
 Application Note

R01AN7824EJ0100 Rev.1.00 Page 1 of 50
Aug.29.25

RA Family
IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)
Introduction
Today, as automatic electronic controls systems continue to expand into many diverse applications, the
requirement of reliability and safety are becoming an ever-increasing factor in system design.

For example, the introduction of the IEC60730 safety standard for household appliances requires
manufactures to design automatic electronic controls that ensure safe and reliable operation of their
products.

The IEC60730 standard covers all aspects of product design but Annex H is of key importance for the design
of Microcontroller based control systems. This provides three software classifications for automatic electronic
controls:

1. Class A: Control functions, which are not intended to be relied upon for the safety of the equipment.

Examples: Room thermostats, humidity controls, lighting controls, timers, and switches.

2. Class B: Control functions, which are intended to prevent unsafe operation of the controlled equipment.

Examples: Thermal cut-offs and door locks for laundry equipment.

3. Class C: Control functions, which are intended to prevent special hazards.

Examples: Automatic burner controls and thermal cut-outs for closed.

Appliances such as washing machines, dishwashers, dryers, refrigerators, freezers, and Cookers/Stoves will
tend to fall under the classification of Class B.

This Application Note provides guidelines on how to use flexible sample software routines to assist with
compliance with IEC60730 class B safety standards. These routines have been certified by VDE Test and
Certification Institute GmbH and a copy of the Test Certificate is available in the download package for this
Application Note.

The software routines provided are to be used after reset and also during the program execution. This
document and the accompanying sample code provide an example of how to do this.

Target Device
 Device:

Renesas RA Family MCU (Arm® Cortex®-M85) ※ See next page for series and group

 Development environment:

GCC(GNU) Arm Embedded 13.2.1.arm-13-7 / e2 studio 2024-07 (24.7.0)

R01AN7824EJ0100
Rev.1.00

Aug.29.25

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 2 of 50
Aug.29.25

The term “RA MCU” used in this document refers to the following products.

Table 1. RA MCU Self-Test Function List

CPU Core Arm® Cortex®-M85
Series RA8
Group RA8M1

Te
st

 F
un

ct
io

n

CPU 〇
ROM 〇
RAM 〇
Clock 〇
Independent Watchdog Timer (IWDT) 〇
ADC12 〇
GPIO 〇

This self-test library is assumed to be executed in the secure region of Arm® TrustZone®. The operation has
been confirmed using a "flat project" by RA Project Generator (PG)*.

Note: For more information on RA Project Generator, see the RA FSP (Flexible Software Package)
documentation.

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 3 of 50
Aug.29.25

Contents

1. Test ... 4
1.1 CPU ... 4
1.1.1 CPU Test Software API ... 6
1.2 ROM .. 15
1.2.1 CRC32 Algorithm... 15
1.2.2 ROM Test Software API .. 15
1.3 RAM ... 19
1.3.1 RAM Test Algorithm .. 19
1.3.2 RAM Test Software API .. 21
1.4 Clock .. 28
1.4.1 Main Clock Frequency Monitoring by CAC ... 28
1.4.2 Oscillation Stop Detection of Main Clock .. 28
1.4.3 Clock Test Software API ... 29
1.5 Independent Watchdog Timer (IWDT) .. 31
1.5.1 IWDT Software API ... 31
1.6 ADC ... 33
1.6.1 ADC Test Software API ... 33
1.7 GPIO .. 38
1.7.1 GPIO Test Software API ... 38

2. Example Usage ... 39
2.1 CPU ... 39
2.1.1 Power-On .. 39
2.1.2 Periodic .. 39
2.2 ROM .. 39
2.2.1 Reference CRC Value Calculation in Advance ... 40
2.2.2 Power-On .. 44
2.2.3 Periodic .. 44
2.3 RAM ... 44
2.3.1 Power-On .. 44
2.3.2 Periodic .. 44
2.4 Clock .. 45
2.5 Independent Watchdog Timer ... 47
2.6 ADC ... 49
2.6.1 Power-On .. 49
2.6.2 Periodic .. 49
2.7 GPIO .. 49

Revision History .. 50

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 4 of 50
Aug.29.25

1. Test
1.1 CPU
This section describes CPU tests routines. (Reference: IEC 60730-1:2013+A1:2015+A2:2020 Annex H -
Table H.11.12.7 1.CPU)

This software tests the following CPU registers.

Table 1-1 List of Registers to be tested.

CPU Core Arm® Cortex®-M85
Group RA8M1

R
eg

is
te

r t
o

be
 T

es
te

d

General-purpose Registers R0-R12
Control Registers (*1) MSP_S, MSP_NS,

PSP_S, PSP_NS,
LR,

xPSR (APSR, IPSR, EPSR),
BASEPRI_S, BASEPRI_NS,

CONTROL_S, CONTROL_NS,
PSPLIM_S, PSPLIM_NS,
MSPLIM_S, MSPLIM_NS

Program Counter PC
FPU Extension Registers(S0～S31) S0-S31
FPU Control Register (*1) CPACR, FPCCR, FPCAR,

FPSCR, FPDSCR
Notes: 1. Even if the register names are the same, the bit field configuration may differ depending on the

device.

The source file cpu_test.c provides implementation of the CPU test using C language and relies on assembly
language function to access the registers (that is, CPU_Test_Control). File cpu_test_coupling.c is also
required to use the coupling test of the General-purpose Registers. Coupling test relies on assembly
language functions:

• TestGPRsCouplingStart_A

• TestGPRsCouplingR0_A

• TestGPRsCouplingR1_R3_A

• TestGPRsCouplingR4_R6_A

• TestGPRsCouplingR7_R9_A

• TestGPRsCouplingR10_R12_A

• TestGPRsCouplingStart_B

• TestGPRsCouplingR0_B

• TestGPRsCouplingR1_R3_B

• TestGPRsCouplingR4_R6_B

• TestGPRsCouplingR7_R9_B

• TestGPRsCouplingR10_R12_B

• TestGPRsCouplingEnd

Alternatively, CPU_Test_General_Low, CPU_Test_General_High assembly language functions are used to
test General-purpose registers.

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 5 of 50
Aug.29.25

The cpu_test.c source file relies also on FPU_Control assembly language function to access the FPU control
registers. File fpu_test_coupling.c is also required if using the coupling test version of the FPU extension
registers.

• TestFPUCouplingStart_A

• TestFPUCouplingS0_S3_A

• TestFPUCouplingS4_S7_A

• TestFPUCouplingS8_S11_A

• TestFPUCouplingS12_S15_A

• TestFPUCouplingS16_S19_A

• TestFPUCouplingS20_S23_A

• TestFPUCouplingS24_S27_A

• TestFPUCouplingS28_S31_A

• TestFPUCouplingStart_B

• TestFPUCouplingS0_S3_B

• TestFPUCouplingS4_S7_B

• TestFPUCouplingS8_S11_B

• TestFPUCouplingS12_S15_B

• TestFPUCouplingS16_S19_B

• TestFPUCouplingS20_S23_B

• TestFPUCouplingS24_S27_B

• TestFPUCouplingS28_S31_B

• TestFPUCouplingEnd

Alternatively, FPU_Exten assembly language function is used to test FPU extension registers.

The header file cpu_test.h header file provides the interface to the CPU tests.

These tests are testing such fundamental aspects of the CPU operation; the API functions do not have return
values to indicate the result of a test. Instead, the user of these tests must create an error handling function
with the following declaration:

extern void CPU_Test_ErrorHandler(void);

The CPU test will jump to this function if an error is detected. This function should not return.

All the test functions follow the rules of register preservation following a C function call. Therefore, the user
can call these functions like any normal C function without any additional responsibilities for saving register
values beforehand.

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 6 of 50
Aug.29.25

1.1.1 CPU Test Software API

Table 1-2 CPU Test Software API Source File

File Name
cpu_test.h
fpu_test.h
cpu_test.c
cpu_test_coupling.c
fpu_test_coupling.c
TestGPRsCouplingStart_A.asm
TestGPRsCouplingR0_A.asm
TestGPRsCouplingR1_R3_A.asm
TestGPRsCouplingR4_R6_A.asm
TestGPRsCouplingR7_R9_A.asm
TestGPRsCouplingR10_R12_A.asm
TestGPRsCouplingStart_B.asm
TestGPRsCouplingR0_B.asm
TestGPRsCouplingR1_R3_B.asm
TestGPRsCouplingR4_R6_B.asm
TestGPRsCouplingR7_R9_B.asm
TestGPRsCouplingR10_R12_B.asm
TestGPRsCouplingEnd.asm
CPU_Test_Control.asm
CPU_Test_General_Low.asm
CPU_Test_General_High.asm
fpu_control.asm
fpu_exten.asm
TestFPUCouplingStart_A.asm
TestFPUCouplingS0_S3_A.asm
TestFPUCouplingS4_S7_A.asm
TestFPUCouplingS8_S11_A.asm
TestFPUCouplingS12_S15_A.asm
TestFPUCouplingS16_S19_A.asm
TestFPUCouplingS20_S23_A.asm
TestFPUCouplingS24_S27_A.asm
TestFPUCouplingS28_S31_A.asm
TestFPUCouplingStart_B.asm
TestFPUCouplingS0_S3_B.asm
TestFPUCouplingS4_S7_B.asm
TestFPUCouplingS8_S11_B.asm
TestFPUCouplingS12_S15_B.asm
TestFPUCouplingS16_S19_B.asm
TestFPUCouplingS20_S23_B.asm
TestFPUCouplingS24_S27_B.asm
TestFPUCouplingS28_S31_B.asm
TestFPUCouplingEnd.asm

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 7 of 50
Aug.29.25

■ cpu_test.c File

Syntax

void CPU_Test_All(void)

Description

Run Through all the tests detailed below in the following order:

1. If using Coupling General Purpose Registers tests (see below Note 1):

CPU_Test_GPRsCouplingPartA

CPU_Test_GPRsCouplingPartB

2. If not using Coupling General Purpose Registers test

CPU_Test_General_Low

CPU_Test_General_High

3. CPU_Test_Control

4. CPU_Test_PC

5. If using Coupling FPU extension registers tests (see below Note 2)

FPU_Test_FPUCouplingPartA

FPU_Test_FPUCouplingPartB

6. If not using Coupling FPU extension registers test:

FPU_Exten

7. FPU_Control

It is the calling function’s responsibility to ensure that the processor is in Privileged Mode. If this function is
called in unprivileged mode, the test will fail as some of the register bits are not accessible in unprivileged
mode.

Since the CPU_Test_Control function tests stack pointer registers (That is MSP and PSP), monitoring of
the stack pointer by the MSPLIM and PSPLIM registers is temporarily disabled during testing.

It is also the calling function’s responsibility to ensure no interrupt occurs during this test.

If an error is detected, external function CPU_Test_ErrorHandler will be called.

See the individual tests for a full description.

Notes: 1. A #define USE_TEST_GPRS_COUPLING in the code is used to select which functions will be
used to test the General-purpose Registers.

2. A #define USE_TEST_FPU_COUPLING in the code is used to select which functions will be
used to test the FPU extension registers

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 8 of 50
Aug.29.25

Syntax

void CPU_Test_PC(void)

Description

This function tests the Program Counter (PC) register.

Test that the PC is operating by calling a separate function.

Call a separate function (TestPC_TestFunction) that returns the inverted value of the specified parameter
and check the return value.

This confirms that the PC is working properly.

If an error is detected, external function CPU_Test_ErrorHandler will be called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

■ CPU_Test_General_Low.asm File

Syntax

void CPU_Test_General_Low(void)

Description

Tests general-purpose registers R0, R1, R2, R3, R4, R5, R6 and R7. Registers are tested in pairs.

For each pair of registers:

1. Write h'55555555 to both.

2. Read both and check they are equal.

3. Write h'AAAAAAAA to both.

4. Read both and check they are equal.

It is the calling function’s responsibility to disable exception during this test.

If an error is detected, external function CPU_Test_ErrorHandler will be called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 9 of 50
Aug.29.25

■ CPU_Test_General_High.asm File

Syntax

void CPU_Test_General_High(void)

Description

Tests general-purpose registers R8, R9, R10, R11 and R12. These are the general-purpose registers.

Registers are tested in pairs.

For each pair of registers:

1. Write h'55555555 to both.

2. Read both and check they are equal.

3. Write h'AAAAAAAA to both.

4. Read both and check they are equal.

It is the calling function’s responsibility to disable exceptions during this test.

If an error is detected, external function CPU_Test_ErrorHandler will be called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 10 of 50
Aug.29.25

■ CPU_Test_Control.asm File

Syntax

void CPU_Test_Control(void)

Description

Tests control registers (Refer to "Table 1.1. List of Registers to be tested " because it depends on the
device).

This test assumes registers R1 to R4 are working.

Generally, the test procedure for each register is as follows.

For each register:

1. Write h'55555555 to.

2. Read back and check value equals h'55555555.

3. Write h'AAAAAAAA to.

4. Read back and check value equals h'AAAAAAAA.

However, note that there are some cases where restrictions on specific bits within a register may not allow
this procedure. For these cases other test values have been selected.

It is the calling function’s responsibility to ensure that the processor is in Privileged Mode. If this function is
called in Unprivileged Mode, the test will fail as some of the register bits are not accessible in Unprivileged
Mode. It is also the calling function’s responsibility to disable exceptions during this test.

Note: FAULTMASK and PRIMASK are not tested since this test requires exceptions be disabled. Thus,
they are not activated during the test modifying FAULTMASK and PRIMASK.

If an error is detected, external function CPU_Test_ErrorHandler will be called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 11 of 50
Aug.29.25

■ cpu_test_coupling.c File

Syntax

void CPU_Test_GPRsCouplingPartA(void)

Description

Test general-purpose registers R0 to R12. Coupling faults between the registers are detected.

The general-purpose register test consists of Part A and Part B, and this function is Part A.

It is the calling function’s responsibility to ensure no interrupt occur during this test.

If an error is detected, external function CPU_Test_ErrorHandler will be called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

Syntax

void CPU_Test_GPRsCouplingPartB(void)

Description

Tests general-purpose registers R0 to R12. Coupling faults between the registers are detected.

The general-purpose register test consists of Part A and Part B, and this function is Part B.

It is the calling function’s responsibility to ensure no interrupt occur during this test.

If an error is detected, external function CPU_Test_ErrorHandler will be called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 12 of 50
Aug.29.25

■ fpu_test_coupling.c File

Syntax

void FPU_Test_FPUCouplingPartA(void)

Description

Tests FPU extension registers S0 to S31. Coupling faults between the registers are detected.

The FPU extension register test consists of Part A and Part B, and this function is Part A.

It is the calling function’s responsibility to ensure no interrupt occur during this test.

If an error is detected, external function CPU_Test_ErrorHandler will be called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

Syntax

void FPU_Test_FPUCouplingPartB(void)

Description

Tests FPU extension registers S0 to S31. Coupling faults between the registers are detected.

The FPU extension register test consists of Part A and Part B, and this function is Part B.

It is the calling function’s responsibility to ensure no interrupt occur during this test.

If an error is detected, external function CPU_Test_ErrorHandler will be called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 13 of 50
Aug.29.25

■ fpu_exten.asm File

Syntax

void FPU_Exten(void)

Description

Test FPU extension registers S0 to S31.

Write h'55555555 to R0 register and h'AAAAAAAA to R1 register, and test each FPU extension register:

1. Write the value of R0 register to the FPU extension register Sn.

2. Write the value of the FPU extension register Sn to R2 register.

3. Verify that the values of R0 and R2 registers match.

4. Write the value of R1 register to the FPU extension register Sn.

5. Write the value of the FPU extension register Sn to R2 register.

6. Verify that the values of R1 and R2 registers match.

Note: n = 0 ~ 31

This test assumes that registers R0 to R2 are functioning properly.

It is the calling function’s responsibility to disable exception during this test.

If an error is detected, external function CPU_Test_ErrorHandler will be called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 14 of 50
Aug.29.25

■ fpu_control.asm File

Syntax

void FPU_Control(void)

Description

Tests FPU control registers (Refer to "Table 1.1. List of Registers to Be Tested" because it depends on
the device).

This test assumes that registers R0 to R10 are functioning properly.

Generally the test procedure for each register is as follows.

For each register:

1. Write h'55555555 to.

2. Read back and check value equals h'55555555.

3. Write h'AAAAAAAA to.

4. Read back and check value equals h'AAAAAAAA.

However, please note that this procedure may not be permitted due to restrictions on specific bits in the
register. In these cases, other test values are selected.

It is the calling function’s responsibility to ensure that the processor is in Privileged Mode. If this function is
called in Unprivileged Mode the test will fail as some of the register bits are not accessible in Unprivileged
Mode. It is also the calling function’s responsibility to disable exceptions during this test.

If an error is detected, external function CPU_Test_ErrorHandler will be called.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 15 of 50
Aug.29.25

1.2 ROM
This section describes the ROM/Flash memory test using CRC routines. (Reference: IEC 60730-
1:2013+A1:2015+A2:2020 Annex H– H2.19.4.2 CRC – Double Word)

CRC is a fault/error control technique which generates a single word or checksum to represent the contents
of memory.

A CRC checksum is the remainder of a binary division with no bit carry (XOR is used instead of subtraction)
of the message bit stream, by a predefined (short) bit stream of length n + 1. which represents the
coefficients of a polynomial with degree n. Before the division, n zeros are appended to the message stream.
CRCs are often used because they are simple to implement in binary hardware and are easy to analyze
mathematically.

The ROM test can be achieved by generating a CRC value for the contents of the ROM and saving it. During
the memory self-test, the same CRC algorithm is used to generate another CRC value, which is compared
with the saved CRC value. The technique recognizes all one-bit errors and a high percentage of multi-bit
errors.

The complicated part of using CRCs is if you need to generate a CRC value that will then be compared with
other CRC values produced by other CRC generators. This proves difficult because there are a number of
factors that can change the resulting CRC value even if the basic CRC algorithm is the same. This includes
the combination of the order that the data is supplied to the algorithm, the assumed bit order in any look-up
table used and the required order of the bits of the actual CRC value. This complication has arisen because
big- and little-endian systems were developed to work together that employed serial data transfers where bit
order became important. Also, some debuggers implement a software break on ROM, in which case the
contents of ROM may be rewritten during debugging.

The method of calculating the reference CRC value depends on the toolchain used. For the detailed
procedure, refer to Section 2.2 ROM in 2. Example Usage

1.2.1 CRC32 Algorithm
The RA MCU includes a CRC module that includes support for CRC32. This software sets the CRC module
to produce a 32-bit CRC32.

• Polynomial = 0x04C11DB7 (x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1)

• Width = 32 bit

• Initial Value = 0xFFFFFFFF

• XOR with h’FFFFFFFF is performed on the output CRC.

1.2.2 ROM Test Software API
The functions in the reminder of this section are used to calculate a CRC value and verify its correctness
against a value stored in ROM.

All softwares are written in ANSI C. The renesas.h header file includes definition of RA MCU registers.

Table 1-3 ROM Test Software API Source File

File Name
crc.h
crc_verify.h
crc.c
CRC_Verify.c

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 16 of 50
Aug.29.25

■ CRC_Verify.c File

Syntax

bool_t CRC_Verify(const uint32_t ui32_NewCRCValue, const uint32_t ui32_AddrRefCRC)

Description

This function compares a new CRC value with a reference CRC by supplying address where reference
CRC is stored.

Input Parameters

const uint32_t
ui32_NewCRCValue

Value of calculated new CRC value.

const uint32_t
ui32_AddrRefCRC

Address where 32-bit reference CRC value is stored.

Output Parameters

NONE N/A

Return Values

bool_t True = Passed, False = Failed

■ crc.c File

Syntax

void CRC_Init(void)

Description

Initializes the CRC module. This function must be called before any of the other CRC functions can be.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 17 of 50
Aug.29.25

Syntax

uint32_t CRC_Calculate(const uint32_t* pui32_Data, uint32_t ui32_Length)

Description

This function calculates the CRC of a single specified memory area.

Input Parameters

const uint32_t* pui32_Data Pointer to start of memory to be tested.

uint32_t ui32_Length Length of the data in long words.

Output Parameters

NONE N/A

Return Values

Uint32_t The 32-bit calculated CRC32 value.

The following functions are used when the memory area cannot simply be specified by a start address and
length. They provide a way of adding memory areas in ranges/sections. This also can be used if function
CRC_Calculate takes too long in a single function call.

■ crc.c File

Syntax

void CRC_Start(void)

Description

Resets the CRC module to the start condition.

Call this once prior to using function CRC_AddRange.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 18 of 50
Aug.29.25

Syntax

void CRC_AddRange(const uint32_t* pui32_Data, uint32_t ui32_Length)

Description

Use this function rather than CRC_Calculate to calculate the CRC on data made up of more than one
address range.

Call CRC_Start first, then call CRC_AddRange for each address range required and call CRC_Result to
get the CRC value.

Input Parameters

const uint32_t* pui32_Data Pointer to start of memory range to be tested.

uint32_t ui32_Length Length of the data in long words.

Output Parameters

NONE N/A

Return Values

NONE N/A

Syntax

uint32_t CRC_Result(void)

Description

Returns the bit-reversed value of the value read from the CRC data output register (CRCDOR) as the
return value.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

uint32_t The calculated CRC32 value.

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 19 of 50
Aug.29.25

1.3 RAM
March tests are a family of tests that are well recognized as an effective way of testing RAM.

A March test consists of a finite sequence of March elements. A March element is a finite sequence of
operations applied to every cell in the memory array before proceeding to the next cell.

In general, the more March elements the algorithm consists of, the better its fault coverage will be but at the
expense of a slower execution time.

The algorithms themselves are destructive (they do not preserve the current RAM values) but the supplied
test functions provide a non-destructive option so that memory contents can be preserved. This is achieved
by copying the memory to a supplied buffer before running the actual algorithm and then restoring the
memory from the buffer at the end of the test. The API includes an option for automatically testing the buffer
as well as the RAM test area.

The area of RAM being tested cannot be used for anything else while it is being tested. This makes the
testing of RAM used for the stack particularly difficult. To help with this problem the API includes functions
which can be used for testing the stack.

The following section introduces the specific March Tests. Following that is the specification of the software
APIs.

1.3.1 RAM Test Algorithm
1.3.1.1 March C-
The March C- algorithm (van de Goor 1991) consists of 6 March elements with a total of 10 operations. It
detects the following faults.

1. Stuck-At Faults (SAF)

• The logic value of a cell or a line is always 0 or 1.

2. Transition Faults (TF)

• A cell or a line that fails to undergo a 0→1 or a 1→0 transition.

3. Coupling Faults (CF)

• A write operation to one cell changes the content of a second cell.

4. Address Decoder Faults (AF)

• Any fault that affects the address decoder

• With a certain address, no cell will be accessed.

• A certain cell is never accessed.

• With a certain address, multiple cells are accessed simultaneously.

These are the 6 March elements.

1. Write all zeros to array.

2. Starting at lowest address, read zeros, write ones, increment up array bit by bit.

3. Starting at lowest address, read ones, write zeros, increment up array bit by bit.

4. Starting at highest address, read zeros, write ones, decrement down array bit by bit.

5. Starting at highest address, read ones, write zeros, decrement down array bit by bit.

6. Read all zeros from array.

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 20 of 50
Aug.29.25

1.3.1.2 March X
Note: This algorithm has not been implemented for the RA MCU and is only presented here for information
as it relates to the March X WOM algorithm below.

The March X algorithm consists of 4 March elements with a total of 6 operations. It detects the following
faults.

1. Stuck-At Faults (SAF)

2. Transition Faults (TF)

3. Inversion Coupling Faults (CFin)

4. Address Decoder Faults (AF)

These are the 4 March elements.

1. Write all zeros to array.

2. Starting at lowest address, read zeros, write ones, increment up array bit by bit.

3. Starting at highest address, read ones, write zeros, decrement down array bit by bit.

4. Read all zeros from array.

1.3.1.3 March X WOM (Word-Oriented Memory version)
The March X Word-Oriented Memory (WOM) algorithm has been created from a standard March X algorithm
in two stages. First, the standard March X is converted from using a single-bit data pattern to using a data
pattern equal to the memory access width. At this stage the test is primarily detecting inter-word faults
including Address Decoder faults. The second stage is to add an additional two March elements. The first
uses a data pattern of alternating high/low bits then the second uses the inverse. The addition of these
elements is to detect intra-word coupling faults.

These are the 6 March elements.

1. Write all zeros to array.

2. Starting at lowest address, read zeros, write ones, increment up array word by word.

3. Starting at highest address, read ones, write zeros, decrement down word by word.

4. Starting at lowest address, read zeros, write h’AAs, increment up array word by word.

5. Starting at highest address, read h’AAs, write h’55s, decrement down word by word.

6. Read all h’55s from array.

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 21 of 50
Aug.29.25

1.3.2 RAM Test Software API
APIs are prepared corresponding to two test algorithms in the RAM Test.

Each API will be explained.

1.3.2.1 March C- Algorithm Test Software API
This test can be configured to use 8-, 16- or 32-bit RAM accesses.

This is achieved by #defining RAMTEST_MARCH_C_ACCESS_SIZE in the header file to be one of the
following.

1. RAMTEST_MARCH_C_ACCESS_SIZE_8BIT

2. RAMTEST_MARCH_C_ACCESS_SIZE_16BIT

3. RAMTEST_MARCH_C_ACCESS_SIZE_32BIT

Sometimes limiting the maximum size of RAM that can be tested with a single function call can speed the
test up as well as reducing stack and code size. This is done by limiting the size of the variable used to hold
the number of ‘words’ that the test area contains. The ‘word’ size is the selected access width.

This is achieved by #defining RAMTEST_MARCH_C_MAX_WORDS in the header file to be one of the
following.

1. RAMTEST_MARCH_C_MAX_WORDS_8BIT (Max words in test area is 0xFF)

2. RAMTEST_MARCH_C_MAX_WORDS_16BIT (Max words in test area is 0xFFFF)

3. RAMTEST_MARCH_C_MAX_WORDS_32BIT (Max words in test area is 0xFFFFFFFF)

Table 1-4 March C- Algorithm Software API Source Files

File Name
ramtest_march_c.h
ramtest_march_c.c

The source is written in ANSI C and uses renesas.h header file to access peripheral registers.

Note: The API allows just a single word to be tested with a function call. However, for coupling faults to be
tested between words, it is important to use the functions to test a data range bigger than one word.

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 22 of 50
Aug.29.25

■ ramtest_march_c.c File

Syntax

bool_t RamTest_March_C(const uint32_t ui32_StartAddr,
const uint32_t ui32_EndAddr,
void* const p_RAMSafe)

Description

RAM memory test using March C (Goor 1991) algorithm.

Input Parameters

const uint32_t
ui32_StartAddr

The address of the first word of RAM to be tested. This must be aligned with the
selected memory access width.

const uint32_t
ui32_EndAddr

The address of the last word of RAM to be tested. This must be aligned with the
selected memory access width and be a value greater or equal to ui32_StartAddr.

void* const
p_RAMSafe

For a destructive memory test, set to NULL.

For a non-destructive memory test, set to the start of a buffer that is large enough
to copy the contents of the test area into it and that is aligned with the selected
memory access width.

Output Parameters

NONE N/A

Return Values

bool_t True = Test passed, False = Test or parameter check failed.

Syntax

bool_t RamTest_March_C_Extra(const uint32_t ui32_StartAddr,
const uint32_t ui32_EndAddr,
void* const p_RAMSafe)

Description

Non-Destructive RAM memory test using March C (Goor 1991) algorithm.

This function differs from the RamTest_March_C function by testing the ‘RAMSafe’ buffer before using it. If
the test of the ‘RAMSafe’ buffer fails, the test will be aborted, and the function will return false.

Input Parameters

const uint32_t
ui32_StartAddr

The address of the first word of RAM to be tested. This must be aligned with the
selected memory access width.

const uint32_t
ui32_EndAddr

The address of the last word of RAM to be tested. This must be aligned with the
selected memory access width and be a value greater or equal to ui32_StartAddr.

void* const
p_RAMSafe

Set to the start of a buffer that is large enough to copy the contents of the test area
into it and that is aligned with the selected memory access width.

Output Parameters

NONE N/A

Return Values

bool_t True = Test passed, False = Test or parameter check failed.

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 23 of 50
Aug.29.25

1.3.2.2 March X WOM Algorithm Test Software API
This test can be configured to use 8-, 16- or 32-bit RAM accesses.

This is achieved by #defining RAMTEST_MARCH_X_WOM_ACCESS_SIZE in the header file to be one of
the following:

1. RAMTEST_MARCH_X_WOM_ACCESS_SIZE_8BIT

2. RAMTEST_MARCH_X_WOM_ACCESS_SIZE_16BIT

3. RAMTEST_MARCH_X_WOM_ACCESS_SIZE_32BIT

In order to speed up the run time of the test you can choose to limit the maximum size of RAM that can be
tested with a single function call. This is done by limiting the size of the variable used to hold the number of
‘words’ that the test area contains. The ‘word’ size is the same as the selected access width.

This is achieved by #defining RAMTEST_MARCH_X_WOM_MAX_WORDS in the header file to be one of
the following.

1. RAMTEST_MARCH_X_WOM_MAX_WORDS_8BIT (Max words in test area is 0xFF)

2. RAMTEST_MARCH_X_WOM_MAX_WORDS_16BIT (Max words in test area is 0xFFFF)

3. RAMTEST_MARCH_X_WOM_MAX_WORDS_32BIT (Max words in test area is 0xFFFFFFFF)

Table 1-5 March X WOM algorithm Software API Source Files

File Name
ramtest_march_x_wom.h
ramtest_march_x_wom.c

The source is written in ANSI C and uses renesas.h header file to access peripheral registers.

Note: The API allows just a single word to be tested with a function call. However, for coupling faults to be
tested between words it is important to use the functions to test a data range bigger than one word.

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 24 of 50
Aug.29.25

■ ramtest_march_x_wom.c File

Syntax

bool_t RamTest_March_X_WOM(const uint32_t ui32_StartAddr,
const uint32_t ui32_EndAddr,
void* const p_RAMSafe)

Description

RAM memory test based on March X algorithm converted for WOM.

Input Parameters

const uint32_t
ui32_StartAddr

Address of the first word of RAM to be tested. This must be aligned with the
selected memory access width.

const uint32_t
ui32_EndAddr

Address of the last word of RAM to be tested. This must be aligned with the
selected memory access width and be a value greater or equal to
ui32_StartAddr.

void* const p_RAMSafe For a destructive memory test, set to NULL.

For a non-destructive memory test, set to the start of a buffer that is large
enough to copy the contents of the test area into it and that is aligned with the
selected memory access width

Output Parameters

NONE N/A

Return Values

bool_t True = Test passed, False = Test or parameter check failed.

Syntax

bool_t RamTest_March_X_WOM_Extra(const uint32_t ui32_StartAddr,
const uint32_t ui32_EndAddr,
void* const p_RAMSafe)

Description

Non-Destructive RAM memory test based on March X algorithm converted for WOM.

This function differs from the RamTest_March_X_WOM function by testing the ‘RAMSafe’ buffer before
using it. If the test of the ‘RAMSafe’ buffer fails, then the test will be aborted, and the function will return
false.

Input Parameters

const uint32_t
ui32_StartAddr

The address of the first word of RAM to be tested. This must be aligned with the
selected memory access width.

const uint32_t
ui32_EndAddr

The address of the last word of RAM to be tested. This must be aligned with the
selected memory access width and be a value greater or equal to ui32_StartAddr.

void* const
p_RAMSafe

Set to the start of a buffer that is large enough to copy the contents of the test
area into it and that is aligned with the selected memory access width.

Output Parameters

NONE N/A

Return Values

bool_t True = Test passed, False = Test or parameter check failed.

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 25 of 50
Aug.29.25

1.3.2.3 RAM Test (Stack) Software API
This API enables a RAM test to be performed on an area of RAM that includes the stack. As the function that
performs the RAM test requires a stack these functions will re-locate the stack to a supplied new RAM area
allowing the original stack area to be tested. Three functions are provided that can be called depending upon
which stack (Main or Process) is in the test area or if both are.

It is the calling function’s responsibility to ensure that the processor is in Privileged Mode. If this function is-
called in unprivileged mode the test will fail as some of the register bits are not accessible in unprivileged
mode.

Note: The stack testing functions make use of one of the March RAM tests presented previously by
passing it in as a function pointer. If using a test that requires initialization before use it is the user’s
responsibility to ensure this has been done before trying to use the test by calling one of these
functions.

Table 1-6 RAM Test (Stack) Software API Source File

File Name
ramtest_stack.h
ramtest_stack.c
StartBothTestAssembly.asm
StartMainTestAssembly.asm
StartProcTestAssembly.asm

■ ramtest_stack.c File

Syntax

bool_t RamTest_Stack_Main(const uint32_t ui32_StartAddr,
const uint32_t ui32_EndAddr,
void* const p_RAMSafe,
const uint32_t ui32_NewMSP,
const TEST_FUNC fpTest_Func)

Description

RAM test of an area that includes the Main Stack (but not includes the Process stack).

Input Parameters

const uint32_t
ui32_StartAddr

The address of the first word of RAM to be tested. This must be compatible with
the requirements of fpTest_Func.

const uint32_t
ui32_EndAddr

The address of the last word of RAM to be tested. This must be compatible with
the requirements of fpTest_Func.

void* const
p_RAMSafe

Set to the start of a buffer that is the same size as the test RAM area. This must
be compatible with the requirements of fpTest_Func.

const uint32_t

ui32_NewUSP

New Stack pointer value for the Main stack to be relocated to.

const TEST_FUNC

fpTest_Func

Function pointer of type TEST_FUNC to the actual memory test to be used.

Typedef bool_t(*TEST_FUNC)(uint32_t, uint32_t, void*);

For example, ‘RamTest_March_X_WOM’.

Output Parameters

NONE N/A

Return Values

bool_t True = Test passed, False = Test or parameter check failed.

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 26 of 50
Aug.29.25

Syntax

bool_t RamTest_Stack_Proc(const uint32_t ui32_StartAddr,
const uint32_t ui32_EndAddr,
void* const p_RAMSafe,
const uint32_t ui32_NewPSP,
const TEST_FUNC fpTest_Func)

Description

RAM test of an area that includes the Process stack (but not includes the Main stack).

Input Parameters

const uint32_t
ui32_StartAddr

The address of the first word of RAM to be tested. This must be compatible with
the requirements of the fpTest_Func.

const uint32_t
ui32_EndAddr

The address of the last word of RAM to be tested. This must be compatible with
the requirements of the fpTest_Func.

void* const
p_RAMSafe

Set to the start of a buffer that is the same size as the test RAM area. This must
be compatible with the requirements of the fpTest_Func.

const uint32_t
ui32_NewPSP

New Stack pointer value for the Process stack to be relocated to.

const fpTest_Func Function pointer of type TEST_FUNC to the actual memory test to be used.

Typedef bool_t(*TEST_FUNC)(uint32_t, uint32_t, void*);

For example, ‘RamTest_March_X_WOM’.

Output Parameters

NONE N/A

Return Values

bool_t True = Test passed, False = Test or parameter check failed.

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 27 of 50
Aug.29.25

Syntax

bool_t RamTest_Stacks(const uint32_t ui32_StartAddr,
 const uint32_t ui32_EndAddr,
 void* const p_RAMSafe,
 const uint32_t ui32_NewPSP,
 const uint32_t ui32_NewMSP,
 const TEST_FUNC fpTest_Func)

Description

RAM test of an area that includes both the Main stack and the Process stack.

Input Parameters

const uint32_t
ui32_StartAddr

The address of the first word of RAM to be tested. This must be compatible
with the requirements of the fpTest_Func.

const uint32_t
ui32_EndAddr

The address of the last word of RAM to be tested. This must be compatible
with the requirements of the fpTest_Func.

void* const p_RAMSafe Set to the start of a buffer that is the same size as the test RAM area. This
must be compatible with the requirements of the fpTest_Func.

const uint32_t
ui32_NewPSP

New Stack pointer value for the Process stack to be relocated to.

const uint32_t
ui32_NewMSP

New Stack pointer value for the Main stack to be relocated to.

const TEST_FUNC
fpTest_Func

Function pointer of type TEST_FUNC to the actual memory test to be used.

Typedef bool_t(*TEST_FUNC)(const uint32_t, const uint32_t, void* const);

For example, RamTest_March_X_WOM

Output Parameters

NONE N/A

Return Values

bool_t True = Test passed, False = Test or parameter check failed.

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 28 of 50
Aug.29.25

1.4 Clock
The RA MCU has a Clock Frequency Accuracy Measurement Circuit (CAC). The CAC counts the pulses of
the target clock within the time generated by the reference clock and generates an interrupt request if the
number of pulses is outside the acceptable range.

The main clock oscillator also has an oscillation stop detection circuit.

1.4.1 Main Clock Frequency Monitoring by CAC
Either one of Main, SUB_CLOCK, HOCO, MOCO, LOCO, and PCLKB can be used as a reference clock
source.

1. Be sure to select the reference clock (using the ref_clock input parameter).

2. Provide the frequencies of the target and reference clocks in Hz.

If the frequency of the main clock deviates during runtime from a configured range, two types of interrupts
can be generated: frequency error interrupt or an overflow interrupt. The user of this module must enable
these two kinds of interrupt and handle them. See Section 2.4 for an example of interrupt activation. The
allowable frequency range can be adjusted using.
/*Percentage tolerance of main clock allowed before an error is reported.*/

#define CLOCK_TOLERANCE_PERCENT 10

Please note that in this clock test, when the internal clock is used as the reference clock, the CAC circuit
reference clock division ratio (RCDS[1:0] of the CACR2 register) is fixed to 1/128 in the test function.

The division ratio of the target clock (TCSS [1: 0] in the CACR1 register) is selected from 1/1, 1/4, 1/8, 1/32
by calculation in the test function based on the input parameters. However, no matter which division ratio is
applied, an error occurs if the calculation result is not within the range that can be set in the 16-bit wide "CAC
Upper-Limit and Lower-Limit Value Setting Register".

1.4.2 Oscillation Stop Detection of Main Clock
The main clock oscillator of the RA MCU has an oscillation stop detection circuit. If the main clock stops, the
Middle-Speed On-Chip oscillator (MOCO) will automatically be used instead and an NMI interrupt will be
generated.

In the ClockMonitor_Init function, when the main clock oscillator stop bit (MOSTP) in the main clock oscillator
control register (MOSCCR) is 0 (main clock oscillator operation), oscillation stop detection and NMI are
enabled as follows.

• Oscillation stop detection control register (OSTDCR)

- Oscillation stop detection function enable bit (OSTDE): Enable

- Oscillation stop detection interrupt enable bit (OSTDIE): Enable

• ICU non-maskable interrupt enable register (NMIER)

• Oscillation stop detection interrupt enable bit (OSTEN): Enable

The user of this module must handle the NMI interrupt and check the NMISR.OSTST (Oscillation Stop
Detection Interrupt Status Flag) bit.

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 29 of 50
Aug.29.25

1.4.3 Clock Test Software API

Table 1-7 Clock Test Software API Source File

File Name
clock_monitor.h
clock_monitor.c

The test module relies on the renesas.h header file to access to peripheral registers.

■ clock_monitor.c File

Syntax

void ClockMonitor_Init(clock_source_t target_clock,
 clock_source_t ref_clock,
 uint32_t target_clock_frequency,
 uint32_t ref_clock_frequency,
 CLOCK_MONITOR_ERROR_CALL_BACK CallBack)

Description

1. Start monitoring the target clock selected by input parameter target_clock using the CAC module and
the reference clock selected by input parameter ref_clock.

2. Calculate the upper and lower limits based on the above clock information, including the tolerance
range (±10%: CLOCK_TOLERANCE_PERCENT=10) and set the CALLVR, CAULVR registers

3. Enable oscillation stop detection and configure the NMI generated when detection occurs.

Input Parameters

clock_source_t target_clock ・Target clock monitored by CAC.

・The clock shall be one of Main clock, Sub clock, HOCO
clock, MOCO clock, LOCO clock, and PCLKB clock.

clock_source_t ref_clock ・The reference clock to be used by CAC to monitor the
target clock.

・The clock shall be one of Main clock, Sub clock, HOCO
clock, MOCO clock, LOCO clock, and PCLKB clock.

uint32_t target_clock_frequency The target clock frequency in Hz

uint32_t ref_clock_frequency The reference clock frequency in Hz.

CLOCK_MONITOR_ERROR_CALL_

BACK CallBack

A function that is called when the target clock is out of
tolerance or when this function fails to properly configure the
CAC circuit from the input parameters.

Output Parameters

NONE N/A

Return Values

NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 30 of 50
Aug.29.25

Syntax

extern void cac_ferrf_isr(void)

Description

CAC frequency error interrupt handler.

This function calls the callback function registered by the ClockMonitor_Init function.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

Syntax

extern void cac_ovff_isr(void)

Description

CAC overflow error interrupt handler.

This function calls the callback function registered by the ClockMonitor_Init function.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 31 of 50
Aug.29.25

1.5 Independent Watchdog Timer (IWDT)
A watchdog timer is used to detect abnormal program execution. If a program is not running as expected, the
watchdog timer will not be refreshed by software as required and will therefore detect an error.

The Independent Watchdog Timer (IWDT) module of the RA MCU is used for this. It includes a windowing
feature so that the refresh must happen within a specified ‘window’ rather than just before a specified time. It
can be configured to generate an internal reset or an NMI interrupt if an error is detected.

All the configurations for IWDT can be done through the Option Function Select Register 0 (OFS0) in Option-
Setting Memory whose settings are controlled by the user (see Section 2.5 for an example of configuration).
The option setting memory is a series of registers that can be used to select the state of the microcontroller
after reset and is located in the code flash area.

The test module relies on the renesas.h header file to access to peripheral registers.

1.5.1 IWDT Software API

Table 1-8 IWDT Software API

File Name
iwdt.h
iwdt.c

Syntax

void IWDT_Init (void)

Description

Initialize the independent watchdog timer. After calling this, the IWDT_Kick function must then be called at
the correct time to prevent a watchdog timer error.

Note: If configured to produce an interrupt then this will be the Non Maskable Interrupt (NMI). This must be
handled by user code which must check the NMISR.IWDTST flag.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 32 of 50
Aug.29.25

Syntax

void IWDT_Kick(void)

Description

Refresh the watchdog timer count.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

Syntax

bool_t IWDT_DidReset(void)

Description

Returns true if the IWDT has timed out or not been refreshed correctly.

In addition, the underflow flag and refresh error flag are cleared.

* The default setting for Class-B is “No window control (100%)”.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

bool_t “True” if IWDT has timed out, or was not updated correctly. otherwise “False”.

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 33 of 50
Aug.29.25

1.6 ADC
The ADC has a diagnostic mode that can be used to test the ADC. The diagnostic mode can be configured
so that a test is performed every time the ADC is used normally for a conversion. The diagnostic reference
voltage and hence the expected result is automatically rotated between zero, half scale, and full scale.

In P-ON test, select the self-diagnostic conversion voltage in a fixed mode and perform the test.

Table 1-9 ADC in RA MCU

Group RA8M1
ADC ADC12
Number of units 2
Diagnostic
reference voltage

Zero/Half Scale/Full Scale

The diagnostic SW provides an AD conversion for the diagnostic reference voltage.

There are 2 units of ADC (Unit 0 and Unit 1). When testing unit 1, use the function with "_u1" in its name.

The test module relies on the renesas.h header file to access to peripheral registers.

1.6.1 ADC Test Software API

Table 1-10 ADC Source File

File Name
test_adc.h
test_adc.c

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 34 of 50
Aug.29.25

Syntax

void Test_ADC_Init(void)

Description

Initialize the ADC module (Unit 0). This must be called before using any other ADC functions. Unlock the
ADC module stop.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

Syntax

void Test_ADC_Init_u1(void)

Description

Initializes ADC module (Unit 1). This must be called before using any other ADC functions. Unlock the
ADC module stop.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 35 of 50
Aug.29.25

Syntax

bool_t Test_ADC_Wait(void)

Description

This function waits while the AD conversion is being performed by the ADC module (Unit 0). This test does
not preserve ADC configuration and is therefore suitable as a power-on test rather than as a run-time
periodic test.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

bool_t True = Test passed, False = Test failed.

Syntax

bool_t Test_ADC_Wait_u1(void)

Description

This function waits while AD conversion is being performed by ADC module (Unit 1). This test does not
preserve ADC configuration and is therefore suitable as a power-on test rather than as a run-time periodic
test.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

bool_t True = Test passed, False = Test failed.

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 36 of 50
Aug.29.25

Syntax

void Test_ADC_Start(const ADC_ERROR_CALL_BACK Callback)

Description

Set up the ADC module (Unit 0) so that diagnostic tests are performed each time the ADC is used. The
diagnostic reference voltage (See "Table 1.9. ADC in RA MCU") is automatically rotated.

※ Select the self-diagnostic voltage rotation mode within this function

Register the function to be executed when an error is detected by calling the function
Test_ADC_CheckResult after AD conversion is completed.

Input Parameters

const
ADC_ERROR_CALL_BACK
Callback

Function to call if an error is detected.

Note: This function will only get called if Test_ADC_CheckResult is
called with parameter bCallErrorHandler set true.

Output Parameters

NONE N/A

Return Values

NONE N/A

Syntax

void Test_ADC_Start_u1(const ADC_ERROR_CALL_BACK Callback)

Description

Set up the ADC module (Unit 1) so that diagnostic tests are performed each time the ADC is used. The
diagnostic reference voltage (See "Table 1.9. ADC in RA MCU") is automatically rotated.

※ Select the self-diagnostic voltage rotation mode within this function

Register the function to be executed when an error is detected by calling the function
Test_ADC_CheckResult after AD conversion is completed.

Input Parameters

const
ADC_ERROR_CALL_BACK
Callback

unction to call if an error is detected.

Note: This function will only get called if Test_ADC_CheckResult is
called with parameter bCallErrorHandler set true.

Output Parameters

NONE N/A

Return Values

NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 37 of 50
Aug.29.25

Syntax

bool_t Test_ADC_CheckResult(const bool_t bCallErrorHandler)

Description

Check that the ADC module (Unit 0) diagnostic result is as expected.

This must be called after Test_ADC_Start and then be called periodically or whenever an ADC conversion
completes.

Note: The actual result is allowed to be with a certain tolerance of the expected result. See
ADC_TOLERANCE in test_adc.c for details.

Input Parameters

const bool_t bCallErrorHandler Set true to call the error call-back function supplied to function
Test_ADC_Start, otherwise false

Output Parameters

NONE N/A

Return Values

bool_t True = Test passed, False = Test failed.

Syntax

bool_t Test_ADC_CheckResult_u1(const bool_t bCallErrorHandler)

Description

Check that the ADC module (Unit 1) diagnostic result is as expected.

This must be called after Test_ADC_Start_u1 and then be called periodically or whenever an ADC
conversion completes.

Note: The actual result is allowed to be with a certain tolerance of the expected result. See
ADC_TOLERANCE in test_adc.c for details.

Input Parameters

const bool_t bCallErrorHandler Set true to call the error call-back function supplied to function
Test_ADC_Start_u1, otherwise false.

Output Parameters

NONE N/A

Return Values

bool_t True = Test passed, False = Test failed.

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 38 of 50
Aug.29.25

1.7 GPIO
The GPIO readback level detection function is a function to read the digital output level of a pin when the
port is in output mode. This makes it possible to diagnose defects in the terminals.

The GPIO readback level detection function checks the pins in the following procedure.

1. Set the PDRn bit of Port Control Register 1 (PCNTR1) to 1 to set it as an output port

2. Set the POSRn bit of Port Control Register 3 (PCNTR3) to 1 to output High

3. Read the terminal status using the PIDR bit of Port Control Register 2 (PCNTR2) and confirm that it
is High

4. Set the POSRn bit of Port Control Register 3 (PCNTR3) to 0 (clear bit)

5. Set the PORRn bit of Port Control Register 3 (PCNTR3) to 1 and output Low

6. Read the terminal status using the PIDR bit of Port Control Register 2 (PCNTR2) and confirm that it
is Low.

The port to be tested is specified in the gpio_config.h header file.

1.7.1 GPIO Test Software API

Table 1-11 GPIO Test Software API Source File

File Name
gpio.h
gpio_config.h
gpio.c

Syntax

void GPIO_Start(const GPIO_ERROR_CALL_BACK Callback)

Description

This function uses the GPIO readback level detection function to switch the digital output level of the pin
when the port is in output mode and then reads it to diagnose pins defects.

The port to be tested is specified in the gpio_config.h header file.

Input Parameters

const
GPIO_ERROR_CALL_BACK
Callback

A function to be called when a pin defect is detected (the read value of
the port is different from the expected value)

Output Parameters

NONE N/A

Return Values

NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 39 of 50
Aug.29.25

2. Example Usage
This section gives the user some useful suggestions about how to apply the released software.

Self test can be divided into two patterns:

(a) Power-on Test

These are tests run once after a reset. They should be run as soon as possible but if the startup time is
especially important, it may be permissible to run some initialization code before running all the tests. For
example, a faster main clock can be selected.

(b) Periodic Test

These are tests that are run regularly throughout normal program operation. This document does not
provide a judgment of how often a particular test should be executed. The method for scheduling the periodic
tests is determined by the user depending upon the structure of their application.

The following sections provide an example of how each test type should be used.

2.1 CPU
If a fault is detected by any of the CPU tests, a user supplied function called CPU_Test_ErrorHandler will be
called. As any error in the CPU is very serious the aim of this function should be to get to a safe state, where
software execution is not relied upon, as soon as possible.

2.1.1 Power-On
All the CPU tests should be run as soon as possible following a reset.

Note: The function must be called before the device is put in Unprivileged mode.

The function CPU_Test_All can be used to automatically run all the CPU tests.

2.1.2 Periodic
To test the CPU periodically, the function CPU_Test_All can be used, as it is for the power-on tests, to
automatically run all CPU tests. Alternatively, to reduce the amount of testing done in a single function call,
the user can choose to call each of the individual CPU test functions in turn each time the CPU periodic test
is scheduled.

2.2 ROM
The ROM is tested by calculating a CRC value (CRC32) of its contents and comparing with a reference CRC
value that must be added to a specific location in the ROM not included in the CRC calculation.

The CRC module must be initialized before using with a call of CRC_Init function.

Ensure that all ROM sections used are included in both the preliminary CRC calculation value and the ROM
test so that the results will match.

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 40 of 50
Aug.29.25

2.2.1 Reference CRC Value Calculation in Advance
Since the GNU tool does not have a CRC calculation function, use the SRecord tool (*1) introduced below to
calculate the reference CRC value. The user uses this tool to write the CRC value for reference in ROM in
advance and compares it with this value in the self-test.

Note: 1.SRecord is an open source project on SourceForge. See below for details.

• SRecord Web Site (SRecord v1.65)

http://srecord.sourceforge.net/

• CRC Checksum Generation with “SRecord” Tools for GNU and Eclips

https://llvm-gcc-
renesas.com/wiki/index.php?title=CRC_Checksum_Generation_with_%E2%80%98SRecord%E2
%80%99_Tools_for_GNU_and_Eclipse

When you unzip the downloaded file (srecord-1.65.0-win64.zip), the following programs will be extracted to
the \srecord-1.65.0-win64\bin folder.

* The reference manual is included in the \srecord-1.65.0-win64\share\doc\srecord folder.

Figure 2-1 SRecord Tool Contents

An example of the folder structure of the project and SRecord tool is shown below.

Figure 2-2 Folder Configuration Example

Project Folder
The location indicated by the build
Variable ${ProjDirPath}

Source File of Self Test

Folder containing SRecord tools
and command files

Set of tool-related files used for
CRC calculation

http://srecord.sourceforge.net/
https://llvm-gcc-renesas.com/wiki/index.php?title=CRC_Checksum_Generation_with_%E2%80%98SRecord%E2%80%99_Tools_for_GNU_and_Eclipse
https://llvm-gcc-renesas.com/wiki/index.php?title=CRC_Checksum_Generation_with_%E2%80%98SRecord%E2%80%99_Tools_for_GNU_and_Eclipse
https://llvm-gcc-renesas.com/wiki/index.php?title=CRC_Checksum_Generation_with_%E2%80%98SRecord%E2%80%99_Tools_for_GNU_and_Eclipse

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 41 of 50
Aug.29.25

Open "project" ⇒ "property" of e2studio and use the "objcopy" command in the step after building to generate
an S record file from the .elf file. Here, the converted file name is Original.srec. This file is the input for the
SRecord tool.

Figure 2-3 Output SRecord File and Start SRecord Tool

In the “Build Steps” tab of the ‘Settings’ screen in the figure above, describe the following in “Post-build
steps”.

■ Example of Command(s): entry (write in one line without line breaks)

arm-none-eabi-objcopy -O srec "${ProjName}.elf" "Original.srec" & ${ProjDirPath}/../../srec/srec_cat
@${ProjDirPath}/../../srec/CRCcalcCmd2MB.txt

The part before "&" on the first line indicates the generation of the S record file, and the description of "
srec_cat @command file" indicates the start of the srec_cat tool.

An example of the description of " CRCcalcCmd2MB.txt " as a command file is shown below.

■Contents of CRCcalcCmd2MB.txt (example)
CRC calculate
Original.srec # Read srec file
-fill 0xFF 0x2000000 0x21F8000 # 2MB ROM fill by 0xFF
-crop 0x2000000 0x21F7FFC # CRC calculate area
-STM32-le 0x21F7FFC # Calculate and output CRC value
-crop 0x21F7FFC 0x21F8000 # Keep CRC area
Original.srec # Read srec file again
-fill 0xFF 0x2000000 0x21F7FFC # -fill 0xFF 0x2000000 0x21F7FFC
-Output_Block_Size 16 # Data bytes to appear in each output record
is "16".
Motorola S-Record fomat and the number of bytes which form each address is
"4".
-Output addcrc.srec -Motorola -address-length=4

Command(s): Enter in the filed
(See example)

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 42 of 50
Aug.29.25

If the ROM capacity varies depending on the device, change the address setting according to the device.

Besides, when debugging, some ROMs rewrite the contents of ROM due to a software break. In that case, it
is necessary to set the operation target area to something other than the debug area.

With the above operation, addcrc.srec (S record file with CRC calculation result added to the end of
program code) can be created in the build configuration folder under the project folder, so download it to the
target board.

Open the debug configuration dialog box by selecting “Run” ⇒ “Debug Configurations” in e2studio.

Figure 2-4 Select Debug Configuration of the Project

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 43 of 50
Aug.29.25

When the debug configuration dialog is displayed, select the "Startup" tab and select the build configuration
to use. Only the symbol information is read from the ELF file, and the program image including the CRC
calculation value is set to be read from addcrc.srec.

Click the "Debug" button to download the CRC calculation value to the target.

Figure 2-5 Load Image and Symbol Setting Example

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 44 of 50
Aug.29.25

2.2.2 Power-On
All the ROM memory used must be tested at power-on.

If this area is one contiguous block, function CRC_Calculate can be used to calculate and return a calculated
CRC value.

If the ROM used is not in one contiguous block, the following procedure must be used.

1. Call CRC_Start

2. Call CRC_AddRange for each area of memory to be included in the CRC calculation.

3. Call CRC_Result to get the calculated CRC value.

The calculated CRC value can then be compared with the reference CRC value stored in the ROM using
function CRC_Verify.

It is the user’s responsibility to ensure that all ROM areas used by their project are included in the CRC
calculations.

2.2.3 Periodic
It is suggested that the periodic testing of ROM is done using the CRC_AddRange, even if the ROM is
contiguous. This allows the CRC value to be calculated in sections so that no single function call takes too
long. Follow the procedure as specified for the power-on tests and ensure that each address range is small
enough that a call to CRC_AddRange does not take too long.

2.3 RAM
It is very important to realize that the area of RAM that needs to be tested may change dramatically
depending upon your project’s memory map.

When testing RAM, keep the following points in mind:

1. RAM being tested cannot be used for anything else including the current stack.

2. Any non-destructive test requires a RAM buffer where memory contents can be safely copied to and
restored from.

3. There are two stacks, Main and Process. Stack tests can test either or both of the two stacks. Any
test of the stack requires a RAM buffer where the stack can be relocated to.

※ The process stack area is not supported in the sample project because it has not been tested.

2.3.1 Power-On
At power-on, a full destructive test can be performed on the RAM other than the stack. The stack must be
tested with a non-destructive test. However, if startup time is very important, it might be possible to fine tune
this so that only the area of stack used before the power-on RAM test is performed using the slower
nondestructive test and the rest of the stack tested with a destructive test.

2.3.2 Periodic
All periodic tests must be non-destructive. Because periodic tests are called from interrupt handlers, it was
tested assume that the device is in privileged mode.

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 45 of 50
Aug.29.25

2.4 Clock
The monitoring of the main clock is set up with a single function call to ClockMonitor_Init.

In this sample project, some symbol definitions that are arguments to the function ClockMonitor_Init are
defined in hwsetup.h according to the system.

◆ Reference example of symbol definitions and function calls:

[Symbol definitions (in this sample software: hwsetup.h)]
#define CLOCK_FREQ_HOCO 48.0e6

#define CLOCK_FREQ_PCLKB 60.0e6

#define CLOCK_FREQ_LOCO 32768 // LOCO`s frequency is 32.768KHz on RA8M1.

#define CLOCK_FREQ_MAIN CLOCK_FREQ_PCLKB

[Example of calling the function ClockMonitor_Init(in this sample software: RA_SelfTest.c)]
ClockMonitor_Init(PCLKB , LOCO , CLOCK_FREQ_MAIN , CLOCK_FREQ_LOCO ,
Clock_Test_Failure); // PCLKB(60MHz), LOCO(32.768KHz) *See "hwsetup.h"

The ClockMonitor_Init function can be called as soon as the main clock has been configured and the LOCO
has been enabled.

The clock monitoring is then performed by hardware and so there is nothing that needs to be done by
software during the periodic tests.

In order to enable interrupt generation by the CAC, both Interrupt Controller Unit (ICU) and Nested Vectored
Interrupt Controller (NVIC) should be configured in order to handle it.

In the interrupt controller unit (ICU), set the event signal number corresponding to CAC frequency error
interrupt and CAC overflow in the ICU event link setting register (IELSRn)

When using FSP (Flexible Software Package) with e2studio, the ICU configuration can be set in the
"Interrupts" tab of the RA Configuration Editor.

Table 2-1 Setting of IELSRn Register Related to CAC

MCU Event Name IELSRn.IELS
RA8M1 CAC_FERRI 0x08C

CAC_OVFI 0x08E
※ In this sample project, n=1,2 (IELSR1, 2) is assigned

The nested vector interrupt controller (NVIC) is set by the test_main function in the RA_SelfTests.c file.
Where NVIC_SetPriority() and NVIC_EnableIRQ() are CMSIS functions provided by FSP, and
CAC_FREQUENCY_ERROR_IRQn and CAC_OVERFLOW_IRQn are IRQ numbers generated by the FSP
// NVIC settings related to CAC

/* CAC frequency error ISR priority */
NVIC_SetPriority(CAC_FREQUENCY_ERROR_IRQn,0);
/* CAC frequency error ISR enable */
NVIC_EnableIRQ(CAC_FREQUENCY_ERROR_IRQn);

/* CAC overflow ISR priority */
NVIC_SetPriority(CAC_OVERFLOW_IRQn,0);
/* CAC overflow ISR enable */
NVIC_EnableIRQ(CAC_OVERFLOW_IRQn);

Frequency error interrupt-
related NVIC setting

NVIC settings related to overflow
error interrupts

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 46 of 50
Aug.29.25

In addition, when the oscillation stop detection function is enabled, an NMI interrupt occurs when the main
clock oscillator stops oscillating.

In this sample software, the error handling function (“Clock_Stop_Detection()”) prepared in advance is
executed within NMI interrupt callback function (NMI_Handler_callback) as shown in the following example.
static void NMI_Handler_callback(bsp_grp_irq_t irq)
{
 switch(irq){
 case BSP_GRP_IRQ_IWDT_ERROR :
 ・・・
 break;
 case BSP_GRP_IRQ_LVD1 :
 case BSP_GRP_IRQ_LVD2 :
 break;
 case BSP_GRP_IRQ_OSC_STOP_DETECT :
 Clock_Stop_Detection();
 break;
 case BSP_GRP_IRQ_TRUSTZONE :
 ・・・
 break;
 default:
 break;

 }
}

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 47 of 50
Aug.29.25

2.5 Independent Watchdog Timer
In order to configure the Independent Watchdog Timer, it is necessary to set the OFS0 register in Option-
Setting Memory. For example, suppose the Option-Setting Memory will be set as follows.

Table 2-2 OFS0 Register Setting Example (IWDT Related)

Item OFS0 Register Setting (For Example)
IWDT Start Mode Select (IWDTSTRT) 0: Automatically activate IWDT after a reset

(auto start mode)
IWDT Timeout Period Select (IWDTTOPS[1:0]) 11b: 2048 cycles
IWDT Dedicated Clock Frequency Division Ration
Select (IWDTCKS[3:0])

1111b: 1/12

IWDT Window End Position Select (IWDTRPES[1:0]) 11b: 0% (no window end position setting)
IWDT Window Start Position Select (IWDTRPSS[1:0]) 11b: 100% (no window start position setting)
IWDT Reset Interrupt Request Select
(IWDTRSTIRQS)

0: Enable non-maskable interrupt request or interrupt request

IWDT Stop Control (IWDTSTPCTL) 1: Stop counting when in Sleep, Snooze, or Software
Standby mode

When using FSP (Flexible Software Package) on e2studio, the “Option-Setting Memory” settings can be
done in the property of the “BSP” tab of the configuration.

Figure 2-6. Example of OFS0 Register Setting by Using FSP with e2studio

Double Click to open

Open the BSP properties with
Window⇒Show View command

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 48 of 50
Aug.29.25

When the "Generate Project Content" button is clicked, the contents set in the property will be reflected in the
definition of the corresponding symbol in the following file.

• Applicable File

 ..\project-name\ra_cfg\fsp_cfg\bsp\bsp_mcu_family_cfg.h

• Applicable Symbol (Excerpt)
#define OFS_SEQ1 0xA001A001 | (0 << 1) | (3 << 2)

#define OFS_SEQ2 (15 << 4) | (3 << 8) | (3 << 10)

#define OFS_SEQ3 (0 << 12) | (1 << 14) | (1 << 17)

 ： ：

Figure 2-7 Option Function Select Register 0 (OFS0)

For detailed specifications on IWDT, refer to the “Independent Watchdog Timer (IWDT)” chapter in the
User's Manual: Hardware.

The Independent Watchdog Timer should be initialized as soon as possible following a reset with a call to
IWDT_Init:

/* Setup the Independent WDT. */
IWDT_Init();

After this, the watchdog timer must be refreshed regularly enough to prevent the watchdog timer timing out
and performing a reset. Note, if using windowing the refresh must not just be regular enough but also timed
to match the specified window. A watchdog timer refresh is called by calling this:

/* Regularly kick the watchdog to prevent it performing a reset. */
IWDT_Kick();

If the watchdog timer has been configured to generate an NMI on error detection then the user must handle
the resulting interrupt.

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 49 of 50
Aug.29.25

2.6 ADC
The ADC module has a built-in diagnostic mode which allows various reference voltages to be tested
against. To account for allowed inaccuracies, the expected result is allowed to fall within a tolerance defined
using:

#define ADC_TOLERANCE 8

This value is set as the maximum absolute accuracy that the ADC is rated to. In a calibrated system this
tolerance could be tightened.

The ADC test module must be initialized with a call to Test_ADC_Init.

Since ADC has 2 units (unit 0 and unit 1), use the function with "_u1" in the name when testing unit 1.

2.6.1 Power-On
At power-on, the ADC module can be tested using the Test_ADC_Wait function. The return value of this
function must be checked for the result.

2.6.2 Periodic
The periodic testing should start with a single call to Potentiometer_Read(). Following that the ADC module
will perform a reference conversion each time it is used.

The reference voltage is rotated between 0 V, VREF/2 and VREF.

The result of these reference conversions must be checked periodically using a call to
Test_ADC_CheckResult

2.7 GPIO
The specification of the port to be test target in each device is defined by the g_GPIO_Test_Port structure in
the gpio_config.h header file (port m, bit n).

Port Specification example:
static const struct {
 uint16_t m;
 uint16_t n;
} g_GPIO_Test_Port[GPIO_TEST_NUM] =
{
 {0 , 1 } , // PORT001
 {2 , 2 } , // PORT202
 {5 , 3 } // PORT503
};

RA Family IEC 60730/60335 Self Test Library for RA MCU (RA8_CM85)

R01AN7824EJ0100 Rev.1.00 Page 50 of 50
Aug.29.25

Revision History

Rev. Date
Description
Page Summary

1.00 Aug.29.2025 - First edition

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2025 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Test
	1.1 CPU
	1.1.1 CPU Test Software API

	1.2 ROM
	1.2.1 CRC32 Algorithm
	1.2.2 ROM Test Software API

	1.3 RAM
	1.3.1 RAM Test Algorithm
	1.3.2 RAM Test Software API

	1.4 Clock
	1.4.1 Main Clock Frequency Monitoring by CAC
	1.4.2 Oscillation Stop Detection of Main Clock
	1.4.3 Clock Test Software API

	1.5 Independent Watchdog Timer (IWDT)
	1.5.1 IWDT Software API

	1.6 ADC
	1.6.1 ADC Test Software API

	1.7 GPIO
	1.7.1 GPIO Test Software API

	2. Example Usage
	(a) Power-on Test
	(b) Periodic Test
	2.1 CPU
	2.1.1 Power-On
	2.1.2 Periodic

	2.2 ROM
	2.2.1 Reference CRC Value Calculation in Advance
	2.2.2 Power-On
	2.2.3 Periodic

	2.3 RAM
	2.3.1 Power-On
	2.3.2 Periodic

	2.4 Clock
	2.5 Independent Watchdog Timer
	2.6 ADC
	2.6.1 Power-On
	2.6.2 Periodic

	2.7 GPIO

	Revision History

