint32_t addr Address

• Sets the address output in SPI operating mode.
• The value stored in this member is set into the ADR[31:0] bits in the SPI

mode address setting register (SMADR).
uint8_t opd[4] Option data

• Sets the option data output in SPI operating mode.
• The value stored in this member is set into the OPDn[7:0] bits in the SPI

mode option setting register (SMOPR).
OPD3[7:0] ← opd[0]
OPD2[7:0] ← opd[1]
OPD1[7:0] ← opd[2]
OPD0[7:0] ← opd[3]

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 44 of 89
May. 17, 2017

Table 6.15 SPIBSC SPI Operating Mode Structure (st_spibsc_spimd_reg_t) (5/5)

Member Name Description
uint32_t smrdr[2] Read data storage buffer

• Stores the data (SPI mode read data register n (SMRDRn)) read in SPI
operating mode as shown below.
SMRDR0 → smrdr[0]
SMRDR1 → smrdr[1]

uint32_t smwdr[2] Write data storage buffer
• Stores the data (SPI mode write data register n (SMWDRn)) to be written in

SPI operating mode as shown below.
SMWDR0 ← smwdr[0]
SMWDR1 ← smwdr[1]

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 45 of 89
May. 17, 2017

Table 6.16 MMU Translation Table First-Level Descriptor (Section) Descriptor Structure

(mmu_ttbl_desc_section_t)

Member Name Description
uint32_t b0 : 1 First level descriptor (section) bit 0
uint32_t b1 : 1 First level descriptor (section) bit 1
uint32_t B : 1 First level descriptor (section) B bit
uint32_t C : 1 First level descriptor (section) C bit
uint32_t XN: 1 First level descriptor (section) XN bit
uint32_t Domain : 4 First level descriptor (section) Domain bit
uint32_t b9 : 1 First level descriptor (section) bit 9
uint32_t AP1_0 : 2 First level descriptor (section) AP[1:0] bits
uint32_t TEX : 3 First level descriptor (section) TEX[2:0] bits
uint32_t AP2 : 1 First level descriptor (section) AP[2] bit
uint32_t S : 1 First level descriptor (section) S bit
uint32_t nG : 1 First level descriptor (section) nG bit
uint32_t b18: 1 First level descriptor (section) bit 18
uint32_t NS : 1 First level descriptor (section) NS bit
uint32_t base_addr : 12 First level descriptor (section) PA[31:20] bits

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 46 of 89
May. 17, 2017

6.11 Variables
Table 6.17 lists the Global Variables.

Table 6.17 Global Variables

Type Variable Name Description
st_spibsc_spimd_reg_t g_spibsc_spimd_reg SPIBSC SPI operating mode settings storage variable

• Stores the SPIBSC settings used in SPI operating
mode.
In the sample code, these settings are also used
as arguments when running serial flash control
functions within API functions and user-defined
functions.

uint8_t write_page_buf[] Write buffer used by the SPIBSC sample commands.
uint8_t read_buf[] Read buffer used by the SPIBSC sample commands.
char_t arg_buf[] Buffer that stores the input character strings from the

console in SPIBSC sample commands.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 47 of 89
May. 17, 2017

6.12 Functions
This sample code consists of the following functions: interface functions (API functions) required to use the peripheral
functions, user-defined functions (functions called from API functions) that the user must provided to match the actual
user system, and the sample functions required to run the sample code.

Table 6.18 lists the Sample Function, Table 6.19 lists the API Functions, and Table 6.20 lists the User-Defined
Functions.

Note that since the functions called when running the sample commands that perform erase, write, and read operations
for the serial flash memory cannot be executed from serial flash memory, they are allocated to on-chip large-capacity
RAM and run from on-chip large-capacity RAM. The cache maintenance functions, MMU translation table descriptor
acquisition and setting functions are transferred to on-chip large-capacity RAM by scatter loading processing, and the
SPIBSC control functions, including the SPIBSC operating mode switching functions, the sample command processing
functions, and the user-defined functions, are transferred to on-chip large-capacity RAM by the
Sample_SPIBSC_WriteSectionInit() function.

Table 6.18 Sample Function

Function Name Description
Sample_SPIBSC_Main SPIBSC sample code main function
Sample_SPIBSC_Xread XREAD command processing

(read in external address space read mode)
Sample_SPIBSC_Erase ERASE command processing
Sample_SPIBSC_Write WRITE command processing
Sample_SPIBSC_Sread SREAD command processing (read in SPI operating mode)
Sample_SPIBSC_WriteSectionInit Section initialization processing for the SPIBSC sample commands
Sample_SPIBSC_ChangeModeSpi Processing for switching to SPI operating mode
Sample_SPIBSC_ChangeModeXip Processing for switching to external address space read mode
Change_MMU_TTbl_SpibscSpi MMU translation table modification processing for the SPI multi-I/O

bus space used in SPI operating mode.
Change_MMU_TTbl_SpibscXip MMU translation table modification processing for the SPI multi-I/O

bus space used in external address space read mode
MMU_TTbl_GetIndex Processing for getting MMU translation table descriptor index number
MMU_TTbl_GetDesc Processing for getting MMU translation table descriptor value
MMU_TTbl_SetDesc Processing for setting MMU translation table descriptor value
L1_I_CacheFlushAll Flush all of the L1 instruction cache
L1_D_CacheWritebackFlushAll Writeback and flush all of the L1 data cache
L2CacheWritebackFlushAll Writeback and flush all of the L2 cache
TLB_FlushAll Flush all of the TLB

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 48 of 89
May. 17, 2017

Table 6.19 API Functions

Function Name Description
R_SFLASH_SpibscStop SPIBSC stop function

Negates SSL and stops access to the serial flash memory
R_SFLASH_Exmode SPIBSC external address space read mode switching function

Switches the SPIBSC from SPI operating mode to external address
space read mode.

R_SFLASH_Spimode SPIBSC SPI operating mode switching function
Switches the SPIBSC from external address space read mode to SPI
operating mode.

R_SFLASH_Spimode_Init SPIBSC SPI operating mode initialization function
Performs the initializations required to use the SPIBSC in SPI operating
mode. After initialization, the mode is set to SPI operating mode.

R_SFLASH_EraseSector Serial flash memory sector erase function
Issues a block erase command to the serial flash memory and performs
the erase processing.
Set the SPIBSC to SPI operating mode before using this function.

R_SFLASH_ByteProgram Serial flash memory write function
Issues a byte program command to the serial flash memory and
performs the write processing.
Set the SPIBSC to SPI operating mode before using this function.

R_SFLASH_ByteRead Serial flash memory read function
Issues a read command to the serial flash memory and performs the
read processing.
Set the SPIBSC to SPI operating mode before using this function.

R_SFLASH_Ctrl_Protect Serial flash memory protection control function
Sets the serial flash memory registers and sets or clears the protection.
Set the SPIBSC to SPI operating mode before using this function.

R_SFLASH_Spibsc_Transfer Serial flash memory command issuing function
Issues commands to the serial flash memory according to the content of
the arguments.
Set the SPIBSC to SPI operating mode before using this function.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 49 of 89
May. 17, 2017

Table 6.20 User-Defined Functions

Function Name Description
Userdef_SFLASH_Write_Enable Serial flash memory write enable function

This function should implement processing that enables writing to the
serial flash memory registers according to the serial flash memory
actually used.
In this sample code, this function issues a "Write Status Register
(WRSR)" command for the Macronix serial flash memory
(MX25L51245G).

Userdef_SFLASH_Busy_Wait Serial flash memory wait for write completion function
This function should implement processing that waits for completion of a
write to the serial flash memory according to the serial flash memory
actually used.
In this sample code, this function issues a "Read Status Register
(RDSR)" command for the Macronix serial flash memory
(MX25L51245G), and references the contents of the status register to
implement the wait for write completion operation.

Userdef_SFLASH_Ctrl_Protect Serial flash memory clear protection function
This function should implement processing that clears the protection of
registers in the serial flash memory according to the serial flash memory
actually used.
In this sample code, this function clears the protection for the Macronix
serial flash memory (MX25L51245G).

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 50 of 89
May. 17, 2017

6.13 Function Specifications
The sample program specifications are listed below.

Sample_SPIBSC_Main
Outline SPIBSC sample code main function
Declaration int32_t Sample_SPIBSC_Main(int32_t argc, char_t **argv)
Description Displays the SPIBSC sample code information on a terminal program running on the host

PC connected by a serial interface to the JASMINE board. Before performing the wait for
sample command input, this function calls the Sample_SPIBSC_WriteSectionInit()
function to transfer the sample command processing to on-chip large-capacity RAM.
When the following commands are entered, it performs the corresponding sample
command processing.

Input of "XREAD" + <Enter> : Executes the XREAD command.
Input of "ERASE" + <Enter> : Executes the ERASE command.
Input of "WRITE" + <Enter> : Executes the WRITE command.
Input of "SREAD" + <Enter> : Executes the SREAD command.

Arguments int32_t argc Number of command arguments entered from the terminal
This argument is not used in this function.

 char_t **argv Pointer to the command entered from the terminal
This argument is not used in this function.

Return Value COMMAND_EXIT : The SPIBSC sample code processing has terminated.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 51 of 89
May. 17, 2017

Sample_SPIBSC_Xread
Outline XREAD command processing
Declaration int32_t Sample_SPIBSC_Xread(int32_t argc, char_t **argv)
Description This function directly reads with the CPU the area in the SPI multi-I/O bus space with the

start address and byte count entered from the terminal and displays the read data on the
terminal.
The address and byte count for any area in the range H'1800_0000 to H'1BFF_FFFF may
be specified. Up to 4 KB may be specified with the byte count.
When this function is running, the SPIBSC operates in external address space read
mode. This function is called when, after the SPIBSC sample code is started, "XREAD" +
<Enter> is entered from the terminal.

Arguments int32_t argc Number of command arguments entered from the terminal
This argument is not used in this function.

 char_t **argv Pointer to the command entered from the terminal
This argument is not used in this function.

Return Value 0 : Normal end
-1 : Error end

Sample_SPIBSC_Erase
Outline ERASE command processing
Declaration int32_t Sample_SPIBSC_Erase(int32_t argc, char_t **argv)
Description After switching the SPIBSC to SPI operating mode, this function performs processing that

erases serial flash memory for the number of bytes and the start address input from the
terminal. The address and byte count for any area in the range H'0010_0000 to
H'03FF_FFFF may be specified. Up to 1 MB may be specified with the byte count.
This sample code calculates the number of blocks to erase based on the Macronix
MX25L51245G serial flash memory, and calls the function R_SFLASH_EraseSector()
function for each sector size block to perform this erase processing.
After erase processing completes, the SPIBSC is switched to external address space
read mode and terminates.
After the SPIBSC sample code has been started, this function is called when "ERASE" +
<Enter> is entered from the keyboard.

Arguments int32_t argc Number of command arguments entered from the terminal
This argument is not used in this function.

 char_t **argv Pointer to the command entered from the terminal
This argument is not used in this function.

Return Value 0 : Normal end
-1 : Error end

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 52 of 89
May. 17, 2017

Sample_SPIBSC_Write
Outline WRITE command processing
Declaration int32_t Sample_SPIBSC_Write(int32_t argc, char_t **argv)
Description After switching the SPIBSC to SPI operating mode, this function performs processing to

write the input data to serial flash memory, in particular, to the area specified by the
number of bytes and the start address input from the terminal. Any area in the range
H'0010_0000 to H'03FF_FFFF may be specified with the entered address and byte count.
The address must specify the start address (a multiple of 256 bytes) of a page in the
serial flash memory, and the byte count must not exceed 1 MB. The entered data item
specifies the starting value for the consecutive data to be written and this function
generates consecutive data that is incremented over the range 0 to 255 starting with the
specified data.
This sample code calls the R_SFLASH_ByteProgram() function for each page size
increment (256 bytes) in the Macronix MX25L51245G serial flash memory to perform the
write processing.
After performing this write processing, this function switches the SPIBSC to external
address space read mode and terminates.
After the SPIBSC sample code has been started, this function is called when "WRITE" +
<Enter> is entered from the keyboard. The user must erase the area in serial flash
memory to be written before calling this function.

Arguments int32_t argc Number of command arguments entered from the terminal
This argument is not used in this function.

 char_t **argv Pointer to the command entered from the terminal
This argument is not used in this function.

Return Value 0 : Normal end
-1 : Error end

Sample_SPIBSC_Sread
Outline SREAD command processing
Declaration int32_t Sample_SPIBSC_Sread(int32_t argc, char_t **argv)
Description After switching the SPIBSC to SPI operating mode, this function performs processing to

read data from the area in serial flash memory with the start address and byte count
entered from the terminal and display that data on the terminal. Any area in the range
H'0000_0000 to H'03FF_FFFF may be specified with the address and byte count entered
from the terminal. A byte count of up to 4 KB may be specified. After performing this read
processing, this function switches the SPIBSC to external address space read mode and
terminates.
After the SPIBSC sample code has been started, this function is called when "SREAD" +
<Enter> is entered from the keyboard.

Arguments int32_t argc Number of command arguments entered from the terminal
This argument is not used in this function.

 char_t **argv Pointer to the command entered from the terminal
This argument is not used in this function.

Return Value 0 : Normal end
-1 : Error end

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 53 of 89
May. 17, 2017

Sample_SPIBSC_WriteSectionInit
Outline Section initialization processing for the SPIBSC sample commands
Declaration void Sample_SPIBSC_WriteSectionInit(void)
Description Transfers processing to be executed by this sample code to on-chip large-capacity RAM.

After switching the SPIBSC to SPI operating mode, this function sets up the system so
that the sample commands can be executed from the on-chip large-capacity RAM area.

Arguments None
Return Value None

Sample_SPIBSC_ChangeModeSpi
Outline Processing for switching to SPI operating mode
Declaration int32_t Sample_SPIBSC_ChangeModeSpi(void)
Description Performs processing to switch the SPIBSC from external address space read mode to

SPI operating mode. This function calls the Change_MMU_TTbl_SpibscSpi() function and
sets the SPI multi-I/O bus space MMU translation table to have the access disabled and
execution disabled attributes so that accesses to the SPI multi-I/O bus space are not
generated. Also, after setting the MMU translation table, it updates the cache contents
using cache maintenance. After that, it calls the R_SFLASH_Spimode() function to set the
SPIBSC CMNCR register MD bit to 1, performs a dummy read of the CMNCR register,
and switches to SPI operating mode.

Arguments None
Return Value 0 : Normal end

-1 : Error end

Sample_SPIBSC_ChangeModeXip
Outline Processing for switching to external address space read mode
Declaration int32_t Sample_SPIBSC_ChangeModeXip(void)
Description Performs processing to switch the SPIBSC from SPI operating mode to external address

space read mode. First it verifies that all accesses to the serial flash memory have
completed by calling the R_SFLASH_Exmode() function and reading the TEND bit. It
writes a 1 to the DRCR register RCF bit, performs a dummy read of the DRCR register,
and clears the read cache. It sets the CMNCR register MD bit to 0, performs a dummy
read of the CMNCR register, and switches to external address space read mode. After
that, it calls the Change_MMU_TTbl_SpibscXip() function, sets the SPI multi-I/O bus
space MMU translation table to have the access enabled and execution enabled
attributes so that access to the SPI multi-I/O bus space is possible. Also, after setting the
MMU translation table, it updates the cache contents using cache maintenance.

Arguments None
Return Value 0 : Normal end

-1 : Error end

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 54 of 89
May. 17, 2017

Change_MMU_TTbl_SpibscSpi
Outline MMU translation table modification processing for the SPI multi-I/O bus space used in SPI

operating mode.
Declaration static int32_t Change_MMU_TTbl_SpibscSpi(uint32_t start_addr, uint32_t end_addr)
Description Sets the AP[2:0] bits and the XN bit as shown below so that the SPI multi-I/O bus space

(H'1800_0000 to H'1BFF_FFFF) MMU translation table used in SPI operating mode has
the access disabled and execution disabled attributes.

AP[2:0] bits : B'000 (No access)
XN bit : 1 (Execute never)

Arguments uint32_t start_addr Start address of the address range that is the target of the MMU
translation table modification processing

 uint32_t end_addr End address of the address range that is the target of the MMU
translation table modification processing

Return Value 0 : Normal end
-1 : Error end

Change_MMU_TTbl_SpibscXip
Outline MMU translation table modification processing for the SPI multi-I/O bus space used in

external address space read mode
Declaration static int32_t Change_MMU_TTbl_SpibscXip(uint32_t start_addr, uint32_t end_addr)
Description Sets the AP[2:0] bits and the XN bit as shown below so that the SPI multi-I/O bus space

(H'1800_0000 to H'1BFF_FFFF) MMU translation table used in external address space
read mode has the access enabled and execution enabled attributes.

AP[2:0] bits : B'011 (Full access)
XN bit : 0 (Executable)

Arguments uint32_t start_addr Start address of the address range that is the target of the MMU
translation table modification processing

 uint32_t end_addr End address of the address range that is the target of the MMU
translation table modification processing

Return Value 0 : Normal end
-1 : Error end

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 55 of 89
May. 17, 2017

MMU_TTbl_GetIndex
Outline Processing for getting MMU translation table descriptor index number
Declaration uint32_t MMU_TTbl_GetIndex(uint32_t addr)
Description Gets the index number of the section type descriptor for the MMU translation table

corresponding to the addr argument.
Arguments uint32_t addr Virtual address (H'0000_0000 to H'FFFF_FFFF) with which to

modify the descriptor contents.
Return Value Index number (0 to 4095) of the descriptor corresponding to the addr argument.

MMU_TTbl_GetDesc
Outline Processing for getting MMU translation table descriptor value
Declaration int32_t MMU_TTbl_GetDesc(uint32_t index, mmu_ttbl_desc_section_t *pdesc)
Description Gets the value of the descriptor for the section type for the MMU translation table

corresponding to the index argument, and sets the value in *pdesc.
Arguments uint32_t index Index number (0 to 4095) for the MMU translation table
 mmu_ttbl_desc_secti

on_t *pdesc
Pointer to a variable to store the acquired descriptor

Return Value 0 : Normal end
-1 : Error end

MMU_TTbl_SetDesc
Outline Processing for setting MMU translation table descriptor value
Declaration int32_t MMU_TTbl_SetDesc(uint32_t index, mmu_ttbl_desc_section_t *pdesc)
Description Sets the descriptor for the section type for the MMU translation table corresponding to the

index argument to the value stored in *pdesc.
Arguments uint32_t index Index number (0 to 4095) for the MMU translation table
 mmu_ttbl_desc_secti

on_t *pdesc
Pointer to a variable that holds the value to which the descriptor
is to be set.

Return Value 0 : Normal end
-1 : Error end

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 56 of 89
May. 17, 2017

L1_I_CacheFlushAll
Outline Flush all of the L1 instruction cache
Declaration void L1_I_CacheFlushAll(void)
Description Performs a flush of the whole L1 instruction cache.
Arguments None
Return Value None

L1_D_CacheWritebackFlushAll
Outline Writeback and flush all of the L1 data cache
Declaration void L1_D_CacheWritebackFlushAll(void)
Description Performs a writeback and flush of the whole L1 data cache.

In this sample code, all data cache lines are cleaned and invalidated by set/way.
Arguments None
Return Value None

L2CacheWritebackFlushAll
Outline Writeback and flush all of the L2 cache
Declaration void L2CacheWritebackFlushAll(void)
Description Performs a writeback and flush of the whole L2 cache.

In this sample code, all cache lines are cleaned and invalidated by way.
Arguments None
Return Value None

TLB_FlushAll
Outline Flush all of the TLB
Declaration void TLB_FlushAll(void)
Description Executes a CP15 TLBIALL to flush the whole TLB.
Arguments None
Return Value None

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 57 of 89
May. 17, 2017

R_SFLASH_SpibscStop
Outline SPIBSC stop function
Declaration int32_t R_SFLASH_SpibscStop(uint32_t ch_no)
Description When this function is called with SPIBSC set to external address space read mode, this

function sets the data read control register (DRCR) SSLN bit to 1 to nagate SSL and
stops access to the serial flash memory.

Arguments uint32_t ch_no SPIBSC channel number (only 0 may be specified)
Return Value 0 : Normal end

-1 : Error end

R_SFLASH_Exmode
Outline SPIBSC external address space read mode switching function
Declaration int32_t R_SFLASH_Exmode(uint32_t ch_no)
Description Switches the SPIBSC to external address space read mode. After switching to external

address space read mode, before reading the SPI multi-I/O bus space, all the entries in
the read cache are cleared.

Arguments uint32_t ch_no SPIBSC channel number (only 0 may be specified)
Return Value 0 : Normal end

-1 : Error end

R_SFLASH_Spimode
Outline SPIBSC SPI operating mode switching function
Declaration int32_t R_SFLASH_Spimode(uint32_t ch_no)
Description Switches the SPIBSC to SPI operating mode. After switching to SPI operating mode, all

the entries in the read cache are cleared.
Arguments uint32_t ch_no SPIBSC channel number (only 0 may be specified)
Return Value 0 : Normal end

-1 : Error end

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 58 of 89
May. 17, 2017

R_SFLASH_Spimode_Init
Outline SPIBSC SPI operating mode initialization function
Declaration int32_t R_SFLASH_Spimode_Init(uint32_t ch_no, uint32_t dual, uint8_t data_width,

uint8_t spbr, uint8_t brdv, uint8_t addr_mode)
Description Initializes the SPIBSC so that it operates in SPI operating mode.
Arguments uint32_t ch_no SPIBSC channel number (only 0 may be specified)
 uint32_t dual Number of serial flash memory chips connected to the channel

SPIBSC_CMNCR_BSZ_SINGLE: One
SPIBSC_CMNCR_BSZ_DUAL: Two

 uint8_t data_width Data transfer bus width between the SPIBSC and the serial flash
memory

SPIBSC_1BIT: 1 bit
SPIBSC_4BIT: 4 bits

 uint8_t spbr Bit rate setting
Specify the setting value for the SPBR[7:0] bits in the bit rate
register (SPBCR).
The bit rate is determined by a combination of this setting with the
bit rate frequency division (brdv) setting.

 uint8_t brdv Bit rate divisor setting
Specify the setting value for the BRDV[1:0] bits in the bit rate
register (SPBCR).
The serial clock (SPBCLK) bit rate is set by this value in
conjunction with the bit rate setting (spbr).

 uint8_t addr_mode Bit width of addresses issued to the serial flash memory
Specifies the bit width of addresses output when commands are
output.

SPIBSC_OUTPUT_ADDR_24: 24-bit addresses output
SPIBSC_OUTPUT_ADDR_32: 32-bit addresses output

Return Value 0 : Normal end
-1 : Error end

Table 6.21 Sample Settings for the spbr and brdv Arguments

spbr setting
value (n)

brdv setting
value (N) Divisor

Bit Rate
Bφ = 100 MHz Bφ = 128 MHz Bφ = 133.33 MHz

0 0 1 Setting prohibited
1 0 2 50 Mbps 64 Mbps 66.67 Mbps
2 0 4 25 Mbps 32 Mbps 33.33 Mbps
3 0 6 16.67 Mbps 21.33 Mbps 22.22 Mbps
4 0 8 12.5 Mpbs 16 Mpbs 16.67 Mpbs

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 59 of 89
May. 17, 2017

R_SFLASH_EraseSector
Outline Serial flash memory sector erase function
Declaration int32_t R_SFLASH_EraseSector(uint32_t addr, uint32_t ch_no, uint32_t dual

uint8_t data_width, uint8_t addr_mode)
Description Erases data in sector units associated with the serial flash memory address specified in

the argument. This function must be called in sector size units for the serial flash memory
actually used.
This function must be called after switching the SPIBSC to SPI operating mode.

Arguments uint32_t addr Start address to be erased (H'0000_0000 to H'03FF_FFFF)
 uint32_t ch_no SPIBSC channel number (only 0 may be specified)
 uint32_t dual Number of serial flash memory chips connected to the channel

SPIBSC_CMNCR_BSZ_SINGLE: One
SPIBSC_CMNCR_BSZ_DUAL: Two

 uint8_t data_width Data transfer bus width between the SPIBSC and the serial flash
memory

SPIBSC_1BIT: 1 bit
SPIBSC_4BIT: 4 bits

 uint8_t addr_mode Bit width of addresses issued to the serial flash memory
Specifies the bit width of addresses output when commands are
output.

SPIBSC_OUTPUT_ADDR_24: 24-bit addresses output
SPIBSC_OUTPUT_ADDR_32: 32-bit addresses output

Return Value 0 : Normal end
-1 : Error end

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 60 of 89
May. 17, 2017

R_SFLASH_ByteProgram
Outline Serial flash memory write function
Declaration int32_t R_SFLASH_ByteProgram(uint32_t addr, uint8_t *buf, int32_t size,

uint32_t ch_no, uint32_t dual, uint8_t data_width, uint8_t addr_mode)
Description Writes to serial flash memory according to the parameters specified in the arguments.

This function writes to serial flash memory in page units. This function must be called so
that the value set in the size argument is less than the serial flash memory page size.
This function must be called after switching the SPIBSC to SPI operating mode.

Arguments uint32_t addr Write start address (H'0000_0000 to H'03FF_FFFF)
 uint8_t *buf Buffer that holds the write data
 int32_t size Number of bytes to write
 uint32_t ch_no SPIBSC channel number (only 0 may be specified)
 uint32_t dual Number of serial flash memory chips connected to the channel

SPIBSC_CMNCR_BSZ_SINGLE: One
SPIBSC_CMNCR_BSZ_DUAL: Two

 uint8_t data_width Data transfer bus width between the SPIBSC and the serial flash
memory

SPIBSC_1BIT: 1 bit
SPIBSC_4BIT: 4 bits

 uint8_t addr_mode Bit width of addresses issued to the serial flash memory
Specifies the bit width of addresses output when commands are
output.

SPIBSC_OUTPUT_ADDR_24: 24-bit addresses output
SPIBSC_OUTPUT_ADDR_32: 32-bit addresses output

Return Value 0 : Normal end
-1 : Error end

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 61 of 89
May. 17, 2017

R_SFLASH_ByteRead
Outline Serial flash memory read function
Declaration int32_t R_SFLASH_ByteRead(uint32_t addr, uint8_t *buf, int32_t size,

uint32_t ch_no, uint32_t dual, uint8_t data_width, uint8_t addr_mode)
Description Reads data from serial flash memory according to the parameters specified in the

arguments.
This function must be called after switching the SPIBSC to SPI operating mode.

Arguments uint32_t addr Start address for reading (H'0000_0000 to H'03FF_FFFF)
 uint8_t *buf Buffer that holds the read data
 int32_t size Number of bytes to read
 uint32_t ch_no SPIBSC channel number (only 0 may be specified)
 uint32_t dual Number of serial flash memory chips connected to the channel

SPIBSC_CMNCR_BSZ_SINGLE: One
SPIBSC_CMNCR_BSZ_DUAL: Two

 uint8_t data_width Data transfer bus width between the SPIBSC and the serial flash
memory

SPIBSC_1BIT: 1 bit
SPIBSC_4BIT: 4 bits

 uint8_t addr_mode Bit width of addresses issued to the serial flash memory
Specifies the bit width of addresses output when commands are
output.

SPIBSC_OUTPUT_ADDR_24: 24-bit addresses output
SPIBSC_OUTPUT_ADDR_32: 32-bit addresses output

Return Value 0 : Normal end
-1 : Error end

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 62 of 89
May. 17, 2017

R_SFLASH_Ctrl_Protect
Outline Serial flash memory protection control function
Declaration int32_t R_SFLASH_Ctrl_Protect(en_sf_req_t req, uint32_t ch_no, uint32_t dual,

uint8_t data_width)
Description Sets or cancels serial flash memory protection by setting the device's status register

according to the parameters specified in the arguments.
This function must be called after switching the SPIBSC to SPI operating mode.

Arguments en_sf_req_t req Register setting information
SF_REQ_PROTECT: Protected state
SF_REQ_UNPROTECT: Unprotected state

 uint32_t ch_no SPIBSC channel number (only 0 may be specified)
 uint32_t dual Number of serial flash memory chips connected to the channel

SPIBSC_CMNCR_BSZ_SINGLE: One
SPIBSC_CMNCR_BSZ_DUAL: Two

 uint8_t data_width Data transfer bus width between the SPIBSC and the serial flash
memory

SPIBSC_1BIT: 1 bit
SPIBSC_4BIT: 4 bits

Return Value 0 : Normal end
-1 : Error end

R_SFLASH_Spibsc_Transfer
Outline Serial flash memory command issuing function
Declaration int32_t R_SFLASH_Spibsc_Transfer(uint32_t ch_no, st_spibsc_spimd_reg_t * regset)
Description Issues commands to the serial flash memory in SPI operating mode according to the

content set in the regset argument.
Arguments uint32_t ch_no SPIBSC channel number (only 0 may be specified)
 st_spibsc_spimd_reg

_t * regset
SPIBSC SPI mode setting
See Table 6.11 to Table 6.15 for the contents set.

Return Value 0 : Normal end
-1 : Error end

Notes If this function is called in external address space read mode, it switches to SPI operating
mode and issues commands to the serial flash memory.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 63 of 89
May. 17, 2017

Userdef_SFLASH_Write_Enable
Outline Serial flash memory write enable function
Declaration int32_t Userdef_SFLASH_Write_Enable(uint32_t ch_no)
Description This function should implement processing that enables writing to the serial flash memory

registers according to the serial flash memory actually used.
In this sample code, this function issues a "Write Status Register (WRSR)" command for
the Macronix MX25L51245G serial flash memory.

Arguments uint32_t ch_no SPIBSC channel number (only 0 may be specified)
Return Value 0 : Normal end

-1 : Error end

Userdef_SFLASH_Busy_Wait
Outline Serial flash memory wait for write completion function
Declaration int32_t Userdef_SFLASH_Busy_Wait(uint32_t ch_no, uint32_t dual, uint8_t data_width)
Description This function should implement processing that reads out the serial flash memory

registers and waits for completion of a write to the serial flash memory according to the
serial flash memory actually used.
In this sample code, this function issues a "Read Status Register (RDSR)" command for
the Macronix MX25L51245G serial flash memory, and references the contents of the
status register to implement the wait for write completion operation.

Arguments uint32_t ch_no SPIBSC channel number (only 0 may be specified)
 uint32_t dual Number of serial flash memory chips connected to the channel

SPIBSC_CMNCR_BSZ_SINGLE: One
SPIBSC_CMNCR_BSZ_DUAL: Two

 uint8_t data_width Data transfer bus width between the SPIBSC and the serial flash
memory

SPIBSC_1BIT: 1 bit
SPIBSC_4BIT: 4 bits

Return Value 0 : Normal end

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 64 of 89
May. 17, 2017

Userdef_SFLASH_Ctrl_Protect
Outline Serial flash memory clear protection function
Declaration int32_t Userdef_SFLASH_Ctrl_Protect(en_sf_req_t req, uint32_t ch_no, uint32_t dual,

uint8_t data_width)
Description This function should implement processing that cancels the protection of the serial flash

memory according to the serial flash memory actually used.
In this sample code, this function issues a "Write Status Register (WRSR)" command for
the Macronix MX25L51245G serial flash memory to cancels the protection.

Arguments en_sf_req_t req Register setting information
SF_REQ_PROTECT: Protected state
SF_REQ_UNPROTECT: Unprotected state

 uint32_t ch_no SPIBSC channel number (only 0 may be specified)
 uint32_t dual Number of serial flash memory chips connected to the channel

SPIBSC_CMNCR_BSZ_SINGLE: One
SPIBSC_CMNCR_BSZ_DUAL: Two

 uint8_t data_width Data transfer bus width between the SPIBSC and the serial flash
memory

SPIBSC_1BIT: 1 bit
SPIBSC_4BIT: 4 bits

Return Value 0 : Normal end
-1 : Error end

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 65 of 89
May. 17, 2017

6.14 Flowcharts
6.14.1 SPIBSC Sample Code Main Processing
Figure 6.16 shows the flowchart for the SPIBSC Sample Code Main Processing. This processing waits for input from
the terminal on the host PC and branches to the appropriate processing in the SPIBSC sample code according to the
command entered.

Since the functions called when executing the sample code that performs the erase, write, and read processing for the
serial flash memory cannot be executed from serial flash memory, they are allocated to on-chip large-capacity RAM,
and this processing is performed from on-chip large-capacity RAM. In the Sample_SPIBSC_WriteSectionInit()
function called from the Sample_SPIBSC_Main() function, the SPIBSC control functions, including the SPIBSC
operating mode switching functions, the sample command processing functions, and the user-defined functions are
transferred to on-chip large-capacity RAM.

Figure 6.16 SPIBSC Sample Code Main Processing

Sample_SPIBSC_Main

return (COMMAND_EXIT)

SPIBSC sample code message display

Command list creation

“SPIBSC >” prompt display

Command input wait

EXIT command?
Command other than
EXIT command

Command analysis and execution

Displays the SPIBSC sample code startup message and
version number.

Creates the command list used by the SPIBSC sample code.
Creates a command list so that the XREAD, ERASE, WRITE,
SREAD, and EXIT commands can be run.

Displays the SPIBSC sample code prompt on the terminal on
the host PC.

Waits for input of a command from the host PC terminal.

If the EXIT command was input, terminates SPIBSC
command mode.
If any other command had been input, returns once again to
command input wait.

Performs the sample code processing according to the input
command.

XREAD: Branches to the Sample_SPIBSC_Xread function.
ERASE: Branches to the Sample_SPIBSC_Erase function.
WRITE: Branches to the Sample_SPIBSC_Write function.
SREAD: Branches to the Sample_SPIBSC_Sread function.

SPIBSC sample code section
initialization

Sample_SPIBSC_WriteSectionInit()

EXIT command

Since the functions called when executing the sample code
that performs the erase, write, and read processing for the
serial flash memory cannot be executed from serial flash
memory, they are allocated to on-chip large-capacity RAM,
and transferred from serial flash memory to on-chip
large-capacity RAM.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 66 of 89
May. 17, 2017

6.14.2 Processing for Switching to SPI Operating Mode
Figure 6.17 shows the Processing for Switching to SPI Operating Mode. This performs the SPIBSC mode switching
described in section 6.3.1, Switching from External Address Space Read Mode to SPI Operating Mode.

Figure 6.17 Processing for Switching to SPI Operating Mode

Since this function cannot be executed from serial flash
memory allocated to the SPI Multi-I/O bus space, all of its
processing is allocated to and executed from on-chip
large-capacity RAM.

Invalidate L1 instruction cache
L1_I_CacheFlushAll()

Switch to SPI operating mode
R_SFLASH_Spimode()

Sample_SPIBSC_ChangeModeSpi

L2 cache cleaning and
invalidation

L2CacheWritebackFlushAll()

return (0)

Modifies the settings of the AP[2:0] bits and XN bit in the
first-level descriptors in the SPI Multi-I/O bus space MMU
translation table so that accesses to the SPI Multi-I/O bus
space are not performed in SPI operating mode.
 AP[2:0] = B'000 : No access
 XN = 1 : Execute never

CMNCR register
 MD bit = 1 : Sets SPI operating mode
 Switches to SPIBSC operating mode so that the serial
 flash memory can be accessed in SPI operating mode.

Section in which
access to and
execution from

SPI Multi-I/O bus
space are not

possible

Performs cleaning (writeback) and invalidation of all ways
in the L2 cache.
 REG7_CLEAN_INV_WAY register ← H'000000FF

Executes a cache sync to guarantee that the L2 cache
maintenance processing has completed.
 REG7_CACHE_SYNC register ← H'00000000

L1 data cache cleaning and
invalidation

L1_D_CacheWritebackFlushAll()

Performs cleaning (writeback) and invalidation by set/way
operations on the L1 data cache lines by CP15 c7 cache
and branch predictor maintenance operations.

Executes a DSB instruction to guarantee that the L1 data
cache cleaning has completed.

Invalidates the whole TLB using CP15 c8 TLB
maintenance manipulations.

Invalidate all TLB entries
TLB_FlushAll()

Performs instruction cache invalidation and branch target
cache flush operations using CP15 c7 cache and branch
predictor maintenance operations.

Executes a DSB instruction to guarantee that the L1
instruction cache invalidation processing has completed.
Executes a DSB instruction to guarantee that all future
instructions access the rewritten MMU translation table.

SPI Multi-I/O bus space MMU
translation table modification

Change_MMU_TTbl_SpibscSpi()

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 67 of 89
May. 17, 2017

6.14.3 Processing for Switching to External Address Space Read Mode
Figure 6.18 shows the Processing for Switching to External Address Space Read Mode. This performs the SPIBSC
mode switching described in section 6.3.2, Switching from SPI Operating Mode to External Address Space Read Mode.

Figure 6.18 Processing for Switching to External Address Space Read Mode

Since this function cannot be executed from serial
flash memory allocated to the SPI Multi-I/O bus space,
all of its processing is allocated to and executed from
on-chip large-capacity RAM.

Invalidate L1 instruction cache
L1_I_CacheFlushAll()

Switch to external address
space read mode and

clear SPIBSC read cache
R_SFLASH_Exmode()

Smaple_SPIBSC_ChangeModeXip

L2 cache cleaning and
invalidation

L2CacheWritebackFlushAll()

return (0)

Modifies the settings of the AP[2:0] bits and XN bit in
the first-level descriptors in the SPI Multi-I/O bus
space MMU translation table so that access to the
SPI Multi-I/O bus space is possible.
 AP[2:0] = B'011 : Full access
 XN = 0 : Executable

DRCR register
 RCF bit = 1 : Clears the contents of all read

 cache entries.
CMNCR register
 MD bit = 0 : Sets the mode to external

 address space read mode
Before accessing the SPI Multi-I/O bus space, the
SPIBSC read cache is cleared.

Performs cleaning (writeback) and invalidation of all
ways in the L2 cache.
 REG7_CLEAN_INV_WAY register ← H'000000FF

Executes a cache sync to guarantee that the L2
cache maintenance processing has completed.
 REG7_CACHE_SYNC register ← H'00000000

L1 data cache cleaning and
invalidation

L1_D_CacheWritebackFlushAll()

Performs cleaning (writeback) and invalidation by
set/way operations on the L1 data cache lines by
CP15 c7 cache and branch predictor maintenance
operations.

Executes a DSB instruction to guarantee that the L1
data cache cleaning has completed.

Invalidates the whole TLB using CP15 c8 TLB
maintenance manipulations.

Invalidate all TLB entries
TLB_FlushAll()

Performs instruction cache invalidation and branch
target cache flush operations using CP15 c7 cache
and branch predictor maintenance operations.

Executes a DSB instruction to guarantee that the L1
instruction cache invalidation processing has
completed.
Executes a DSB instruction to guarantee that all
future instructions access the rewritten MMU
translation table.

SPI Multi-I/O bus space MMU
translation table modification

Change_MMU_TTbl_SpibscXip()

Section in which
access to and
execution from

SPI Multi-I/O bus
space are not

possible

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 68 of 89
May. 17, 2017

6.14.4 XREAD Command Processing
Figure 6.19 shows the XREAD Command Processing.

The XREAD command processing does not change the SPIBSC mode, but rather operates with the mode remaining
unchanged in external address space read mode. In the XREAD command, the CPU reads the SPI multi-I/O bus space
to get the serial flash memory data and displays the acquired data on the terminal.

Figure 6.19 XREAD Command Processing

return (0)

External
address

space read
mode

Sample_SPIBSC_Xread After starting the SPIBSC sample code, this
command is invoked by entering “XREAD”
+ <Enter> at the terminal.

XREAD command parameter entry

The processing waits for the entry of the following
XREAD command parameters from the terminal.

Start address : An address in the SPI
 Multi-I/O bus space

 (H'1800_0000 to H'1BFF_FFFF)
Size : Number of bytes to read

 (1 to 4096)

The CPU directly reads the address range entered
at the terminal and displays the acquired data on
the terminal.

Does read range
exceed SPI Multi-I/O bus

space range?

Display the SPI Multi-I/O bus space data
read directly by the CPU on the terminal.

Within the range return (-1)

Outside the range

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 69 of 89
May. 17, 2017

6.14.5 ERASE Command Processing
Figure 6.20 and Figure 6.21 show the ERASE Command Processing.

The ERASE command erases serial flash memory by calling the Sample_SPIBSC_ChangeModeSpi() function to
change the SPIBSC mode to SPI operating mode and then calling the R_SFLASH_EraseSector() function to erase data
in serial flash memory. After the erase processing completes, this command calls the
Sample_SPIBSC_ChangeModeXip() function to perform the processing to change the SPIBSC mode to external
address space read mode to set the system to be able to read instructions and data allocated to the SPI multi-I/O bus
space (serial flash memory).

In this erase processing, the SPIBSC is set to SPI operating mode, and programs allocated to serial flash memory cannot
be executed. Therefore, the ERASE command processing is allocated to and executed from on-chip large-capacity
RAM. In SPI operating mode, the SPI multi-I/O bus space cannot be accessed. Therefore, IRQ interrupts are set to the
disabled state during erase processing so that branches to programs allocated to serial flash memory do not occur.

Figure 6.20 ERASE Command Processing (1/2)

Disable IRQ interrupts
__disble_irq()

Since programs allocated to serial flash memory
cannot be executed in SPI operating mode, interrupts
are disabled to prevent branches to that area due to
interrupts from occurring.

Interrupts
disabled
period SPI

operating
mode
period

Sample_SPIBSC_Erase After starting the SPIBSC sample code, this command
is invoked by entering “ERASE” + <Enter> at the
terminal.
All processing to be executed during SPI operating
mode is allocated in on-chip large-capacity RAM.

Stop SPIBSC operation
R_SFLASH_SpibscStop()

Negates the SSL signal and stops access to serial
flash memory.

ERASE command parameter entry

The processing waits for the entry of the following
ERASE command parameters from the terminal.

Start address : An address in the serial flash
 memory
 (H'0010_0000 to H'03FF_FFFF)

Size : Number of bytes to erase
 (1 to 1048576)

Switch to SPI operating mode
Sample_SPIBSC_ChangeModeSpi()

Performs the processing that switches to SPI
operating mode.

A

Clear serial flash memory protection
R_SFLASH_Ctrl_Protect()

Performs the processing that clears serial flash
memory protection.

Initialize as SPIBSC SPI operating
mode

R_SFLASH_Spimode_Init()

Initializes the SPIBSC to operate in SPI operating
mode.

Does erase range
exceed serial flash memory

address range?

Within the range
return (-1)

Outside the range

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 70 of 89
May. 17, 2017

Figure 6.21 ERASE Command Processing (2/2)

Enables interrupts, since it has
become possible to execute programs
allocated to serial flash memory.

SPI
operating

mode
periodInterrupts

disabled
period

Outputs the results of executing the
ERASE command on the terminal.

Performs the processing for switching
to external address space read mode.

Called in interrupts
disabled state

Called in interrupts
enabled state

A

Erases the serial flash memory data
for the specified address and size in
sector (4 KB) units.

There are no sectors
to erase

Calculates the number of sectors from
the number of bytes.

There are still
sectors to erase

Enable IRQ interrupts
__enable_irq()

return (0)

Switch to external address space
read mode

Sample_SPIBSC_ChangeModeXip()

Output results of ERASE command

Was function called with
IRQ interrupts enabled?

Erase serial flash memory
R_SFLASH_EraseSector()

Have required number
of sectors been erased?

Calculate number of sectors to erase

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 71 of 89
May. 17, 2017

6.14.6 WRITE Command Processing
Figure 6.22 and Figure 6.23 show the WRITE Command Processing.

The WRITE command writes data to serial flash memory by calling the Sample_SPIBSC_ChangeModeSpi() function
to change the SPIBSC mode to SPI operating mode and then calling the R_SFLASH_ByteProgram() function to write
the data to the serial flash memory. After the write processing completes, this command calls the
Sample_SPIBSC_ChangeModeXip() function to perform the processing to change the SPIBSC mode to external
address space read mode to set the system to be able to read instructions and data allocated to the SPI multi-I/O bus
space (serial flash memory).

In this write processing, as in erase processing, the command processing is allocated to and executed from on-chip
large-capacity RAM, and IRQ interrupts are disabled during the write processing.

Figure 6.22 WRITE Command Processing (1/2)

Disable IRQ interrupts
__disble_irq()

SPI
operating

mode
period

Sample_SPIBSC_Write After starting the SPIBSC sample code, this
command is invoked by entering “WRITE” +
<Enter> at the terminal.
All processing to be executed during SPI operating
mode is allocated in on-chip large-capacity RAM.

Stop SPIBSC operation
R_SFLASH_SpibscStop()

WRITE command parameter entry

The processing waits for the entry of the following
WRITE command parameters from the terminal.

Start address : Address in serial flash memory
 (a value in the range

 H'0010_0000 to H'03FF_FFFF
 that is a multiple of 256 bytes
 (the page size))

Size : The number of bytes to write
 (1 to 1048576)

Initial value : Initial value of the consecutive
 write data (0 to 255)

Generate data to write Generates the data to write and stores it in the write
buffer (write_page_buf[]).

Interrupts
disabled
period

Switch to SPI operating mode
Sample_SPIBSC_ChangeModeSpi()

Clear serial flash memory protection
R_SFLASH_Ctrl_Protect()

Initialize as SPIBSC SPI operating
mode

R_SFLASH_Spimode_Init()

A

Does write range
exceed serial flash memory

address range?

Within the range
return (-1)

Outside the range

Since programs allocated to serial flash memory
cannot be executed in SPI operating mode,
interrupts are disabled to prevent branches to that
area due to interrupts from occurring.

Negates the SSL signal and stops access to serial
flash memory.

Performs the processing that switches to SPI
operating mode.

Performs the processing that clears serial flash
memory protection.

Initializes the SPIBSC to operate in SPI operating
mode.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 72 of 89
May. 17, 2017

Figure 6.23 WRITE Command Processing (2/2)

A

SPI
operating

mode
period

Interrupts
disabled
period

Switch to external address space
read mode

Sample_SPIBSC_ChangeModeXip()

Performs the processing for switching to
external address space read mode.

return (0)

Enables interrupts, since it has become
possible to execute programs allocated
to serial flash memory.

Output results of WRITE command

Outputs the result of the WRITE
command execution and the number of
bytes with verification errors to the
terminal.

Write to serial flash memory
R_SFLASH_ByteProgram()

Writes the data stored in the write buffer
(write_page_buf[]) to the specified
address and size in page units (256
bytes) to serial flash memory.

Read from serial flash memory
R_SFLASH_ByteRead()

Write of specified number
of bytes complete?

Check written data (count number of
bytes with verification errors)

Reads the data in the serial flash
memory area written, and stores it in
the read buffer (read_buf[]).

Compares the data in the read buffer
(read_buf[]) with that in the write buffer
(write_page_buf[]) and counts the
number of bytes for which there was a
verification error.

There is no data to write
There is still data
to write

Enable IRQ interrupts
__enable_irq()

Was function called with
IRQ interrupts enabled?

Called in interrupts
disabled state

Called in interrupts
enabled state

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 73 of 89
May. 17, 2017

6.14.7 SREAD Command Processing
Figure 6.24 and Figure 6.25 show the SREAD Command Processing.

The SREAD command reads data from serial flash memory by calling the Sample_SPIBSC_ChangeModeSpi() function
to change the SPIBSC mode to SPI operating mode and then calling the R_SFLASH_ByteRead() function to read data
from the serial flash memory. After the read processing completes, this command calls the
Sample_SPIBSC_ChangeModeXip() function to perform the processing to change the SPIBSC mode to external
address space read mode to set the system to be able to read instructions and data allocated to the SPI multi-I/O bus
space (serial flash memory).

In this read processing that uses SPI operating mode, as in erase processing, the command processing is allocated to and
executed from on-chip large-capacity RAM, and IRQ interrupts are disabled during the read processing.

Figure 6.24 SREAD Command Processing (1/2)

Interrupts
disabled
period

Disable IRQ interrupts
__disble_irq()

Since programs allocated to serial flash memory
cannot be executed in SPI operating mode,
interrupts are disabled to prevent branches to that
area due to interrupts from occurring.

SPI
operating

mode
period

Sample_SPIBSC_Sread
After starting the SPIBSC sample code, this
command is invoked by entering “SREAD” +
<Enter> at the terminal.
All processing to be executed during SPI operating
mode is allocated in on-chip large-capacity RAM.

Stop SPIBSC operation
R_SFLASH_SpibscStop()

Negates the SSL signal and stops access to serial
flash memory.

SREAD command parameter entry
The processing waits for the entry of the following
SREAD command parameters from the terminal.

Start address : Address in serial flash
 memory (H'0000_0000 to
 H'03FF_FFFF)

Size : The number of bytes to read
 (1 to 4096)

Switch to SPI operating mode
Sample_SPIBSC_ChangeModeSpi()

Performs the processing that switches to SPI
operating mode.

Initialize as SPIBSC SPI operating
mode

R_SFLASH_Spimode_Init()

Initializes the SPIBSC to operate in SPI
operating mode.

A

Does read range
exceed serial flash memory

address range?

Within the range return (-1)

Outside the range

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 74 of 89
May. 17, 2017

Figure 6.25 SREAD Command Processing (2/2)

A

Read from serial flash memory
R_SFLASH_ByteRead()

Reads data for the specified address and
size from serial flash memory and stores it
in the read buffer (read_buf[]).

SPI
operating

mode
period

Interrupts
disabled
period

Switch to external address space
read mode

Sample_SPIBSC_ChangeModeXip()

Enable IRQ interrupts
__enable_irq()

Enables interrupts, since it has become
possible to execute programs allocated to
serial flash memory.

return (0)

Outputs the data stored in the read buffer
(read_buf[]) to the terminal as the result of
executing the SREAD command.

Output results of SREAD command

Performs the processing for switching to
external address space read mode.

Was function called with
IRQ interrupts enabled?

Called in interrupts
disabled state

Called in interrupts
enabled state

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 75 of 89
May. 17, 2017

6.14.8 Modification of the MMU Translation Table Used in SPI Operating Mode
Figure 6.26 shows the Modification of the MMU Translation Table Used in SPI Operating Mode. This processing
modifies the AP[2:0] and XN bits for the MMU translation table for the SPI multi-I/O bus space (locations
H'1800_0000 to H'1BFF_FFFF) so that access to the SPI multi-I/O bus space is not possible while in SPI operating
mode.

Figure 6.26 Modification of the MMU Translation Table Used in SPI Operating Mode

Initializes the counter variable index used to modify the
SPI Multi-I/O bus space MMU translation table specified
by the arguments.

index ← index_start

Gets the value of the MMU translation table descriptor
specified by index.

AP[2:0] bits = B'000 : No access
XN bit = 1 : Execute never
Modifies the AP[2:0] and XN bits in the acquired
descriptor value so that the CPU cannot access data in
or execute instructions from the SPI Multi-I/O bus space.

Translation table modification from index_start to index_end
has completed.

Translation table modification from index_start to index_end is in progress

Arguments
start_addr : Start address of the address range that will be

 the target of MMU translation table modification
end_addr : End address of the address range that will be

 the target of MMU translation table modification

When either start_addr or end_addr is outside the range
H'1800_0000 to H'1BFF_FFFF.

Gets the index number for MMU translation table that
corresponds to the SPI Multi-I/O bus space.
In the translation table, each entry uses a descriptor
type for sections that consist of 1 MB memory blocks.
This step acquires the translation table index numbers
for the start_addr and end_addr arguments.

• Gets the first index number
index_start ← (start_addr >> 20)

• Gets the last index number
index_end ← (end_addr >> 20)

return (0)

Is index value less than or
equal to index_end value?

Get descriptor value from
MMU translation table
MMU_TTbl_GetDesc()

Set MMU translation table descriptor
value

MMU_TTbl_SetDesc()

Increment counter variable (index)

Initialize counter variable (index)

Change_MMU_TTbl_SpibscSpi

Get index number for MMU translation
table for specified start address

(start_addr) for SPI Multi-I/O bus space
MMU_TTbl_GetIndex()

Get index number for MMU translation
table for specified end address

(end_addr) for SPI Multi-I/O bus space
MMU_TTbl_GetIndex()

Error in function arguments?

return (-1)

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 76 of 89
May. 17, 2017

6.14.9 Modification of the MMU Translation Table Used in External Address Space Read

Mode
Figure 6.27 shows the Modification of the MMU Translation Table Used in External Address Space Read Mode. This
processing modifies the AP[2:0] and XN bits for the MMU translation table for the SPI multi-I/O bus space (locations
H'1800_0000 to H'1BFF_FFFF) so that access to the SPI multi-I/O bus space is possible while in external address space
read mode.

Figure 6.27 Modification of the MMU Translation Table Used in External Address Space Read Mode

Initializes the counter variable index used to modify the
SPI Multi-I/O bus space MMU translation table specified
by the arguments.

index ← index_start

Gets the value of the MMU translation table descriptor
specified by index.

AP[2:0] bits = B'011 : Full access
XN bit = 0 : Executable
Modifies the AP[2:0] and XN bits in the acquired
descriptor value so that the CPU can access data in or
execute instructions from the SPI Multi-I/O bus space.

Translation table modification from index_start to index_end
has completed.

Translation table modification from index_start to index_end is in progress

return (-1)

When either start_addr or end_addr is outside the range
H'1800_0000 to H'1BFF_FFFF.

Gets the index number for MMU translation table that
corresponds to the SPI Multi-I/O bus space.
In the translation table, each entry uses a descriptor
type for sections that consist of 1 MB memory blocks.
This step acquires the translation table index numbers
for the start_addr and end_addr arguments.

• Gets the first index number
index_start ← (start_addr >> 20)

• Gets the last index number
index_end ← (end_addr >> 20)

Arguments
start_addr : Start address of the address range that will be

 the target of MMU translation table modification
end_addr : End address of the address range that will be

 the target of MMU translation table modification

return (0)

Get descriptor value from
MMU translation table
MMU_TTbl_GetDesc()

Initialize counter variable (index)

Set MMU translation table descriptor
value

MMU_TTbl_SetDesc()

Is index value less than or
equal to index_end value?

Change_MMU_TTbl_SpibscXip

Get index number for MMU translation
table for specified start address

(start_addr) for SPI Multi-I/O bus space
MMU_TTbl_GetIndex()

Get index number for MMU translation
table for specified end address

(end_addr) for SPI Multi-I/O bus space
MMU_TTbl_GetIndex()

Increment counter variable (index)

Error in function arguments?

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 77 of 89
May. 17, 2017

6.14.10 Serial Flash Memory Write Enable
To write to the serial flash memory registers (the status register and configuration register), it is necessary to write
enable the serial flash memory in advance.

The user must implement the Userdef_SFLASH_Write_Enable() function according to the specifications of the serial
flash memory actually used to write enable that serial flash memory.

In the sample code, the serial flash memory command issuing function (R_RFLASH_Spibsc_Transfer()) is used to
issue a write enable command (H'06) to perform the processing that changes the serial flash memory state to write
enabled (that is, that sets the status register WEL bit to 1).

Figure 6.28 shows the Userdef_SFLASH_Write_Enable() Function Flowchart.

Figure 6.28 Userdef_SFLASH_Write_Enable() Function Flowchart

Userdef_SFLASH_Write_Enable

return (0)

Issue write enable command (H'06)
R_SFLASH_Spibsc_Transfer()

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 78 of 89
May. 17, 2017

6.14.11 Serial Flash Memory Wait for Write Completion
When a write operation is performed to a serial flash memory register (the status register or configuration register), the
serial flash memory transitions to the busy state. Applications must wait after the busy state until the written data values
are reflected in the registers.

The user must implement the Userdef_SFLASH_Busy_Wait() function according to the specifications of the serial flash
memory actually used so that it waits until the write operation to the serial flash memory has completed.

This sample code reads the WIP bit in the status register to implement the wait until the write operation has completed.

Figure 6.29 shows the Userdef_SFLASH_Busy_Wait() Function Flowchart.

Figure 6.29 Userdef_SFLASH_Busy_Wait() Function Flowchart

Userdef_SFLASH_Busy_Wait

return (0)

Is status register WIP bit 0?

WIP bit is 0

Issue read status register command
(H'05) to acquire status register

information
read_status()

WIP bit is 1

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 79 of 89
May. 17, 2017

6.14.12 Clear Serial Flash Memory Protection
To erase or write serial flash memory, the protection state must be cleared.

The user must implement the Userdef_SFLASH_Ctrl_Protect() function according to the specifications of the serial
flash memory actually used to clear the serial flash memory write protection.

This sample code uses the serial flash memory command issuing function (R_SLFASH_Spibsc_Transfer()) which is
called from the write_status() function, to set the status register block protect bits (BP3, BP2, BP1, and BP0) to 0 and
clear the write protection for all blocks.

Figure 6.30 shows the Userdef_SFLASH_Ctrl_Protect() Function Flowchart.

Figure 6.30 Userdef_SFLASH_Ctrl_Protect() Function Flowchart

Userdef_SFLASH_Ctrl_Protect

Issue read status register command
(H'05) to acquire status register

information
read_status()

Issue read configuration register
command (H'15) to acquire configuration

register information
read_config()

return (0)

Issue write enable command (H'06)
Userdef_SFLASH_Write_Enable()

Issue write status/configuration register
command (H'01)

R_SFLASH_Spibsc_Transfer()

Wait until serial flash memory ready
Userdef_SFLASH_Busy_Wait()

Sets the status register block protect bits
(BP3 to BP0) to 0.
The information in the bits other than the status
register BP3 to BP0 bits is acquired using a read
status register command and, based on that
information, they are set by calling the
R_SLFASH_Spibsc_Transfer() function.

Processing performed
by the write_status()

function

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 80 of 89
May. 17, 2017

7. Using this Sample Code
7.1 Starting the Sample Code
This sample code operates by entering commands to a terminal program on a host PC connected to the JASMINE board
by a serial interface.

After power is applied to the JASMINE board, the message shown in Figure 7.1[1] is output. When the SPIBSC sample
code starts, after the "SAMPLE>" prompt is displayed, enter "SPIBSC" + <Enter>. Then the message shown in Figure
7.1[2] is output. The SPIBSC sample code is operated by entering the following commands after the "SPIBSC>"
prompt.

1. When "XREAD" + <Enter> is input, the sample code that performs a dump operation on the SPI multi-I/O bus
space is started.

2. When "ERASE" + <Enter> is input, the sample code that performs erase processing on the serial flash memory is
started.

3. When "WRITE" + <Enter> is input, the sample code that performs write processing on the serial flash memory is
started.

4. When "SREAD" + <Enter> is input, the sample code that performs read processing on the serial flash memory is
started.

Display messages
RZ/A1LU AVB Board S-Flash Boot Sample Program. Ver.X.XX
Copyright (C) 2017 Renesas Electronics Corporation. All rights reserved.

select sample program.

SAMPLE>

[1]

RZ/A1LU SPIBSC Sample Program. Ver.Y.YY
Copyright (C) 2017 Renesas Electronics Corporation. All rights reserved.

select sample program.

SPIBSC >

[2]

SPIBSC > help

 XREAD: Read data from the serial flash memory
 (by the external address space read mode)
 ERASE: Erase sector in the serial flash memory
 WRITE: Write data to the serial flash memory
 SREAD: Read data from the serial flash memory
 (by the SPI operating mode)
 EXIT: Exit from SPIBSC Sample Program

SPIBSC >

[3]

Figure 7.1 Examples of Terminal Display when the SPIBSC Sample Code Runs

When "HELP" + <Enter> is input, the sample code information shown in Figure 7.1[3] is displayed. When "EXIT" +
<Enter> is input, the SPIBSC sample code operation terminates.

The "Ver.X.XX" shown in Figure 7.1 indicates the version number of the main processing in this sample code, and the
"Ver.Y.YY" is the SPIBSC sample code version number.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 81 of 89
May. 17, 2017

8. Application Example
8.1 Modifying the Sample Code when the Serial Flash Memory Used is Changed
If the serial flash memory is changed, the sample code must be modified according to the specifications of the serial
flash memory to be used. This section describes the changes to the sample code required to match the command
specifications of a different serial flash memory device.

8.1.1 Changes to the R_SFLASH_EraseSector() Sector Erase Function
Change the contents of the R_SFLASH_EraseSector() function for the items listed in Table 8.1 to match the sector
erase command specifications of the serial flash memory used.

Table 8.1 Required Changes to the R_SFLASH_EraseSector() Function

Item Description
Command g_spibsc_spimd_reg.cmd = Erase command
Address length transferred • For a 24-bit address length

g_spibsc_spimd_reg.ade = SPIBSC_OUTPUT_24
• For a 32-bit address length

g_spibsc_spimd_reg.ade = SPIBSC_OUTPUT_32
Bus width during address transfer • For a 1-bit bus width

g_spibsc_spimd_reg.adb = SPIBSC_1BIT
• For a 4-bit bus width

g_spibsc_spimd_reg.adb = SPIBSC_4BIT
Data transfer method during address
transfer

• For SDR transfer
g_spibsc_spimd_reg.addre = SPIBSC_SDR_TRANS

• For DDR transfer
g_spibsc_spimd_reg.addre = SPIBSC_DDR_TRANS

Sector size (block size) Change the SF_SECTOR_SIZE macro definition to match the sector
size of the serial flash memory used.
(Defined in sflash.h)

Total sector count Change the SF_NUM_OF_SECTOR macro definition to match the
total number of sectors in the serial flash memory used.
(Defined in sflash.h)

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 82 of 89
May. 17, 2017

8.1.2 Changes to the R_SFLASH_ByteProgram() Write Function
Change the contents of the R_SFLASH_ByteProgram() function for the items listed in Table 8.2 to match the page
program (write) command specifications of the serial flash memory used.

Table 8.2 Required Changes to the R_SFLASH_ByteProgram() Function

Item Description
Command g_spibsc_spimd_reg.cmd = Page program command
Address length transferred • For a 24-bit address length

g_spibsc_spimd_reg.ade = SPIBSC_OUTPUT_24
• For a 32-bit address length

g_spibsc_spimd_reg.ade = SPIBSC_OUTPUT_32
Bus width during address transfer • For a 1-bit bus width

g_spibsc_spimd_reg.adb = SPIBSC_1BIT
• For a 4-bit bus width

g_spibsc_spimd_reg.adb = SPIBSC_4BIT
Data transfer method during address
transfer

• For SDR transfer
g_spibsc_spimd_reg.addre = SPIBSC_SDR_TRANS

• For DDR transfer
g_spibsc_spimd_reg.addre = SPIBSC_DDR_TRANS

Bus width during data transfer • For a 1-bit bus width
g_spibsc_spimd_reg.spidb = SPIBSC_1BIT

• For a 4-bit bus width
g_spibsc_spimd_reg.spidb = SPIBSC_4BIT

Data transfer method during data
transfer

• For SDR transfer
g_spibsc_spimd_reg.spidre= SPIBSC_SDR_TRANS

• For DDR transfer
g_spibsc_spimd_reg.spidre= SPIBSC_DDR_TRANS

Page size Change the SF_PAGE_SIZE macro definition to match the page size
of the serial flash memory used.
(Defined in sflash.h)

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 83 of 89
May. 17, 2017

8.1.3 Changes to the R_SFLASH_ByteRead() Read Function
Change the contents of the R_SFLASH_ByteRead() function for the items listed in Table 8.3 and Table 8.4 to match the
read command specifications of the serial flash memory used.

Table 8.3 Required Changes to the R_SFLASH_ByteRead() Function (1/2)

Item Description
Comamnd g_spibsc_spimd_reg.cmd = Read command
Address length transferred • For a 24-bit address length

g_spibsc_spimd_reg.ade = SPIBSC_OUTPUT_24
• For a 32-bit address length

g_spibsc_spimd_reg.ade = SPIBSC_OUTPUT_32
Bus width during address transfer • For a 1-bit bus width

g_spibsc_spimd_reg.adb = SPIBSC_1BIT
• For a 4-bit bus width

g_spibsc_spimd_reg.adb = SPIBSC_4BIT
Data transfer method during address
transfer

• For SDR transfer
g_spibsc_spimd_reg.addre = SPIBSC_SDR_TRANS

• For DDR transfer
g_spibsc_spimd_reg.addre = SPIBSC_DDR_TRANS

Whether or not option data is output • When option data is not output
g_spibsc_spimd_reg.opde = SPIBSC_OUTPUT_DISABLE

• When the OPD3 data is output
g_spibsc_spimd_reg.opde = SPIBSC_OUTPUT_OPD_3

• When the OPD3 and OPD2 data is output
g_spibsc_spimd_reg.opde = SPIBSC_OUTPUT_OPD_32

• When the OPD3, OPD2, and OPD1 data is output
g_spibsc_spimd_reg.opde = SPIBSC_OUTPUT_OPD_321

• When the OPD3, OPD2, OPD1, and OPD0 data is output
g_spibsc_spimd_reg.opde = SPIBSC_OUTPUT_OPD_3210

Bus width used when option data is
output

• For SDR transfer
g_spibsc_spimd_reg.opdb = SPIBSC_1BIT

• For DDR transfer
g_spibsc_spimd_reg.opdb = SPIBSC_4BIT

Data transfer method used when
option data is output

• For SDR transfer
g_spibsc_spimd_reg.opdre = SPIBSC_SDR_TRANS

• For DDR transfer
g_spibsc_spimd_reg.opdre = SPIBSC_DDR_TRANS

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 84 of 89
May. 17, 2017

Table 8.4 Required Changes to the R_SFLASH_ByteRead() Function (2/2)

Item Description
Option data specification • OPD3 output value

g_spibsc_spimd_reg.opd[0] = Output value
• OPD2 output value

g_spibsc_spimd_reg.opd[1] = Output value
• OPD1 output value

g_spibsc_spimd_reg.opd[2] = Output value
• OPD0 output value

g_spibsc_spimd_reg.opd[3] = Output value
Whether or not dummy cycles are
output

• When dummy cycle is not output
g_spibsc_spimd_reg.dme = SPIBSC_DUMMY_CYC_DISABLE

• When dummy cycle is output
g_spibsc_spimd_reg.dme = SPIBSC_DUMMY_CYC_ENABLE

Bus width when dummy cycles are
output

• For a 1-bit bus width
g_spibsc_spimd_reg.dmdb = SPIBSC_1BIT

• For a 4-bit bus width
g_spibsc_spimd_reg.dmdb = SPIBSC_4BIT

Number of cycles when dummy
cycles are output

g_spibsc_spimd_reg.dmcyc = SPIBSC_DUMMY_nCYC*1

Bus width during data reception • For a 1-bit bus width
g_spibsc_spimd_reg.spidb = SPIBSC_1BIT

• For a 4-bit bus width
g_spibsc_spimd_reg.spidb = SPIBSC_4BIT

Transfer method during data
reception

• For SDR transfer
g_spibsc_spimd_reg.spidre = SPIBSC_SDR_TRANS

• For DDR transfer
g_spibsc_spimd_reg.spidre = SPIBSC_DDR_TRANS

Note 1. The "n" indicates the number (1 to 8) of dummy cycles.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 85 of 89
May. 17, 2017

8.2 Output Signals During Command Issue to Serial Flash Memory
In SPI operating mode, when issuing commands, signals to match the specifications of the serial flash memory used can
be output for the read, erase, write, and other commands by setting the SPIBC related registers.

In the sample code, it is possible to change the signals output to the serial flash memory by changing the values set in
the SPIBSC registers, that is, the values set in the members of the structures used in each of the sector erase, page
program, and read functions shown in Table 8.1 to Table 8.4. Figure 8.1 shows the Relationship Between SPIBSC
Register Settings and Waveforms Output to the Serial Flash Memory. The values of the members of the structures used
in each function should be set to match the commands for the serial flash memory used.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 86 of 89
May. 17, 2017

Figure 8.1 Relationship Between SPIBSC Register Settings and Waveforms Output to the Serial
Flash Memory

Transfer dataDummy
cycleOption dataAddress

Optional
commandCommand

CMD OCMD ADR ADR ADR ADR
 [31:24] [23:16] [15:8] [7:0] DMCYC

Data
During SPI
operation

 OPD3 OPD2 OPD1 OPD0 DATA[3] DATA[2] DATA[1] DATA[0]

8 bits 8 bits 8, 16, 24, or 32 bits 1 to 8
cycles

Data length

SPBSSL_0

SPBCLK_0

SPBIO00_0

SPBIO10_0

SPBIO20_0

SPBIO30_0

Phase

7

Instruction

6 5 4 3 2 1 0 4

5

6

7

0

1

2

3

28

29

30

31

4

5

6

7

0

1

2

3

Address Mode Dummy D1 D2 D3 D4

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

24 or 32 bits

Members of the g_spibsc_spimd_reg
g_spibsc_spimd_reg.cmd
g_spibsc_spimd_reg.cdb
g_spibsc_spimd_reg.cde

Members of the g_spibsc_spimd_reg
g_spibsc_spimd_reg.addr
g_spibsc_spimd_reg.adb
g_spibsc_spimd_reg.ade
g_spibsc_spimd_reg.addre

Members of the g_spibsc_spimd_reg
g_spibsc_spimd_reg.dme
g_spibsc_spimd_reg.dmdb
g_spibsc_spimd_reg.dmcyc

Members of the g_spibsc_spimd_reg
g_spibsc_spimd_reg.spidb
g_spibsc_spimd_reg.spire
g_spibsc_spimd_reg.spiwe
g_spibsc_spimd_reg.spidre
g_spibsc_spimd_reg.smwdr[0]
g_spibsc_spimd_reg.smwdr[1]
g_spibsc_spimd_reg.smrdr[0]
g_spibsc_spimd_reg.smrdr[1]

Members of the g_spibsc_spimd_reg
g_spibsc_spimd_reg.opde
g_spibsc_spimd_reg.opdb
g_spibsc_spimd_reg.opdre
g_spibsc_spimd_reg.opd[3]
g_spibsc_spimd_reg.opd[2]
g_spibsc_spimd_reg.opd[1]
g_spibsc_spimd_reg.opd[0]

CDE OCDE ADE[3] ADE[2] ADE[1] ADE[0] DMEDuring SPI
operation

OPDE[3] OPDE[2] OPDE[1] OPDE[0] SPIDE SPIDE SPIDE SPIDE
 [3] [2] [1] [0]

Enable

During SPI
operation

DDR enable

  ADDRE OPDRE SPIDRE

g_spibsc_spimd_reg.cmd (Command) : H'12 (PP4B)
g_spibsc_spimd_reg.cdb (Bit width during command transfer) : SPIBSC_1BIT
g_spibsc_spimd_reg.cde (Command output enable/disable) : SPIBSC_OUTPUT_ENABLE

g_spibsc_spimd_reg.ocmd (Option command) : H'00
g_spibsc_spimd_reg.ocdb (Bit width when option command bits are used) : SPIBSC_1BIT
g_spibsc_spimd_reg.ocde (Option command output enable/disable) : SPIBSC_OUTPUT_DISABLE

g_spibsc_spimd_reg.addr (Address) : Serial flash memory address
g_spibsc_spimd_reg.adb (Bit width during address transfer) : SPIBSC_4BIT
g_spibsc_spimd_reg.ade (Address length to transfer) : SPIBSC_OUTPUT_ADDR_32
g_spibsc_spimd_reg.addre (Address transfer format) : SPIBSC_SDR_TRANS

g_spibsc_spimd_reg.opde (Option data output enable/disable) : SPIBSC_OUTPUT_DISABLE
g_spibsc_spimd_reg.opdb (Bit width during option data transfer) : SPIBSC_1BIT
g_spibsc_spimd_reg.opdre (Option data transfer format) : SPIBSC_SDR_TRANS
g_spibsc_spimd_reg.opd[3] (Option data OPD0) : H'00
g_spibsc_spimd_reg.opd[2] (Option data OPD1) : H'00
g_spibsc_spimd_reg.opd[1] (Option data OPD2) : H'00
g_spibsc_spimd_reg.opd[0] (Option data OPD3) : H'00

g_spibsc_spimd_reg.dme (Dummy cycle output enable/disable) : SPIBSC_DUMMY_CYC_DISABLE
g_spibsc_spimd_reg.dmdb (Bit width during dummy cycle transfer) : SPIBSC_1BIT
g_spibsc_spimd_reg.dmcyc (Number of dummy cycles) : SPIBSC_DUMMY_1CYC

g_spibsc_spimd_reg.spidb (Transfer data bit width) : SPIBSC_4BIT
g_spibsc_spimd_reg.spire (Data read enable) : SPIBSC_SPIDATA_DISABLE (Read disable)
g_spibsc_spimd_reg.spiwe (Data write enable) : SPIBSC_SPIDATA_ENABLE (Write enable)
g_spibsc_spimd_reg.spidre (Transfer data transfer format) : SPIBSC_SDR_TRANS
g_spibsc_spimd_reg.smwdr[0] (Data written to SMWDR0) : Write data
g_spibsc_spimd_reg.smwdr[1] (Data written to SMWDR1) : Unused when only 1 serial flash memory device

 is connected.
g_spibsc_spimd_reg.smrdr[0] (Data read from SMRDR0) : Read data
g_spibsc_spimd_reg.smrdr[1] (Data read from SMRDR1) : Unused when only 1 serial flash memory device

 is connected.

g_spibsc_spimd_reg.sslkp (SSL signal keep setting) : SPIBSC_SPISSL_NEGATE

When a program command (PP4B) is issued to the Macronix MX25L51245G serial flash memory the members of the g_spibsc_spimd_reg structure in the
R_SFLASH_ByteProgram() function are set as shown below and the command issue operation can be implemented by calling the
R_SFLASH_Spibsc_Transfer() function.

Command

Optional
command

Address

Option data

Dummy cycle

Data

SSL settings

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 87 of 89
May. 17, 2017

9. Notes
9.1 Regarding Interrupts that Occur During Sample Command Execution
Since IRQ interrupt are disabled during sample command execution, no interrupt handling is performed during sample
command execution. After sample command execution completes and interrupts are enabled, any pending interrupt
handling is performed.

When it is desirable to perform interrupt handling during sample command execution, it is possible to perform interrupt
handling even during sample command execution by enabling IRQ interrupts. However, it is possible for the SPIBSC to
be set to SPI operating mode during sample command execution. Instructions allocated to the SPI multi-I/O bus space
(serial flash memory) cannot be executed in SPI operating mode. Therefore, to execute interrupt handling or exception
handling during sample command execution (during SPI operating mode), all IRQ interrupt handling, including the
interrupt vector, must be allocated to on-chip large-capacity RAM.

Note that if the FIQ interrupts are set to enabled, it is not possible to disable them. Therefore, if it is possible that a FIQ
interrupt could occur, all FIQ interrupt handling, including the FIQ exception handling vector, must be allocated to on-
chip large-capacity RAM.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 88 of 89
May. 17, 2017

10. Sample Code
Sample code can be downloaded from the Renesas Electronics website.

11. Reference Documents
User's Manual: Hardware

RZ/A1L Group, RZ/A1LU Group, RZ/A1LC Group User's Manual: Hardware
The latest version can be downloaded from the Renesas Electronics website.

RZ/A1LU AVB board RTK772103FC00000BR (JASMINE) User's Manual
The latest version can be downloaded from the Renesas Electronics website.

ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition Issue C
The latest version can be downloaded from the ARM website.

ARM Generic Interrupt Controller Architecture Specification Architecture version 1.0
The latest version can be downloaded from the ARM website.

ARM CortexTM-A9 (Revision: r3p0) Technical Reference Manual
The latest version can be downloaded from the ARM website.

ARM CoreLinkTM Level 2 Cache Controller L2C-310 (Revision: r3p2) Technical Reference Manual
The latest version can be downloaded from the ARM website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

User's Manual: Development Tools

ARM Software Development Tools (ARM Compiler toolchain, ARM DS-5 etc) can be downloaded from the ARM
website.
The latest version can be downloaded from the ARM website.

RZ/A1LU Group
Example of Writing to Serial Flash Memory Using the SPI Multi-I/O Bus Controller

R01AN3201EJ0100 Rev.1.00 Page 89 of 89
May. 17, 2017

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

Revision History

Rev. Date
Description
Page Summary

Rev.1.00 May. 17, 2017  First edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.
For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as
well as any technical updates that have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator) during

a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of Microprocessing unit or Microcontroller unit products in the same group but

having a different part number may differ in terms of the internal memory capacity, layout pattern,
and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a
product with a different part number, implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages

incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas

Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas

Electronics.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them

against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and

software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty

for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and

regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all

these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction,

such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development,

design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics

products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting,

selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the

countries asserting jurisdiction over the parties or transactions.

10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice,

and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2017 Renesas Electronics Corporation. All rights reserved.
Colophon 6.0

(Rev.3.0-1 November 2016)

	Contents
	1. Specifications
	2. Operation Confirmation Conditions
	3. Reference Application Notes
	4. Peripheral Functions
	5. Hardware
	5.1 Hardware Configuration
	5.2 Pins Used

	6. Software
	6.1 Operation Overview
	6.2 Accessing Serial Flash Memory Using the SPIBSC
	6.3 External Address Space Read Mode and SPI Operating Mode Switching
	6.3.1 Switching from External Address Space Read Mode to SPI Operating Mode
	6.3.2 Switching from SPI Operating Mode to External Address Space Read Mode

	6.4 SPIBSC Operating Mode Switching Processing Implementation
	6.4.1 Implementation of Switching Processing from External Address Space Read Mode to SPI Operating Mode
	6.4.2 Implementation of Switching Processing from SPI Operating Mode to External Address Space Read Mode

	6.5 The MMU Translation Table
	6.6 Sample Commands
	6.6.1 XREAD Command
	6.6.2 ERASE Command
	6.6.3 WRITE Command
	6.6.4 SREAD Command

	6.7 Peripheral Functions and Memory Allocation in Sample Code
	6.7.1 Setting for Peripheral Functions
	6.7.2 Memory Mapping
	6.7.3 Section Assignment in Sample Code

	6.8 Interrupt Used
	6.9 Constants
	6.10 Structures and Unions
	6.11 Variables
	6.12 Functions
	6.13 Function Specifications
	6.14 Flowcharts
	6.14.1 SPIBSC Sample Code Main Processing
	6.14.2 Processing for Switching to SPI Operating Mode
	6.14.3 Processing for Switching to External Address Space Read Mode
	6.14.4 XREAD Command Processing
	6.14.5 ERASE Command Processing
	6.14.6 WRITE Command Processing
	6.14.7 SREAD Command Processing
	6.14.8 Modification of the MMU Translation Table Used in SPI Operating Mode
	6.14.9 Modification of the MMU Translation Table Used in External Address Space Read Mode
	6.14.10 Serial Flash Memory Write Enable
	6.14.11 Serial Flash Memory Wait for Write Completion
	6.14.12 Clear Serial Flash Memory Protection

	7. Using this Sample Code
	7.1 Starting the Sample Code

	8. Application Example
	8.1 Modifying the Sample Code when the Serial Flash Memory Used is Changed
	8.1.1 Changes to the R_SFLASH_EraseSector() Sector Erase Function
	8.1.2 Changes to the R_SFLASH_ByteProgram() Write Function
	8.1.3 Changes to the R_SFLASH_ByteRead() Read Function

	8.2 Output Signals During Command Issue to Serial Flash Memory

	9. Notes
	9.1 Regarding Interrupts that Occur During Sample Command Execution

	10. Sample Code
	11. Reference Documents
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

