RE N ESAS Application Note

Renesas RA Family

Getting Started with the Graphics Application

Introduction

This application note describes the development of a graphics application that targets the RA8D2 MCU and
runs on MIPI graphics expansion board with the RA8D2 evaluation kit (EK). It provides a comprehensive
overview of key concepts and implementation techniques for building high-performance Human Machine
Interface (HMI) applications using the RA8D2 MCU. The application note covers a variety of graphics-related
topics, including:

e Interfacing with peripherals using the MIPI options on the RA8D2.

e Designing a GUI for the EK-RA8D2 MIPI LCD panel using the SEGGER AppWizard design tool.

e Integrating the AppWizard project with an e? studio project using the RA Flexible Software Package
(FSP), emWin, dual-core and FreeRTOS.

e Communicating with the EK-RA8D2 MIPI LCD’s capacitive touch panel using custom-written drivers.

e Evaluation of design tradeoffs for graphics applications in the context of the RA8D2 dual core MCU
architecture to determine the best-case design for your system needs.

The discussion in the application note is supported by an accompanying application project that
demonstrates the above topics through a single-use case. The application project is a dual-core, multi-
threaded graphic application designed in portrait-orientation that runs on the EK-RA8D2 and interfaces as a
MIPI DSI-2 Host to the external MIPI LCD panel.

The application’s Graphical User Interface (GUI) was designed using the SEGGER AppWizard tool
(hereinafter referred to as AppWizard), and it is integrated into an e? studio project for the EK-RA8D2, using
the RA Flexible Software Package (FSP) that natively supports SEGGER emWin (hereinafter referred to as
emWin), dual-core processing and FreeRTOS, enabling a scalable and efficient foundation for advanced
HMI application development.

Target Device
EK-RA8D2

Required Resources
Development tools and software

e e?studio v2025-10
e? studio | Renesas

e Renesas Flexible Software Package (FSP) v6.2.0
RA Flexible Software Package (FSP) | Renesas

e AppWizard V1.56_6.48
SEGGER emWin GUI Library for Renesas RA Products | Renesas
Note: The version emWin in FSP must match the emWin version in the SEGGER AppWizard. For
example, the emWin version 6.44.2 in FSP is equivalent to 6.44b in the AppWizard V1.52_6.44b, and so
on.

Hardware

¢ Renesas EK-RA8D2 kit (RA8D2 MCU Device Group): www.renesas.com/ek-ra8d2

e MIPI Graphics Expansion Board Version 1: MIPI Graphics Expansion Board 2 v1

Prerequisites and Intended Audience

This application note assumes you have some experience with the Renesas e? studio IDE and RA Family
Flexible Software Package (FSP). Before you perform the procedures in this application note, follow the
procedure in the FSP User Manual to build and run the Blinky project. Doing so enables you to become
familiar with e2 studio and the FSP and validates that the debug connection to your board functions properly.
Additionally, this application note assumes that you have a theoretical background in graphics applications.

R11AN1068EU0100 Rev.1.00 Page 1 of 57
Nov.19.25 RENESAS

https://www.renesas.com/en/software-tool/e-studio
https://www.renesas.com/en/software-tool/flexible-software-package-fsp#overview
https://www.renesas.com/en/software-tool/segger-emwin-gui-library-renesas-ra-products
http://www.renesas.com/ek-ra8d2
https://www.renesas.com/en/document/mat/mipi-graphics-expansion-board-2-v1-users-manual

Renesas RA Family Getting Started with the Graphics Application

The intended audience is users who want to develop graphics applications on the RA8D2 MCU Device
Group.

R11AN1068EU0100 Rev.1.00 Page 2 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

Contents

R O L= TP 5
1.1 RABD2 DEVICE OVEIVIEWuviiieiitiiee e ittiee e etteee e steeeeeataeeeesbaeeeesteeeeeabteeeeaabeeeeesbteeeeaasseeaeaasteeeesanseeeesns 5
1.1.1 Key Graphics Features of the RABD2 MCU...........ccciiiiiiii ettt e e 5
1.1.2 RABD2 EVAlUGLION Kil......ooiiiiiiiiiieie ettt e e e s et e e e e e e s s reeeeeeeeas 6
1.1.3 EK-RA8D2 MIPI Graphics EXpansion BOardc...ooiiiiiiiiiiiiiiiee e eeeeee e 7
1.2 SYSIEM OVEIVIEBW. ...ttt bttt e s bt e e e s bttt e e s b bt e e e e abbe e e e eabbe e e e sanbeeeesanbeeeeaan 8
1.2.1 CPUOQ Task Allocation and RespoNnSIbilitiesoooeieiiiiiio e 8
1.2.2 CPU1 Task Allocation and ReSPONSIDIlItIEScoccuiiiiiiie e 8
1.2.3 Graphics AppliCation LAyOUL...........cooiiiiiiiiiiiiiice e e e e e e e e e e e e ra e e e e e e as 9
2. GUI Development With APPWIZArd..........coooiiiiiiiii e e e e e aae s 9
2.1 AppWizard and emWin CapabilitieSccccuuiiiiiiiiii e 9
2.2 Creating a New AppWIizard ProjecCt..........cooouiiiiiiii it 10
2.2.1 Including AppWizard Project Files in €2 studio Project.............ccocueiiiiiiiiiiiiiee e 11
2.2.2 AppWizard/emWin INtialiZzationooooiiiii e 14
2.3 Custom Designs in APPWIZAI.........coiiieiiiiiiiiie ettt sttt e e st e e s e e s annae e e s snneeens 14
2.4 Setup APPWIiIzard INtEraCtioNSeii i 15
2.4.1 AppWizard Defined INtEractionS............oooiiiiiiiiiii e 15
2.4.2 User-Defined SIOt COAEoooi ittt e e e e e e e s e e e e e e e e e e neeeas 16
2.4.3 Responding to AppWizard Variables...............ooiiiiiiiieee et 17
2.5 Add emWin Widget to AppWizard Project ...t 17
3. Thermostats Graphics APPlICAtIoNcooiiiiiiiiie e 18
K Tt IR o 10 oY @ To (=N = o 11 | S PRSPPI 18
3.2 System Design and Operation FIOWc.uiiiiiiiiiiiiiiee et e e rneeee e 21
3.3 Dual-Core Architecture and Component Identification..............ocueeeiiiiii e 22
3.4 Module, Pin and Clock ConfiguIationcoiiiiiiioiiiiiiie e e e e e e e e nnnaeeeeaee s 24
3.4.1 IPC & FSP Solution Clock Configuration. ... 25
3.4.2 CPUO Module ConfigUIation.oiei ettt e e et ee e e e e e e s e e e e e e e e e e e nnnaeeeaaaeeas 26
3.4.3 CPU1T Module ConfigUration.o ittt e e e e e e e e s e e e e e e e e e e nnneeeeeaaeeas 31
3.5 Configuring the MIPI Graphic EXpansion BOArdocueiiiiiiiiiiiiiiee e 31
TG I I I B o T8 Tod o I 1Y SRR 32
3.7 Placing Graphic Resources in External Flash Memorycoooiiiiiiiiiiie e 34
3.8 System Performance EnNhanCement......... ... e 37
3.8.1 Utilizing Cortex®-M85 Core Data Cacheoooiiiiiiiieii e 37
3.8.2 Utilizing Helium on Cortex®-M85 for JPEG DeCOUE.........coiiiiiiiiiiiee et 37
3.8.3 Leveraging 32-bit SDRAM Bus for High-Speed Framebuffer ACCESS.........ccevvveeiiiiiiiiiiiiiiee e 37
4. Running Thermostats ApPlICatioNncooiiiiiiiii e e 39
g T o =T o 1V = T ST = (1 | o J S 40
4.1.1 Attach the MIPI LCD 10 the MCUooiiiiiii et 40
R11AN1068EU0100 Rev.1.00 Page 3 of 57

Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

4.1.2 EK-RA8D2 Configuration Switch (SW4) Settingscccvvviiiiiiiiiie e 40
4.2 Importing and Building the ProjeCt e 40
4.3 Downloading and Executing on the EK-RA8D2 Kit...........ooiiiiiiiii e 41
5. Graphics Implementation Considerations and Trade-offs.............ccooiiiiiiiiiie 41
5.1 MIPIDSI VS Parallel RGB.........cccuuiiiiiiiiii ittt ettt e et e st e e e et e e e snbeeaesenteeaesnnsneaeanns 42
5.1.1 Data Rate and BandwWidth: ... e e 43
5.1.2 Cable Complexity and LENGLN: ...t e e 43
Rt I T = o 1Y 0o g YU T4 o] o] 1 o] o LA PRSPPI 43
T I YL (=Y 4 T 0] (=T = (o] o PR PPRR 43
ST R T 0 1= PRSPPI 43
5.2 Graphics Configuration Trad@OffScoi i 43
5.2.1 DispPlay RESOIULION.......coiiiiiiieiiiiie ettt ettt e s bt e e s sttt e e e abe e e e e saabeeeesaabeeeesaneneeeann 43
LI O] (o gl o 1o 4= | SRR 44
VR B ol = 0 0 =T = | (= PRSPPI 45
IV = 10 E LYo | {0 PRSPPI 45
IV T 4 (=Y =TI T N 1 S PRPUPRRR 46
6. Introducing QE for Display Application Development................uuuiiiiiiiiiimmiiminnnenes 46
6.1 Installation and UninStallation.............ooo e 47
6.1.1 Install from the "Renesas Software Installer" menu of €2 studio...........ccceecveeiiiieiiii e 47
6.1.2 Install using QE (zip file) downloaded from the Renesas websiteccccceevviiciiiiiiie e 47
6.1.3 Uninstalling QE ProdUCLoo ittt et e e ettt e e e s be e e e e anteeeeaaneeeeeaan 47
6.2 Development Step With RA EVICE.ooiiiiiiiii e ee e 48
N = (= =T =Y Vot 55
8. WEeDSIte @and SUPPOITot e et a e e e e e e 56
REVISION HISOIY ..o 57
R11AN1068EU0100 Rev.1.00 Page 4 of 57

Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

1. Overview

One of the key goals of the provided graphics application is to demonstrate how to build applications that
require complex HMI screens using AppWizard and emWin library. The following list summarizes its main
features.

e Complex GUI design created with AppWizard.

e External Octal OSPI Flash for image storage.

o Multi-threaded applications framework based on FreeRTOS.

¢ Dual-core architecture for efficient workload distribution.

¢ Display using graphics LCD controller and MIPI DSI interface.

e |2C-based GT911 touch controller driver.

There can be many ways to achieve the target design, and the approach described in this application note is
one possible solution.

1.1 RA8D2 Device Overview

The RA8D2 device group is designed for high-performance HMI and Vision Al applications, combining
advanced processing power with robust security features such as cryptographic Security IP, immutable
storage for the first-stage bootloader (FSBL), a secure boot, and tamper protection for a truly secure loT
device.

1.1.1 Key Graphics Features of the RA8§D2 MCU

The RA8D2 MCUs integrate the high-performance Arm® Cortex®-M85 core running up to 1 GHz and Arm®
Cortex®-M33 core running up to 250 MHz, and a rich peripheral set including a high-resolution TFT-LCD
controller with parallel RGB and MIPI-DSI interfaces, 2D drawing engine, 16-bit camera interface, and
multiple external memory interfaces, optimized to address the needs of diverse graphics and Vision Al
applications.

The high-resolution graphics LCD controller (GLCDC) can support displays up to 1280x800 WXGA and
supports both parallel and MIPI-DSI interfaces. The 2D drawing engine (DRW) offloads the graphics
rendering from the CPU, and it can support graphics primitives like lines and polygons as well as functions
like alpha blending, rotation/scaling, and color conversions. The 16-bit camera interface (CEU) has support
for image data fetching, processing, and format conversion, and it can interface to camera sensors up to 5M
pixels. The on-chip 2MB of SRAM can fit single or dual frame buffers for resolutions of 800x480 WVGA or
smaller. The external SDRAM supports framebuffers for higher resolutions that cannot fit into SRAM. The
xSPI-compliant OSPI interface has XIP and DOTF support for the secure storage of graphics assets.

RA8D2 MCUs are fully supported by the Flexible Software Package (FSP) to provide easy-to-use, scalable,
high-quality software for embedded system design. Along with the FSP, there is a comprehensive set of
hardware and software tools to assist with embedded application development.

R11AN1068EU0100 Rev.1.00 Page 5 of 57
Nov.19.25 RENESAS

Renesas RA Family

Getting Started with the Graphics Application

RA8D2

@ Memory

Code NVM
(MRAM 0.5/1MB, Flash 4/8MB)

Data SRAM w/ ECC (1.6MB)

TCM (256KB for Cortex-M85
+ 128KB for Cortex-M33)

I/D-Cache (32KB for Cortex-M&5
+ 32KB for Cortex-M33)

(™ Communication

Gigabit Ethernet MAC
wi TSN (x2) + 2 port switch

CAN-FD (x2)
USB2.0 FS (x1), USBHS (x1)
SDHIMMC (x2)
13C (x1), 12C (x3)

SCI (x10)

SPI1 (x2)

OSPI (x2, XIP&DOTF)
SSIx2 & PDM 3ch x1
32-bit External Memory Bus

+ 250MHz Arm® Cortex®-M33 Core

W

(2units, 23ch, 3ch-S/H x2)

High-speed Comparator (4ch)

&

1GHz Arm® Cortex®-M85 Core,

Analog
16-bit ADC

12-bit DAC (2ch)

Temperature Sensor

System

DMA (8ch x2)
DTC (x2)
Clock Generation
Cn-chip Oscillator
DC-DC Converter
Low Power Modes
ELC

Interrupt Controller

VBAT

FPU | ARM MPU | NVIC | JTAG |

SWD | ETM |Boundary Scan

O Timers

32-bit GPTE (High Resolution) (4ch)
32-bit GPTE (10ch)
32-bit ULPT (2ch)
16-bit AGT (2ch)
WDT (2ch)
RTC

@ Safety

Memory Protection Unit
SRAM Parity Check
ECC in SRAM
POE

Clock Frequency
Accuracy Measurement

CRC Calculator
IWDT
Data Operation Circuit
MRAM Area Protection
ADC Self Test
Permanent Lock Function
Programmable Voltage Detector

HMI

Graphics LCDC w/ RGB iff
2D DRW
MIPIDSI | MIPI CSI-2
CEU 16bit Camera Interface

&l Security

AES (128/192/256), CHACHAZ0
RSA 4K, ECC
TRNG
SHA-2 (224/256/384/512), SHA-3
Secure Debug
First Stage Boot Loader
OTP (Immutable storage)
TrustZone | EFP support
CMAC/HMACIGMAC
DPA/SPA Side Ch. Protection

ﬁ Package

BGA 224/ 289/ 303

Figure 1.

1.1.2 RAS8D2 Evaluation Kit

The EK-RA8D2, an evaluation kit for the RA8D2 MCU Group, enables users to evaluate the features of the
RA8D2 MCU Group and develop embedded systems applications using Renesas' Flexible Software
Package (FSP) and e? studio IDE.

The kit consists of three boards and their required interconnections: the EK-RA8D2 board featuring the

RA8D2 MCU with an on-chip Graphics LCD Controller (GLCDC), the Parallel Graphics Expansion Board
featuring a 1024x600 TFT LCD with a capacitive touch panel overlay, and the Camera Expansion Board
(OV5640) featuring a 5-megapixel CMOS image sensor.

Block Diagram of Key Features in RA8D2 MCU

By default, the kit is supplied with the Parallel Graphics Expansion Board using the RGB interface. However,
the EK-RA8D2 board also supports MIPI-DSI display connectivity through the MIPI graphics expansion port
(J32) as seen in Figure 2, enabling the use of a MIPI Graphic Expansion Board that can be purchased from

the Renesas website.

In this application, the development example demonstrates how to build a graphics application using the
MIPI LCD screen, showcasing the configuration and performance of the MIPI-DSI interface on the

EK-RA8D2 platform.

The EK-RA8D2 board comes pre-programmed with a Quick Start example project. Please refer to the

EK-RA8D2 Quick Start Guide for instructions on importing, modifying, and building the Quick Start example

project.

For more examples demonstrating the operation of the modules on the EK-RA8D2, check out the
EK-RA8D2 Example Projects Bundle document, which can also be found on the Renesas website.

R11AN1068EU0100 Rev.1.00

Nov.19.25

RENESAS

Page 6 of 57

https://www.renesas.com/us/en/document/qsg/ek-ra8d2-quick-start-guide
https://www.renesas.com/us/en/document/apn/ek-ra8d2-example-project-bundle

Renesas RA Family Getting Started with the Graphics Application

Figure 2. RA8D2 Evaluation Kit with MIPI Graphic Extension Board Version 1

1.1.3 EK-RA8D2 MIPI Graphics Expansion Board

The MIPI Graphics Expansion Board is originally supplied with the EK-RA8D1 kit, it is fully compatible with
the EK-RA8D2 and is used in this application for MIPI-DSI display evaluation. The TFT LCD on the
expansion board provides the following key features:

o Display type: TFT LCD with capacitive touch panel (CTP) overlay and backlight control
e Diagonal size: 4.5 inch

e Dimensions: 120 mm (width) x 90 mm (length)

o Resolution: 480x854 pixels

e Touch mode: up to 5 points

e LCD panel controller IC: ILI9B06E

e CTP controller IC: GT911

The part number of the TFT LCD used on the MIPI Graphics Expansion Board is E45RA-MW276-C. For
more details and to view the LCD’s specification sheet, please visit focusLCDs.com.

The LCD and the CTP on the MIPI graphics expansion board are separate and use different controller ICs.
The LCD panel uses the ILI9806E controller, and the CTP uses the Goodix GT911 controller. Please refer to
the respective data sheets /specification sheets in the reference section at the end of the application note to
understand the operation of each controller.

Since the MIPI graphics expansion board is portrait orientation, this application note will only cover designing
and drawing a portrait orientation application.

R11AN1068EU0100 Rev.1.00 Page 7 of 57
Nov.19.25 RENESAS

https://focuslcds.com/wp-content/uploads/Specs/E45RA-MW276-C_Spec.pdf

Renesas RA Family Getting Started with the Graphics Application

1.2 System Overview

With dual-core architecture, graphic applications can take advantage of parallel processing where one core
handles intensive rendering tasks while the other manages system control or user interaction. This division of
workload not only improves overall performance but also enhances responsiveness and ensures a smoother
user experience.

SEGGER’s AppWizard GUI design tools assist in creating highly efficient and high-quality graphical user
interfaces targeting any RA MCU. The FSP contains the corresponding middleware, the emWin graphics
library, facilitating the smooth development of embedded graphics applications. The RA emWin Port
middleware layer is regularly tested with each FSP release, ensuring that it fully supports the operation of the
emWin library on RA devices.

Host PC environment RASD2
Graphics expansion board
(E45RA-MW2786-C)
MIPI-DSI
| GLCDC » MIPI-DSI/MIPI-PHY » LCD
= Ar
AppWizard GUI Builder e < 12C »| Touch
PWM
4{ DRW | | GPT > Backlight
swD
DUEB | scl A
ebug »
SDRAMC
?studio IDE port I—J | IPc | | osPLB
A y
SPI/OPI
Yy

External Flash Device

SDRAM (1SS 1525WX064-8JWLE)

it

Figure 3. Block Diagram of Dual-Core Graphic Application

1.2.1 CPUO Task Allocation and Responsibilities

In this architecture, CPUO serves as the Display Master, taking full responsibility for graphical output and
display control to deliver optimal visual performance with low-latency frame rendering. By isolating these
compute-intensive tasks, the system ensures a smooth and stable User Interface (Ul) experience.

CPUO executes the main graphics render loop of the application, which integrates both AppWizard auto-
generated sources and custom rendering logic. It manages all draw calls, texture and image resources, and
buffer swapping to sustain the target frame rate. In addition, CPUO manages graphics memory usage,
including framebuffer allocation, display synchronization, and access to external Flash image resources.

As part of display bring-up, CPUO performs MIPI LCD initialization, including execution of the MIPI command
table to configure the panel. It also manages backlight control directly, enabling synchronized brightness
adjustments with ongoing display updates. This localized handling minimizes Inter-Processor
Communication (IPC) overhead and provides a seamless, responsive user experience.

1.2.2 CPU1 Task Allocation and Responsibilities

The CPU1 core is designated as the Peripheral Master, exclusively handling all system I/O, core control
logic, and driver-level processing. Its primary role is to offload time-critical interrupt processing and non-
graphical management tasks from CPUQ, thereby ensuring optimal responsiveness and application stability.

CPU1 is responsible for acquiring and processing raw data and system events. After performing the
necessary computations or data interpretation, it transmits the resulting high-level events to CPUO through
the Inter-Processor Communication (IPC) mechanism for corresponding updates and actions within the
graphical user interface (GUI).

R11AN1068EU0100 Rev.1.00 Page 8 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

1.2.3 Graphics Application Layout

The graphics application consists of two graphical panels: a Weather Panel and a Logging Panel. In this
application, we build separate static display designs for these two panels. The screen resolution on the EK-
RA8D2 kit is 480 x 854 pixels.

RENESAS

Touch Renesas Logo to return to the
Weather Panel

65 °F

Humidity

Application Events:

Init Dialog

WED 22 Oct2025 09:30:28 AM

Weather Panel Screen Log Screen

Figure 4. Screenshot of the GUI being designed in the AppWizard

Weather Panel is the first screen that appears on the LCD when booting up. It displays the thermostat
information and allows the user to select a day or adjust the temperature.

Logging Panel shows events that occurred in the Weather Panel, adjusts LCD backlight, text color or
background color of the Logging Panel.

2. GUI Development with AppWizard

This section gives an overview of designing a GUI application with SEGGER’s AppWizard software and
integrating the graphical application into an FSP project with the emWin library. This section is intended to
introduce the design capabilities of the software and highlight the ease of integration with an RA8D2 e2
studio-embedded graphical application. It is not intended to replace any documentation, so please refer to
the AppWizard and emWin User Guide & Reference Manuals.

2.1 AppWizard and emWin Capabilities

AppWizard is a graphical interface software tool for designing and creating emWin embedded graphics
applications. The FSP natively supports the use of AppWizard and emWin library, making it quick and easy
to get a graphics application up and running on your target RA MCU and external LCD. All the application
screens in the thermostat graphics application were built using AppWizard.

You may choose to use emWin primitive calls directly in your e? studio project or use AppWizard to facilitate
designing your screens. AppWizard is a stand-alone tool that provides a point-and-click environment for
generating all the screens necessary for your embedded application. Once designed, the tool outputs “*.c”
and “*.h” files to include in your e? studio embedded application.

R11AN1068EU0100 Rev.1.00 Page 9 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

The AppWizard software tool allows for full customization of each screen needed for your GUI application,
including the screens’ resolutions, color depths, and pixel formats, among various other parameters.

The AppWizard comes with a standard set of fonts and basic interface graphics, including images, text,
buttons, rotaries, sliders, and more. During your screen creation phase, you can customize the display by
importing image and font files into AppWizard. For optimal performance, images should be prepared in the
same color format as the framebuffer. This approach eliminates runtime format conversion and ensures
efficient rendering. After designing the GUI application, the AppWizard desktop simulator allows you to
preview the precise look and feel of the application. This cross-platform simulation ensures a high degree of
fidelity, meaning what you see running in the tool on your PC is what you get displayed on the final
embedded screen.

7 x
6 A
b I
ran
VR
a
ya
7 EN
'
Y
S+
o
V'
.
7
o
7
7S
Z .

AKX M NN XXX XK KKK XN N K &

Figure 5. Screenshot of GUI being designed in AppWizard

2.2 Creating a New AppWizard Project

When you open the AppWizard software, you will be prompted to create a new project or to open an existing
project. You can always use the File > New Project menu option to create a new AppWizard project.

Upon creating a new project, the Create New Project dialog box appears and allows you to specify the
project path, project name, the target’s display size, and the target’s pixel color format shown in Figure 6.
You can always access this information to view and edit the properties by using the Project > Edit Options
menu option. During project creation in AppWizard, the display color format can be defined. When adding a
new image, the default setting for the bitmap format is Auto, meaning AppWizard will automatically select
the most suitable bitmap format based on the project’s color format. However, if the target hardware requires
a specific bitmap format, the user can override the default and manually select the desired format.

R11AN1068EU0100 Rev.1.00 Page 10 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

Create new project x

ath: +hic_Dual_Core\EK_RA8D2_Graphic_Dual_core_cpuD\AppWizard Browse

Project name: AppWizard

BSP
Selected BSP: None Select BSP

me and display options
e X 480
854

24 Bit, GUICC_MB88

Animatio
Minimu e per frame:

scroller support:

Simulation

Ei nulation:

P

Cancel

Figure 6. Create a New Project Dialog Box

The Project Path is the location where AppWizard will put the .c and .h files that result from the Export &
Save process. These files contain all the information necessary to render the screens you built in AppWizard
onto the LCD in your embedded graphics application. The output files are automatically organized in the
project path directory with Resource, Source, and Simulation subdirectories.

2.2.1 Including AppWizard Project Files in e? studio Project

It's recommended that you create an e? studio project first and then create an AppWizard folder in the project
as an e? studio source folder. The AppWizard folder in the e2 studio project workspace will serve as the
location of the AppWizard project path for the Resource, Source, and Simulation directory files and make it
easy to move the project from one location to another or from one PC to another. In the case of the
thermostat application, you can see that all directories are under the “AppWizard” folder in the e? studio
project directory, which was also set as the Project Path property in the AppWizard project.

R11AN1068EU0100 Rev.1.00 Page 11 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

Create new project x Project Explorer X = 459 7 |

= EK_RA8D2 _Graphic_Dual_core
[~ L_v} EK_RA8D2_Graphic_Dual_core_cpu0 [Debug]
#;LP Binaries
Project name: AppWizard [Includes
L_v 2 AppWizard
HSE B — = Resource
Selected BSP: None ‘ Select BSP | (= Simulation

Project
Project path: C:\Workspace [EK_RA8D2_Graphic_Dual_core_cpuO\AppWizard i Browse |

fi=> Source

: |= AppWizard AppWizard
|= FileList.bct

Bra

2 ra_gen
2 src
(= Debug
= ra_cfg
(= script
f}} configurationxml
|%] EK_RABD2_Graphic_Dual_core_cpu0 Debug_Flatlaunch
=l ra_cfg.bet
() Developer Assistance
ﬂ_v} EK_RASD2_Graphic_Dual_core_cpul

Figure 7. The AppWizard project is contained within the specified project path

To ensure successful compilation and proper access to all required resources, follow these steps to correctly
configure the AppWizard project in e? studio:

1. Set AppWizard as a Source Folder:
¢ Right-click the “AppWizard” folder in the Project Explorer.
e Select C/C++ Build.
e Ensure that Exclude resource from build is not selected.

o Refer to Figure 8 below for visual confirmation of this setting.

Project Explorer E®7 § =0
= EK_RA8D2_Graphic_Dual_core
15 EK_RA8D2_Graphic Dual_core cpu0 [Debug]
4 Binaries
[ni Includes

(22 AppWizard

2 sre New >) Properties for AppWizard o X

G Go Intc
£ Debra </C++ Build G-

(= script Open in New Window
Resource

o (i
ior configurati Show In Alt+5hift+W > C/C+= Build
|X] EK_RA8D2_ B copy Ctrl+C C/C++ General Configuration: |Debug [Active] | |Manage Configurations..

= ra_cfg.txt Paste Cirl+V Run/Debug Settings

(2) Developer
o PET 9¢ Delete Delete] Exclude resource from build|
&5 EK_RABD2_Gre

Source >
Move.. £ Refresh Policy

Rename. F2 The following resources will be refreshed after the project is built (external builder only): Add Resource.

29 Import Resources

Add Exception.
4 Export.. » (= EK_RASD2_Graphic_Dual_core_cpud
Edit Exception.

Build Project Ctrl+B
Refresh F5 Delete...
Index
Build Targets
Resource Configurations
Source
Team
Compare With
Restore from Local History...
3 C/C++ Project Settings Ctri+Alt+P

Restore Defaults Apply
Renesas C/C++ Project Settings >

3 Run C/C++ Code Analysis
” & @ Apply and Close | Cancel

/M System Explorer

@ Command Prompt
V| Validate

Source >

| Properties Alt+Enter

Figure 8. Verify AppWizard as Source Folder

2. Add AppWizard/Source and all subdirectories to the include paths to ensure that all required header files
are accessible:

R11AN1068EU0100 Rev.1.00 Page 12 of 57
Nov.19.25 RENESAS

Renesas RA Family

Getting Started with the Graphics Application

e Right-click your Graphics development project. (e.g., EK_RA8D2_ Graphic_Dual_core_cpu0)

¢ Go to Properties > C/C++ Build > Settings.

o Under Tool Settings, navigate to: Compiler > Includes > Click Add as shown in Figure below

type filter text

Resource
Builders
v C/C++ Build
Build Variables
Environment 2

JSON Compilation Datat i3 Tool Settings | &2 Toolchain

Settings

Configuration: Debug [Active]

~ | Manage Configurations...

Build Steps Build Artifact :'u Binary Parsers | €@ Error Parsers

Logging 1 = 3
;“- cpy Include file directories (-I) £
. - =2 Optimization
Tool Chain Editor S Dph “${workspace_loc:/${ProjName)/src}” &
C/C++ General oo
Praject Natures _ Warnlr.wgs "${workspace_loc;/${ProjName)/ra/fsp/inc}”
Project References v® C_omp”e" "${workspace_loc;/${ProjName)/ra/fsp/inc/api}"
Renesas QF _“‘. Source “${workspace_loc:;/${ProjName}/ra/fsp/inc/instances}”
Run/Debug Setti :ﬁ Includes “${workspace_loc;/${ProjName}/ra/fsp/src/rm_freertos_port}”
un/Debug Settings + B Assembler “${workspace_loc;/${ProjName}/ra/aws/FreeRTOS/FreeRTOS/Source/incl
Task Tags ey “${workspace_loc;/${ProjName}/ra/arm/CMSIS_6/CMSIS/Core/Include}” v
Validation = ource < >
(2 Includes
5 Linker Macro Defines (-D)] 5] = b
]
& Source [RENESAS RA_
2 Archives _RA_CORE=CPUD
(2 Miscellaneous _RA_ORDINAL=1
(2 Other
~ ¥ Objcopy
& General 8 Add directory path X
~ & Print Size
(2 General Directory:
/ Add subdirectories
Add directory path
. Cancel Workspace... File system..
Pop-up Window
< > - ~ v
® Apply and Close Cancel
. - . . 2 .
Figure 9. Include Path Configuration in e? studio

o Click Workspace and Navigate to the AppWizard/Source folder. Make sure Add subdirectories are

checked.

¢ Click OK, then Apply and Close to save the settings.

This ensures that all headers within AppWizard/Source and its subfolders are included during compilation.

3. Exclude the Simulation folder from the build. After including all subdirectories, you should exclude the
Simulation folder from the build before building the e? studio project:

e Right-click on the Simulation folder in the Project Explorer.

o Navigate to Resource Configurations > Exclude from Build... and exclude the folder from both
Debug and Release. Click OK.

R11AN1068EU0100 Rev.1.00
Nov.19.25

RENESAS

Page 13 of 57

Renesas RA Family Getting Started with the Graphics Application

Eile Edit Source Refactor Navigate Search Project
| ®-&K-iv| - 1

Project Explorer Exclude object(s) from build in the following configurations

& Exclude from build [m] X

= EK_RA8D2_Graphic_Dual_core Debug
v frf: EK_RA8D2_Graphic_Dual_core_cpu0 [Debug] Release
1,‘:5" Binaries
[riH Includes
v [AppWizard

(= Resource

= Source
v (% Simulation
(2% Config
2% GUI_Lib
% Simulation
[Z] Clea
:1 Simulation

[simulation

Bfi simulation_

Select Al Deselect All

=| AppWizard. AppWizard
=| FileList.txt

Figure 10. Exclude the Simulation folder and subdirectories for a successful build

2.2.2 AppWizard/emWin Initialization

All of the necessary emWin library and header files for the target board are generated after you finish adding
the emWin stack to your e? studio project as described in section 3.4.2.

The FSP does not automatically initialize the AppWizard system. To initialize it, simply include GUI.h and
add the MainTask() API call to the appropriate file. The MainTask() is a powerful API that for the RA8D2,
controls much of the logic for the graphics application, such as the GLCDC start, MIPI start, JPEG decoding

and framebuffer rendering.
i =Tii1h hread.h”
#include "GUI.h"

= /* emWin Thread entry function */
/* pvParameters contains TaskHandle_t */
—~void emWin_thread_entry(void *pvParameters)

{
FSP_PARAMETER_NOT_USED (pvParameters);
MainTask();

= while (1)
{
vTaskDelay (1);

¥

¥

Figure 11. The MainTask() of the Thermostat Application is called from the emWin Thread

In the thermostat application, the MainTask() is called in the emWin_thread_entry() located in the

emWin_thread_entry.c file. Visit section 4 for a full explanation of the thermostat project threads and
functions.

2.3 Custom Designs in AppWizard

The AppWizard User Guide & Reference Manual covers the primitive objects available to add to your GUI.

Primitive objects are straightforward and can operate stand alone, and they can be grouped together in the
AppWizard Hierarchic tree to achieve more complex functions.

Every object contains its own set of properties that can be specified, such as font, bitmap, frame size, etc.
AppWizard has some basic fonts and image bitmaps built into the software that you can use out of the box,
but you can also import your own fonts and bitmaps to create a unique GUI.

R11AN1068EU0100 Rev.1.00 Page 14 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

For example, a button object has a Set bitmaps property where you can set up to three different images for
the button’s unpressed, pressed, and disabled states, respectively. Clicking on Set bitmaps > Unpressed
opens the Select Image window shown in Figure 12.

Select image for mode <Unpressed > X

Name Width Heigh Stock Pri. Ref Format

anime_sun_shining.png 241 253 - 1 Auto

bottom_button_trans.png

bottom_button_trans_pressed.png

button_minus.png

button_minus_pressed.png

Cancel

Figure 12. The Select Image Menu supports imported and built-in bitmaps for objects

The built-in AppWizard bitmaps will appear automatically in the list of images in this window, but you can
also import your own image using the Import to Project button. The Image Manager window allows you to
view details of all bitmaps in the current AppWizard project. It can also be used to specify the bitmap pixel
format for each image. When the format is set to Auto, AppWizard automatically selects the most suitable
bitmap format based on the project’s color format defined for the project.

Using a similar procedure, you can import your own font resources to the AppWizard project. All of this and
more can be found in the AppWizard User Guide and Reference Manual.

2.4 Setup AppWizard Interactions

The Interactions window makes it easy for you to define the application’s behavior based on certain actions,
events, or user input. These interactions can be done without any extra code, but AppWizard also allows you
to add custom slot codes to handle these actions and respond to GUI events. Each defined interaction in the
same AppWizard project receives a unique default slot name, which can be changed by the user.

2.4.1 AppWizard Defined Interactions

As an example of a predefined interaction, the thermostat application specifies that clicking the
ID_BUTTON_SUN object moves the ID_IMAGE_ANIM_CLOUD_MOTION image outside the visible
window. This behavior is configured in AppWizard and does not require additional user code.

Interactions

| @] 2]

Emitter Signal Job Receiver Comment
ID_BUTTON_SUN CLICKED SETCOORD ID_IMAGE_ANIM. ZLOUD_MOTION Set coordinate of cloud ...

ID_BUTTON_MON =4 2ET INTEraction parameters

a

ID_BUTTON_TUE Value: -245 E
ID_BUTTON_TUE
ID_BUTTON_TUE
ID_BUTTON_WED Slot: TION_CLICKED__ID_IMAGE_ANIM_CLOUD_MOTION__APPW_JOB_SETCOORD

ID_BUTTON_THU -
O - Code:
 ID_BUTTON_FRI ode Edit code ‘

ID_BUTTON_FRI | Cancel
ID_BUTTON_FRI BE—

ID_BUTTON_MON -
| Set variable ‘

Coordinate: X0 v

++++++++++++ﬂ

XXXXXXXXXXXK &
NSOANNNNNNNNNNNYN

Figure 13. The Example of Setting ID_BUTTON_SUN Interaction

R11AN1068EU0100 Rev.1.00 Page 15 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

2.4.2 User-Defined Slot Code

In some applications, you may need to define an interaction response that is not yet available in AppWizard
or respond to an interaction with a more complex routine through a callback function in your code.

For each interaction, AppWizard automatically provides a callback function with the name specified in the
Slot interaction parameter. AppWizard passes information to the slot routine about the window that caused
the event and the actual event that occurred. These events are defined in WM. h.

Interactions

® [2][F][%]

[Emitter Signal Receiver Comment =
ID_VAR_TIME_UPDATE VALUE_CHANGED Run custom code to u
ID_VAR_TARGEI_TEMP VALUE_CHANGED
ID_BUTTON_TEMP_UP CLICKED
ID_.BUTTON_TEMP_DOWN CLICKED i
ID_BUTTON_SUN CLICKED Slot: ID_SCREEN_MAIN_WM_NOTIFICATION_VALUE_CHANGED

r ID_BUTTON_MON RELEASED A Code:‘ Edit code

| 1N BUTTOM MON ~LICKED -
A Edit code ‘ Cancel
Custom function to cl.
GUI USE PRRA(pAction);
GUI_USE_FARA (hScreen); CLOUD_MOTI... Setcoordinate of clou
GUI_USE_PARR (pResult); CLOUD_MOTI... Set coordinate of clou

Create and start cloud
Custom function to cl.

/* Update date, time */
cusID SCREEN MAIN WM NOTIFICATION VALUE CHANGED ID VAR TIME UPDATE

]
CLOUD_MOTI... Setcoordinate of clou

Execute custom code

++ +++++FFF++++++ HEEE

NANNNNVNNNUNANANNNNNNA N,

[ox] om

+/-
X
x
X
X
X
x
x
x
x
x
x
x
X
x
X
X
X
x

¥
4

>

Figure 14. Example of a Custom Slot Routine Triggered on Value Change of ID_VAR_TIME_UPDATE

You can view and edit the code of the slot routine using the Code parameter, which includes custom function
calls for handling various window events. These custom routines will be added in the <ScreenID>_Slots.c
file located in the \AppWizard\Source\CustomCode folder. The <ScreenID>_Slots.c file is updated
whenever you add and generate new widgets or AppWizard interactions in AppWizard. It is good practice to
create your custom code function definitions in a separate file and edit the Code interaction parameter to call
the right custom function from the slot routine.

Lc] ID_SCREEN_MAIN_Slots.c X

% * ID_SCREEN MAIN__WM_NOTIFICATION_ VALUE_CHANGED[]
= void ID_SCREEN_MAIN_ WM_NOTIFICATION_VALUE_CHANGED(APPW_ACTION ITEM * pAction,
WM_HWIN hScreen,
WM_MESSAGE * pMsg,
int * pResult) {

GUI_USE_PARA(pAction);
GUI_USE_PARA(hScreen);
GUI_USE_PARA(pResult);
‘ /* Update date, time */
= cusID_SCREEN_MATIN__WM_NOTIFICATION_VALUE_CHANGED_ID_VAR_TIME_UPDATE(pMsg);
& }

<

[Weather_Panel_Widgetc

H
}

® * @brie Custom code for ID_SCREEN_MAIN_ WM NOTIFICATION_VALUE_CHANGED in ID_SCREEN_MAIN Slots.c[]
“ void cusID_SCREEN_MAIN__WM_NOTIFICATION_VALUE_CHANGED_ID_VAR_TIME_UPDATE (MM MESSAGE * pMsg) {
= if(WM_NOTIFY_PARENT == pMsg->MsgId)

/* Update time display */
AppTimeUpdate();

}

Figure 15. Custom routines allow personalized responses to interactions

R11AN1068EU0100 Rev.1.00 Page 16 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

2.4.3 Responding to AppWizard Variables

AppWizard supports adding variables to a project using the menu option Resource > Edit Variables.
Variables can be processed by the application through a defined interaction through the GUI or manipulated
from outside the GUI through code.

A typical use, as shown in the thermostat application, is to update the variables in a non-GUI thread to trigger
data exchange between the AppWizard GUI and non-GUI threads.

® * IPC channel @ callback function.[]
“void g_ipc@ callback(ipc_callback_args_t *p_args)
{
BaseType_t xHigherPriorityTasklioken = pdFALSE;
S switch(p_args-»event)
{
S case IPC EVENT IRQ2:
xSemaphoreGiveFromISR(g_touch_reset_semaphore, &xHigherPriorityTaskhoken);
portYIELD FROM ISR(xHigherPriorityTasklWoken);
break;
S case IPC EVENT IRQ3:
/* Trigger GUI update date & time*/
APPW_SetVarData(ID VAR TIME_UPDATE, 1);
break;
case IPC_EVENT_IRQ4:
case IPC EVENT IRQ5:
case IPC_EVENT_IRQ6:
S case IPC EVENT_IRQ7:
break;
S default:
break;

}

Figure 16. Example of Time Update Request from CPU1 Triggering the Graphic Thread

When ID_VAR_TIME_UPDATE changes, it triggers the execution of the custom user code defined in Figure
15. This interaction was configured during the GUI creation phase, as shown in Figure 14.

2.5 Add emWin Widget to AppWizard Project

The objects that AppWizard supports are similar to the widgets provided by emWin. A widget is a window
with object-type properties and the emWin library contains API functions for the creation, configuration,
communication, and more, of widgets. The emWin library also supports the creation and management of
custom widgets.

In some applications, you may need to use an emWin widget that is not yet supported by AppWizard objects
or may need to create a custom widget in your code using the API functions. The thermostat application
demonstrates creating and using a multiple-line text input or Multiedit widget. The following steps were used
to add the widget to the application and highlighted in Figure 17 and Figure 18:

e Create an emWin widget by using emWin APlIs in the slot routine for the AppWizard screen in the
CustomCode folder.

o Handle GUI events message if needed via slot routines in the file <ScreenID>_Slots. c located in
the \AppWizard\Source\CustomCode folder.

@® * Custom code for cbID SCREEN_LOG in ID_SCREEN_LOG_Slots.d]
= void cuscbID_SCREEN_LOG(WM MESSAGE * pMsg) {
= switch(pMsg->Msgld)
{

= case WM_INIT DIALOG:
/* Create MultiEdit wideget as Logging dialog */
= if(LogDialogCreate(pMsg))
{

/* Handle error */

APP_ERR_TRAP(FSP_ERR_INVALID POINTER);
}

else

S {

Figure 17. Example of Adding a MULTIEDIT Widget during the Log Screen Creation Routine

R11AN1068EU0100 Rev.1.00 Page 17 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

& * LogDialogCreate(]
= static fsp_err_t LogDialogCreate(WM MESSAGE * pMsg)
{

int x@, y@, xSize, ySize; // Logging Dialog widget specs
x0 = 18;
yo = 685;
xSize = 445;
ySize = 150;

WM _HWIN hWin temp = @;

/* Create MultiEdit widget */ .]] —— MULTIEDIT widget creation using emWin APls
ghMultiEdit = MULTIEDIT CreateEx(x@, y@, xSize, ySize, pMsg->hWin, WM_CF_SHOW,

MULTIEDIT_CF_MOTION_V | MULTIEDIT_CF_READONLY,
GUI_ID_MULTIEDIT@, 16, NULL);
if(ghMultiEdit)

MULTIEDIT_SetBkColor(ghMultiEdit, MULTIEDIT_CI_READONLY, GUI_CUSTOM_COLOR);
MULTIEDIT SetWrapWord(ghMultiEdit);
MULTIEDIT_SetMaxNumChars(ghMultikdit, LOG_CHAR_MAX);

MULTIEDIT SetTextColor(ghMultiEdit, MULTIEDIT_CI_READONLY, GUI_WHITE);
MULTIEDIT SetHBorder(ghMultiEdit, 16);

/* Set the same font as ID_TEXT_APP_EVENT */
hWlin_temp = WM_GetDialogItem(pMsg->hWin, ID_TEXT_APP_EVENT);
if(hWin_temp)

MULTIEDIT_SetFont(ghMultiEdit, TEXT_GetFont(hWin_temp));
}

else

{
return FSP_ERR_INVALID POINTER;

} |

Figure 18. Example of Creating a MULTIEDIT Widget with emWin APls
3. Thermostats Graphics Application

The accompanying project is a dual-core FreeRTOS application built within the FSP Solution project. In this
setup, a portrait-oriented graphical thermostat application runs on CPUQ, while CPU1 handles touch input
and other peripheral control tasks. This task partitioning demonstrates how graphics can be isolated to CPUO
and supporting functions to CPU1, thereby optimizing overall application performance. The project’s purpose
is multifaceted and demonstrates how to do the following through a single use case:

¢ Design a multi-screen GUI in AppWizard, targeting the MIPI Graphic Extension Board.
e Integrate the AppWizard GUI into the e? studio project.

e Use emWin widgets and custom slot code to achieve advanced GUI functionality.

e Configure emWin, MIPI, and GLCDC in the FSP to target the external display.

o Initialize the EK-RA8D2’s external MIPI display by sending a table of configuration commands after
the MIPI post-open event.

e Set up SDRAM to store the framebuffers on the EK-RA8D2.

e Set up and store large resources to external flash devices.

e Communicate with the 12C capacitive touch overlay on the LCD using the GT911 drivers.
e Task partitioning and inter-core communication between CPUQO and CPU1.

This section explains the thermostat application’s code structure, high-level design, thread functions, and
important module configurations. Furthermore, this section explains how to initialize and store image
resources in the external flash, as well as the procedures for operating the MIPI graphics expansion display.

For details on how to partition tasks and the methods for exchanging data in dual-core systems, refer to
application note “RO1AN7881EU Developing with RA8 Dual Core MCU”.

Use the instructions in Section 4 to import, build, and run the graphics thermostat application project on your
own hardware.
3.1 Source Code Layout

The thermostat application is implemented on an FSP solution project configured with a dual-core FreeRTOS
environment.

This architecture enforces clear task partitioning: CPUO is dedicated to graphical user interface (GUI)
processing, while CPU1 is assigned to peripheral management tasks. On CPUQ, the application integrates

R11AN1068EU0100 Rev.1.00 Page 18 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

both custom code and auto-generated sources, including the code generated by AppWizard. In contrast,
CPU1 executes only peripheral APIs and does not rely on AppWizard auto-generation.

For guidance on creating an FSP solution project with dual-core FreeRTOS, please refer to the reference
application RO1AN7982 Multicore Setup and Running Hello World on Dual-Core.

The structure of a dual-core project created with an FSP solution project is depicted in Figure 19.

File Edit Source Refactor Navigate Search Project Renesas Views Run Renesas Al Window Help

(B & -in] b Q-
Project Explorer > = <'I==;> 7 = 0
1= EK_RABD2_Graphic_Dual_core — FSP Solution Project

J=> EK_RA8D2_Graphic_Dual_core_cpu0 CPUO Project

&_i.f' EK_RABD2_Graphic_Dual_core_cpu’ CPU1 Project

Figure 19. Organization of a Dual-Core FSP Solution Project
Figure 20 shows the source code layout for the thermostat application in the CPUO project.

The “ra_gen” and “ra” directories include the auto-generated FSP module APIs, middleware, and public
emWin library files, while the “src” directory contains the user-defined application thread code. The
AppWizard auto-generated code and support files are in both the Generated and Resource folders, and the
custom slot and widget code are in the “AppWizard/Source/CustomCode” folder.

Breaking down the custom code a bit further, the code in the “AppWizard” folder mainly targets HMI event
handling, while the code in the “src” folder is related to the operation of MCU peripherals and overall
application thread logic.

R11AN1068EU0100 Rev.1.00 Page 19 of 57
Nov.19.25 RENESAS

Renesas RA Family

Getting Started with the Graphics Application

b fl-é EK_RA8D2_Graphic_Dual_core_cpu0

_ﬁp Binaries
[sil Includes
v 2 AppWizard a,c. AppWizard auto-generated code
b,f. Custom written application code
~ [Source d,e. FSP auto-generated code
= CustomCode
C. > [= Generated
[€] APPW_MainTask.c (v p—— .
@£ simulation Files and subfolders
|El AppWizard. AppWizard .Ej Font under a.
=) FileListxt e
— (= Text
d. ng ra ¥ [= Source
:' "i fa_gen ¥ [= CustomCode
. = src - -
— e % Appl!(at!m(Files and subfolders
«h] Application.h
& ro.cly 6] ID_SCREEN_LOG Slots.c under b.
& saipt [€] ID_SCREEN_MAIN Slots.c
95¢ configurationxml [§] Log_Panel Widget.c
|%] EK_RA8D2_Graphic_Dual_core_cpu0 Debug_Flat m Weather_Panel Widget.c
: ra_cfg.oxt ¥ [=> Generated
(2) Developer Assistance To] APPWConic
[€] ID_SCREEN_LOG.c Files and subfolders
|| ID_SCREEN_LOGh under c.
[£] ID_SCREEN_MAIN.c
[] ID_SCREEN_MAIN.h
L] Resource.c
@ Resource.h
~ [ra_gen

backlight_thread.c
backlight_thread.h
bsp_clock_cfg.h

Files and subfolders
under e.

common_data.c
common_data.h
emWin_thread.c
emWin_thread.h
hal_data.c
hal_data.h
ipc_thread.c

PRPREPREREDE RS

.,

ipc_thread.h

[N

main.c
lg
[£) vector_data.c
@ vector_data.h

pin_data.c

Figure 20. Overview of source code organization in the CPUO project

The CPU1 project focuses exclusively on peripheral management. Its contents are limited to the peripheral
control thread code and the GT911 driver. Consequently, it does not contain any auto-generated sources or
user-defined code from the AppWizard project. Figure 21 illustrates the source code layout of the CPU1

project.

R4 [ac EK_RABD2_Graphic_Dual_core_cpul

#;P Binaries

[nlt Includes

Bra

(2 ra_gen

(2 src
] hal_entry.c
€] ipc_squeue.c

b ipc_sgueueh

] ipc_thread_entry.c
\g timer_thread_entry.c

|| touch_thread_entry.c

= Debug

= ra_cfg

(= script

%,'Ji,‘} configurationxml

gt911 Touch driver

Thread implementation

|X] EK_RABD2_Graphic_Dual_core_cpul Debug_Attach.launch
|X] EK_RABD2_Graphic_Dual_core_cpul Debug_Multicore.launch
|X] EK_RA8D2_Graphic_Dual_core_cpul Debug_Multicore Launch Group.launch

|E] ra_cfg.xt
(@) Developer Assistance

Figure 21. Overview of source code organization in the CPU1 project.

R11AN1068EU0100 Rev.1.00
Nov.19.25

Page 20 of 57

RENESAS

Renesas RA Family

Getting Started with the Graphics Application

3.2 System Design and Operation Flow

As illustrated in Figure 4, the graphics application consists of two panels: the Weather Panel and the Logging
Panel. These panels interact with the graphics framework through touch events and variable updates, which
are received and processed by CPU1. CPU1 communicates with the FSP and HAL drivers to send and
receive touch sensing data, as well as RTC date and time information, via IPC to CPUO.

The graphics framework comprises the SEGGER AppWizard framework, the emWin library, and the emWin
RA port, and it interfaces with CPUO, which manages hardware resources through HAL drivers such as
GLCDC, D/AVE 2D, MIPI-DSI / MIPI-PHY, and the backlight (controlled by GPT in the CPUO project).
Figure 22 illustrates the system block diagram of the thermostat application, while Figure 23 presents its

operation flow.

T

FreeRtos

Dual Core Graphic application

Graphic Praocessing on CPUO

A A A A
L — — —m — — — — | —m — — — — — — 4 - — — — — — 4 - — — 4
| Graphic Framework |
| |
Direct Control | Segger AppWizard/emWin |)
BackLight, Touch Point Data
Init SDRAM, [&Realtime Control
Init Display Screen, l i Dual-Core Data Transaction
Init External I |
Flash Device
| Segger emWin RA port |
I |
L — — — |- — — — |
Ly — — - 1 — — 7 7 - 1 - - = = 717 o
____________________________________ y I A
| |
' IPC '
| ' GPT MIPI PHY/DSI RTC IRQ 12C H l
[I
| DAVE 2D OSPI_B l
| I
I
l GLCDC SDRAM
| I
: Renesas Flexible Software Package FSP HAL |
| errmmeemmmmesemmosessosseeiooeees

Figure 22. Dual Core Thermostats Application Block Diagram.

R11AN1068EU0100 Rev.1.00

Nov.19.25

RENESAS

Page 21 of 57

Renesas RA Family

Getting Started with the Graphics Application

v

v

!

r---- - - - - - - - - - - - - '~ -"-“"—"=—" " "”"“"~"“"~"~“"~"=~"=~"~"=~"=~"="=" =" === 1
| CPUD | CPUA
| |
I
| I
|
| System initializes CPUQ |
l On Hold
n Hol
* A 4 * |
BackLight Thread emWin Thread IPC Thread |
v v v !
Wait For Wait For |
Successfully init Successfully init IPC Initialization
IPC on both CPU IPC on both CPU |
I

Initialize and Start

Initialize basic

F e — m e — m bk — — e — e — — — o —— - - — =4

GPT Timer graphic information StartCPUT f----eo- | ---------------------- e CPUT starts up
v v !) ‘ y
While loop: While loop: |
BackLight Event Initialize OSPI Receive data IPC Thread Touch Thread Timer Thread
Loop Event |
l Wait For Wait For
Wait For request Switch to 8D-8D-8D) Wait for touch data . .
Backliaht Chage mode from CPUA | IPC Initialization Successfully init Successfully init
< < IPC on both CPU IPC on both CPU
¢ ¢ Touch Data i
"""""" A y
[Set PWM duty cycle enter fo XIP mode A 4 . Validate Touch
':';gW to ?Pla'o Canfiguration Initialize RTC
Request GUI update intialize (12cncu)
¢ (to emWin thread)

Wait For touch Initialize Touch While loop:
| Reset Controller Ve loop:
Finish touch reset (12G/ICU) RTC event
from CPU1
| e v
A
Touch Reset
| Wait for rtc interrupt
| Call MainTask() 'L every second
| P S — Notify to CPUO ¢
| Finish touch reset Get Date and Time
Main Task
| Setup AppWizard IPC . i
| Framework While loop:
Jouch Event Loop, Process date and
| ¢ Time Data
| Initialize AppWizard Wait for touch event
Store to Share
| i ¢ memory
| . Get touch ¢
| Create persistent cordinate & state RTC changed.
screens Notify update RTC [
| T) .
| €] Send Touch data to '
Create initial screen E
| i
i
| RTC changed v '
Gul Request GUI Update
| Main Loop

Figure 23. Dual-Core Thermostat Application Operation Flow.

3.3 Dual-Core Architecture and Component Identification.

The RA8 dual core series employs a dual-core architecture based on an Asymmetric Multiprocessing (AMP)
model. This architecture is supported in the Flexible Software Package (FSP) through a dedicated dual-core
FSP Solution Project.

R11AN1068EU0100 Rev.1.00
Nov.19.25

Re Page 22 of 57
RENESAS

Renesas RA Family Getting Started with the Graphics Application

In this model, one core functions as the primary processor and is always the first to boot following a system
reset. By default, CPUOQ is designated as the primary CPU. Once initialized, CPUO can activate CPU1 by
invoking the Secondary Core Start AP| from the user application.

A dual-core application can therefore be developed as two independent FSP projects, one for each core.
Component selection and configuration for each CPU are performed individually through the Stacks tab in €2
studio.

For system resources shared between CPUO and CPU1, as well as for inter-core communication, developers
must follow specific design principles to avoid bus contention and race conditions. Details of these guidelines

are provided in application note “R01AN7881 Developing with RA8 Dual Core MCU”.

Determining the required components for each CPU is a critical step once task allocation between the cores
has been defined. The following two tables list the selected components for CPUO and CPU1 in this
thermostat application.

Table 1. Components of the Graphics Application in CPUO

Category Component Version Description
BSP ra8d2 ek 6.2.0 RA8D2-EK Board Support Package
Files
CMSIS CoreM 6.1.0+fsp.6.2.0 Arm CMSIS Version 6 - Core (M)
Common fsp_common 6.2.0 Board Support Package Common Files
GUI emWin 6.48+fsp6.2.0 SEGGER emWin Library
HAL r drw 6.2.0 TES D/AVE 2D Port
Drivers r glcdc 6.2.0 Graphics LCD Controller
r ioport 6.2.0 I/O Port
r dmac 6.2.0 Direct Memory Access Controller
r gpt 6.2.0 General PWM Timer
r ipc 6.2.0 IPC
r mipi dsi 6.2.0 MIPI DSI Host
r mipi phy 6.2.0 MIPI PHY Host
r ospi b 6.2.0 Octa Serial Peripheral Interface Flash
Heaps heap 4 11.1.0+fsp.6.2.0 FreeRTOS - Memory Management —
Heap 4
Middleware | rm emwin port 6.2.0 SEGGER emWin RA Port
rm freertos port | 6.2.0 FreeRTOS Port
RTOS FreeRTOS 11.1.0+fsp.6.2.0 FreeRTOS
TES dave2d 3.8.0+fsp.6.2.0 TES DAVE 2D Drawing Engine
R11AN1068EU0100 Rev.1.00 Page 23 of 57
Nov.19.25 RENESAS

Renesas RA Family

Getting Started with the Graphics Application

Table 2. Components of the Graphics Application in CPU1

Category Component Version Description
BSP ra8d2 ek 6.2.0 RA8D2-EK Board Support Package
Files
CMSIS CoreM 6.1.0+fsp.6.2.0 Arm CMSIS Version 6 - Core (M)
Common fsp_common 6.2.0 Board Support Package Common
Files
bsp ipc 6.2.0 BSP IPC Semaphore
HAL r dtc 6.2.0 Data Transfer Controller
Drivers r icu 6.2.0 External Interrupt
r iic master 6.2.0 I2C Master Interface
r ioport 6.2.0 I/0 Port
r rtc 6.2.0 Real-Time Clock
r ipc 6.2.0 IPC
Heaps heap 4 11.1.0+fsp.6.2.0 FreeRTOS - Memory Management
—Heap 4
Middleware | rm emwin port 6.2.0 SEGGER emWin RA Port
rm freertos port | 6.2.0 FreeRTOS Port
RTOS FreeRTOS 11.1.0+fsp.6.2.0 FreeRTOS

After the required components are added in the Stacks tab, they can be reviewed collectively in the
Components tab, as illustrated in Figure 24.

Components Configuration

w—
=)
= + 2k

Component

Group by: Vendor ~

o

Generate Project Content

Filter: All ~ | Search..

Version Description Variant

> o Arm

> o AWS

> oo Google

> oo Intel

> o5 Linaro

5 S5 LVGL

> oo LwIP_TCPIP
> oo Microsoft
> o Minimp3
> 9o Oberon

> oo Renesas
> &3 SEGGER

Summary | BSP | Clocks | Pins | Interrupts | Event Links | Linker Sections Stac

Figure 24. Components Tab Categories

3.4 Module, Pin and Clock Configuration

This section provides details of the configuration required for each component that was identified in the
previous section. For every selected component, the corresponding peripheral modules, pin assignments,
and clock settings are defined in the FSP configuration. These settings ensure that the hardware resources
are properly initialized and available for use by the application software.

R11AN1068EU0100 Rev.1.00
Nov.19.25

Re Page 24 of 57
RENESAS

Renesas RA Family Getting Started with the Graphics Application

The Stacks tab is where the thermostat application’s threads, modules, and FreeRTOS objects have been
added, managed, and configured by the designer for the FSP. Once the proper modules are included in your
project, the Generate Project Content button will add the corresponding FSP support files for operating the
modules defined in the Stacks. As mentioned earlier, the generated FSP files lie within the “ra” and
“ra_gen” folders of the e? studio project.

The remainder of this section describes the key configuration settings for each module on both cores. These
settings ensure cohesive operation of the graphics framework and establish the communication mechanism
between the two CPUs.

3.4.1 IPC & FSP Solution Clock Configuration.

In a complex dual-core application, efficient inter-core communication is essential to avoid race conditions
and bus contention. In this dual-core thermostat application, inter-core communication is implemented using
two mechanisms with the help of the IPC framework and peripheral:

e Message FIFO, provided by the FSP for asynchronous message passing between cores.
e Shared memory, used to exchange data between CPUO and CPU1.

Allocation of memory regions for shared access between the two cores is supported through the FSP
Solution project, which allows defining shared memory areas accessible by both projects. The FSP Solution
also provides reference clock settings that can be reused by individual CPU projects. Clock configuration for
the entire dual-core thermostat application can be found in the FSP Solution Configuration.

Inter Processor Communication

In the thermostat application, Inter-Processor Communication (IPC) is employed to exchange real-time data
and to issue periodic update requests to the graphics screen at one-second intervals. The IPC framework
also makes use of interrupts to notify CPUO whenever a touch event has been processed on CPU1.

e Touch Data Transfer: Touch coordinates are transferred from CPU1 to CPUO using the IPC
message FIFO mechanism.

e RTC Data Exchange: Real-Time Clock (RTC) data is exchanged between the two CPUs via shared
memory.

The shared memory is configured within the FSP Solution project under the memory configuration settings.
In the thermostat application, this memory region serves as a dedicated area for real-time data exchange
between the two cores. The layout and allocation of the shared memory are illustrated in Figure 25.

Memories
Name Start Size Core Security 2
v [RAM 0x%22000000 104000 Secure
= RAM CPUO S (2 2000000 (145000 CPUO Secure
[=%, SHARED_MEM 0x22145000 %8000 CPUO Secure I
= RAM_CPU1_S 0x2214D000 0x87000 CPU1 Secure
G FLASH_NS 0x12000000 0x100000 Non-secure
[FLASH 0x02000000 100000 Secure
D DATA_FLASH_NS 0x37000000 0x0 Non-secure

M NATA FIASH

he? 7000000

()

Secure

FSP Solution Clock Configuration

Figure 25. Example of Share Memory Partition in Application

The thermostat application is built on an FSP solution project, which supports clock configuration in FSP
Solution project that can be inherited by other projects.

The clock configuration for the entire application is carried out by opening the solution.xml file in the FSP
Solution Project and selecting the Clocks tab, as illustrated in Figure 26 .

R11AN1068EU0100 Rev.1.00

Nov.19.25

RENESAS

Page 25 of 57

Renesas RA Family

Getting Started with the Graphics Application

File Edit MNavigate Search Project RenesasViews Run Renesas Al Window Help

T Q-

Project Explorer X =0
7 8
]

\ v &~

3,

v =% EK_RA8D2_Graphic_Dual_core
> 5. C/C++ Projects

{5 [EK_RA8D2_Graphic_Dual_core] Solution Configuration X

Clocks Configuration

£ Restore Defaults

? = build

- XTAL 24MHz —
|
\. :p{ Ei_ngj_gaphfc_DuaI_cme_cpuO ks PLL Sre: XTAL y
> Ji= EK_ _Graphic_Dual_core_cpul ‘L
HOCO 48MHz v PLL Div /3 v PLL1P Div /2 v —> PLL1P 1GHz
LOCO 32768Hz PLL Mul x250.00 > PLL1Q Div /6 v —>PLL1Q ~333
MOCO 8MHz PLL 2GHz PLL1R Div /5 v —= PLL1R 400M

Summary BSPPins Memories | Adjustments

Figure 26. Example of the Clocks configuration tab in the Thermostat application
3.4.2 CPUO Module Configuration.
FreeRTOS Heap 4

A heap memory allocation is required for FreeRTOS to operate correctly because the kernel requires RAM
each time a task, queue, mutex, semaphore, etc, is created. The thermostat application uses the FreeRTOS
"Heap_4" allocator, which coalesces adjacent free blocks. The heap region itself is placed at an absolute
address.

SEGGER emWin RA Port (rm_emwin_port)

The rm_emwin_port is a submodule of the SEGGER emWin graphics framework. It provides the
configuration and hardware acceleration support necessary for the use of emWin on RA MCUs, allowing for
full integration with the GLCDC, DRW, and MIPI graphics peripherals on the RA8D2, as well as with
FreeRTOS. SEGGER emWin is commercial software. Renesas provides it to its customers free of charge, in

binary library form only. Please contact SEGGER for the source code of the emWin library if it needs to be
purchased.

SEGGER-provided code

compiled by Renesas SEGGER emWin Library

FSP software
abstraction layer

FSP emWin Port

FSP hardware
abstraction layer

GLCDC DRW

MIPI

Figure 27. SEGGER emWin FSP port layers block diagram

Please review the table below for an explanation of the FSP properties of the rm_emwin_port in the
thermostat application that differs from the default:

R11AN1068EU0100 Rev.1.00
Nov.19.25

Re Page 26 of 57
RENESAS

Renesas RA Family

Getting Started with the Graphics Application

Table 3. SEGGER emWin RA Port (rm_emwin_port) configurations for the Thermostat Application

Buffers

JPEG buffers.

Property Description Value Used Explanation
. Set the size of the heap . -
Memory Allqcat|on > to be allocated for use 0x20000 Provide sufﬂqent RAM for the
GUI Heap Size . : JPEG decoding and more.
exclusively by emWin.
Memory Allocation > Sp(_ecn‘y the section in Place the GUI heap in the on-chip
. which to allocate the .bss :
Section for GUI Heap SRAM region.
GUI heap.
. Configure whether This allows the JPEG to be
JPEG Decoding > JPEG decoding rendered to the display while
General > Double-Buffer ; Enabled : . f
Output operations use a decp_dlng another in, at the cost o
double-buffer pipeline. additional RAM usage.
JPEG Decoding > Specify the section in o
Buffers > Section for which to allocate the .bss Place the JPEG decoding into the

on-chip SRAM

Graphics LCD (r_glcdc)

The graphics LCD submodule requires a few configuration changes to get operational. The GLCDC input
format must match the AppWizard project color format settings, which in the thermostat application are
RGB888. Pay attention to the color format of your own graphics application and ensure that the right format

is being used throughout.

When you add the r_glcdc module to an RA8D2 project for the first time, it will show up with a red warning
because the default FSP clock setting provides no input source for the LCD clock (LCDCLK). Navigate to the
Clocks tab in FSP solution project to enable the correct clock for your application. In themostats application
using the PLL1R as the LCDCLK source, resulting in a 200MHz LCDCLK.

}B LCDCLK Src: PLLTR ~ —=LCDCLK Div /2 ~ —= LCDCLK 200MHz

Figure 28. PLL1R is the clock source for the LCDCLK in the Thermostat Application
MIPI-DSI/MIPI-PHY (r_mipi_phy and r_mipi_dsi)

When configuring the MIPI-PHY and MIPI-DSI interfaces, attention should be given to several critical
parameters that determine both display synchronization and physical layer stability:

e Clocking — ensures proper synchronization between the display controller, the DSI transmitter, and

the panel interface.

The MIPI DSI D-PHY has a dedicated regulator (D-PHY LDO) and PLL (D-PHY PLL), which are
managed by the driver. The D-PHY PLL frequency must be configured between 160 MHz and

1.44 GHz.

The D-PHY High-Speed data transmission rate is determined by the following formula:
Line rate [Mbps] = fDPHYPLL [MHz] / 2

For the thermostat application, the D-PHY PLL is configured at 1 GHz under the r_mipi_phy > DSI
PLL Frequency property. This corresponds to a line rate of 500 Mbps.

R11AN1068EU0100 Rev.1.00

Nov.19.25

RENESAS

Page 27 of 57

Renesas RA Family Getting Started with the Graphics Application

-1‘.3 SEGGER emWin

@

& SEGGER emWin RA Port (rm_emwin_port)

@ Problems Console Properties X Smart Browser Smart Manual

I = I g_mipi_phy0 MIPI Physical Layer (r_mipi_phy)

4 g_display0 Graphics LCD | 4% D/AVE 2D Port Interface -
(r_glcdc) (r_drw) Settings

APl Info

Property Value
v Module g_mipi_phy0 MIPI Physical Layer (r_mipi_|

Py e General

))

- -
I i [os! P Frequency (vHz) 1000.00 |

& o_mipi_dsi0o MIPI & D/AVE 2D (r_drw)
Display (r_mipi_dsi)

-

——
£ g_mipi_phy0 MIPI
Physical Layer
(r_mipi_phy)

Figure 29. Example DSI PLL Frequency Clock Setting in Application.

e PHY timing parameters: Include low-power and high-speed transition timings such as THS-
PREPARE, THS-ZERO, THS-TRAIL, TCLK-PREPARE, and TCLK-ZERO, which are critical for
maintaining signal integrity and proper lane switching. FSP automatically computes the default timing
values for MIPI D-PHY lanes.

e Video mode selection — specifies how pixel data is transmitted (Burst or Non-Burst mode).
In the thermostat application, Burst Mode is used, which has the following characteristics:
Sync pulses are disabled, meaning that horizontal and vertical sync events (HSE and VSE) are not
transmitted.
The bandwidths are calculated as follows:
GLCDC Video Clock Bandwidth (bps) = (Panel Clock MHz) * (Bits per pixel)
MIPI PHY PLL Bandwidth (bps) = (MIPI Phy PLL Clock MHz / 2) * (Number of MIPI
data lanes) * 8 - (Configuration Dependent Transmission Overhead).
The GLCDC video clock bandwidth is less than the MIPI PHY PLL bandwidth.

o Lane configuration: Determines the number of data lanes and their mapping to the DSI interface
signals.

In the thermostat application, all these parameters are preconfigured and optimized by the FSP, ensuring
proper synchronization and reliable operation of the MIPI display interface.

Octal Serial Peripheral (r_ospi_b)

In the thermostat application, the OSPI controller provides access to external flash for storing image

resources used by the GUI. On the EK-RA8D2, the external OSPI flash device is interfaced with the OSPI_B
controller using Chip Select 1 (CS1). The corresponding memory-mapped address range for CS1 is shown in
Figure 30, which allows the application to directly read data from external flash as if it were internal memory.

R11AN1068EU0100 Rev.1.00 Page 28 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

0xADDO_0000

OSPID
CS1 (256 MB)

0x9000_0000

OSPID
CS0 (256 MB)

0x8000_0000

= / Reserved area’

e Resevedarea |
0xADDD_Q00D ==
0x7000_0000 [External address space (OSPI area)
g:gggg:gggg External ;:li;e;s;;paarzz‘scs area)

| ——

0x7800_0000

Reserved area”

. 0x7000_0000

SDRAM (128 MB)

" 0x6800_0000
0x6700_0000
0x6600_0000
oiesotfoooo €35 (16 MB

- C54 (16 MB

CS7 (16 MB)
)
)
0x6400_0000 ;
)
)
)

CS6 (16 MB|

0x6300_0000 ggg H: mg
0x6200_0000
. 0x6100_0000 gg; ﬂg mg
* 0x6000_0000

Note 1. Reserved areas should not be accessed.

Figure 30. Detailed address map for CS area, SDRAM area, and OSPI area for SiP Product

Figure 31 below shows the OSPI General setting from r_ospi_b properties module in the thermostat
application.

Stacks Configuration g_ospi_b OSPI (r_ospi_b)

Generate Project Content

Settings Property Value
%] New Thread s Remove g_ospi_b OSPI (r_ospi_b) Stacks 4] New Stack > ~ Common
Threads APl Info .
—| v Memory-mapping Support
i_b OSPI i_b) Prefetch Functi Enabl
v @ emWin Thread @ g_ospi (r_ospi_b) re ef fm(ion : nable
i £ Euncting £4 By
@ FreeRTOS Heap 4 XiP Support Enable
”i: 9_0spi_b OSPI (r_ospi_b) O] Parameter Checking Default (BSP)
47 SEGGER emWin A . DMAC Support Enable
~ & Ipc Thread _ ibrati
£) % Add [Optional] Add 4 g_transfer0 Transfer uocalibEhonupRol Eﬂ_able
9.ipc0 IPC (r_ipc) erypto engine for DOTF (r_dmac) No ELC Trigger DOTF Support Disable
@ g_ipcl IPC (r_ipc) Row Addressing Support Disable
~ & BL Thread [6) ~ Module g_ospi_b OSPI (r_ospi_b)
@ g_timer_PWM Timer, General v General
Name g_ospi_b
Unit OSPI_BO
e Chip Select Cs1
ects
o e et Write Status Bit b0
e Write Enable Bit b1
Summary | BSP | Clocks | Pins | Interrupts | Event Links | Linker Sections | Stacks | Components DS Auto-calibration Pattern Address 0x92000000

Figure 31. Example of General Setting from OSPI driver configuration in Thermostats Application.

When working with the OSPI controller, all command sequences, timings, and configuration parameters must
strictly follow the external memory manufacturer’s specifications to ensure reliable operation and data
integrity. All command set was configured through Stack Configuration in r_ospi_b Properties shown in
Figure 33. The pin mapping of the external flash device must also be configured to map to OSPI0 on the
RA8D2. Figure 32 illustrates the pin configuration for OSPI in the thermostat application.

R11AN1068EU0100 Rev.1.00 Page 29 of 57
Nov.19.25 RENESAS

Renesas RA Family

Getting Started with the Graphics Application

Pin =@ B 1% Pin

Type filter text Name Value Lock Link

Pin Group Selection Mixed

i ~ Operation Mode Hyper Flash
v PD) w Input/Output

| Otner Pins OM_0_CS0 None
~ ¥ Peripherals OM_0.CS1 7 P104 e =)
Analog:ACMPHS OM_0.DGS / P8O1 lﬂ' S
Analog:ADCO OM_0_ECSINTS / P105 & | @
Analog:ADCT OM_O_RESET / P105 & [

Analog:DAC12 OM_0_RSTO1 None
CLKOUT.CLKOUT OM_0.SCLK v 808 ﬂ' >

CLKOUT.CMPOUT OM_0_SCLKN None
CLKOUT:-E-THPHYCLK OM_0_5100 # P100 u.i.)
Connect!v!ty:CANFD OM_0.SIOT PS03 ﬂ' =
Connect!v!ty:ESWM_GMII;’MII OM_0.5102 2 P103 ﬂ' =
Connecthfty:ESWM_RGMll OM_0.5103 7 P01 ii' =
Connecthfty:ESWM_RMll OM_0.SI04 v P102 d =
Connectf\/fty:BC OM_0.5I05 / P8O0 lﬂ')
Connectf\/fty:llt OM_0_SI06 # P802 lﬂ' =
v 'M:OSP' OM_0.SI07 7 P804 g [

OM_0_WP1 None

OSPI1

Figure 32. Example of OSPI Pin Configuration in Thermostat Application

~ [nitial Mode

~ High-speed Mode

v Read ~ Read
Command Code 0x0C Command Code Ox0C0C
Dummy Cycles 16 DXimmy/Gyeles 16
~ Program
Nabrooram Command Code 0x1212
Command Code Ox12 Dummy Cycles 0
Dummy Cycles o ~ Row Load
v Row Load Command Code 0x00
Command Code 0x00 Dummy Cycles i]
Dummy Cycles 0 ~ Row Store
v Row Store Command Code 0x00
Command Code 0x00 Dummy Cycles 0
~ Write Enable
pimmyjeyaey Y Command Code Ox0606
v Write Enable Status Read
Command Code 0x06 Command Code 0x0505
~ Status Read Dummy Cycles 8
Command Code 0x05 ~ Sector Erase
Dummy Cycles o Command Code 0x2121
~ Sector Erase v Block Erase
Command Code 0x21 Command Code 0xDCDC
v Blaock Erase N Ch'? (Eess 4o o060
omman oae X
Command\Gode UG Protocol Mode Dual data rate OPI (8D-8D-8D)
NAChipiEase Frame Format *SPI Profile 1.0
Command Code 0x60 Latency Mode Fixed
Protocol Mode SPI (15-15-15) Address Length 4 bytes
Frame Format Standard Address MSBE Mask 0xFO
Latency Mode Fixed Command Code Length 2 bytes
Address Length 4 bytes Status Register Address Length 4 bytes
Address MSB Mask 0xFO Status Register Address 0x00
Command Code Length 1 byte T',mmg SEHings
- v XiP Mode
Status Register Address Length Mo address XiP Enter Code 0x00
Status Register Address 0x00 ¥iP Exit Code OnFF

Figure 33. Example of command setting for OSPI

General PWM Timer (r_gpt)

The general PWM timer is used in the thermostat application as the LCD’s backlight signal, where the duty
cycle directly correlates with the intensity of the display’s brightness.

The display’s backlight enable signal (DISP_BLEN) is mapped to pin P514 on the RA8D2 MCU. Therefore,
the r_gpt module is configured for Channel 13 and GTIOCB, which outputs a PWM signal to P514.

The PWM timer is set to be a sawtooth PWM wave with a 200 Hz period. Other wave forms will work, but it
must be a PWM wave, and the wave must have a period fast enough for the flicker to be undetectable to the
human eye.

R11AN1068EU0100 Rev.1.00
Nov.19.25

Re Page 30 of 57
RENESAS

Renesas RA Family Getting Started with the Graphics Application

3.4.3 CPU1 Module Configuration.
GT911 External IRQ (r_icu)

The r_icu module is used to detect external interrupt signals coming into the MCU. As shown in Figure 36 in
the GT911 Touch Driver section, the GT911 IC uses the DISP_INT pin, connected to P111 on the RA8D2
MCU, to signal when touch events occur. Therefore, in the thermostat application, the external IRQ needs to
be set to Channel > 19 because this channel includes pin P111. Next, click on the Pins > Pin Function >
IRQ scroll down and choose P111 for IRQ19.

Pin iz @ =% Pn = Cycle Pin Group
Type filter text Name Value Lock Link ~
— IRQ16-DS None
Connectivity:USB HS ~ RQ17 None
v DebugiJTAG/SWD IRQ17-D5 None
Debug:TRACE IRQ18 None
ExBusBUS IRQ18-DS None
v ExBLfs:SDRAM [RQ19 T l m =
HMI:CEU IRQ19-DS None
HMIGLCDC IRQ20 None
Z_HMEMIPL IRQ20-DS None
IRQ IRQ21-DS None
¥ System:CGC 1RAY Nene v
TRG:ADC(Digital) < >
TBG:CAC Module name: IR
TimersAGT
T e A Usage: To use IRQ function with output or peripheral modes, change directly in port dialog
< >

Pin Function | Pin Number

Summary | BSP | Clocks | Pins | Interrupts | Event Links | Linker Sections | Stacks | Components

Figure 34. Ensure P111 is selected and enabled for I/0O for IRQ19

Additionally, the gt911. c driver file includes an interrupt callback routine for handling when the GT911 IC
triggers an interrupt to the MCU. When using these driver files, it's necessary to provide the callback routine
definition using the same name as the driver, which is touch_int_callback.

GT911 12C Master (r_iic_master)

The r_iic_master module is configured as the 12C master, communicating with the GT911 slave IC over I2C.
Channel 1 of the IIC peripheral is used, and the slave address 0x14 corresponds to the GT911 device.

Like with the r_icu, the gt911. c file includes an interrupt callback routine for the 12C transaction completion,
which provides the callback name touch_i2c_callback.

After enabling channel 1, the SCL1 pin should route to P512, and the SDA1 pin should route to P511. Use
the pin configuration tab to set the pins if they don’t populate automatically.

Real-time Clock (r_rtc)

The real-time clock is used to update the date and time data in the thermostat application each second. The
r_rtc module is set with a 1-second period IRQ rate using the FSP APIs in the timer thread, and from the
timer_rtc_callback routine, an emWin event will update the time & date variable.

3.5 Configuring the MIPI Graphic Expansion Board

The emWin thread on CPUQO also synchronizes with the custom-written definition of the
mipi_dsi®@_callback() routine. In general, the function filters through the various MIPI DSI or PHY events,
flags, and errors and handles the application’s response accordingly.

R11AN1068EU0100 Rev.1.00 Page 31 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

® * Callback functions for MIPI DSI interrupts]]
— void mipi_dsi@_callback(mipi_dsi_callback_args_t *p_args)
{

= switch (p_args->event)

{
- case MIPL DSI_EVENT POST OPEN:
ed5ra_mw276_lcd init();
break;
= ~case MIPI D51 EVENT SEQUENCE @

{

= if (MIPI_DSI SEQUENCE STATUS DESCRIPTORS FINISHED == p_args-»>tx_status)

{
}

break;

g _message_sent = SET_FLAG;

}
= case MIPI DSI EVENT PHY:

{
g phy status |= p_args->phy_status;
break;

}
= default:

{
}

break;

¥

Figure 35. The MIPI configuration table is sent after the MIPI DSI module has opened successfully

For the thermostat application, the MIPI DSI post-open event indicates that the EK-RA8D2’s external MIPI
LCD is ready to be configured. The MIPI DSI module operates in Command Mode to send a series of MIPI
descriptors from the MCU to the MIPI LCD. The sequence of descriptors or commands will initialize the
external display based on the FocusLCD specs and will specify the communication settings to be used when
sending pixel data during MIPI video mode. The commands are enumerated in the
src\mipi_dsi_display_control.c fileas g_lcd_init_focuslcd[] and cover settings like bit depth,
screen resolution, positive and negative gamma, and more.

It is recommended that you review the g_lcd_init_focuslcd[] commands, the ILI9806E data sheet and
the corresponding MIPI display specifications of the RA8D2 Hardware User’'s Manual to understand the
mechanisms of the initialization command sequence.

3.6 GT911 Touch Drivers

As mentioned in Section 1, the EK-RA8D2’s external MIPI graphics expansion board has a capacitive touch
panel (referred to as CTP) overlay, which runs using the GT911 controller IC. Please refer to the GT911
Programming Guide and the GT911 Datasheet from Goodix in the reference section at the end of the
application note for more information. This section gives an overview of important GT911 specifications,
shows the connection from the MCU to the CTP, and explains how the thermostat application uses the
touch_gt911.c and touch_gt911.h driver files to interface with the touch panel.

The GT911 serves as a slave device in 12C communication to the MCU, sending up to 5 touch points with a
maximum transmission rate of 400Kbps. The device has two available 7-bit slave addresses: 0x14/0x5D. For
the purposes of this application note, we will only discuss and use the 0x14 address. The IC interfaces with
the host via six pins (Names in parentheses correspond to RA8D2 pins): VDD, GND, SCL (lIC_SCL), SDA
(IC_SDA), INT (DISP_INT), and RESET (DISP_RST).

The important signal connections from CTP to the RA8D2 are highlighted in Figure 36. The J32 header
refers to the board-to-board connector, which connects the MIPI graphics expansion board to the RA8D2
MCU.

R11AN1068EU0100 Rev.1.00 Page 32 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

MIPI Connector

J32

,,
o

MIPI_DSI_DLO P S o0 3 MIPI DSI DL1 P >

MIPI DSI DLO N = o e MIPI DSI DL1 N >

—

¢ MIPI DSI CL P o0 Liefisahs, P411 |
{ MIPL DSI CL N T :: DA — S
P ; EPF'%LE%} }; & 0 -E%}} P512/SCL1 >
{_Pl111 = & :: o P606 |
21)
PS5V P3V3 PLSV T P18V P3V3i D5V

=0 0~
—leoe

Figure 36. RA8D2 I/O connections to the GT911 IC on the external MIPI LCD

After application start-up, the MCU determines the GT911 I2C slave device address (0x14 or 0x5D) by
toggling the DISP_RST and DISP_INT signals in a defined sequence. The reset logic is provided in the
R_TOUCH_GT911_Reset driver function defined in touch_gt911.c from CPU1 project. However, note in the
figure above that the DISP_RST display reset signal from the RA8D2 MCU is routed both to the capacitive
touch panel and to the MIPI LCD panel. Therefore, it’s critical to complete the touch panel setup procedure
before opening and starting the MIPI modules on the RA8D2 to prevent the display’s configuration data from
being accidentally reset. The thermostat application uses the g_touch_reset_semaphore to block the
emWin thread from opening and starting the MIPI modules until after the touch thread has completed the
touch panel startup.

E GT911 from CPU1

Send MIPI DSI
command sequence —»
to initialize LCD

Start streaming MIPI
DSl video data

Open the Touch «| Resetthe touch Open the MIPI DSI
Controller ” Controller L ” module

h 4

Figure 37. Recommended initialization sequence for the EK-RA8D2 MIPI LCD's Touch and MIPI
controllers

The following functions are currently provided by the touch_gt911 drivers:

e R_TOUCH_GT911_Open: Sets up the signals, like opening the I12C master module on the MCU and
specifying the right pins for SDA and SCL.

e R_TOUCH_GT911 Reset: Toggles the DISP_INT and DISP_RST pins with the right timing sequence
to reset the touch hardware.

e R_TOUCH_GT911 Close: Closes the I2C master module on the MCU.
e R_TOUCH_GT911 StatusGet: Returns the status of the touch panel.

e R_TOUCH_GT911 PointsGet: Returns the number of points in contact with the panel and their
coordinates.

e R_TOUCH_GT911 VersionGet: Returns the gt911 version.
e R_TOUCH_GT911 WaitForTouch: Waits until a gt911 touch event occurs.

The touch thread uses the above functions to properly set up touch panel communication. The following
image is a snapshot that encompasses the touch setup procedure in the thermostat application, located in
touch_thread_entry.c from CPU1 project. The key parts include the initialization of GT911 configurations,

R11AN1068EU0100 Rev.1.00 Page 33 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

the sequence of GT911 driver functions used, and unblocking the emWin thread on CPUO for MIPI setup
after the touch reset on CPU1 completes. Note that during the initialization of the GT911 configurations, the
driver configurations are required to have two semaphore objects, one for the irq interrupt and one for the i2c
communication.

/* Initialize touch configuration®/

touch_gt911 cfg_t gt9ll cfg =

{
_reset_pin = IOPORT_PORT_06_PIN 96,
.irq_pin = IOPORT_PORT 01 _PIN 11,
.i2c_sda_pin = IOPORT_PORT 85 PIN 11,
.i2¢_scl_pin = IOPORT_PORT_65 PIN 12,
.p_i2c_master = &g _i2c_gt911,
.p_external_irq = &g_int_gtol1,
.p_ioport = &g ioport,
.sync = >911_sync,

¥

/* Validate touch configuration
err = R_TOUCH_GT911_Validate(>911_cfg, &t911_err);
= if(err)
{

__asm("BKPT #@\n");
¥

®
!

Touch config validation
& init sequence

memset(>911 ctrl, ®, sizeof(touch gt911 ctrl t));

/* Open the touch controller®/
err = R_TOUCH_GT911 Open(>91l ctrl, >911 cfg);
= if(err)
{
__asm("BKPT #08\n");
¥

/* Reset the touch hardware*/
err = R_TOUCH_GT911 Reset(>o1l_ctrl);

= if(err)
{
__asm("BKPT #0\n");
¥
err = R_TOUCH_GT911_VersionGet(>911 ctrl, &zt911 fw_version);
= if(err)
{
__asm("BKPT #@\n");
¥
/* Tell the emWin thread that touch reset has completed */ |om Trigger CPUO to perform MIPI

R_TPC_EventGenerate(&g_ipc®_ctrl, TPC_GENERATE_EVENT_TR(Q2);

screen setup after CPU1
completes touch initialization

Figure 38. The GT911 drivers are used in the Touch Thread to set up communication to the
capacitive touch panel

3.7 Placing Graphic Resources in External Flash Memory

When internal flash memory is insufficient, GUI resources generated by AppWizard can be stored in external
OSPI flash to conserve internal memory or expand available storage.

After exporting the AppWizard project, all GUI resources are generated under the AppWizard/Resource/
directory. Image assets are located in the “AppWizard/Resource/Image/” folder, where each image is
defined as a const C array in a separate *.c file. These arrays are wrapped with a predefined prefix and suffix
to ensure consistency and proper linkage.

This application further demonstrates how to store these image assets in external flash memory by using the
linker section feature in e? studio. An example configuration for the Graphic application in the CPUO project is
provided below:

1. Double clicks on configuration.xml in the application project example. Click Linker Sections tab.

R11AN1068EU0100 Rev.1.00 Page 34 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

= O ‘z,,.: [EK_RABD2_Graphic_Dual_core_cpu0] FSP Configuration = 4a

(V)

Generate Project Content

Project Explorer > =]
= EK_RASD2_Graphic_Dual_core
2 Tlé EK_RA8D2_Graphic_Dual_core_cpu0
t;b Binaries
[l Includes
2 AppWizard
B ra
2 ra_gen
& src
== Debug
= ra_cfg
(= script
FSP configuration
|X] EK_RA8D2_Graphic_Dual_core_cpu0 Debug_Flat.launch
|=) ra_cfg.oxt
(?) Developer Assistance
[-5 EK_RA8D2_Graphic_Dual_core_cpul

Linker Section Mapping Configuration

User Mappings 4| New User Mapping >

User Mappings box

Input Section(s) Output Section

Default Mappings

Input Section(s)
*(bss.g_heap)
*(bss.g_main_stack)

Output Section
RAM Uninitialized
RAM Uninitialized

Linker Sections tab l
< » Summary | BSP | Clocks |Pins | Interrupts | Event Links Linker Sections |Stacks | Components

Figure 39. Linker Section Feature in e?studio

2. In User Mappings box, Click to New User Mapping. Choose OSPI0_CS1 Constant Data from
OSPI0_CS1.

Linker Section Mapping Cnnfiguration There is no active editor that provides an outline.

Generate Project Content

User Mappings |t New User Mapping :l
- 3 DATA_FLASH >
Input Section(s) Qutput Section
DTCM >
FLASH >
ITCM >
QSPI0_CS0 >
|_oseiocsi | > | OsPiocs1Constant Data |
< RAM > OSPI0_CS1 Jode
SDRAM > OSPI0_CS1 Heserved
Default Mappings
Input Section(s) Qutput Section
X L Select OSPI@_CS1 Constat Data
*(.bss.g_heap) RAM Uninitialized
#(.bss.g_main_stack) RAM Uninitialized
< >

Summary | BSP | Clocks | Pins | Interrupts | Event Links | Linker Sections | Stacks | Compaonents

Figure 40. Example of Store Const C Array Buffer Image into OSPI device.

3. Enter the input section name or glob pattern for the new mapping.

Q MNew User Mapping x>

Enter the input section name or glob pattern for the new mapping:

| rodata.acanime_cloud

Example default input section names:

+ Constant data:
« Initialized data:

+ Code:

+ Uninitialized data:
void my_code(void) {}

const int my_const = 1;
int my_init_data = 1;
int my_uninit_data;

/* text.my_code */

/% rodata.my_const */
/* data.my_init_data */
/% bss.my_uninit_data */

Figure 41. Example of an Input Section Name Used for Mapping Constant Data

R11AN1068EU0100 Rev.1.00
Nov.19.25

Re Page 35 of 57
RENESAS

Renesas RA Family Getting Started with the Graphics Application

Enter the input section name corresponding to type of data or code.

For example, with a constant image buffer “acanime cloud”, specify the input section
as: .rodata.acanime cloud.

Repeat steps 2 and 3 for each additional image buffer that needs to be placed in external flash memory.
As illustrated in Figure 42, all image resources will be placed within the memory space of CPUO application.

. o
Linker Section Mapping Configuration Generate Project Content
User Mappings % | New User Mapping > | Remove
Input Section(s) QOutput Section
*(.rodata.acanime_raining_1) OSPI0_CS1 Constant Data
*(rodata.acanime_sun_oncloud) OSPI0_CS1 Constant Data
*(rodata.acanime_sun_shining) QSPI0_CS1 Constant Data
*(rodata.acanime_cloud) OSPI0_CS1 Constant Data
*(.rodata.acrainy_portrait) QOSPI0_C51 Constant Data
*(.rodata.acpartly_cloudy_portrait) OSPI0_CS1 Constant Data
*(.rodata.acsunny_portrait) OSPI0_CS1 Constant Data

Default Mappings

Input Section(s) Output Section
= *(bss.g_heap) RAM Uninitialized
*(bss.g_main_stack) RAM Uninitialized

Summary | BSP | Clocks | Pins | Interrupts | Event Links | Linker Sections | Stacks Components

Figure 42. Example of Input Section Name in EK_RA8D2_Graphic_Dual_core_cpu0 Application.

To access GUI resources stored in external OSPI flash, the OSPI_B module must be properly configured
and the external OSPI flash device initialized. The OSPI must be initialized early in the emWin thread, as
shown in Figure 43 . For detailed OSPI configuration, refer to Section 3.4.

#include “"enllin_thread.h" @ SEGGER Microcontroller GmbH
#include "GUI_h"

| #include "Application.h” I— © #ifndef APPLICATION_H

#define APPLICATION_H

© /* emWin Thread entry function */ #include "../Generated/Resource.h"
/* pvParameters contains TaskHandle_t */ #include "../Generated/ID_SCREEN_MAIN.h"
= void emWin_thread_entry(void *pvParamete #include "../Generated/ID_SCREEN_LOG.h"
{ #include "ipc sgueue.h"”
FSP_PARAMETER_NOT USED (pvParameters [#include "ospi_b_control.h"]

fsp_err_t err = FSP_SUCCESS;

/* Initialize ospi b */ o
err = ospi_b_init(); Early OSPI Initialization
= IF (FSP SUCCESS 1= err)

APP_ERR_TRAP(err);

}
err = ospi_ b set protocol to opi(); [Switch to OPI high
APP_ERR_TRAP(err); speed mode & run

with XIP mode

err = xip_enter();
APP_ERR_TRAP(err);

/* Wait for configuration touch controller */
BaseType_t xResult = xSemaphoreTake(g_touch_reset_semaphore, portMAX_DELAY);
APP_ERR_TRAP(!xResult);

MainTask();

Figure 43. Example of OSPI Initialization in Application

R11AN1068EU0100 Rev.1.00 Page 36 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

3.8 System Performance Enhancement

In addition to the effective utilization of the dual-core architecture to distribute workloads and improve overall
responsiveness, the system performance can be further enhanced by leveraging several key hardware
features of the RA8D2. These hardware capabilities are designed to maximize computational throughput,
improve memory access efficiency, and enhance real-time responsiveness, particularly in graphics and data-
intensive applications.

3.8.1 Utilizing Cortex®-M85 Core Data Cache

In the default configuration for RA8 devices, the FSP always enables the Cortex®-M85 Instruction Cache (|-
Cache). The FSP also allows for the optional enabling of the Cortex®-M85 Data Cache (D-Cache) in the
BSP configuration settings, and it is disabled by default. To use D-Cache, enable it in the BSP configuration
settings.

Double-click on configuration.xml, select the BSP tab. Enable Data cache in RA8D2 Family > Cache
settings.

EK-RA8D2
Settings Property Value
~ (Cache settings
[Data cache Enabled]
Data cache forced write-through Disabled
Enable inline BSP IRQ functions Enabled
Main Oscillator Wait Time 8163 cycles
v RA Common

Main stack size (bytes) 0x400
Heap size (bytes) 0
Bootloader Secondary XIP Disabled
MCU Vec (mV) 3300
Parameter checking Disabled
Assert Failures Return FSP_ERR_ASSERTION
Clock Registers not Reset Values during Startup Disabled
Main Oscillator Populated Populated
PFS Protect Enabled
C Runtime Initialization Enabled
Early BSP Initizlization Disabled

Figure 44. Example of Enable Data Cache in CPUO project

Cache coherence should be considered when using any type of cache in a system. For further details, refer
to the Cortex®-M85 Caches documentation.

3.8.2 Utilizing Helium on Cortex®-M85 for JPEG Decode

The emWin graphics library provides a software JPEG decoder that can take advantage of Arm® Helium (M-
Profile Vector Extension, MVE) instructions on Cortex®-M85-based MCUs to significantly accelerate image
decoding.

emWin’s JPEG decode pipeline can transparently leverage the Arm Helium vector extension when available
on the MCU core. The integration does not require application-level changes. The Helium-optimized firmware
extensions are automatically used when the project is built with MVE-enabled toolchain flags. For detail of
using Helium on Cortex®-M85, refer to the application “R01AN7127 High Performance with RA8 MCU using
Arm® Cortex®-M85 core with Helium™”

3.8.3 Leveraging 32-bit SDRAM Bus for High-Speed Framebuffer Access

In modern embedded graphics applications, the speed at which framebuffers are read and written directly
impacts display performance, especially for high-resolution, high-refresh-rate LCDs. A 32-bit SDRAM bus
provides a wider data path than a 16-bit bus, effectively doubling the memory throughput under similar clock
conditions. This allows the MCU to fill framebuffers faster, supporting smoother animations, higher color
depth, and multi-layer rendering in GUIs.

Leveraging the full 32-bit bus width ensures that the graphics controller (GLCDC) or emWin framebuffer
operations are not bottlenecked by memory access, which is particularly critical when performing partial or
full-screen refreshes.

R11AN1068EU0100 Rev.1.00 Page 37 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

For the thermostat application, the framebuffer is allocated in SDRAM, as illustrated in Figure 45, and
a 32-bit SDRAM interface is employed to provide high-speed framebuffer access.

Stacks Configuration Generate Project Content

% | New Thread % | Remove emWin Thread Stacks % | New Stack > # | Remove

Threads
=] B Add |Optional] Add
crypto engine for DOTF

“# g_transter0 Iranster
- (r_dmac) No ELC Trigger
& emWin Thread
47 FreeRTOS Heap 4 @ @
4 g_ospi_b OSPI (r_ospi_b) I |
49 SEGGER emWin ‘
o E— - o
v @ Ipc Thread b2 (g;;II:;ZI::‘)W e || ¥
@ g_ipc0 IPC (r_ipc)
@ gipct IPC (ripc)) ®

% SEGGEK emWin RA Port (rm_em

Yy

. % | New Object > E g_mipi_dsi0 MIPI &
Objects Display (r_mipi_dsi)

@ g_touch_reset_semaphore Binary Ser|

Summary | BSP | Clocks | Pins | Interrupts | Event Links | Linker Sections | Stacks | Components

Problems Console Properties X Smart Browser Smart Manual Memory Usage Search Memory Proc
g_display0 Graphics LCD (r_glcdc)

Settings Property Value
> Color Correction off
v Module g_display0 Graphics LCD (r_glcdc)
> General
> Interrupts
~ Input
~ Graphics Layer 1

APl Info

> General
~ Framebuffer
Framebuffer name fb_background
Number of framebuffers 2
ISection for framebuffer allocation sdram_noinit '_ Framebuffer is allocated in sdram

Figure 45. Example of allocating Framebuffer to SDRAM

The 32-bit bus can be enabled simply via the BSP Properties tab in the FSP Configurator, providing full
memory throughput for high-speed framebuffer operations.

Problems Console Properties Smart Browser Smart Manual Memory Usa
EK-RA8D2
Settings Property Value
~ RA8D2
series 8

v RA8DZ2 Device Options
> OFS Registers
~ RA8DZ Family

v SDRAM
> Timings
> Initialization
| rE“TJRAM Support Enabled |

Address Multiplex Shift 9-pit shift
Endian Mode Little Endian
Continuous Access Mode Enabled
Bus Width 32-bit

Figure 46. SDRAM Enable in BSP Properties tab

The initialization code for the SDRAM bus is included in the “bsp_sdram. c” file, so users do not need to
configure the low-level settings manually. The only requirement for the user is to configure the SDRAM pins
correctly in the Pins tab setup. If a different type of SDRAM is used on a custom board compared to the one
on the EK board, parameters such as pin assignments, mode register settings, timing registers, and related
configuration values should be set according to the SDRAM datasheet.

R11AN1068EU0100 Rev.1.00 Page 38 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

Select Pin _J_J‘ Export to CSV file
RASD2 EK Generate data:
Pin = F B 1% Pin
Type filter text Name Value Lock Link
c TvI3C Pin Group Selection Mixed
’ COHHECT!V!W"C Operation Mode Custom
’) Conned!\{!ty‘osm ~ Input/Qutput
> ¥ Connect!v!ty‘pDM A0 None
> Connec?vﬁySCI Al None
> Cr:Jnnel: !\.r!ty:SDHI A2 7 PAO3 LL“;” =)
> Connedwszpl A3 / PAD2 5)
» Connect!v!ty:SSIE A4 7 PAD1 o7)
» onnect!v!ty‘ A5 / PAOO o7)
> Connectivity:USB FS ' i@
o Ab < P503 =)
> Connectivity:USB HS ' @
AT < P504 o) =
>« DebuglTAG/SWD ' i
S A8 / P505 7] =D
> EeB u?éus A9 7 P506 i =)
- E"B“"’:SDRAM A10 7 PS07 [l)
v v EX :S-RAM AT 7 P508 & =
-‘, =
— Al12 < P509 Bl >
’ : A13 7 P510 &F I >
> HMI:GLCDC . i
v Al4 v P08 [£1] o
> : ' T
A15 #/ PDOO0 i)
> InterruptIRQ =
¢ Ciies Module name: SDRAM

Pin Function | Pin Number

Summary | BSP Cloclnterrupts Event Links | Linker Sections | Stacks | Components

Figure 47. SDRAM Pin Configuration

® * This function is called at various points during the startup process. Tt
=~ void R_BSP_WarmStart (bsp_warm_start_event_t event)

{
= if (BSP_WARM START_RESET == event)

{
® #if BSP_FEATURE_FLASH_LP_VERSION != @]
¥

= if (BSP_WARM START_POST C == event)
{

/* C runtime environment and system clocks are setup. */

/* Configure pins. */
R_TOPORT_Open(&IOPORT_CFG_CTRL, &TOPORT_CFG_NAME):

= #if BSP_CFG_SDRAM_ENABLED

/* Setup SDRAM and initfialize it. Must configure pins first. */
R_BSP_SdramInit(true);

#endi

Figure 48. Automatically generated SDRAM initialization added to the build.
4. Running Thermostats Application

This section outlines the key features of the graphics application. The goal of the application is to
demonstrate how to develop more advanced multi-core and multi-threaded HMI applications using the
Flexible Software Package (FSP), AppWizard, and the emWin graphics library.

The key goal of the FSP is to abstract much of the complexity of interfacing with various Renesas peripherals
and to quickly get you to the point where you can focus on constructing more complex applications as quickly
as possible.

R11AN1068EU0100 Rev.1.00 Page 39 of 57
Nov.19.25 RENESAS

Renesas RA Family

4.1 Hardware Setup

4.1.1 Attach the MIPI LCD to the MCU

Connect CN1 on the included MIPI LCD graphics expansion board to J32 on the EK-RA8D2, located towards
the bottom of the kit on the underside. J32 on the EK-RA8D2 should also be labeled “MIPI GRAPHICS
EXPANSION BOARD”. If included, use the included screw to secure the display’s connection.

Connect a type C-USB cable to the Debug J10 on the EK-RA8D2 and to the host PC.

Getting Started with the Graphics Application

Figure 49. MIPI Graphics Expansion Board 1 connected to the EK-RA8D2

4.1.2 EK-RA8D2 Configuration Switch (SW4) Settings
Ensure that SW4 on the EK-RA8D2 has the settings listed in the table below:

Table 4. Required SW4 configurations for running the Thermostat Application Project

Sw4-1 SW4-2 | SW4-3 SW4-4 | SW4-5 | SW4-6 SW4-7 SW4-8
PMOD1 | PMOD1 | Octo-SPlI | Arduino | I2C/I3C | MIPI Display | USBFS Role USBHS Role
OFF OFF OFF OFF OFF ON OFF OFF

4.2 Importing and Building the Project

Complete these steps to run and verify the Thermostat Graphics Application on your own EK-RA8D2:

1. Ensure that the application project folder ek _ra8d2_graphic_mipi.zip is downloaded onto your host
PC.

2. Follow the connection steps from Section 4.1.

Open an instance of e2 studio IDE.

&

In the workspace launcher, either create or browse to the workspace location of your choice and
select it.

In e2 studio, navigate to File > Import.
In the Import dialog box select General > Existing Projects into Workspace.

Select archive file ek_ra8d2_graphic_mipi.zip.

® N o O

Make sure the option Copy projects into workspace is selected. Click Finish.

R11AN1068EU0100 Rev.1.00
Nov.19.25

Re Page 40 of 57
RENESAS

Renesas RA Family Getting Started with the Graphics Application

9. Right-click the solution project “EK_RA8D2_Graphic_Dual_core” and select Build Project. This
process may take some time as it sequentially builds both subprojects:
“EK_RA8D2_Graphic_Dual_core_cpu0” and “EK_RA8D2_Graphic_Dual_core_cpu1”.

4.3 Downloading and Executing on the EK-RA8D2 Kit

To connect and run the code, follow these steps:
1. Connect your PC to the DEBUG USB port of the board using a USB cable.
2. Go to Run > Debug Configurations.

3. Expand Launch Group. Click EK_RA8D2_Graphic_Dual_core_cpu1 Debug_Multicore Launch
Group > Debug.

Click Switch to the Debug perspective when prompted by the e? studio.
Click Resume > Resume.

The Weather Panel will show as in Figure 50. Interact with the MIPI LCD to observe the full
functionality of the thermostat application.

THERMOSTAT

SUN
84/73
MON
7/67
TUE

1 =

74765

70 °F e
Ve
&

WED

Rain 65 °F 2

99 % Humidity RS
68/60

S
76170

FRI

-

83/72

SAT

»

WED 22 Oct2025 09:30:28 AM

Figure 50. The Weather Panel screen is displayed after startup

5. Graphics Implementation Considerations and Trade-offs

In all embedded graphics applications, realizing a best-case design is about finding a balance between
various factors like resolution, color depth, framerate, bus width, and memory options to find the optimal
performance sweet spot to suit your application needs.

To find the balance between the aforementioned graphic resources, it’s integral that the application designer
thoroughly understands the topology of the target MCU. They should have a deep knowledge of how the
graphics framework functions on a high and low level, what internal and external memory resources are

R11AN1068EU0100 Rev.1.00 Page 41 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

available, and how the bus architecture of the MCU may affect performance. Additionally, they should come
prepared with a list of requirements and constraints for their system and relative priorities.

This section will examine various resource tradeoffs based on the hardware available on the RA8D2. Topics
cover comparing MIPI DSI vs RGB interfaces, reviewing the memory options on the RA8D2, and
understanding tradeoff relationships in the context of the RA8D2. The section concludes with a review of the
design considerations when choosing the best-case design for the thermostat application.

This is not meant to serve as a replacement for the deep analysis and decision-making required when
creating your own graphics application. It is meant to provide initial pointers before beginning to create a
graphics application on the RA8D2.

5.1 MIPI DSI vs Parallel RGB

On RA8D2 MCUs, users have the option to interface via parallel RGB or MIPI DSI to drive external displays.
The thermostat application demonstrates how to configure and operate the MIPI PHY and MIPI DSI modules
to send pixel data via MIPI to the external LCD. While parallel RGB communication is supported, the
connection details are outside the scope of the application note but can be found in the RA8D2 Hardware
User’'s Manual. This section, instead, will focus on the high-level differences and tradeoffs between the two
graphics interfaces on RA8D2.

Take a look at the block diagram of the graphics subsystem on the RA8D2 in Figure 51 below. The graphics
LCD controller (GLCDC) outputs the framebuffer pixel data via parallel RGB, denoted as LCD_DATAQ00-23.
The parallel RGB data is routed to output pins on the MCU, and it is also routed as input to the MIPI DSI
module. The MIPI subsystem converts the pixel data from parallel RGB to send it out of the MCU following
the MIPI specification. It's important to be aware that the GLCDC is a strong candidate for a bottleneck since
the graphics subsystem first routes through the GLCDC, whether it is output as MIPI or parallel RGB.

Graphic domain
MIPI Subsystem
Regulator
MIPI PHY
(Controller) R
K—1 DRW D-PHY
D-PHY MIPI_CL_P 5
CLK L
MIPI_CL N
3
® MIPI_DLO_P
L= 2 =,
S LCD_TCONO~3 g S : PPI s E;i;'; %
'g MIPI DSI MIPI_DLO_N
=g el . woove |
LCD_CLK i MIPI_DL1_N
H
DSI_TE
= |
P
. B
& 6|
1|
LCD_EXTCLK

Note 1. MIPI DSl is connected to only LCDC_TCONO~2

Figure 51. The GLCDC outputs parallel RGB data, routing to MCU output pins and to MIPI DSI input

MIPI DSI offers advantages in terms of higher data rates, simpler cable designs, lower power consumption,
and better integration into compact systems. However, MIPI DSI may have a higher implementation cost and

R11AN1068EU0100 Rev.1.00 Page 42 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

may not be suitable for all applications. Also, MIPI DSI requires high clock frequencies (high speed is 720
Mbps/lane), so countermeasures like reducing noise are needed. The parallel RGB interface is simpler and
more cost-effective to implement but may be limited in terms of bandwidth, cable length, and power
efficiency, especially for high-resolution displays. The choice between the two interfaces depends on the
specific requirements and constraints of the display system.

Let’'s break down some of the technical aspects and compare how MIPI DSI and parallel RGB excel in their
respective areas:

5.1.1 Data Rate and Bandwidth:

MIPI DSI typically offers higher data rates compared to parallel RGB interfaces. MIPI DSI can achieve multi-
gigabit per second data rates, enabling high-resolution and high-refresh-rate displays.

Parallel RGB interfaces have a limited bandwidth due to the clock rate available for data transmission. This
limits the resolution and refresh rate that can be supported, especially for high-resolution displays.

This analysis applies generally, but please note that on the RA8D2 devices, since everything output by RGB
or MIPI is first routed through the GLCDC, then the rate of the GLCDC output will be the determining factor
for the final data rate. Additionally, on the RA8D2, the maximum achievable throughputs of the MIPI DSI and
Parallel RGB interfaces are equivalent to one another.

5.1.2 Cable Complexity and Length:

MIPI DSI uses a serial interface, which means fewer wires are needed for communication between the MCU
and the display, resulting in simpler cable designs.

Parallel RGB interfaces require a larger number of wires (one for each color channel plus synchronization
signals), which can lead to cable clutter and increased complexity, especially when driving high-resolution
displays. Additionally, parallel RGB interfaces are limited in cable length due to signal degradation over
longer distances.

While the RGB interface uses more pins and cables, it is the industry standard for graphics, and there will be
more displays available that use a parallel RGB interface instead of a MIPI DSI interface.

5.1.3 Power Consumption:

MIPI DSI typically consumes less power than parallel RGB interfaces due to its serial nature and ability to
utilize lower-voltage signaling.

Parallel RGB interfaces may consume more power, especially at higher data rates, due to the need to drive
multiple data lines simultaneously.

5.1.4 System Integration:

MIPI DSI interfaces are commonly found in mobile devices and other compact systems where space is
limited. The compact nature of MIPI DSI allows for easier integration into such systems.

Parallel RGB interfaces are more commonly used in larger display systems such as desktop monitors and
TVs, where space constraints are less of an issue.

5.1.5 Cost:

MIPI DSI interfaces may have a higher initial implementation cost due to the need for specialized hardware
such as MIPI DSI controllers.

Parallel RGB interfaces are often simpler and more straightforward to implement, which can lead to lower
initial costs. However, this might not hold true for high-resolution displays where the complexity of the
interface increases.

5.2 Graphics Configuration Tradeoffs

Optimizing the overall configuration of an embedded graphics application involves carefully considering
graphic trade-offs to meet the specific requirements and constraints of the target application. This section will
generally discuss how resolution, color format, framerate, bus bandwidth, and size of internal SRAM all
interact when trying to pick the optimal design. Any restrictions due to the constraints of the RA8D2 will be
mentioned for each aspect.

5.2.1 Display Resolution

The resolution of a graphics application is based on the number of pixels on the target display. The
developer will need to evaluate the target display and select an MCU with graphics hardware that can
support the chosen display’s resolution. On the RA8D2, the resolution is constrained by the GLCDC since it

R11AN1068EU0100 Rev.1.00 Page 43 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

drives the pixel data output. The digital interface signal output supports video image sizes up to WXGA, or
1280x800 pixels. Default FSP configurations correspond to the external MIPI display included in the
evaluation kit for the RA8D2, which is a portrait screen with a resolution of 480x854 pixels.

Higher resolution screens provide clearer images and can show greater visual details, but they also require
more memory bandwidth and processing power, which can impact framerate and may necessitate a wider
bus. Lowering the resolution can increase framerate by reducing the number of pixels that need to be
processed and rendered per frame. Increasing the resolution increases the amount of data that needs to be
transferred between components on the MCU, and processing may exceed the bandwidth capabilities of a
narrower bus.

5.2.2 Color Format

The color format specifies the number of bits that represent the red, blue, and green information for each
pixel on a display. RA8D2’s GLCDC supports the following pixel formats:

o RGB-888 progressive format (-: 8 bits, R: 8 bits, G: 8 bits, B: 8 bits; 32 bits in total)

o ARGB8888 progressive format (A: 8 bits, R: 8 bits, G: 8 bits, B: 8 bits; 32 bits in total)

o RGB565 progressive format (A: None, R: 5 bits, G: 6 bits, B: 5 bits; 16 bits in total)

¢ ARGB1555 progressive format (CLUT: 1 bit, R: 5 bits, G: 5 bits, B: 5 bits; 16 bits in total)
o ARGB4444 progressive format (A: 4 bits, R: 4 bits, G: 4 bits, B: 4 bits; 16 bits in total)

e CLUTS8 progressive format (CLUT: 8 bits)

e CLUT4 progressive format (CLUT: 4 bits)

e CLUT1 progressive format (CLUT: 1 bit)

e CLUT memory: 512 words x 32 bits per graphics plane (ARGB8888)

b31 b24|b23 b16|b15 b8 | b7 b0
ARGBB8888 (32 bits/pix) A value: 8 bits R value: 8 bits G value: 8 bits B value: 8 bits
RGB888 (32 bits/pix) Invalid data: 8 bits R value: 8 bits G value: 8 bits B value: 8 bits
(n + 1)ipixels nipixel
. . Avalue: | Rvalue: | Gvalue: | Bvalue. | Avalue: | Rvalue. | Gvalue: | B value:
ARGB4444 (16 bits/pix) abits | abits | abits | abis | 4bits | abits | abis | abis
(n + 1)ipixels nipixel
- . o]l R value G yalue: B value: lcLurl R value: G value: B value:
ARBEISS5 (16 bitsphg 10t| 5 bits 5ibits soits |1t sbits % bits 5 bits
(n + 1)|pixels n|pixel
: i R value: G vdlue: B value: R value: G value: B value:
RG8563 (Tobilsiph:) 5 bits 6 Hits 5 bits 5 bits 6 bits 5 bits
(n + 3) pixels (n + 2) pixels (n + 1) pixels n pixel
CLUTS (8 bits/pix) CLUT value: 8 bits CLUT value: 8 bits CLUT value: 8 bits CLUT value: 8 bits
(n +7) pixels (n+ B) pixels -«-----mmmememmeeeeee (nit+ 1) pixels n pixel
g : CLUT value: |CLUT value: JCLUT value: JCLUT value: JCLUT value: JCLUT value: |CLUT value: JCLUT value:
CLUT4 (4 bits/pix) 4 bits 4 bits 4 bits 4 bits 4 bits 4 bits 4 bits 4 bits
n+31 n+30:- B e I «n+1n
CLUT1 (1 blt"plx) T B L s i i il o e ol S) B e 1bit |1 bit

Figure 52. Pixel data formats of the RA8D2 GLCDC

The external MIPI display on the EK-RA8D2 accepts pixel data input in the 24 bits per pixel (bpp) format
RGB888. The default FSP configuration for the output of the GLCDC, therefore, is the 24bit RGB888 format.
When 16 bpp or lower are selected for the framebuffer color depth, in the graphics framework, the pixel data
is extended to 24bpp data before output from the GLCDC.

The quality of the final image displayed on the LCD depends on the lowest-quality color format used along
the entire pixel data path. In addition to the display’s color format, it's important to be aware of the color

R11AN1068EU0100 Rev.1.00 Page 44 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

format of the image bitmaps and the format used by each step of the graphics framework to draw the
framebuffers.

Higher-end graphics typically use either RGB565 (65k colors) or RGB888 (16.7M colors). Choosing between
these formats involves a trade-off between color accuracy and resource consumption. Lower bpp formats,
like RGB565, reduce the memory bandwidth and the overall processing time but may result in color banding
and reduced image quality, especially in images with gradients.

In terms of memory, higher bpp formats, like RGB888, require more memory to store the pixel data, which
can strain the available internal SRAM. In terms of processing time, they may achieve slower framerates due
to the increasing amount of data that needs to be processed and transferred for each pixel. It's also critical to
analyze if the graphic system’s bus bandwidth and transfer rate can support the higher bpp color formats and
the desired framerate. Section 6.4 analyzes the choice made for the color format in the context of the
Thermostat Project.

5.2.3 Framerate

The framerate is measured in frames per second (FPS) and refers to the number of times the framebuffer is
refreshed on the display. Unlike the resolution and color format, the framerate is not a pre-set value
restricted by one component on the RA8D2. It depends on the processing capabilities of the graphics
framework as a whole, including the software components like emWin. It's commonly stated that human eyes
can detect flicks at around 24 fps or lower, so this is a good starting benchmark for the framerate of a
graphics application.

Framerate speed is interrelated to all other features mentioned: the resolution, bpp, bus width, and SRAM.
Higher framerates provide smoother animations and improve the user experience, especially in interactive
applications. However, achieving higher framerates requires a tradeoff with the other aspects. Lowering the
resolution can increase framerate by reducing the number of pixels that need to be processed and rendered
per frame. Choosing a lower pixel depth can increase framerate by reducing the amount of data that needs
to be processed and transferred for each pixel. Higher framerates often require fast access to graphics data,
which can benefit from a larger internal SRAM and from a larger bus width but will increase the overall
system cost.

Framerates also depend on the overall processing consumption of the CPU. When only LCD output is
occurring, then all hardware resources, including the CPU, can be utilized for drawing. However, when
several other system operations are utilizing the CPU, then the graphic hardware resources are strained and
aspects like bus widths and SRAM usage will start to have a larger effect on the framerate. On the RA8D2,
the D/AVE 2D hardware module helps to offload some of the drawing tasks from the CPU and increase
overall performance.

5.2.4 Bus Width

Bus width refers to the number of bits that can be transmitted simultaneously between components in the
graphics framework system. The bus width of the buses interfacing between the CPU, GLCDC, DRW, MIPI,
and memory components like the SDRAM, SRAM and OSPI all impact the system performance. Developers
should evaluate the bus architecture of the target MCU to understand how the pixel data moves through the
MCU and note any bottlenecks. The following image shows the bus map on the RA8D2:

R11AN1068EU0100 Rev.1.00 Page 45 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

DRWORI cLencosl
| ORwEl | GLCOCIBI

| |
[Com | [omc] [woa| [umca =
T T MIPECST Cl

cPuy }.CF‘-“““E' cRU
- CPUITCMBI

Master NPU for P E Waastar Wastor WP U
v
TORWSI GRAPHBI
C-Cathe &-Cache

CouIMAXIBl

CPUCPAHE!

crurcaren I

CPUISAHSI

DMAC/DTCOBI

DMACIDTCIBE
EDMACE!

ToRWEI

GRAFHEI

\
——
e

[it
T yria i

¥ n g v
Tan FBEIFIE! WRETEI S0l Ecol = o5PIE

v . v
g - - o - ()
[o] [[coterman] | e sram | [sorm X

SRAMD. SRAM1, SRAME, SRAMI

Note: “TZF”is Slave TrustZone Filter.

Figure 53. Bus map of the RA8D2 indicating commonly used modules for graphics applications

In the RA8D2 MCU group, there are devices with a 16-bit SDRAM bus and devices with a 32-bit SDRAM bus
like that of the EK-RA8D2. For more information, visit the Buses section of the RA8D2 Hardware User’s
Manual.

A wider bus allows for faster data transfer rates, which can improve overall system performance. However,
increasing the bus width may also require more power and board space, which can be limiting factors in
embedded systems with size or power constraints. A wider bus can also improve memory bandwidth and,
along with increased processing, can allow the system to handle higher resolutions and faster framerates
more effectively.

5.2.5 Internal SRAM

The size of internal SRAM (Static Random-Access Memory) directly affects the amount of memory available
for storing graphics data and processing intermediate results. On the RA8D2, the total SRAM is 2MB (256
KB of CM85 TCM RAM, 128 KB CM33 TCM RAM, 1664 KB of user SRAM)

Since there’s no hardware JPEG decoder on RA8D2 MCUs, if JPEG images are being used, it's highly
recommended that software decoding in the SRAM region is performed at the fastest speeds. In general, the
SRAM region is a great candidate for drawing the framebuffer(s) and performing other intensive processes
because it reduces the need to access slower external memory during rendering. Note the emWin library
supports Helium-accelerated instructions for software decoding of JPEGs.

If you use the SRAM to render the framebuffer(s), then the color format and resolution are directly tied to the
required size of the SRAM. As an example, the following shows the calculation comparison for the size of a
double framebuffer in SRAM between 32-bit RGB888 and 16-bit RGB565 with a 480x854 pixel resolution:

2 (framebuffers) X 480x854 (pixels) X 32 bpp / 8 = 3.28 MB
2 (framebuffers) X 480x854 (pixels) X 16 bpp / 8 = 1.64 MB

A larger SRAM allows for buffering of graphics data and intermediate results, reducing the need to access
slower external memory during rendering. This, in turn, helps to achieve faster framerate performance, but it
also adds to the cost and complexity of the system.

6. Introducing QE for Display Application Development

QE for Display [RX, RA] is an intuitive plug-in for the e? studio development environment, designed to
accelerate GUI-based development on Renesas RA microcontrollers. With its powerful graphical
configuration and visualization capabilities, the tool simplifies display setup, shortens development time, and
enhances the overall efficiency of embedded system design involving display devices.

QE for Display [RX, RA] V3.0.0 and later supports RA family. With the FSP Visualization function, the results
of timing adjustment and image quality adjustment for LCD panel are directly reflected in FSP. Also, a GUI
can be created using SEGGER's emWin software package.

R11AN1068EU0100 Rev.1.00 Page 46 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

QE for Display [RA] covers everything from the initial adjustment of the display to the creation of designs for
screens. It can also be interlinked with various GUI development solutions to provide total support for the
development of GUIs within short timeframes.

Note: The FSP visualization function is available by opening the “Stacks” tab in FSP Configuration and
selecting the added “r_glcdc”.

6.1 Installation and Uninstallation

6.1.1 Install from the "Renesas Software Installer" menu of e? studio
1. Start e2 studio.

2. Select the [Renesas Views] - [Renesas Software Installer] menu of e? studio to open the [Renesas
Software Installer] dialog box.

Select the [Renesas QE] and click the [Next>] button
Select the [QE for Display[RX,RA](v3.0.0)] check box, and click the [Finish] button.

Check that [Renesas QE for Display[RX,RA]] is selected in the [Install] dialog box, and click the
[Next>] button.

6. Check that [Renesas QE for Display[RX,RA]] is selected as the target of installation, and click the
[Next>] button.

7. After confirming the license agreements, if you agree to the license, select the [| accept the terms of
the license agreements] radio button, and click the [Finish] button.

8. If the dialog of the trust certificate is displayed, check that certificate, and click the [OK] button to
continue installation.

9. When prompted to restart e2 studio, restart it.

10. Start this product from the [Renesas Views] - [Renesas QE] menu of e2 studio. For details about how
to use this product, see the [Help] menu of e2 studio.

6.1.2 Install using QE (zip file) downloaded from the Renesas website
1. Start e2 studio.

From the [Help] menu, select [Install New Software...] to open the [Install] dialog box.
Click the [Add...] button to open the [Add Repository] dialog box.

Click the [Archive] button, select " RenesasQE_Display RXRA_V370.zip" in the opened dialog box,
and click the [Open] button.

w0 D

Note: The file "RenesasQE_Display_RXRA_V370.zip" can be obtained by extracting
"RenesasQE_Display_V370.zip" downloaded from the Renesas website.

5. Click the [OK] button in the [Add Repository] dialog box.

Expand the [Renesas QE] item shown in the [Install] dialog box, select the [Renesas QE for
Display[RX,RA]] check box, and then click the [Next>] button.

* If you check off the [Contact all update sites during install to find required software] checkbox, you
can shorten the installation time.

7. Check that [Renesas QE for Display[RX,RA]] is selected as the target of installation, and click the
[Next>] button.

8. After confirming the license agreements, if you agree to the license, select the [I accept the terms of
the license agreements] radio button, and click the [Finish] button.

9. If the dialog of the trust certificate is displayed, check that certificate, and click the [OK] button to
continue installation.

10. When prompted to restart e2 studio, restart it.

11. Start this product from the [Renesas Views] - [Renesas QE] menu of e? studio. For details about how
to use this product, see the [Help] menu of e2 studio.

6.1.3 Uninstalling QE Product
Use the following procedure to uninstall this product.

R11AN1068EU0100 Rev.1.00 Page 47 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

1. Start e? studio.

2. Select [Help -> About e2 studio] to open the [About e2 studio] dialog box.

3. Click the [Installation Details] button to open the [e2 studio Installation Details] dialog box.
4

Select [Renesas QE for Display[RX,RA]] displayed on the [Installed Software] tabbed page and click
the [Uninstall...] button to open the [Uninstall] dialog box.

i

Check the displayed information and click the [Finish] button.

When prompted to restart e2 studio, restart it.

6.2 Development Step with RA device.

Follow the procedure below to develop graphics application with QE tool support.

1. Create a new e2 studio project.

Start e? studio and create new project with RA device that supports graphic application.

2. Add the "Display User Interface Application™ stack to the e2 studio project.

Open Stacks tab in “configuration.xml”. Add New Stack for Graphic QE illustrated in Figure 54.

bl =
Generate Project Content
QE emWin Thread %] New Stack
_ Al
Add stacks to the selected thread by using the 'New Stack’ toolbar
) . Analog

L¥" here from the clipboard.
Audio
Bootloader
Connectivity OO0 0E
DSP o oo o A= T
Graphics wi e e e e 02 1 64 B ioa v

| Graphics(QE) |

4 camera User Interface Application
| $ Display User Interface Application
& Display and Camera User Interface Application

Input

Monitoring
Mator
Networking
Power
RTOS
Security
Sensor

Storage A
System e e (0 0 e) 0 05D) 0 O =

Timers

Transfer

v Search..

Figure 54. Example of Add Graphic (QE) stacks for Display User Interface Application
3. Open the LCD/Camera Workflow (QE) view.

Click Renesas Views > Renesas QE > Display/Camera Tuning RX, RA(QE) to follow configure graphic
application with QE tool.

ch Project | Renesas Views | Run Renesas Al Window Help
- | C/C++
Debug
Pin Configurator
Renesas Al
RTOS

Solution Toolkit

&2 LCD/Camera Workflow (QF)
&3 Display/Camera Tuning RX,RA (QF) I

¢ Measuring Current Consumption (QF)

R e R

Tracing
Renesas Software Installer

Figure 55. Open Display/Camera Tuning RX, RA (QE)

As shown in the Figure 56, QE for Display [RA] provides a clear workflow interface that visually represents
the development process. Each step in the workflow, from Preparation to LCD and Camera adjustment is

R11AN1068EU0100 Rev.1.00 Page 48 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

intuitively arranged to support efficient and error-free development. Follow step by step in Graphic Workflow
to configure whole Display application with QE.

&3 LCD/Camera Workflow (QE) X ®~8 =0
@ ¥ QE for Display/QE for Camera
1. Preparation 2.LCD and Camera Adjustment
1. Preparation v Selecting a project

Selecting a project

Selecting a LCD Select the project that has been created.

Selecting a camera I v]

Select the use case.
2.LCD and Camera Adjustment -

Installing the LCD controller
Installing the camera controller

LCD display adjustment

Select a project
Camera capture adjustment I B

Select an e studio project that uses LCD display or camera capture function.

Implementation i . m] .
P Use the ¢? studio to create a new project and select the Smart Configurator as the coding assistant tool.

After creating the project, use the Smart Configurator to set the clock source for the LCD or camera board.

I Select the use case

Please refer to the following table to select the use case to be used for configuring display or camera function.

Use case Supported Device
-
art Browser Console Memory Search

Figure 56. LCD/Camera Workflow (QE) View
4. Select a project.

From Selecting a Project, select the project created before with Display User Interface Application stack
added then select the use case for application.

i ™ QE for Display/QE for Camera

(@] 1. Preparation 2.LCD Adjustment

. A
1. Preparation ~ 5 Selecting a project

@ Selecting a project

@ Selecting a LCD

(\/) Selecting the GUI drawing tool I | I_ Select Projecl\h%m WorkSpace

Select the use case.

Select the project that has been created.

2. LCD Adjustment -

Only Use Display Function ~
Installing the LCD controller

Only Use Display Function

LCD display adjustment Only Use Camera Function s Select the use case from use case box

Use Display and Camera Function

I Select a project

Select an ¢? studio project that uses LCD display or camera capture function.

Use the e* studio to create a new project and select the Smart Configurator as
the coding assistant tool

After creating the project, use the Smart Configurator to set the clock source

for the LCD or camera board.

I Select the use case

Please refer to the following table to select the use case to be used for

Figure 57. Project and Use Case Selection
5. Selectan LCD.

Choose the appropriate LCD panel used in your application. For projects created using a Renesas
Evaluation Kit, the LCD settings are preconfigured to match the corresponding RA board. However, when
working with a custom board, you can manually add and configure a custom LCD in this section.

R11AN1068EU0100 Rev.1.00 Page 49 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

@ ™ QE for Display/QE for Camera

[©) 1. Preparation 2. LCD Adjustment
n A -
1. Preparation - -

. electing a LCD
@ Selecting a project If the LCD being used is not on the list. select "Custom” from the combo box and add LCD

I @ Selecting a LCD information.

lecting 2 connection type.

@ Selecting the GUI drawing tool
| Use LCD controller (GLCDC) v EE&%’I‘%‘;‘J;‘TSJ;{;’;";’#
2. LCD Adjustment hd
Maker/Type :
Installing the LCD controller | Focus LCDs y
IEED Iy e e Model Name/Size :
| E45RA-MW276-C v

I Select a LCD

Select a LCD you want to use.

Figure 58. Example of Selecting a LCD
6. Choose the GUI Drawing Tool.

The QE for Display [RA] application currently supports SEGGER’s emWin as the embedded graphics builder
for GUI design and development.

4) % QE for Display/QE for Camera

1. Preparation 2. LCD Adjusement
—
1. Preparation ~ T' Selecting the GUI drawing tool
() Selecting a project
lecting a LCD Selest a tool to generate a GUT to display on the LCD.
() Selecting the GUI drawing tool [uotlss -

2. LCD Adjustment -

Installing the LCD controller
LCD display adjustment l PR

Selestthetoolt 18, e QF for Dfsplay/QE for Camera

Option 1. Preparation 2.LCD Adjustment 3. GUI Creation an LCD
Use emWin . P
1. Preparation Ml v Selecting the GUI drawing teol
. ") Selecting a froject
i () Selecting 2 §cD generate a GUI to display on the LCD
[eiestin
() Selecting th§ GUI drawing tool Use smifin -
Not e .
2. LCD Adjustmgnt -
Installing thd LCD controller
LCD displagpdjustment I Select the GUT drawing tool
STt T Select the tool to create and display the GUI
3. G reation on L v —_
Gui Creation Step created after chose

Installing the GUI drawi

tool driver emWin for GUI creation

Use emWin Select

tion if you want 1o use SEGGER' s emWin

Setting of GUI drawing tool

Generate GUI

Use Aeropont
Implementation cul

Figure 59. Chose emWin as Embedded Graphics Builder.
7. Add an LCD controller.

Under the Display User Interface Application Stacks section in configuration.xml, add SEGGER emWin as
the emWin Driver.

This component automatically includes the r_glcdc LCD controller.

R11AN1068EU0100 Rev.1.00 Page 50 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

“ Display User Interface Application

ry

%7 Add a GLCDC Driver 4% SEGGER emWin

®

A
I

4% SEGGER emWin RA Port (rm_emwin_port)

@

I I
4 g_display0 Graphics LCD 4 D/AVE 2D Port Interface
(r_glcdc) (r_drw)

® ®

A A
[[

%7 Add MIPI DSI Output 4% DJAVE 2D (r_drw)
(Optional)

®

15 | Stacks | Components

Figure 60. Add r_glcdc LCD controller under SEGGER emWin Driver

Configure the LCD clock and pins for the r_glcdc module and enable the heap for the r_drw module. Then
generate and build the project. The figure below shows that the LCD controller has been successfully added.

[A]> ™ QE for Display/QE for Camera

@) 1. Preparation (@) 2.LCD Adjustment 3. GUI Creation on LCD
. A

1. Preparation v E Installing the LCD controller

(/) Selecting a project

@ Selecting a LCD Install GLCDC and specify PIN connection.

(/) Selecting the GUI drawing tool @ Added

2. LCD Adjustment h [How to add the LCD controller

() Installing the LCD controller

@ LCD display adjustment

3. GUI Creation on LCD v I Install the LCD controller

@ Installing the GUI drawing tool driver Add the LCD controller (GLCDC) to your project.

@ Setting of GUI drawing tool

)| RX devices
Generate GUI

Add the GLCDC FIT module with the Smart Configurator.
Pleasc follow the instructions provided in the guide that appears when you click the "How to add the LCD
controller" button.

Implementation

1 RA devices

Depending on the use case you use, add the following component on the "Stacks" tab of FSP Configuration.
Please follow the instructions provided in the guide that appears when you click the "How to add the LCD
controller" button.

Tise case GUT Drawins Tonl Comnanent

Figure 61. Chose emWin as Embedded Graphics Builder.
8. Adjust the LCD display settings.
Timing adjustment, layer settings and TCON/LCD settings are configured in this tab.

R11AN1068EU0100 Rev.1.00 Page 51 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

@ &= QE for Display/QE for Camera

© 1. Preparation @) 2.LCD Adjustment 3. GUI Creation on LCD
. A
1. Preparation e E LCD display adjustment
@ Selecting a project
@ Selecting a LCD Adjust on the board to display on the LCD.
@ Selecting the GUI drawing tool Adjustment for display on LCD: LCD Settings
2. LCD Adjustment - [TCON/LCD setting l

() Installing the LCD controller

() LCD display adjustment [Timing adjustment I

3. GUI Creation on LCD - [Graphic layer setting |

@ Installing the GUI drawing tool driver

@ Setting of GUI drawing tool Adjust image quality/color: Image quality

Setting

Generate GUI [Image quality adjustment I

Implementation

Select folder

Figure 62. Chose emWin as Embedded Graphics Builder.

Click each setting and navigate to r_glcdc under the SEGGER emWin stack in the Stacks tab to view the
LCD adjustment view in the FSP Visualization tab.

FSP Visualization X = 0
4 ‘ § Use presets
Start Adjustment
Camera Maker/Type: - Model Name/Size: -
LCD Maker/Type : Focus LCDs Model Name/Size : EASRA-MW276-C

Block Image | MIPI-PHY Setting TCON/LCD Setting | Timing Adjustment (LCD) | Graphic Layer Setting | Image Quality Adjustment

' Brightness l
— DSl
d L | Contrast |

Graphic Layer 'Gamma correction
' Dither process PHY
!TCON/LCD Setting
——
Camera

o - — |

Display

Video timing
generating

Figure 63. LCD Adjustment view

All configurations related to TCON, Timing, Clock, or Image Quality adjustments made in this adjustment
view are applied to the r_glcdc property settings.

One of the advantages of the QE tool is that it allows users to select the panel clock frequency and provides
automatic timing calculations to match the desired display refresh rate.

R11AN1068EU0100 Rev.1.00 Page 52 of 57
Nov.19.25 RENESAS

Renesas RA Family

Getting Started with the Graphics Application

FSP Visualization >

Block Image | MIPI-PHY Setting | TCON/LCD Setting | Timing Adjustment (LCD) fGraphic Layer Setting | Image Quality Adjustment

Timing Adjustment
LCD
MIPI-DSI

Panel Clock Setting =
LCD Clock Frequency [MHz]: 200000000 Panel Clock Frequency[MHz] f 25.000000 | [auto Adjustment [——" Auto Adiustment button

VPW |17 5

VBP|13

VTP

VFP|14 =

VIP|898 3

HPw(26 [5] HBp[26 Z] HOP[4s0 I HRP[27 [F] HWTP[sss Z]
I— Typical Value (Desired Value)
ue Typica Difference
Refresh Rate [Hz] 9.8 500 -02
Horizontal Frequency [kHz] 447 447 0.0

Actual Value
Depending on timing
setting

Figure 64. Timing Adjustment Setting

9. Install the GUI drawing tools.

The QE tool also allows users to download the graphic drawing tool directly, or alternatively, specify the
installation directory if the tool has already been installed.

[A]> " QE for Display/QE for Camera

The active editor element does not use this view

1. Preparation

2.LCD Adjustment 3. GUI Creation on LCD

1. Preparation
(/) Selecting a project
() SelectingaLCD

() Selecting the GUI drawing tool

- | A
v

Generate GUI to display on LCD

‘Generate GUT

H Installation of GUI drawing fools]

2. LCD Adjustment

() Installing the LCD controller

() LCD display adjustment

I 3. GUI Creation on LCD
(©) Installing the GUI drawing tool driver

() Setting of GUI drawing tool

Generate GUI

Tmplementation

8 AppWizard settings x
-

D»— Path of Graphic
Drawing tool

already installed

o AppWizard is not installed

AppWizard installation folder:

If AppWizard is not found:
~Click on the following button to install AppWizard if you have not installed it already.
-If you have already installed AppWizard, specify the path to where it has been installed,

Installing AppWizard

For download new Graphic drawing too

Figure 65. Install Graphic Drawing Tool

10. Launch the drawing tool to develop the GUI.
After successfully downloading Graphic Drawing tool. Open and start building the application GUI.

R11AN1068EU0100 Rev.1.00
Nov.19.25

Re Page 53 of 57
RENESAS

Renesas RA Family Getting Started with the Graphics Application

2 LCD Adwment 3. GUI Creation on LCD

~
o Po——
<

Installation of GUI drawing fools.

AS Abc eme

Image Tex

\

Figure 66. Start Graphic Drawing Tool

After Start the AppWizard Graphic Drawing Tool. The “aw” folder auto generated in application project with
all necessary setting for build.

11. Implement the application.

After building the GUI for the graphics application, the sample code provided in the “Implementation” section

can be called directly from the application thread, or you can invoke MainTask() directly from the application
thread.

R11AN1068EU0100 Rev.1.00 Page 54 of 57
Nov.19.25 RENESAS

Renesas RA Family Getting Started with the Graphics Application

7.

References

EK-RA8D2 Quick Start Guide, document No. R20QS0077

RA8D2 Group User’'s Manual: Hardware, document No. RO1UH1065

Developing with RA8 Dual Core MCU, document No. RO1AN7881

High Performance with RA8 MCU using Arm® Cortex®- M85 core with Helium™ No. RO1AN7127
MIPI Graphics Expansion Board (E45RA-MW276-C) Datasheet: E45RA-MW276-C - Focus LCDs
ILI9806E Datasheet: Microsoft Word - ILI9806E-IDT_095.doc

Capacitive Touch Panel GT911 Controller Datasheet: GOODIX GT911 Datasheet

R11AN1068EU0100 Rev.1.00 Page 55 of 57
Nov.19.25 RENESAS

https://focuslcds.com/wp-content/uploads/2025/09/E45RA-MW276-C_Spec.pdf
https://www.orientdisplay.com/wp-content/uploads/2019/02/ILI9806E.pdf
https://www.crystalfontz.com/controllers/GOODIX/GT911/

Renesas RA Family Getting Started with the Graphics Application

8. Website and Support

Visit the following URLSs to learn about key elements of the RA family, download components and related
documentation, and get support.

RA Product Information www.renesas.com/ra

RA Product Support Forum www.renesas.com/ra/forum

RA Flexible Software Package www.renesas.com/FSP

Renesas Support www.renesas.com/support

R11AN1068EU0100 Rev.1.00 Page 56 of 57

Nov.19.25 RENESAS

http://www.renesas.com/ra
https://www.renesas.com/ra/forum
http://www.renesas.com/FSP
https://www.renesas.com/support

Renesas RA Family

Getting Started with the Graphics Application

Revision History

Description
Rev. Date Page Summary
1.00 Nov.19.25 - Initial version
R11AN1068EU0100 Rev.1.00 Page 57 of 57
Nov.19.25 RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document, as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LS| are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external
reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states
of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power

reaches the level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an 1/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity
of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V.
(Max.) and Vi1 (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Vix (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in
terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a
system-evaluation test for the given product.

Notice

1.

10.

1.

12.

13.
14,

(Note1)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, reWfer to the latest product information (data sheets, user’'s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 RA8D2 Device Overview
	1.1.1 Key Graphics Features of the RA8D2 MCU
	1.1.2 RA8D2 Evaluation Kit
	1.1.3 EK-RA8D2 MIPI Graphics Expansion Board

	1.2 System Overview
	1.2.1 CPU0 Task Allocation and Responsibilities
	1.2.2 CPU1 Task Allocation and Responsibilities
	1.2.3 Graphics Application Layout

	2. GUI Development with AppWizard
	2.1 AppWizard and emWin Capabilities
	2.2 Creating a New AppWizard Project
	2.2.1 Including AppWizard Project Files in e2 studio Project
	2.2.2 AppWizard/emWin Initialization

	2.3 Custom Designs in AppWizard
	2.4 Setup AppWizard Interactions
	2.4.1 AppWizard Defined Interactions
	2.4.2 User-Defined Slot Code
	2.4.3 Responding to AppWizard Variables

	2.5 Add emWin Widget to AppWizard Project

	3. Thermostats Graphics Application
	3.1 Source Code Layout
	3.2 System Design and Operation Flow
	3.3 Dual-Core Architecture and Component Identification.
	3.4 Module, Pin and Clock Configuration
	3.4.1 IPC & FSP Solution Clock Configuration.
	Inter Processor Communication
	FSP Solution Clock Configuration

	3.4.2 CPU0 Module Configuration.
	FreeRTOS Heap 4
	SEGGER emWin RA Port (rm_emwin_port)
	Graphics LCD (r_glcdc)
	MIPI-DSI/MIPI-PHY (r_mipi_phy and r_mipi_dsi)
	Octal Serial Peripheral (r_ospi_b)
	General PWM Timer (r_gpt)

	3.4.3 CPU1 Module Configuration.
	GT911 External IRQ (r_icu)
	GT911 I2C Master (r_iic_master)
	Real-time Clock (r_rtc)

	3.5 Configuring the MIPI Graphic Expansion Board
	3.6 GT911 Touch Drivers
	3.7 Placing Graphic Resources in External Flash Memory
	3.8 System Performance Enhancement
	3.8.1 Utilizing Cortex®-M85 Core Data Cache
	3.8.2 Utilizing Helium on Cortex®-M85 for JPEG Decode
	3.8.3 Leveraging 32-bit SDRAM Bus for High-Speed Framebuffer Access

	4. Running Thermostats Application
	4.1 Hardware Setup
	4.1.1 Attach the MIPI LCD to the MCU
	4.1.2 EK-RA8D2 Configuration Switch (SW4) Settings

	4.2 Importing and Building the Project
	4.3 Downloading and Executing on the EK-RA8D2 Kit

	5. Graphics Implementation Considerations and Trade-offs
	5.1 MIPI DSI vs Parallel RGB
	5.1.1 Data Rate and Bandwidth:
	5.1.2 Cable Complexity and Length:
	5.1.3 Power Consumption:
	5.1.4 System Integration:
	5.1.5 Cost:

	5.2 Graphics Configuration Tradeoffs
	5.2.1 Display Resolution
	5.2.2 Color Format
	5.2.3 Framerate
	5.2.4 Bus Width
	5.2.5 Internal SRAM

	6. Introducing QE for Display Application Development
	6.1 Installation and Uninstallation
	6.1.1 Install from the "Renesas Software Installer" menu of e2 studio
	6.1.2 Install using QE (zip file) downloaded from the Renesas website
	6.1.3 Uninstalling QE Product

	6.2 Development Step with RA device.

	7. References
	8. Website and Support
	Revision History

