
 Application Note

R01AN7508EJ0100 Rev.1.00 Page 1 of 48
Mar.31.25

RL78 Family
IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)
Introduction
Today, as automatic electronic controls systems continue to expand into many diverse applications, the
requirement of reliability and safety are becoming an ever increasing factor in system design.

For example, the introduction of the IEC60730 safety standard for household appliances requires
manufactures to design automatic electronic controls that ensure safe and reliable operation of their
products.

The IEC60730 standard covers all aspects of product design but Annex H is of key importance for design of
Microcontroller based control systems. This provides three software classifications for automatic electronic
controls:

1. Class A: Control functions, which are not intended to be relied upon for the safety of the equipment.

Examples: Room thermostats, humidity controls, lighting controls, timers, and switches.

2. Class B: Control functions, which are intended to prevent unsafe operation of the controlled equipment.

Examples: Thermal cut-offs and door locks for laundry equipment.

3. Class C: Control functions, which are intended to prevent special hazards

Examples: Automatic burner controls and thermal cut-outs for closed.

This Application Note provides guidelines on how to use flexible sample software routines to assist with
compliance with IEC60730 class C safety standards. These routines have been certified by VDE Test and
Certification Institute GmbH and a copy of the Test Certificate is available in the download package for this
Application Note.

The software routines provided are to be used after reset and also during the program execution. This
document and the accompanying sample code provide an example of how to do this.

Target Device
RL78/G23 MCU
RL78/G14 MCU
RL78/F24 MCU

R01AN7508EJ0100
Rev.1.00

Mar.31.25

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 2 of 48
Mar.31.25

Contents

1. Overview of Self-test Library .. 3

2. Self-test Library Functions ... 5
2.1 Instruction Decoding Test .. 5
2.2 CPU Register Test... 9
2.3 Invariable Memory Test – Flash ROM ... 17
2.4 Variable Memory Test – SRAM ... 21
2.5 System Clock Test... 25
2.6 Watchdog .. 29
2.7 MCU Anomaly Detection ... 30

3. Example Usage ... 31
3.1 CPU ... 32
3.2 Flash ROM .. 33
3.3 RAM ... 34
3.4 System Clock ... 35

4. Development Environment ... 36
4.1 CS+ Settings ... 37
4.2 e2stuido Settings .. 42

5. Benchmark Test results ... 46

6. Related Application Note ... 47
Home page and Support Contact .. 47

Revision History .. 48

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 3 of 48
Mar.31.25

1. Overview of Self-test Library
The self-test library (STL) consists of self-test functions targeting instruction decode, CPU registers, internal
memory, watchdog timer and system clock. As described below, the test harness provides an application
program interface (API) for each module that monitors. Each function is used according to its purpose. The
test harness uses the automatic generation function of the integrated development environment.

The self-test library functions are divided by module according to IEC60730 Class-C. In the test harness,
each test function can be selected in turn and executed standalone.

The system hardware required at least two independent clock sources (e.g., crystal/ceramic oscillator and an
independent operating oscillator or external input source). It is needed to provide an independent clock
reference for monitoring the system clock. RL78 can use the High speed and Low speed internal oscillators
which are independent of each other.

The self-test library is intended for implementation in a safety MCU. By integrating the safety section MCU
into the system, risk reduction can be achieved from failures and other anomalies.

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 4 of 48
Mar.31.25

RL78 self-test library includes the following self-test functions:

• Instruction decoding

Verifies that combinations of all addressing mode work correctly for all instructions of RL78 MCU

Refer to “IEC 60730-1:2013+A1:2015+A2:2020 Annex H - H2.18.5 equivalence class test.”

• CPU register

Test the following CPU registers.

All CPU general-purpose registers in all 4 register banks, Stack Pointer (SP), Program Status Word (PSW),
and extended register (CS and ES)

The internal data path is verified during the normal operation test of the above registers

Refer to “IEC 60730-1:2013+A1:2015+A2:2020 Annex H - Table H.11.12.7 1.CPU”

※ ABRAHAM algorithm is used for memory areas mapped as general-purpose registers.

• Invariable memory

Test internal Flash memory of the MCU.

Refer to “IEC 60730-1:2013+A1:2015+A2:2020 Annex H - H2.19.4.1 CRC - Single Word”

• Variable memory

Test internal SRAM of the MCU

Refer to “IEC 60730-1:2013+A1:2015+A2:2020 Annex H - H.2.19.1 Abraham test”

• System clock

Test using TAU’s input capture feature against the system clock (this test requires an internal or external
independent reference clock).

Refer to “IEC Reference - IEC 60730-1:2013+A1:2015+A2:2020 Annex H - H2.18.10.1 Frequency
monitoring”

• CPU/ Program Counter (PC)

To confirm that the program is executing the sequence within the specified time, it is confirmed using the
built-in watchdog timer that operates with a clock independent of the CPU. A process is implemented in the
test harness to monitor whether the program is executing the expected sequence order.

Refer to “IEC 60730-1:2013+A1:2015+A2:2020 Annex H - H2.18.10.3 time-slot and logical monitoring”

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 5 of 48
Mar.31.25

2. Self-test Library Functions
2.1 Instruction Decoding Test
This test verifies that all instructions of RL78/G23 core in all addressing mode perform correctly. There are 2
types of execution: one with function calls from test harness process, and one without function calls from
test harness process. The test startup without function calls from test harness process verifies all
instructions before initializing “C” environment with a modified “startup.asm” module. If any anomaly is
detected, stl_RL78_InstructionTest_Fail is called.

The target addressing mode and instructions are as follows.
For detail of addressing mode instructions, please refer to “RL78 Family User’s Manual: Software”
(R01US0015).
(1) Instruction Address Addressing
There are 4 types of instruction address addressing as follows:
・Relative addressing
・Immediate addressing
・Table indirect addressing
・Register direct addressing
(2) Addressing for Processing Data address
There are 9 types of addressing for processing data address as follows:
・Implied addressing
・Register addressing
・Direct addressing
・Short direct addressing
・SFR addressing
・Register indirect addressing
・Based addressing
・Based indexed addressing
・Stack addressing
(3) RL78/G23 Instructions
 RL78-S3 core has 81 types of instructions as follows:
【8-bit Data Transfer Instructions】
MOV XCH ONEB CLRB MOVS
【16-bit Data Transfer Instructions】
MOVW XCHGW ONEW CLRW
【8-bit Operation Instructions】
ADD ADDC SUB SUBC AND OR XOR CMP CMP0
CMPS
【16-bit Operation Instructions】
ADDW SUBW CMPW

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 6 of 48
Mar.31.25

【Multiply/Divide/Multiply & Accumulate Instructions】
MULU MULUH MULH DIVHU DIVWU MACHU MACH
【Increment/Decrement Instructions】
INC DEC INCW DECW
【Shift Instructions】
SHR SHRW SHL SHLW SAR SARW
【Rotate Instructions】
ROR ROL RORC ROLC ROLWC
【Bit Manipulation Instructions】
MOV1 AND1 OR1 XOR1 SET1 CLR1 NOT1
【Call Return Instructions】
CALL CALLT BRK RET RETI RETB
【Stack Manipulation Instructions】
PUSH POP
MOVW SP,src
MOVW AX,SP
ADDW SP,#Byte
SUBW SP,#byte
【Unconditional Branch Instructions】
BR
【Conditional Branch Instructions】
BC BNC BZ BNZ BH BNH BT BF BTCLR
【Conditional Skip Instructions】
SKC SKNC SKZ SKNZ SKH SKNH
【CPU Control Instructions】
SEL RBn NOP EI DI HALT STOP

Note: BRK, RETB, RETI, HALT, STOP are excluded from the instruction test.

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 7 of 48
Mar.31.25

2.1.1 CPU Instruction Test – Software API
Table 2-1 Source File: Periodic CPU instruction test

STL File name Header File

stl_RL78_InstructionTest.asm stl.h

Test Harness File Name Header File

main.c

Syntax

unsigned char stl_RL78_InstructionTest (void)

Description

Test RL78 instructions other than the ones listed below

EI DI

The instructions listed above are tested in initial processing.

The call function should not generate an interrupt during the test. Also, the test should start with register
bank0 selected

Test harness control file (main.c) calls stl_RL78_InstructionTest_Fail when an error is detected.

Input Parameters

None N/A

Output Parameters

None N/A

Return Values

unsigned char

Test result

0 = Test passed

1 = Test or parameter check failed

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 8 of 48
Mar.31.25

Table 2-2 Source File: Initial CPU instruction test

STL File Header File

stl_RL78_InstructionTest.asm stl_RL78_InstructionTest.inc

Test Harness File Names Header File

startup.asm

Syntax

stl_RL78_InitialInstructionTest

Description

Test all RL78 instructions

This module is executed before the application system is initialized. No function calls are used.

When it finishes normally, jump to stl_RL78_InstructionTest_Pass

When an error is detected, jump to stl_RL78_InstructionTest_Fail

Input Parameters

None N/A

Output Parameters

None N/A

Return Vales

None N/A

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 9 of 48
Mar.31.25

2.2 CPU Register Test
This chapter describes each routine of the CPU register test. The test harness control file “main.c” contains
API samples written in C language for each C register test.

These modules test the basic operation of CPU. Each API function informs the test result by return values.

The target CPU registers are as follows:

 General-Purpose Register: AX、HL、DE、BC of Register bank 0~3

Figure 2-1 Configuration of General-Purpose Registers

 Stack Pointer (SP)

Figure 2-2 Format of Stack Pointer

 Program Status Word (PSW)

Figure 2-3 Format of Program Status Word

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 10 of 48
Mar.31.25

 CS register

Figure 2-4 Configuration of ES

 ES register

Figure 2-5 Configuration of ES

 Program Counter (PC)

Figure 2-6 Format of Program Counter

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 11 of 48
Mar.31.25

2.2.1 CPU Register Test – Software API
Table 2-3 Source file: CPU general-purpose register test

STL File Name Header File

stl_RL78_RegisterTest.asm stl.h

Test Harness File Name Header File

main.c

Syntax

unsigned char stl_RL78_RegisterTest(unsigned char Bank)

Description

Test RL78 general-purpose registers.

Register AX, HL, DE, BC in specified register bank (Bank 0, 1, 2, 3)

ABRAHAM algorithm is performed on memory areas mapped as registers.

It is the calling function’s responsibility to ensure no interrupts occur during this test. In addition, Register
Bank 0 must be selected when this test starts.

The original register contents are restored on completion of the test.

The function RegisterTest_Failure is called by the test harness control file (main.c) when an error is
detected.

Input Parameters

unsigned char Bank Target register bank (0~3)

Output Parameters

None N/A

Return Values

unsigned char

Test result

0 = Test passed

1 = Test or parameter check failed

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 12 of 48
Mar.31.25

Table 2-4 Source file: CPU register test – PSW

STL File Name Header File

stl_RL78_registertest_psw.asm stl.h

Anomality Monitoring Process File Name Header File

r_main.c

Syntax

unsigned char stl_RL78_registertest_psw(void)

Description

Test 8-bit Program Status Word (PSW) register

The following tests are performed:

1. Write h'55 to the register

2. Read out the register and check that it is equal to the written value

3. Write h'AA to the register

4. Read out the register and check that it is equal to the written value

It is the calling function’s responsibility to ensure no interrupts occur during this test.

The original register content is restored on completion of the test

The function RegisterTest_Failure is called by the test harness control file (main.c) when an error is
detected.

Input Parameters

None N/A

Output Parameters

None N/A

Return Values

unsigned char

Test result

0 = Test passed

1 = Test or parameter check failed.

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 13 of 48
Mar.31.25

Table 2-5 Source file: CPU register test - SP

STL File Name Header File

stl_RL78_registertest_stack.asm stl.h

Anomality Monitoring Process File Name Header File

r_main.c

Syntax

unsigned char stl_RL78_registertest_stack(void)

Description

Test 16-bit Stack pointer (SP) register

The following tests are performed

1. Write h'5555 to the register

2. Read out the register and check that it is equal to h'5554

3. Write h'AAAA to the register

4. Read out the register and check that it is equal to the written value

It is the calling function’s responsibility to ensure no interrupts occur during this test.

The original register content is restored on completion of the test

The function RegisterTest_Failure is called by the test harness control file (main.c) when an error is
detected.

Input Parameters

None N/A

Output Parameters

None N/A

Return Values

unsigned char

Test Result

0 = Test passed。

1 = Test or parameter check failed

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 14 of 48
Mar.31.25

Table 2-6 Source file: CPU register test – CS

STL File Name Header File

stl_RL78_registertest_cs.asm stl.h

Anomality Monitoring Process File Name Header File

r_main.c

Syntax

unsigned char stl_RL78_registertest_cs(void)

Description

Test the 8-bit CS register

The following tests are performed.

1. Write h'05 to the register

2. Read out the register and check that it is equal to the written value

3. Write h'0A to the register

4. Read out the register and check that it is equal to the written value

Please note that the top 4 bits are fixed to ‘0’

It is the calling function’s responsibility to ensure no interrupts occur during this test.

The original register content is restored on completion of the test

The function RegisterTest_Failure is called by the test harness control file (main.c) when an error is
detected.

Input Parameters

None N/A

Output Parameters

None N/A

Return Values

unsigned char

Test result

0 = Test passed

1 = Test or parameter check failed

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 15 of 48
Mar.31.25

Table 2-7 Source file: CPU register test – ES

STL File Name Header File

stl_RL78_registertest_es.asm stl.h

Anomality Monitoring Process File Name Header File

r_main.c

Syntax

unsigned char stl_RL78_registertest_es(void)

Description

Test the 8bit data extension (ES) register

The following tests are performed

1. Write h'05 to the register

2. Read out the register and check that it is equal to the written value

3. Write h'0A to the register

4. Read out the register and check that it is equal to the written value

Please note that the top 4 bits are fixed to ‘0’

It is the calling function’s responsibility to ensure no interrupts occur during this test.

The original register content is restored on completion of the test

The function RegisterTest_Failure is called by the test harness control file (main.c) when an error is
detected.

Input Parameters

None N/A

Output Parameters

None N/A

Return Values

unsigned char

Test Result

0 = Test passed

1 = Test or parameter check failed

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 16 of 48
Mar.31.25

Table 2-8 Source file: CPU register test – PC

STL File Name Header File

stl_RL78_Registertest_pc.asm stl.h

Test Harness File Name Header File

main.c

Syntax

unsigned char stl_RL78_RegisterTest_pc(void)

Description

The following tests are performed

1. Set the argument (A register) to 0x55

2. Call a function that returns the reversed result of the argument

3. Confirm that the return value is 0xAA

4. Confirm that the return value is equal to the return address.

It is the calling function’s responsibility to ensure no interrupts occur during this test.

The function RegisterTest_Failure is called by the test harness control file (main.c) when an error is
detected.

Input Parameters

None N/A

Output Parameters

None N/A

Return Values

unsigned char

Test result

0 = Test passed

1 = Test or parameter check failed

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 17 of 48
Mar.31.25

2.3 Invariable Memory Test – Flash ROM
This section describes the Flash memory test using CRC routines. CRC is a fault / error control technique
which generates a single word or checksum to represent the contents of memory. A CRC checksum is the
remainder of a binary division with no bit carry (XOR used instead of subtraction), of the message bit stream,
by a predefined (short) bit stream of length n + 1, which represents the coefficients of a polynomial with
degree n. Before the division ‘n’ zeros are appended to the message stream. CRCs are popular because
they are simple to implement in binary hardware and are easy to analyze mathematically.

The Flash ROM test can be verified by generating a reference CRC value for the contents of the ROM and
storing this in memory. During the memory self-test, the same CRC algorithm is used to generate a CRC
value, which is compared with the reference CRC value. The technique recognizes all one-bit errors and a
high percentage of multi-bit errors.

The complicated part of using CRCs is if you need to generate a CRC value that will then be compared with
other CRC values produced by other CRC generators. This proves difficult because there are a number of
factors that can change the resulting CRC value even if the basic CRC algorithm is the same. This includes
the combination of the order that the data is supplied to the algorithm, the assumed bit order in any look-up
table used and the required order of the bits of the actual CRC value. Any of the test functions can be
repeated, thus allowing the option of a full CRC calculation to be made or a CRC calculation of a smaller
segments suitable to the operation of the end application. For a full calculation (or first part of an iterative
calculation), an initial value of h’0000 is used or the previous partial result is provided as the starting point for
the next calculation stage.

The hardware module is “the general-purpose CRC function” embedded in RL78 device. The hardware
module while using the same fundamental CRC algorithm uses a different data format for calculating the
reference CRC value.

As a note for debugging, when a software break is set in the debugger, the instruction code at the specified
address is temporarily rewritten to the instruction for the break since any of the test functions can be
executed repeatedly. Therefore, CRC mismatch may occur.

2.3.1 CRC 16-CCITT algorithm
RL78 CRC module supports CRC16-CCITT.

Hardware algorithm
• CCITT 16 Polynomial = 0x1021 (x16 + x12 + x5 + 1)
• Input Data width = 8bits
• LSB first (operation is performed with the bit order reversed on input, and the operation result is also
output with the bit order reversed)
• Initial value = 0x0000 or 16 bit result of previous partial CRC calculation

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 18 of 48
Mar.31.25

2.3.2 Hardware CRC – Software API
Table 2-9 Source file: Hardware CRC calculation

STL File Name Header File

stl_RL78_peripheral_crc.asm stl.h

Test Harness File Header File

main.c

Syntax

unsigned short stl_RL78_peripheral crc(unsigned short crc, CHECKSUM_CRC_TEST_AREA *p)

Description

This function calculates a CRC value over the address range supplied using the hardware CRC peripheral
(general purpose CRC). The start address and calculation range (Length) are passed by the calling
function via the structure detailed in the table below. The calculated result is returned. This can be either a
partial result of full result depending upon the parameters provided.

The harness file (main.c) compares the result of calculated CRC in the divided areas.

Note: Set the same value as that set in CC-RL for the range subject to CRC check and the address
where CRC value is saved in the invariable memory.

Input Parameters

unsigned short crc Initial value for CRC calculation (0 is specified only for the first
block, otherwise it is the previous result)

CHECKSUM_CRC_TEST_AREA *p Pointer to structure that stores the start address and calculation
range

Output Parameters

None N/A

Return Values

unsigned short 16bit CRC value (Full or partial result)

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 19 of 48
Mar.31.25

Table 2-10 Source file: Hardware CRC parameter structure

Syntax

static CHECK_CRC_TEST_AREA lv_CheckCrc;

Description

Structure declaration and instance providing the parameters to be passed to the hardware CRC module
(stl_RL78_peripheral_crc.asm) by the calling function in main.c.

Input Parameters

unsigned long m_length; Range (length = number of bytes) of target memory

unsigned long m_start_address Start address for CRC calculation

Output parameters

None N/A

Return Values

None N/A

Definition of test harness CRC calculation target
typedef struct CRC_RANGE

{

 uint32_t Start;

 uint32_t End;

}CRC_RANGE;

The ROM test calculates the CRC value in units of 32 Kbytes and checks for a match with the CRC saved in
a specific area.

Note: On-chip debugger occupies 512bytes from the last address in ROM. Therefore, the CRC storage
address is the last address of ROM – 512 – (Number of blocks*2) at the beginning.
#define CRC_RANGE_NUM (sizeof(CRC_Ranges)/sizeof(CRC_RANGE))

const CRC_RANGE CRC_Ranges[] =

{

 {0x00000,0x07FFF}, /* 32K */

 {0x08000,0x0FFFF}, /* 64K */

 {0x10000,0x17FFF}, /* 96K ,0x17FFF - 512 - (3 * 2) */

 {0x18000,0x1FFFF}, /* 128K ,0x1FFFF - 512 - (4 * 2) */

 {0x20000,0x27FFF}, /* 160K */

 {0x28000,0x2FFFF}, /* 192K ,0x2FFFF - 512 - (6 * 2) */

 {0x30000,0x37FFF}, /* 224K */

 {0x38000,0x3FFFF}, /* 256K ,0x3FFFF - 512 - (8 * 2) */

 {0x40000,0x47FFF}, /* 288K */

 {0x48000,0x4FFFF}, /* 320K */

 {0x58000,0x5FFFF}, /* 384K ,0x5FFFF - 512 - (12 * 2) */

 {0x60000,0x67FFF}, /* 416K */

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 20 of 48
Mar.31.25

 {0x68000,0x6FFFF}, /* 448K */

 {0x70000,0x77FFF}, /* 480K */

 {0x78000,0x7FFFF}, /* 512K ,0x7FFFF - 512 - (16 * 2) */

 {0x80000,0x87FFF}, /* 544K */

 {0x88000,0x8FFFF}, /* 576K */

 {0x90000,0x97FFF}, /* 608K */

 {0x98000,0x9FFFF}, /* 640K */

 {0xA0000,0xA7FFF}, /* 672K */

 {0xA8000,0xAFFFF}, /* 704K */

 {0xB0000,0xB7FFF}, /* 736K */

 {0xB8000,0xBFFFF - 512 - (24 * 2)} /* 768K */

};

Please change with the target MCU.

Definition of CRC calculation result storage area

It is defined in stl.h.
#define DEF_ROM_CRC (0xBFDD0)

Please change with the target MCU.

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 21 of 48
Mar.31.25

2.4 Variable Memory Test – SRAM
ABRAHAM test is a method of RAM test that meets IEC 60730-1:2013+A1:2015+A2:2020 Annex H –
H2.19.1.

The algorithm itself is destructive and does not save the current RAM values. Therefore, RAM contents must
be saved if tests are performed after initialization of the application system or during running. The additional
test module (stl_RL78_InitialRamTest) is designed to be executed before initializing the system, so that the
whole memory area can be tested before starting the main application.

The RAM area to be tested can’t be used for any other purpose during testing. This makes testing RAM used
as a stack particularly difficult. This area can only be tested before the application’s C stack is initialized or
after the application process is finished.

The next chapter describes the ABRAHAM test.

2.4.1 Algorithm
(1) ABRAHAM

ABRAHAM algorithm consists of 10 elements that perform 30 different processes in total. It detects the
following faults:

1. Stuck At Faults (SAF)

• The logic value of a single cell or contiguous cells is always 0 or 1

2. Transition Faults (TF)

• A single cell or contiguous cells does not transit from 0→1 or 1→0

3. Coupling Faults (CF)

• The state or transition of a cell value causes the value of other cell to change

4. Address Decoder Faults (AF)

• Failure affects address decoding

• Unable to access a certain address cell

• Unable to access a certain cell

• Unable to access multiple cells simultaneously with a certain address

• A certain cell is accessed from multiple addresses

⇔ (w0) Initialize ⇔ ：Perform in ascending or descending order of address

↓ (r0, w1) ↑ (r1) Sequence 1 ↓ ：Perform in a descending order of the address

↓ (r1, w0) ↑ (r0) Sequence 2 ↑ ：Perform in an ascending order of the address

↑ (r0，w1) ↓ (r1) Sequence 3 w0 ： write 0 to the cell

↑ (r1，w0) ↓ (r0) Sequence 4 w1 ： write 1 to the cell

↓ (r0，w1，w0) ↑ (r0) Sequence 5 r0 ： Read 0 from the cell as expected

↑ (r0，w1，w0) ↑ (r0) Sequence 6 r1 ： Read 1 from the cell as expected

⇔ (w1) Reset

↑ (r1，w0，w1) ↑ (r1) Sequence 7

↓ (r1，w0，w1) ↑ (r1) Sequence 8

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 22 of 48
Mar.31.25

2.4.2 Variable Memory Test – Software API
2.4.2.1 Time Division ABRAHAM
Execute after initialization of the application system. Uses C stack resources for execution with normal
function calls from the test harness. It is possible to test part or all of RAM area, but the area to be tested
must be buffered because it is destructive. Therefore, it is not recommended to test the entire RAM area in a
single run. Also, be careful that the test itself does not destroy the RAM area used as the stack area. The
time division ABRAHAM executes ABRAHAM by treating the divided areas.

⇔[x,y] (w0) Initialize ⇔[x,y] ：Perform in ascending or descending order

↓ [x,y](r0, w1) ↑ (r1) Sequence 1 of address in the range of x and y

↓ [x,y](r1, w0) ↑ (r0) Sequence 2 ↓[x,y] ：Perform in descending order of address

↑ [x,y](r0，w1) ↓ (r1) Sequence 3 in the range of x and y

↑[x,y] (r1，w0) ↓ (r0) Sequence 4 ↑[x,y] ：Perform in aescending order of address

↓ [x,y] (r0，w1，w0) ↑ (r0) Sequence 5 in the range of x and y

↑ [x,y] (r0，w1，w0) ↑ (r0) Sequence 6 w0 ： write 0 to the cell

⇔ [x,y] (w1) Reset w1 ： write 1 to the cell

↑ [x,y] (r1，w0，w1) ↑ (r1) Sequence 7 r0 ： Read 0 from the cell as expected

↓ [x,y] (r1，w0，w1) ↑ (r1) Sequence 8 r1 ： Read 1 from the cell as expected

3-partition case is shown in Figure 2-7. [x,y] is [m1,m2], [m1,m3], [m2,m3] respectively.

Figure 2-7 Overview of Time Division ABRAHAM

For example, if the memory is divided into 3 parts, testing the combination of m1 and m2 at period t, m1 and
m3 at period t+1, m2 and m3 at period t+2, the results are equivalent to the test the entire memory at once.

m1

m2

m3

Period t

m1

m2

m3

Period t+1

m1

m2

m3

Period t+2

Whole
RAM
area

Two of the three areas
will be tested

Change the test area at
each cycle.

Test area 1

Test area 2

mn : n-th area of divided RAM
Whole RAM area (m1,m2,...mn)

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 23 of 48
Mar.31.25

Table 2-11 Source file: Variable memory test

STL File Name Header File

stl_RL78_Ram.asm stl.h

Test Harness File Header File

main.c

Syntax

unsigned char stl_RL78_RamTest (unsigned char *pRam1, unsigned char *pRam2, unsigned short Size)

Description

Test the address range of RAM specified by the calling function using the time division ABRAHAM
algorithm and return the result (pass/fail). This module should be executed after initialization of the
application system.

The calling function must always start with register bank 0 selected.

The contents of the area under test must be saved beforehand. The test is executed destructively.

Use register bank 1 as the work area.

Input Parameters

unsigned char *pRam1 Pointer to the first address of RAM1 to be tested

unsigned char *pRam2 Pointer to the first address of RAM2 to be tested

unsigned short Size RAM range to be tested (number of bytes)

Output Parameters

None N/A

Return values

unsigned char

Test result

0 = Test passed

1 = Test or parameter check failed

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 24 of 48
Mar.31.25

2.4.2.2 Initial ABRAHAM
Initial ABRAHAM test is performed before the application system is initialized. It does not use function calls
from the test harness for execution. The test is started by a jump from the modified “startup.asm” module,
and a return to the “startup.as” module is also done by a jump. The test results are stored in the 8-bit
accumulator(A). Thus, the entire area of RAM can be tested before booting the system and initializing the “C”
environment.

Table 2-12 Source file: Initial ABRAHAM

STL File Name Header File

stl_RL78_InitialmRam.asm None

Test Harness File Header File

startup.asm None

Syntax

stl_RL78_InitialRamTest

Description

Test the address range of RAM specified by the calling function using the time division ABRAHAM
algorithm and return the result (pass/fail). This module should be executed after initialization of the
application system. No function call is used. The test result if done through the function
‘stl_RL78_InitialRamTestResult’.

Note: the function ‘stl_RL78_InitialRamTestResult’ is in the module main.c.

Input Parameters

CPU register AX 16-bit register that stores the first address of the target RAM

CPU register BC 16-bit register that stores the target RAM range (number of bytes)

Output Parameters

None N/A

Return Values

CPU register A

Test result

0 = Test passed

1 = Test or parameter check failed

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 25 of 48
Mar.31.25

2.5 System Clock Test
A self test module provided for RL78 self test library in order to be able to test the internal system clock (CPU
and Peripheral clocks). These modules can be used by the application to detect the correct operation and
deviation in the main system clock during operation of the application. Please note that if the internal low
speed oscillator is used for measurement, the accuracy of the system clock measurement will be reduced
due to the greater tolerance of the internal low speed oscillator. Therefore, only the relative operation of the
system clock can be obtained, which should still be sufficient to establish that the system clock is operating
correctly and within acceptable limits.

The principle behind both measurement approaches is that the system can detect if the operating frequency
of the main clock deviates from a predefined range during runtime. The accuracy of the measurement
obviously depends on the accuracy of the reference clock source. For example, an external signal input or
32KHz crystal can provide a more accurate measurement for the system clock than the internal low speed
oscillator. However, it requires extra components.

A “Pass / Fail” status of the test is returned. Also implemented is a “No Reference Clock” detection scheme
which returns a different status value to the normal test, to identify the appropriate fault state. The module
compares the measure (captured) time is within a reference window (upper and lower limit values) using the
user defined reference values set in ‘stl_RL78_hw_clocktest.inc’ header file. The header file defines the
reference values for hardware measurement and input test port pins.

2.5.1 Hardware Measurement
All current RL78 devices include an option in the Timer Array Unit (TAU) channel 5 that provides additional
input capture sources that are designed to be able to test the system clock operation. The extra capture
inputs are selected as part of the “safety” register (TIS0) and include the following:

• Internal Low-speed oscillator (fiL)

• External 32KHz oscillator (Sub Clock) (fsub)

• External signal input (TIO5)

Figure 2-8 Timer Array Unit Channel 5 configuration

Note: In RL78/G14, F24, Channel 1 is the measurement channel.

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 26 of 48
Mar.31.25

The principle behind the hardware measurement is based on the input capture measurement of the
reference clock in TAU channel 5. As this is a hardware capture measurement the time captured is the
“period” of the reference clock as that of the system clock.

The measurement sequence is.

• Synchronize to the reference clock (Wait for first capture event)

• Wait for the next capture event

• Compare the value in the capture register against the high and lower limit reference values

The anomaly monitoring process provides a sample based on the following settings.

System clock = 32 MHz

Reference clock = 32.768 kHz

Therefore, the calculation is simple 32000000/32768 = 976

Note: The internal low-speed oscillator of RL78/G14, F24 is 15kHz.

The capture value should be set to the allowed fluctuation range relative to the upper and lower limits of the
reference values.

【Timer setting (setting of automatic generation function)】

Channel 5: Input pulse interval measurement

Timer input; fIL

Pin input valid range: Rising edge.

Interrupt: not generated

Note: RL78/G14, F24 use Channel 1

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 27 of 48
Mar.31.25

Table 2-13 Source File: Hardware Clock test

STL File Name Header File

stl_RL78_hw_clocktest.asm stl_RL78_hw_clocktest.inc

stl.h

Test Harness File Header File

main.c

Syntax

void stl_RL78_Init_hw_clocktest (unsigned char Select)

Description

Start capturing the system clock using hardware measurements (TAU channel 5)

Input Parameters

Select

Input of TAU Channel 5

0: Input signal of timer input pin (TI05)

5: Subsystem clock (fSUB)

Other: Low-speed on-chip oscillator clock (fIL)

Output Parameters

None N/A

Return Values

None N/A

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 28 of 48
Mar.31.25

Syntax

unsigned char stl_RL78_hw_clocktest(void)

Description

This function tests the system clock using the hardware measurement (TAU channel 5) feature. The
measured result (capture value) is compared against the upper and lower limit values defined in the clock
test header file (stl_RL78_hw_clocktest.inc) and the result status (Pass / Fail / No reference clock) is
returned to the calling function.

Input Parameters

hwMAXTIME Upper time limit compare value (defined in stl_RL78_hw_clocktest.inc)

hwMINTIME Lower time limit compare value (Defined in stl_RL78_hw_clocktest.inc)

CAPTURE_interrupt_FLAG Timer channel Capture Interrupt Flag (stl_RL78_hw_clocktest.inc)

Output Parameters

None N/A

Return Values

unsigned char

Test result

0 = Test passed.

1 = Test measurement failed (Outside the reference window)

2 = Test measurement failed (No reference clock detected)

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 29 of 48
Mar.31.25

2.6 Watchdog
A built-in watchdog timer monitors whether the program is operating as expected.

【Watchdog setting (setting of automatic generation function)】

 Waterdog timer: enable.

 Watchdog timer operation in HALT/STOP mode: continues.

 Overflow Time: 125ms(2^12/fIL)

 Window Open Period: 50%

 Interval interrupt is generated when 75% of the overflow time + 1/4 fIL is reached: not used.

2.6.1 Monitoring by built-in WDT
Table 2-14 Source file: built-in WDT clear

STL File Name Header File

Config_WDT.c Config_WDT.h

Test Harness File Header File

main.c

Syntax

void R_Config_WDT_Restart (void)

Description

Refresh the built-in WDT

Input Parameters

None N/A

Output Parameters

None N/A

Return Values

Noe N/A

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 30 of 48
Mar.31.25

2.7 MCU Anomaly Detection
RL78/G23 has SFR to check the reset factor. The self-test library can be configured to analyze the reset
factor and call the following function when it is not a power-up reset.

Note: RL78/F24 has no RAM parity error.

Factor Option settings

(stl_RL78_TestConfig.inc)

Calling functions

Header File Illegal_MemoryAccess_enabled Illegal_MemoryAccess

RAM parity error RAM_Parity_Failure_enabled RAM_Parity_Failure

Watchdog timer over Watchdog_Test_enabled Watchdog_Test_Failure

Execution of illegal orders Illegal_InstructionExecution_enabl
ed

Illegal_InstructionExecution

Voltage abnormal Voltage_Test_Reset_enabled Voltage_Test_Failure_Reset

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 31 of 48
Mar.31.25

3. Example Usage
In addition to the actual test software source files, the CS+/e2studio test harness workspace is provided
which includes application examples demonstrating how the tests can be run. This code should be examined
in conjunction with this document to see how the various test functions are used.
The testing can be split into two parts:

(1) Power-on Tests
These are tests can be run following a power on or reset. They should be run as soon as possible to ensure
that the system is working correctly. These tests are
• All instructions test
• Initial RAM test using ABRAHAM algorithm
• All register test
• Flash memory CRC test

The clock test may be run at a later time depending on the initial clock speed if the clock is to establish that
the maximum clock speed is to be measured.

(2) Periodic Tests
These are tests that are run regularly throughout normal program operation. This document does not provide
a judgment of how often a particular test should be ran. How the scheduling of the periodic tests is performed
is up to the user depending upon how their application is structured.

 RAM test

These tests should use the “system” Ram test modules as these are designed to test the memory in
small once the system is initialised. They can be used in small in order to minimise the size of the
buffer area needed to save the application data.

 Register test

These are dependent upon the application timing.

 Periodic instruction test

These are dependent upon the application timing.

 Flash memory test

These modules are designed to be able to accumulate a CRC result over a number of passes. In
this way they can be used to suit the system operation.

The clock test modules can be run at any time to suit the application timing

The following sections provide an example of how each test can be used.

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 32 of 48
Mar.31.25

3.1 CPU
If a fault is detected by any of the CPU tests, then this is very serious. The aim of this test should be to get to
a safe operating point, where software execution is not relied upon, as soon as possible.

3.1.1 Power-on Tests
All the CPU tests should be run as soon as possible following a reset.

3.1.2 Periodic
If testing the CPU registers periodically the function is designed to be run independently and so can be
operated at any time to suit the application. Each function restores the original register data on completion of
test so as not to corrupt the operation of the application system. It is important that interrupts are disabled
during these tests.

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 33 of 48
Mar.31.25

3.2 Flash ROM
The ROM is tested by calculating a CRC value over a certain range of the Flash memory contents and
comparing with a reference CRC value that must be added to a specific location in the ROM not included in
the CRC calculation.

The CS+ /e2Studio tool chain can be used to calculate and add a CRC value and place at a location
specified by the user. CS+ /e2Studio grants three types of CRC: “general-purpose CRC”, “high-speed CRC
(CCR-16-CCITT)”, and “high-speed CRC (SENT)”. Hardware CRC calculation provides in this library
(function “stl_RL78_peripheral_crc”) corresponds to the “general-purpose CRC”. See Figure 4-3 CS+/
e2Studio Hex Output Options for how to incorporate the CRC value in CC-RL

3.2.1 Power-on Tests
All the ROM memory used must be tested at power up. Both hardware and software CRC modules are
capable of calculating the CRC value over the whole memory range.

3.2.2 Periodic
It is suggested that the periodic testing of Flash memory is done in stages, depending on the time available
to the application. The application will need to save the partially calculated result if using the software
module. This value can then be set as starting point for the next stage of the CRC calculation.

When using the hardware peripheral unit, the partial CRC result value could be left in the result register of
the hardware CRC peripheral unit, but it is advised to save this value and compare it before starting the next
part of the calculation.

In this way all of the Flash memory can be verified in time slots convenient to the application.

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 34 of 48
Mar.31.25

3.3 RAM
When verifying the RAM, it is important to remember the following points:

 RAM being tested cannot be used for anything else including the current stack.

 Any test requires a RAM buffer where memory contents can be safely copied to and restored from.

 The stack area cannot be tested after initializing the system unless its contents are relocated to another
area and the stack pointer is changed accordingly. Also, no interrupt processing is allowed during the
operation.

3.3.1 Power-on Tests
All instructions test of MCU is performed at Power-on or reset. If the test fails, it jumps to
stl_RL78_InstructionTest_Fail without calling the main function. It is recommended to use initial RAM test
modules after all instructions test is done. These modules are designed specifically for testing all RAM areas
at Power-on or reset. They are also suitable to be executed before initializing the system and C stack, since
they do not require function calls but destroy the RAM contents. In this library, the initial RAM test is
implemented in the assembler file startup.asm.

3.3.2 Periodic
Periodic testing of the Ram memory is usually done in small stages, depending on the time available to the
application and the available space necessary to buffer the system Ram contents during testing. Each stage
provides a pass / fail status over the range specified, in this way all of the Ram memory can be verified time
slots convenient to the application.

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 35 of 48
Mar.31.25

3.4 System Clock
If a fault is detected with the system clock then this is very serious. The aim of this test should be to get to a
safe operating point, where the system can be controlled using a different known clock.

3.4.1 Power-on Tests
The system clock should be verified at power on or reset. It may be necessary to test the clock once the
system has been initialized and the full system clock frequency has been set and stabilized.

3.4.2 Periodic
Periodic testing of the system clock can be made at any time where the application has the time available.
This is because the reference clock is typically much slower than the system clock in order to increase the
accuracy of the clock measurement.

(System Clock = 32MHz, Reference Clock = 32KHz)

Note: The reference clock of RL78/G14, F24 is 15KHz.

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 36 of 48
Mar.31.25

4. Development Environment
• E2-Lite On-chip debugging emulator
• RL78/G23 Fast Prototyping Board RL78/G23（128 pin LFQFP）
• Tool chain CS+ Version 8.1.0.00, CC-RL Version1.13.0
• MCU R7F100GSN2DFB
• Internal clock 32 MHz High speed on-chip Oscillator

System clock = 32 MHz
• Low speed clock 32 kHz Low speed on-chip oscillator

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 37 of 48
Mar.31.25

4.1 CS+ Settings
4.1.1 Common Options

Figure 4-1 CS+ Common Options

4.1.2 Link Options

Figure 4-2 CS+ Link Options

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 38 of 48
Mar.31.25

4.1.3 Hex Output Options

Figure 4-3 CS+ Hex Output Options

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 39 of 48
Mar.31.25

4.1.4 Download file for Debug Tool Configuration

Figure 4-4 CS+ Download file for Debug Tool Configuration

4.1.5 Code Generation (Design Tool)

Figure 4-5 Clock Generation Circuit

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 40 of 48
Mar.31.25

Figure 4-6 System Setting

Figure 4-7 Periodic Timer Setting

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 41 of 48
Mar.31.25

Figure 4-8 WDT Setting

Figure 4-9 Port Setting

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 42 of 48
Mar.31.25

4.2 e2stuido Settings
4.2.1 Complier Options

Figure 4-10 C Source Include Path

Figure 4-11 Optimization

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 43 of 48
Mar.31.25

4.2.2 Assembler Options

Figure 4-12 asm Source Include Path

4.2.3 Linker Options

Figure 4-13 Device Setting

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 44 of 48
Mar.31.25

4.2.4 Converter Options

Figure 4-14 CRC Calculation Setting

Set the output destination address and calculation range according to the MCU

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 45 of 48
Mar.31.25

4.2.5 Debug Configurations

Figure 4-15 Download file for e2studio debug tool configuration

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 46 of 48
Mar.31.25

5. Benchmark Test results

Library functions Number of bytes tested Processing time ROM size
CPU instruction decode test
stl_RL78_InitialInstructionTest

- 600µs 562bytes

CPU instruction decode test
stl_RL78_InstructionTest

- 300µs 12939bytes

CPU general-purpose register test
stl_RL78_registertest

- 200µs 1126bytes

CPU register test - PSW
stl_RL78_registertest_psw

- 1.343µs 43bytes

CPU register test - SP
stl_RL78_registertest_stack

- 1.125µs 50bytes

CPU register test - CS
stl_RL78_registertest_cs

- 1.031µs 43bytes

CPU register test - ES
stl_RL78_registertest_es

- 1.031µs 41bytes

CPU register test - PC
stl_RL78_registertest_pc

- 0.857µs 17bytes

Hardware CRC
stl_RL78_peripheral_crc

1024 bytes 700us

73bytes

System RAM test
stl_RL78_RamTest

32 bytes* 2 1.4ms 1305bytes

Initial RAM test
stl_RL78_InitialRamTest

508 bytes 10.8ms 980bytes

Hardware clock test
stl_RL78_hw_clocktest

- 56.40µs 136bytes

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 47 of 48
Mar.31.25

6. Related Application Note
The application note related to this application note is listed below for reference.

•RL78 Family VDE Certified IEC60730/60335 Self Test Library APPLICATION NOTE（R01AN1062J）

Home page and Support Contact
Renesas Electronics Home Page

http://www.renesas.com/index.jsp

Contact for inquiries

http://www.renesas.com/contact/

RL78 Family IEC 60730/60335 Self Test Library for RL78 MCU (Class-C)

R01AN7508EJ0100 Rev.1.00 Page 48 of 48
Mar.31.25

Revision History

Rev. Date
Description
Page Summary

1.00 2025.3.31 First edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2021 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview of Self-test Library
	2. Self-test Library Functions
	2.1 Instruction Decoding Test
	2.1.1 CPU Instruction Test – Software API

	2.2 CPU Register Test
	2.2.1 CPU Register Test – Software API

	2.3 Invariable Memory Test – Flash ROM
	2.3.1 CRC 16-CCITT algorithm
	2.3.2 Hardware CRC – Software API

	2.4 Variable Memory Test – SRAM
	2.4.1 Algorithm
	2.4.2 Variable Memory Test – Software API
	2.4.2.1 Time Division ABRAHAM
	2.4.2.2 Initial ABRAHAM

	2.5 System Clock Test
	2.5.1 Hardware Measurement

	2.6 Watchdog
	2.6.1 Monitoring by built-in WDT

	2.7 MCU Anomaly Detection

	3. Example Usage
	3.1 CPU
	3.1.1 Power-on Tests
	3.1.2 Periodic

	3.2 Flash ROM
	3.2.1 Power-on Tests
	3.2.2 Periodic

	3.3 RAM
	3.3.1 Power-on Tests
	3.3.2 Periodic

	3.4 System Clock
	3.4.1 Power-on Tests
	3.4.2 Periodic

	4. Development Environment
	4.1 CS+ Settings
	4.1.1 Common Options
	4.1.2 Link Options
	4.1.3 Hex Output Options
	4.1.4 Download file for Debug Tool Configuration
	4.1.5 Code Generation (Design Tool)

	4.2 e2stuido Settings
	4.2.1 Complier Options
	4.2.2 Assembler Options
	4.2.3 Linker Options
	4.2.4 Converter Options
	4.2.5 Debug Configurations

	5. Benchmark Test results
	6. Related Application Note
	Home page and Support Contact

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice
	Contact information
	Corporate Headquarters
	Trademarks

