LENESAS

Renesas RA Family
Injecting and Updating Secure User Keys

Application Note

Introduction

Cryptography is important because it provides the tools to implement solutions for authenticity,
confidentiality, and integrity, which are vital aspects of any security solution. In modern cryptographic
systems, the security of the system no longer depends on the secrecy of the algorithm used but rather on the
secrecy of the keys.

Renesas MCU security revolves around integrated security engines. There are different types of security
engines across the RA MCU. Users can find the specific engine used in a particular MCU from its hardware
user’s manual.

The security engines can operate in two different modes, called Compatibility Mode and Protected Mode.
The application note “Renesas Security Engine Operational Modes” (R11AN0498) explains the definition of
the two modes and their use cases. In the context of this application note, the operational differences are:
¢ In Compatibility Mode, the security engines can inject secure keys as well as plaintext keys. Key
injection must be performed using RA Family Flexible Software Package (FSP) APIs. All security
engines support Compatibility Mode.
¢ In Protected Mode, the security engines can inject only secure keys. Key injection must be
performed using the MCU’s boot firmware. Only the RSIP security engines and SCE9 support
Protected Mode.
With this release, this application project demonstrates the following secure key injection processes:

o RSIP-E51A Compatibility Mode AES-128 secure key injection using the RASM1 MCU

e SCE9 Protected Mode AES-256 and ECC secp256r1 public key secure key injection using the RA6M4
MCU

e SCE7 Compatibility Mode AES-128 secure key injection using the RA6M3 MCU.

e RSIP-E50D Protected Mode ECC secp256r1 public key and private key secure key injection using the
RA8P1 MCU

Example keys are provided with the projects. These keys must not be used in an end-product, as key
reuse constitutes a major security risk. This application note describes how to modify the projects to use
custom keys.

Required Resources

Target Devices:

RA8M1/RA8D1/RA8T1 (with RSIP-E51A)

RA8P1, RA8T2 (*), RA8M2 (**), RA8D2 (**) (with RSIP-E50D)

RA4C1 (with RSIP-E31A)

RA4L1 (with RSIP-E11A)

RA6M4/RAB6M5/RA4M2/RA4M3 (with SCE9)

RA6M1/RAB6M2/RABM3 (with SCE7, Compatibility Mode only)

RA6T2 (with SCE5_B, Compatibility Mode only)

RA4M1/RA4W1 (with SCES, Compatibility Mode only)

(*) These devices will be supported starting from FSP v6.1.0 and later.
(**) These devices will be supported starting from FSP v6.2.0 and later.

R11ANO496EU0221 Rev.2.21 Page 1 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

Development tools and software

e e?studio IDE v2025-04.1

e Renesas Flexible Software Package (FSP) v6.0.0
e SEGGER J-Link® USB driver and RTT Viewer

e Renesas Flash Programmer (RFP) v3.19

¢ Renesas Security Key Management Tool v1.09

The FSP, J-Link USB drivers, and e? studio are bundled in a downloadable platform installer available on the
FSP webpage at renesas.com/ra/fsp. SEGGER RTT Viewer is available for download free-of-charge from
https://www.segger.com/products/debug-probes/j-link/tools/rtt-viewer/. RFP is available for download from
https://www.renesas.com/software-tool/renesas-flash-programmer-programming-gqui. The free-of-charge
edition can be used for the functionality required by this Application Project. The Security Key Management
Tool can be downloaded at https://www.renesas.com/software-tool/security-key-management-tool.

Hardware

o EK-RA8P1, Evaluation Kit for the RA8P1 MCU Group (https://www.renesas.com/ek-ra8p1)

o EK-RA8M1, Evaluation Kit for the RA8M1 MCU Group (http://www.renesas.com/ra/ek-ra8m1)
o EK-RA6M4, Evaluation Kit for the RA6M4 MCU Group (http://www.renesas.com/ra/ek-raém4)
e EK-RA6M3, Evaluation Kit for the RA6M3 MCU Group (http://www.renesas.com/ra/ek-raém3)
e Workstation running Windows® 10

e One USB device cable (type-A male to micro-B male)

e One USB device cable (type-A male to type-C male) (for the EK-RA8P1 board)

Prerequisites and Intended Audience

This application note assumes you have some experience with the Renesas e2 studio IDE and Arm®-
TrustZone®-technology based development models with e? studio. In addition, the application note assumes
that you have some knowledge of RA Family MCU security features. You can reference the section “Security
Features” in the hardware user's manual for background knowledge preparation for the cryptographic key
injection. The intended audience are product developers, product manufacturers, product support, or end
users who are involved with any stage of injecting or updating secure keys with Renesas RA Family MCUs.

R11ANO496EU0221 Rev.2.21 Page 2 of 81
Oct.27.25 RENESAS

http://www.renesas.com/fsp
https://www.segger.com/products/debug-probes/j-link/tools/rtt-viewer/
https://www.renesas.com/software-tool/renesas-flash-programmer-programming-gui
https://www.renesas.com/software-tool/security-key-management-tool
https://www.renesas.com/ek-ra8p1
http://www.renesas.com/ra/ek-ra8m1
http://www.renesas.com/ra/ek-ra6m4
http://www.renesas.com/ra/ek-ra6m3

Renesas RA Family Injecting and Updating Secure User Keys

Contents
1. Wrapped Key Creates ROOt Of TrUSEoooiiieeii e e e e e e e e e 6
1.1 INtroduction t0 ROOE Of TTUST.....coiiiiiii et e et e e st e e s et e e e e e nnteeeesanteeeeeans 6
1.2 Introduction to Security Engine and Associated KEYS..........ccoiiiiiiiiiii e 6
1.3 Renesas Secure Key Injection AAVaNTagescooiiiuiiiiiiii ittt 8
1.3.1 Advantages of Key Wrapping over Key ENCryplion ... 8
1.3.2 Advantages of Key Wrapping using MCU HUK ... 9
1.4 Renesas RA MCU Factory Boot Firmware Limitations for SCE9ccciiiiiiiii e 9
2. Wrapped Key Injection Use Cases and Injection Procedure OVErviewccccoiuieieiiiieieiniieeenniieenn 10
P B VAT =T o] o T=To B (oY VA Y = PO PR 10
2.2 General Steps for Secure Key Injection and Updatecceviiiiiiiiiiiiieiiee e 10
22,1 KEY N ECHION .. ————————————— 10
2.2.2 KEY UPAALE ——————————— 11
2.3 Overview of the Operations for Evaluating the Example Projectscccccovveeiieiiiiiiiiiieeee e, 12
2.4 Tools Used in the Secure Key Injection and Update.............ccoiiiiiiiiiiiiiiii e 14
3. Using the Renesas KeY Wrap SEIVICEuuuiiiiiiiiiiiiieiie ettt e e e e et e e e e e e reeeeaaeean 15
3.1 Create PGP KEY Pail.....ccoi ittt e e e e e e e e e e e e e st e e e e e e e e e e e anrreneaaaeeas 15
3.2 Registration With DLIM SEIVETccoi ittt e ettt e e e sbbeee e sbbe e e e saneeeeeaans 18
3.3 Exchange User and Renesas PGP PUDIIC KEYSc.uiiiiiiiiiiiii e 20
4. Wrapping the User Factory Programming Key Using the Renesas Key Wrap Service.............ccoccuuueee. 24
4.1 Renesas Security Key Management TOOIoocuuiiiiiiiiiiiiie e 24
4.2 Creating the User Factory Programming Key using the SKMT GUI Interface.........ccccccoociiviieenninnenn, 25
4.3 Creating the User Factory Programming Key using the CLI Interface..........ccccccoviiiniiiieceen, 29
4.4 Wrapping the UFPKttt e e e e e e et e e e e e e e e e s absee e e e e e e e e anneeeeeas 29
5. Secure Key Injection for RSIP and SCE9 Protected MOde...........ueiiiiiiiiiiiiiiiiiee e 35
5.1 Wrap Keys with the UFPK and W-UFPK for SCE9 Protected Mode using the SKMT GUI Interface ... 35
5.1.1 Wrap an Initial AES-256 Key with the UFPK e 36
5.1.2 Wrap an Initial ECC Public Key with the UFPK........ .o 37
5.1.3 Wrap a Key-Update Key with the UFPK ... 40
5.1.4 Wrap a New AES-256 User Key with the KUKcooiiiiiiiii e 42
5.1.5 Wrap a New ECC Public Key with the KUK ... 44
5.2 Wrap Keys with the UFPK and W-UFPK for RSIP-E50D Protected Mode using the SKMT GUI

1] G =T R ROPRRPUPRRR: 45
5.2.1 Wrap an Initial ECC Key Pair with the UFPK ... e 45
5.2.2 Wrap a New ECC Key Pair with the KUKooii e 48
5.3 Wrap Keys with the UFPK and W-UFPK using the SKMT CLI Interfaceccccccoiiiiiiiiiiiiennns 50
5.3.1 Wrap an Initial AES-256 Key with the UFPK.........coo e 51
5.3.2 Wrap an Initial ECC Public Key with the UFPK...........cooi e 51
5.3.3 Create and Wrap a Key-Update Key with the UFPK...........ccccmiiiiiiiiiieeee e 52
R11ANO496EU0221 Rev.2.21 Page 3 of 81

Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

5.3.4 Wrap a New AES-256 Key With the KUKcooiiiiiiiic e 53
5.3.5 Wrap a New ECC Public Key With the KUKcoo e 53
5.4 Secure Key Injection via MCU Boot INterfacecueiiiiiiiiiiii e 54
5.4.1 Setting UP the HAardWare..........o.eiiiiiii e e e e s rbbe e e s rneeeeeae 54
5.4.2 Inject the Initial User Key and Key-Update KEY 55
6. Secure Key Injection Preparation for RSIP and SCE7 Compatibility Mode............cccciiiiiiiiiiiie, 59
6.1 Wrap an AES-128 User Key Using the UFPK for RSIP-E51A Compatibility Modecccccvieeeeeee. 59
6.2 Wrap an AES-128 User Key Using the UFPK for SCE7c.uvviiiiiiiiieeee e 62
7. Example Project for RA6M4 (SCE9 Protected MOde)........ooiuuiiiiiiiiiiiiiie e 63
7.1 EXampPIe ProjeCt OVEIVIEWc.oouiiiiiiiiiee ittt ettt e ettt e e e s bt e e e sbb e e e s eanteeeesnneeeeeaan 64
7.2 Using the RFP INJECIEA KEYSuuuiiiii s 65
7.2.1 Formatting the INJECLEd KEYS........uuueeei s 65
7.2.2 Verifying the Injected Key and the Updated KeY.............cooiiiiiiiiiiiii it 66
7.3 FSP Crypto Module Support for User Key Update...........ooouiiiiiiiiiiiiiiiee e 67
7.3.1 Save the New Wrapped Key to Data FIash.............ocuoiiiiii e 68
7.4 Import and Compile the Example Project ... 69
7.5 Running the EXample ProjECt....... .. s 69
8. Example Project for RA8P1 (RSIP Protected Mode)cocuiiiiiiiiiiiiiiee e 71
8.1 EXamPIe ProjeCt OVEIVIEWccoiuiiiiiiiiiii ittt ettt e ettt e ettt e e e s bt e e e sbb e e e e aanteeeeaaneeeeeaans 72
8.2 UsiNg the RFP INJECIEA KEYS ...ttt e e e e e e e eeaeaeeas 72
8.2.1 Formatting the INJECted KEYS..... .o e e e e e 72
8.2.2 Verifying the Injected Key and the Updated Key ... 72
8.3 FSP Crypto Module Support for User Key Update...........cocuiiiiiiiiiiiiiiei e 73
8.3.1 Save the New Wrapped Key t0 MRAM ...ttt e et e e ee e e 73
8.4 Import and Compile the EXxample Project ... 74
8.5 RunNning the EXampPle PrOJECL ... e e e e e e e ee e e e e e as 74
9. Example Project for RA8BM1 (RSIP Compatibility MOAE)coeiiiiiiiiiiiiiiiiiee e 76
S T O AT 1 RSP UPRPRPPRSR 76
9.2 Using the SKMT-Generated FileS ... it e e e e e eeaee e 76
9.3 RSIP Compatibility Mode Key INJECHION APIS ... 76
9.4 Import and Compile the EXample Project....... ... 76
9.5 RuNNINg the EXamPIe PrOJECL........ooi it e e 77
10. Example Project for RAGM3 (SCE Compatibility MOAE)coeiiiiiiiiiiiiiee e 78
0 g O A= o= USRS 78
10.2 Using the SKMT-Generated Filescoiiiiiiiiiiiii et 78
10.3 SCE7 Compatibility Mode Key INJECHON APIScooiiieeieee et e 78
10.4 Import and Compile the EXample ProjECL..........oouiiiiiiiiiiiiiie e e 78
10.5 Running the EXample ProJECE....... .. it e s 79
R11ANO496EU0221 Rev.2.21 Page 4 of 81

Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

11, REFEIENCES ...ttt bt st e e bt b et e s b et e ab e e et e e e be e e nbe e nnne s 80
12, WEDSILE @NA SUPPOITttt e e e e e e e e e e e e e e e e e e eeata b e e e eeaeesssasasaeeeaeeeeaansrnneees 80
REVISION HISTOIY ...ttt e e e s b e e e e e e a b et e e e e b e e e e e aabe e e e e aabreeeeaanes 81
General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products 82
LO07e] golo] = 1 (=N o L=T=To [0 U L= 1 LY TSP PR 1
(070] 0] e=To1 Q{01 0] {01 F= 111] o TP PT PSR 1
I =L [T 0 1 F= T G TP PP P PP PUPPPPPPPRRN 1
R11AN0496EU0221 Rev.2.21 Page 5 of 81

Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

1. Wrapped Key Creates Root of Trust

1.1 Introduction to Root of Trust

Roots of trust are highly reliable hardware, firmware, and software components that perform specific, critical
security functions (https://csrc.nist.gov/projects/hardware-roots-of-trust). In an loT system, a root of trust
typically consists of identity and cryptographic keys rooted in the hardware of a device. It establishes a
unique, immutable, and unclonable identity to authorize a device to exist in the loT network.

Secure boot is part of the services provided in the Root of Trust in many security systems. The application is
authenticated using public key encryption. The associated keys are part of the Root of Trust in the system.
Device Identity, which consists of Device Private Key and Device Certificate, is part of the Root of Trust for
many loT devices.

From the above Root of Trust discussion, we can see that leakage of cryptographic keys can bring the
secure system into a risky state. Protection of the Root of Trust involves limiting key accessibility within the
cryptographic boundary only, with keys that are securely stored and preferably unclonable. The Root of Trust
should be locked from read and write access by unauthorized parties.

The Renesas user key management system and the MCUs can provide all the above desired protection.

1.2 Introduction to Security Engine and Associated Keys

The security engine (RSIP or SCE) is an isolated subsystem within the MCU. The security engine contains
hardware accelerators for symmetric and asymmetric cryptographic algorithms, as well as various hashes
and message authentication codes. It also contains a True Random Number Generator (TRNG), providing
an entropy source for cryptographic operations. The security engine is protected by an Access Management
Circuit, which can shut down the security engine in the event of an illegal external access attempt. Figure 1
shows the conceptual diagram of the security engine. Refer to Table 1 for exactly what cryptographic
operations are supported by each type of security engine.

MCU Hardware Root

Key
Used for injecting DLM and
debug authentication keys and

MCU HRK externally-created application
keys

Access Management
Circuit
Shuts down in the event of an
illegal access attempt.

Asymmetric Symmetric
Crypto Engine Crypto Engine

.na 9 / True Random Number
Hash Engine Generator
SP800-22 entropy source with

NIST-certified DRBG SP800-
90A and SP800-90B compliance

Crypto Accelerators
RSA up to 4K, ECC NIST and
Brainpool curves up to 521-bit

keys plus Ed25519, AES-
128/192/256, SHA2-
224/256/384/512, CMAC,
GMAC, HMAC

=
=
D
=
(©)
=
=
()]
E
)
™m
©
=
o
w
[60)
I3}
o
<C

RSIP-E51A

Figure 1. Security Engine RSIP-E51A

The Hardware Root Key (HRK) is not a single key that is physically stored. It is represented in this
presentation as such for simplifying the description of the concepts. The security engine contains internal
RAM for operations that deal with sensitive material such as plaintext keys. This RAM is not accessible
outside the security engine.

The security engine has its own dedicated internal RAM, enabling all crypto operations to be physically
isolated within the security engine. This, combined with advanced key handling capability, means that it is
possible to implement applications where there is no plaintext key exposure on any CPU-accessible bus.

Secure key storage and usage is accomplished by storing application keys in wrapped format, encrypted by
the MCU’s Hardware Unique Key and tagged with a Message Authentication Code. Since wrapped keys can

R11ANO496EU0221 Rev.2.21 Page 6 of 81
Oct.27.25 RENESAS

https://csrc.nist.gov/projects/hardware-roots-of-trust

Renesas RA Family Injecting and Updating Secure User Keys

only be unwrapped by the security engine within the specific MCU that wrapped them, the wrapping
mechanism provides unclonable secure storage of application keys. The RA Family also provides a secure
key injection mechanism to securely provision your devices.

The security engine is packed full of cryptography features that you can leverage in your higher-level
solutions, giving you the option to use hardware acceleration to reduce both execution time and power
consumption. Table 1 summarizes the different security engines and their associated cryptographic
functionalities.

Table 1. Renesas Secure IP and Security Engine Cryptographic Capabilities

RA8P1,

Functions RA8x1 RA4L1 RA4C1

RA8x2

Cryptographic Isolation
SEEUTY | SRl RSIP-E50D | RSIP-E51A |RSIP-E11A|RSIP-E31A| SCE9 sce7 | SCE-| sces
Engines | Engine B
Identity & Key Exchange (Asymmetric)
Key Gen,
RSA Sign/Verify Up to 4K Up to 4K - - Up to 4K Up to 2K - -
Key Gen, Up to 521 Upto521 | Upto 256 | Upto 384 . Up to 384
ECC | ECDsA, ECDH| bits bits bits pits | UP 10 912bits| i - -
Ed25519| EdADSA Y Y - Y - - - -
DSA Sign/Verify - - - - - Y - -
Privacy (Symmetric)
CEISI':FB(= 128/192/256|128/192/256 | 128/256 128/256 | 128/192/256 |128/192/256 | 128/256 | 128/256
AES GCTR 128/192/256| 128/192/256 | 128/256 128/256 | 128/192/256 | 128/192/256 | 128/256 | 128/256
XTS 128/256 128/256 - - 128/256 128/256 - -
8I\CAI\A/I,CGCM, 128/192/256|128/192/256 | 128/256 128/256 | 128/192/256 |128/192/256 | 128/256 | 128/256
ChaCha20| Poly1305 Y - - - - - - -
Data Integrity
GHASH Y Y Y Y Y Y Y Y
HMAC Y Y Y Y Y Y - -
SHA-2
Hash (224/256) Y Y Y - -
SHA-2
(384/512) Y Y - Y - - - -
HW Entropy,
TRNG SP800-90B Y Y Y Y Y Y Y Y
Key Handling
Secure key 128-bit 128-bit | 128-bit
Wrapped storage 256-bit HUK| 256-bit HUK [256-bit HUK|256-bit HUK| 256-bit HUK DHUK DHUK | DHUK
Plaintext | -92¢Y Y Y Y Y Y Y Y Y
compatibility

The features of the various Security Engines are as follows:

e SCE5 and SCE5_B provide hardware-accelerated symmetric encryption for confidentiality.

e SCE7 adds asymmetric encryption and advanced hash functions for integrity and authentication. SCE7
AES, SHA, and random number generation DRBG are NIST CAVP certified.

e SCE9 extends asymmetric encryption support for RSA up to 4K and enhanced key storage capability
with a Hardware Unique Key (HUK). The full complement of algorithms is NIST CAVP certified.

o RSIP-E11A is the most basic RSIP type, offering all necessary core functionalities including ECC. RSIP-
E31A builds on this by expanding ECC and SHA-2 support up to 384 bits and adding Ed25519 support.

o RSIP-E51A offers a broader set of cryptographic features. It supports RSA, including signature and key
generation, up to 4K bits, ECC up to 521 bits, and a wide range of symmetric AES modes with all three
key lengths. Additionally, it provides SPA/DPA resistance for both Protected Mode and Compatibility
Mode.

o RSIP-E50D offers the widest range of functions among all types, encompassing all functionalities of the
earlier versions. It further enhances data integrity with SHA3 and extends symmetric cryptographic
capabilities with support for ChaCha20-Poly1305.

R11ANO496EU0221 Rev.2.21 Page 7 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

The MCU-unique Hardware Unique Key (HUK) is a 256-bit random key for RSIP and SCE9 and a 128-bit
random key for SCE5_B, which is injected into the Renesas factory. This key is stored in a wrapped format
using an MCU-unique key wrapping mechanism.

The derived MCU-unique Hardware Key (DHUK) for SCES5 and SCE?7 is a derived MCU unique key that
serves the same purpose as the HUK in terms of user key wrapping. The derived HUK for SCE7 and SCE5
is never stored and is accessible only by the SCE and not by application code.

Since the HUK/DHUK is unique to each MCU, even if an attacker were able to extract a stored application
key, another MCU would not be able to use it.

In Protected mode, a Key Update Key (KUK) can be used to securely update the user keys when a device is
deployed in the field. The KUKSs are injected during end-product manufacturing via the MCU’s programming
interface or using FSP Crypto Driver. To update keys in a device that is deployed in the field, the new key
must be wrapped with one of the previously injected KUKs. Compatibility Mode does not support KUK usage,
so key updates must be performed using plaintext key injection. In addition to replacing keys that have been
compromised, many security policies require key rotation or key update (re-keying) on a regular basis. It is
recommended to consider injecting multiple KUKs.

1.3 Renesas Secure Key Injection Advantages

Secure key injection and update, combined with the security engine’s support of wrapped keys, address
many vulnerabilities associated with using plaintext keys:

o Plaintext keys are never stored in code flash. In the event of a program memory breach, the sensitive
key material is protected.

o Plaintext keys are never stored in RAM. In the event of malicious code executing on the system, the
sensitive key material is still protected.

o Keys can be securely stored in code flash, data flash, MRAM or even copied into external memory,
enabling unlimited secure key storage.

In addition, the Renesas key wrapping techniques protect against device cloning, as discussed below.

1.3.1 Advantages of Key Wrapping over Key Encryption

100101

110101 No
101011 - . "
ol " indication
u' that the
100101 Jooiol data was
o1 => = oo corrupted

000000
111111
000000

A
100101 10101
115101 => => w0t
1010141

Wrapping

100101

110101 H i
1011 Yk Indication

that the
000000 x
111141 | 8 5
ooooon | %

corrupted

Encryption plus Integrity

data was
Figure 2. Key Wrapping versus Key Encryption
It is important to understand the difference between wrapping and encrypting for secure asset storage.

When data is encrypted and sent to another recipient, if that recipient has the same key, they can decrypt the
data. This results in a confidential exchange of information. However, what if there was a problem with the
transmission of the encrypted data? If the recipient unknowingly receives corrupted information, the
decryption algorithm will generate garbage data with no indication that the original data has been corrupted.

R11ANO496EU0221 Rev.2.21 Page 8 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

Wrapping solves this problem by appending a Message Authentication Code to the encrypted output for
integrity checking.

1.3.2 Advantages of Key Wrapping using MCU HUK

Benefits of MCU-unique Key Wrapping
Every individual MCU has its

own Hardware Unique Key, v Encrypting provides confidentiality
used for storing application v" Wrapping adds integrity
keys v Wrapping with the MCU Hardware Unique Key adds

authenticity and protection against cloning

o o

MCU
can
A
. _|':’®®) :—»@@:@ -| = \ﬂ e ke
HUK Wrapping %

Encryption plus Integrity A— - 5
plus Clone Protection _’W':? - — R

Only this

Figure 3. Key Wrapping using the HUK

Using the MCU Hardware Unique Key (HUK) to wrap the stored keys adds another protection feature — clone
protection. If the wrapped key is transmitted or copied to another MCU, that MCU’s HUK will not be able to
either unwrap or use the copied key. Even if all of the MCU contents are copied onto another device, the
keys cannot be used or exposed.

1.4 Renesas RA MCU Factory Boot Firmware Limitations for SCE9

Secure key injection via the serial programming interface is not supported for RSA 3K, RSA 4K, ECC
secp256k1, and Key-Update Keys on some older versions of the Renesas RA MCUs due to factory Boot
Firmware limitations. The user needs to use a Renesas Flash Programmer (RFP) to read out the Boot
Firmware version and confirm the support for the Secure Key Injection of the above-mentioned keys. Refer
to the RFP user’s manual Flow of Operations section to access the Bootloader Firmware version by using
the Read Device Information menu.

o V1.2.04 — WS1: secure user key inject command is not supported

e V1.3.10 — WS2: user key inject command is not supported

o V1.5.22 — CS: user key inject command is supported, but it does not support RSA 3K, RSA 4K,
secp256k1, or KUK

e V1.6.25 and above — MP: no limitations

The part information silkscreened on the device can also be checked, though it is recommended that the
boot firmware version be confirmed as described above. Boot firmware limitations exist for the following
MCUs:

¢ RA4M2 - All WS and ES devices

e RA4M3 - Al WS, ES, and CS devices (date code 014AZ00)

e RA6M4 - Al WS, ES, and CS devices (date code 014AZ00). MP device with date codes 028AZ00,
031AZ00

e RAG6MS5 - All WS and ES devices

Please note that some EK-RA6M4 and EK-RA4M3 Evaluation Kits may contain affected silicon. The
following list shows the serial numbers of the affected kit. Note that all early adopter kits with WS or ES
silicon are also affected.

e EK-RA4MS3 — Serial numbers 219243 — 219542
e EK-RAB6M4 — Serial numbers 215938 — 216237 and 218497 - 218996

R11ANO496EU0221 Rev.2.21 Page 9 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

If your application requires secure key injection of RSA 3K, RSA 4K, ECC secp256k1, or Key-Update Keys
and your evaluation kit does not support it, please contact your local Renesas Sales representative.

2. Wrapped Key Injection Use Cases and Injection Procedure Overview

This section provides an overview of the wrapped key injection use cases and the general steps for
the injection procedure of each use case. A step-by-step walkthrough of the wrapped key injection
procedures is provided in later sections.

2.1 Wrapped Key Types

Renesas RA Family MCUs have the unique ability to store and use cryptographic keys in wrapped format.
Wrapping involves encrypting and signing the key with either the MCU’s Hardware Unique Key (HUK) or a
derived key based on the MCU’s Unique ID. Since these Key Encryption Keys are unique for each individual
MCU, even if an attacker were able to extract the wrapped key, another MCU will not be able to use it. For
information on the supported key types for each MCU, please refer to the Hardware User’s Manual or the
FSP User’s Manual.

2.2 General Steps for Secure Key Injection and Update

Secure Key Injection for RSIP/SCE Protected Mode and SCE5_B is performed via the MCU boot interface,
demonstrated here with the Renesas Flash Programmer (RFP). Secure Key Injection for RSIP/SCE
Compatibility Mode is performed through the FSP. Key preparation steps where key material is exposed in
plaintext must be performed in a secure environment.

2.2.1 Key Injection

There are three high-level steps for key injection. Section 3 guides the user in establishing the PGP
encrypted communication channel between the user and the Renesas DLM Server. Sections 4, 5, and 1.1
provides step-by-step walkthroughs of how to perform the three high-level steps for the secure key injection.

1. The first step in the secure key injection process is to use the Renesas Device Lifecycle Management
(DLM) service to wrap an arbitrary User Factory Programming Key (UFPK) (in green) using the Renesas
Hardware Root Key (HRK) (in blue). The UFPK is a 256-bit value selected by the user. The same UFPK
can be used to inject any number of keys.

User Renesas
h | TS
UFPK | PGP Encryption
P |
W-UFpPK = ==re=rmmremre=re= DLM Server
/ Key Wrap Serwce

Wrapping the UFPK

Figure 4. Wrapping the UFPK using DLM Server
2. Next, the user key (in yellow) must be wrapped with the UFPK.

UFPK
|/\-;‘,
— o — G

User Key UFPK Wrapped
User Key

Figure 5. Wrap the User Key with the UFPK

R11ANO496EU0221 Rev.2.21 Page 10 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

3. Finally, the user key is injected by providing the wrapped UFPK (W-UFPK) and the wrapped user key to
the secure key injection mechanism of the security engine. Note that this is a conceptual representation
of the secure user key injection. Once the wrapped user key is generated, the tool generates one secure
key injection file, which includes the wrapped user key and the W-UFPK. This file (.rkey file) will be used
in the secure key injection project.

For the Protected mode, injecting the wrapped user key should be performed using the MCU boot
interface. For compatibility mode, injecting the wrapped user key should be performed using the FSP key
injection PSA Crypto API. Note that keys injected via the MCU boot interface (that is, the factory boot
firmware) cannot be used in Compatibility Mode with RSIP and SCE9. SCE5_B supports only
Compatibility Mode; therefore, SCE5_B key injection via the MCU boot firmware interface is performed in
Compatibility Mode. MCUs with the SCE7 and SCES5 security engines do not support key injection via
the MCU boot firmware interface.

= O
] - I

TRNG
Code or Data Flash Security Engine /

' MCU HUK
8,

Programmer Interface E Urigue
—

Figure 6. Inject User Key over the Serial Programing Interface

2.2.2 Key Update

Since injecting new keys in the field is usually done to replace older keys (key rotation or re-keying), this
process is referred to as a “key update”. In Protected mode, to enable secure key updates in the field, one or
more Key-Update Keys (KUK) must be injected during production programming/provisioning, as described
above. Compatibility Mode does not support KUK usage, and key updates must be performed using plaintext
key injection.

KUKs, like other cryptographic keys, can be stored in either code flash or data flash (if available on the
MCU). Injection of the KUK uses the same procedure as injecting other user keys, as described in the
section 2.2.1. Since the KUK is the only mechanism by which new keys can be injected/wrapped, it is highly
recommended that multiple KUKs be injected during production provisioning. This enables the KUK to be
rotated or revoked to adhere to an infrastructure security policy or to respond to a key exposure security
breach.

Additional KUKs CANNOT be injected after the programming interface is disabled. Once a product is in the
field with its programming interface disabled, new keys can ONLY be injected via a pre-existing KUK.

The KUKs may be stored in any code or data flash location during production. This location will be passed to
the key update API for the injection of the new user key. A user can inject multiple KUKs and provide a
scheme to rotate the keys based on a timed schedule or key leakage event. For security reasons, we
recommend that users disable the programming interface prior to deploying to the field.

There are two high-level steps for key updates. Note that the KUK must already reside in the MCU.
1. Use the KUK (in grey) to wrap the new user key (in yellow).

KUK
— Wrap Ea—
New User Key KUK Wrapped
New User Key

Figure 7. Wrap the New User Key with a KUK

R11ANO496EU0221 Rev.2.21 Page 11 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

2. Use the FSP and the previously injected KUK to inject the new user key. The new user key is wrapped
by the MCU HUK (in black). Note that the APIs for the two modes are provided by different FSP

modules.
6

' MCU HRK

‘)_’
L4
P < Dm’ B
) TRNG
Flash, External Memory, or RAM Secure Crypto Engine (SCE)

Figure 8. Update the User Key

2.3 Overview of the Operations for Evaluating the Example Projects

The example projects in this application project demonstrate the secure key injection and update capabilities
of Renesas RA Family MCUs using sample keys. Sections 3, 4, and 5 describe the steps needed to replace
these sample keys with custom keys.

The following graphic shows the flow of this preparation work, plus the example project for SCE9 (RA6M4
example) and RSIP-E50D (RA8P1 example). The block outlined in red is the scope of the functionality of the
example project.

R11ANO496EU0221 Rev.2.21 Page 12 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

OEM Renesas (DLM Server)
enerate PGP key pair IRegister with DLM
OEM PGP public key o S;:re OEM PGP public
< Renesas PGP public key IPGP Key Exchange
Store Renesas PGP
public key

Generate UFPK file

using skmt.exe
\Wrapping User Factory

reate HRK Wrapped Programming Key

FPK (W-UFPK)

A4

<

Renesas PGP public key encrypted UFPK t'

W-UFPK encrypted with OEM PGP public key

Generate an initial plaintext AES-256/ ECC secp256r1 user
key and wrap it with UFPK using skmt.exe

Generate a plaintext Key Update Key and wrap it with
UFPK using skmt.exe

Generate a new plaintext AES-256/ECC secp256r1 user
key and wrap the new user key with the Key Update Key
using skmt.exe

Inject the initial AES-256/ECC secp256r1 user key and the
Key Update Key to MCU using RFP

Verify that the cryptographic operations work well with the RFP
injected AES-256/ECC secp256r1 key. Update the MCU with the
new AES-256/ECC secp256r1 user key using the FSP Crypto
APIs. Verify that the cryptographic operations work well with the
updated AES-256/ECC secp256r1 key.

Figure 9. Operational Flow Injecting and Updating User Key for SCE9 and RSIP-E50D Protected
Mode

The following graphic shows the flow of this preparation work plus the example project for SCE7 (RA6M3
example) and RSIP-E51A (RA8M1 example). The block outlined in red is the scope of the functionality of the
example project.

R11ANO496EU0221 Rev.2.21 Page 13 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

OEM Renesas (DLM Server)

Register with DLM
Generate PGP key pair

OEM PGP public key itore OEM PGP public
&
+ Renesas PGP public key v
Store Renesas PGP IPGP Key Exchange
public key

Generate UFPK file

using skmt.exe
Wrapping User Factory

Create HRK Wrapped | Programming Key

« UFPK (W-UFPK)
W-UFPK encrypted with Customer PGP public key

Renesas PGP public key encrypted UFPK

Generate an initial plaintext AES 128 user key and
encrypt it with UFPK using skmt.exe

Generate a plaintext Key Update Key and
encrypt it with UFPK using skmt.exe

Generate a new plaintext AES128 user key and
encrypt the new user key with the Key Update
Key using skmt.exe

Inject the initial AES128 user key to the MCU
using FSP Key Injection for PSA Crypto API

Verify that the cryptographic operations work well
with the injected AES128 key.

Figure 10. Operational Flow Injecting User Keys for SCE7 and RSIP-E51A Compatibility Mode

2.4 Tools Used in the Secure Key Injection and Update

There are three tools used in the secure key injection and update besides e2 studio, which is used as the
software project development environment. Refer to the corresponding section mentioned below for details
on obtaining, setting up, and using these tools.

¢ Gpgdwin
This tool is used in section 3 to establish a PGP encrypted communication channel between user and
the Renesas Key Wrap server. Using this tool, the user can generate a user PGP key pair, perform key
exchange with the Renesas DLM server, and assist the reception of the W-UFPK.
o Renesas Security Key Management Tool (SKMT)
This tool is used in section 4, section 5 and section 6 to generate the following three key files:
o User key: to be injected to MCU via RFP or FSP API
o Key update key: to be injected to MCU via RFP
o New user key wrapped using the KUK: to be updated by an FSP API
¢ Renesas Flash Programmer (RFP)

This tool is used in section 54 to inject the User key and KUK when using the security engine Protected
Mode.

R11ANO496EU0221 Rev.2.21 Page 14 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

3. Using the Renesas Key Wrap Service

The Renesas Key Wrap Service must be used to obtain a wrapped UFPK (W-UFPK) for the specific MCU
Group and security engine operational mode. All key material exchange is performed with PGP encryption.
This section explains the steps to establish this PGP-encrypted communication channel between the user
and the Renesas Key Wrap Server. This is a one-time process and does not need to be repeated for
different MCUs.

3.1 Create PGP Key Pair

If you already have a PGP key pair, that key can be used for the key exchange process. Otherwise, the
instructions below describe one method for creating a PGP key pair.

The PGP software demonstrated here is GPG4Win, which can be downloaded from this URL:
http://www.gpg4win.org/

The screenshots included in this application note are based on gpg4win-4.0.0.exe. There may be minor
graphic interface updates with later versions. However, the functionality used in this application note should
persist.

Download and install Kleopatra:

e Gpgdwin Setup - E Gpgdvin Setup —
Installation Complete . ;
n Gpg4 Setup was completed successfully, - Comple’rlng G pg4WIn Setup
Gpg4win

GruPG for Windows

Completed Gpadwin has been installed on ywour computer,

lick Finish to close Setup,

ng!. % GngX l Run Kleopatra
- [shiews the README File

ll Gpg4wm

3nUPG for Windows QGnuPG nKIeupatra

ﬁ PO Manape

Epgdwin brings crypto to vour desktop]

G0 ko Gpg4win's webpage

<Back Cancel < Back Cancel

Figure 11. Download and Install Kleopatra
Launch Kleopatra and create a PGP Key Pair.

1. Click File > New Key Pair
2. Choose Create a personal OpenPGP key pair.

Choose Format

Please choose which type you want to create.

—> Create a personal OpenPGP key pair
OpenPGP key pairs are certified by confirming the fingerprint of the public key.

—> Create a personal X.509 key pair and certification request
X.509 key pairs are certified by a certification authority (CA). The generated
request needs to be sent to a CA to finalize creation.

MNext Cancel

Figure 12. Create a Personal Open PGP Key Pair

R11ANO496EU0221 Rev.2.21 Page 15 of 81
Oct.27.25 RENESAS

http://www.gpg4win.org/

Renesas RA Family Injecting and Updating Secure User Keys

3. Provide a Name and Email. Note that even though these are marked as optional, at least one entity
must be provided to move to the next stage. Check Protect the generated key with a passphase.

[X

Enter Details

Flease enter your personal details below. If you want more control over the parameters, click
on the Advanced Settings button.

Mame: §secure_key | (optional)

EMail: § customer@company.com | (optional)

Pru-tect the generated key with a passphrase.

secure_key <customer@company.com s

Advanced Settings...

Figure 13. Provide Name and Email

4. Click Advanced Settings and select RSA as the key type.

™ Advanced Settings - Kleopatra ? *

Technical Details

Key Material

®) RsA 3,072 bits v
+RSA 3,072 bits v

O Dsa 2,043 bits

+ Elgamal | 2,048 bits

(O ECDSA/EdDSA |ed25519

+ ECDH ow25519
Certificate Usage
Signing Certification
Encryption |:| Authentication
valid until: | 1/13/2024 ~

Cancel

Figure 14. Select RSA Encryption

R11ANO496EU0221 Rev.2.21 Page 16 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

5. Click Create and provide a passphrase twice to protect the private key. Then click OK. Be sure to save
your passphrase.

Creating Key Pair...

The process of creating a key requires large amounts of random numbers. This may require
several minutes...

7 pinentry-gt - *

Flease enter the passphrase to
's protect your new key

I) Passphrase: f|

Repeat:

Cancel

Next Cancel

Figure 15. Define a Passphrase

6. The PGP key pair should be created successfully. Click Finish.

Key Pair Creation Wizard

Key Pair Successfully Created

Your new key pair was created successfully, Please find details on the result and some
sugaested next steps below.

Result

Key pair created successfully,
Fingerprint: 012345678 9abcdef0123456789abedef01234567

Next Steps
Make a Backup OF Your Key Pair...
Send Public Key By EMail,..

Upload Public Key To Directory Service. ..

Figure 16. PGP Key Pair Created

7. Anew item will be created in Kleopatra. Right-click on the keypair just created and select Export.

b [R B B Q = &}
Sign/Encrypt... Decrypt/Verify... Import.. Export.. Cerfify.. Lookupon Server.. | Certificates Motepad Smartcards
[search...<alt+q> Al ce
MName E-Mail User-IDs Valid From Valid Until Key-ID
secure_key customer@company.com certified "~ *T Tt ccemmeme AT
B Certify..

Revoke Certification...
Trust Root Certificate
Distrust Root Certificate
Change Certification Trust...
Change Expiry Date...

Change Passphrase..
Add User-ID...

" Delete Del

citet

B= Backup Secret Keys..
= Print Secret Key..
B= Publish on Server... Ctrl+Shift+E

Details

Figure 17. Export the User PGP Public Key

R11ANO496EU0221 Rev.2.21 Page 17 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

8. Save the public key to a file with an * . asc extension. In this example, this file is renamed to
customer public.asc. Click Save.

™ Export OpenPGP Certificates X
1 <« (C:) Windows » secure_key_injection v] /':' Search secure key
Organize = Mew folder == - 9
"y Downloads ~ Mame Date modified Type
J) Music
Mo itermns match your search.
&=/ Pictures
B videos

=2 (G) Windows

=% MNetwork s v

File name;l customer_public.asc I

Save as type: OpenPGP Certificates (*.asc *.gpg *.pgp)

» Hide Folders Cancel

Figure 18. Save the PGP Public Key to a Folder
3.2 Registration with DLM Server

The first time you use the Renesas Key Wrap service, you will have to register with the Renesas DLM
Server.

1. Open the URL https://dim.renesas.com/keywrap in a browser and click New registration.

Login screen of Key Wrap service

E—mail address:

Mew registration

If you forgot your password...

Figure 19. Start Registration with Renesas DLM Server

2. Follow the prompt to provide a valid email address and click Send mail.

Please enter your e—mail address before using this system.
We will send e-mail for purposes of identification. .)
Please make sure that you can receive e-mail from the domain @renesascom .

E-mail address ;| customer@company.com

| Send mail || Retur |

Figure 20. Register User Email Address

R11ANO496EU0221 Rev.2.21 Page 18 of 81
Oct.27.25 RENESAS

https://dlm.renesas.com/keywrap

Renesas RA Family Injecting and Updating Secure User Keys

After clicking Send mail, the following screen will appear. Click Return.

The e~mail has been sent,

E-mail address - [}ustn[nel@mmgany.ulm]

Click on the link in the e—mail, and register vour information.

Unless vou have registered within three hours, the link expires, so re—start the process
from registration of vour e—mail address.

Figure 21. Acknowledge Email Transmission

3. You should receive an email similar to the one shown below. Click on the URL provided to confirm your
registration.

Dear customer,

Thank you for registering with the KeyWrap service,
To start using this service, you need to click on the following URL to register your information.

https://dim.renesas.com/keywrap/?menu=reqg22Freqist%%2Ffixed%:2F¶m=id%3Duf2SL203Cd7ODIjiEN%252BOmISX7 qhfiv8HImMP3252F19Q7aH8%253D

- Motes

Please register your information within three hours of receiving this e-mail.
The URL expires after the three hours, after which you will need to start the registration process anew.

Please delete this email if you were not aware that you were going to receive it.
* This email was sent from a send-only address.
Please understand that there will be no respaonse, even if you reply to this address.
* If you have forgotten your password, reset your password via the link “If you have forgotten your password ..." on the login page of this system.
Thank you.

Renesas Electronics Corporation

Figure 22. Registration Confirmation Email

4. Follow the prompts to provide your name and company name and create a password. Click the Next
(confirmation) button. Note that the password must consist of 8 to 32 alphanumeric characters and may
include the symbols “I” and “@".

Your information will be registered. Enter all of the following items
The passwon:i i”s ‘fro!:;n 8 to 32 characters, which must be single—byte, and mav include

the symbols !
E-mail address : :nustﬂmer@canpan‘,r.mm
Name -Jcustomer ‘
Company Name :Jcompany ‘
Password e
Re—enter yvour password e
Figure 23. Confirm Registration
R11AN0496EU0221 Rev.2.21 Page 19 of 81

Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

After the confirmation screen is displayed, click on the Register button to complete the user registration.

The following iterms will be registered. Are you sure?

E-mail address : | customer@company.com
Narme : customer

Compary Mame : company

Password | 0000000000
Re-enter your password | @ 000000000

Figure 24. Finish the Registration
3.3 Exchange User and Renesas PGP Public Keys
If you have not already exchanged PGP keys with the Renesas DLM server, follow the steps below.

1. After successfully registering the user information, the following screen will open. Click the Start service
button to start using the key encryption system.

Registered

E-rmail address ;| customer@ company.com

Narme : customer

Compary Name _ company

Figure 25. Start DLM Key Wrapping Service

2. When the agreement warning shows up, scroll down to the bottom of the Trusted Secure IP Key Wrap
Agreement and click | agree. You will then be logged into the DLM server. Note that the Agreement will
come up every time you log into the DLM server.

—— CAUTION!!———

--- PLEASE READ THE FOLLOWING BEFORE USING THE SERVICE ---

This Trusted Secure IP Key Wrap Service Agreement (this "Agreement") is between you and
Renesas Electronics Corporation. Please carefully note that this Agreement is legally valid
agreement relating to Trusted Secure IP key encryption (the "Service").

Article 15 (ENTIRE AGREEMENT)

This Agreement sets forth the entire agreement of the parties with respect to the subject matter
hereof and supersedes any prior or contemporaneous agreements, written or oral, concerning the
subject matter hereof. Any change, modification or amendment of the terms of this Agreement shall
not be effective unless reduced to writing and authorized by both parties.

|I agreel [disagree. | View PDF

Figure 26. Agreement for Using the Renesas DLM Server

R11ANO496EU0221 Rev.2.21 Page 20 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

3. When you log into the DLM system, the window below appears. Click PGP key exchange.

PGP key exchange| Display history

our PGP key has not been exchanged vet. Start by exchanging your PGP key.

)N

The RZ family users

RZ

\ The RX family users
_RX

\ The RE family users.
R

\ The RA family users
‘ RA

Figure 27. Start PGP Key Exchange

4. Click Reference and select the public key generated earlier (customer public.asc). Notice that the
fingerprint of the Renesas PGP public key is displayed. This will be used to certify the Renesas public
key after you receive it.

Select vour PGP public key that exported format, and dick on PGP key exchange” button.
Your public key will be sent to Renesas, and the PGP public key of Renesas will be sent to vour e—mail address.

| | 2T | PGP key exchange

The fingsrmnnt of PGP public key of Renesas is below.

FB18 EBSE 1F61 20E3 9613
8DF7 Fol17 183C 1EAD EBGD

Figure 28. Browse the Customer PGP Public Key
5. Click the PGP key exchange.

PGP key exchange screen

customer is already logged—in

Select vour PGP public key that exported format, and dlick on “PGP key exchangs™ button.

Your public key will be sent to Fenesas, and the PGP public key of Renesas will be sent to vour e—mail address

[C¥fakepath¥customer_public asc IE=EEr PGP key exchange

The fingerprint of PGP public key of Renesas is below.

FB18 EBSG 1HG1 20E9 9613
80OF7 FB17 18905 1EADL EBBD

Figure 29. Exchange Keys

R11ANO496EU0221 Rev.2.21 Page 21 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

6. Once the PGP public key is submitted, click Return.

Your PGP public key submit is being procsssed in vour application for registration.

After completion of registration, registration—completion e—mail to which the PGP public ke of Renesas is attached will be sent.
Please wait fora while.

Figure 30. Wait for Renesas’s PGP Public Key

7. You will receive an email from Renesas at the email address registered with the DLM server with the
contents as shown below if the key exchange is successful. It typically takes about one to two minutes to
receive this email.

Note that a PGP public key can be registered any number of times. The latest PGP public key that has
been registered successfully is used for encryption. All previously registered PGP public keys are
discarded.

D keywrap-pub.key
3 KB

To this user:
Thank you for using the KeyWrap service.
mport processing of the registered PGP public key was done.

The PGP public key of Renesas is attached to this mail.
f you request an encryption processing, transmit the data via our website after using the attached public key of Renesas to encrypt your data.

Please delete this email if you were not aware that you were going to receive it.

* This email was sent from a send-only address.
Please understand that there will be no response, even if you reply to this address.

Thank you.

Renesas Electronics Corporation

Figure 31. Receive the Renesas PGP Public Key

Save the Renesas PGP public key file (keywrap-pub.key).
8. Go back to the Kleopatra application and import the Renesas PGP Public key to Kleopatra as shown

below.
" MName Date
£ custormer_public.asc 1415
I J keywr-ap—pub.keyl 115
g Kleopatra v
File = View Cerificates Tools Seftings ° ey Date modified: 1/15/2021 11:30 PM
B Mew Key Pair... Ctrl+N Size: 3.11KB
&, Lookup on Server... Ctrl+Shift+])
B Import... Cirl+ ne! | keyarap-pub.key ~ IAn}ffiles ™ I
= Export... Ctrl+E
Figure 32. Import Renesas Public Key
R11ANO496EU0221 Rev.2.21 Page 22 of 81

Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

9. After Open is clicked, a new item is added in Kleopatra as not certified.

All Certificates Imported Certificates

Name E-Mail User-IDs Valid Frem Valid Until Key-1D
kevwrao customer-key-encryption-system@|m.renesas.com _not certified 10/23/2018 F517 189C 1EAS ES5D I
secure_key customer@company.com certified 1/13/2022 1/13/2024 AS58C 68B4 80A1 B869

10.

Figure 33. Renesas Public Key is Imported

Confirm that the Fingerprint displayed is the same as what is shown on the screen represented in Figure
29. Click Certify.

£ customer_public.asc

\j keywrap-pub.key

OpenPGP Text File 3KB
KEY File 4KB

ning Too — O X
Edit Tools Help
lew (™ Kleopatra - O X

— File View Certificates Tools Settings Window Help

’_3 iy =2 5 Q El =)
Sign/Encrypt... Decrypt/Verify.. Import.. Export.. Certify.. Lookup on Server.. = Certificates Motepad Smartcards

<

[search...<alt+g> | [All certificates
[| ol Certificates Imported Certificates e

MName E-Mail User-IDs Valid From Valid Until Key-1D

keywrap customer-key-encryption-system@Im.renesas.com not certified 10/23/2018

secure_key customer@company.com certified 1/13/2022 1/13/20. A Cerity—

y
B Revoke Certification...

Trust Root Certificate
Distrust Root Certificate
Change Certification Trust...
Change Expiry Date...
Change Passphrase...

Add User-1D..

Delete Del

Export... Ctrl+E

Backup Secret Keys..

i E R

Print Secret Key...
FE Publish on Server... Ctrl+Shift+E

Details

11.

Figure 34. Confirm the Fingerprint and Certify the Renesas Public Key

Click Certify again from the following screen.

vy Certify Certificate: keywrap - Kleopatra >

Fingerprint: FB18 EB66 1F61 20E9 9613 BDF7 F517 189C 1EAS ES55D
Oy the fingeronint deanly identifices the key and its owner,

Certify with: semre_key <oustomer@company.com:= (certified, created: 1/13/2022) w

keywrap <customer-key-encryption-system@Im.renesas.com>

P Advanced

" Certify %) Cancel

Figure 35. Certify the Certificate

R11ANO496EU0221 Rev.2.21 Page 23 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

12. Provide the passphrase to unlock the secure key.

7 pinentry-qt — x

Please enter the passphrase to unlodk the OpenPGP secret key:
"secure_key <customer @company.com="
| \:I 3072-bit RSA key, ID ASBC63B430A 18369,
T created 2022-01-13.

Passphrase: I...-......| I T

Cancel

Figure 36. Provide the Passphrase

13. The following item will pop up upon successful certification. Click OK.

(™ Certificati., 7 X
o Certification successful,
|Search...<AIt+Q>
= Imported Certificates
Name E-Mail User-IDs Valid From Valid Until Key-ID
{keywrap custarner-key-encryption-systern@Irn.renesas, . mgmfzmma F517 189C 1EAS E55D

Figure 37. Successful Certification
4. Wrapping the User Factory Programming Key Using the Renesas Key Wrap
Service

If you do not already have a W-UFPK for your target MCU Group, follow the steps below to wrap a UFPK
with the Renesas Hardware Root Key as described by Figure 4.

4.1 Renesas Security Key Management Tool

The Renesas Security Key Management Tool (SKMT) performs several functions during the secure key
injection process. Open the following link to access the latest SKMT:

https://www.renesas.com/software-tool/security-key-management-tool

From the above link, find the Downloads area and download the latest Security Key Management Tool
installer. This tool supports Windows, Linux, and macOS. The screenshots in this document came from the
Windows environment.

All Types v Q_ Start typing to filter results by title

Type 2 Title £ Date

Software & Tools - Other Security Key Management Tool V1.09 for Linux Jul 2, 2025
& zZP 26490MB HAE

Software & Tools - Other Security Key Management Tool V1.09 for Windows Jul 2, 2025
& zp 18375MB BFE

Software & Tools - Other Security Key Management Tool V1.09 for macOS Jul 2, 2025

B zr 22840MB AR

Figure 38. Download the Security Key Management Tool for Windows, Linux or macOS

R11ANO496EU0221 Rev.2.21 Page 24 of 81
Oct.27.25 RENESAS

https://www.renesas.com/software-tool/security-key-management-tool

Renesas RA Family Injecting and Updating Secure User Keys

Once the installer executable is downloaded, right-click on the installer and select Run as administrator to
install this tool. Follow the prompt to select the Setup Language. Currently, both English and Japanese are
supported. Next, select the installation folder. By default, it will be installed into
C:\Renesas\SecurityKeyManagementTool\. If a previous version is installed, the old version will be
overwritten.

The User’'s Manual of this tool is located in the \Doc folder. We recommend that you read through the user’s
manual before proceeding to the following section.

The SKMT provides two interfaces for users: a Command Line Interface (CLI) and a Graphic User Interface
(GUI). The CLI interface is typically used for production support and the GUI interface is primarily intended
for development usage. This application note will explain how to use both interfaces to perform key injection
and update.

4.2 Creating the User Factory Programming Key using the SKMT GUI Interface

Define a UFPK and convert it to a binary format that is compatible with the Renesas Key Wrap Service. This
can be done using the Renesas Security Key Management Tool (SKMT).

The same UFPK can be used for all RA Family MCUs. However, the corresponding W-UFPK may be
different as it depends on the specific MCU Group. To avoid confusion and mistakes, it is recommended to
choose the correct RA MCU Family when generating the UFPK using the SKMT GUI interface and name
them different based on the MCU family.

Double-click SecurityKeyManagementTool.exe to launch the GUI interface.

Renesas » SecurityKeyMangementTool

Mame

CLI
cenfiguration
DOC

plugins

workspace

SecurityKeyManagementTool.exe
| SecurityKeyManagementTool.ini

| wnins000.dat
ri:, unins000.exe

Figure 39. Launch SKMT GUI Interface

To use the example projects included this application project, set the UFPK to
000102030405060708090A0BOCODOEQOF000102030405060708090a0b0c0d0e0f

Note that the 32-byte UFPK must be provided in big-endian format.
It is important to select the correct MCU family and security engine mode when using the SKMT tool.

R11ANO496EU0221 Rev.2.21 Page 25 of 81
Oct.27.25 RENESAS

Injecting and Updating Secure User Keys

Renesas RA Family

RA8P1 has RSIP-E50D, for the RA8P1 protected mode example project included, in the Overview

[]
window, select RA Family, RSIP-E50D Security Functions and Protected Mode

Generate UFPK Generate KUK Wrap Key TSIP Update FSBL DOTF/OTFD SFP
RENESAS

Security Key Management Tool

This tool is designed to assist in the preparation of application and Device Lifecycle Management (DLM) keys for
secure injection and update.

Keys are securely injected via a User Factory Programming Key (UFPK), which must be wrapped by the Renesas Key
Wrap Service to obtain a wrapped UFPK (W-UFPK).

Keys are securely updated via a Key-Update Key (KUK), which must be securely injected.

Please refer to the specific MCU/MPU documentation for more information about supported security features.

Select MCU/MPU and security engine :I RA Family, RSIP-E50D Security Functions and Protected Mode I

Please select the target MCU or MPU before continuing.

Figure 40. Select RA Family, RSIP Protected Mode

RA8M1 has RSIP-E51A, for the RA8M1 compatibility mode example project included, in the Overview

[]
window, select RA Family, RSIP-E51A Compatibility Mode.

ﬁ Security Key Management Too!
File View Help

Generate UFPK Generate KUK Wrap Key T5IP UPDATE FSBEL DOTF SFP
RRENESAS

Security Key Management Tool

This tool is designed to assist in the preparation of application and Device Lifecycle Management (DLM) keys for
secure injection and update.

Keys are securely injected via a User Factory Programming Key (UFPK), which must be wrapped by the Renesas
Key Wrap Service to obtain a wrapped UFPK (W-UFPK].

Keys are securely updated via a Key-Update Key (KUK), which must be securely injected.

Select MCU/MPU and security engine :I RA Family, RSIP-E51A Compatibility Mode

Please select the target MCU or MPU before continuing.

Please refer to the specific MCU/MPU documentation for more information about supported security features,

Figure 41. Select RA Family, RSIP-E51A Compatibility Mode

Page 26 of 81

R11ANO496EU0221 Rev.2.21
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

e RA6M4 has SCED9, for the protected mode example project included, in the Overview window, select RA
Family, SCE9 Security Functions, and Protected Mode.

RENESAS
Security Key Management Tool

This toel is designed to assist in the preparation of application and Device Lifecycle Management (DLM) keys for
secure injection and update,

Keys are securely injected via a User Factory Prograrmming Key (UFPK), which must be wrapped by the Renesas
Key Wrap Service to obtain a wrapped UFPK (W-UFPK).

Keys are securely updated via a Key-Update Key (KUK), which must be securely injected.

Please refer to the specific MCU/MPU documentation for more information about supported security features,

Select MCU/MPU and security engine : IHA Family, 5CE9 Security Functions and Protected Mode VI

Please select the target MCU or MPU before continuing.

Figure 42. Select RA Family, SCE9 Protected Mode

e RA6M3 has SCE7, for the SCE7 example project included, in the Overview window, select RA Family,
SCE7

LENESAS
Security Key Management Tool

This tool is designed to assist in the preparation of application and Device Lifecycle Management (DLM) keys for
secure injecticn and update.

Keys are securely injected via a User Factory Programming Key (UFPK), which must be wrapped by the Renesas
Key Wrap Service to obtain a wrapped UFPK (W-UFPK).

Keys are securely updated via a Key-Update Key (KUK), which must be securely injected.

Please refer to the specific MCU/MPU documentation for more information about supported security features,

Select MCU/MPU and security engine:IRAFamin, SCE7 I ~

Please select the target MCU or MPU before continuing.

Figure 43. Select RA Family, SCE7

R11ANO496EU0221 Rev.2.21 Page 27 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

Once the correct MCU Family, Security Engine, and Mode are selected, navigate to the Generate UFPK
page.

o For the User Factory Programming Key, select Use specified value.

e Click the Browse button to select a folder to store the key and name the resulting file.

It is recommended that users choose different file names for the different MCU families to avoid
confusion at the UFPK wrapping stage. In this example, we name the file ra8x1 ufpk.key.

Click Generate UFPK key file. The ra8x1 ufpk.key file will be generated. Similarly, the UFPK for
RA6M4, RA6M3 and RA8P1 can also be generated.

B3 security Key Management Tool — O X
File VWiew Help

Overview | Generate UFPK | Generate KUK Wrap Key TSIP UPDATE FSEL DOTF SFP

A User Factory Pregramming Key (UFPEK) is used to securely inject Device Lifecycle Management (DLM) and
application keys during production prograrmming.
The UFPK rmust be wrapped by the Renesas Key Wrap service and then used to prepare keys for secure injection.

User Factory Programming Key

(") Generate random value
|_l@l Use specified value (32 hex bytes, big endian format)

000102030405060703090A0B0C0DOEOFOO0T02030405060708090a0b0c 0d0e0f

Output file (key) :
|C:\RAS_Securit}r\injecting—updating—secure—user—keyskkey_infu: radx1_ufpk.key | Browse...

Generate UFPK key file

Send the generated UFPK key file to the Renesas Key Wrap service
https://dim.renesas.com/keyvwrap/
to obtain the wrapped UFPK (W-UFPK]).

UFPK: 000102030405060708090A0B0COD0EOFD001 02030:405060708090A0B0CODOEDF ~
Output File: CARAS Security\injecting-updating-secure-user-keysikey_inforadx1_ufpk.key
OPERATION SUCCESSFUL

L
Figure 44. Generate Fixed UFPK using GUI for RSIP-E51A
Optionally, the user can also choose the Generate random value option to generate the UFPK.
R11AN0496EU0221 Rev.2.21 Page 28 of 81

Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

4.3 Creating the User Factory Programming Key using the CLI Interface

Open a Command Prompt window and navigate to the folder where skmt . exe resides, typically under
\Renesas\Security Key Management Tool\CLI\.

Use the following command to generate a random UFPK and place it in a key file (ufpk. key). If desired, a
complete file name with a path may be specified. Refer to the Security Key Management Tool user’'s manual
to understand the usage of /genufpk option.

skmt.exe /genufpk /output "C:\User key injection protected mode\keys\ufpk.key"

This command will generate a random 256-bit UFPK as shown below.

UFPK: E8AB23E99C9AD42823DA4215549A41496720F7243680A4715F4B944ACC94B691
Output File: C:\User key injection protected mode\keys\ufpk.key

Figure 45. Create a Random UFPK Using SKMT CLI
It is also possible to specify a specific UFPK, as shown by the following command:

skmt.exe /genufpk /ufpk
"000102030405060708090A0BOCODOEOF000102030405060708090a0b0c0d0e0f™ /output
"C:\User key injection protected mode\keys\ufpk.key"

UFPK: 000102030405060708090A0A0CODOEOF000102030405060708090a0b0c0d0e0f
Output File: C:\User key injection protected mode\keys\ufpk.key

Figure 46. Create a Fixed UFPK Using SKMT CLI

4.4 Wrapping the UFPK

The next step is to obtain a W-UFPK from the Renesas Key Wrap Service based on the selected UFPK.
Note that if the UFPK is changed, a new W-UFPK must be obtained.

1. Launch the Kleopatra program.

2. Encrypt the UFPK with the Renesas public key. This key was imported earlier to Kleopatra. Using
Kleopatra, select Sign/Encrypt... and select the UFPK file. In this screenshot, an example file named
ufpk raé6m3.key file is used for demonstration purposes. Then click Open.

ndows » Secure_Key_Injection » rafm3_key_info

vy |
[:: o~
o Mame
Sign/Encrypt...
archive
Search.., <al+

Ii |_J ufpk_rabm3.key I

Figure 47. Encrypt the UFPK File for PGP Transfer

R11ANO496EU0221 Rev.2.21 Page 29 of 81
Oct.27.25 RENESAS

Renesas RA Family

Injecting and Updating Secure User Keys

3. When asked which entity this file is to be encrypted for, (optionally) uncheck Encrypt for me and check
Sign as, Encrypt for others, and Encrypt / Sign each file separately.

Sign / Encryp

Encrypt

™ Sign/Encrypt Files - Kleopatra

Prove authenticity (sign)

t Files

m Xianghui Wang <Xianghui.Wang@renesas.com> (certified, created: 8/16/2023) N

O Encrypt for me:

Encrypt for others:

Xianghui Wang <Xianghui.Wana@renesas.com> (certified, created: 8/16/2023)

& Please enter a name or email address...

QOutput

Output files/folder:

O Encrypt with password. Anyone you share the password with can read the data.

| C:/Secure_Key_Injection/rabm3_key_info <a | |

I Encrypt / Sign each

file separately. I

Figure 48. Select PGP Encryption Options

4. Click the Open Selection Dialog (the 2 icon). This will open a Certificate Selection dialog box.

M si gn/Encrypt Files

- Kleopatra ? >

Sign [Encrypt Files
Prove authenticity (sign)

Sign as:

Encrypt
[] Encrypt for me:

ncrvpt for others:

SEﬂ.II'E_kE'y' <customer@company.com> [certified, created: 4/11/2022) e

secure_key <customer@company.com: (certified, created: 4/11/20232)

2% IFlease enter a name or email address..

| Open selection dialog

Figure 49. Open the Selection Dialog

5. In this window, select keywrap to select the Renesas public key, then click OK

™ Kleopatra

File View Certificates Tools Settings Window Help

R O = = s Q = B &

Sign/Encrypt... Decrypt/Verify... Import... Export... Certify... Lookup on Server... Certificates Notepad Smartcards

Search...<Alt+Q>

All Certificates
Name E-Mail User-IDs Valid From Valid Until Key-1D
Lkeywrap customer-key-encryption-system@Im.renesas.... certified 10/23/2018 F517 189C 1EA5 E55D |
Secure_key customer@company.com certified 8/16/2023 8/16/2025 9EB86 B8CF BADE FCF4
Figure 50. Select the Renesas PGP Public key
R11AN0496EU0221 Rev.2.21 Page 30 of 81

Oct.27.25

RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

6. Ensure that the correct destination folder for the encrypted key is selected under Output. Finally, click
Sign/Encrypt. It is a good practice to keep UFPK and W-WUPK for different MCU families in different
folders and under different names.

™ Sign/Encrypt Files - Kleopatra ? X

Sign / Encrypt Files

Prove authenticity (sign)

Sign as: ¥4 Xianghui Wana <Xianghui.Wang@renesas.com> (certified, created: 8/16/2023) v
Encrypt
O Encrypt for me: Xianghui Wang <Xianghui.Wang@renesas.com> (certified, created: 8/16/2023)

Encrypt for others: <customer-key-encryption-system@I|m.renesas.com> (certified, OpenPGP, created: 10/23/20181|

‘ 2% Please enter a name or email address... |

O Encrypt with password. Anyone you share the password with can read the data.

Output

Qutput files/folder:

C:/Secure_Key_Injection/rabm3_key_info €a ‘ -

Encrypt / Sign each file separately.

Sign / Encrypt] Cancel

Figure 51. Encrypt UFPK using Renesas PGP Public Key

7. If you do not check Encrypt for me, you will get an Encrypt-To-Self Warning that you cannot decrypt
the data. Click Continue.

™ Encrypt-To-Self Warning - Kleopatra ? *

Mone of the recipients you are encrypting to seems to be your own.
This means that you will not be able to decrypt the data anymore, once encrypted.
Do you want to continue, or cancel to change the recipient selection?

Do not ask again

I Continue “ & Cancel |

Figure 52. Start the UFPK Encryption process

8. Provide your private key passphrase, then click OK.

7 pinentry-gt — x

Please enter the passphrase to unlodk the OpenPGP secret key:
_ "secure_key <customer @company.com:="
[\ 3072-bit RSA key, ID ASBCEBE4B0A 18869,
| 3 created 2022-01-13.

Passphrase: quuuu|| &

Cancel

Figure 53. Provide Passphrase

R11ANO496EU0221 Rev.2.21 Page 31 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

9. The UFPK encrypted with the Renesas public key will be generated, with the . gpg added to the
extension of the key. In this case, the file ufpk raém3.key.gpg is generated. Click Finish.

™ Sign/Encrypt Files - Kleopatra ? x

Results
Status and progress of the crypto operations is shown here.

OpenPGP: Al operations completed.

ufpk_raém3.key — ufpk_raém3.key.gpg: Signing and encryption succeeded.

cancel

Figure 54. Encrypted Key is Generated

10. Now, we can send the UFPK that has been encrypted with Renesas Public Key to the Renesas DLM
Server for wrapping. Return to the DLM Server web page:

PGP key exchange| Display history
\ The RZ family users

RZ

\ The RX family users
‘ RX

N

The RE family users

RE
ﬁm The RA family users

Figure 55. Select the MCU Family

When generating the Wrapped UFPK, it is important to select the correct MCU family and security engine
mode.

Note: A W-UFPK generated for Compatibility Mode cannot be used to inject keys in DLM or Protected Mode,
and vice versa.

e To create a W-UFPK for the RA8P1 Protected Mode secure key injection example project, select the
Renesas RA Family and click Protected Mode RA8P1 Encryption of customer’s data.

DLM and Protected Mode
Installation via a device programmer, for DLM keys or use with the FSP Crypto APls

RA8D1/RA8M1/RABT1 Encryption of customer's data

RABE1/RAB8E?2 Encryption of customer's data
RAS8P1 Encryption of customer's data

Figure 56. Select the RA8P1 MCU Group DLM and Protected Mode

R11ANO496EU0221 Rev.2.21 Page 32 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

e To create a W-UFPK for the RA8BM1 Compatible Mode secure key injection example project, select
the Renesas RA Family and click Compatibility Mode RA8D1/RA8M1/RA8T1 Encryption of
customer’s data.

Compatibility Mode
Installation via the FSP Key Installation APlIs, for use with the PSA Crypto APIs

RA8D1/RA8M1/RAS8T1 Encryption of customer's data

Figure 57. Select the RA8M1 MCU Group Compatibility Mode

e To create a W-UFPK for the RA6M4 example project, select the Renesas RA Family and click
Protected Mode RA6M4/RA6MS5 Encryption of customer’s data.

DLM and Protected Mode
Installation via a device programmer, for DLM kevs or use with the FSP Crypto APls

~ RA6M4/RA6M5 Fncryption of customer's data

Figure 58. Select the RA6M4/RA6M5 MCU Group DLM and Protected Mode

e To create a W-UFPK for the RA6M3 example project, select the Renesas RA Family and click
Compatibility Mode RA6M1/RA6M2/RA6M3/RA6T1 Encryption of customer’s data.

Compatibility Mode
Installation via the FSP Key hstallation APls, for use with the P54 Crvoto 2Fs

RA6M4/RA6Mb5 Encryption of customer's data
RA6M1/RA6M2/RA6M3/RA6T1 Encryption of customer's data

Figure 59. Select the RA6M1/RA6M2/RA6M3/RA6T1 MCU Group Compatibility Mode

11. Click Encryption service for products on the next screen. Here, the screenshot uses RA6M3 as an
example; for other MCU families, a similar screen will be presented.

RA6M1/RA6M2/RA6M3/RABT1 Customer data selection screen

Encryption service for products

The Key?2 (customer’ s key) generated by you will be encrypted by “HRK«” (the embedded key of
RA6M1/RABM2/RA6M3/RAG6T1 chip) and sent to you.

Figure 60. Choose Encryption service for products

R11ANO496EU0221 Rev.2.21 Page 33 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

12. Click Reference and select the corresponding encrypted UFPK; example shown is
ufpk raé6m3.key.gpg created previously and click Open. Note that in the DLM server description,
Key2 refers to the UFPK.

Use our PGP public key to encrypt Key? that vou have made as the customer key.

Specify the file for encryption by using the browse button, and click on the OK button.
Example: oo pap, etc

ecure_Key_|.. > rabm3_key_info v O P Search rab
der
S
~ Name
archive

__ufpk rabm3 ke

2 ufpk_rabm3 key.gpg
Electronics Corg
1JB8 v <
ame: |ufpk_rabma3.key.gpg V‘ All files (*.%)

Figure 61. Select the PGP-Encrypted UFPK file

13. Click Settle. The following message will be printed. Then click Return to the menu. You can now log
out of the Renesas Key Wrap Service.

Return to the menu

We have accepted vour request. The encrvipted key data will be sent to the specfied e—mail address.
Please check the e—mail.

Figure 62. Return to the DLM Server Main Menu

14. The wrapped UFPK Key (W-UFPK) encrypted with your PGP public key should arrive in your email
typically in about 1-2 minutes. Save the attached file.

Your [RA6M1/RA6M2/RA6M3/RA6T1] customer key has been successfully encrypted and is attached to this mail.

KeyWrap service <customer-key-encryption-system@Im.renesas.com> @ 9
To XYZ

Q ufpk ra6m3 key enckey.pgp

B ks

To Xyz

Thank you for using the KeyWrap service.
We have sent the encrypted data as an attachment. Save the attached file, and proceed with PGP decryption.

Product name: RAEM1/RA6M2/RAEM3/RAGTL
Processing mode: Products mode

Please delete this email if you were not aware that you were going to receive it.
* This email was sent from a send-only address.

Please understand that there will be no response, even if you reply to this address.
Thank you.

Renesas Electronics Corporation

Figure 63. Receiving the W-UFPK via Email

R11ANO496EU0221 Rev.2.21 Page 34 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

15. With the Kleopatra program, click Decrypt/Verify, select the W-UFPK file, and click Open.

Mew folder

MName

I archive

ity |J_ ufphk_rabm3.key
lenesas Electronics Cor & ufpk_rabm3.key.gpg
2 ufpk_rabm3.key_enckey.pgp

ey | Klecpatra
LU 4
File View Certificates Tools Setti
o " = » File name: | ufpk_rabm3.key_enc.key.pgp | ~| | AnFiles ¢
sa =
Sign/Encrypt... | Decrypt/Verify...] Import

Figure 64. Decrypt the W-UFPK

16. Follow the prompt to provide your PGP private key passphrase and click OK. The decrypted W-UFPK is
generated in the folder specified.

oy] Decrypt/Verify Files - Kleopatra ? X

Qutput folder: C:/SecurefKeyﬁ[njection/ra6m37key7infc! a|mn

All operations completed.

ufpk_raém3.key_enc.key.pgp — ufpk_raém3.key enc.key: Decryption succeeded.

Note: You cannot be sure who encrypted this message as it is not signed.
Recipient: customer@company.com (9E86 BSCF 8ADE FCF4)

I Save All I Discard

Figure 65. Decrypting the Encrypted W-UFPK

17. Click Save All to save the decrypted W-UFPK key file ufpk ra6m3.key enc.key to the same folder
as the UFPK key file. Both key files are required to generate key injection bundles.

5. Secure Key Injection for RSIP and SCE9 Protected Mode

This section walks the user through the wrapping process required for secure key injection and update. The
SKMT tool is used to perform this key-wrapping process.

Step-by-step instructions for generating the three types of keys are provided using both the CLI and GUI
interfaces of the SKMT.

o User Key wrapping with the UFPK for secure key injection of the user key
o Key-Update Key wrapping with the UFPK for secure key injection of the KUK
o User Key wrapping with the KUK for secure key update of the user key

This application project provides examples of user key wrapping of both AES-256 and ECC secp256r1 public
keys for SCE9 Protected Mode on RA6M4 MCU, and also provides an example of user key wrapping an
ECC secp256r1 key pair (both private key and public keys) for RSIP-E50D Protected Mode on RA8P1 MCU.

5.1 Wrap Keys with the UFPK and W-UFPK for SCE9 Protected Mode using the
SKMT GUI Interface

To prepare a Protected Mode user key to inject using RFP, we need the UFPK, W-UFPK, and the user key
as input to the SKMT GUI interface.

R11ANO496EU0221 Rev.2.21 Page 35 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

Launch the SKMT GUI and select RA Family, SCE9 Security Functions, and Protected Mode on the
Overview tab. On the Wrap Key tab, open the submenu Key Type. This page can be used to choose which
key type to prepare.

5.1.1 Wrap an Initial AES-256 Key with the UFPK
A NIST CAVP test vector is used for this purpose.

https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Block-Ciphers

KEY = §000
IV = 00000000000000000000000000000000

PLAINTEXT = Q0000000000000 000000000000000000

CIPHERTEXT = e3S5a6dcbhblSb2llallebcfadaazZbi759

Figure 66. NIST AES 256 Test Vector
In the Key Type area, choose Key Type and specify AES with 256 bits.

B security Key Management Tool - O *
File View Help

Overview Generate UFPK Generate KUK Wrap Key TSIP UPDATE FSBL DOTF SFP

Keys must be wrapped by the UFPK for secure injection or by the KUK for secure update,

Key Type | Key Data

(O DLM/AL DLM-5SD | ®aes 256 bits v| O arca
O KUK (CRSA | 2048 bits, public TDES
OEM Root public (JECC secp236rl, public

OHMAC | SHA256-HMAC

Figure 67. Choose AES 256 bits as the Key Type

Navigate to the Key Data page and input the Raw key data as shown below based on the NIST vector
shown in Figure 66. The key data is duplicated here to easily copy and paste to the GUI interface.

KEY = 8000

Overview Generate UFPK Generate KUK | Wrap Key | TSIP UPDATE FSBL DOTF SFP

Keys must be wrapped by the UFPK for secure injection or by the KUK for secure update.

Key Type

I File Browse...
{® Raw BDDE‘ I

Figure 68. Set up the Key Data

Under the Wrapping Key section, click the corresponding Browse buttons to select the UFPK and W-UFPK
key pair that you generated for RA6M4 created in section 4.2 and 4.4. For the IV, select Generate random
value. In the Output option, select RFP; then click the Browse button, choose the output folder, and name
the output file.

R11ANO496EU0221 Rev.2.21 Page 36 of 81
Oct.27.25 RENESAS

https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Block-Ciphers

Renesas RA Family Injecting and Updating Secure User Keys

Wrapping Key
(@) UFPK UFPK File: Cih\Secure_Key_Injection\rabmd_protected_meode_key_infolufpk.key Browse...

W-UFPK File : | ecure_Key_Injection'raémd_protected_mode_key_info\ufpk.key_enc.key || Browse...

KUK KUK File re_Key_Injection\rabm4_protected_mode_key_info\kuk_for_new_key.key | | Browse...

[\
I@ Generate random value I
() Use specified value (16 hex bytes, big endian format) | 00112233445566772899AABBCCDDEEFF

Output
Format: RFP “ | File: | u:nnlraﬁmd_protected_mnde_key_info\AESP_SE.rkeyI IBrowse... I
Address: | 10000 Key narme : | MEW_AES256
I Generate file I I
Output File: C:\Secure_Key_Injecticun\raﬁmd_prntected_mDde_key_infl\AES?.SE.rkg I ~
UFPK: D00102030403060708090A0B0CODOEDFD00102030405060708090A

W-UFPK: DDDDDDDOEFEET 5036A3B4ET26F0BIFSE1FTABT076FEE15036A3BAET26F0B3FIE1F7ABTOT

IV: 771880DB84BE2CEAAETEEODG22CODA59

Encrypted key:

354B2476A2867B4F167553FF083C55081501EAE41 DBDTADF6E5EBIDTESFTBO3 A0 AS41 246244889201 27E05B3ET10
AFB

OPERATION SUCCESSFUL

Figure 69. Generate the AES 256 RFP Injection Key File
Now click Generate File. The 2AES256. rkey file will be generated.

The plaintext AES-256 key and UFPK are NOT contained in the * . rkey file, enabling confidential transfer of
the key injection file contents.

5.1.2 Wrap an Initial ECC Public Key with the UFPK

A set of NIST test vectors are used in this application project. The CAVP NIST test vectors can be
downloaded from the following link. The ECDSA vectors are what we will use.

Cryptographic Algorithm Validation Program | CSRC (nist.gov)

Test Vectors

Use of these test vectors does not replace validation obtained through the CAVP.

The test vectors linked below can be used to informally verify the correctness of digital signature algorithm implementations (in FIPS
186-2 and FIPS 186-4) using the validation systems listed above.

Response files (.rsp): the test vectors are properly formatted in response (.rsp) files. Vendor response files must match this format
exactly.

Intermediate results files (.txt): files with intermediate results (.txt) are supplied to help with debugging.

See the README file in each zip file for details.

FIPS 186-4 DSA| ECDSA [[RSA

FIPS 186-2 DSA | ECDSA | RSA

Figure 70. ECDSA Test Vectors

R11ANO496EU0221 Rev.2.21 Page 37 of 81
Oct.27.25 RENESAS

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/digital-signatures

Renesas RA Family Injecting and Updating Secure User Keys

After downloading the zip file 186-4ecdsatestvectors.zip, unzip it. The following vectors can be found in the
plaintext file SigGen.txt.

Msg =
59052368877c77421f73e43ee3da6f2d%2ccad5fc942dceclchd25482535faaf416563felé5blald5ee2bed?2
e6dca3bdf46c4310a7461f%a37960ca672d3feb5473e253605fb1ddfd28065b53chb5856a8ad26175bE%hd366
a5e471ea7ab65cl7cc534a%9d791e914591eb3754d03799790fe2d308d16146d5c%b0d0debd97d75ces

d = 51%b423d715f8b581f4fabBee59f4771a5b44cB130bde3eacca54a56dda72b4ied

gx = lccbe81c075fc7£4f033bfa248db8fccd3565de%4bbfb12f3¢c59ff46c271bER3

Qy = ced4014ceB8B811f%a21alfdb2cle6ll3elbdb7ca%3b7404e78dcTcecd5cal%adcal

k 94albbbl4b906a61a280f245f9%9e93c7f3b4ab247824£5d33b%670787642a68de

R f3ac8061b514795b8843e3d66259527ed2afdéblfeas55a7acabb5e6f7%c8c2ac

S = Bbf77815%cal5a6b2786c76262bf7371cef%7b218e56f175a3ccddaacc058503

Figure 71. NIST ECC secp256r1 Test Vector

Launch the SKMT GUI and select RA Family, SCE9 Security Functions, and Protected Mode on the
Overview tab. On the Wrap Key tab, select the Key Type as ECC and secp256r1, public, as shown in
Figure 72.

B security Key Management Tool - O x
File View Help

Overview Generate UFPE Generate KUK | Wrap Key JTSIP UPDATE FSBL DOTE SFP

Keys must be wrapped by the UFPK for secure injection or by the KUK for secure update.

Key Type Key Data

O DLM/AL DLM-S5D (OAES | 256 bits ARC4
(KUK (CORSA 2048 bits, public TDES
OEM Root public | OESs secp256r], public ~|

(O HMAC |SHA256-HMAC

Figure 72. Choose secp256r1 Public Key
Next, configure the Key Data. Under the Key Data area, select Raw and provide the Qx and Qy as shown
below. The key data is duplicated here to easily copy and paste to the GUI interface.
Qx = 1ccbe91c075fc7f4f033bfa248db8fccd3565de94bbfb12f3c59ff46c27 1bf83
Qy = ce4014c68811f9a21a1fdb2c0e6113e06db7ca93b7404e78dc7ccdS5ca89a4cad

Keys must be wrapped by the UFPK for secure installation or by the KUK for secure update.

Ke}r T}rpe KE}" Data
I File Browse...

@ Raw Qx:[1cched1c075fcTi4033bfa2d8dbBfccd3565de0dbbfbl 23c 5946271 bfa3

Qy i | cedD14c68811f9a21a1fdb2c0eb113e06dbTead3bT404eT8dc Tecd Scaldadcad

Figure 73. Provide the ECC Public Key data

R11ANO496EU0221 Rev.2.21 Page 38 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

Next, under the Wrapping Key section, click the corresponding Browse buttons to select the UFPK and W-
UFPK key pair created in section 4.2 and 4.4. For the IV, select Generate random value. For the Output
option, select RFP; then click the Browse button, choose the output folder, and name the output file.

Wrapping Key

(® UFPK UFPK File: C:\SecurE_Key_InjectiDnlraﬁmri_prutected_mnde_ke:,r_infu\ufpk.key Browse...
W-UFPEK File : ecure_KE}r_InjectiDrl\raﬁmd_p rotected_mode_key_info'\ufpk.key_enc.key | | Browse...

(KUK re_Key_|njection'\rabmd_protected_mode_key_infolkuk_for_new_key.key | | Browse...

v

I@ Generate random value I
() Use specified value (16 hex bytes, big endian format) | 00112233445566772200AABBCCODEEFF

Output
Format: | RFP “~ | File: 4_protected_rmode_key_info\ECC_Public_Key.rkey || Browse... I

10000 MEW_AES256

| Generate file |

Output File: C:‘aSecure_Ke:,r_Injectiu:un!ra5m4_pru:utected_mu:ude_key_infu‘aECC_Public_KE}r.rkE}rI ~
UFPK: 00010203040506070809040B0

W-UFPK: 00000000GFEET5036A3B4E726F0B3FIET FTABT07EFEET 5036A3B4ET26F0B3FOE1FTABTOT

[V: F9737DDEFBA06496D295BA2CA00T3BAT

Encrypted key:

91AD40B1EEEEBOFCOF35C3005998839F6022FC57DAEET1BD2D7DBTDEYY 281 EEBSFB26VE1928E08FEIFAEDTODE26G00
5C8638505B43E943591 AT2FERAATO500807FB17CREFETC031B7BT33E12DCY55DD33

OPERATION SUCCESSFUL

Figure 74. Generate the ECC Public Key RFP Injection Key File using GUI

The plaintext ECC key and UFPK are NOT contained in the * . rkey file, enabling confidential transfer of the
key injection file contents.

R11ANO496EU0221 Rev.2.21 Page 39 of 81
Oct.27.25 RENESAS

Renesas RA Family

Injecting and Updating Secure User Keys

5.1.3 Wrap a Key-Update Key with the UFPK

The SKMT can be used to generate a sample KUK. To generate the KUK key file, navigate to the Generate
KUK tab and use: 000102030405060708090a0b0c0d0e0£f000102030405060708090a0b0c0d0e0f.

Click the Browse button to select the folder and file name for the generated key file, here specified as
kuk for new_ key.key. Next, click Generate KUK key file, and the kuk_for new key.key file will be

generated in the selected folder.

ﬁ Security Key Management Tool
File Wiew Help

Overview Generate UFPK| Generate KUK | Wrap Key TSIP UPDATE FSEL DOTF SFP

Key-Update Keys (KUKs) are used to securely update application keys after production programming.
The KUKs themselves must be securely injected.

Key-Update Key
(") Generate random value

(@) Use specified value (32 hex bytes, big endian format)

| 0001020304053060702090a0b0c0d0e0f0001020304050607080%0a0b0c0d0elf

Output file (key]) :

|'it}r\injecting-updating-secure-user-key ra5r'r14_protected_mD|:|e_key_info\kuk_for_new_key.keﬁ Browse...

Generate KUK key file

KUK: 0001020304050607020%0A0B0CODOEOFODD102030405060703000A0B0CODOEDF A
Output File: CARAE_Securityhinjecting-updating-secure-user-keys\rabm4_protected_mode_key_info
“Wkuk_for_new_key key
OPERATION SUCCESSFUL 9
Figure 75. Generate the KUK File used to Encrypt the User Key for SCE9
Page 40 of 81

R11ANO496EU0221 Rev.2.21

Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

Next, we will wrap the KUK so it can be injected into the MCU. Navigate to the Wrap Key page and choose
KUK from the Key Type area.

B security Key Management Toal - O >
File VWiew Help

Overview Generate UFPK Generate KUK | Wrap Key |TSIP UPDATE FSBL DOTF SFP

Keys must be wrapped by the UFPK for secure injection or by the KUK for secure update.

Key Data
(O DLM/AL DLM-55D (O AES 256 bits ARC4
ORSA 2048 bits, public TDES
OEM Root public (JECC secp256r1, public

(O HMAC |SHA256-HMAC

Figure 76. Choose KUK to Wrap

Navigate to the Key Data page, select the File option, and browse to the kuk_for new key.key key file
generated in Figure 75.

ﬂff:.: Key Management Too — O

File Wiew Help

Overview Generate UFPK Generate KUK | Wrap Key | TSIP UPDATE FSBL DOTF - SFP

Keys must be wrapped by the UFPK for secure injection or by the KUK for secure update,

Key Type

(®) File Key_Injectionfrabmd_protected_mode_key_info'bkuk_for_new_key.key | | Browse...

D Raw S000
LR R EREREREREERERERENERERRE R ERERE LR R R RERE R R LR LR

Figure 77. Provide the KUK .key File

R11ANO496EU0221 Rev.2.21 Page 41 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

Next, under the Wrapping Key section, click the corresponding Browse buttons to select the UFPK and W-
UFPK key pair created in section 4.2 and 4.4. For the IV, select Generate random value. For the Output
option, select RFP; then click the Browse button, choose the output folder, and name the output file.

Now click the Generate File button. The KUK. rkey file will be generated.

Wrapping Key

® UFPK UFPK File: Ch\Secure_Key_Injectionrabmd_protected_mode_key_infohufpk. key Browse...

W-UFPK File : | ecure_Key_Injection\rabmd_protected_mode_key_infowufpk.key_enc.key | | Browse...
KUK Browse...

v
k@) Generate random value I
() Use specified value (16 hex bytes, big endian format) | 00112233445566772899AABBCCODEEFF

OQutput
Format: | RFP ~ | File: | :ctionrabmd_protected_mode_key_info\KUK.rkey | | Browse...
10000
I Generate file I
Output File: Ch\Secure_Key_Injection’rabmd_protected_mode_key_info\KUK.rkey A

UFPK: 00D0102030405060708090A0B0CODOEOFDD0102030405060702030A0B0CODOEOF

W-LFPK: 00000000GFEE1503643B4E726F0B3FOE1F74BT0T6FEE]5036A3B4ET26F0B3FOETFTABTOT

[V: SEDC3I5CF3CCIME6C394061 DT0BEIFFAD0

Encrypted key:

E3FECF793DD3F967F24D0F6TFC 049361 D46EAADDAD1 DODEGEB210CID506A08F4159A145A6F35C939B2119736BBEF
TEAC

OPERATION SUCCESSFUL

Figure 78. Generate the Key-Update Key Injection File using GUI for SCE9

The plaintext KUK and UFPK are NOT contained in the *.rkey file, enabling confidential transfer of the key
injection file contents.

5.1.4 Wrap a New AES-256 User Key with the KUK
In the section, we will use the kuk for new key.key generated in Figure 75 to wrap a new AES-256 key.

We will use a second NIST test vector to demonstrate secure key updates using the KUK.

EKEY = cOQ00
IV = 00000000000000000000000000000000

PLAINTEXT = 00000000000000000000000000000000

CIPHERTEXT = b29leScdcf2di3ef3gl2taliecbaadin

Figure 79. NIST Test Vector as New AES-256 Key Test Data
Navigate to the SKMT Wrap Key tab. In the Key Type area, select AES-256 with 256 bits.

R11ANO496EU0221 Rev.2.21 Page 42 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

Overview Generate UFPK Generate KUK | Wrap Key JTSIP UPDATE FSBL DOTF SFP

Keys must be wrapped by the UFPK for secure injection or by the KUK for secure update.

Key Type Key Data

(O DLM/AL DLM-55D p AES 256 hits ~ I ARC4
O KUK ORSA | 2048 bits, public TDES
OEM Root public (OECC secp256r1, public

Figure 80. Choose AES 256bit New User Key

In the Key Data area, provide the key data from the NIST vector based on Figure 79. The key data is
duplicated here to copy and paste into the GUI interface.

KEY = c000

Ke}(T}fpe KE’}‘ Data
{_J File Browse...

I@ Raw | c00000D00DDO0DD00000000000000000000D00D0000D0000000000000000000 I

Figure 81. Provide the New AES 256-bit Key Data

In the Wrapping Key area, select KUK as the wrapping key and click Browse to locate the

kuk for new key.key file generated in Figure 75. For the IV, choose Generate random value. For the
Output option, choose C Source and name the output file as new_aes key.c. Name the Key name
property as NEW_AES256. This name will be used in the source files for key-specific definitions.

Finally, click Generate file. Both the new_aes key.c and the new_aes_key.h files will be generated.

R11ANO496EU0221 Rev.2.21 Page 43 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

Wrapping Key

(O UFPK C:\Secure_Key_Injection\raémd_protected_mode_key_info\ufpk.key | | Browse...
Secure_Key_Injection\rabmd_protected_mode_key_info\ufpk.key_enc) | Browse...

® KUK KUK File: ey_Injection'rabm4_protected_mode_key_info\kuk_for_new_key.key | | Browse...

v

I@ Generate random '.raluel
() Use specified value (16 hex bytes, big endian format) | 007112233445566772209AABBCCDDEEFF

Output
Format : “ | File: imd_protected_mode_key_info\new_aes_key.c | | Browse...
Little [Qutput additional data
0000 Key name : | NEW_AES256]
Output File: C\Secure_Key_Injection'rafmd_protected_mode_key_info\new_aes_key.h A

Output File: Ch\Secure_Key_Injection’rabmd_protected_mode_key_info\new_aes_key.c

KUK: D0070203040506070209040B0C0O00EDFON010203040506070803040B0COD0ENF

Vs 940280 CI6BETCA185E37155541C40966

Encrypted key:
562E14A84C35ADT40D053277859282670D6B3E20B02 AFO034F388220F2024D 28AT0ESET0BF3DCES3BC34B0RESAF
3A20D

OPERATION SUCCESSFUL

Figure 82. Generate KUK-Wrapped AES-256 Key

5.1.5 Wrap a New ECC Public Key with the KUK
In the section, we will use the kuk for new key.key generated in Figure 75 to wrap a new ECC Public
key.

To demonstrate updating the ECC public key, another NIST ECC secp256r1 test vector is used in this
application project. This test vector can be found in SigGen.txt, downloaded based on Figure 70.

Msg =
£35e2f092553c55772926bdbe87c9796827d17024dbh%233254536622e55987dd344deb72df%87144b8c6c43b
cd41be54b%4ccB56eleob%6d7a821cBec039b503e3dB6728c494a5%67d83011a0e090b5d54cd4d7f4e366c0912be
808fbb2ea%6efacB8fb3ebec9342738e225f7c7c2b011ce375b56621a20642b4d36e060db4524af1

d = 0f56db78cad4e0b055¢c500064824bed95%a25aaF48ebb51%ac201537h854759613

Px = e266ddfdcl2668db30d4ca3e8f7749432c416044£2d2bE8cl0bEi3d4012aeffatba

Qy = bfatedldaleSffesTddTc387ef7a%7a7f456b863b4d02cfce928973absblch3s

k = 6d3e71882c3b83bl56bbl4elabli4aa%fh728068d3aebfacd211587ac0b2f34ce
R = 976d3a4e5d23326dclbaa®fas60b7c4e53542864£508483a6473bealli7%b2db
5 = 1b766e%ceb7lbatclldcdd4celafde2cddcfacs2ae5017d4555boeeefe36e1932

Figure 83. New Set of NIST ECC Test Vectors
Follow the procedure below to wrap the new ECC public key using the KUK file generated in Figure 75.

From the SKMT GUI, make sure RA Family, SCE9 Security Functions, and Protected Mode are selected
from the Overview page. Next, navigate to the Wrap Key page. Select the Key Type as secp256r1, public
as shown in Figure 72.

Under the Key Data area, select Raw and provide Qx and Qy as shown below. The key data is duplicated
here so the user can copy and paste it to the GUI interface.

Qx = e266ddfdc12668db30d4ca3e8f7749432¢c416044f2d2b8c10bf3d4012aeffa8a

R11ANO496EU0221 Rev.2.21 Page 44 of 81
Oct.27.25 RENESAS

Renesas RA Family

Injecting and Updating Secure User Keys

Qy = bfa86404a2e9ffe67d47c587ef7a97a7f456b863b4d02cfc6928973ab5b1cb39

Ke}r T}rp E KE’_‘,." Data
) File
® Raw Qx : [e266ddfdc]2668db30d4caledfT749432c416044F2d2b8c 1 0bf2d401 2aeffada

Browse...

Qy ¢ | bfaB6404a2edffefTd47c587efTal7aTi4560863b4d02 cfc6028973ab5h1cbag|

Figure 84. Provide the New ECC Public Key Data

Next, under the Wrapping Key section, click the corresponding Browse button to select the KUK generated
in section 5.1.3. For the IV, select Generate random value. In the Output option, choose C Source and
name the output as new ecc public key.c. set the Key name to NEW_ECC_PUB.

Finally, click Generate file. Both the new _ecc _public key.c andthe new ecc public key.h files will
be generated.

Wrapping Key

() UFPK C:\Secure_Key_Injection\rabm4_protected_mode_key_info\ufpk.key Browse...
ecure_Key_Injection\rabmd_protected_meode_key_info\ufplk.key_enckey | | Browse...

@ KUK KUK File: ‘ 'E_Ke;.r_lnjectinn\ra&m&i_protecteimDde_key_info\kuk_fnr_new_key.keyI Browse...

v

|®) Generate random value |
() Use specified value (16 hex bytes, big endian format) | 00112233445566778899AABBCCODEEFF

OQutput

Format: |C Source ~ | File: _protected_m0de_key_inf-:lnew_ecc_public_key.d Browse...

10000 Key name: | NEW_ECC_PUB I

Generate file

Output File: Ch\Secure_Key_Injectiorfirabmd_protected_mode_key_infolnew_ecc_public_key.h
Output File: ChSecure_Key_Injectiorfirabmd_protected_mode_key_infolnew_scc_public_key.c
KUK: 000102030405060708090A0B0CODUEDFOO0 0203 0A05060 F0B0G0A0B0LDD0E0E
IV: 3CDBY489DABCABG293TFFEFBFE43DTF20

Encrypted key:

7TCFOBD3D2F3FZT0BSB4939CE08B9865CIEI3C2016D6CAELSA1AEFESFESBADEF1 DDEIFCSABAL5268598TRCDF2T02B
09B6ESBO3BC2498CEROFCC5041B6532ATICIF23956BCBOS7BF7IDB003562101A33ES

OPERATIOMN SUCCESSFUL

Figure 85. Generate KUK-Wrapped ECC Public Key

5.2 Wrap Keys with the UFPK and W-UFPK for RSIP-E50D Protected Mode using
the SKMT GUI Interface

5.2.1 Wrap an Initial ECC Key Pair with the UFPK
The same NIST CAVP test vector is shown in Figure 71 is used for the demonstration.

R11ANO496EU0221 Rev.2.21

Oct.27.25

RENESAS

Page 45 of 81

Renesas RA Family Injecting and Updating Secure User Keys

To wrap a ECC public key, from the SKMT GUI, make sure RA Family, RSIP-E50D Security Functions,
and Protected Mode is selected from the Overview page. Next, on the Wrap Key tab, select the Key Type

as ECC and secp256r1, public, as shown in Figure 86.

File View Help

Overview Generate UFPK Generate KUK | Wrap Key |TSIP Update FSBL DOTF/OTFD SFP

Keys must be wrapped by the UFPK for secure injection or by the KUK for secure update (if supported).

Key Type Key Data

() DLM/AL AL2_KEY () AES 128 bits ARC4
O KUK (O RSA 2048 bits, public TDES
() OEM Root public I@ ECC |secp256r1, public VI (O ChaCha20-Poly1305

OHMAC |HMAC-SHA2-256

Figure 86. Choose secp256r1 Public Key

Next, configure the Key Data. Under the Key Data area, select Raw and provide the Qx and Qy as shown

below. The key data is duplicated here to easily copy and paste to the GUI interface.
Qx = 1ccbe91c075fc7f4f033bfa248db8fccd3565de94bbfb12f3c59ff46c27 1bf83
Qy = ce4014c68811f9a21a1fdb2c0e6113e06db7ca93b7404e78dc7ccd5ca89a4ca9

Keys must be wrapped by the UFPK for secure installation or by the KUK for secure update.

Ke}r T}rpe KE}" Data

I File Browse...

®Raw Ox: | 1cchedc075FcTF4f033bfa248dbfccd3565dedbbfb1 2f3c50f46271b83

Qy: | ced014c68811f9a21a1fdb2c0ef113e06dbTcad3b7404e78dc TecdScal9adcald

Figure 87. Provide the ECC Public Key data

R11ANO496EU0221 Rev.2.21
Oct.27.25 RENESAS

Page 46 of 81

Renesas RA Family Injecting and Updating Secure User Keys

Next, under the Wrapping Key section, click the corresponding Browse buttons to select the UFPK and W-
UFPK key pair created in section 4.2 and 4.4. For the IV, select Generate random value. For the Output
option, select RFP; then click the Browse button, choose the output folder, and name the output file.

Wrapping Key

(@ UFPK UFPK File: C\Secure Key Injectionfra8p1_protected_mod_key_info\ufpk.key I Browse...

W-UFPK File : | C\Secure Key Injectionfra8p1_protected_mod_key_info\ufpkkey_enc.key I Browse...
O KUK Browse..
v

I@ Generate random value I
(O Use specified value (16 hex bytes, big endian format) | 00112233445566778899AABBCCDDEEFF

Output
Format ~ | File ‘ C\Secure Key Injection\ra8p1_protected_mod_key_info\ECC_Public_Key.rkey ‘I Browse...l
Little Output additional data
10000
I Generate file I
Output File: C\Secure Key Injec‘[ir:nn\raBp1_pro‘[ec‘[ed_mr:nd_l-(ey_im‘l;\ECC_Public_l(ey.rkeyr I ~
UFPK: 000102030405060708090A0BOCODOEOF0001020304050607

W-UFPK: 00000000A7BF7EB27054D78E07C504291520678AATBF7EB27054D78E07C504291520678A

IV: F761318F7EDB296BE9A4E026E1135FBB

Encrypted key:

7085A0AAC0878691B77E218F4013050FA4879A3C2FOFGECEE480021 3F85E§6|1 DF44E136926A2C080310484E21AESTEABF7B1BC2DF3440359
886B6DCEYS5F75BDD956D29DCD15ED4DCE083CF5B122345CB

OPERATION SUCCESSFUL

Figure 88. Generate the ECC Public Key RFP Injection Key File using GUI

The plaintext ECC key and UFPK are NOT contained in the * . rkey file, enabling confidential transfer of the
key injection file contents

Follow the steps described above for generating a wrapped public key to wrap the corresponding private key
with the UFPK. On the Wrap Key tab, select the Key Type as ECC and secp256r1, private, as shown in
Figure 89.

File View Help

Overview Generate UFPK Generate KUK | Wrap Key | TSIP Update FSBL DOTF/OTFD SFP

Keys must be wrapped by the UFPK for secure injection or by the KUK for secure update (if supported).

Key Type Key Data

(O DLM/AL AL2_KEY O AES 128 bits ARC4
(O KUK (ORSA 2048 bits, public TDES
() OEM Root public I@ ECC secp256r1, private VI (O ChaCha20-Poly1305

O HMAC [HMAC SHA2 256

Figure 89. Choose secp256r1 Private Key

Next, configure the Key Data. Under the Key Data area, select Raw and provide the d as shown below. The
key data is duplicated here to easily copy and paste to the GUI interface.

d = 519b423d715f8b581f4fa8ee59f4771a5b44c8130b4e3eacca54a56dda72b464

R11ANO496EU0221 Rev.2.21 Page 47 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

Keys must be wrapped by the UFPK for secure injection or by the KUK for secure update (if supported).

Key Type Key Data

(O File Browse...
@® Raw 519b423d715f8b581f4faBee59f4771a5b44c8130b4de3eaccasb4as6ddar2bibd I
() Random - Output File Browse...

Figure 90. Provide the ECC Private Key data

Next, under the Wrapping Key section, click the corresponding Browse buttons to select the UFPK and W-
UFPK key pair created in section 4.2 and 4.4. For the IV, select Generate random value. For the Output
option, select RFP; then click the Browse button, choose the output folder, and name the output file.

Wrapping Key

@ UFPK UFPK File: C\Secure Key Injectionf\ra8p1_protected_mod_key_info\ufpkkey Browse...
W-UFPK File : | C\Secure Key Injectioff\ra8p1_protected_mod_key_info\ufpkkey_enckey Browse...

O KUK Browse...
v
l@ Generate random Valuel

(O Use specified value (16 hex bytes, big endian format) | 00112233445566778899AABBCCODEEFF

Output

Format: ~ | File: | C\Secure Key Injection\ra8p1_protected_mod_key_info\ECC_Private_Key.rkey ||Browge,,,l

Little Qutput additional data

10000

Generate file

Output File: C:\Secure Key Injection\ra8p1_protected_mod_key_info\ECC_Private_Key.rkey

UFPK: 000102030405060708090A0B0CODOEOFO00102030405060708090A0BOCODOEQF

'W-UFPK: 00000000A7BF7EB27054D78E07C504291520678AATBFTEB27054D78E07C504291520678A

1V: 2724001FD49CEABBDCEST19B11CDF196

Encrypted key: 837D81FASACDE3D159E4FDA3AS453C6949E90B2A96AD376E55B1F101F074442E93984444C6D4F3BFD83D98F601913568
OPERATION SUCCESSFUL

Figure 91. Generate the ECC Private Key RFP Injection Key File using GUI

The plaintext ECC key and UFPK are NOT contained in the * . rkey file, enabling confidential transfer of the
key injection file contents.

5.2.2 Wrap a New ECC Key Pair with the KUK

Instruction to create a KUK and wrap it with the UFPK can be referred to section 5.1.3 with RA Family,
RSIP-E50D Security Functions, and Protected Mode is selected from the Overview page of SKMT GUI.
In this section, we will use the kuk for new key.key generated in Figure 75 to wrap a new ECC key pair.

To demonstrate updating the ECC key pair, another NIST ECC secp256r1 test vector is used in this
application project. This test vector is the same as the new NIST CAVP test vector shown in Figure 83.

From the SKMT GUI, select RA Family, RSIP-E50D Security Functions, and Protected Mode on the
Overview page. Next, navigate to the Wrap Key page. Select the Key Type as ECC and secp256r1, public
as shown in Figure 86.

Under the Key Data area, select Raw and provide Qx and Qy as shown below. The key data is duplicated
here so the user can copy and paste it to the GUI interface.

Qx = €266ddfdc12668db30d4ca3e8f7749432¢c416044f2d2b8c10bf3d4012aeffa8a
Qy = bfaB86404a2e9ffe67d47c587ef7a97a7f456b863b4d02cfc6928973ab5b1cb39

R11ANO496EU0221 Rev.2.21 Page 48 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

Ke}r T}rpe KE’_‘," Data

(_J File Browse...

® Raw O : | e266ddfdc]2668db30d4calelfT749432c416044F2d2b8c 10bf3d401 2aeffala

Qy : | bfal6404a2edffefTdd7c587efTal7aTf456b863b4d02 cfcf028973ab5h1cb3g|

Figure 92. Provide the New ECC Public Key Data

Next, under the Wrapping Key section, click the corresponding Browse button to select the KUK generated
in section 5.1.3. For the IV, select Generate random value. In the Output option, choose C Source and
name the output as new ecc public key.c. set the Key name to NEW_ECC_PUB.

Finally, click Generate file. Both the new _ecc public key.c andthe new ecc public key.h files will
be generated

Wrapping Key

O UFPK C:\Secure Key Injection\ra8p1_protected_mod_key_info\ufpk.key Browse...

C:\Secure Key Injection\ra8p1_protected_mod_key_infoufpk.key_enckey Browse...
® KUK KUK File: | C\Secure Key Injection\raSp1_protected_mod_key_infoIkuk_for_new_key‘key I Browse...
v

l@ Generate random value I

(O Use specified value (16 hex bytes, big endian format) | 00112233445566778899AABBCCDDEEFF

Qutput
Format: C Source v | File : | “\Secure Key Injection\raSp1_pro‘[ec‘[ed_mod_key_infnl\new_ecc_public_key.c I Browse...
Little [[] Output additional data
10000 Key name : [NEw_ECC_PUB | |
Output File: C\Secure Key Injection\ra8p1_protected_mod_key_info\new_ecc_public_key.h ~

Output File: C\Secure Key Injection\ra8p1_protected_mod_key_info\new_ecc_public_key.c

KUK: 000102030405060708090A0B0CODOEOF000102030405060708090A0B0CODOECF

IV: 073A3F4A0E34DFBA492A142040A09839

Encrypted key:
53326EC34BES98F7TFAAFBDDS85B2B371E8A331BECFDSTACTBC14D0ET17CABELB234F6807800760794FAA4CAG15ATIDS2BBC3470812CB65
E7D5B4337250A5FB1153F1CEDADBDSA29E008A058DC302FA219

OPERATION SUCCESSFUL

Figure 93. Generate KUK-Wrapped ECC Public Key

Follow the steps described above for generating a new wrapped public key to wrap the corresponding private
key with KUK. On the Wrap Key tab, select the Key Type as ECC and secp256r1, private, as shown in
Figure 89.

Next, configure the Key Data. Under the Key Data area, select Raw and provide the d as shown below. The
key data is duplicated here to easily copy and paste to the GUI interface.

d = 0f56db78ca460b055¢c500064824bed999a25aaf48ebb519ac201537b85479813

R11ANO496EU0221 Rev.2.21 Page 49 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

Key Typel Key Data I

) File Browse...
@ Raw 0f56db78cad60b055c500064824bed999%a25aaf48ebb519ac201537b85479813 I
() Random - Output File Browse...

Figure 94. Provide the New ECC Private Key Data

Next, under the Wrapping Key section, click the corresponding Browse button to select the KUK generated
in section 5.1.3. For the IV, select Generate random value. In the Output option, choose C Source and
name the output as new _ecc private key.c. set the Key name to NEW_ECC_PRI.

Finally, click Generate file. Both the new _ecc private key.c andthenew ecc private key.hfiles
will be generated.

Wrapping Key

(O UFPK Browse...

Browse...
@ KUK KUK File : | C\Secure Key Injection\raSp1_protected_mod_key_infcl.kuk_for_new_key.key I Browse...
v

l @ Generate random value I

(O Use specified value (16 hex bytes, big endian format) | 00112233445566778899AABBCCDDEEFF

Output
Format: |C Source ~ | File: | Ch\Secure Key Injection\ra8p1_protected_mod_key_infnl\new_ecc_private_key.cI Browse...
Little [Joutput additional data
10000 Key name : | NEW_ECC_PRI | |
Output File: C\Secure Key Injection\ra8p1_protected_mod_key_info\new_ecc_private_key.h ~

Output File: C\Secure Key Injection\ra8p1_protected_mod_key_info\new_ecc_private_key.c

KUK: 000102030405060708090A0B0CODOEOFO00102030405060708090A0B0CODOEQF

IV: 011095087F4F4790BF8183EA46EQ0C4DS

Encrypted key: 52030E6F12CC8499B885BC40CD29E95BCH4B5316E5F75254EF45BB5C7BEBFD6101 91A9083D04A8C62836E§9A5BBFCF688|
OPERATIOM SUCCESSFUL

Figure 95. Generate KUK-Wrapped ECC Public Key

5.3 Wrap Keys with the UFPK and W-UFPK using the SKMT CLI Interface

This section describes how to perform the actions described above using the SKMT CLI interface. These
examples use SCE9 Protected mode, but SCE7 and RSIP support is fundamentally the same.

The /genkey command of the Security Key Management Tool command line tool skmt . exe will be used to
prepare keys for secure injection and update. These are the options for this command:

e /keytype — This input can take either ASCII or a one-byte hexadecimal input parameter indicating the
key type.

e /ufpk — The User Factory Programming Key.

e /wufpk — The Renesas HRK-wrapped UFPK.

e /kuk - The Key-Update Key for secure key update.

e /mcu - The target MCU and security engine.

e /output — The output of the command.

Refer to the Security Key Management Tool user’s manual for more information about these commands,
including the valid values for each parameter.

This application project uses an AES-256 key and an ECC secp256r1 public key to illustrate the secure key
injection and update processes.

R11ANO496EU0221 Rev.2.21 Page 50 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

For these examples, we will use the UFPK and W-UPFK created earlier.

5.3.1 Wrap an Initial AES-256 Key with the UFPK

In the Command Prompt window opened earlier (section 4.3), use the following command to create the AES-
256 key injection file (AES256_CLI.rkey). Refer to the Security Key Management Tool user manual for
more information on how to construct the command.

Skmt.exe /genkey /ufpk

file="C:\Secure Key Injection\raé6m4 protected mode key infolufpk.key” /wufpk
file="C:\Secure Key Injection\raémé4 protected mode key infolufpk.key enc.key”
/mcu “RA-SCE9” /keytype “AES-256" /key
“8000” /filetype
“rfp” /output

“C:\Secure Key Injection\raébm4 protected mode key info\AES256 CLI.rkey”

Note that in this example:

e We are using 8000
from the NIST vector in Figure 66 as the AES-256 plaintext user key.

o We have specified the key type “AES-256".

e “RA-SCE9”is used for the /mcu option.

o We are using a randomly generated IV. The IV changes each time this command is executed.

In this example, we have specified the complete file path for the key file AES256 CLI.rkey.

Output File: C:\Secure Key Injection\raébmé4 protected mode key info\AES256 CLI.rkey
UFPK: 000102030405060708090A0B0OCODOEOF000102030405060708090A0BOCODOEOF

W-UFPK: 000000006FEE15036A3B4E726F0B3FOE1F74B7076FEE15036A3B4E726F0B3F9ELF74B707
IV: OB730F4F7194A9CB67E284A1B0D2A370

Encrypted key:
1D6612F7F276BFBBEBE05410151C43E74E0368D3FB0688FB7ASD2D35E2B286A9963C14F3FE16A4529AACTESBO650EB72

Figure 96. Create the AES-256 User Key Injection File

The generated key file AES256 CLI.rkey now contains the encrypted user key along with the W-UFPK.
The plaintext AES-256 key and UFPK are NOT contained in the * . rkey file, enabling confidential transfer of
the key injection file contents.

5.3.2 Wrap an Initial ECC Public Key with the UFPK

In this section, we will use the ECC key pair in Figure 71 as an example of preparing an ECC public key for
secure key injection.

In the Command Prompt window opened earlier (section 4.3), use the following command to create the ECC
public key injection file (ECC_Public Key CLI.rkey). Refer to the Security Key Management Tool user
manual for more information on how to construct the command.

Skmt.exe /genkey /ufpk

file="C:\Secure Key Injection\raétm4 protected mode key infolufpk.key” /wufpk
file="C:\Secure Key Injection\ra6m4 protected mode key infolufpk.key enc.key”
/mcu “RA-SCE9” /keytype “secp256rl-public” /key
“1ccbe91c075fc7£4£033bfa248db8fccd3565de94bbfbl2f3¢c59ff46c271bf83ced014c68811f
9a21alfdb2c0e6113e06db7ca93b7404e78dc7ccd5caB89a4d4ca9” /filetype “rfp” /output
“C:\Secure Key Injection\raétm4 protected mode key info\ECC Public Key CLI.rkey

”

Note that in this example:

o 1ccbe91c075fc7f4f033bfaz248db8fccd3565de%94bbfbl12f3c59ff46c271b£f83
ced4014c68811f9%a2lalfdb2c0e6113e06db7ca93b7404e78dc7ccd5ca89a4ca is the NIST ECC
public key from Figure 71.

o We have specified the key type “secp256r1-public”.

e “RA-SCE9”is used for the /mcu option.

R11ANO496EU0221 Rev.2.21 Page 51 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

o We are using a randomly generated IV. The |V is updated in each encryption instance.
e The command option /output defines the locations and name of the output file.

Output File: C:\Secure Key Injection\raémé4 protected mode_key info\ECC_Public Key CLI.rkey
UFPK: 000102030405060708090A0BOCODOEOF000102030405060708090A0BOCODOEOF

W-UFPK: 1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234567890ABCDEFE12345678

IV: 0273B7277508F33491F2BA569B092535

Encrypted key:
1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234
567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF

Figure 97. Create the ECC Public Key Injection File Using CLI
5.3.3 Create and Wrap a Key-Update Key with the UFPK
We can use the SKMT to create a key file for a KUK. This is done with the following command:

skmt.exe /genkuk /kuk
"000102030405060708090A0BOCODOEOF000102030405060708090a0b0c0d0e0f" /output
"C:\Secure Key Injection\raémé4 protected mode key infolkuk for new key cli.key

Note that in this example:

+ We have specified the complete file path for the key file.
o We need to use the same Key-Update Key as used in section 5.1.3.

KUK: 000102030405060708090A0BOCODOEOF000102030405060708090A0BOCODOEQF

Output File:
C:\Secure Key Injection\raém4 protected mode key infol\kuk for new key cli.key

Figure 98. Create the KUK Key File

The generated key file kuk_for new key cli.key now contains the KUK. Retain this key file to use for
wrapping new user keys for secure key updates.

To enable secure key updates, we must first securely inject the KUK. Use the SKMT to wrap the KUK with
the UFPK and create a key injection file for use with RFP with the following command:

skmt.exe /genkey /ufpk

file="C:\Secure Key Injection\raé6m4 protected mode key infolufpk.key” /wufpk
file="C:\Secure Key Injection\raém4 protected mode key infolufpk.key enc.key”
/mcu “RA-SCE9” /keytype “key-update-key” /key

file="C:\Secure Key Injection\raém4 protected mode key infol\kuk for new key cl
i.key” /filetype “rfp” /output

“C:\Secure Key Injection\raém4 protected mode key info\KUK CLI.rkey”

Note that in this example:

o We are using the KUK key file created above.

o We have specified the key type “key-update-key”.

o We are using a randomly generated IV. The IV changes each time this command is executed.
* In this example, we have specified a complete file path for the key file (KUK _CLI.rkey).

Output File: C:\Secure Key Injection\raém4 protected mode key info\KUK CLI.rkey
UFPK: 000102030405060708090A0BOCODOEOF000102030405060708090A0B0OCODOEQOF

W-UFPK: 1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234567890ABCDEFE12345678
IV: 1234567890ABCDEF1234567890ABCDEF

Encrypted key:
1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF

Figure 99. Create the Key-Update Key Injection File Using CLI

R11ANO496EU0221 Rev.2.21 Page 52 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

The generated key file KUK _CLI.rkey now contains the wrapped KUK along with the W-UFPK. The
plaintext KUK and UFPK are NOT contained in the * . rkey file, enabling confidential transfer of the key
injection file contents.

5.3.4 Wrap a New AES-256 Key with the KUK

The user can use the following command to wrap the new AES key defined in Figure 79 using the KUK. This
is done with the following command.

C:\Renesas\SecurityKeyMangementTool\cli>skmt.exe /genkey /kuk

file="C:\Secure Key Injection\raé6m4 protected mode key infolkuk for new key cli.
key" /mcu "RA-SCE9" /keytype "AES-256" /key
"c000" /filetype
"csource" /keyname "NEW AES256" /output

"C:\Secure Key Injection\raébmé4 protected mode key info\new aes key cli.c"

Note that in this example:

e We are using c000 as
the new AES-256 plaintext key.

¢ We are using a randomly generated IV. The IV changes each time this command is executed.

e We use the /keyname to create an identifiable key structure name that is unique in the software project.
This resolves confusions when more than one set of new user keys are to be generated. If this option is
not provided, a key structure name of encrypted user key data is generated for the key structure.

e The generated new aes key cli.candnew aes key cli.h filesinclude the output information in
a data structure. The user can directly include these two files in the application project. This is
demonstrated in the example project included.

Output File: C:\Secure Key Injection\raémé4 protected mode key infol\new aes key cli.h
Output File: C:\Secure Key Injection\raémé4 protected mode key infol\new aes key cli.c
KUK: 000102030405060708090A0B0OCODOEOF000102030405060708090A0BOCODOEOF

IV: 3C8841F6E6AE05B7625098EC70C542C1

Encrypted key:
03FE218ABCDOAD2F5A5634833ABD7F4D6F4CF8BF2CACT737CE1IBES6C28DFOADADS2536EED8DF405031230F935B087ECAQ

Figure 100. Encrypt the New User Key with the KUK

5.3.5 Wrap a New ECC Public Key With the KUK
Use the following command to wrap the new ECC public key shown in Figure 83.

skmt.exe /genkey /kuk

file="C:\Secure Key Injection\raé6m4 protected mode key infolkuk for new key.ke
y" /mcu "RA-SCE9" /keytype "secp256rl-public" /key
"e266ddfdcl12668db30d4ca3e8f7749432c416044£2d2b8cl10bf3d4012aeffa8abfa86404a2e9f
fe67d47c587ef7a97a7f456b863b4d02cfc6928973ab5blcb39" /filetype "csource"
/keyname “NEW _ECC_PUB” /output

"C:\Secure Key Injection\raémé4 protected mode key infolnew ecc public key cli.
C"

Note that in this example:

e c266ddfdcl2668db30d4ca3e8£7749432c416044£2d2b8cl0bf3d4012aeffa8a
bfa86404a2e9ffe67d47c587ef7a97a7f456b863b4d02cfc6928973ab5blcb39 is the ECC public
key from the NIST test vector shown in Figure 83.

e The key type “secp256r1-public” is one of the available options specified in the Security Key
Management Tool user’'s manual.

e "RA-SCE9"is used for the /mcu option.

o We are using a randomly generated V. The IV changes each time this command is executed.

e The command option /output defines the locations and name of the output file.

R11ANO496EU0221 Rev.2.21 Page 53 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

e We use the /keyname to create an identifiable key structure name that is unique in the software project.
This resolves confusions when more than one set of new user keys are to be generated. If this option is
not provided, a key structure named encrypted user key data is generated for the key structure.

e The generated new ecc public key cli.cand new ecc public key cli.h filesinclude the
output information in a data structure. 0This is demonstrated in the example project included.

Output File: C:\Secure Key Injection\raém4_protected mode key infol\new_ ecc public_key cli.h
Output File: C:\Secure Key Injection\raémé4_protected mode_key infol\new ecc_public_key cli.c
KUK: 000102030405060708090A0BOCODOEOF000102030405060708090A0BOCODOEOF

IV: 36E763D5A82924B4888732D50C93B602

Encrypted key:
9BOAT7F8C91C038704A4F2CT758EAC3DDD1372B4DC6AA4F22667D7D0E41218A1DEDBB8337E557B59B91100225BC8BBE2807221
4FF3C729D953AEFA9E997C3989967C831DC6501E9528715ADA30FAOD0402

Figure 101. Encrypt the New ECC Public Key with the KUK

5.4 Secure Key Injection via MCU Boot Interface

Follow this section to inject the AES-256 key, the ECC public key, the ECC private key and the Key-Update
Key (KUK) that were prepared in section Error! Reference source not found., section 5.2 or section 5.3.
This capability is supported by RA Family MCUs that incorporate the SCE9 (Protected Mode), RSIP
(Protected Mode) or SCE5_B security engine.

5.4.1 Setting up the Hardware
Set up the EK-RA6M4 evaluation board as follows.

o Connect the jumper setting to J16 to put the device in boot mode. Refer to the EK-RA6M4 User’s Manual
for details.

e Connect the EK-RA6M4 J10 connector to the development PC using a USB micro-B cable to provide
power and a debug connection using the onboard debugger.

Erase the entire MCU flash and ensure that the MCU is in the SSD Device Lifecycle State. This can be done
using the Renesas Flash Programmer, as shown here.

1. Unzip rfp resources raé6mé.zip

2. Launch the Renesas Flash Programmer GUI executable.

3. Select File > Open Project and select ra6m4 secure key inject.rpj.
4. Select Target Device -> Initialize Device.

File | Target Device I Help

Read Device Information

[File | Device Information Help Operati

Mews Project.., Read Memory...

| I Open F'rojeu:t...l
Sawe Project Initialize Device I N
DLM Transition...

Pri Read Flash Options

Sawve lrnage File..,

Figure 102. Open RFP Project and Initialize the Device

Upon successful initialization, the following message will be printed.

R11ANO496EU0221 Rev.2.21 Page 54 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

Target device : R7FAGM4AFICFB

Connecting the tool

Tool : J-Link {J-Link OB-5124 compiled Feb 2 2021 1667:21), Interface : 2 wire UART
Connecting to the target device

Setting the target device

Communication speed : 9600bps

Setting the target device

Erazing the target device

Dizconnecting the tool
Operation completed.

Clear status and meszage

Figure 103. RA6MA4 Initialization

Unless there are permanently locked flash blocks, the entire flash will be erased, and the RA6M4 will be set
to SSD state through the above steps.

In case of using EK-RA8P1 evaluation board, the setup is as follows:

e Set jumper J16 on pins 2-3 to put the device in JTAG boot mode. Refer to the EK-RA8P1 User’'s Manual
for details.

e Set jumper J9 on pins 2-3 and jumper J8 on pins 1-2 for normal operation.

e Connect J10 from EK-RA8P1 to the development PC to provide power and debugging capability using a
type A to type C USB cable.

Erase the entire MCU MRAM and ensure that the MCU is in the OEM Device Lifecycle State. This can be
done using the Renesas Flash Programmer, as shown here.

5. Unzip rfp resources ra8pl.zip

6. Launch the Renesas Flash Programmer GUI executable.

7. Select File > Open Project and select ra8pl secure key inject.rpj.
8. Select Target Device > Initialize Device as shown in Figure 102.

Upon successful initialization, the following message will be printed, similar to Figure 103.

5.4.2 Inject the Initial User Key and Key-Update Key

After initializing the evaluation board, power-cycle the board and follow the steps below to inject the AES-256
key, the ECC public key, and the Key-Update Key if using EK-RA6M4 or inject the ECC key pair and the
Key-Update Key if using EK-RA8P1. This section uses the set of injection keys generated from the GUI
interface.

To simplify duplicating this example, the . rkey files that match the example project are included in the
rfp resources_<mcu_name>.zip file. If the user intends to use the NIST vectors included in this
application project for verification purposes, they can use the included . rkey files for system verification.
The screen captures included in this section use these files for demonstration purposes. If different keys are
used, then the corresponding . rkey files must be updated to match those keys.

The following steps explain how to inject keys in the EK-RA6M4 example project.

Under the Operation tab, click Add/Remove Files. Next, click Add Files, and then add the . rkey file
containing the AES256 key, which for this example is

\rfp resources raé6m4\user keys\AES256.rkey (Figure 69). Setthe Address property to a data
flash or code flash address applicable to your specific application. In this example, the AES key will be
injected into the first block of Data Flash at 0x08000000.

R11ANO496EU0221 Rev.2.21 Page 55 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

& File Details — X
| Add File(s)... | Remove Selected Fiels)
File Name Type Address/Offset
s File Offset X
File: IC:\Secure_Key_InjedionVa&nd |_protected_mode_key_info\AES256 rkey
Address: h Cancel
OK Cancel

Figure 104. Add the AES256.rkey to RFP Configuration
Click OK, the AES256.rkey file will be configured to the corresponding load address.

&s File Details - ps

| Add File(s)... Remove Selected Filefs)

File Name Type Address/Offset

C:\Secure_Key_Injection\rabm4_protected_mode_key_info\AES256 rkey

0K Cancel

Figure 105. AES256.rkey is added to the RFP Configuration

Click Add Files again and add ECC_Public Key.rkey. Browse to the ECC_Public Key.rkey (Figure
74). Set the Address property to a data flash or code flash address applicable to your specific application. In
this example, the ECC public key will be injected into the third block of Data Flash at 0x08000080.

s File Details — X
| Add File(s)... | Remove Selected Fiels)
File Name Type Address/Offset
C:\Secure_Key_Injection‘\rabm4_protected_mode_key_info\AES256.rkey
C:\Secure_Key_Injection \rabm4_protected_mode_key_infol ECC_Public_Key rkey KEY (0x08000080
0K Cancel

Figure 106. Configure the ECC Public Key Selection and Injection Address

Click Add Files again and add KUK . rkey. Browse to the KUK. rkey (Figure 78). Set the Address property
to a data flash or code flash address applicable to your specific application. In this example, the Key-Update
Key will be injected into the code flash at 0x00040000.

R11ANO496EU0221 Rev.2.21 Page 56 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

Es File Details — X
Add File(s)... Remove Selected File(s)
File Name Type Address/Offset
C:\Secure_Key_Injection\rabm4_protected_mode_key_info\AES256.rkey
C:\Secure_Key_Injection‘\rabm4_protected_mode_key_info\ECC_Public_Key rkey KEY (0x08000080
C:\Secure_Key_njection\va6imé_protected_mode_key_nKUKkey] ke [o000i0000]

Figure 107. Configure the Key-Update Key Selection and Injection Address

Click OK and navigate to the Operation Settings. Note that Erase, Program, Verify, and Erase Before
Program are selected.

File Target Device Help
Operation Operation Settings Block Settings Flash Options Connect Settings Unique Code
Command Erase Options

= Erase Selected Blocks v

Program Program & Verify Options
Verfy [] Erase Before Program

Verify by reading the device
[] Program Flash Options

[] Verify Flash Options
[] Checksum

Figure 108. Select to Perform Flash Erase, Program, and Verify

¢ Browse to the Block Settings tab and note that the entire flash region is selected for Erase.

= R7FABMAAFICFB
Code Flash 1 (00000000 OxDOOFFFFF 1.0M
Data Flash 1 (k08000000 OxDBODTFFF 8K
Corfig Area 1 B0100A100 DxD100AZFF 512

Figure 109. Entire Flash Region is Selected for Erase

R11ANO496EU0221 Rev.2.21 Page 57 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

¢ Browse the Operation tab. Click Start to inject the AES-256, the ECC public key, and the Key-Update
Key. The injection should succeed with a similar output message as shown below at the selected flash
addresses.

File Target Device Help

Operation Operation Settings Block Settings Flash Options Connect Settings Unique Code

Project Information

Curent Project: Jrabm4_secure_key_inject.] |
Microcontroller: R7FAEM4AF3CFB

Program and User Key Files
AES256 ey, ECC_Public_Key.rkey, KUK rkey
3files selected Add/Remove Files.

[Data Flash 1] 008000000 - 0x08001FFF size : 8 K A~

Command

Erase >> Program >> Verify

Wi iting data to the target device
[User Keys] 0x00040000
[User Keys] 0x08000000
[Uszer Keys] 0x08000080

Werifying data
[User Keys] 0x00040000
[User Keys] 0x08000000
[User Keys] 0x08000080

Disconnecting the tool
Operation completed.

Clear status and message

Figure 110. Secure Keys Successfully Injected

In this example code, no application is programmed since we are interested only in the key injection. In a
production flow, it is possible to program the application and user keys together. This operation can also be
performed using the command line function of RFP.

With the RA8P1 example project, the ECC key pair and the Key-Update Key will be injected following the
same steps described above but using different addresses corresponding to the MRAM on the RA8P1 as
shown in Figure 111.

b_*, Details — - X

Add File(s)... Remove Selected File(s)

File Name Type Address/Offset
| C:\Secure Key Injection\ra8p1_protected_mod_key_infc \ECC_Public_Key rkey
| | c:\Secure Key Injection‘ra8p1_protected_mod_key_infd\ECC_Private_Key rkey (0x02020080
| | C:\Secure Key Injection'raBp 1_protected_mod_key_info KUK tkey E 0:02030000 |

| Cance

Figure 111. Configure the Keys Selection and Injection Address with RA8P1 project
In this example:
e The ECC public key will be injected into MRAM at 0x02020000.
e The ECC private key will be injected into MRAM at 0x02020080.

R11ANO496EU0221 Rev.2.21 Page 58 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

o The Key-Update Key will be injected into the MRAM at 0x02030000.
6. Secure Key Injection Preparation for RSIP and SCE7 Compatibility Mode

This section shows how to generate the . c and . h files, which can be used in an application project that
uses the FSP APIs to inject keys into the PSA Crypto APIs using the security engine in Compatibility Mode.
This key injection method must be used for both user keys and Key-Update Keys.

6.1 Wrap an AES-128 User Key Using the UFPK for RSIP-E51A Compatibility Mode
A NIST CAVP test vector is used for the demonstration.

https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Block-Ciphers

KEY = «0000000000000000000000000000000
IV = 00000000000000000000000000000000
PLAINTEXT = 00000000000000000000000000000000
CIPHERTEXT = 72alda770f5d7ac4c9ef94d822af£d97

Figure 112. NIST AES-128 Test Vector
Using the SKMT GUI interface, on the Overview tab, select RA Family, RSIP-E51A Compatibility Mode.

Select MCU/MPU and security engine: | RA Family, RSIP-ES1A Compatibility Mode ~

Please select the target MCU or MPU before continuing.

Figure 113. Choose RA Family, RSIP-E51A Compatibility Mode
On the Wrap Key tab, in the Key Type area, choose AES and 128 bits.

Overview Generate UFPK Generate KUK | Wrap Key | TSIP UPDATE FSBL DOTF SFP

Keys must be wrapped by the UFPK for secure injection or by the KUK for secure update,

Key Type Key Data

DLM/AL DLM-55D (®) AES 128 bits - ARCA
O KUK ORSA | 2048 bits, public TDES
OEM Root public (JECC secp256r], public

(O HMAC |SHAZ256-HMAC

Figure 114. Choose AES-128 bits as the Key Type

Select the Key Data tab and input the Raw Key Data as shown below based on the NIST vector as shown in
Figure 112.

R11ANO496EU0221 Rev.2.21 Page 59 of 81
Oct.27.25 RENESAS

https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Block-Ciphers

Renesas RA Family Injecting and Updating Secure User Keys

Overview Generate UFPK Generate KUK| Wrap Key | TSIP UPDATE FSBL DOTF SFP

Keys must be wrapped by the UFPK for secure injection or by the KUK for secure update,

Key Type

() File Browsze...
(®) Raw e0000000000000000000000000000000
(O Randorn - Qutput File Browse...

Figure 115. Set up the Initial AES-128 Key Data

Under the Wrapping Key section, click the corresponding Browse buttons to select the UFPK and W-UFPK
key pair. Choose the Generate random value option for the IV data. For the Output option, select C
Source; then click the Browse button, choose the output folder and file name, and name the key. This name
will be reflected in the definitions generated for the C source files.

Now click the Generate File button. The source files to inject the AES key will be generated.

R11ANO496EU0221 Rev.2.21 Page 60 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

B Security Key Management Tool — O >
File View Help

Overview Generate UFPK Generate KUK | Wrap Key | TSIP UPDATE FSBEL DOTF SFP

Keys must be wrapped by the UFPK for secure injection or by the KUK for secure update.

Ke}r T}rpe KE}" Data

. P T B o AR e e
File EUIURURUURCRRRURURUR R RURUH ORI R Browse...

(®) Raw €0000DD0000DD00D0DD0ODDDO0DD

() Random - Qutput File Browse...

Wrapping Key
i® UFPK UFPK File: ecure_Key_Injectionradm1_compftibility_mode_key_info'rax1_ufplk.key | | Browse...

W-LUFPK File: i'_',"_lﬂjECtiDﬂ"‘._rEEr'ﬂ1_Cl:lrT1patihilit_‘p’_'ﬁudE_kE'y_infD\rEBx‘l_Ufpk.kE’_‘,‘_EnC.kE’}" Browse...

KUK KUK File : Browse...

v
I (®) Generate random value I
() Use specified value (16 hex bytes, big endian format) | 001122334455667 788994 ABBC CODEEFF

QOutput
Format: |C Scurce “~ | File: atibility_mode_key_info'ram1_initial_aes123_key.c | Browse...
Address ;| 10000 Key name : | RABMIT_AES128

Generate file

Cutput File: Ch\Secure_Key_Injection\ram1_compatibility_mode_key_info'ra8mi_initial_aes128_key.h
Cutput File: Ch\Secure_Key_Injection\ra®m1_compatibility_mode_key_infora8m1_initial_aes128_key.c
LFPK: 000102030405060708090A0B0CODOEQFDONT02030405060708050A0B0CODOEOF

W-UFPK: 00000000A7EFTEE2ZT054DTEE0TCI04291 520673AATBFTEB2T054DTAEOTCI0M291 5206784

IV: OEOBTFEAAE2SCC2FFAT11C2ZFDEDS3IFED

Encrypted key: EB41B10DF4E22ET14ECFEOASDIZDNECTODEIIC2192116F3FE02E3D4847AA24308
OPERATIOM SUCCESSFUL A4

Figure 116. Generate the Initial AES-128 Encrypted Key File

Note that the generated ra8ml initial aes 128.cand ra8ml initial aes 128.hare used in the
RA8M1 secure key injection example project.

R11ANO496EU0221 Rev.2.21 Page 61 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

6.2 Wrap an AES-128 User Key Using the UFPK for SCE7

The same NIST CAVP test vector is shown in Figure 112 is used for the demonstration.

Using the SKMT GUI interface, on the Overview tab, select RA Family, SCE7. On the Wrap Key tab, in the
Key Type area, choose AES and 128 bits.

Overview Generate UFPK Generate KUK | Wrap Key [TSIP UPDATE FSBL DOTF SFP

Keys must be wrapped by the UFPK for secure injection or by the KUK for secure update.

Key Type Key Data

DLM/AL DLM-SSD [®2es 128 bits v] © arcs
OKuK (ORSA | 2048 bits, public TDES
OEM Rooet public OECC secp236rl, public

OHMAC |SHA256-HMAC

Figure 117. Choose AES-128 bits as the Key Type

Select the Key Data tab and input the Raw Key Data as shown below based on the NIST vector as shown in
Figure 116.

Overview Generate UFPK Generate KUK | Wrap Key | TSIP UPDATE FSEL DOTF SFP

Keys must be wrapped by the UFPK for secure injection or by the KUK for secure update.

Key Type

() File e0000000000000000000000000000000 s,
{® Raw 000000D000DO0000000D00000000000
(Z)Random - Qutput File Browse...

Figure 118. Set up the AES-128 Key Data

Under the Wrapping Key section, click the corresponding Browse buttons to select the UFPK and W-UFPK
key pair for RA6M3. Choose the Generate random value option for the IV data. For the Output option,
select C Source; then click the Browse button, choose the output folder and file name, and name the key.
This name will be reflected in the definitions generated for the C source files.

Now click the Generate File button. The source files to inject the AES key will be generated.

R11ANO496EU0221 Rev.2.21 Page 62 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

B security Key Management Tool — O >
File View Help

Overview Generate UFPK Generate KUK | Wrap Key | TSIP UPDATE FSBL DOTF SFP

Keys must be wrapped by the UFPK for secure injection or by the KUK for secure update.

Ke}r T}rpe KE}" Data

. AR
(O File e0000000000000000000000000000000 Browse...

I {® Raw eD00000D00BN000000000000000 I
() Random - Qutput File Browse...
Wrapping Key
@ UFPK UFPK File: Ch\Secure_Key_Injection\raBm3_key_info\ufpk_raém3.key Browse...
W-UFPK File: | C:\Secure_Key_Injection\raBm3_key_info\ufpk_rabm3.key_enc.key Browse...
(KUK Browse...
v

I (®) Generate randormn value I
() Use specified value (16 hex bytes, big endian format) | 00112233445566778290AABBCCDDEEFF

OQutput

Format: |C Source «| File: ure_Key_Injection\raém3_key_info\initial_aes_12%.c | | Browse...

0000 Key name: [AE5128

Generate file

Output File: Th\Secure_Key_Injectionfrabm3_key_infolinitial_aes_128.h
Output File: Ch\Secure_Key_Injectionfrabm3 key info\initial aes 128.c
UFPK: 000102030405060708090A0BOCODOEOFOD01020304050607028030A0B0CODOEDF

W-UFPK: 00000000A7BF7EB27054D78E07C504291520678AATBFTEB27054D78E07C504291520678A

IV: 3AB257BT793864393A41BFEASF282055

Encrypted key: D41B976570011ED2385EA581B973C6D2D0EF4EBEECSCADD2CE5193869FBE3404

OPERATION SUCCESSFUL v

Figure 119. Generate the AES-128 Encrypted Key File
7. Example Project for RA6M4 (SCE9 Protected Mode)

To exercise the example projects as is, users can follow the steps below:

¢ Inject the included example RFP injection keys (AES256 . rkey, KUK. rkey, and
ECC Public Key.rkey which areincluded in rfp resource raé6m4.zip) by following section
5.4.2.

o A setof new user keys (AES256 as well as ECC Public Key) generated using the example KUK is
already provisioned in the example projects. The user can then directly proceed to exercise the example
project.

Note: Please do not use the example keys for production support.

To use the example projects with customized keys, the user can follow the steps below:

R11ANO496EU0221 Rev.2.21 Page 63 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

71

To test customized RFP injection keys and new user update keys (generated by the following section 5.1
or 5.3 rather than using the ones included in rfp resources ratm4.zip), the user needs to follow
section 1.1 to inject the keys to the MCU. User also needs to generate customized new user key files
(new _aes key.c/.hand new ecc public key.c/.h)with the same key name to replace the
corresponding files used in the example project. Once the example projects are updated, the user can
proceed to run the example projects to verify the operations.

To test the new user key update procedure only, the user can use the included RFP KUK. rkey file to
generate new source files to replace the corresponding files in the example project. Once the example
projects are updated, the user can then proceed to the verification of the operations.

Example Project Overview

This pair of TrustZone-based secure and non-secure example projects provides the following functions:

Secure project (secure_key_inject_update_rabm4_s):

Uses the injected AES-256 key to perform cryptographic operation using AES256-CBC.

The injected Key-Update Key (KUK) is used to inject the new AES-256 key and store this new AES-256
key for data flash.

Uses the new AES-256 to perform cryptographic operation using AES256-CBC.

Uses the injected ECC public key to verify the NIST test signature shown in Figure 71.

The injected Key-Update Key (KUK) is used to inject the newly wrapped ECC public key and store this
new ECC public key for data flash.

Uses the new ECC public key to verify the NIST test signature shown in Figure 83.

Non-secure project (secure_key_inject_update_raém4_ns):

Establishes an RTT Viewer interface to allow users to select the intended Secure Crypto Engine and
flash operation.

Calls the non-secure callable APIs provided from the secure project based on user selection from the
RTT Viewer interface.

Prints the user operation results on the RTT Viewer.

R11ANO496EU0221 Rev.2.21 Page 64 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

Color Legend

hd

Secure Partition

NSC APl Veneer

I
L
' ;

e
e 2 5 [—

Figure 120. Software Block Diagram
The FSP modules used in this pair of example projects are:

e 1 sce protected: This module is used in the secure region and provides services to the non-secure
region via non-secure callable APls

e 1 flash hp: This module is used in the secure region and provides services to the non-secure region
via non-secure callable APIs

For more information on designing applications with TrustZone® support, refer to the application project
Renesas RA Family MCU Security Design with TrustZone — IP Protection.

7.2 Using the RFP Injected Keys

7.2.1 Formatting the Injected Keys

The keys that are injected into the MCU flash using RFP cannot be used directly by the FSP Crypto APIs. A
minor formatting change is required.

7.2.1.1 Formatting the Injected AES Key

The following code snippet reads the AES-256 key from Flash. The destination buffer can then be used for
cryptographic operations. Replace the macro DIRECT AES KEY ADDRESS with the actual injection address.

static sce_aes wrapped key t injected key;

injected key.type = SCE KEY INDEX TYPE AES256;

memcpy (injected key.value, (uint32 t *)DIRECT AES KEY ADDRESS,
HW_SCE_AES256 KEY INDEX WORD SIZE*4);

R11ANO496EU0221 Rev.2.21 Page 65 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

7.2.1.2 Formatting the Injected ECC Public Key

The following code snippet reads the ECC public key from Flash. The destination buffer can then be used for
cryptographic operations. Replace the macro DIRECT ECC_PUB KEY ADDRESS with the actual injection
address.

static sce _ecc public wrapped key t ecc public key injected;

ecc_public_key injected.type = SCE_KEY INDEX TYPE ECC P256 PUBLIC;
wrapped ecc public key size = sizeof (ecc_public key injected.value);

memcpy ((uint8 t *) (& (ecc_public _key injected.value)), (uint8 t *)DIRECT ECC PUB KEY ADDRESS,

wrapped _ecc public key size);

7.2.1.3 Formatting the Injected KUK

The following code snippet reads the injected KUK from the flash. The destination buffer can then be used
for secure key updates. Replace the macro KUK ADDRESS with the actual injection address.

static sce key update key t kuk key;
kuk_key.type = SCE_KEY INDEX TYPE UPDATE KEY RING;
memcpy (kuk key.value, (uint32 t *) (KUK _ADDRESS),HW SCE UPDATE KEY RING INDEX WORD SIZE*4);

7.2.1.4 Formatting an Injected RSA Public Key

This application project does not include an example usage for RSA secure key injection and update, but the
principles are identical. The following code snippet can be used to format an injected RSA public key.
Replace the macro RSa 2048 PUB _KEY ADDRESS with the actual injection address

static sce rsa2048 public wrapped key t injected rsa public key;

injected rsa public key.type = SCE KEY INDEX TYPE RSA2048 PUBLIC;

uint32 t wrapped rsa 2048 public key size = sizeof (injected rsa public key.value);

memcpy ((uint8 t *) (& (injected rsa public_key.balur)), (uint32 t *)RSA 2048 PUB_KEY ADDRESS,
wrapped rsa 2048 public key size);

7.2.2 \Verifying the Injected Key and the Updated Key

To verify the AES injection, provide the plaintext message and the expected cipher text for the injected AES
key and the updated AES key to the software project. For example, based on the NIST vectors presented in
Figure 66 and Figure 79, use the plaintext data below in aes_crypto operations.c:

#define BLOCK 16
/* NIST vector plaintext message used for both directly injected AES key and updated AES key*/
static uint8 t plain text[BLOCK] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}i

/* NIST vector initialization vector for the directly injected AES key and the AES key update*/
static uint8 t iv[BLOCK] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
}i
/* NIST cipher to match directly injected AES key*/
static uint8 t cipher expected[BLOCK] = {

Oxe3, Oxb5a, 0x6d, Oxcb, 0x19, 0xb2, 0x01, Oxa0, Oxle, Oxbc, Oxfa, 0x8a, 0Oxaz2, 0x2b, 0x57, 0x59
}i

/* NIST cipher to match new AES key */
static uint8 t cipher expected new[BLOCK] = {

O0xb2, 0x91, 0x69, Oxcd, Oxcf, 0x2d, 0x83, 0xe8, 0x38, 0x12, 0x5a, 0x1l2, Oxee, Ox6a, Oxad, 0x00
}i

R11ANO496EU0221 Rev.2.21 Page 66 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

To verify the ECC public key injection, the expected signature using the ECC private key, which matches the
injected ECC public key (see Figure 71) is provided in the array ECC_SECP256R1ExpectedSignature in
ecc_crypto operation.c.

/* This is an externally generated NIST test signature using the private key */

uint8 t ECC_SECP256R1ExpectedSignaturel[] =

{

0xf3, Oxac, 0x80, 0Ox6l, Oxb5, 0x14, 0x79, 0x5b, 0x88, 0x43, 0xe3, Oxdo6o, 0x62, 0x95, 0x27, Oxed,
Ox2a, 0Oxfd, Oxo6b, 0x1lf, Ox6a, 0x55, 0Oxb5a, 0x7a, Oxca, Oxbb, 0x5e, 0x6f, 0x79, 0xc8, 0Oxc2, Oxac,
0x8b, 0xf7, 0x78, 0x19, Oxca, 0x05, Oxa6, 0xb2, 0x78, Ox6c, 0x76, 0x26, 0x2b, 0xf7, 0x37, 0Oxlc,
Oxef, 0x97, 0xb2, 0x18, 0xe9, 0Oxof, 0x17, 0x5a, 0x3c, Oxcd, Oxda, 0x2a, Oxcc, 0x05, 0x89, 0x03
}i

Figure 121. Provision the ECC_SECP256R1ExpectedSignaure Array

Similarly, the expected signature using the ECC private key which matches the updated ECC public key (see
Figure 83) is provided in the array ECC_SECP256R1ExpectedSignature Newin
ecc_crypto operation.c.

/* This is an externally generated signature using the private key */

uint8 t ECC_SECP256R1ExpectedSignature New[] =

{

0x97, 0Ox6d, 0x3a, Oxde, 0x9d, 0x23, 0x32, 0x6d, 0Oxc0O0, Oxba, 0xa9, Oxfa, 0x56, 0x0b, 0Ox7c, Ox4de,
0x53, 0xf4, 0x28, 0x64, Oxf5, 0x08, 0x48, Ox3a, 0x64, 0x73, 0xb6, Oxal, 0x10, 0x79, 0xb2, Oxdb,
Ox1lb, 0x76, 0Ox6e, 0x9c, Oxeb, 0x71, Oxba, 0Ox6c, 0x01, Oxdc, 0xd4, Oxoe, 0x0a, 0xf4, 0x62, Oxcd,
Ox4c, Oxfa, 0x65, Ox2a, 0Oxe5, 0x01, 0x7d, 0x45, 0x55, 0xb8, Oxee, Oxef, 0xe3, 0Ox6e, 0x19, 0x32
}i

Figure 122. Provision the ECC_SECP256R1ExpectedSignaure_New Array

There is no action needed from the user if the same sets of keys and plaintext messages are used. If new
sets of keys and messages are used, the user needs to update the project with the new keys and messages.

7.3 FSP Crypto Module Support for User Key Update

This section introduces the FSP Crypto APIs for SCE Protected Mode that are used for secure user key
updates. For a complete description of all FSP Crypto APlIs, refer to the FSP User’'s Manual.

To use keys that have been injected via the secure key injection process using the MCUboot interfaces, the
application must refer to those keys at the address where they were injected. If you inject keys at addresses
other than those demonstrated above, be sure to change your application code to reflect those addresses.
See instructions in section 7.4.

To perform a secure AES key update, use the following API to MCU-uniquely wrap a new AES key using a
previously injected Key-Update Key:

fsp err t R _SCE_AES256_ EncryptedKeyWrap (
uint8 t *initial vector,
uint8 t *encrypted key,
sce key update key t *key update key,
sce aes wrapped key t *wrapped key)

R11ANO496EU0221 Rev.2.21 Page 67 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

The API parameters are:

e [in] initial vector: Pointer to a buffer that holds the initialization vector that was used to wrap the
new key. This must be the IV that was used during the key wrap process shown in section 5.1.4 or
section. This value will be included in the generated new_aes_key.c and new_aes_key.h.

e [in] encrypted key: Pointer to a buffer that holds the new key, wrapped by the KUK. In this
example, it is the KUK-wrapped AES-256 key that was output during the key wrap process shown in
section 5.1.4 or section 5.3.5. This value will be included in the generated new _aes key.c and
new_ aes_ key.h.

e [in] key update key: Pointer to the Key-Update Key that was previously injected on the MCU. This
address must match the address used when injecting the KUK into section 5.4.2. The user needs to
update the macro definition KUK_ADDRESS defined in £1ash storage.h to match the injection
address.

e [in, out] wrapped key: This is the SRAM buffer to store the wrapped new user key. For security
considerations, it is recommended to erase this buffer right after the wrapped key is saved to flash. In
this application project, the newly generated wrapped key is stored in data flash and used in the example
project.

To perform a secure ECC public key update, use the following API to MCU-uniquely wrap a new ECC public
key using a previously injected Key-Update Key:

fsp err t R SCE _ECC_secp256rl EncryptedPublicKeyWrap (
uint8 t * initial vector,
uint8 t *encrypted key,
sce_key update key t *key update key,
sce ecc public wrapped key t *wrapped key)

The API parameters are:

e [in] initial vector: Pointer to a buffer that holds the initialization vector that was used to wrap the
new key. This must be the IV that was used during the key wrap process shown in section 5.1.5 or
section 5.3.5. This value will be included in the generated new ecc_public key.c and
new_ecc_public key.h.

e [in] encrypted key: Pointer to a buffer that holds the new key, wrapped by the HUK. In this
example, it is the KUK-wrapped ECC private key that was output during the key wrap process shown in
section 5.1.5 or section 5.3.5. This value will be included in the generated new _ecc public key.c
and new _ecc _public key.h.

e [in] key update_ key: Pointer to the Key-Update Key that was previously injected on the MCU. This
address must match the address used when injecting the KUK into section 5.4.2. The user needs to
update the macro definition KUK_ADDRESS defined in £1ash storage.h to match the injection
address.

e [in, out] wrapped_ key: This is the SRAM buffer to store the wrapped new user key. For security
considerations, it is recommended to erase this buffer right after the wrapped key is saved to flash. In
this application project, the newly generated wrapped key is stored in data flash and used in the example
project.

7.3.1 Save the New Wrapped Key to Data Flash

Once a new key is wrapped, the user needs to use the flash driver r flash hp to manually store it in the
data flash.

sce aes wrapped key t wrapped new user key;
error = R SCE AES256 EncryptedKeyWrap (

iv_encrypt new key, encrypted new key, &kuk key, &wrapped new user key);

Refer to function store new aes key to data flash () and function
store new ecc pub key to data flash () for the operations of storing the new wrapped keys to
data flash.

R11ANO496EU0221 Rev.2.21 Page 68 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

7.4 Import and Compile the Example Project

Follow the steps below to exercise the example project. Note that there are sections of the code that must be
updated using the secure key injection results generated above prior to compiling and running the project.
Note that if the user has used the NIST vectors included in this application project for verification purposes,
steps 4 to 5 can be skipped.

1. Launch e? studio and import secure_key inject update raém4.zip file to a workspace.

2. Atthe bottom of flash storage.h, find the macro definitions DIRECT AES KEY ADDRESS,
DIRECT ECC_PUB_KEY ADDRESS, and KUK ADDRESS based on Figure 110.

3. Replace new _aes key.h and new_aes_ key.c with the new sets of files generated in section 5.1.4
or section 5.3.4 located in folder \secure key inject update raém4 s\src\.

4. Replace new ecc public key.c and new ecc public key.h generated in section 5.1.5 or
section 5.3.5 located in folder \secure key inject update ratmd s\src\.

5. If different file names are used, update the #include definition in aes crypto operations.con
this line to reflect the new file name.

#include "crypto_operations.h
#include "hal_data.h”
#include "r_sce.h”

#include “"flash storage.h”
#include "new_aes_key.h"

Figure 123. Include the Generated Header File for AES Operation

6. If different file names are used, update the #include definition in ecc_crypto operations.con
this line to reflect the new file name.

#include <crypto_cperations.h>
#include "hal _data.h”

#include "r_sce.h”

#include "flash storgee . h"”
I#include "new_ecc_public_key.h"l

Figure 124. Include the Generated Header File for ECC Operation

7. Next, double-click configuration.xml from the secure project. Once the configurator is opened, click
Generate Project Content and then compile the secure project.

8. Expand the non-secure project and double-click the configuration.xml file. Once the configurator is
opened, click Generate Project Content and compile the non-secure project.

7.5 Running the Example Project

Prior to running the example project, the user is requested to remove Jumper J16 to put the MCU in Normal

execution mode.

Once the source code compilation is successful, follow the steps below to exercise the example projects:

1. Choose to debug from the non-secure application. Right-click on
secure key inject update raémé4 ns and select Debug As > Renesas GDB Hardware
Debugging.

2. Execution will halt at the secure project reset handler.

dow Help
M- | B-R-@RF &>~ o> E N
\€| cryoto_oper.. lg| startup.c Lo startupc B2 L] mainc] user_config.c app_de
2 54 o00ESTI0 SystemInit();
=51
=) /% Call user application. */
67 DREOSS5E main();

AR

Figure 125. Running to the Secure Project Reset Handler

R11ANO496EU0221 Rev.2.21 Page 69 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

3. Click Resume ™ twice to run the project.
4. Open the J-Link RTT Viewer with the settings shown below.

Connection to J-Link
[] SN/ Nickname
() Ter/P

() Existing Session

Specify Target Device

| R7FA6M4AF| ~

|:| Force go on connect

Script file (optional)

Target Interface & Speed
SWD | 4000 kHz -

RTT Control Block

() Auto Detection |(®) Address () search Range

Enter the address of the RTT Control block.
Example: 020000000

|ox200048a8 |

Figure 126. RTT Viewer Setting

Note: Block address for the variable in RAM called SEGGER_RTT can be found in the .map file created in
the build configuration (Debug) folder.

5. Click OK. The following menu should be printed.

o Select
to exercise the cryptographic i vith directly injected AES key
create updated new AES key

the cryptographic ion with newly updated AES key
X the cryptographic o with directly injected ECC public key
ress 5 to Cr‘n—-atr‘ updated new ECC public ng FSP
ess 6 to exercise the cryptographic upv—r.:tlnn with newly updated ECC public key

Figure 127. Main RTT User Menu

A. Input 1 to confirm that the cipher text for the first AES key is successfully decrypted by the injected
AES-256 key.

@@> Cryptographic operation with directly injected AES key, which is injected via the serial interface.

Bax
@@> Result: Cryptographic operation is successful with directly injected AES key

Figure 128. Crypto Operation with Injected AES-256 Key

B. Input 2 to perform a key update to wrap the new AES-256 key and save the new key to data flash.
Note that the SCE handles the wrapping of the new key internally without exposing the plaintext key.
It is not possible to extract the plaintext key. The wrapped AES key in SRAM is deleted after storing it
to the data flash. Note that if menu option 1’ is rerun after menu item ‘2’ is run, it will fail because the
new AES key will not generate the same cipher text as the original key.

@@> Update the new AES key encrypted with key update key and store the new wrapped key in data flash.

o
@8> Result: AES Key is updated and stored to Data Flash

Figure 129. Update the AES Key and Store to Data Flash

R11ANO496EU0221 Rev.2.21 Page 70 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

C. Input 3 to confirm that the cipher text for the second AES key is successfully decrypted by the
updated AES-256 key.

Figure 130. Crypto Operation with the New AES Key

D. Input 4 to confirm that the signature generated using the first ECC private key is successfully verified
by the injected ECC public key.

Cryptographic operation with directly injected ECC public key, which is injected wia the serial interface.

esult: Cryptographic operation is successful with directly injected ECC public key

Figure 131. Crypto Operation with Injected ECC Public Key

E. Input 5 to perform a key update to wrap the new ECC public key and save the new key to data flash.
Note that the SCE handles the wrapping of the new key internally without exposing the plaintext key.
It is not possible to extract the plaintext key. The wrapped ECC public key in SRAM is deleted after
storing to data flash. Note that if menu option ‘4’ is rerun after menu item ‘5’ is run, it will fail because
the new ECC public key cannot verify a signature that was generated by the first key’s private key.

Update the new ECC public key encrypted with key update key and store the new wrapped key in data flash.

sult: ECC public Key is updated and stored to Data Flash

Figure 132. Update the ECC Public Key and Store to Data Flash

F. Input 6 to confirm that the signature generated using the second ECC private key is successfully
verified by the updated ECC public key.

@8> Cryptographic operation with new wrapped ECC public key stored in data flash

B@> Result: Cryptographic operation is successful with Updated ECC public Key

Figure 133. Crypto Operation with the New ECC Public Key

Successful operations of the above menu items conclude the demonstration of the secure key injection and
update in this application project.

8. Example Project for RA8P1 (RSIP Protected Mode)

This section introduces RSIP Protected Mode with an example of wrapped ECC key pair injection and
update.

To exercise the example projects as is, users can follow the steps below:

¢ Inject the included example RFP injection keys (KUK. rkey, ECC_Public Key.rkey and
ECC Private Key.rkey which are included in rfp resource ra8pl.zip) by following section
5.4.2.

o A setof new user keys (ECC Public and Private Key) generated using the example KUK is already
provisioned in the example projects. The user can then directly proceed to exercise the example project.

Note: Please do not use the example keys for production support.

To use the example projects with customized keys, the user can follow the steps below:

R11ANO496EU0221 Rev.2.21 Page 71 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

¢ To test customized RFP injection keys and new user update keys (generated by the following section 5.2
or 5.3 rather than using the ones included in rfp resources ra8pl.zip), the user needs to follow
section 1.1 to inject the keys to the MCU. User also needs to generate customized new user key files
(new _ecc public key.c/.h and new ecc private key.c/.h)with the same key name to
replace the corresponding files used in the example project. Once the example projects are updated, the
user can proceed to run the example projects to verify the operations.

e To test the new user key update procedure only, the user can use the included RFP KUK. rkey file to
generate new source files to replace the corresponding files in the example project. Once the example
projects are updated, the user can then proceed to the verification of the operations.

8.1 Example Project Overview
This example project demonstrates the following functionalities of the protected mode of RSIP-E50D:

o Use the injected ECC private key to sign the NIST test message shown in Figure 71 then use the
injected ECC public key to verify signature created by corresponding private key.

e The injected Key-Update Key (KUK) is used to inject the newly wrapped ECC public key and store
this new ECC public key and new ECC private key for MRAM.

e Use the new ECC private key to sign the NIST test message shown in Figure 83 then use the new
ECC public key to verify signature created by corresponding private key.

8.2 Using the RFP Injected Keys

8.2.1 Formatting the Injected Keys

The keys that are injected into the MCU flash using RFP cannot be used directly by the FSP Crypto APIs. A
minor formatting change is required.

8.2.1.1 Formatting the Injected ECC Key Pair

The following code snippet stores information of the ECC public key and ECC private key including the key
type and its value. The destination variables can then be used for cryptographic operations. Replace the
macro DIRECT ECC_PUB KEY ADDRESS and DIRECT ECC PRI _KEY ADDRESS with the actual injection
address.

static rsip wrapped key t ecc public_key injected =
{

.type = RSIP KEY TYPE ECC SECP256R1_PUBLIC, .p_value = (void *)DIRECT ECC_PUB KEY ADDRESS
}i

static rsip wrapped key t ecc _private key injected =
{
.type = RSIP KEY TYPE ECC SECP256R1_PRIVATE, .p_value = (void *)DIRECT ECC_PRI_KEY ADDRESS

}i
8.2.1.2 Formatting the Injected KUK

The following code snippet stores information of injected KUK including the key type and its value. The
destination varlable can then be used for secure key updates. Replace the macro KUK _ADDRESS with the
actual injection address.

static rsip_wrapped key t kuk key =
{
.type = RSIP KEY TYPE KUK, .p value = (void *)KUK ADDRESS
}i
8.2.2 Verifying the Injected Key and the Updated Key

To verify the ECC key pair injection, a signature generated by using the ECC private key should be
successfully verified using the injected ECC public key, as the key pair is derived from the same NIST test
vector.

There is no action needed from the user if the same sets of keys are used. If new sets of keys are used, the
user needs to update the project with the new keys.

R11ANO496EU0221 Rev.2.21 Page 72 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

8.3 FSP Crypto Module Support for User Key Update

This section introduces the FSP Crypto APIs for RSIP Protected Mode that are used for secure user key
updates. For a complete description of all FSP Crypto APlIs, refer to the FSP User's Manual.

To use keys that have been injected via the secure key injection process using the MCUboot interfaces, the
application must refer to those keys at the address where they were injected. If you inject keys at addresses
other than those demonstrated above, be sure to change your application code to reflect those addresses.
See instructions in section 8.4.

To perform a secure ECC public key and ECC private key update, use the following APl to MCU-uniquely
wrap a new key using a previously injected Key-Update Key:

fsp err t R RSIP EncryptedKeyWrap (
rsip ctrl t * const p_ctrl,

rsip wrapped key t const * const p key update key,

void const * const p_initial vector,
void const * const p_encrypted key
rsip wrapped key t * const p_wrapped key)

The API parameters are:

e [in, out] p_ ctrl: Pointer to control block.

e [in] p key update key: Pointer to the Key-Update Key that was previously injected on the MCU.
This address must match the address used when injecting the KUK into section 1.1. The user needs to
update the macro definition KUK _ADDRESS defined in mram storage.h to match the injection address.

e [in] p initial vector: Pointer to a buffer that holds the initialization vector that was used to wrap
the new key. This must be the IV that was used during the key wrap process shown in section 5.2.2. This
value will be included in the generated new _ecc public key.cand new ecc public key.h.

e [in] p encrypted key: Pointer to a buffer that holds the new key, wrapped by the HUK. In this
example, it is the KUK-wrapped ECC private key that was output during the key wrap process shown in
section 5.2.2. This value will be included in the generated new _ecc public key.c and
new_ecc_public key.h.

e [in, out] wrapped_ key: This is the SRAM buffer to store the wrapped new user key. For security
considerations, it is recommended to erase this buffer right after the wrapped key is saved to MRAM. In
this application project, the newly generated wrapped key pair is stored in MRAM and used in the
example project.

8.3.1 Save the New Wrapped Key to MRAM
Once a new key is wrapped, the user needs to use the mram driver r mram to manually store it in the
MRAM.

Refer to function store new ecc key pair to mram() forthe operations of storing the new wrapped
key pair to MRAM.

R11ANO496EU0221 Rev.2.21 Page 73 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

8.4 Import and Compile the Example Project

Follow the steps below to exercise the example project. Note that there are sections of the code that must be
updated using the secure key injection results generated above prior to compiling and running the project.
Note that if the user has used the NIST vectors included in this application project for verification purposes,
steps 4 to 5 can be skipped.

1. Launch e? studio and import secure _key inject update ra8pl.zip file to a workspace.

2. Atthe top of mram storage.h, find the macro definitions DIRECT ECC PUB KEY ADDRESS,
DIRECT ECC_ PRI _KEY ADDRESS and KUK ADDRESS based on Figure 111.

3. Replace new _ecc public key.cand new ecc public key.h generated in section 5.2.2 or section
5.3 located in folder \secure key inject update 8pl\src\.

4. If different file names are used, update the #include definition in ecc_crypto operations.c on this
line to reflect the new file name.

#include <crypto_operations.h>
#include "hal data.h"

#include "r rsip.h"

#include "new ecc_public key.h"
#include "new ecc private key.h"
#include "mram_storage.h”

Figure 134. Include the Generated Header File for ECC Operation

5. Next, double-click configuration.xml. Once the configurator is opened, click Generate Project
Content and then compile the project.

8.5 Running the Example Project
Once the source code compilation is successful, follow the steps below to exercise the example projects:

1. Choose to debug from the non-secure application. Right-click on secure key inject update ra8pl
and select Debug As > Renesas GDB Hardware Debugging.
2. Execution will halt at the secure project reset handler.

ect Renesas Views Run Renesas Al Window Help
- RSl ®M2 . i
lc] startup.c

020083a8 SystemInit();

/* Call user application. */
020083ae main();

Figure 135. Running to the Secure Project Reset Handler

R11ANO496EU0221 Rev.2.21 Page 74 of 81
Oct.27.25 RENESAS

Renesas RA Family

Injecting and Updating Secure User Keys

3. Click Resume P twice to run the project.

4. Open the J-Link RTT Viewer with the settings shown below.

Connection to J-Link

@ UsB
() Tep/P
() Existing Session

Specify Target Device

|:| SN / Nickname

| R7xasP1kFE_cPuo |

D Force go on connect

Script file {optional)

Target Interface & Speed
SWD

RTT Control Block

Example: 0x20000000

() Auto Detection |@ Address

Enter the address of the RTT Control block.

v 4000 kHz -

() search Range

| ox22000b40 |

Figure 136. RTT Viewer Setting
Note: Block address for the variable in RAM called _SEGGER_RTT can be found in the .map file created in

the build configuration (Debug) folder.
5. Click OK. The following menu should be printed.

P@> MENU to Select
Press 1 to exercise the cryptographic operation with ECC key pair

> Press 2 to create updated new ECC key pair using FSP

Figure 137. Main RTT User Menu

A. Input 1 to confirm that the signature generated using the initial injected ECC private key is
successfully verified by the injected ECC public key.

Figure 138. Crypto Operation with Injected ECC Public Key

R11ANO496EU0221 Rev.2.21
Oct.27.25

Page 75 of 81

RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

B. Input 2 to perform a key update to wrap the new ECC key pair and save the new key to MRAM.
Note that the RSIP handles the wrapping of the new key internally without exposing the plaintext
key. It is not possible to extract the plaintext key. The wrapped ECC public key in SRAM is deleted
after storing it into MRAM.

88> Update the new ECC key pair encrypted with key update key and store the new wrapped key pair in MRAM

00>
88> Result: ECC Key Pair is updated successfully

Figure 139. Update the ECC Key Pair and Store to MRAM

C. Input 1 to confirm that the signature generated using the updated injected ECC private key is
successfully verified by the updated injected ECC public key.

Cryptographic operation with ECC key pair

20> Result: Cryptographic operation is successful with ECC key pair

Figure 140. Crypto Operation with the New ECC Public Key

Successful operations of the above menu items conclude the demonstration of the secure key injection and
update in this application project

9. Example Project for RA8M1 (RSIP Compatibility Mode)

This section introduces RSIP Compatibility Mode with an example of AES-128 user key injection and update.
9.1 Overview

This example project demonstrates the following functionalities of the compatibility mode of RSIP-E51A.

o AES-128 key injection using the files generated in section 6.1.
o Verifying the injected AES-128 key using PSA Crypto APIs and a NIST AES test vector.

9.2 Using the SKMT-Generated Files

The source files generated from Figure 116 are included in the example project. These files provide the
UFPK-wrapped user key information used to demonstrate the functionality described in section .

v 2 sre

(= SEGGER_RTT
app_definitions.h
common_utils.h
hal_entry.c

raBm1_initial_aes128_key.c

FRREEE

raBm1_initial_aes128_key.h

Figure 141. R8M1 Example Project Source Code
9.3 RSIP Compatibility Mode Key Injection APls

This demonstration uses the APIs in the Key Injection module (r rsip key injection)to perform key
injection. Refer to the FSP User Manual for the complete list of key injection APIs and their parameters.

9.4 Import and Compile the Example Project

Note that if AES keys other than the NIST vectors are used, then those new source files need to replace the
existing files in the example project prior to compiling and running the example project. If the NIST vectors
included in this application project are being used for verification purposes, step 2 can be skipped.

1. Launch e? studio and import secure key inject ra8ml.zip file to a workspace.
2. Replace ra8ml _initial aesl28 key.h and ra8ml initial aesl128 key.c with the new set
of files generated in Figure 119.

R11ANO496EU0221 Rev.2.21 Page 76 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

3. [If different file names are used, update the #include definition in hal entry.c on this line to reflect
the new file name.

#include "hal_data.h™

#include "common_utils.h™

#include "app_definiticns.h”

#include "hw sce ra private.h"
I#include "’aSml_initial_aeleS_key.h’l

Figure 142. Include the Generated Header File for AES Operation

4. Next, double-click configuration.xml. Once the Configurator is opened, click Generate Project
Content and then compile the secure project.

9.5 Running the Example Project

Follow the steps below to exercise the example projects:

1. Right-click on secure key inject ra8ml and select Debug As > Renesas GDB Hardware
Debugging.

2. Execution will halt at the reset handler.

~wvoid Reset Handler (vn;d)
i
/* Initialize system using BSP. */
02006988 | SystemInit();

/* Call user application. */
main();

92 @ while (1)
{

/* Infinite Loop. */
¥
}

Figure 143. Running to the Project Reset Handler

3. Click Resume " twice to run the project.
4. Open the J-Link RTT Viewer with the settings shown below.

Connection to J-Link

@) USB | |:| SN/ Nickname
() TerfP

O Existing Session

Specify Target Device

| R7FaEM1AH | w

[] Force go on connect

Script file (optional)

Target Interface & Speed
SWD - | |4000 kHz -

RTT Control Block

() Auto Detection [(@ Address () search Range

Enter the address of the RTT Control block.
Example: 0220000000

Jox220029¢0 |

cancel

Figure 144. RTT Viewer Setting

Note: Block address for the variable in RAM called _SEGGER_RTT can be found in the .map file created in
the build configuration (Debug) folder.

R11ANO496EU0221 Rev.2.21 Page 77 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

5. Click OK. The following execution result should be printed. Users can step into the code to understand
the code execution flow.

Result: Initial AES 128 Key Wrap is successful

Result: Cryptographic operation is successful with initial wrapped AES 128 key

Figure 145. Execution Result - Secure Key Injection Example Project for RASM1
10. Example Project for RA6M3 (SCE Compatibility Mode)

This section introduces SCE Compatibility Mode with an example of AES-128 user key injection and update.
10.1 Overview
This example project demonstrates the following functionalities of the compatibility mode of SCE7:

o AES-128 key injection using the files generated in section 6.2.
o Verifying the injected AES-128 key using PSA Crypto APIs and a NIST AES test vector.

10.2 Using the SKMT-Generated Files

The source files generated Section 6.2 from Figure 119 are included in the example project. These files
provide the UFPK-wrapped AES key source files used to demonstrate the functionality described above.

w = secu re_key_inject_rabm3 [Debuq]

g;;_g" Binaries
[pjt) Includes
[ra
2 ra_gen
w [sre
= SEGGEF_RTT
|| app_definitions.h
commauon_utils.h

[h]
|h| crypto_ep.h
L]
L]

hal_entry.c
initial_aes_128.c] o — source files generated
[h initial_aes_128.h using SKMT

Figure 146. RA6M3 Example Project Source Code
10.3 SCE7 Compatibility Mode Key Injection APIs

This demonstration uses the APIs in the Key Injection module (r sce key injection) to perform key
injection. Refer to the FSP User Manual for the complete list of key injection APIs and their parameters.

10.4 Import and Compile the Example Project

Note that if AES keys other than the NIST vectors are used, then those new source files need to replace the
existing files in the example project prior to compiling and running the example project. If the NIST vectors
included in this application project are being used for verification purposes, steps 2 to 5 can be skipped.

1. Launch e? studio and import secure key inject raém3.zip file to a workspace.
2. Replace initial aes 128.h and initial aes_ 128.c with the new set of files generated in
Figure 119.

R11ANO496EU0221 Rev.2.21 Page 78 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

3. [If different file names are used, update the #include definition in hal entry.c on this line to reflect
the new file name.

#include "hal_data.h"

#include "common_utils.h™
#include "crypto_ep.h”
#include "app definiticns.h™
#include "hw sce ra private.h"
| #include "initial aes 128.h" |

Figure 147. Include the Generated Header File for AES Operation

4. Next, double-click configuration.xml. Once the configurator is opened, click Generate Project
Content and then compile the project.

10.5 Running the Example Project

Follow the steps below to exercise the example projects:

1. Right-click on secure key injection raém3 and select Debug As > Renesas GDB Hardware
Debugging.

2. Execution will halt at the reset handler.

64 ©0016a18 | SystemInit();

/* Call user app
main();
while (1)

) Infinite
}

Figure 148. Running to the Project Reset Handler

3. Click Resume " twice to run the project.
4. Open the J-Link RTT Viewer with the settings shown below.

Connection to J-dink
[] serial Mo
() TCP/IP
O Existing Session
Specify Target Device
|r7rasmzan | ~|

Script file (optional)
| |

Target Interface & Speed
SwWD * 4000kHz

RTT Control Block

() Address () Search Range

JLink automatically detects the RTT control block.

Cancel

Figure 149. RTT Viewer Setting

Note: Block address for the variable in RAM called _SEGGER_RTT can be found in the .map file created in
the build configuration (Debug) folder.

R11ANO496EU0221 Rev.2.21 Page 79 of 81
Oct.27.25 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

5. Click OK. The following execution result should be printed. Users can step into the code to understand
the code execution flow.

» Result: AES 12

e
]
0
]

» Result: Cryptographic operation is successful with wrapped AES 128 key

Figure 150. Execution Result - Secure Key Injection for Example Project RA6M3
11. References
1. Renesas RA Family Device Lifecycle Management Key Injection Application Note (R11AN0469)
2. Renesas RA Family Secure Crypto Engine Operational Modes Application Note (R11AN0498)
3. Renesas RA Family MCU Security Design with TrustZone® — IP Protection (R11AN0467)
4. Renesas RA Family MCU Plaintext Key Injection (R11AN0473)
12. Website and Support

Visit the following URLs to learn about the RA family of microcontrollers, download tools and documentation,
and get support.

EK-RA6M4 Resources renesas.com/ra/ek-rabm4

EK-RA8M1 Resources renesas.com/ra/ek-ra8m1

EK-RA8P1 Resources renesas.com/ra/ek-ra8p1

EK-RA6M3 Resources renesas.com/ra/ek-rabma3

RA Product Information renesas.com/ra

Flexible Software Package (FSP) renesas.com/ra/fsp

RA Product Support Forum renesas.com/ra/forum

Renesas Support renesas.com/support

R11AN0496EU0221 Rev.2.21 Page 80 of 81

Oct.27.25 RENESAS

https://www.renesas.com/ra/ek-ra6m4
https://www.renesas.com/us/en/products/microcontrollers-microprocessors/ra-cortex-m-mcus/ek-ra8m1-evaluation-kit-ra8m1-mcu-group
https://www.renesas.com/ek-ra8p1
https://www.renesas.com/us/en/products/microcontrollers-microprocessors/ra-cortex-m-mcus/ek-ra6m3-evaluation-kit-ra6m3-mcu-group
https://www.renesas.com/ra
http://www.renesas.com/fsp
https://www.renesas.com/ra/forum
https://www.renesas.com/support

Renesas RA Family

Injecting and Updating Secure User Keys

Revision History

Description
Rev. Date Page Summary
1.00 May.19.21 - First release document
1.10 Jan.27.22 - Update to use Security Key Management Tool CLI V1.0.0
1.20 Mar.25.22 - Updated to add SKMT GUI support
1.30 Oct.25.22 - Update to support SCE7 with FSP v4.0.0
2.00 Jan.03.24 - Update to FSP v5.1.0
2.10 Oct.15.24 - Update to FSP v5.5.0
2.20 Jul.16.25 - Update to FSP v6.0.0
2.21 Oct.27.25 1 Add RSIP-E50D support on RA8x2

R11ANO496EU0221 Rev.2.21

Oct.27.25

Re Page 81 of 81
RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1.

Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external
reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states
of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power

reaches the level at which resetting is specified.
Input of signal during power-off state

Do not input signals or an 1/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity
of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V.
(Max.) and Vi1 (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Viu (Min.).
Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LS| is not guaranteed.
Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in
terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a

system-evaluation test for the given product.

Notice

1.

10.

11.

12.

13.
14.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (*Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information

TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology, the most up-to-date
Koto-ku, Tokyo 135-0061, Japan version of a document, or your nearest sales office, please visit:
WWW.renesas.com www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Wrapped Key Creates Root of Trust
	1.1 Introduction to Root of Trust
	1.2 Introduction to Security Engine and Associated Keys
	1.3 Renesas Secure Key Injection Advantages
	1.3.1 Advantages of Key Wrapping over Key Encryption
	1.3.2 Advantages of Key Wrapping using MCU HUK

	1.4 Renesas RA MCU Factory Boot Firmware Limitations for SCE9

	2. Wrapped Key Injection Use Cases and Injection Procedure Overview
	2.1 Wrapped Key Types
	2.2 General Steps for Secure Key Injection and Update
	2.2.1 Key Injection
	2.2.2 Key Update

	2.3 Overview of the Operations for Evaluating the Example Projects
	2.4 Tools Used in the Secure Key Injection and Update

	3. Using the Renesas Key Wrap Service
	3.1 Create PGP Key Pair
	3.2 Registration with DLM Server
	3.3 Exchange User and Renesas PGP Public Keys

	4. Wrapping the User Factory Programming Key Using the Renesas Key Wrap Service
	4.1 Renesas Security Key Management Tool
	4.2 Creating the User Factory Programming Key using the SKMT GUI Interface
	4.3 Creating the User Factory Programming Key using the CLI Interface
	4.4 Wrapping the UFPK

	5. Secure Key Injection for RSIP and SCE9 Protected Mode
	5.1 Wrap Keys with the UFPK and W-UFPK for SCE9 Protected Mode using the SKMT GUI Interface
	5.1.1 Wrap an Initial AES-256 Key with the UFPK
	5.1.2 Wrap an Initial ECC Public Key with the UFPK
	5.1.3 Wrap a Key-Update Key with the UFPK
	5.1.4 Wrap a New AES-256 User Key with the KUK
	5.1.5 Wrap a New ECC Public Key with the KUK

	5.2 Wrap Keys with the UFPK and W-UFPK for RSIP-E50D Protected Mode using the SKMT GUI Interface
	5.2.1 Wrap an Initial ECC Key Pair with the UFPK
	5.2.2 Wrap a New ECC Key Pair with the KUK

	5.3 Wrap Keys with the UFPK and W-UFPK using the SKMT CLI Interface
	5.3.1 Wrap an Initial AES-256 Key with the UFPK
	5.3.2 Wrap an Initial ECC Public Key with the UFPK
	5.3.3 Create and Wrap a Key-Update Key with the UFPK
	5.3.4 Wrap a New AES-256 Key with the KUK
	5.3.5 Wrap a New ECC Public Key With the KUK

	5.4 Secure Key Injection via MCU Boot Interface
	5.4.1 Setting up the Hardware
	5.4.2 Inject the Initial User Key and Key-Update Key

	6. Secure Key Injection Preparation for RSIP and SCE7 Compatibility Mode
	6.1 Wrap an AES-128 User Key Using the UFPK for RSIP-E51A Compatibility Mode
	6.2 Wrap an AES-128 User Key Using the UFPK for SCE7

	7. Example Project for RA6M4 (SCE9 Protected Mode)
	7.1 Example Project Overview
	7.2 Using the RFP Injected Keys
	7.2.1 Formatting the Injected Keys
	7.2.1.1 Formatting the Injected AES Key
	7.2.1.2 Formatting the Injected ECC Public Key
	7.2.1.3 Formatting the Injected KUK
	7.2.1.4 Formatting an Injected RSA Public Key

	7.2.2 Verifying the Injected Key and the Updated Key

	7.3 FSP Crypto Module Support for User Key Update
	7.3.1 Save the New Wrapped Key to Data Flash

	7.4 Import and Compile the Example Project
	7.5 Running the Example Project

	8. Example Project for RA8P1 (RSIP Protected Mode)
	8.1 Example Project Overview
	8.2 Using the RFP Injected Keys
	8.2.1 Formatting the Injected Keys
	8.2.1.1 Formatting the Injected ECC Key Pair
	8.2.1.2 Formatting the Injected KUK

	8.2.2 Verifying the Injected Key and the Updated Key

	8.3 FSP Crypto Module Support for User Key Update
	8.3.1 Save the New Wrapped Key to MRAM

	8.4 Import and Compile the Example Project
	8.5 Running the Example Project

	9. Example Project for RA8M1 (RSIP Compatibility Mode)
	9.1 Overview
	9.2 Using the SKMT-Generated Files
	9.3 RSIP Compatibility Mode Key Injection APIs
	9.4 Import and Compile the Example Project
	9.5 Running the Example Project

	10. Example Project for RA6M3 (SCE Compatibility Mode)
	10.1 Overview
	10.2 Using the SKMT-Generated Files
	10.3 SCE7 Compatibility Mode Key Injection APIs
	10.4 Import and Compile the Example Project
	10.5 Running the Example Project

	11. References
	12. Website and Support
	Revision History

