
 Application Note

R01AN7507EJ0100 Rev.1.00 Page 1 of 79
May. 31. 25

RA Family

Introduction
Today, as automatic electronic controls systems continue to expand into many diverse applications, the
requirement of reliability and safety are becoming an ever-increasing factor in system design.
For example, the introduction of the IEC60730 safety standard for household appliances requires
manufactures to design automatic electronic controls that ensure safe and reliable operation of their
products.
The IEC60730 standard covers all aspects of product design but Annex H is of key importance for design of
Microcontroller based control systems. This provides three software classifications for automatic electronic
controls:
1. Class A: Control functions, which are not intended to be relied upon for the safety of the equipment.

Examples: Room thermostats, humidity controls, lighting controls, timers, and switches.
2. Class B: Control functions, which are intended to prevent unsafe operation of the controlled equipment.

Examples: Thermal cut-offs and door locks for laundry equipment.
3. Class C: Control functions, which are intended to prevent special hazards

Examples: Automatic burner controls and thermal cut-outs for closed.
This Application Note provides guidelines of how to use flexible sample software routines to assist with
compliance with IEC60730 class C safety standards. These routines have been certified by VDE Test and
Certification Institute GmbH and a copy of the Test Certificate is available in the download package for this
Application Note.
The software routines provided are to be used after reset and also during the program execution. This
document and the accompanying sample code provide an example of how to do this.

R01AN7507EJ0100
Rev.1.00

May. 31. 25
IEC 60730/60335 Self Test Library for RA2 MCU
(CM23 Class-C)

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 2 of 79
May. 31. 25

Target
• Device:

- Renesas RA Family (Arm® Cortex®-M23) * See Table a for series and groups.

• Development environment:

- GNU-GCC ARM Embedded Toolchain12.2.1.arm-12-mpacbti-34 / Renesas e2 studio 2023-10
(23.10.0)

The term "RA MCU" used in this document refers to the following products.

Table a: RA MCU Self-Test Function List

CPU Core Arm® Cortex®-M23
Series RA2
Group RA2E1/RA2L1*

Te
st

 F
un

ct
io

n CPU ○

ROM ○

RAM ○

Clock ○

Independent Watchdog Timer (IWDT) ○

*: the difference between RA2E1 and RA2L1 is the size of ROM/RAM.

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 3 of 79
May. 31. 25

Self-test library overview
The self-test library consists of instruction decoding, CPU registers, internal memory, watchdog timer, and
monitoring functions for the system clock.

As described below, the anomaly monitoring process provides an application program interface (API) for
each module that monitors. Use each function according to the purpose.

The self-test library functions are divided into modules according to IEC60730Class-C. The anomaly
monitoring process can be performed standalone by selecting each test function in turn.

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 4 of 79
May. 31. 25

The RA2 series (with Arm® Cortex®-M23) self-test library implement functions of the following main self-
testing.

• Instruction decoding
Verify that the corresponding instruction of Arm Cortex-M23 works properly according to the
specifications.
See “IEC 60730-1:2013+A1:2015+A2:2020 Annex H – H2.18.5 equivalence class test”.

• CPU Register
Test the CPU registers listed in "Table 1.1 CPU Test target (Overview) ".
The internal data path is verified during the normal operation test of the above registers.
See “IEC 60730-1:2013+A1:2015+A2:2020 Annex H - Table H.11.12.7 1.CPU”.

• Invariable memory
Test the internal Flash memory of the MCU.
See “IEC 60730-1:2013+A1:2015+A2:2020 Annex H - H2.19.4.2 CRC – double word”.

• Variable memory
Test Internal SRAM
The RAM test uses the Word-oriented Memory Test and the Extended March C-algorithm.
See “IEC 60730-1:2013+A1:2015+A2:2020 Annex H - H.2.19.7 walkpat memory test”.

• System Clock

Test the operation and frequency of the system clock based on the reference clock source (this test
requires an independent internal or external reference clock).
See “IEC Reference - IEC 60730-1:2013+A1:2015+A2:2020 Annex H - H2.18.10.1 Frequency
monitoring”.

• CPU／Program Counter(PC)

To confirm that the program is executing the sequence within the specified time, it is confirmed using the
built-in watchdog timer that operates with a clock independent of the CPU.
See “IEC 60730-1:2013+A1:2015+A2:2020 Annex H – H2.18.10.3 independent time-slot and logical
monitoring”.

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 5 of 79
May. 31. 25

Table of Contents

Introduction ... 1

Table of Contents ... 5

1. Tests .. 6

1.1 CPU ... 6
1.2 ROM .. 38
1.3 RAM .. 43
1.4 Clock ... 53
1.5 Independent Watchdog Timer (IWDT).. 56

2. Example Usage .. 59
2.1 CPU ... 60
2.2 ROM .. 62
2.3 RAM .. 71
2.4 Clock ... 72
2.5 Independent Watchdog Timer (IWDT).. 74

Website and Support .. 78

Reference Documents .. 78

Revision History .. 79

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 6 of 79
May. 31. 25

1. Tests
1.1 CPU
The objective of the CPU test is to detect random permanent faults from CPU core.
Main functions of CPU Test are described below.
• CPU instruction test
• CPU register test

1.1.1 CPU instruction test and CPU register test
Table 1.16 describes the outline of each test of the CPU test performed by this self-test library.
The related registers and instruction codes are tested by executing each test, and by checking the execution
results, CPU fault can be detected.

Test target (Overview) are CPU instructions and registers listed in Table 1.1.

Table 1.1 CPU Test target(Overview)

Test target Arm® Cortex®-M23(CM23)
Instruction

Profile
ARMv8-M
Baseline

Instruction set
Cortex-M23

Instruction Set

DSP N/A*

FSP N/A

Register General purpose registers R0 – R12 ✓

Stack Pointer SP(R13) ✓

Link Register LR(R14) ✓

Program Counter PC(R15) ✓

Single-precision Floating-point Registers S0 - S31 N/A

Floating-point Status Control Register FPSCR N/A

Application Program Status Register APSR ✓
* N/A: not available.

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 7 of 79
May. 31. 25

The list of the Armv8-M registers and their test support status is listed in the below "Table 1.2 - Table 1.3".

See the "Arm®v8-M Architecture Reference Manual" (Reference Document [2]) for detailed information on
each register.

[Notation]

✓ : To be tested

(blank) : Not to be tested

N/A : Not applicable

Table 1.2 Armv8-M Registers Tested/Not Tested by CPU Test (1 of 2)

No. Component Register Description Tested by
CPU test

1 Special and
general-purpose
registers

APSR Application Program Status Register ✓
BASEPRI Base Priority Mask Register N/A
CONTROL Control Register
EPSR Execution Program Status Register
FAULTMASK Fault Mask Register N/A
FPSCR Floating-point Status and Control

Register
N/A

IPSR Interrupt Program Status Register
LO_BRANCH_INFO Loop and branch tracking information N/A
LR(R14) Link Register ✓
MSPLIM Main Stack Pointer Limit Register
PC(R15) Program Counter ✓
PRIMASK Exception Mask Register
PSPLIM Process Stack Pointer Limit Register
Rn (R0 - R12) General-Purpose Register n ✓
SP (R13) Current Stack Pointer Register ✓
SP Stack Pointer (Non-secure)

S0 – S31
Single-precision Floating-point
Registers

✓

VPR
Vector Predication Status and
Control Register

N/A

XPSR Combined Program Status Registers

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 8 of 79
May. 31. 25

Table 1.3 Armv8-M Registers Tested/Not Tested by CPU Test (2 of 2)

No. Component Register
Tested by

CPU test

2 Payloads All registers
3 Instrumentation Macrocell All registers
4 Data Watchpoint and Trace All registers
5 Flash Patch and Breakpoint All registers
6 Performance Monitoring Unit All registers N/A

7 Reliability, Availability and Serviceability Extension Fault Status Register
(Registers starting at address 0xE0005000) All registers N/A

8 Implementation Control Block All registers
9 SysTick Timer All registers

10 Nested Vectored Interrupt Controller All registers
11 System Control Block All registers
12 Memory Protection Unit All registers
13 Security Attribution Unit All registers
14 Debug Control Block All registers
15 Software Interrupt Generation All registers

16 Reliability, Availability and Serviceability Extension Fault Status Register
(Registers starting at address 0xE000EF04) All registers

17 Floating-Point Extension All registers
18 Cache Maintenance Operations All registers
19 Debug Identification Block All registers
20 Implementation Control Block (NS alias) All registers
21 SysTick Timer (NS alias) All registers
22 Nested Vectored Interrupt Controller (NS alias) All registers
23 System Control Block (NS alias) All registers
24 Memory Protection Unit (NS alias) All registers
25 Debug Control Block (NS alias) All registers
26 Software Interrupt Generation (NS alias) All registers

27
Reliability, Availability and Serviceability Extension Fault Status Register
(NS Alias)

All registers

28 Floating-Point Extension (NS alias) All registers
29 Cache Maintenance Operations (NS alias) All registers
30 Debug Identification Block (NS alias) All registers
31 Trace Port Interface Unit All registers

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 9 of 79
May. 31. 25

The list of the Armv8-M instructions and their test support status is listed in the below "Table 1.4 - Table
1.13"1.
See the "Arm® Cortex®-M23 Devices Generic User Guide " (Reference Document [1]) for detailed
information on each instruction.

Note that the main purpose is not to test individual instructions, but to detect random permanent failure of the
CPU core.

[Notation]
✓ : To be tested
(blank) : Not to be tested
N/A : Not applicable
* : Not tested but fault is detected in conjunction with the other instruction (The mnemonic of target

instruction is tested by the other instruction encoding (see “Arm®v8-M Architecture Reference
Manual”) and instruction encoding of the target instruction is tested by the other instruction)

Please note the primary aim is not to test individual instructions but to detect random permanent failure of the
CPU core.

Table 1.4 Armv8-M Instructions Tested/Not Tested by CPU Test (1 of 10)

No. Instruction Tested by
CPU test

No. Instruction Tested by
CPU test

1 ADC (immediate) N/A 21 BFC N/A

2 ADC (register) ✓ 22 BFI N/A

3 ADD (SP plus immediate) ✓ 23 BIC (immediate) N/A

4 ADD (SP plus register) * 24 BIC (register) ✓

5 ADD (immediate) * 25 BKPT

6 ADD (immediate, to PC) * 26 BL ✓

7 ADD (register) ✓ 27 BLX, BLXNS ✓

8 ADR ✓ 28 BTI N/A

9 AND (immediate) N/A 29 BX, BXNS ✓

10 AND (register) ✓ 30 BXAUT N/A

11 ASR (immediate) N/A 31 CBNZ, CBZ ✓

12 ASR (register) N/A 32 CDP, CDP2 N/A

13 ASRL (immediate) N/A 33 CINC N/A

14 ASRL (register) N/A 34 CINV N/A

15 ASRS (immediate) * 35 CLREX ✓

16 ASRS (register) ✓ 36 CLRM N/A

17 AUT N/A 37 CLZ N/A

18 AUTG N/A 38 CMN (immediate) N/A

19 B ✓ 39 CMN (register) ✓

20 BF, BFX, BFL, BFLX, BFCSEL N/A 40 CMP (immediate) *

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 10 of 79
May. 31. 25

Table 1.5 Armv8-M Instructions Tested/Not Tested by CPU Test (2 of 10)

No. Instruction Tested by
CPU test

No. Instruction Tested by
CPU test

41 CMP (register) ✓ 71 LDAEXB ✓

42 CNEG N/A 72 LDAEXH ✓

43 CPS 73 LDAH ✓

44 CSDB N/A 74 LDC, LDC2 (immediate) N/A

45 CSEL N/A 75 LDC, LDC2 (literal) N/A

46 CSET N/A 76 LDM, LDMIA, LDMFD ✓

47 CSETM N/A 77 LDMDB, LDMEA N/A

48 CSINC N/A 78 LDR (immediate) ✓

49 CSINV N/A 79 LDR (literal) *

50 CSNEG N/A 80 LDR (register) ✓

51 CX1 N/A 81 LDRB (immediate) ✓

52 CX1D N/A 82 LDRB (literal) N/A

53 CX2 N/A 83 LDRB (register) *

54 CX2D N/A 84 LDRBT N/A

55 CX3 N/A 85 LDRD (immediate) N/A

56 CX3D N/A 86 LDRD (literal) N/A

57 DBG N/A 87 LDREX ✓

58 DMB 88 LDREXB ✓

59 DSB 89 LDREXH ✓

60 EOR (immediate) N/A 90 LDRH (immediate) ✓

61 EOR (register) ✓ 91 LDRH (literal) N/A

62 ESB N/A 92 LDRH (register) *

63 FLDMDBX, FLDMIAX N/A 93 LDRHT N/A

64 FSTMDBX, FSTMIAX N/A 94 LDRSB (immediate) N/A

65 ISB 95 LDRSB (literal) N/A

66 IT N/A 96 LDRSB (register) ✓

67 LCTP N/A 97 LDRSBT N/A

68 LDA ✓ 98 LDRSH (immediate) N/A

69 LDAB ✓ 99 LDRSH (literal) N/A

70 LDAEX ✓ 100 LDRSH (register) ✓

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 11 of 79
May. 31. 25

Table 1.6 Armv8-M Instructions Tested/Not Tested by CPU Test (3 of 10)

No. Instruction Tested by
CPU test

No. Instruction Tested by
CPU test

101 LDRSHT N/A 131 ORN (immediate) N/A

102 LDRT N/A 132 ORN (register) N/A

103 LE, LETP N/A 133 ORR (immediate) N/A

104 LSL (immediate) N/A 134 ORR (register) ✓

105 LSL (register) N/A 135 PAC N/A

106 LSLL (immediate) N/A 136 PACBTI N/A

107 LSLL (register) N/A 137 PACG N/A

108 LSLS (immediate) * 138 PKHBT, PKHTB N/A

109 LSLS (register) ✓ 139 PLD (literal) N/A

110 LSR (immediate) N/A 140 PLD, PLDW (immediate) N/A

111 LSR (register) N/A 141 PLD, PLDW (register) N/A

112 LSRL (immediate) N/A 142 PLI (immediate, literal) N/A

113 LSRS (immediate) * 143 PLI (register) N/A

114 LSRS (register) ✓ 144 POP (multiple registers) ✓

115 MCR, MCR2 N/A 145 POP (single register) N/A

116 MCRR, MCRR2 N/A 146 PSSBB N/A

117 MLA N/A 147 PUSH (multiple registers) ✓

118 MLS N/A 148 PUSH (single register) N/A

119 MOV (immediate) ✓ 149 QADD N/A

120 MOV (register) * 150 QADD16 N/A

121 MOV, MOVS (register-shifted

register)
* 151 QADD8 N/A

122 MOVT ✓ 152 QASX N/A

123 MRC, MRC2 N/A 153 QDADD N/A

124 MRRC, MRRC2 N/A 154 QDSUB N/A

125 MRS ✓ 155 QSAX N/A

126 MSR (register) ✓ 156 QSUB N/A

127 MUL ✓ 157 QSUB16 N/A

128 MVN (immediate) N/A 158 QSUB8 N/A

129 MVN (register) ✓ 159 RBIT N/A

130 NOP 160 REV ✓

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 12 of 79
May. 31. 25

Table 1.7 Armv8-M Instructions Tested/Not Tested by CPU Test (4 of 10)

No. Instruction Tested by
CPU test

No. Instruction Tested by
CPU test

161 REV16 ✓ 191 SMLALD, SMLALDX N/A

162 REVSH ✓ 192 SMLAWB, SMLAWT N/A

163 ROR (immediate) N/A 193 SMLSD, SMLSDX N/A

164 ROR (register) N/A 194 SMLSLD, SMLSLDX N/A

165 RORS (immediate) N/A 195 SMMLA, SMMLAR N/A

166 RORS (register) ✓ 196 SMMLS, SMMLSR N/A

167 RRX N/A 197 SMMUL, SMMULR N/A

168 RRXS N/A 198 SMUAD, SMUADX N/A

169 RSB (immediate) ✓ 199 SMULBB, SMULBT, SMULTB,

SMULTT
N/A

170 RSB (register) N/A 200 SMULL N/A

171 SADD16 N/A 201 SMULWB, SMULWT N/A

172 SADD8 N/A 202 SMUSD, SMUSDX N/A

173 SASX N/A 203 SQRSHR (register) N/A

174 SBC (immediate) N/A 204 SQRSHRL (register) N/A

175 SBC (register) ✓ 205 SQSHL (immediate) N/A

176 SBFX N/A 206 SQSHLL (immediate) N/A

177 SDIV ✓ 207 SRSHR (immediate) N/A

178 SEL N/A 208 SRSHRL (immediate) N/A

179 SEV 209 SSAT N/A

180 SG 210 SSAT16 N/A

181 SHADD16 N/A 211 SSAX N/A

182 SHADD8 N/A 212 SSBB N/A

183 SHASX N/A 213 SSUB16 N/A

184 SHSAX N/A 214 SSUB8 N/A

185 SHSUB16 N/A 215 STC, STC2 N/A

186 SHSUB8 N/A 216 STL ✓

187 SMLABB, SMLABT, SMLATB,

SMLATT
N/A 217 STLB ✓

188 SMLAD, SMLADX N/A 218 STLEX ✓

189 SMLAL N/A 219 STLEXB ✓

190 SMLALBB, SMLALBT, SMLALTB,

SMLALTT
N/A 220 STLEXH ✓

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 13 of 79
May. 31. 25

Table 1.8 Armv8-M Instructions Tested/Not Tested by CPU Test (5 of 10)

No. Instruction Tested by
CPU test

No. Instruction Tested by
CPU test

221 STLH ✓ 251 TEQ (register) N/A

222 STM, STMIA, STMEA ✓ 252 TST (immediate) N/A

223 STMDB, STMFD N/A 253 TST (register) ✓

224 STR (immediate) ✓ 254 TT, TTT, TTA, TTAT

225 STR (register) * 255 UADD16 N/A

226 STRB (immediate) ✓ 256 UADD8 N/A

227 STRB (register) ✓ 257 UASX N/A

228 STRBT N/A 258 UBFX N/A

229 STRD (immediate) N/A 259 UDF

230 STREX ✓ 260 UDIV ✓

231 STREXB ✓ 261 UHADD16 N/A

232 STREXH ✓ 262 UHADD8 N/A

233 STRH (immediate) ✓ 263 UHASX N/A

234 STRH (register) ✓ 264 UHSAX N/A

235 STRHT N/A 265 UHSUB16 N/A

236 STRT N/A 266 UHSUB8 N/A

237 SUB (SP minus immediate) ✓ 267 UMAAL N/A

238 SUB (SP minus register) N/A 268 UMLAL N/A

239 SUB (immediate) ✓ 269 UMULL N/A

240 SUB (immediate, from PC) N/A 270 UQADD16 N/A

241 SUB (register) * 271 UQADD8 N/A

242 SVC 272 UQASX N/A

243 SXTAB N/A 273 UQRSHL (register) N/A

244 SXTAB16 N/A 274 UQRSHLL (register) N/A

245 SXTAH N/A 275 UQSAX N/A

246 SXTB ✓ 276 UQSHL (immediate) N/A

247 SXTB16 N/A 277 UQSHLL (immediate) N/A

248 SXTH ✓ 278 UQSUB16 N/A

249 TBB, TBH N/A 279 UQSUB8 N/A

250 TEQ (immediate) N/A 280 URSHR (immediate) N/A

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 14 of 79
May. 31. 25

Table 1.9 Armv8-M Instructions Tested/Not Tested by CPU Test (6 of 10)

No. Instruction Tested by
CPU test

No. Instruction Tested by
CPU test

281 URSHRL (immediate) N/A 301 VADC N/A

282 USAD8 N/A 302 VADD (floating-point) N/A

283 USADA8 N/A 303 VADD (vector) N/A

284 USAT N/A 304 VADD N/A

285 USAT16 N/A 305 VADDLV N/A

286 USAX N/A 306 VADDV N/A

287 USUB16 N/A 307 VAND (immediate) N/A

288 USUB8 N/A 308 VAND N/A

289 UXTAB N/A 309 VBIC (immediate) N/A

290 UXTAB16 N/A 310 VBIC (register) N/A

291 UXTAH N/A 311 URSHRL (immediate) N/A

292 UXTB ✓ 312 USAD8 N/A

293 UXTB16 N/A 313 USADA8 N/A

294 UXTH ✓ 314 USAT N/A

295 VABAV N/A 315 USAT16 N/A

296 VABD (floating-point) N/A 316 USAX N/A

297 VABD N/A 317 USUB16 N/A

298 VABS (floating-point) N/A 318 USUB8 N/A

299 VABS (vector) N/A 319 UXTAB N/A

300 VABS N/A 320 UXTAB16 N/A

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 15 of 79
May. 31. 25

Table 1.10 Armv8-M Instructions Tested/Not Tested by CPU Test (7 of 10)

No. Instruction Tested by
CPU test

No. Instruction Tested by
CPU test

321 UXTAH N/A 346 VDUP N/A

322 UXTB ✓ 347 VEOR N/A

323 UXTB16 N/A 348 VFMA (vector by scalar plus
vector, floating-point)

N/A

324 UXTH ✓ 349 VFMA N/A

325 VABAV N/A 350 VFMA, VFMS (floating-point) N/A

326 VABD (floating-point) N/A 351 VFMAS (vector by vector plus

scalar, floating-point)
N/A

327 VABD N/A 352 VFMS N/A

328 VABS (floating-point) N/A 353 VFNMA N/A

329 VABS (vector) N/A 354 VFNMS N/A

330 VABS N/A 355 VHADD N/A

331 VADC N/A 356 VHCADD N/A

332 VADD (floating-point) N/A 357 VHSUB N/A

333 VADD (vector) N/A 358 VIDUP, VIWDUP N/A

334 VADD N/A 359 VINS N/A

335 VADDLV N/A 360 VLD2 N/A

336 VADDV N/A 361 VLD4 N/A

337 VAND (immediate) N/A 362 VLDM N/A

338 VAND N/A 363 VLDR (System Register) N/A

339 VBIC (immediate) N/A 364 VLDR N/A

340 VBIC (register) N/A 365 VLDRB, VLDRH, VLDRW N/A

341 VCX2 (vector) N/A 366 VLDRB, VLDRH, VLDRW, VLDRD
(vector)

N/A

342 VCX3 N/A 367 VLLDM N/A

343 VCX3 (vector) N/A 368 VLSTM N/A

344 VDDUP, VDWDUP N/A 369 VMAX, VMAXA N/A

345 VDIV N/A 370 VMAXNM N/A

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 16 of 79
May. 31. 25

Table 1.11 Armv8-M Instructions Tested/Not Tested by CPU Test (8 of 10)

No. Instruction Tested by
CPU test

No. Instruction Tested by
CPU test

371 VMAXNM, VMAXNMA (floating-
point)

N/A 386 VMLS N/A

372 VMAXNMV, VMAXNMAV (floating-
point)

N/A 387 VMLSDAV N/A

373 VMAXV, VMAXAV N/A 388 VMLSLDAV N/A

374 VMIN, VMINA N/A 389 VMOV (between general-purpose

register and half-precision register)
N/A

375 VMINNM N/A 390
VMOV (between general-purpose

register and single-precision

register)

N/A

376 VMINNM, VMINNMA (floating-

point)
N/A 391

VMOV (between two general-

purpose registers and a

doubleword register)

N/A

377 VMINNMV, VMINNMAV (floating-
point)

N/A 392
VMOV (between two general-
purpose registers and two single-
precision registers)

N/A

378 VMINV, VMINAV N/A 393 VMOV (general-purpose register to
vector lane)

N/A

379 VMLA (vector by scalar plus
vector)

N/A 394 VMOV (half of doubleword register
to single general-purpose register)

N/A

380 VMLA N/A 395 VMOV (immediate) (vector) N/A

381 VMLADAV N/A 396 VMOV (immediate) N/A

382 VMLALDAV N/A 397 VMOV (register) (vector) N/A

383 VMLALV N/A 398 VMOV (register) N/A

384 VMLAS (vector by vector plus
scalar)

N/A 399
VMOV (single general-purpose
register to half of doubleword
register)

N/A

385 VMLAV N/A 400 VMOV (two 32-bit vector lanes to
two general-purpose registers)

N/A

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 17 of 79
May. 31. 25

Table 1.12 Armv8-M Instructions Tested/Not Tested by CPU Test (9 of 10)

No. Instruction Tested by
CPU test

No. Instruction Tested by
CPU test

401 VMOV (two general-purpose

registers to two 32-bit vector lanes)
N/A 431 VPT N/A

402 VMOV (vector lane to general-

purpose register)
N/A 432 VPUSH N/A

403 VMOVL N/A 433 VQABS N/A

404 VMOVN N/A 434 VQADD N/A

405 VMOVX N/A 435 VQDMLADH, VQRDMLADH N/A

406 VMRS N/A 436 VQDMLAH, VQRDMLAH

(vector by scalar plus vector)
N/A

407 VMSR N/A 437 VQDMLASH, VQRDMLASH

(vector by vector plus scalar)
N/A

408 VMUL (floating-point) N/A 438 VQDMLSDH, VQRDMLSDH N/A

409 VMUL (vector) N/A 439 VQDMULH, VQRDMULH N/A

410 VMUL N/A 440 VQDMULL N/A

411 VMULH, VRMULH N/A 441 VQMOVN N/A

412 VMULL (integer) N/A 442 VQMOVUN N/A

413 VMULL (polynomial) N/A 443 VQNEG N/A

414 VMVN (immediate) N/A 444 VQRSHL N/A

415 VMVN (register) N/A 445 VQRSHRN N/A

416 VNEG (floating-point) N/A 446 VQRSHRUN N/A

417 VNEG (vector) N/A 447 VQSHL, VQSHLU N/A

418 VNEG N/A 448 VQSHRN N/A

419 VNMLA N/A 449 VQSHRUN N/A

420 VNMLS N/A 450 VQSUB N/A

421 VNMUL N/A 451 VREV16 N/A

422 VORN (immediate) N/A 452 VREV32 N/A

423 VORN N/A 453 VREV64 N/A

424 VORR (immediate) N/A 454 VRHADD N/A

425 VORR N/A 455 VRINT (floating-point) N/A

426 VPNOT N/A 456 VRINTA N/A

427 VPOP N/A 457 VRINTM N/A

428 VPSEL N/A 458 VRINTN N/A

429 VPST N/A 459 VRINTP N/A

430 VPT (floating-point) N/A 460 VRINTR N/A

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 18 of 79
May. 31. 25

Table 1.13 Armv8-M Instructions Tested/Not Tested by CPU Test (10 of 10)

No. Instruction Tested by
CPU test

No. Instruction Tested by
CPU test

461 VRINTX N/A 478 VSQRT N/A

462 VRINTZ N/A 479 VSRI N/A

463 VRMLALDAVH N/A 480 VST2 N/A

464 VRMLALVH N/A 481 VST4 N/A

465 VRMLSLDAVH N/A 482 VSTM N/A

466 VRSHL N/A 483 VSTR (System Register) N/A

467 VRSHR N/A 484 VSTR N/A

468 VRSHRN N/A 485 VSTRB, VSTRH, VSTRW N/A

469 VSBC N/A 486 VSTRB, VSTRH, VSTRW, VSTRD

(vector)
N/A

470 VSCCLRM N/A 487 VSUB (floating-point) N/A

471 VSEL N/A 488 VSUB (vector) N/A

472 VSHL N/A 489 VSUB N/A

473 VSHLC N/A 490 WFE

474 VSHLL N/A 491 WFI

475 VSHR N/A 492 WLS, DLS, WLSTP, DLSTP N/A

476 VSHRN N/A 493 YIELD

477 VSLI N/A

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 19 of 79
May. 31. 25

1.1.2 Test Error
The CPU test will jump to this function if an error is detected.

This error handling function is the structure of closed loop and should not return.

All the test functions follow the rules of register preservation following a C function call. Therefore, the user
can call these functions like any normal C function without any additional responsibilities for saving register
values beforehand.

extern void CPU_Test_ErrorHandler(void);

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 20 of 79
May. 31. 25

1.1.3 CPU Software API
The software API source files related to CPU testing are shown in Table 1.14.
When the CPU Test API is executed, the related CPU registers and instructions codes are tested.

A CPU fault can be detected by checking the execution result output to the argument.

It needs to set the configuration of CPU tests before compiling your code. The CPU test configuration
directive and each CPU test is shown in Table 1.15 and Table 1.16.

For details, refer to “2.1.3 Preparation for CPU testing”.

Table 1.14 Source files of CPU Software API

File Name Remarks
r_cpu_diag_config.h Definition of CPU Test Directive.

cpu_test.c CPU test implementation part

r_cpu_diag_0.asm
r_cpu_diag_1.asm
r_cpu_diag_2.asm
r_cpu_diag_3.asm
r_cpu_diag_4.asm
r_cpu_diag_5.asm
r_cpu_diag_6.asm
r_cpu_diag_7_1.asm
r_cpu_diag_7_2.asm
r_cpu_diag_7_3.asm
r_cpu_diag_8.asm

Definition of CPU Test core function.

Note:
Please note that some tests consist of
multiple files like r_cpu_diag_7_1.asm,
r_cpu_diag_7_2.asm.

r_cpu_diag_0.h
r_cpu_diag_1.h
r_cpu_diag_2.h
r_cpu_diag_3.h
r_cpu_diag_4.h
r_cpu_diag_5.h
r_cpu_diag_6.h
r_cpu_diag_7_1.h
r_cpu_diag_7_2.h
r_cpu_diag_7_3.h
r_cpu_diag_8.h

Declaration of CPU Test core function.

r_cpu_diag.c Definition of CPU Test API function.

r_cpu_diag.h Declaration of CPU Test API function.

r_cpu_diag.inc Definition of Assembler macro.

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 21 of 79
May. 31. 25

Table 1.15 Directives for Software Configuration for CPU Test

File Name Description
BUILD_R_CPU_DIAG_0 When set to “1”, the CPU test function:

R_CPU_Diag0 is constructed.
BUILD_R_CPU_DIAG_1 When set to “1”, the CPU test function:

R_CPU_Diag1 is constructed.
BUILD_R_CPU_DIAG_2 When set to “1”, the CPU test function:

R_CPU_Diag2 is constructed.
BUILD_R_CPU_DIAG_3 When set to “1”, the CPU test function:

R_CPU_Diag3 is constructed.
BUILD_R_CPU_DIAG_4_1 *1 When set to “1”, the CPU test function:

R_CPU_Diag4_1 is constructed.
BUILD_R_CPU_DIAG_4_2 *1 When set to “1”, the CPU test function:

R_CPU_Diag4_2 is constructed.
BUILD_R_CPU_DIAG_5 When set to “1”, the CPU test function:

R_CPU_Diag5 is constructed.
BUILD_R_CPU_DIAG_6 When set to “1”, the CPU test function:

R_CPU_Diag6 is constructed.
BUILD_R_CPU_DIAG_7_1 *1 When set to “1”, the CPU test function:

R_CPU_Diag7_1 is constructed.
BUILD_R_CPU_DIAG_7_2 *1 When set to “1”, the CPU test function:

R_CPU_Diag7_2 is constructed.
BUILD_R_CPU_DIAG_7_3 *1 When set to “1”, the CPU test function:

R_CPU_Diag7_3 is constructed.
BUILD_R_CPU_DIAG_8 When set to “1”, the CPU test function:

R_CPU_Diag8 is constructed.
Notes: 1. See Table 1.16.

Please note that some tests have multiple directives like BUILD_R_CPU_DIAG_7_1,
BUILD_R_CPU_DIAG_7_2.

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 22 of 79
May. 31. 25

Table 1.16 CPU Test Target

Test
No

index *1 Function name *2 Objective of the Test

0 0 R_CPU_Diag0 Four basic arithmetic operations (add, sub, mul and div)

1 1 R_CPU_Diag1 Sign/Zero extension operations
2 2 R_CPU_Diag2 Branch, logical, comparison and conditional operations

3 3 R_CPU_Diag3 Bit manipulation and data transfer operations

4 4 R_CPU_Diag4 Memory access (Load/Store) without exclusive operations

5 5 R_CPU_Diag5 Memory access (Load/Store) with exclusive and
privileged operations

6 6 R_CPU_Diag6 System related operations

7 7
8
9

R_CPU_Diag7_1
R_CPU_Diag7_2
R_CPU_Diag7_3

Registers R0 - R12, MSP(R13), LR(R14), and APSR
diagnostic operation

8 10 R_CPU_Diag8 CPU register test using WALKPAT algorithm

Notes: 1. Test is required for all indexes when the test spans over multiple indexes.

2. See Table 1.15 for software configuration directives for code generation of each function.

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 23 of 79
May. 31. 25

 cpu_test.c File

Syntax

void CPU_Test_ClassC(void)

Description

Perform the CPU tests in the following order:

1. Save the current stack pointer monitor access control register.

SaveSPmonitor = get_spmonitor_status();
2. Disable the CPU stack pointer monitor function.

set_spmonitor_status(0);
3. Pass parameters and call function R_CPU_Diag.

4. Check the value of the argument "result".

5. If the result is OK, return to step 3. above. (perform the next test)
When all the CPU tests are completed, go to step 6 below.
If an error is detected, the external function CPU_Test_ErrorHandler will be called.
Check Individual Tests for more information.

6. Restore the stack pointer monitor access control register saved in step 1.

7. CPU_Test_PC

8. Function is finished when all tests have been performed.

If all tests were not performed, the external function CPU_Test_ErrorHandler is called.

Input Parameters
NONE N/A
Output Parameters

const uint32_t
forceFail

Forced FAIL Option
The default value is fixed at "1" (N/A).
* If you want to test the forced FAIL, change the value to fixed at "0".

Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 24 of 79
May. 31. 25

Syntax

void CPU_Test_PC(void)

Description

This function tests the program counter (PC) register.
This checks that the PC is working reliably.
The function returns the inverted value of the specified parameter so that it can verify that the function was
executed actually. This return value is checked for correctness.
If an error is detected, the external function CPU_Test_ErrorHandler is called.

Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 25 of 79
May. 31. 25

 r_cpu_diag.c File

Syntax

void R_CPU_Diag(uint32_t index, const uint32_t forceFail, int32_t *result)

Description

Use the index argument to execute the test function that corresponds to the CPU test number.

See Table 1.16 for the argument index, test number, and test function.

1. Set "resultTemp" to the initial value.

When the test function is performed, the test result is saved in "resultTemp".

2. Check if the value of the argument "Index" is valid.
If it is invalid, it exits the process after setting "FAIL(=0)" in the test result.

3. Perform the function of the corresponding CPU test according to the value of the argument “index”.

4. Set the test result to "* result" and exit the function.

Input Parameters

uint32_t index
CPU Test No (Refer to Table 1.16)
Returns FAIL when argument value is invalid.

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters
int32_t *result Test result (0: FAIL / 1: PASS)
Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 26 of 79
May. 31. 25

Syntax

static void norm_null(const uint32_t forceFail, int32_t *result)

Description
This function is a dummy function of the CPU test function excluded from compilation by the directive.
Set the test result to PASS.

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters
int32_t *result Test result (1: PASS)

Return Values

NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 27 of 79
May. 31. 25

 r_cpu_diag_0.asm File

Syntax

void R_CPU_Diag0(const uint32_t forceFail, int32_t *result)

Description
1. Addition instructions test

Execute each instruction of ADCS (register), ADDS (register), and check the match with the expected
value of local signature and global signature.

2. Subtraction instructions test

Execute each instruction of SBCS (register), SUBS (immediate), RSBS (immediate), and check the
match with the expected value of local signature and global signature.

3. Multiplication instructions test

Execute each instruction of MULS and check the match with the expected value of local signature
and global signature.

4. Division instructions test

Execute each instruction of SDIV, UDIV and check the match with the expected value of local
signature and global signature.

5. Addition and subtraction for stack pointer test

Execute each instruction of SUB (SP minus immediate), ADD (SP plus immediate), and check the
match with the expected value of local signature and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the
expected value, set FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters
int32_t *result Test result (0: FAIL / 1: PASS)

Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 28 of 79
May. 31. 25

 r_cpu_diag_1.asm File

Syntax

void R_CPU_Diag1(const uint32_t forceFail, int32_t *result)

Description
1. Sign extension

Execute each instruction of SXTB T1, SXTH T1 and check the match with the expected value of local
signature and global signature.

2. Zero extension

Execute each instruction of UXTB T1, UXTH T1 and check the match with the expected value of local
signature and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the
expected value, set FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result
Output Parameters
int32_t *result Test result (0: FAIL / 1: PASS)
Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 29 of 79
May. 31. 25

 r_cpu_diag_2.asm File

Syntax

void R_CPU_Diag2(const uint32_t forceFail, int32_t *result)

Description
1. Branch

Execute each instruction of ADR T1, BEQ T1, B T2, BL T1, BLX T1, BX T1, CBZ T1, and check the
match with the expected value of local signature and global signature.

2. Logical test

Execute each instruction of TST T1 and check the match with the expected value of local signature
and global signature.

3. Logical operation

Execute each instruction of ANDS T1, ORRS T1, EORS T1, MVNS T1 and check the match with the
expected value of local signature and global signature.

4. Comparison

Execute each instruction of CMN T1, CMP T1 and check the match with the expected value of local
signature and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the
expected value, set FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result
Output Parameters
int32_t *result Test result (0: FAIL / 1: PASS)
Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 30 of 79
May. 31. 25

 r_cpu_diag_3.asm File

Syntax

void R_CPU_Diag3(const uint32_t forceFail, int32_t *result)

Description
1. Bit manipulation

Execute each instruction of ASRS (register) T1, BICS (register) T1, LSLS (register) T1, LSRS
(register) T1, RORS (register) T1, and check the match with the expected value of local signature and
global signature.

2. Data manipulation

Execute each instruction of REV T1, REV16 T1, REVSH T1, and check the match with the expected
value of local signature and global signature.

3. Data transfer

Execute each instruction of MOVS (immediate) T1, MOVT T1, MRS T1, MSR (register) T1 and check
the match with the expected value of local signature and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the
expected value, set FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result
Output Parameters
int32_t *result Test result (0 : FAIL / 1: PASS)
Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 31 of 79
May. 31. 25

 r_cpu_diag_4.asm File

Syntax

void R_CPU_Diag4 (const uint32_t forceFail, int32_t *result)

Description
1. LDR and STR

Execute each instruction of
LDR (immediate) T2, STR (immediate) T2 ,
and check the match with the expected value of local signature and global signature.

2. LDRH and STRH

Execute each instruction of
LDRH (immediate) T1, STRH (immediate) T1,
LDRSH (register) T1, STRH (register) T1,
and check the match with the expected value of local signature and global signature.

3. LDRB and STRB

Execute each instruction of
LDRSB (register) T1, STRB (register) T1,
LDRB (immediate) T1, STRB (immediate) T1,
and check the match with the expected value of local signature and global signature.

4. LDM and STM

Execute each instruction of
LDM and STM,
LDM T3, STMDB T2,
and check the match with the expected value of local signature and global signature.

5. LDA and STL

Execute each instruction of
LDA T1, STL T1,
LDAH T1, STLH T1,
LDAB T1, STLB T1,
and check the match with the expected value of local signature and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the
expected value, set FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result
Output Parameters
int32_t *result Test result (0: FAIL / 1: PASS)
Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 32 of 79
May. 31. 25

 r_cpu_diag_5.asm File

Syntax

void R_CPU_Diag5(const uint32_t forceFail, int32_t *result)

Description
1. LDAEX and STLEX

Execute each instruction of
LDAEX T1, STLEX T1,
LDAEXH T1, STLEXH T1,
LDAEXB T1, STLEXB T1
and check the match with the expected value of local signature and global signature.

2. LDREX and STREX

Execute each instruction of
LDREX T1, STREX T1,
LDREXH T1, STREXH T1,
LDREXB T1, STREXB T1
and check the match with the expected value of local signature and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the
expected value, set FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result
Output Parameters
int32_t *result Test result (0: FAIL / 1: PASS)
Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 33 of 79
May. 31. 25

 r_cpu_diag_6.asm File

Syntax

void R_CPU_Diag6(const uint32_t forceFail, int32_t *result)

Description
1. PUSH and POP

After executing the PUSH instruction using R1, R2, R3, R4, R5, R6, execute the POP instruction and
check the match with the expected value in each register of R1 and R4, R2 and R5, and R3 and R6.

2. Other (miscellaneous) operations

Execute each instruction of CLREX T1 and check the match with the expected value of local
signature and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the
expected value, set FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result
Output Parameters
int32_t *result Test result (0: FAIL / 1: PASS)
Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 34 of 79
May. 31. 25

 r_cpu_diag_7_1.asm File

Syntax

void R_CPU_Diag7_1(const uint32_t forceFail, int32_t *result)

Description
1. Detecting “0” fixed fault for status and control registers

After writing "1" to the corresponding bit of the APSR register using R4 and R5, execute reading and
check the match between each register of R4 and R5 and the expected value. (Confirm that it is not
fixed to "0")

2. Detecting “1” fixed fault for status and control registers
After writing "0" to the corresponding bit of the APSR register using R4 and R5, execute reading and
confirm the match between each resist of R4 and R5 and the expected value. (Confirm that "1" is not
fixed)

3. Detecting “0” fixed fault for general purpose registers
After writing ALL "1" to R0 to R12 and LR (R14), execute reading and check that the registers of R0
to R12 and LR (R14) match the expected value. (Confirm that it is not fixed to "0")

4. Detecting “1” fixed fault for general purpose registers
After writing ALL "0" to R0 to R12 and LR (R14), execute reading and check that the registers of R0
to R12 and LR (R14) match the expected value. (Confirm that "1" is not fixed)

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the
expected value, set FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result
Output Parameters
int32_t *result Test result (0: FAIL / 1: PASS)
Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 35 of 79
May. 31. 25

 r_cpu_diag_7_2.asm File

Syntax

void R_CPU_Diag7_2(const uint32_t forceFail, int32_t *result)

Description
5. Detecting coupling fault for general purpose registers between any two bits

Perform the following tests for the R0-R12 and R14 registers.
－Nearest neighbor coupling(Test pattern : 0x55555555)
－Next nearest neighbor coupling(Test pattern : 0x33333333)
－4-fold neighbor coupling(Test pattern : 0x0f0f0f0f)
－8-fold neighbor coupling(Test pattern : 0x00ff00ff)
－16-fold neighbor coupling(Test pattern : 0x0000ffff)

The procedure is as following:
1. Set each of the above test patterns to R0, write to R1, and check if it matches R0.
2. If they match, change the register written in 1 above in the order of R2 to R14 and perform.
3. Set each of the above test patterns to R14, write to R0, and confirm that it matches R0.
4. If they match, perform the following test pattern.
5. When all is completed, move to the following test.

6. Detecting coupling fault for general purpose registers between any two registers

－Detecting R7, R8, R9, R10, R11, R12, LR(R14) coupling fault (Using A's pattern)
－Detecting R0, R1, R2, R3, R4, R5, R6 coupling fault (Using B's pattern)

The procedure is as follows.
1. Set test patterns for R0 to R6, write R0 to R7, R1 to R8, ..., R6 to R14,

and confirm each value of R0 and R7, R1 and R8, ..., R6 and R14 is matched.
2. Set test patterns for R7 to R14, write R8 to R0, R9 to R1, ..., R7 to R6,

and confirm each value of R8 and R0, R9 and R1, ..., R7 and R6 is matched.
3. Complete the test.

Note that R13 (SP) is excluded from this test.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the
expected value, set FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result
Output Parameters
int32_t *result Test result (0: FAIL / 1: PASS)
Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 36 of 79
May. 31. 25

 r_cpu_diag_7_3.asm File

Syntax

void R_CPU_Diag7_3(const uint32_t forceFail, int32_t *result)

Description
7. Detecting "0" fixed fault for MSP(R13)

After writing "0xfffffffc" to the SP (R13) register using R5, execute reading and confirm that R5 and
SP (R13) match the expected value. (Confirm that not fixed to "0")

8. Detecting "1" fixed fault for MSP(R13)
After writing "0x00000000" to the SP (R13) register using R5, execute reading and confirm that R5
and SP (R13) match the expected value. (Confirm that not fixed to "1")

9. Detecting coupling fault for MSP(R13) between any two bits
Perform the following tests for R13(SP)
－Nearest neighbor coupling(Test pattern : 0x55555554)
－Next nearest neighbor coupling(Test pattern : 0x33333330)
－4-fold neighbor coupling(Test pattern : 0x0f0f0f0c)
－8-fold neighbor coupling(Test pattern : 0x00ff00fc)
－16-fold neighbor coupling(Test pattern : 0x0000fffc)

The procedure is as follows.
1. Set each of the above test patterns to R5, write to R13 (SP), and confirm that it matches R5.
2. If they match, carry out the next test pattern.
3. When all is completed, move to the following test

10. Detecting coupling fault between MSP(R13) to other general purpose registers

－Detecting SP, R2 coupling fault
－Detecting SP, R3 coupling fault

The procedure is as follows.
1. Set test patterns for R6 and R7, write R6 to SP (R13) and R7 to R2, and check that the values of

R6 and SP (R13) and R7 and R2 match.
2. Set test patterns for R6 and R7, write R7 to SP (R13) and R6 to R3, and check that the values of

R7 and SP (R13) and R6 and R3 match.
3. Finish the test.

Bit0 and 1 of R13 (SP) are fixed to "0".
If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the
expected value, set FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result
Output Parameters
int32_t *result Test result (0: FAIL / 1: PASS)
Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 37 of 79
May. 31. 25

■ r_cpu_diag_8.asm File

Syntax

void R_CPU_Diag8(const uint32_t forceFail, int32_t *result)

Description

CPU register test process with the WALKPAT algorithm to the General-Purpose Registers (R0-12, R14).
(see 1.3.3(2)WALKPAT about the WALKPAT algorithm)

The test result is saved in "resultTemp" (0 : FAIL / 1 : PASS)

The test patterns used are the following (See “r_ramdiag_config.inc”):
◆Test patterns
pattern0 : 00000000000000000000000000000000 (0x00000000)
pattern0n : 11111111111111111111111111111111 (0xFFFFFFFF)
pattern1 : 00000000000000001111111111111111 (0x0000FFFF)
pattern1n : 11111111111111110000000000000000 (0xFFFF0000)
pattern2 : 00000000111111110000000011111111 (0x00FF00FF)
pattern2n : 11111111000000001111111100000000 (0xFF00FF00)
pattern3 : 00001111000011110000111100001111 (0x0F0F0F0F)
pattern3n : 11110000111100001111000011110000 (0xF0F0F0F0)
pattern4 : 00110011001100110011001100110011 (0x33333333)
pattern4n : 11001100110011001100110011001100 (0xCCCCCCCC)
pattern5 : 01010101010101010101010101010101 (0x55555555)
pattern5n : 10101010101010101010101010101010 (0xAAAAAAAA)

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result
Output Parameters
int32_t *result Test result (0: FAIL / 1: PASS)
Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 38 of 79
May. 31. 25

1.2 ROM
This section describes the ROM/Flash memory test using CRC calculator. (Reference: IEC 60730-1:2013 +
A1：2015+A2:2020 Annex H – H2.19.4.2 CRC – Double Word)

CRC is a fault/error control technique which generates a single word or checksum to represent the contents
of memory. A CRC checksum is the remainder of a binary division with no bit carry (XOR used instead of
subtraction) of the message bit stream, by a predefined (short) bit stream of length n + 1. which represents
the coefficients of a polynomial with degree n. Before the division, n zeros are appended to the message
stream. CRCs are often used because they are simple to implement in binary hardware and are easy to
analyze mathematically.

The ROM test can be achieved by generating a CRC value for the contents of the ROM and saving it.

During the memory self-test, the same CRC algorithm is used to generate another CRC value, which is
compared with the saved CRC value. The technique recognizes all one-bit errors and a high percentage of
multi-bit errors.

The complicated part of using CRCs is if you need to generate a CRC value that will then be compared with
other CRC values produced by other CRC generators. This proves difficult because there are a number of
factors that can change the resulting CRC value even if the basic CRC algorithm is the same. This includes
the combination of the order that the data is supplied to the algorithm, the assumed bit order in any look-up
table used and the required order of the bits of the actual CRC value. This complication has arisen because
big- and little-endian systems were developed to work together that employed serial data transfers where bit
order became important. Also, some debuggers implement a software break on ROM, in which case the
contents of ROM may be rewritten during debugging.

The method of calculating the reference CRC value depends on the toolchain used. For the detailed
procedure, refer to Section 2.2 ROM in 2.Example Usage

1.2.1 CRC32 Algorithm
The RA MCU includes a CRC module that includes support for CRC32. This software sets the CRC module
to produce a 32-bit CRC32.

• Polynomial = 0x04C11DB7 (x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1)
• Width = 32 bits
• Initial value = 0xFFFFFFFF
• XOR with h’FFFFFFFF is performed on the output CRC.

1.2.2 Multi Checksum
In the ROM test, the ROM area to be tested is divided into 16K bytes as shown in Figure 1.1, and the CRC
is calculated and stored in a specific area.

Because this sample software is a product with a code flash memory of 128KB, it is stored at addresses
0x1FFE0 to 0x1FFFF when building. * For products with 256KB memory, change the address accordingly.

In addition, the self-test library divides the process into 16Kbytes each, and after performing the CRC
calculation process, it checks for a match with the CRC value stored in the above specified area to determine
the ROM test result.

By editing "RA_SelfTests.c" in the sample project, you can change the enable setting for split processing.

(For details, refer to "2.2.2 Setting for the support Multi-checksum".)

The sample project targets the code FLASH area, excluding the checksum storage area.

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 39 of 79
May. 31. 25

Figure 1.1 Code FLASH block diagram on ROM test for 128KB products

1.2.3 CRC Software API
The functions in the reminder of this section are used to calculate a CRC value and verify its correctness
against a value stored in ROM.

All software is written in ANSI C. The renesas.h header file includes definition of RA MCU registers.

Table 1.17 CRC Software API Source Files

File Name
crc.h Defining ROM test API functions
crc_verify.h Defining ROM test API functions
crc.c Implementation part of ROM test
CRC_Verify.c Implementation part of ROM test

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 40 of 79
May. 31. 25

 CRC_Verify.c File

Syntax

bool_t CRC_Verify(const uint32_t ui32_NewCRCValue, const uint32_t ui32_AddrRefCRC)

Description
This function compares a new CRC value with a reference CRC by supplying address where reference
CRC is stored.

Input Parameters
const uint32_t
ui32_NewCRCValue

Value of calculated new CRC value.

const uint32_t
ui32_AddrRefCRC

Address where 32-bit reference CRC value is stored.

Output Parameters
NONE N/A
Return Values
bool_t 1 : True = Passed, 0 : False = Failed

 crc.c File

Syntax

void CRC_Init(void)

Description
Initializes the CRC module. This function must be called before any of the other CRC functions can be.

Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 41 of 79
May. 31. 25

Syntax

uint32_t CRC_Calculate(const uint32_t* pui32_Data, uint32_t ui32_Length)

Description
This function calculates the CRC of a single specified memory area.

Input Parameters
const uint32_t*
pui32_Data

Pointer to start of memory to be tested.

uint32_t
ui32_Length

Length of the data in long words.

Output Parameters
NONE N/A
Return Values
Uint32_t The 32-bit calculated CRC32 value.

The following functions are used when the memory area cannot simply be specified by a start address and
length. They provide a way of adding memory areas in ranges/sections. This can also be used if function
CRC_Calculate takes too long in a single function call.

 crc.c File

Syntax

void CRC_Start(void)

Description
Prepare the module is for starting to receive data. Call this once prior to using function CRC_AddRange.

Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 42 of 79
May. 31. 25

Syntax

void CRC_AddRange(const uint32_t* pui32_Data, uint32_t ui32_Length)

Description
Use this function rather than CRC_Calculate to calculate the CRC on data made up of more than one
address range. Call CRC_Start first then CRC_AddRange for each address range required and then call
CRC_Result to get the CRC value.

Input Parameters
const uint32_t*
pui32_Data

Pointer to start of memory range to be tested.

uint32_t
ui32_Length

Length of the data in long words.

Output Parameters
NONE N/A
Return Values
NONE N/A

Syntax

uint32_t CRC_Result(void)

Description
Calculates the CRC value for all the memory ranges added using function CRC_AddRange since
CRC_Start was called.

Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
uint32_t The calculated CRC32 value.

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 43 of 79
May. 31. 25

1.3 RAM
This section describes the RAM test and the two test algorithms used.

The objective of the RAM test is to detect random permanent faults from MCU built-in SRAM.

Key features of the RAM Test are as follows,

• Whole memory check including stack(s)

• Block-wise implementation of the test

• Supports two test algorithms (Extended March C-, WALKPAT)

• Supports two test types (Destructive / Non-destructive testing)

1.3.1 RAM Block Configuration
Target of the RAM Test is RAM block in the RAM area.

RAM area and RAM block under test are configured by directives described in Table 1.20.

Figure 1.2 shows how RAM area 0 is divided by n block. Directives are indicated by italics.

Figure 1.2 RAM Block Configuration (example)

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 44 of 79
May. 31. 25

1.3.2 Reserved Area
For the RAM test, the user must allocate the following reserved areas to RAM blocks in the Secure area.

1. Buffer (RramBuffer)

In non-destructive test, data value in the RAM block under test is temporarily saved to this buffer. The
user shall reserve a specific RAM block for this buffer.

2. Test result variable (RramResult1)

3. Test result variable (RramResult2)

The test result variable is allocated to two different RAM blocks.

By storing copies of test results in two different blocks, a fault can be detected even if one of the variables
cannot be stored in the faulting block.

Reserved areas are pre-defined in this software.

Specifically, the files "fsp.ld", "RA_SelfTests.c", and "r_ram_diag_config.h" define the items related to the
reserved area (data save buffer, result variables).

The parts of each definition in this sample software are described below.

◆Definition parts in the "fsp.ld" file.(blue text)

◆Definition parts in the " RA_Self Tests.c " file.(blue text)

__tz_RAM_S = ORIGIN(RAM);

 .ram_test_buffers :

 {

 . = ORIGIN(RAM);

 . = ALIGN(4);

 __RramBuffer_start = .;

 KEEP(*(RAM_TEST_BUFFER*))

 __RramBuffer_stop = .;

 } > RAM

//--> For RAM test of Class-C

/*Number of bytes to test each time the RAM periodic test is run.*//*NOTE: The periodic RAM test requires a safe buffer of the same size as
the test size.*/

#define RAM_TEST_BUFFER_SIZE RAM_BUFFER_SIZE

/*The periodic RAM (including Stack) tests requires a buffer. Locate it in its own section after(higher address than) the stacks.*/

//-->chg : Moved RramBuffer[], RramResult1, RramResult2 to Secure erea.

volatile uint32_t RramBuffer[RAM_TEST_BUFFER_SIZE] __attribute__((section("RAM_TEST_BUFFER")));

volatile uint32_t RAM_Test_dummy1[RAM_TEST_BUFFER_SIZE-1] __attribute__((section("RAM_TEST_BUFFER")));

volatile uint32_t RramResult1 __attribute__((section("RAM_TEST_BUFFER")));

volatile uint32_t RAM_Test_dummy2[RAM_TEST_BUFFER_SIZE-1] __attribute__((section("RAM_TEST_BUFFER")));

volatile uint32_t RramResult2 __attribute__((section("RAM_TEST_BUFFER")));

//<--chg : Moved RramBuffer[], RramResult1, RramResult2 to Secure erea.

//<-- For RAM test of Class-C

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 45 of 79
May. 31. 25

◆Definition parts in the " r_ram_diag_config.h " file.(blue text)

It is possible to check the location of the "reserved area" with the MAP file generated after build.

◆Applicable parts for the generated MAP file of secure project("RA2E1.map")

Note: The address to be placed depends on the definition contents of the ld file to be used.

/* RAM test buffer size (Expressed in double words) */

/* Note: Set the maximum RAM block size of all RAM areas */

#define RAM_BUFFER_SIZE (BUTSize0)

.ram_test_buffers

 0x20004000 0x300

 0x20004000 . = ORIGIN (RAM)

 0x20004000 . = ALIGN (0x4)

 0x20004000 __RramBuffer_start = .

 (RAM_TEST_BUFFER)

 RAM_TEST_BUFFER

 0x20004000 0x300 ./SelfTestLib/src/RA_SelfTests.o

 0x20004000 RramBuffer

 0x20004100 RAM_Test_dummy1

 0x200041fc RramResult1

 0x20004200 RAM_Test_dummy2

 0x200042fc RramResult2

 0x20004300 __RramBuffer_stop = .

RAM Buffer for temporarily saved data : RamBuffer[]

result variables : RramResult1

result variables : RramResult2

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 46 of 79
May. 31. 25

1.3.3 RAM Test Algorithm
(1) Extended March C-
Extended March C- is one of the March test algorithms used for RAM testing.
The algorithm is represented in Figure 1.3.

{⇕(w0);⇑(r0,w1,r1);⇑(r1,w0);⇓(r0,w1);⇓(r1,w0);⇕(r0)}

Notatio {}: Seaquence ⇑ : increasing addressing

 () : March element ⇓ : decreasing addressing

 wx : write x ⇕ : either ⇑ or ⇓

 rx : read x

Figure 1.3 Extended March C- Algorithm

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 47 of 79
May. 31. 25

(2) WALKPAT
WALKPAT (stands for Walking Pattern) is one of the test algorithms used for RAM testing.
The algorithm is represented in Figure 1.4.

Write 0 in all cells;
For i=0 to n-1
{
complement cell[i];
 For j=0 to n-1, j != i

{
 read cell[j];
}
read cell[i];
complement cell[i];

}
Write 1 in all cells;
For i=0 to n-1
{
 complement cell[i];
 For j=0 to n-1, j != i
 {
 read cell[j];
 }
 read cell[i];
 complement cell[i];
}

Figure 1.4 WALKPAT Algorithm

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 48 of 79
May. 31. 25

(3) Algorithm Characteristics
Table 1.18 shows characteristics of two test algorithms available for the RAM Test.

Table 1.19 RAM Test Algorithm Characteristics

Fault models and complexity Extended March C- WALKPAT
Address Faults (AF) ✓ ✓

Stuck At faults (SAF) ✓ ✓

Transactional Faults (TF) ✓ ✓

Coupling Faults (CF) ✓ ✓

Stuck-Open Faults (SOF) ✓ N/A

Data Retention Faults (DRF) ✓ N/A

Sense Amplifier Recovery Faults (SARF) N/A ✓

Complexity 11n ✓2n2

n = the number of addressing cells of the memory

The following algorithm descriptions are related to 1-bit word memory, but they can be applied to m-bit
memory.
m-bit memories can be dealt with by repeating each algorithm for a number of times determined by:

⌈log2 𝑚𝑚⌉ + 1

Since m=32bit for this software, the algorithm will be repeated 6 times, and the following 6 different patterns
are applied.

#1: 00000000000000000000000000000000

#2: 00000000000000001111111111111111

#3: 00000000111111110000000011111111

#4: 00001111000011110000111100001111

#5: 00110011001100110011001100110011

#6: 01010101010101010101010101010101

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 49 of 79
May. 31. 25

1.3.4 RAM Software API
The software API source files related to RAM testing are shown in Table 1.20.

When RAM Test API is executed, specified one RAM block of RAM area is tested. A RAM fault can be
detected by checking the execution result output to the argument.

Before compiling the code, it is necessary to change the RAM block under test and reservation area (see
1.3.2).

Table 1.21 shows directive for configuration. The directive can be found in the r_ram_diag_config.h.

Table 1.22 RAM Software API source file

File Name
r_ram_diag_config.h Definition of RAM Test Directive.

r_ram_diag_config.inc Definition of RAM Test execution pattern.

r_ram_diag.c Definition of RAM Test API function.

r_ram_diag.h Declaration of RAM Test API function.

r_ram_marchc.asm Definition of Extended March C- algorithm function.

r_ram_marchc.h Declaration of Extended March C- algorithm function.

r_ram_walpat.asm Definition of WALKPAT algorithm function.

r_ram_walpat.h Declaration of WALKPAT algorithm function.

Table 1.23 Directives for Software Configuration for RAM Test

Directive Name
NUMBER_OF_AREA Number of RAM area under test (1-8).

Shall be set to 1 except for the following case.

- multiple RAM areas under test are sporadically allocated

- there are multiple RAM blocks under test and each block size is
not the same

startAddressN *1 Start address to the RAM area under test

MUTSizeN *1 Size of RAM area under test (N) in double word.

numberOfBUTN *1 Number of RAM blocks under test.

BUTSizeN *1 Size of RAM block under test (N) in double word.

Calculted by BUTSizeN = MUTSizeN / numberOfBUTN

RAM_BUFFER_SIZE Size of buffer (RramBuffer) under test in double word.

*1 : N = 0 ～ (NUMBER_OF_AREA – 1)

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 50 of 79
May. 31. 25

■ r_ram_diag.c File

Syntax

void R_RAM_Diag(uint32_t area, uint32_t index, uint32_t algorithm, uint32_t
destructive)

Description

This function verifies RAM.
Test result can be checked by the return value in result variable.

If Test result is PASS :
RramResult1 = 1 and RramResult2 = 1

If Test result is FAIL :
Other than above

Perform the RAM tests in the following order:
1. Check if the RAM block is a valid area by the arguments "area" and "index".
2. Use the macro functions (R_RAM_BLK_SADR, R_RAM_BLK_EADR) to calculate the start and end

addresses of the RAM block under test. (The calculated start address and end address are saved in
sAdr and eAdr.)

3. The function of the corresponding algorithm is called by the argument "algorithm".
For Extended March C- (algorithm = RAM_ALG_MARCHC): R_RAM_Diag_MarchC () function
For WALKPAT(algorithm = RAM_ALG_WALPAT) : R_RAM_Diag_Walpat () function

Note:
The argument "destructive" selects whether the data is destructive or non-destructive.
(In the case of the destruction test, the RAM block is cleared to "0" after the test.)

4. Return to the called function.

Input Parameters
uint32_t area Number of RAM area

Shall be smaller than the directive NUMBER_OF_AREA.
Returns 0 (FAIL) when the value is invalid.

uint32_t index RAM block index of RAM area set in "area"
RAM block index starts with 0.
Shall be smaller than the directive numberOfBUTN. (See Table 1.24)
Returns 0 (FAIL) when the value is invalid.

uint32_t algorithm Specify the algorithm.
0(RAM_ALG_MARCHC): Extended March C-
1(RAM_ALG_WALPAT): WALKPAT

*WALKPAT when the value is other than 0. ”
uint32_t destructive Specify type of the Memory test

0: Non-destructive test
1: Destructive test

Non-destructive test when invalid value is set.
RAM block is cleared to 0 after destructive test.
Notice: RAM block is always cleared to 0 when the block with buffer,
regardless of test type.

Output Parameters
NONE N/A
Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 51 of 79
May. 31. 25

■ r_ram_marchc.asm File

Syntax

void R_RAM_Diag_MarchC(uint32_t start, uint32_t end, uint32_t destructive)

Description

Performs RAM test processing by the "Extended March C-"algorithm for the RAM block specified by the
arguments start and end. (See 1.3.3(1))
In the case of non-destructive test, the current data of the test area is saved in the specified RamBuffer
area.

The test results are stored below.

- RramResult1 (0 : FAIL / 1 : PASS)

- RramResult2 (0 : FAIL / 1 : PASS)

The test patterns used are the following (See “r_ramdiag_config.inc”):
◆Test patterns
pattern0 : 00000000000000000000000000000000 (0x00000000)
pattern0n : 11111111111111111111111111111111 (0xFFFFFFFF)
pattern1 : 00000000000000001111111111111111 (0x0000FFFF)
pattern1n : 11111111111111110000000000000000 (0xFFFF0000)
pattern2 : 00000000111111110000000011111111 (0x00FF00FF)
pattern2n : 11111111000000001111111100000000 (0xFF00FF00)
pattern3 : 00001111000011110000111100001111 (0x0F0F0F0F)
pattern3n : 11110000111100001111000011110000 (0xF0F0F0F0)
pattern4 : 00110011001100110011001100110011 (0x33333333)
pattern4n : 11001100110011001100110011001100 (0xCCCCCCCC)
pattern5 : 01010101010101010101010101010101 (0x55555555)
pattern5n : 10101010101010101010101010101010 (0xAAAAAAAA)

Input Parameters
uint32_t start Start address of the block under test

uint32_t end End address of the block under test

uint32_t
destructive

Specify type of the Memory test
0: Non-destructive test
1: Destructive test

Output Parameters
RramResult1 0 : FAIL / 1 : PASS

RramResult2 0 : FAIL / 1 : PASS

Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 52 of 79
May. 31. 25

■ r_ram_walpat.asm File

Syntax

void R_RAM_Diag_walpat(uint32_t start, uint32_t end, uint32_t destructive)

Description

Performs RAM test processing by the "Extended March C-"algorithm for the RAM block specified by the
arguments start and end. (See 1.3.3(2))
In the case of non-destructive test, the current data of the test area is saved in the specified RamBuffer
area.

The test results are stored below.

- RramResult1 (0 : FAIL / 1 : PASS)

- RramResult2 (0 : FAIL / 1 : PASS)

The test patterns used are the following (See “r_ramdiag_config.inc”):
◆Test patterns
pattern0 : 00000000000000000000000000000000 (0x00000000)
pattern0n : 11111111111111111111111111111111 (0xFFFFFFFF)
pattern1 : 00000000000000001111111111111111 (0x0000FFFF)
pattern1n : 11111111111111110000000000000000 (0xFFFF0000)
pattern2 : 00000000111111110000000011111111 (0x00FF00FF)
pattern2n : 11111111000000001111111100000000 (0xFF00FF00)
pattern3 : 00001111000011110000111100001111 (0x0F0F0F0F)
pattern3n : 11110000111100001111000011110000 (0xF0F0F0F0)
pattern4 : 00110011001100110011001100110011 (0x33333333)
pattern4n : 11001100110011001100110011001100 (0xCCCCCCCC)
pattern5 : 01010101010101010101010101010101 (0x55555555)
pattern5n : 10101010101010101010101010101010 (0xAAAAAAAA)

Input Parameters
uint32_t start Start address of the block under test

uint32_t end End address of the block under test

uint32_t
destructive

Specify type of the Memory test
0: Non-destructive test
1: Destructive test

Output Parameters
RramResult1 0 : FAIL / 1 : PASS

RramResult2 0 : FAIL / 1 : PASS

Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 53 of 79
May. 31. 25

1.4 Clock
The RA MCU has a Clock Frequency Accuracy Measurement Circuit (CAC). The CAC counts the pulses of
the target clock within the time generated by the reference clock and generates an interrupt request if the
number of pulses is outside the acceptable range.

The main clock oscillator also has an oscillation stop detection circuit.

1.4.1 Main Clock Frequency Monitoring by CAC
Either one of Main, SUB_CLOCK, HOCO, MOCO, LOCO, IWDTCLK, and PCLKB or an External clock on
the CACREF pin can be used as a reference clock source.

(a) When using one of the internal clock source:
• Ensure CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK is not defined.
• Be sure to select the reference clock (through ref_clock input parameter).
• Be sure to provide target and reference clocks frequency in Hz.

If the frequency of the main clock deviates during runtime from a configured range, two types of interrupts
can be generated: frequency error interrupt or an overflow interrupt. The user of this module must enable
these two kinds of interrupt and handle them. See Section 2.4 for an example of interrupt activation. The
allowable frequency range can be adjusted using.

/* Percentage tolerance of main clock allowed before an error is reported.*/
#define CLOCK_TOLERANCE_PERCENT 10

When using the internal clock as the reference clock, the reference clock division ratio in the CAC circuit
(RCDS [1: 0] in the CACR2 register) is fixed at 1/128 in the test function.

The division ratio of the target clock (TCSS [1: 0] in the CACR1 register) is selected from 1/1, 1/4, 1/8, 1/32
by calculation in the test function based on the input parameters. However, no matter which division ratio is
applied, an error occurs if the calculation result is not within the range that can be set in the 16-bit wide "CAC
Upper-Limit and Lower-Limit Value Setting Register".

1.4.2 Oscillation Stop Detection of Main Clock
The main clock oscillator of the RA MCU has an oscillation stop detection circuit. If the main clock stops, the
Middle-Speed On-Chip oscillator (MOCO) will automatically be used instead, and an NMI interrupt will be
generated.

In the ClockMonitor_Init function, when the main clock oscillator stop bit (MOSTP) in the main clock oscillator
control register (MOSCCR) is 0 (main clock oscillator operation), oscillation stop detection and NMI is
enabled as follows.

• Oscillation stop detection control register (OSTDCR)
- Oscillation stop detection function enable bit (OSTDE): Enable
- Oscillation stop detection interrupt enable bit (OSTDIE): Enable

• ICU non-maskable interrupt enable register (NMIER)
- Oscillation stop detection interrupt enable bit (OSTEN): Enable

The user of this module must handle the NMI interrupt and check the NMISR.OSTST (Oscillation Stop
Detection Interrupt Status Flag) bit.

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 54 of 79
May. 31. 25

1.4.3 Clock Software API
The software API source files related to Clock testing are shown in Table 1.25.

Table 1.26 Clock Source Files

File Name
clock_monitor.h Declaration of Clock Test API function.
clock_monitor.c Clock test implementation part

The test module relies on the renesas.h header file to access to peripheral registers.

 clock_monitor.c File

(a) ClockMonitor_Init Function When Using One of the Internal Clock Source for Reference Clock.
(If CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK Is Not Defined.)

Syntax

void ClockMonitor_Init(clock_source_t target_clock,
 clock_source_t ref_clock,
 uint32_t target_clock_frequency,
 uint32_t ref_clock_frequency,
 CLOCK_MONITOR_ERROR_CALL_BACK CallBack)

Description
1. Start monitoring the target clock selected through target_clock input parameter using the CAC

module and the reference clock selected through ref_clock input parameter.
2. Enables Oscillation Stop Detection and configures an NMI to be generated if detected.

Input Parameters
clock_source_t target_clock Target clock monitored by CAC.

The clock shall be one of Main clock, Sub clock, HOCO clock,
MOCO clock, LOCO clock, IWDTCLK clock, and PCLKB clock.

clock_source_t ref_clock The reference clock to be used by CAC to monitor the target
clock. The clock shall be one of Main clock, Sub clock, HOCO
clock, MOCO clock, LOCO clock, IWDTCLK clock, and PCLKB
clock.

uint32_t
target_clock_frequency

The target clock frequency in Hz

uint32_t ref_clock_frequency The reference clock frequency in Hz.
CLOCK_MONITOR_ERROR_CALL_BACK
CallBack

A function that is called when the target clock is out of tolerance
or when this function fails to properly configure the CAC circuit
from the input parameters.

Output Parameters
NONE N/A
Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 55 of 79
May. 31. 25

Syntax

extern void cac_ferrf_isr(void)

Description
CAC frequency error interrupt handler.
This function calls the callback function registered by the ClockMonitor_Init function.

Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

Syntax

extern void cac_ovff_isr(void)

Description
CAC overflow error interrupt handler.
This function calls the callback function registered by the ClockMonitor_Init function.

Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

Syntax

bool_t CAC_Err_Detect_Test(void)

Description

When the power is turned on, it checks that the frequency error detection by the CAC function and the
interrupt by the overflow error detection are operating normally.
Returns “TRUE” if each interrupt occurrence can be confirmed within a certain period (counted by software
loop).

Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
bool_t 1 : True = Passed(Each interrupt occurrences was occurred)

0 : False = Failed(Could not be confirmed both interrupt occurrences)

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 56 of 79
May. 31. 25

1.5 Independent Watchdog Timer (IWDT)
A watchdog timer is used to detect abnormal program execution. If a program is not running as expected, the
watchdog timer will not be refreshed by software as required and will therefore detect an error.

The Independent Watchdog Timer (IWDT) module of the RA MCU is used for this. It includes a windowing
feature so that the refresh must happen within a specified ‘window’ rather than just before a specified time. It
can be configured to generate an internal reset or a NMI interrupt if an error is detected.

All the configurations for IWDT can be done through the Option Function Select Register 0 (OFS0) in Option-
Setting Memory whose settings are controlled by the user (see Section 2.5 for an example of configuration).
The option setting memory is a series of registers that can be used to select the state of the microcontroller
after reset and is located in the code flash area.

A function is provided to be used after a reset to decide if the IWDT has caused the reset.

The test module relies on the renesas.h header file to access to peripheral registers.

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 57 of 79
May. 31. 25

1.5.1 IWDT Software API
The software API source files related to IWDT testing are shown in Table 1.22.

Table 1.27 Independent Watchdog Timer Source Files

File Name
iwdt.h Declaration of IWDT Test API function.

iwdt.c IWDT test implementation part

Syntax

void IWDT_Init (void)

Description
Initialize the independent watchdog timer. After calling this, the IWDT_Kick function must then be called at
the correct time to prevent a watchdog timer error.
Note: If configured to produce an interrupt then this will be the Non Maskable Interrupt (NMI). This must be
handled by user code which must check the NMISR.IWDTST flag.

Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

Syntax

void IWDT_Kick(void)

Description
Refresh the watchdog timer count.

Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 58 of 79
May. 31. 25

Syntax

bool_t IWDT_DidReset(void)

Description
Returns true if the IWDT has timed out or not been refreshed correctly.

Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
bool_t True(1) if watchdog timer has timed out, otherwise false(0).

Syntax

bool_t IWDT_Err_Detect_Test(void)

Description

When the power is turned on, it check that the interrupt by the detection of counter underflow for IWDT
function is operating normally.
Returns “TRUE” if NMI interrupt occurrence by detecting IWDT counter underflow can be confirmed within
a certain period of time (counted by software loop).
Set f_IWDT_ERROR_TEST to "1" and determine if f_IWDT_ERROR_TEST becomes "0" within a certain
period of time.
Note that the user must create a process to set f_IWDT_ERROR_TEST to "0" when the IWDT
underflow/refresh error interrupt status flag is "1" in NMI_Handler_callback().
For details, refer to 2.5 Independent Watchdog Timer (IWDT).

Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
bool_t 1 : True = Passed(NMI interrupt occurrences was occurred)

0 : False = Failed(Could not be confirmed NMI interrupt occurrences)

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 59 of 79
May. 31. 25

2. Example Usage
This section gives to the user some useful suggestions about how to apply the released software.

Self test can be divided into two patterns:

(a) Power-On Test
These tests are run once following a reset. They should be run as soon as possible but especially if
start-up time is important, it may be permissible to run some initialization code before running all the
tests so that, for example a faster main clock can be selected.

(b) Periodic Test
These tests are run regularly throughout normal program operation. This document does not provide a
judgment of how often a particular test should be ran. How the scheduling of the periodic tests is
performed is up to the user depending upon how their application is structured.

The following sections provide an example of how each test type should be used.

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 60 of 79
May. 31. 25

2.1 CPU
If a fault is detected by any of the CPU test then a user supplied function called CPU_Test_ErrorHandler will
be called. As any error in the CPU is very serious the aim of this function should be to get to a safe state,
where software execution is not relied upon, as soon as possible.

2.1.1 Power-On
The CPU tests should be run as soon as possible following a reset.

The function CPU_Test_ClassC can be used to automatically run all the CPU tests.

2.1.2 Periodic
To test the CPU periodically, the function CPU_Test_ClassC can be used, as it is for the power-on tests, to
automatically run CPU tests.

Alternatively, to reduce the amount of testing done in a single function call, the user can select by
"r_cpu_diag_config.h".

2.1.3 Preparation for CPU testing
The following describes the preparation for CPU testing.
It configures the CPU test via directive settings before compiling your code.
See Table 1.15 for the relationship between directives and each CPU test.
Directives are used to define what tests will be included in or excluded from the compilation.
The directive can be found in the r_cpu_diag_config.h file.

The sample software is set to build all CPU tests.
If set the directives to "0"(an excluded from test), the empty function called norm_null() is executed.

The next page shows where to set the directives that make up the CPU test.

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 61 of 79
May. 31. 25

◆Definition parts in the "r_cpu_diag_config.h" file.(blue text)

If "1" is set in the following settings, it will be subject to test execution, and if "0" is set, it will not be subject to
test execution.

/**

* Macro definitions

********/

/* ==== Define build options ==== */

#define BUILD_R_CPU_DIAG_0 (1)

#define BUILD_R_CPU_DIAG_1 (1)

#define BUILD_R_CPU_DIAG_2 (1)

#define BUILD_R_CPU_DIAG_3 (1)

#define BUILD_R_CPU_DIAG_4 (1)

#define BUILD_R_CPU_DIAG_5 (1)

#define BUILD_R_CPU_DIAG_6 (1)

#define BUILD_R_CPU_DIAG_7_1 (1)

#define BUILD_R_CPU_DIAG_7_2 (1)

#define BUILD_R_CPU_DIAG_7_3 (1)

#define BUILD_R_CPU_DIAG_8 (1)

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 62 of 79
May. 31. 25

2.2 ROM
In ROM test, it compares the calculated CRC value of the range under test with a pre-stored reference CRC
value. (32-bit CRC32 Polynomial uses "CRC-32")

A reference CRC value must be stored to a ROM area that is not included in the CRC calculation. The way
of the reference CRC value is calculated depends on your development environment.

In addition, this sample software performs divided processing to reduce the processing load of the ROM test
and supports Multi Checksum. The CRC module incorporated into the RA MCU must be initialized before
use by calling the CRC_Init function. When dividing and processing, please initialize only the first time of
divided processing.

2.2.1 Reference CRC Value Calculation in Advance

Since the GNU tool does not have a CRC calculation function, use the SRecord tool (*1) introduced below to
calculate the reference CRC value. The user uses this tool to write the CRC value for reference in ROM in
advance and compares it with this value in the self-test.

*1: SRecord is an open source project on SourceForge. Check below contents for details.
• SRecord Web Site (SRecord v1.65)

http://srecord.sourceforge.net/

• CRC Checksum Generation with “SRecord” Tools for GNU and Eclips
https://sourceforge.net/projects/srecord/files/srecord-win32/1.65/

After unzipping the downloaded ZIP file, the following programs are extracted to t” \srecord-1.65.0-
win64.zip\srecord-1.65.0-win64\bin”

Figure 2.1 SRecord Tool Contents

CRC calculation tool

http://srecord.sourceforge.net/
https://sourceforge.net/projects/srecord/files/srecord-win32/1.65/

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 63 of 79
May. 31. 25

An example of the folder structure of the project and SRecord tool is shown below.

Figure 2.2 Folder Configuration Example

SRecordTool execute file and
relative dll file

Source File of Self Test

Project folder
The location indicated by the build variable
${ProjDirPath}

Command file for SRecord tool
(for multi checksum support when
ROM=128KB)

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 64 of 79
May. 31. 25

◆Setting in the project

Open "Project" ⇒ "Properties" of e2 studio, in “Post-build steps” use command objcopy to generate S-record
file from the * .elf file generated.

Note that the converted file name is "Original.srec" here, which will be the input for the SRecord tool.

↓

Figure 2.3 Output S-Record file and start SRecord tool

Write in the “Command(s)” column.
See the example.
（記入例を参照）

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 65 of 79
May. 31. 25

In the "Post-build steps" of the "Build Steps" tab in Figure 2.4, describe as follows. * () indicates in e2studio
English version.

 Example of entry in the Command (s) column of "Post-build steps" (write on one line without line breaks)

[when divided processing is enabled (DIV_AREA=1)] ※please use this settings

arm-none-eabi-objcopy -O srec "${ProjName}.elf" "Original.srec" &
${ProjDirPath}/../../srec/srec_cat @${ProjDirPath}/../../srec/CRCcalcCmd128KB_16KB_div.txt

Until before the "&" in the first line above mean that the S-record file is generated.
The format "srec_cat @ command file" on the second line is the launch of the srec_cat tool.

The description example is shown about the following Command files:

・"CRCcalcCmd128KB_16KB_div.txt"(when divided processing is enabled)

Also, please refer to ”2.2.2 Setting for the support Multi-checksum” for setting of split processing.

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 66 of 79
May. 31. 25

■ CRCcalcCmd128KB_16KB_div.txt File contents (example)

CRC calculate
Original.srec # Read srec file
-fill 0xFF 0x00000 0x20000 # 128KB ROM fill by 0xFF
Area No.8
-crop 0x1C000 0x1FFE0 # CRC calculate area (Test area 0x1C00 - 0x1FFEF : 16KB-16) for debug
-STM32-le 0x01FFFC # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0x1FFFC.
-crop 0x1FFFC 0x20000 # Keep CRC area(0x1FFFC - 0x1FFFF)
Original.srec # Read srec file
Area No.7
-fill 0xFF 0x00000 0x1C000 # 0-0x1C000 ROM fill by 0xFF
-crop 0x18000 0x1C000 # CRC calculate area (Test area 0x180000 - 0x1BFFF : 16KB) for debug
-STM32-le 0x01FFF8 #The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0x1FFF8.
-crop 0x1FFF8 0x200000 # Keep CRC area(0x1FFFF8 - 0x1FFFF)
Original.srec # Read srec file
Area No.6
-fill 0xFF 0x00000 0x18000 # 0-0x18000 ROM fill by 0xFF
-crop 0x14000 0x18000 # CRC calculate area (Test area 0x14000 - 0x17FFF : 16KB) for debug
-STM32-le 0x01FFF4 # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0x1FFF4.
-crop 0x1FFF4 0x200000 # Keep CRC area(0x1FFF4 - 0x1FFFF)
Original.srec # Read srec file
Area No.5
-fill 0xFF 0x00000 0x14000 # 0-0x14000 ROM fill by 0xFF
-crop 0x10000 0x14000 # CRC calculate area (Test area 0x10000 - 0x13FFF : 16KB)) for debug
-STM32-le 0x01FFF0 # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0x1FFF0.
-crop 0x1FFF0 0x20000 # Keep CRC area(0x1FFF0 - 0x1FFFF)
Original.srec # Read srec file
Area No.4
-fill 0xFF 0x00000 0x10000 # 0-0x10000 ROM fill by 0xFF
--crop 0xC000 0x10000 # CRC calculate area (Test area 0xC0000 - 0xFFFF : 16KB) for debug
-STM32-le 0x1FFEC # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0x1FFEC.
-crop 0x1FFEC 0x20000 # Keep CRC area(0x1FFEC - 0x1FFFF)
Original.srec # Read srec file
Area No.3
-fill 0xFF 0x00000 0xC000 # 0-0xC000 ROM fill by 0xFF
-crop 0x8000 0xC000 # CRC calculate area (Test area 0x8000 - 0xBFFF : 16KB) for debug
-STM32-le 0x01FFE8 # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0x1FFE8.
-crop 0x1FFE8 0x20000 # Keep CRC area(0x1FFE8 - 0x1FFFF)
Original.srec # Read srec file
Area No.2
-fill 0xFF 0x00000 0x8000 # 0-0x8000 ROM fill by 0xF
-crop 0x4000 0x8000 # CRC calculate area (Test area 0x4000 - 0x7FFF : 16KB) for debug
-STM32-le 0x01FFE4 # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0x1FFE4.
-crop 0x1FFE4 0x20000 # Keep CRC area(0x1FFE4 - 0x1FFFF)
Original.srec # Read srec file
Area No.1
-fill 0xFF 0x0000 0x4000 # 0-0x4000 ROM fill by 0xFF
-crop 0x0000 0x4000 # CRC calculate area (Test area 0x0000 - 0x3FFFF : 16KB) for debug
-STM32-le 0x01FFE0 # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0x1FFE0.
-crop 0x1FFE0 0x20000 # Keep CRC area(0x1FFE0 - 0x1FFFF)
Original.srec # Read srec file
Original.srec # Read srec file

-fill 0xFF 0x000000 0x01FFE0 # -fill 0xFF from 0x0 to 0x1FFE0
-Output addcrc.srec # Output of S-record file including CRC value

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 67 of 79
May. 31. 25

If the ROM capacity varies depending on the device, change the address setting according to the device.

Also, when debugging, some ROMs rewrite the contents of ROM due to a software break. In that case, it is
necessary to set the operation target area to something other than the debug area.

With the above operation, addcrc.srec (S record file with CRC calculation result added to the end of
program code) can be generated in the build configuration folder under the project folder, so download it to
the target board.

Right-click on the top of the project tree and select "Debug as" → "Debug Configuration".

Figure 2.5 Select Debug Configuration of the Project

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 68 of 79
May. 31. 25

When the debug configuration dialog is displayed, select the "Startup" tab and select the build configuration
to use. Only the symbol information is read from the ELF file, and the program image including the CRC
calculation value is set to be read from addcrc.srec.

Click the "Debug" button to download the CRC calculation value to the target.

Figure 2.6 Load Image and Symbol Setting Example

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 69 of 79
May. 31. 25

2.2.2 Setting for the support Multi-checksum
It takes some time to test all areas in one ROM test. As measure, it is possible to divide the processing with
the following settings.

Edit and set "RA_Self Tests.c" including this sample software. Divided processing is enabled by default.

◆Setting part in the "RA_SelfTests.c" file of the sample software (blue text)

Set whether to enable or disable split processing below.

The reference addresses for pre-computed CRC values are defined below.

It stores the precomputed checksum with the above settings.

When divided processing is enabled. (DIV_AREA=1) : Store in the area of address 0x1FFE0 to 1FFFF.

For the stored method, refer to”2.2.1 Reference CRC Value Calculation in Advance”

#define DIV_AREA 1 // 0:Not divide 1:Do divide

/* The address where the 32bit reference CRC value will be stored.

The linker must be configured to generate a CRC value and store it at this location. */

#define DIV_AREA 1 // 0:Not divide 1:Do divide

#if(DIV_AREA==1)

#define CRC_ADDRESS 0x0001FFE0 // Flash ROM 128KB *The area from 0x1FFE0 to 0xFFFFF is stored Calurated CRC Value.

#endif

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 70 of 79
May. 31. 25

2.2.3 Power-On
All the ROM memory used must be tested at power-on.

If this area is one contiguous block then function CRC_Calculate can be used to calculate and return a
calculated CRC value.

If the ROM used is not in one contiguous block then the following procedure must be used.

1. Call CRC_Start.
2. Call CRC_AddRange for each area of memory to be included in the CRC calculation.
3. Call CRC_Result to get the calculated CRC value.

The calculated CRC value can then be compared with the reference CRC value stored in the ROM using
function CRC_Verify.

It is a user’s responsibility to ensure that all ROM areas used by their project are included in the CRC
calculations.

2.2.4 Periodic
It is suggested that the periodic testing of ROM is done using the CRC_AddRange method, even if the ROM
is contiguous. This allows the CRC value to be calculated in sections so that no single function call takes too
long. Follow the procedure as specified for the power-on tests and ensure that each address range is small
enough that a call to CRC_AddRange does not take too long.

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 71 of 79
May. 31. 25

2.3 RAM
It is very important to realize that the area of RAM that needs to be tested may change dramatically
depending upon your project’s memory map.

When testing RAM, keep the following points in mind:

1. Include r_ram_diag.h.

2. Modify the directives in r_ram_diag_config.h as needed (see Table 1.1).

3. Define the required parameters for R_RAM_Diag (see 1.3.4), pass the parameters and call the function
R_RAM_Diag.

4. For non-destructive tests, allocate a buffer (RramBuffer) and set the protected data to be stored in other
blocks

2.3.1 Power-On
At power on, a RAM test is performed.

First performing the RAM test with the Extended March C-algorithm, then perform the RAM test with the
WALKPAT algorithm.

It is possible to choose a destructive test.

If startup time is very important, make fine adjustments such as limiting the area to be tested and the test
algorithm to be used.

2.3.2 Periodic
All periodic tests must be non-destructive.

In the periodic RAM test, select "Extended March C-" or "WALKPAT" as the algorithm to be used. (* Select
"WALKPAT" in the sample project)

Also, if the test target area is wide, the processing time will be long, so it will be necessary to divide the RAM
blocks according to the system.

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 72 of 79
May. 31. 25

2.4 Clock
The monitoring of the main clock is set up with a single function call to ClockMonitor_Init.

For example:

#define TARGET_CLOCK_FREQUENCY_HZ (12000000) // 12 MHz
#define REFERENCE_CLOCK_FREQUENCY_HZ (15000) // 15kHz

ClockMonitor_Init(MAIN, IWDTCLK, TARGET_CLOCK_FREQUENCY_HZ,
REFERENCE_CLOCK_FREQUENCY_HZ, CAC_Error_Detected_Loop);
/*NOTE: The IWDTCLK clock must be enabled before starting the clock
monitoring.*/

The ClockMonitor_Init function can be called as soon as the main clock has been configured and the IWDT
has been enabled. See Section 2.5 for enabling the IWDT.

The clock monitoring is then performed by hardware and so there is nothing that needs to be done by
software during the periodic tests.

In order to enable interrupt generation by the CAC, both Interrupt Controller Unit (ICU) and Nested Vectored
Interrupt Controller (NVIC) should be configured in order to handle it.

In the interrupt controller unit (ICU), set the event signal number corresponding to CAC frequency error
interrupt and CAC overflow in the ICU event link setting register (IELSRn).

When using FSP (Flexible Software Package) with e2 studio, the ICU configuration can be set in the
"Interrupts" tab of the RA Configuration Editor.

Table 2.2 Setting of IELSRn Register Related to CAC

MCU Event Name IELSRn.IELS[4:0]
RA2E1 CAC_FERRI 0x0B

CAC_OVFI 0x08

The nested vector interrupt controller (NVIC) is set by the test_main function in the RA_SelfTests.c file.
Where NVIC_SetPriority and NVIC_EnableIRQ are CMSIS functions provided by FSP, and
CAC_FREQUENCY_ERROR_IRQn and CAC_OVERFLOW_IRQn are IRQ numbers generated by the FSP.

// NVIC settings related to CAC

/* CAC frequency error ISR priority */
NVIC_SetPriority(CAC_FREQUENCY_ERROR_IRQn,0);
/* CAC frequency error ISR enable */
NVIC_EnableIRQ(CAC_FREQUENCY_ERROR_IRQn);

/* CAC overflow ISR priority */
NVIC_SetPriority(CAC_OVERFLOW_IRQn,0);
/* CAC overflow ISR enable */
NVIC_EnableIRQ(CAC_OVERFLOW_IRQn);

If oscillation stop is detected, an NMI interrupt occure. In this sample software, as shown in the following, the
prepared in advance error handling function ("Clock_Stop_Detection()") is executed in the NMI interrupt
callback function (NMI_Handler_callback).

NVIC settings related to Frequency
error interrupt

NVIC settings related to Overflow
error interrupt

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 73 of 79
May. 31. 25

static void NMI_Handler_callback(bsp_grp_irq_t irq)
{
 switch(irq){
 case BSP_GRP_IRQ_IWDT_ERROR :
 ・・・
 break;
 case BSP_GRP_IRQ_LVD1 :
 case BSP_GRP_IRQ_LVD2 :
 break;
 case BSP_GRP_IRQ_OSC_STOP_DETECT :
 Clock_Stop_Detection();
 break;
 case BSP_GRP_IRQ_TRUSTZONE :
 ・・・
 break;
 default:
 break;

 }
}

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 74 of 79
May. 31. 25

2.5 Independent Watchdog Timer (IWDT)
2.5.1 OFS0 Register Setting Example (IWDT Related)
In order to configure the Independent Watchdog Timer, it is necessary to set the OFS0 register in Option-
Setting Memory. For example, suppose the Option-Setting Memory is set as follows.

Table 2.3 OFS0 Register Setting Example (IWDT Related)

Item OFS0 Register Setting (For Example)

IWDT Start Mode Select (IWDTSTRT) 0: Automatically activate IWDT after a reset (auto start
mode)

IWDT Timeout Period Select (IWDTTOPS[1:0]) 10b： 512 cycles

IWDT-Dedicated Clock Frequency Division Ratio Select
(IWDTCKS[3:0])

0010b： 1/16

IWDT Window End Position Select (IWDTRPES[1:0]) 00b： 75%

IWDT Window Start Position Select (IWDTRPSS[1:0]) 11b： 100%

IWDT Reset Interrupt Request Select (IWDTRSTIRQS) 0: Enable non-maskable interrupt request or interrupt
request

IWDT Stop Control (IWDTSTPCTL) 1: Stop counting when in Sleep, Snooze, or Software
Standby mode.

When using FSP (Flexible Software Package) with e2 studio, the "Option-Setting Memory" settings can be
done in the property of the "BSP" tab of the configuration.

Figure 2.7 Example of OFS0 Register Setting by Using FSP with e2 studio

Double click
to open

Open the BSP properties with
Window ⇒ Show View command

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 75 of 79
May. 31. 25

When the "Generate Project Content" button is clicked, the contents set in the property will be reflected in the
definition of the corresponding symbol in the following file. (For details, refer to "Renesas Flexible Software
Package (FSP) User's Manual".)

• Applicable file
 ..\project-name\ra_cfg\fsp_cfg\bsp\bsp_mcu_family_cfg.h

• Applicable symbol (Excerpt)

#define OFS_SEQ1 0xA001A001 | (0 << 1) | (1 << 2)
#define OFS_SEQ2 (2 << 4) | (0 << 8) | (3 << 10)
#define OFS_SEQ3 (0 << 12) | (1 << 14) | (1 << 17)

 : :

Figure 2.8 Option Function Select Register 0 (OFS0)

The Independent Watchdog Timer should be initialized as soon as possible following a reset with a call to
IWDT_Init:

/*Setup the Independent WDT.*/
IWDT_Init();

After this, the watchdog timer must be refreshed regularly enough to prevent the watchdog timer timing out
and performing a reset. Note, if using windowing the refresh must not just be regular enough but also timed
to match the specified window. A watchdog timer refresh is called by calling this:

/*Regularly kick the watchdog to prevent it performing a reset. */
IWDT_Kick();

If the watchdog timer has been configured to generate an NMI on error detection then the user must handle
the resulting interrupt.

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 76 of 79
May. 31. 25

2.5.2 Example of registering and writing an NMI interrupt callback function
It check whether the IWDT operates normally at Power ON startup on API function
"IWDT_Err_Detect_Test()".

For that, user necessary to prepare the processing that set f_IWDT_ERROR_TEST to "0" if the cause of the
interrupt is an IWDT underflow in the NMI interrupt callback function (NMI_Handler_callback).

Users can register callbacks using the BSP API function “R_BSP_GroupIrqWrite()” provided by FSP
(Flexible Software Package).

By doing this, you can enable notification of one or more group interrupts.
When an NMI interrupt occurs, the NMI handler checks to see if there is a callback registered for the interrupt
source, and if so, calls the registered callback function.

For more information, refer to the RA FSP (Flexible Software Package) documentation below.

Renesas Flexible Software Package (FSP) Documentation
Refer to “MCU Board Support Package” – “◆ R_BSP_GroupIrqWrite()”

Note: It the watchdog timer is configured to execute a reset (OFS0.IWDTRSTIRQS=1) when an error is
detected, do not use API function IWDT_Err_Detect_Test() to check for correct operation.

https://renesas.github.io/fsp/group___b_s_p___m_c_u.html?pos=577,19,4877,22,49264,21,49347,19
https://renesas.github.io/fsp/group___b_s_p___m_c_u.html?pos=577,19,4877,22,49264,21,49347,19

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 77 of 79
May. 31. 25

The following describes the registration and description example of the NMI interrupt callback function
(NMI_Handler_callback).

◎Register NMI interrupt callback function

This is a description example when registering a callback function of the sample software "RA_SelfTest.c".
Please register according to the user's system.

for (bsp_grp_irq_t irq = BSP_GRP_IRQ_IWDT_ERROR; irq <= BSP_GRP_IRQ_CACHE_PARITY; irq++){

 R_BSP_GroupIrqWrite(irq , NMI_Handler_callback);
 }

◎Description example of generating an IWDT interrupt factor in the NMI interrupt callback function
(NMI_Handler_callback) (blue text)

static void NMI_Handler_callback(bsp_grp_irq_t irq)
{
 /*Read NMISR register to discover NMI cause.*/
 switch(irq){
 case BSP_GRP_IRQ_IWDT_ERROR :
 if(IWDTSR_reg->IWDTSR_b.REFEF == 1)
 {
 Watchdog_Test_Failure();
 }
 else if(f_IWDT_ERROR_TEST == 0)
 {
 Watchdog_Test_Failure();
 }
 break;
 case BSP_GRP_IRQ_OSC_STOP_DETECT :
 Clock_Stop_Detection();
 break;
 ・
 ・
 ・
 default:
 break;
 }

 if(irq == BSP_GRP_IRQ_IWDT_ERROR)
 {
 f_IWDT_ERROR_TEST = 0;

 /*Clear flag*/
 IWDTSR_reg->IWDTSR_b.UNDFF = 0;

 __NOP(); __NOP(); __NOP(); __NOP(); __NOP(); __NOP();
 }
 else
 {
 // Error_Detected_Loop(ERROR_NMI_OTHER);
 Error_Detected_Loop(ERROR_NMI_OTHER);

 /*Should not return from an NMI*/
 while(1){;}
 }

}

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 78 of 79
May. 31. 25

Website and Support
Visit the following URLs to learn about the key elements of the RA MCU, download tools, components, and
related documentation, and get support.

• RA Product Information: www.renesas.com/ra
• RA (Flexible Software Package): www.renesas.com/FSP
• RA Support Forum: www.renesas.com/ra/forum
• Renesas Support: www.renesas.com/support

Reference Documents
[1] Arm® Cortex®-M23 Devices Generic User Guide Revision: r1p0

- 2.1.4 Core registers
- Chapter 3: The Cortex-M23 Instruction Set

[2] Arm®v8-M Architecture Reference Manual

- D1.1 Register index
- C2.4 Alphabetical list of instructions

All trademarks and registered trademarks are the property of their respective owners.

https://www.renesas.com/ra
https://www.renesas.com/FSP
https://www.renesas.com/ra/forum
https://www.renesas.com/support

RA Family IEC 60730/60335 Self Test Library for RA2 MCU (CM23 Class-C)

R01AN7507EJ0100 Rev.1.00 Page 79 of 79
May. 31. 25

Revision History

Rev. Date
Description

Page Summary
1.00 May 31. 2025 – First edition.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2020 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	Introduction
	Table of Contents
	1. Tests
	1.1 CPU
	1.1.1 CPU instruction test and CPU register test
	1.1.2 Test Error
	1.1.3 CPU Software API

	1.2 ROM
	1.2.1 CRC32 Algorithm
	1.2.2 Multi Checksum
	1.2.3 CRC Software API

	1.3 RAM
	1.3.1 RAM Block Configuration
	1.3.2 Reserved Area
	1.3.3 RAM Test Algorithm
	1.3.4 RAM Software API

	1.4 Clock
	1.4.1 Main Clock Frequency Monitoring by CAC
	1.4.2 Oscillation Stop Detection of Main Clock
	1.4.3 Clock Software API

	1.5 Independent Watchdog Timer (IWDT)
	1.5.1 IWDT Software API

	2. Example Usage
	2.1 CPU
	2.1.1 Power-On
	2.1.2 Periodic
	2.1.3 Preparation for CPU testing

	2.2 ROM
	2.2.1 Reference CRC Value Calculation in Advance
	2.2.2 Setting for the support Multi-checksum
	2.2.3 Power-On
	2.2.4 Periodic

	2.3 RAM
	2.3.1 Power-On
	2.3.2 Periodic

	2.4 Clock
	2.5 Independent Watchdog Timer (IWDT)
	2.5.1 OFS0 Register Setting Example (IWDT Related)
	2.5.2 Example of registering and writing an NMI interrupt callback function

	Website and Support
	Reference Documents
	Revision History

