

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

www.renesas-electoronics.com

C Compiler Package for
740 Family
Application Notes

A
pplication N

otes

Rev.1.00 2006.09

M3T-ICC740

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them.
Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with ap-
propriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-
flammable material or (iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

1. These materials are intended as a reference to assist our customers in the selection of the
Renesas Technology Corp. product best suited to the customer's application; they do not
convey any license under any intellectual property rights, or any other rights, belonging to
Renesas Technology Corp. or a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs,
algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, pro-
grams and algorithms represents information on products at the time of publication of these
materials, and are subject to change by Renesas Technology Corp. without notice due to
product improvements or other reasons. It is therefore recommended that customers contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor
for the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various
means, including the Renesas Technology Corp. Semiconductor home page (http://
www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a
total system before making a final decision on the applicability of the information and
products. Renesas Technology Corp. assumes no responsibility for any damage, liability or
other loss resulting from the information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp.
product distributor when considering the use of a product contained herein for any specific
purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace,
nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce
in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they
must be exported under a license from the Japanese government and cannot be imported
into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/ or
the country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the
products contained therein.

Notes regarding these materials

 Preface

This application note is written for the Renesas 740 family 8-bit single-chip microcomputers.
It explains the basics of C language programming and how to put your program into ROM using the C compiler
package.

Note that the contents described in this application note are detailed in each related manual listed below. Refer to the
respective manuals for more information.

IMA Assembler Programming Guide (Mitsubishi 740 Family) Rev. 2
IAR C Library Function Reference Guide
ICC Compiler Programming Guide (Mitsubishi 740 Family) Rev. 2
740 Family 740 Family Sample Programs
740 Family Software Manual

This application note contains the information reproduced from the “ICC Compiler Programming Guide” and “IMA
Assembler Programming Guide” with the permission of IAR Systems.
Furthermore, this application note was created based on the “740 Family Programming Guidelines <C Language
Part> REJ05B0468-0200/Rev. 2.00.”

This application note is composed of the following chapters.
Chapter 1: Introduction to C language.
Chapter 2: Explains about project settings.
Chapter 3: Describes the C compiler ICC740.
Chapter 4: Describes the assembler A740.
Chapter 5: Describes the linker XLINK.
Chapter 6: Describes the debugger.
Chapter 7: Provides tips for coding.
Chapter 8: Explains how to estimate the stack.
Chapter 9: Explains about interrupt handling.

 1

<Symbols and Conventions used in this Application Note>

(RET): Indicates the Return (Enter) key is to be pressed.

△ : Indicates one or more spaces or tabs.

[] : Indicates that the enclosed item can be omitted.
abc : Italics denote the value or label that must actually be input as part of a command.
{a | b} : Indicates that either of the two is to be selected.
… : Indicates that the immediately preceding item is specified one or more times.
H : Integer constants followed by H are in hexadecimal.
0x : Integer constants preceded by 0x are in hexadecimal.
[Menu->Menu Option] : The boldface and -> denote a menu option.

MS-DOS® is a registered trademark of Microsoft Corporation in the United States and other countries.
Microsoft® WindowsNT® operating system, Microsoft®,Windows®98 and Windows 2000 operating
system, Microsoft® WindowsMe® operating system, Microsoft® WindowsXP® operating system are
registered trademarks of Microsoft Corporation in the United States and other countries.
IBM PC is a registered trademark of International Business Machines Corporation.

 2

Table of Contents

Chapter 1. Introduction to C Language_____________________________ 6

1.1 Programming in C Language..7

1.1.1 Assembly Language and C Language .. 7
1.1.2 Program Development Procedure... 8
1.1.3 Easily Readable Program ... 10

1.2 Data Types ...14

1.2.1 Constants Handleable in C Language .. 14
1.2.2 Constants .. 16
1.2.3 Data Characteristics.. 18

1.3 Operators ...20

1.3.1 Operators of ICC740 ... 20
1.3.2 Operators for Numeric Calculation.. 21
1.3.3 Operators for Data Processing.. 23
1.3.4 Operators for Condition Check.. 25
1.3.5 Other Operators .. 26
1.3.6 Priority of Operators .. 28
1.3.7 Examples of Incorrect Uses of Operators ... 29

1.4 Control Statements...31

1.4.1 Structured Programming ... 31
1.4.2 Conditional Branch of Processing (Branch Processing) ... 32
1.4.3 Repetition of Same Processing (Iterative Processing).. 36
1.4.4 Abortion of Processing .. 39

1.5 Functions..41

1.5.1 Functions and Subroutines ... 41
1.5.2 Creating Functions .. 42
1.5.3 Data Exchange between Functions .. 44

1.6 Storage Classes ...45

1.6.1 Scope of Variables and Functions .. 45
1.6.2 Storage Classes of Variables.. 46
1.6.3 Storage Classes of Functions ... 48

1.7 Arrays and Pointers ..50

1.7.1 Arrays.. 50
1.7.2 Creating Arrays ... 51
1.7.3 Pointers ... 53
1.7.4 Utilization of Pointers .. 55
1.7.5 Pointers in Array Form .. 57
1.7.6 Table Jump Using a Function Pointer ... 59

1.8 Structures and Unions ..60

1.8.1 Structures and Unions... 60
1.8.2 Creating New Data Types ... 61

3

1.9 Preprocess Commands ..65

1.9.1 Preprocess Commands of ICC740 ... 65
1.9.2 Importing Files into a Program .. 66
1.9.3 Macro Definitions .. 67
1.9.4 Conditional Compilation .. 69

Chapter 2. Explains About Project Settings ________________________ 71

2.1 Set Content ..72

2.2 Description of Memory Models ...73

2.2.1 Details of Memory Models... 73
2.2.2 Changing Memory Models .. 74

2.3 Segment Configuration...77

2.3.1 Segment Configuration of ICC740 .. 77
2.3.2 Segment Map: Z Page RAM (0H–FFH) .. 78
2.3.3 Segment Map: N Page RAM (beginning with 100H)... 79
2.3.4 Segment Map: ROM(～FFFFH) .. 81

2.4 Description of the Stack Area ...83

2.4.1 Stack Management of ICC740 .. 83
2.4.2 Altering the CSTACK Segment ... 85

2.5 Description of the Object Format ..87

2.5.1 Altering the Object Format .. 87

2.6 Description of the C Startup Module...88

2.6.1 Description of the C Startup Module ... 88

2.7 Setting Values in a Special Area ..101

2.7.1 Setting Values in a Special Area... 101

Chapter 3: Describes the C Compiler ICC740 _____________________ 102

3.1 Description of Basic Options ..103

3.1.1 Summary of the Compiler Options .. 103

3.2 About the Extended Features...104

3.2.1 Summary of Extended Keywords.. 104
3.2.2 Summary of #PRAGMA Directives ... 105
3.2.3 Summary of Defined Symbols... 106
3.2.4 Other Extended Features.. 106

Chapter 4: Describes the Assembler A740________________________ 107

4.1 Description of Basic Options ..108

4.1.1 Outline of the Assembler Options ... 108

4.2 Assembly Language Interface ..109

4.2.1 Function Declaration ... 109

4

4.2.2 Calling an Assembly Language Subroutine from C Language 110
4.2.3 Calling a C Language Function from Assembly Language ... 110

Chapter 5: Describes the Linker XLINK __________________________ 113

5.1 Description of the Basic Options...114

5.1.1 Outline of the Options ... 114

5.2 Description of Option Files ...115

5.2.1 Description of the Link Command File .. 115

Chapter 6: Describes the Debugger _____________________________ 121

6.1 Starting the Debugger ..122

6.1.1 Connecting the Simulator.. 123
6.1.2 Terminating the Simulator ... 122

6.2 Setting Up the Simulator...123

6.2.1 Init Dialog of 740 ... 123

6.3 Creating a MCU File for the Simulator..124

Chapter 7: Provides Tips for Coding_____________________________ 125

Chapter 8: Explains How to Estimate the Stack ____________________ 133

8.1 Default Stack Size ..134

8.2 EXPR_STACK and INT_EXPR_STACK Segments ...134

8.3 CSTACK Segment..134

8.4 C_ARGN and C_ARGZ Segments ...135

8.5 RF_STACK Segment ...135

8.6 Amount of Stack Used by ICC740 Runtime Functions ...136

Chapter 9: Explains About Interrupt Handling______________________ 139

9.1 Interrupt Handling ...140

9.1.1 Examples of Interrupt Handling Functions .. 140
9.1.2 Writing Interrupt Handling Functions... 141
9.1.3 Setting the Interrupt Disable Flag (I Flag) ... 142
9.1.4 Registering the Interrupt Vector Area.. 143
9.1.5 Setting the Interrupt Vector Segment.. 143

9.2 Multiple Interrupts ...144

9.2.1 Using Multiple Interrupts ... 144
9.2.2 Definitions Relating to Multiple Interrupts.. 145
9.2.3 Examples of Multiple Interrupt Handling Functions... 146

5

 6

Chapter 1
Introduction to C Language

1.1 Programming in C Language
1.2 Data Types

1.3 Operators

1.4 Control Statements

1.5 Functions

1.6 Storage Classes

1.7 Arrays and Pointers

1.8 Struct and Union

1.9 Preprocess Commands

This chapter explains for those who learn the C language for the first time the
basics of the C language that are required when creating a built-in program.

 7

1.1 Programming in C Language

1.1.1 Assembly Language and C Language
The following explains the main features of the C language and describes how to write a program in "C".

Features of the C Language

(1) An easily traceable program can be written.
The basics of structured programming, i.e., "sequential processing", "branch processing", and "repeat
processing", can all be written in a control statement. For this reason, it is possible to write a program whose
flow of processing can easily be traced.

(2) A program can easily be divided into modules.
A program written in the C language consists of basic units called "functions". Since function have their
parameters highly independent of others, a program can easily be made into parts and can easily be reused.
Furthermore, modules written in the assembly language can be used.

(3) An easily maintainable program can be written.
For reasons (1) and (2) above, the program after being put into operation can easily be maintained. Furthermore,
since the C language is based on standard specifications (ANSI standard (Note)), a program written in the C
language can be ported into other types of microcomputers after only a minor modification of the source
program.

Note: This refers to standard specifications stipulated for the C language by the American National Standards
Institute (ANSI) to maintain the portability of C language programs.

Comparison between C and Assembly Languages

The folllowing outlines the differences between the C and assembly languages with respect to the method for
writing a source program.

 C language Assembly language
Basic unit of program

(Method of description)
Function (Function name () { }) Subroutine (Subroutine name:)

Format
Based on ANSI C language in

free format
1 instruction/line

Discrimination
between uppercase

and lowercase

Uppercase and lowercase are
discriminated

Not discriminated

Allocation of data area Specified by type
specified by size (a number of

bytes) (using pseudo-instruction)

 8

1.1.2 Program Development Procedure
The operation of translating a source program written in "C" into machine language is referred to as "compile". The
software provided for performing this operation is called a "compiler".
This section explains the procedure for developing a program by using the C compiler package (M3T-ICC740) for
the 740 family of Renesas 8-bit single-chip microcomputers.

C Compiler Package (M3T-ICC740) for 740 Family Product List

The following lists the products included in the C compiler package (M3T-ICC740) for the Renesas 8-bit
single-chip microcomputers 740 family.

Converts C language source files into assembly
language source files.
Processes macro and conditional compiling

Compiler
(ICC740)

Sample startup program
(cstartup.s31)

Standard libraries

Assembler
(A740)

Linkage editor
(XLINK)

Librarian
(XLIB)

High-performance Embedded Workshop
(HEW)

Debugger

C compiler
package for
740 Family

(M3T-ICC740)

 9

Creating Machine Language File from Source File

Creation of a machine language file requires the conversion of start-up programs written in
Assembly language and C language source files.
The following shows the tool chain necessary to create a machine language file from a C language source
file.

C language
source file

Libraries
Relocatable

file

Assembler
A740

Absolute
 module file

Machine
language file

Linkage editor XLINK

Startup program
cstartup.s31 Compiler ICC740

To ROM

Relocatable
file

 10

1.1.3 Easily Understandable Program
Since there is no specific format for C language programs, they can be written in any desired way only providing that
some rules stipulated for the C language are followed. However, a program must be easily readable and must be easy
to maintain. Therefore, a program must be written in such a way that everyone, not just the one who developed the
program, can understand it.
This section explains some points to be noted when writing an "easily understandable" program.

Rules on C Language

The following lists the five items that need to be observed when writing a C language program:
(1) Separate executable statements in a program with a semicolon ";".
(2) Enclose execution units of functions or control statements with brackets "{" and "}"
(3) Functions and variables require type declaration.
(4) Reserved words cannot be used in identifiers (e.g., function names and variable names).
(5) The comment is described with "/* comment */" or "//comment" (C++ form)."-K" option is required

in the case of C++ form.

Configuration of C Language Source File

The following schematically shows a configuration of a general C language source file. For each item in this
file, refer to the section indicated with an arrow.

Reading header file

Type declaration of functions used;

Macro definition

Declaration of external variables

Type function name (dummy argument, ...)

{

Internal variables definition;

 Statement;

}

Refer to 1.9, "Preprocess Commands".

Refer to 1.5, "Functions".

Refer to 1.9, "Preprocess Commands".

Refer to 1.2, "Date Types" and 1.6,
"Storage Classes".

Refer to 1.5, "Functions".

Refer to 1.2, "Date Types" and 1.6,
"Storage Classes".
Refer to 1.3, "Operators" and 1.4,
"Control Statements".

 11

Programming Style

To improve program maintainability, programming conversions should be agreed upon by the programming
team. Creating a template is a good way for the developers to establish a
common programming style that will facilitate program development, debug and maintenance. The following
shows an example of a programming style.

(1) Create separate functions for various tasks of a program.
(2) Keep functions relatively small (< 50 lines is recommended)
(3) Do not write multiple executable statements in one line
(4) Indent each processing block successively (normally 4 tab stops)
(5) Clarify the program flow by writing comment statements as appropriate
(6) When creating a program from multiple source files, place the common part of the program in an

independent separate file and share it

/* Test program */

unsigned int ram1;

main()

{

char a;

while(1){

 if(a == ram1){

 break;

 }

 else{

 a = ram1;

 }

}
}

'main' rocessing

'while' processingEnclose a set of processing
with brackets "{" and "}"

Enclose a comment statement with "/*" and "*/".

Indentation

Indentation

 12

Method for Writing Comments

Comments are an important aspect of a well written program. Program flow can be clarified, for example, through a
file and function headers.

/* ""FILE COMMENT"" **
* System Name : Test program
* File Name : TEST.C
* Version : 1.00
* Contents : Test program
* Customer :………………
* Model :………………
* Order :………………
* CPU : M38039MC-XXXFP
* Compiler : M3T-ICC740 (Ver.1.00)
* Programmer : XXXX
* Note :The module contained in this file is designed so that it can be reused.
**

* Copyright,XXXX xxxxxxxxxxxxxxxxx CORPORATION
**
* History :XXXX.XX.XX : Start
* ""FILE COMMENT END"" **/

/* ""Prototype declaration"" ***/
void main (void);
void key_in (void);
void key_out (void);

/* ""FUNC COMMENT"" **
* ID : 1.
* Module outline : Main function
* --
* Include : "system.h"
* --
* Declaration : void main (void)
* --
* Functionality : Overall controll
* --
* Argument : void
* --
* Return value : void
* --
* input : None
* Output : None
* --
* Used functions : void key_in (void) : Input function
* : void key_out (void) : Output function
* --
* Precaution : Nothing particular
* --
* History : XXXX.XX.XX : Start
/* ""FUNC COMMENT END"" **/
#include "system.h"
void main (void)
{
 while(1){ /* Endless loop */
 key_in(); /* Input processing */
 key_out(); /* Output processing */
 }
}

Example of function header

Example of file header

 13

The words listed in the following are reserved for ICC740. Therefore, these words cannot be used in variable
or function names.

__asm * do int short unsigned
auto double interrupt * signed void
bit * else long sizeof volatile
break enum monitor * static while
case extern no_init * struct zpage *
char float npage * switch
const for register tiny_func *
continue goto return typedef
default if sfr * union

* To use "-e" option, this word is reserved for ICC740.

Column Reserved Words of ICC740

 14

1.2 Data Types

1.2.1 "Constants" in C Language
Four types of constants can be handled in the C language: "integer", "real", "single character" and "character string".
This section explains the method of description and the precautions to be noted when using each of these constants.

Integer Constants

Integer constants can be written using one of three methods of numeric representation: decimal, hexadecimal,
and octal. The following shows each method for writing integer constants. Constant data are not
discriminated between uppercase and lowercase.

Numeration Method of writing Examples
Decimal Normal mathematical notation (nothing added) 127, +127, -56

Hexadecimal Numerals are preceded by 0x or 0X 0x3b, 0x3B
Octal Numerals are preceded by 0 (zero) 07, 041

Real Constants (Floating-point Constants)

Floating-point constants refer to signed real numbers that are expressed in decimal. These numbers can be
written by usual method of writing using the decimal point or by exponential notation using "e" or "E".
• Usual method of writing Example: 175.5, -0.007
• Exponential notation Example: 1.755e2, -7.0E-3

Single-character Constants

Single-character constants must be enclosed with single quotations ('). In addition to
alphanumeric characters, control codes can be handled as single-character constants.
Inside the microcomputer, all of these constants are handled as ASCII code, as shown below.

Memory

0x01
Integer

1
Integer

constant

Memory

0x31
ASCII code

'1'
Single-character
constant

 15

Character String Constants

A row of alphanumeric characters or control codes enclosed with double quotations (") can be handled as a
character string constant. Character string constants have the null character "\0" automatically added at the
end of data to denote the end of the character string.

Example: "abc", "012\n", "Hello!"

The following shows control codes (escape sequence) that are frequently used in the C language.

Notation Contents
\f Form feed (FF)
\n New line (NL)
\r Carriage return (CR)
\t Horizontal tab (HT)
\\ \symbol
\' Single quotation
\" Double quotation
\x constant value Hexadecimal
\ constant value Octal
\0 Null code

Column List of Control Codes (Escape Sequence)

Memory

'a' {'a' , 'b'}
A set of single-
character constants

'b'

2 bytes of
data area are
used

Memory

'a' "ab"
Character string
constant

'b'

'\0'

3 bytes of
data area are
used

Null code

 16

1.2.2 Variables
Before a variable can be used in a C language program, its "data type" must first be declared in the program. The data
type of a variable is determined based on the memory size allocated for the variable and the range of values handled.
This section explains the data types of variables that can be handled by ICC740 and how to declare the data types.

Basic Data Types of ICC740

The following lists the data types that can be handled in ICC740. Descriptions enclosed with () in the table
below can be omitted when declaring the data type.

 Data type Bit length Range of values that can be expressed
char 0 to 255
unsigned char 0 to 255
signed char

8 bits
-128 to 127

unsigned short (int) 0 to 65535
(signed) short (int)

16 bits
-32768 to 32767

unsigned int 0 to 65535
(signed) int

16 bits
-32768 to 32767

unsigned long (int) 0 to 4294967295

Integer

(signed) long (int)
32 bits

-2147483648 to 2147483647
float 32 bits Number of significant digits: 9
double 32 bits Number of significant digits: 9 Real
long double 32 bits Number of significant digits: 9

* When using "-c" option, the data range which can be expressed is –128 to 127 since a char type is
equivalent to a signed char type.

 17

Declaration and Definition of Variables

Variables are declared and defined using a format that consists of a "data type variable name;".
Example: To declare a variable a as char type

char a;
By writing "data type variable name = initial value;", a variable can have its initial value set simultaneously
when it is defined.

Example: To set 'A' to variable a of char type as its initial value
char a = 'A';

Furthermore, by separating an enumeration of multiple variables with a comma (,),
variables of the same type can be declared and defined simultaneously.

Example: int i, j;
Example: int i = 1, j = 2;

8 bits

XX

'A'

XX

a

b

i

XX: Indeterminate

k

n

8 bits

500

0x10000L

void main(void)

{

char a;

char b = 'A';

int i;

unsigned int k=500;

long n = 0x10000L;

Denotes that this is the
long type of data

 18

1.2.3 Data Characteristics

When declaring a variable or constant, ICC740 allows its data characteristic to be written along with the data type.
This section explains the data characteristics handled by ICC740 and how to specify a data characteristic.

Specifying that the Variable or Constant is Singed or Unsigned Data (singed/unsigned)

Write the type qualifier "signed" when the variable or constant to be declared is signed data or "unsigned"
when it is unsigned data. If neither of these types is written when declaring a variable or constant, ICC740
assumes that it is signed data for only the data type char, or unsigned data for all other data types.

* When using "-c" option, a char type is equivalent to a signed char type

Specifying that the Variable or Constant is Constant Data (const Qualifier)

Write the type qualifier "const" when the variable or constant to be declared is the data whose value does not
change at all even when the program is executed. If a description is found in the program that causes this
constant data to change, ICC740 outputs an error.

void main(void)

{

char a = 10;

const signed char c_a=20;

a = 5;

c_a = 5;

}

Error is generated

void main(void)

{

char a;

signed char s_a;

int b;

unsigned int u_b;

}

Synonymous with "unsigned char a;"

Synonymous with "signed int b;"

 19

Inhibiting Optimization by Compiler (volatile Qualifier)

ICC740 optimizes the instructions that do not have any effect in program processing, thus preventing
unnecessary instruction code from being generated. However, there are some data that are changed by an
interrupt or input from a port irrespective of program processing. Write the type qualifier "volatile" when
declaring such data. ICC740 does not optimize the data that is accompanied by this type qualifier and outputs
instruction code for it.

When declaring data, write data characteristics using various specifiers or qualifiers along with the data type.
The following shows the syntax of a declaration.

Declaration specifier

Storage class specifier
(described later)

Type qualifier Type specifier
Declarator

static
register

auto
extern
typedef

const
volatile

char
short

int
long
float

struct
union
enum
void

signed
unsigned

data name

Column Syntax of Declaration

char port1;
char volatile port2;

void func(void)
{
 port1 = 0;
 port2 = 0;
 if(port1 == 0){

 }
 if(port2 == 0){

 }
}

Because the qualifier "volatile" is nonexistent in the
data declaration, comparison is removed by optimization
and no code is output for this.

Because the qualifier "volatile" is specified in the data
declaration, no optimization is performed and code is
output for this.

 20

1.3 Operators

1.3.1 Operators of ICC740
ICC740 has various operators available for writing a program.
This section describes how to use these operators for each specific purpose of use (not including address and pointer
operators) and the precautions to be noted when using them.

ICC740 Operators

The following lists the operators that can be used in ICC740.

Monadic arithmetic operators ++ -- + -

Binary arithmetic operators + -* / %

Shift operators << >>

Bitwise operators & | ^ ~

Relation operators > < >= <= == !=

Logical operators && || !

Assignment operators = += -= *= /= %= <<= >>= &= |= ^=

Conditional operators ?:

sizeof operators sizeof

Cast operators (type)

Address operators &

Pointer operators *

Comma operators ,

 21

1.3.2 Operators for Numeric Calculations
The primary operators used for numeric calculations consist of the "arithmetic operators" to perform calculations and
the "assignment operators" to store the results in memory.
This section explains these arithmetic and assignment operators.

Monadic Arithmetic Operators

Monadic arithmetic operators return one answer for one variable.

Operator Description format Content

++
++ variable (prefix expression)
variable ++ (postfix expression)

Increments the value of an expression.

--
-- variable (prefix expression)
variable -- (postfix expression)

Decrements the value of an expression.

+ + expression Returns the value of an expression.

- - expression
Returns the value of an expression after
inverting its sign.

When using the increment operator (++) or decrement operator (--) in combination with an assignment or
relational operator, note that the result of operation may vary depending on which expression, prefix or
postfix, is used when writing the operator.
<Examples>
Prefix expression: The value is increment or decrement before assignment.

b = ++a; → a = a + 1; b = a;
Postfix expression: The value is increment or decrement after assignment.

b = a++; → b = a; a = a + 1;

Binary Arithmetic Operators

In addition to ordinary arithmetic operations, these operators make it possible to obtain the remainder of an
"integer divided by integer" operation.

Operator Description format Content

+ Expression 1 + expression 2
Returns the sum of expression 1 and expression 2 after
adding their values

- Expression 1 - expression 2
Returns the difference between expression 1 and
expression 2 after subtracting their values

* Expression 1 * expression 2
Returns the product of expression 1 and expression 2 after
multiplying their values

/ Expression 1 / expression 2
Returns the quotient of expression 1 after dividing its value
by that of expression 2

% Expression 1 % expression 2
Returns the remainder of expression 1 after dividing its
value by that of expression 2

 22

Assignment Operators

The operation of "expression 1 = expression 2" assigns the value of expression 2 for expression 1. The
assignment operator '=' can be used in combination with arithmetic operators described above or bitwise or
shift operators that will be described later. (This is called a compound assignment operator.) In this case, the
assignment operator '=' must always be written on the right side of the equation.

Operator Description format Content

= expression 1 = expression 2 Substitutes the value of expression 2 for expression 1.

+= expression 1 += expression 2
Adds the values of expressions 1 and 2, and substitutes the
sum for expression 1.

-= expression 1 -= expression 2
Subtracts the value of expression 2 from that of expression 1,
and substitutes the difference for expression 1.

*= expression 1 *= expression 2
Multiplies the values of expressions 1 and 2, and substitutes
the product for expression 1.

/= expression 1 /= expression 2
Divides the value of expression 1 by that of expression 2, and
substitutes the quotient for expression 1.

%= expression 1 %= expression 2
Divides the value of expression 1 by that of expression 2, and
substitutes the remainder for expression 1.

<<= expression 1 <<= expression 2
Shifts the value of expression 1 left by the amount equal to
the value of expression 2, and substitutes the result for
expression 1.

>>= expression 1 >>= expression 2
Shifts the value of expression 1 right by the amount equal to
the value of expression 2, and substitutes the result for
expression 1.

&= expression 1 &= expression 2
ANDs the bits representing the values of expressions 1 and
2, and substitutes the result for expression 1.

|= expression 1 |= expression 2
ORs the bits representing the values of expressions 1 and 2,
and substitutes the result for expression 1.

^= expression 1 ^= expression 2
XORs the bits representing the values of expressions 1 and
2, and substitutes the result for expression 1.

When performing arithmetic or logic operation on different types of data, ICC740 converts the data types
following the rules shown below. This is called "implicit type conversion".
• Data types are adjusted to the data type whose bit length is greater than the other before performing

operation.
• When substituting, data types are adjusted to the data type located on the left side of the equation.

Column Implicit Type Conversion

char byte = 0x12;
int word = 0x3456;

0x00 is extended

word = byte;
 /* int ← char */

0x 12

0x 56 0x 00 12

0x 34 56

Upper 1 bytes is cut

byte = word;
 /* char ← int */

When …

 23

1.3.3 Operators for Processing Data
The operators frequently used to process data are "bitwise operators" and "shift operators".
This section explains these bitwise and shift operators.

Bitwise Operators

Use of bitwise operators makes it possible to mask data and perform active conversion.

Operator Description format Content

& expression 1 & expression 2
Returns the logical product of the values of expressions 1
and 2 after ANDing each bit.

| expression 1 | expression 2
Returns the logical sum of the values of expressions 1 and
2 after ORing each bit.

^ expression 1 ^ expression 2
Returns the exclusive logical sum of the values of
expressions 1 and 2 after XORing each bit.

~ ~expression 1 Returns the value of the expression 1 after inverting its bits.

Shift Operators

In addition to shift operation, shift operators can be used in simple multiply and divide operations. (For
details, refer to "Column Multiply and divide operations using shift operators".)

Operator Description format Content

<< expression 1 << expression 2
Shifts the value of expression 1 left by the amount equal to
the value of expression 2, and returns the result.

>> expression 1 >> expression 2
Shifts the value of expression 1 right by the amount equal
to the value of expression 2, and returns the result.

 24

Comparison between Arithmetic and Logical Shifts

When executing "shift right", note that the shift operation varies depending on whether the data to be
operated on is singed or unsigned.
• When unsigned → Logical shift: A logic 0 is inserted into the most significant bit.
• When signed → Arithmetic shift: Shift operation is performed so as to retain the sign.

Namely, if the data is a positive number, a logic 0 is inserted into the most
significant bit; if a negative number, a logic 1 is inserted into the most significant bit.

 <Unsigned> <Negative number> <Positive number>

unsigned int i = 0xFC18
(i= 64520)

signed int i = 0xFC18
(i= -1000)

 signed int i = 0x03E8
(i= +1000)

 1111 1100 0001 1000 1111 1100 0001 1000 0000 0011 1110 1000

i >> 1 0111 1110 0000 1100 1111 1110 0000 1100 (-500) 0000 0001 1111 0100 (+500)

i >> 2 0011 1111 0000 0110 1111 1111 0000 0110 (-250) 0000 0000 1111 1010 (+250)

i >> 3 0001 1111 1000 0011 1111 1111 1000 0011 (-125) 0000 0000 0111 1101 (+125)

 Logical shift
Arithmetic shift

(positive or negative sign is retained)

Shift operators can be used to perform simple multiply and divide operations. In this case, operations are
performed faster than when using ordinary multiply or divide operators. Considering this advantage, ICC740
generates shift instructions, instead of multiply
instructions, for such operations as "*2", "*4", and "*8".

• Multiplication: Shift operation is performed in combination with add operation.

a*2 → a<<1
a*4 → a<<2
a*8 → a<<3

• Division: The data pushed out of the least significant bit makes it possible to know

the remainder.
a/4 → a>>2
a/8 → a>>3
a/16 → a>>4

Column Multiply and Divide Operations Using Shift Operators

 25

1.3.4 Operators for Examining Condition
Used to examine a condition in a control statement are "relational operators" and "logical operators". Either operator
returns a logic 1 when a condition is met and a logic 0 when a
condition is not met.
This section explains these relational and logical operators.

Relational operators

These operators examine two expressions to see which is larger or smaller than the other.
If the result is true, they return a logic 1; if false, they return a logic 0.

Operator Description format Content

< expression 1 < expression 2
True if the value of expression 1 is smaller than that of
expression 2; otherwise, false.

<= expression 1 <= expression 2
True if the value of expression 1 is smaller than or equal to
that of expression 2; otherwise, false.

> expression 1 > expression 2
True if the value of expression 1 is larger than that of
expression 2; otherwise, false.

>= expression 1 >= expression 2
True if the value of expression 1 is larger than or equal to
that of expression 2; otherwise, false.

== expression 1 == expression 2
True if the value of expression 1 is equal to that of
expression 2; otherwise, false.

!= expression 1 != expression 2
True if the value of expression 1 is not equal to that of
expression 2; otherwise, false.

Logical operators

These operators are used along with relational operators to examine the combinatorial
condition of multiple condition expressions.

Operator Description format Content

&& expression 1 && expression 2
True if both expressions 1 and 2 are true;
otherwise, false.

|| expression 1 || expression 2
False if both expressions 1 and 2 are false;
otherwise, true.

! !expression
False if the expression is true, or true if the expression is
false.

 26

1.3.5 Other Operators
This section explains six types of operators which are unique in the C language.

Conditional Operator
This operator executes expression 1 if a condition expression is true or expression 2 if the condition
expression is false. If this operator is used when the condition expression and expressions 1 and 2 both are
short in processing description, coding of conditional branches can be simplified. The following lists this
conditional operator and an example for using this operator.

Operator Description format Content

? : Condition expression ? expression 1 : expression 2
Executes expression 1 if the condition
expression is true or expression 2 if the
condition expression is false.

Sizeof Operator
Use this operator when it is necessary to know the number of memory bytes used by a given data type or
expression.

Operator Description format Content

sizeof
sizeof expression
sizeof (data type)

Returns the amount of memory used by the expression or
data type in units of bytes.

Cast Operator
When operation is performed on data whose types differ from each other, the data used in that operation are
implicitly converted into the data type that is largest in the expression. However, since this could cause an
unexpected fault, a cast operator is used to perform type conversions explicitly.

Operator Description format Content

(type) (new data type) variable
Converts the data type of the variable to the new data
type.

c = a > b ? a : b ;

• Value whichever larger is selected.

c = a > 0 ? a : -a ;

• Absolute value is found.

if(a > b){
 c = a ;
}
else{
 c = b ;
}

＝

if(a > 0){
 c = a ;
}
else{
 c = -a ;
}

＝

 27

Address Operator

The address value of memory area in which variables are assigned is returned. Variable parts can be an array
element. In that case, the address of the position which an element number shows will become its value.

Operator Description format Content

& & variable Returns the address of variable.

Pointer Operator

The contents of the memory area specified by the pointer variable are indicated.

Operator Description format Content

* * variable
The contents of the memory area specified by the pointer
variable are indicated.

Comma (Sequencing) Operator

This operator executes expression 1 and expression 2 sequentially from left to right. This operator, therefore,
is used when enumerating processing of short descriptions.

Operator Description format Content

, expression 1, expression 2
Executes expression 1 and expression 2 sequentially from
left to right.

 28

1.3.6 Priorities of Operators
The operators used in the C language are subject to "priority resolution" and "rules of combination" as are the
operators used in mathematics.
This section explains priorities of the operators and the rules of combination they must follow:

Priority Resolution and Rules of Combination

When multiple operators are included in one expression, operation is always performed in order of operator
priorities beginning with the highest priority operator. When multiple operators of the same priority exist, the
rules of combination specify which operator, left or right, be executed first.

Priority

resolution
Type of operator Operator

Rules of
combination

High Expression () [] -> . (Note1) →
 Monadic arithmetic

operators, etc.
! ~ ++ -- + - * (Note 2) & (Note 3) (type) sizeof ←

 Multiply/divide operators * (Note 4) / % →
 Add/subtract operators + - →
 Shift operator << >> →

Relational operator
(comparison)

< <= > >= →

Relational operator
(equivalent)

== != →

 Bitwise operator (AND) & →
 Bitwise operator (EOR) ^ →
 Bitwise operator (OR) | →
 Logical operator (AND) && →
 Logical operator (OR) || →
 Conditional operator ?: ←
 Assignment operator = += -= *= /= %= &= ^= |= <<= >>= ←

Low Comma operator , →
Note 1: The dot '•' denotes a member operator that specifies struct and union members.
Note 2: The asterisk '*' denotes a pointer operator that indicates a pointer variable.
Note 3: The ampersand '&' denotes an address operator that indicates the address of a variable.
Note 4: The asterisk '*' denotes a multiply operator that indicates multiplication.

 29

1.3.7 Examples for Easily Mistaken Use of Operators
The program may not operate as expected if the "implicit conversion" or "precedence" of operators are incorrectly
interpreted.
This section shows examples for easily mistaken use of operators and how to correct.

Incorrectly Interpreted "Implicit Conversion" and How to Correct

When an operation is performed between different types of data, the following implicit conversions are
performed.
(A) The data types are adjusted to that of data which is long in bit length.
(B) When all the data shorter than int type is used for the arithmetic operators.
(C) The constant is handled as int.
To ensure that the program will operate as expected, write explicit type conversion using the cast operator.
An example to operate as expected (if statement becomes true) is shown.

 Secondly, an example not to operate as expected (if statement becomes false) is shown.

Check in the list file and assembly file eventually. The program size may be changed or runtime library may
be called.

unsigned char a,b;
a = 0;
b = 5;
if((unsigned char) (a - 1) >= b) {
 ￤
 ￤
}
else{
 ￤
 ￤
}

Since the constant 1 has its type changed to unsigned char, on the left side,
the expression becomes an expression unsigned char - unsigned char. By
int extension of (B), unsigned char has its type changed to signed int and
the same calculation as (2) is performed.
Therefore, comparison is performed on -1 >= 5, so the result is found to be
false.

Since the cast operator for the entire expression (a-1) is used, on the left side,
unsigned 0x00 - unsigned 0x01 = unsigned 0xFF = 255.
Therefore, comparison is performed on 255 >= 5, so the result is found to be true.

The expression (a - 1) becomes an expression unsigned char - signed int. By
implicit conversion, unsigned char has its type changed to signed int, on the
left side, signed 0x0000 - signed 0x0001 = signed 0x0000 + signed
0xFFFF = signed 0xFFFF = -1.
Therefore, comparison is performed on -1 >= 5, so the result is found to be
false.

unsigned char a,b;
a = 0;
b = 5;
if((a – 1) >= b){
 ￤
 ￤
}
else{
 ￤
 ￤
}

(1)

(2)

unsigned char a,b;
a = 0;
b = 5;
if((a - (unsigned char)1) >= b){
 ￤
 ￤
}
else{
 ￤
 ￤
}

(3)

 30

Incorrectly Interpreted "Precedence" of Operators and How to Correct

When one expression includes multiple operators, the "precedence" and "associativity" of operators need to
be interpreted correctly. Also, to ensure that the program will operate as expected, use expressional "()."

int a = 5;
if(a & 0x10 == 0){

}
else{

}

Because between bitwise operator "&" and relational operator "==",
precedence is higher for the relational operator "==" and, hence, the
comparison result of 0x10==0 (false: 0) and the variable a are
AND's, so the operation of the if statement conditional expression
always results in false.

Therefore

int a = 5;
if((a & 0x10) == 0){

}
else{

}

To ensure that the operation of a & 0x10
has precedence, add expressional "()."

31

1.4 Control Statements

1.4.1 Structuring of Program
The C language allows "sequential processing", "branch processing" and "repeat processing"-- the basics of
structured programming--to be written using control statements. Consequently, all programs written in the C language
are structured. This is why the processing flow in C language programs are easy to understand.
This section describes how to write these control statements and shows some examples of usage.

Structuring of Program

The most important point in making a program easy to understand is to create a readable program flow. This
requires preventing the program flow from being directed freely as one wishes. Therefore, processing flow is
limited to the three primary forms: "sequential processing", "branch processing" and "repeat processing". The
result is the technique known as "structured programming".
The following shows the three basic forms of structured programming.

Sequential
processing

Executed top down, from top to bottom.

Branch
processing

Branched to processing A or processing
B depending on whether condition P is
true or false.

Repeat
processing

Processing A is repeated as long as
condition P is met.

Processing A

Processing B

Processing A

Processing B

False

True

Condition P

Processing A

False

True

Condition P

32

1.4.2 Branching Processing Depending on Condition (Branch Processing)
Control statements used to write branch processing include "if-else", "else-if", and "switch-case" statements.
This section explains how to write these control statements and shows some examples of usage.

if-else Statement

This statement executes the next block if the given condition is true or the "else" block if the condition is
false. Specification of an "else" block can be omitted.

Count Up (if-else Statement)

In this example, the program counts up a seconds counter "second" and a minutes counter "minute". When
this program module is called up every 1 second, it functions as a clock.

Execution
statement A

Is condition
expression true?

False

True

if(Condition expression){

Execution statement A

}

else{

Execution statement B

}

• If the else statement is omitted

False

True if(Condition expression){

Execution statement A

}
Execution

statement B

Is condition
expression true?

Execution
statement A

void count_up(void);
unsigned int second = 0;
unsigned int minute = 0;

void count_up(void)
{
 if(second >= 59){
 second = 0;
 minute ++;
 }
 else{
 second ++;
 }
}

Declares "count_up" function. (Refer to Section 1.5, "Functions".)
Declares variables for "second" (seconds counter)
and "minute" (minutes counter).

Defines "count_up" function.

If 59 seconds or more,
the module resets "second"
and counts up "minute".

If less than 59 seconds,
the module counts up "second".

33

else-if Statement

Use this statement when it is necessary to divide program flow into three or more flows of processing
depending on multiple conditions. Write the processing that must be executed when each condition is true in
the immediately following block. Write the processing that must be executed when none of conditions holds
true in the last "else" block.

Switchover of Arithmetic Operations (else-if Statement)

In this example, the program switches over the operation to be executed depending on the content of the
input data "sw".

if(condition expression 1) {

Execution statement A

}

else if(condition expression 2) {

Execution statement B

}

else if(condition expression 3) {

Execution statement C

}

else{

Execution statement D

}

Execution
statement A

Execution
statement B

True

False

Execution
statement C

True

False

True

False

Execution
statement D

Is condition
expression 1

true?

Is condition
expression 2

true?

Is condition
expression 3

true?

Declares "select" function.
(Refer to Section 1.5, "Functions".)
Declares the variables used.

Defines "select" function.

If the content of "sw" is 0,

the program adds data.

If the content of "sw" is 1,

the program subtracts data.

If the content of "sw" is 2,

the program multiplies data.

If the content of "sw" is 3,

the program devides data.

If the content of "sw" is 4 or greater,

the program performs error processing.

void select(void);

int a = 29, b = 40;
long int ans;
char sw;

void select(void)
{
 if(sw == 0){
 ans = a + b;
 }
 else if(sw == 1){
 ans = a – b;
 }
 else if(sw == 2){
 ans = a * b;
 }

else if(sw == 3){
 ans = a / b;
 }
 else{
 error();
 }
}

34

switch-case Statement

This statement causes program flow to branch to one of multiple processing depending on the result of a
given expression. Since the result of an expression is handled as a constant when making decision, no
relational operators, etc. can be used in this statement.

Switchover of Arithmetic Operations (switch-case Statement)

In this example, the program switches over the operation to be executed depending on the content of the
input data "sw".

switch(expression) {

case constant 1: execution statement A
break;

case constant 2: execution statement B

break;

case constant 3: execution statement C
break;

default: execution statement D

break;

}

Execution
statement A

Execution
statement B

Constant 1

Execution
statement C

Execution
statement D

Constant 2 Constant 3 Others

Determination
of expression

Declares "select" function.
(Refer to Section 1.5, "Functions".)
Declares the variables used.

Defines "select" function.

Deterrmines the content of "sw".

If the content of "sw" is 0, the program adds data.

If the content of "sw" is 1, the program subtracts data.

If the content of "sw" is 2, the program multiplies data.

If the content of "sw" is 3, the program divides data.

If the content of "sw" is 4 or greater,
the program performs error processing.

void select(void);

int a = 29, b = 40;
long int ans;
char sw;

void select(void)
{
 switch(sw){

 case 0 : ans = a + b;
 break;
 case 1 : ans = a - b;
 break;

case 2 : ans = a * b;
 break;
 case 3 : ans = a / b;
 break;
 default: error();
 break;

}
}

35

A switch-case statement normally has a break statement entered at the end of each of its execution
statements.
If a block that is not accompanied by a break statement is encountered, the program executes the next block
after terminating that block. In this way, blocks are executed sequentially from above. Therefore, this allows
the start position of processing to be changed depending on the value of an expression.

Column switch-case Statement without Break

switch(expression) {

case constant 1: Execution statement A

case constant 2: Execution statement B

case constant 3: Execution statement C

default: Execution statement D

}

Execution
statement A

Execution
statement B

Execution
statement C

Execution
statement D

Constant 1
Constant 2 Others

Determination
of expression

Constant 3

36

1.4.3 Repetition of Same Processing (Repeat Processing)
Control statements used to write repeat processing include "while", "for" and "do-while" statements.
This section explains how to write these control statements and shows some examples of usage.

while Statement

This statement executes processing in a block repeatedly as long as the given condition expression is met. An
endless loop can be implemented by writing a constant other than 0 in the condition expression, because the
condition expression in this case is always "true".

Finding Sum Total –1– (while Statement)

In this example, the program finds the sum of integers from 1 to 100.

Execution
statement A

False

True

while(condition expression) {

Execution statement A

}

Is condition
expression

true?

Declares "sum" function.
 (Refer to Section 1.5, "Functions".)
Declares the variables used.

Defines "sum" function.

Defines and initializes counter variables.

Loops until the counter content reaches 100.

Changes the counter content.

void sum(void);

unsigned int total = 0;

void sum(void)
{
 unsigned int i = 1;

 while(i <= 100){

total += i;
i++;

 }
}

37

for Statement

The repeat processing that is performed by using a counter always requires operations to "initialize" and
"change" the counter content, in addition to determining the given condition. A for statement makes it
possible to write these operations along with a condition expression. Initialization (expression 1), condition
expression (expression 2), and processing (expression 3) each can be omitted. However, when any of these
expressions is omitted, make sure the semicolons (;) placed between expressions are left in. This for
statement and the while statement described above can always be rewritten.

Finding Sum Total –2– (for Statement)

In this example, the program finds the sum of integers from 1 to 100.

Execution
statement

False

True

for (expression 1; expression 2; expression 3) {

Execution statement

}

Expression 3

Expression 1

Is expression 2
true?

Declares "sum" function.
(Refer to Section 1.5, "Functions".)
Declares the variables used.

Defines "sum" function.

Defines counter variables.

Loops until the counter content increments from 1 to 100.

void sum(void);

unsigned int total = 0;

void sum(void)
{
 unsigned int i = 1;

 for(i = 1; i <= 100; i++){
 total += i;
 }
}

38

do-while Statement

Unlike the for and while statements, this statement determines whether a condition is true
or false after executing processing (post-execution determination). Although there could
be some processing in the for or while statements that is never once executed, all
processing in a do-while statement is executed at least once.

Finding Sum Total –3– (do-while Statement)

In this example, the program finds the sum of integers from 1 to 100.

Declares "sum" function.
(Refer to Section 1.5, "Functions".)
Declares the variables used.

Defines "sum" function.

Defines and initializes counter variables.

Loops until the counter content increments from 1 to 100.

void sum(void);

unsigned int total = 0;

void sum(void)
{
 unsigned int i = 1;

 do{
 i ++;
 total += i;
 }while(i < 100);
}

Expression
statement A

False

True

do{

expression statement

} while(condition expression); Is condition
expression

true?

39

1.4.4 Suspending Processing
There are control statements (auxiliary control statements) such as break, continue, and goto
statements that make it possible to suspend processing and quit.
This section explains how to write these control statements and shows some examples of usage.

break Statement

Use this statement in repeat processing or in a switch-case statement. When "break;" is executed, the program
suspends processing and exits only one block.

continue Statement

Use this statement in repeat processing. When "continue;" is executed, the program
suspends processing. After being suspended, the program returns to condition
determination when continue is used in a while statement or executes expression 3 before
returning to condition determination when used in a for statement.

Execution statement
- - - -
- - - -

 break;
- - - -

False

True

• When used in a while statement • When used in a for statement

Expression 1
while (condition expression) {

- - - - -
- - - - -
break;
- - - - -

}
for (expression 1;
expression 2; expression 3) {

- - - - -
break;
- - - - -

}

Is condition
expression

true? False

Execution statement
- - - -

 break;
- - - -

Is expression 2
true?

True

Expression 3

Execution statement
- - - -
- - - -

 continue;
- - - -

False

True

• When used in a while statement • When used in a for statement

Expression 1
while (condition expression) {

- - - - -
- - - - -

continue;
- - - - -

}
for (expression 1;
expression 2; expression 3) {

- - - - -
continue;

- - - - -
}

Is condition
expression

true? False

Execution statement
- - - -

 continue;
- - - -

Is expression 2
true?

True

Expression 3

40

goto Statement

When a goto statement is executed, the program unconditionally branches to the label written after the goto
statement. Unlike break and continue statements, this statement makes it possible to exit multiple blocks
collectively and branch to any desired location in the function. However, since this operation is contrary to
structured programming, it is recommended that a goto statement be used in only exceptional cases as in
error processing.
Note also that the label indicating a jump address must always be followed by an execution statement. If no
operation need to be performed, write a dummy statement (only a semicolon ';') after the label.

void main(void)
{
 while(1){
 - - - -
 while (…){
 if(…){
 goto err;
 }
 }
 }
 err: ;
}

Entering a label
label: execution statement;

If no operation need to be performed,
label: ; (dummy statement)

41

1.5 Functions

1.5.1 Functions and Subroutines
As subroutines are the basic units of program in the assembly language, so are the "functions" in the C language.
This section explains how to write functions in ICC740.

Arguments and Return Values

Data exchanges between functions are accomplished by using "arguments", equivalent to input variables in a
subroutine, and "return values", equivalent to output variables in a subroutine.
In the assembly language, no restrictions are imposed on the number of input or output variables. In the C
language, however, there is a rule that one return value per function is accepted, and a "return statement" is
used to return the value.
About the argument, the size of the argument is decided up to a total of 256 bytes per one function, and when
the size is over 256 bytes, the compiler generates an error.

SUB:

SUB_END:
 RTS

Input variable 1
Input variable 2

Main routine

Subroutine

• "Subroutine" in assembly language

JSR SUB

func(…)
{

return return value
}

Main function (calling function)

Function (called function)

• "Function" in C language

func(…);

Return value
(One value per

function)

Output variable 1
Output variable 2

Argument 1
Argument 2

42

1.5.2 Creating Functions
Three procedures are required before a function can be used. These are "function declaration" (prototype declaration),
"function definition", and "function call".
This section explains how to write these procedures.

Function Declaration (Prototype Declaration)

Before a function can be used in the C language, function declaration (prototype declaration) must be entered
first.
The following shows the format of function declaration (prototype declaration):

data type of returned value function name (list of data types of arguments);

If there is no returned value and argument, write the type called "void" that means null.

Function Definition

In the function proper, define the data types and the names of "dummy arguments" that are required for
receiving arguments. Use the "return statement'' to return the value for the argument.
The following shows the format of function definition:

data type of return value function name (data type of dummy argument 1 dummy argument 1, .…)
{

return return value;
}

Function Call

When calling a function, write the argument for that function. Use an assignment operator to receive a return
value from the called function.

function name (argument 1, ...);

When there is a return value

variable = function name (argument 1, ...);

43

Example for a Function

In this example, we will write three functions that are interrelated as shown below.

/* Prototype declaration */
void main(void);
int func1(int);
void func2(int, char);

/* Main function */
void main()
{

int a = 40,b = 29;
int ans;
char c = 0xFF;

ans = func1(a);
func2(b, c);

}

/* Definition function 1 */
int func1(int x)
{
 int z;

z = x + 1;
return z;

}
/* Definition function 2 */
void func2(int y, char m)
{
 :
}

Calls function 1 ("func1") using a as argument.
Return value is substituted for "ans".

Calls function 2 ("func2") using b, c as arguments.
There is no return value.

Returns a value for the argument
using a "return statement".

Main function
main

No return value
No argument

char type

int type

Function 2
func 2

Function 1
func 1

No return value

int type

int type

44

1.5.3 Exchanging Data between Functions
In the C language, exchanges of arguments and return values between functions are accomplished by copying the
value of each variable as it is passed to the receiver ("Call by Value"). Consequently, the name of the argument used
when calling a function and the name of the argument (dummy argument) received by the called function do not need
to coincide.
Since processing in the called function is performed using copied value (dummy argument), there is no possibility of
damaging the variable proper in the calling function.
For these reasons, functions in the C language are independent of each other, making it possible to reuse the functions
easily.
This section explains how data are exchanged between functions.

Finding Sum of Integers (Example for a Function)

In this example, using two arbitrary integers in the range of -32,768 to 32,767 as arguments, we will create a
function "add" to find a sum of those integers and call it from the main function.

/* Prototype declaration */
void main(void);
long add(int, int);

/* Main function */
void main()
{

long int answer;
int a = 29, b = 40;

answer = add(a, b);

}

/* Add function */
long add(int x, int y)
{
 long int z;

 z = (long int)x + y;
 return z;
}

(1) Calls the add function.

(2) Executes addition.

(3) Returns a value
for the argument.

<Flow of data>

Main function

Add function

a 29 b 40 answer

x dummy
argument

 + y z

(1) copy

(2)

(3) copy

dummy
argument

45

1.6 Storage Classes

1.6.1 Effective Range of Variables and Functions

Variables and functions can change effective ranges depending on their nature, e.g., whether they are used in the
entire program or in only one function. Specifying these effective ranges of variables and functions is called "storage
classes (or scope)".
This section explains the types of storage classes of variables and functions and how to specify them.

Effective Range of Variables and Functions

A C language program consists of multiple source files. Furthermore, each of these source files consists of
multiple functions. Therefore, a C language program is hierarchically structured as shown below.

There are following four storage classes for a variable:

(1) Effective in the block
(2) Effective in only a function
(3) Effective in only a file
(4) Effective in the entire program

There are following two storage classes for a function:

(1) Effective in only a file
(2) Effective in the entire program

In the C language, these storage classes can be specified for each variable and each function. Effective
utilization of these storage classes makes it possible to close the variables or functions that have been created
or conversely open them among the members of a team.

Program

File

Function Function Function

File

Function Function Function

Variable storage classes

(3)

(2)

(1)

E
ffective ranges

Function storage classes (2)

(1) E
ffective ranges

B
lock

B
lock

B
lock

B
lock

B
lock

B
lock

B
lock

B
lock

B
lock

B
lock

(4)

46

1.6.2 Storage Classes of Variables
The storage class of a variable is specified when writing type declaration. There are following two points in this:
(1) External and internal variables (→location where type declaration is entered)
(2) Storage class specifier (→specifier is added to type declaration)
This section explains how to specify storage classes for variables.

External and Internal Variables

This is the simplest method to specify the effective range of a variable. The variable effective range is
determined by a location where its type declaration is entered. Variables declared outside a function are
called "external variables" and those declared inside a function are called "internal variables". External
variables are global variables that can be referenced from any function following the declaration. Conversely,
internal variables are local variables that can be effective in only the function where they are declared
following the declaration.

Storage Class Specifiers

The storage class specifiers that can be used for variables are auto, static, register, and extern. The following
shows the format of a storage class specifier.

 storage class specifier data type variable name;

int main(void);
int func(void);

External to function
int tmp;

int main(void)
{
 int a;

Internal to function
Effective range of a

}

External to function
int func(void)
{
 int b;

Internal to function
Effective range of b

}

Effective range
of tmp

47

Storage Classes of External Variable

If no storage class specifier is added for an external variable when declaring it, the variable is assumed to be
a global variable that is effective in the entire program. On the other hand, if an external variable is specified
of its storage class by writing "static" when declaring it, the variable is assumed to be a local variable that is
effective in only the file where it is declared. Write the specifier "extern" when using an external variable that
is defined in another file like "mode" in source file 2 of the following.
External variables which do not set the initial value are assigned to the N_UDATA segment on data area.
External variables which set the initial value are assigned to the N_IDATA segment on data area.

Storage Classes of Internal Variable

An internal variable declared without adding any storage class specifier has its area allocated in C-ARGN
segment on the data area. Therefore, such a variable is shared with each function as it is initialized each time
the function is called.
On the other hand, internal variables whose storage class is specified to be "static", which do not set the
initial value are initialized to 0 and assigned to the N_UDATA segment on data area, and which set the initial
value are initialized to the set value and assigned to the N_IDATA segment on data area. The variable is
initialized only once when starting up the program.

char mode;
static int count;

void func1(void)
{
 mode = STOP;
 count = 0;

Source file 1

extern char mode;
static int count;

void func2(void)
{
 mode = BACK;
 count = 100;

Source file 2 Memory space

Stack area

Data area

Common mode

count of source
file 1

count of source
file 2

void func1(void)
{
 char flag = 0;
 static int count = 0;

 flag = SET;
 count = count + 1;
 func2();

}
void func2(void)
{
 char flag = 0;
 static int count = 0;

 flag = SET;
 count = count + 1;

}

Source file

Memory space

Stack area

Data area

Return address

Count of func1

Count of func2

CSTACK
segment

C_ARGN
segment

N_IDATA
segment

Flag of func1

Flag of func2
(Shared)

48

1.6.3 Storage Classes of Functions
The storage class of a function is specified on both function defining and function declaring sides.
The storage class specifiers, static and extern can be used here.
This section explains how to specify the storage class of a function.

Global and Local Functions

(1) If no storage class is specified for a function when defining it.

This function is assumed to be a global function that can be called and used from any other source file.
(2) If a function is declared to be "extern" in its type declaration.

This storage class specifier indicates that the declared function is not included in the source file where
functions are declared, and that the function in some other source file be called. However, only if a
function has its type declared--even though it may not be specified to be "extern", if the function is not
found in the source file, the function in some other source file is automatically called in the same way as
when explicitly specified to be "extern".

(3) If a function is declared to be "static" when defining it.
This function is assumed to be a local function that cannot be called from any other source file.

void func1(void);
extern void func2(void);
static void func3(void);

void main(void)
{
 func1();
 func2();
 func3();
}

void func3(void)
{
 …
}

Source file 1

void func1(void)
{
 …
}

void func2(void)
{
 …
}

void func3(void)
{
 …
}

Source file 2

Can be called

Can be called

Can not be called

Can be called

49

Summary of Storage Classes

Storage classes of variables and storage classes of functions are summarized below.

Storage Classes of Variables
Storage class External variable Internal variable

Storage class
specifiers
omitted

Global variables that can also be
referenced from other source files.
[Allocated in segment N_UDATA
and N_IDATA]
[Maintain data]

Variables that are effective in only the function.
[Allocated in a segment C_ARGN
when executing the function.]
[Not maintain data]

auto

Variables that are effective in only the function.
[Allocated in a segment C_ARGN
when executing the function.]
[Not maintain data]

static

Local variables that cannot be referenced
from other source files.
[Allocated in segment N_UDATA
and N_IDATA]
[Maintain data]

Variables that are effective in only the function.
[Allocated in segment N_UDATA
and N_IDATA.]
[Maintain data]

register
Variables that are effective in only the function.
[Allocated in segment C_ARGN.]
[Not maintain data]

extern
Variables that reference variables in other
source files.
[Not allocated in memory]

Variables that reference variables in other
source files.
(cannot be referenced from other functions.)
[Not allocated in the memory]

Storage Classes of Functions
Storage class Types of functions
Storage class

specifiers omitted
Global functions that can be called and executed from other source files
[Specified on function defining side]

static
Local functions that can not be called and executed from other source files
[Specified on function defining side]

extern
Calls a function in other source files
[Specified on function declaring side]

 50

1.7 Arrays and Pointers

1.7.1 Arrays
This section describes how to think arrays.

What is an Array?

The following explains the functionality of an array by using a program to find the total age of family
members as an example. The family consists of parents (father = 29 years old, mother = 24 years old), and a
child (brother = 4 years old).
In this program, the number of variable names increases as the family grows. To cope with this problem, the
C language uses a concept called an "array". An array is such that data of the same type (int type) are handled
as one set. In this example, father's age (father), mother's age (mother), and child's age (brother) all are not
handled as separate variables, but are handled as an aggregate as family age (age). Each data constitutes an
"element" of the aggregate. Namely, the 0'th element is father, the 1st element is mother, and the 2nd element
is the brother.

Example Finding Total Age of a family (1)

In this example, we will find the total age of family members (father, mother and brother).

Array

Multiple
variables of the
same data type

29
0'th element (= father)
1st element (= mother)

father

24
mother

4

brother 29
24
4

age

void main(void)
{
 int father = 29;
 int mother = 24;
 int brother = 4;
 int total;

 total = father + mother + brother;
}

void main(void)
{
 int father = 29;
 int mother = 24;
 int brother = 4;
 int sister 1 = 1;
 int sister 2 = 1;
 :
 int total;

 total = father + mother + brother + sister1 + sister2 + …;
}

As the family grows, so do the type declaration of variables
and the execution statements to be initialized.

 51

1.7.2 Creating an Array
Arrays handled in the C language have one-dimensional array and two-dimensional array.
This section describes how to create and reference each type of array.

One-dimensional Array

A one-dimensional array has a one-dimensional (linear) expanse. The following shows the declaration format
of a one-dimensional array.

Data type array name [number of elements];

When the above declaration is made, an area is allocated in memory for the number of elements, with the
array name used as the beginning label.
To reference a one-dimensional array, add element numbers to the array name as subscript. However, since
element numbers begin with 0, the last element number is 1 less than the number of elements.

Finding Total Age of a Family (2)

In this example, we will find the total age of family members by using an array.

char buff1[3];
int buff2[3];

• Declaration of one-dimensional array

8 bits

buff1[0] buff1→
buff1[1]
buff1[2]

buff2[0] buff2→
buff2[1]
buff2[2]

char buff1[3] = {
 'a', 'b', 'c'
};

int buff2[3] = {
 10, 20, 30
};

• Declaration and initialization of one-dimensional array

8 bits

'a' buff1→
'b'
'c'

10 buff2→
20
30

#define MAX 3 (Note)

void main(void)
{
 int age[MAX];
 int total = 0;
 int i;

 age[0] = 29;
 age[1] = 24;
 age[2] = 4;

 for(i = 0; i < MAX; i++){
 total += age[i];
 }
}

(Note): #define MAX 3: Synonym defined as MAX = 3. (Refer to Section 1.9, "Preprocess Commands".)

#define MAX 3

void main(void)
{
 int age[MAX] = {
 29, 24, 4
 };

 int total = 0;
 int i;

 for(i = 0; i < MAX; i++){
 total += age[i];
 }
}

or
Initialized simultaneously
when declared.

By using an array, it is
possible to utilize a repeat
statement where the number
of elements are used as
variables.

 52

Two-dimensional Array

A two-dimensional array has a planar expanse comprised of "rows" and " columns". Or it can be considered
to be an array of one-dimensional arrays. The following shows the declaration format of a two-dimensional
array.

Data type array name [number of rows] [number of columns];

To reference a two-dimensional array, add "row numbers" and "column numbers" to the array
name as subscript. Since both row and column numbers begin with 0, the last row (or column)
number is 1 less than the number of rows (or columns).

 Columns→
Rows
↓

Row 0
Column 0

Row 0
Column 1

Row 0
Column 2

 Row 1
Column 0

Row 1
Column 1

Row 1
Column 2

char buff1[2][3];

• Declaration of two-dimensional array

buff1[0][0]buff1[0]→
buff1[0][1]
buff1[0][2]
buff1[1][0]buff1[1]→
buff1[1][1]
buff1[1][2]

char buff1[2][3] = {
 {'a', 'b', 'c'},
 {'d', 'e', 'f'}
};

• Declaration and initialization of two-dimensional array

'a' buff1[0]→
'b'
'c'
'd' buff1[1]→
'e'
'f'

int buff2[2][3]; buff2[0][0]buff2[0]→

buff2[0][1]

buff2[1]→

buff2[0][2]

buff2[1][0]

buff2[1][1]

10 buff2[0]→

20

buff2[1]→

30

40

50

int buff2[3] = {
 10, 20, 30, 40, 50, 60
};

When initializing a
two-dimensional array
simultaneously with
declaration,
specification of the number of
rows can be omitted. (Number
of columns cannot be omitted.)

• Concept of two-dimensional array

buff2[1][2] 60

 53

1.7.3 Pointers
A pointer is a variable that points to data; i.e., it indicates an address. The pointer should be useful to handle the array.
A "pointer variable" which will be described here handles the "address" at which data is stored as a variable. This is
equivalent to what is referred to as "indirect addressing" in assembly language.
This section explains how to declare and reference a pointer variable.

Declaring a Pointer Variable

The format show below is used to declare a pointer variable.

Pointed data type ∗pointer variable name;

However, it is only an area to store an address that is allocated in memory by the above declaration. For the
data proper to be assigned an area, it is necessary to write type declaration separately.

• Pointer variable declaration

No area is allocated.

char *p;

p
address of
char type

*p char type
data

int *p;

p
address of

int type

*p
int type

data

char **p;

p
address of address
of char type data

**p char type
data

*p address of
char type data

 54

Relationship between Pointer Variables and Variables

The following explains the relationship between pointer variables and variables by using a method for
substituting constant 5 by using pointer variable p to int type for variable of int type a as an example.

Operating on Pointer Variables

Pointer variables can be operated on by addition or subtraction. However, operation on pointer variables
differs from operation on integers in that the result is an address value.
Therefore, address calculations vary with the data size indicated by the pointer variable.

The data length of variables in C language programs are determined by the data type. For a pointer variable,
since its content is an address, the data length provided for it is sufficiently large to represent the entire
address space that can be generally accessed by the microprocessor used.

Column Data Length of Pointer Variable

Address modifier
↓void main(void)

{
 int a = 0 ;
 int b ;
 int *p ;

 p = &a ;
 *p = 5 ;
 b = a ;
}

This "&a" indicates the address of variable a.
This "*p" indicates the content of variable a.

a is “5”

Address + (integer X sizeof (type))
Address - (integers X izeof (type))

ptr

Address 0404H

int * ptr;

ptr = (int *)0x0400;
ptr = ptr + 2;

The pointer variable ptr is an int type of variable.
When calculated by sizeof(int), the size of the
int-type variable is found to be 2 bytes.
Therefore, ptr + 2 points x sizeof(int) to address
0404H.

Address 0402H

Address 0400H

 55

1.7.4 Using Pointers
This section shows some examples for effectively using a pointer.

Pointer Variables and One-dimensional Array

When an array is declared by using subscripts to indicate its element numbers, it is encoded as "index
addressing". In this case, therefore, address calculations to determine each address "as reckoned from the
start address" are required whenever accessing the array.
On the other hand, if an array is declared by using pointer variables, it can be accessed in indirect addressing.

Pointer Variables and Two-dimensional Array

As in the case of a one-dimensional array, a two-dimensional array can also be accessed by using pointer
variables.

'a' str[0] or *p void main(void)
{
 char str[] = "ab";
 char *p;
 char t;

 p = str;
 t = *(p + 1);

The start address of a one-dimensional array can be obtained by str.
(Address modifier '&' is unnecessary.)

str

'\0' str[2] or*(p+2)
'b' str[1] or *(p+1)

'b' t

p

'a' mtx[0][0]
void main(void)
{
 char mtx[2][3] = {
 "ab", "cd"
 };
 char *p;
 char t;

 p = mtx[1];
 t = *(p + 1);

The start address of the first row of a two-dimensional array
"mtx" can be obtained by "mtx[1]". ('&' is unnecessary.)

mtx[0]

'\0' mtx[0][2]
'b' mtx[0][1]

p

'd' mtx[1][1] or *(p+1)

mtx[1]

'd' t

'\0' mtx[1][2] or *(p+2)

'c' mtx[1][0] or *p

 56

Passing Addresses between Functions

The basic method of passing data to and from C language functions is referred to as "Call by Value". With
this method, however, arrays and character strings cannot be passed between functions as arguments or
returned values.
Used to solve this problem is a method, known as "Call by Reference", which uses a pointer variable. In
addition to passing the addresses of arrays or character strings between functions, this method can be used
when it is necessary to pass multiple data as a returned value.
Unlike the Call by Value method, this method has a drawback in that the independency of each function is
reduced, because the data area in the calling function is rewritten directly by rewriting the pointer variable in
the called function.
The following shows an example where an array is passed between functions using the Call by Reference
method.

In addition to the Call by Value and the Call by Reference methods, there is another method to pass data to
and from functions. With this method, the data to be passed is turned into an external variable.
This method results in loosing the independency of functions and, hence, is not recommended for use in C
language programs. Yet, it has the advantage that functions can be called at high speed because entry and exit
processing (argument and return value transfers) normally required when calling a function are unnecessary.
Therefore, this method is frequently used in ROM'ed programs where general-purpose capability is not an
important requirement and the primary concern is high-speed processing.

Column Passing Data between Functions at High Speed

<Calling function>

#define MAX 5

void cls_str(char *);

void main(void)
{
 char str[MAX];
 :
 cls_str(str);
 :
}

str[0]

*p
||

str

The array's start
address is passed
as argument.

void cls_str(char *p)
{
 int i;
 :
 for(i = 0; i < MAX; i++){
 *(p + i) = 0;
 }
}

<Called function>

str[1]

p

Received as pointer variable

The array body is
operated on.

 57

1.7.5 Placing Pointers into an Array
This section explains a "pointer array" where pointer variables are arranged in an array.

Pointer Array Declaration

The following shows how to declare a pointer array.

Data type ∗array name [number of elements];

char *ptr1[3];
int *ptr2[3];

• Pointer array declaration

ptr1[0] char type data ptr1→
ptr1[1] char type data
ptr1[2] char type data

ptr2[2] int type data

ptr2→ ptr2[0] int type data
ptr2[1] int type data

char *ptbl[4] = {
 "STOP";
 "START";
 "RESET";
 "RESTART";
};

ptbl[0]
First address of
“STOP”

ptbl→
• Pointer array initialization

'S' 'T' 'O' ' P' '\0'

'S' 'T' 'A' 'R' 'T' '\0'

'R' 'E' 'S' 'E' 'T' '\0'

'R' 'E' 'S' 'T' 'A' 'R' 'T' '\0'

Each character string's start address is stored here.

ptbl[1]
First address of
“START”

ptbl[2]
First address of
“RESET”

ptbl[3]
First address of
“RESTART”

 58

Pointer Array and Two-dimensional Array

The following explains the difference between a pointer array and a two-dimensional array.
When multiple character strings each consisting of a different number of characters are declared in a
two-dimensional array, the free spaces are filled with null code "\0". If the same is declared in a pointer array,
there is no free space in memory.

'B' 'o' 's' 't' 'o' 'n' '\0'

'N' 'a' 'r' 'a' '\0' '\0' '\0'

char name[2][7] = {
 "Boston",
 "Nara",
};

• Two-dimensional array

char *name[2] = {
 "Boston",
 "Nara",
};

name[0]
Address of 'B'

ptbl→
• Pointer array

name[1]
Address of 'N' 'N' 'a' 'r' 'a' '\0'

'B' 'o' 's' 't' 'o' 'n' '\0'

Filled with null code.

 59

1.7.6 Table Jump Using Function Pointer
In assembly language programs, "table jump" is used when switching processing load increases depending on the
contents of some data. The same effect as this can be obtained in C language programs also by using the pointer array
described above.
This section explains how to write a table jump using a "function pointer".

What Does a Function Pointer Mean?

A "function pointer" is one that points to the start address of a function in the same way as the pointer
described above. When this pointer is used, a called function can be turned into a parameter. The following
shows the declaration and reference formats for this pointer.

Switching Arithmetic Operations Using Table Jump

The method of calculation is switched over depending on the content of variable "num".

<Declaration format> Type of return value (*function pointer name) (data type of argument);
<Reference format> Variable in which to store return value = (*function pointer name) (argument);

/* Prototype declaration ***************/
int calc_f(int, int, int);
int add_f(int, int), sub_f(int, int);
int mul_f(int, int), div_f(int, int);

/* Jump table **************************/
int (*const jmptbl[4])(int, int) = {

add_f, sub_f, mul_f, div_f
};

void main(void)
{

int x = 10, y = 2;
int num, val;

num = 2;
if(num < 4){

val = calc_f(num, x, y);
}

}

int calc_f(int m, int x, int y)
{

int z;
int (*p)(int, int);

P = jmptbl[m];
z =(*p)(x, y);
return z;

}

Setting of jump address

Function call using a function pointer

Function pointers arranged in an array

First address
of "add_f jmptbl[0]

First address
of "sub_f

First address
of "mul_f

First address
of "div_f

jmptbl[1]

jmptbl[2]

jmptbl[3]

60

1.8 Structures and Unions

1.8.1 Structures and Unions
The data types discussed hereto (e.g., char, signed int, and unsigned int types) are called the "basic data types"
stipulated in compiler specifications.
The C language allows the user to create new data types which combines these basic data types. These are "struct"
and "union".
The following explains how to declare and reference structs and unions.

From Basic Data Types to Structs

Structs and unions allows the user to create more customized data types based on the basic data types
according to the purposes of use. Furthermore, the newly created data types can be referenced and arranged
in an array in the same way as the basic data types.

Collectively
managed

Basic data types
(elements of struct)

More customized
data types(structs)

 Names
addresses
Telephone numbers
Dates of birth

 Names

 Address

 Telephone
number

 Dates of birth

61

1.8.2 Creating New Data Types
The elements that constitute a new data type are called "members". To create a new data type,
define the members that constitute it. This definition makes it possible to declare a data type to allocate a memory
area and reference it as necessary in the same way as the variables described earlier.
This section describes how to define and reference structs and unions, respectively.

Difference between Struct and Union

When allocating a memory area, members are located differently for structs and unions.
(1) Struct: Members are sequentially located.
(2) Union: Members are located in the same address.

(Multiple members share the same memory area. The union size is the largest size in the
members which are assigned to the same address.)

Definition of Struct

To define a struct type, write "struct".

The above description creates a data type "struct struct tag". Definition of a variable with this data type
allocates a memory area for it in the same way as for an ordinary variable.

struct struct tag {
 Member 1;
 Member 2;

:
};

struct struct tag struct variable name;

62

Referencing Struct

To refer to each member of a struct, use a period '.' that is a struct member operator.

 struct variable name.member name

The initial data of each member is written and arranged according to the declaration order (following types)
when structure variables are initialized.

a.name name

number

section[0]
section[1]
section[2]
section[3]
section[4]

work_year

a.number

a.section[0]
to

a.section[4]

a.work_year

a

struct person{
 char *name;
 long number;
 char section[5];
 int work_year;
};

void main(void)
{
 struct person a;
 a.name = "SATOH";
 a.number = 10025;
 a.section = "T511";
 a.work_year = 25;

a.nameAddress of
"SATOH"

10025

'T'
'5'
'1'
'1'
'\0'

25

a.number

a.section[0]
to

a.section[4]

a.work_year

struct person a = {
 "SATOH", 10025, "T511", 25
};

• Initialization of struct variable

'S'
'A'
'T'
'O'
'H'
'\0'

63

Example for Referencing Members Using a Pointer

To refer to each member of a struct using a pointer, use an arrow '->'.

Pointer->member name

a
or
*p

p

#define LYEAR 20
struct person{
 char *name;
 long number;
 char section[5];
 int work_year;
};

struct person a = {
 "SATOH", 10025, "T511", 25
};

void main(void)
{
 struct person *p;
 p = &a;
 if(p->work_year > LYEAR){

p->name Addres of
"SATOH"

10025

'T'
'5'
'1'
'1'
'\0'

25

p->number

p->section[0]
to

p->section[4]

p->work_year

&a

64

Unions

Unions are characteristic in that an allocated memory area is shared by all members.
Therefore, it is possible to save on memory usage by using unions for multiple entries of such data that will
never exist simultaneously. Unions also will prove convenient when they are used for data that needs to be
handled in different units of data size, e.g., 16 bits or 8 bits units, depending on situation.
To define a union, write "union". Except this description, the procedures for defining, declaring, and
referencing unions all are the same as explained for structs.

Since structs and unions require the keywords "struct" and "union", there is a tendency that the number of
characters in defined data types increases. One method to circumvent this is to use "typedef".

typedef existing type name new type name;

When the above description is made, the new type name is assumed to be synonymous with the existing type
name and, therefore, either type name can be used in the program.
The following shows an example of how "typedef" can actually be used.

Column Type Definition

all byte

a

b

union pack{
 long all;
 char byte[4];
 short word[2];
};

void main(void)
{
 union pack a, b ;

wor

[0]

[1]

[2]

[3]

[0]

[1]

A 4-byte area is shared by all,
byte, and word.

struct data{
 char a;
 short b;
 long c;
};

struct data sdata, *sptr;

When defining types, structure (union)
 tag names can be omitted.

typedef struct{
 char a;
 short b;
 long c;
}DATA;

DATA sdata, *sptr;

65

1.9 Preprocess Commands

1.9.1 Preprocess Commands of ICC740
The C language supports file inclusion, macro definition, conditional compile, and some other functions as
"preprocess commands".
The following explains the main preprocess commands available with ICC740.

Preprocess Command List of ICC740

Preprocess commands each consist of a character string that begins with the symbol '#' to discriminate them
from other execution statements. Although they can be written at any position, the semicolon ';' to separate
entries is unnecessary. The following lists the main preprocess commands that can be used in ICC740.

Description Function

#include Takes in a specified file.

#define Replaces character string and defines macro.

#undef Cancels definition made by #define.

#if to #elif to #else to #endif Performs conditional compile.

#ifdef to #elif to #else to #endif Performs conditional compile.

#ifndef to #elif to #else to #endif Performs conditional compile.

#error
Outputs message to standard output devices before suspending
processing.

#line Specifies a file's line numbers.

#pragma Instructs processing of ICC740's extended function.

66

1.9.2 Including a File
Use the command "#include" to take in another file. Methods of description vary depending on the directory to be
searched.
This section explains how to write the command "#include" for each purpose of use.

Searching for Standard Directory

#include <file name>

This statement takes in a file from the directory specified with the startup option '–I.' If the specified file does
not exist in this directory, ICC740 searches the standard directory that is set with ICC740's environment
variable "C_INCLUDE" as it takes in the file.
As the standard directory, normally specify a directory that contains the "standard include file".

Searching for Current Directory

#include "file name"

This statement takes in a file from the current directory. If the specified file does not exist in the current
directory, ICC740 searches the directory specified with the startup option '–I' and the directory set with
ICC740's environment variable " C_INCLUDE" in that order as it takes in the file.
To discriminate your original include file from the standard include file, place that file in the current
directory and specify it using this method of description.

Example for Using "#include"

If the specified file cannot be found in any directory searched, ICC740 outputs an include error.

/*include**********/

#include <stdio.h>

#include "usr_global.h"

/*main function**********/
void main (void)
{

}

The standard include file is read from
the standard directory.

The header of a global variable is read
from the current directory.

67

1.9.3 Macro Definition
Use the "#define identifier" for character string replacement and macro definition. Uppercase letters are generally
used for this identifier to discriminate it from variables and functions.
This section explains how to define a macro and cancel a macro definition.

Defining a Constant

A constant can be assigned a name. This provides an effective means of using definitions in common to
eliminate magic numbers (immediate with unknown meanings) in the program.

Defining a Character String

A string can be assigned a name.

#define THRESHOLD 100
#define UPPER_LIMIT (THRESHOLD+50)
#define LOWER_LIMIT (THRESHOLD-50)

Defines that the threshold = 100.

Sets the upper limit at +50.

Sets the lower limit at -50.

#define TITLE "Position control program"
char mess[] = TITLE; The defined character string is inserted

at the position of "TITLE".

68

Defining a Macro Function

The command "#define" can also be used to define a macro function. This macro function allows arguments
and return values to be exchanged in the same way as with ordinary functions. Furthermore, since this
function does not have the entry and exit processing that exists in ordinary functions, it is executed at higher
speed.
What's more, a macro function does not require declaring the argument's data type.

Canceling Definition

Replacement of the identifier defined in "#define" is not performed after "#undef".
However, do not use "#undef" for the following eight identifiers because they are the
compiler's reserved words.

• _FILE_ ; Source file name
• _LINE_ ; Line number of current source file
• _DATE_ ; Compilation date
• _TIME_ ; Compilation time
• _IAR_SYSTEMS_ICC_ ; ICC compiler identifier
• _STDC_ ; ICC compiler identifier
• _TID_ ; Target identifier
• _VER_ ; Compiler version number

#define ABS(a) ((a) > 0 ? (a) : -(a))
Macro function that returns the
argument's absolute value.

#define SEQN(a, b, c){\
 func1(a) ; \
 func2(b) ; \
 func3(c) ; \
}

The symbol "\" denotes successive description.
Descriptions entered even after line feed are
assumed to be part of a continuous character string.

Enclose a complex statement
with brackets '{' and '}'.

#undef identifier

69

1.9.4 Conditional Compile
ICC740 allows you to control compilation under three conditions.
Use this facility when, for example, controlling function switchover between specifications or controlling
incorporation of debug functions.
This section explains types of conditional compilation and how to write such statements.

Various Conditional Compilation

The following lists the types of conditional compilation that can be used in ICC740.

Description Content

#if Constant expression
A

#else
B

#endif

If the constant expression is true (not 0), ICC740 compiles
block A; if false, it compiles block B.

#ifdef Macro name
A

#else
B

#endif

If a macro name is defined, ICC740 compiles block A;
if not defined, it compiles block B.

#ifndef Macro name
A

#else
B

#endif

If a macro name is not defined, ICC740 compiles block A;
if defined, it compiles block B.

In all of these three types, the "#else" block can be omitted. If classification into three or more blocks is
required, use "#elif" to add conditions.

Specifying Identifier Definition

To specify the definition of an identifier, use "#define" or ICC740 compiler option '-D'.

#define identifier ← Specification of definition by "#define"

%ICC740 -D identifier ← Specification of definition by compiler option

70

Example for Conditional Compile Description

The following shows an example for using conditional compilation to control incorporation of debug
functions.

It defines an identifier "DEBUG". (Set to debug mode.)
#define DEBUG

void main(void)
{

#ifdef DEBUG
 check_output();
#else
 output();
#endif

}

#ifdef DEBUG
void check_output(void)
{

}
#endif

When in debug mode, it incorporates "debug function".

When in debug mode, it calls "debug function;"
otherwise, it calls "ordinary output function". In this
case, it calls "debug function".

 71

Chapter 2
Explains about project settings

2.1 Set Content
2.2 Description of Memory Models

2.3 Segment Configuration

2.4 Description of the Stack Area

2.5 Description of the Object Format

2.6 Description of the C Startup Module

2.7 Setting Values in a Special Area

This section describes memory models, segment configuration, stack area, object
format and C startup module, and explains how to set values in a special area.

 72

2.1 Set Content
Program development with ICC740 starts by setting up a processor group, memory model and stack area first. The
following lists the set content of each item.

Item Choices Default

With MUL/DIV instruction

Without MUL/DIV instruction Processor group
With MUL/DIV instruction and extended data
access

Large model

Tiny model Memory model

Zero-page model

1 page (100H–1FFH)
Stack area

0 page (00H-FFH)

UBROF(IAR format)

IEEE695(for HEW)

intel-standard(for ROM)
Object format

motorola(for ROM)

 73

2.2 Description of Memory Models
ICC740 uses the following memory models to create a project.

1) Large model

The Large model is located in areas whose default variable placement position is in other than zero-page
(addresses beginning with 0x100).

2) Tiny model

The Tiny model is located in areas whose default variable placement position is in zero-page (addresses
0x0–0xFF).

3) Zero-page model

The Zero-page model can only use zero-page.

2.2.1 Details of Memory Models
The differences between each memory model are summarized in the table below.

Item Large model Tiny model Zero-page model
Places where

variables located
Addresses beginning with

0x100
Addresses up to and

including 0xFF
Addresses up to and

including 0xFF
Placement at
addresses
beginning with
0x100 in C
language

–
Definition using npage
npage int v1;
extern npag int v2;

Not locatable

Placement at
addresses up to
and including 0xFF
in C language

Definition using zpage
zpage int v3;
extern zpag int v4;

– –

Method for
accessing
addresses
beginning with
0x100 in assembly
source program

– Operand np: used
Ida np:v1 Inaccessible

Method for
accessing
addresses up to
and including 0xFF
in assembly source
program

Code size reducing by using
operand zp:
Ida zp:v3

– –

The extended keywords zpage and npage are specifiable in external variables, auto-variables
and arguments to functions.

 74

2.2.2 Changing Memory Models
To change memory models, specify a project type when creating a new project.
The memory model of default <Application> is set to “Large model.”
To change it to Tiny model or Zero-page model, specify <Application (Tiny)>.

To check the set content, choose IAR ICC740 Toolchain from the Build menu to open Build Options.

The “-m” option on the Compiler tab is set to “-ml” for the Large model. This option is set to “-mt” for the Tiny or
Zero-page model.

Application: Large model
Application (Tiny): Tiny or Zero-page model

Large model
-ml

Tiny or Zero-page model
-mt

 75

The -uN option specified on the Assembler tab is for the Large model. The -uN option is not specifiable for the Tiny
and Zero-page models.
The -uN option uses 16-bit addressing. The following are not affected.

8-bit addressing specification:

LDA ZP:label
16-bit addressing specification:

LDA NP:label

Next, check how the linker is set.
Check the link command file for linker setup, and not the Linker tab. To inspect the link command file, open the
lnk740.xcl file in the workspace. For the Tiny and Zero-page models, open the lnk740t.xcl file.

Large model
-uN

Tiny or Zero-page model
No specification

For the Tiny and Zero-page models,
open lnk740t.xcl

 76

The lnk740.xcl file will have a library specified with the -C option in the last part of it.
For the Large model, this library is set c174001.r31, whereas for the Tiny and Zero-page models, it is set to
c17400t.r31. For the Zero-page model, the location of the CSTACK segment must be changed from that of the Tiny
model. Refer to page 85 for details.

Large model
-C c174001

Tiny and Zero-page models
-C c17400t

 77

2.3 Segment Configuration

2.3.1 Segment Configuration of ICC740
The segment configuration of ICC740 is classified below.

FFFFH

SFR

Z page
RAM

N page
RAM

ROM

Memory
0000H

0100H

· To ensure that the resources of the 740 family are effectively used,
ICC740 classifies memory into the following.

- Z page RAM (0H–FFH): Zero page
- N page RAM (100H and on): Normal page or non-zero page
- ROM (up to and including FFFFH)

· Segments are set in each for data management.

 78

2.3.2 Segment Map: Z Page RAM (0H–FFH)
This section shows the segment map: Z page RAM (0H–FFH).

Name (outline) Type Description
BITVAR
(Static bit variable storage)

Read/write Assembly-accessible.
Holds a static bit variable. This segment must be located in Zero Page
(0–0xFF).

ZPAGE
(Zero Page assembler library
data)

Read/write Compiler-only.
Holds the Zero Page internal library variables. This segment must be
located in Zero Page (0–0xFF).

C_ARGZ
(Local variables)

Read/write Assembly-accessible.
Holds static auto-variables. This segment must be located in Zero Page
(0–0xFF).

Z_UDATA
(Non-initialized static variables)

Read/write Assembly-accessible.

Holds variables in memory that are not explicitly initialized; these are
implicitly initialized to all zero, which is performed by CSTARTUP.
This segment must be located in Zero Page (0–0xFF).

Z_IDATA
(Initialized static variables)

Read/write Assembly-accessible.
Holds static variables in internal data memory that are automatically
initialized from Z_CDATA in cstartup.s31. See also Z_CDATA Note 1.
This segment must be located in Zero Page (0–0xFF).

EXPR_STACK
(Expression stack)

Read/write Assembly-accessible.

Holds temporary results while evaluating expressions during normal
processing.
This segment must be located in Zero Page (0–0xFF).

INT_EXPR_STACK
(Interrupt expression stack)

Read/write Assembly-accessible.

Holds temporary results while evaluating expressions during interrupt
processing.
This segment must be located in Zero Page (0–0xFF).

Note 1: Z_CDATA (initialization constant)
 Type: Read-only
 Description: Accessible in assembly
 CSTARTUP copies initial values from this segment into the Z_IDATA segment.

Bit variables whose addresses are undetermined yet

Library data (located in zero page)
Auto variables and arguments using zpage: func (zpage int a)

External variables using zpage, not subject to initialization: zpage short c;

External variables using zpage, subject to initialization: zpage char b=1;

Expression stack: Manipulated with register X. Specify its size in lnk740.xcl.
Interrupt-time expression stack: Manipulated with register X. Specify its size

in lnk740.xcl.

SFR

0H

FFH

Z_UDATA

Z_IDATA

EXPR_STACK

(BITVARS)

ZPAGE
C_ARGZ

INT_EXPR_STAC

 79

2.3.3 Segment Map: N Page RAM (beginning with 100H)
The segment map of the N page RAM (beginning with 100H) is shown below.

Name (outline) Type Description
CSTACK
(Data stack)

Read/write

Assembly-accessible.
Holds the hardware stack. This segment must be located in Zero Page
(0–0xFF), or page 1 (0x100–0x1FF), depending on the position set by
CSTARTUP.
This segment and length is normally defined in the XLINK file by the
command:
-Z(DATA)CSTACK + nn = start
where nn is the length and start is the location.

NPAGE
(Normal page assembler library
data)

Read/write

Compiler-only.
Holds the non-Zero Page internal library variables.

C_ARGN
(Local variables)

Read/write

Assembly-accessible.
Holds auto variables. This segment must be located in N page
(Addressed beginning with 0x100).

N_UDATA
(Non-initialized static variables)

Read/write

Assembly-accessible.
Holds variables in memory that are not explicitly initialized; these are
implicitly initialized to all zero, which is performed by CSTARTUP.

N_IDATA
(Initialized static data)

Read/write

Assembly-accessible.
Holds static variables in internal data memory that are automatically
initialized from N_CDATA in cstartup.s31. See also N_CDATA of
“2.3.4. Segment Map ROM (up to FFFFH)” on page 81.

Normal stack: Specify its size in lnk740.xcl.

Library data: (Located in other than zero page)

Auto variables and argument: func(int a)

Stores external variables without specified initial values: short c;

Stores external variables with specified initial values: char b=1;

Writable character strings, for which area is reserved when the ICC740 option -y is
specified
Stack used during recursive calls: whose size normally is 0; 258 bytes or more is
reserved when used

100H

23FH

End address of RAM (differing with each MCU type)

CSTACK

NPAGE

C_ARGN

N_UDATA

N_IDATA

ECSTR

RF_STACK

 80

ECSTR
(Writable copies of string literals)

Read/write Assembly-accessible.
Holds writable copies of C string literals. For more information refer to the
C compiler Writable strings (-y) option (Note 1) below, and “-y” on page
103. See also WCSTR (Note 2), and CSTR of “2.3.4. Segment Map ROM
(up to FFFFH)” on page 81 and CCSTR on page 82.

RF_STACK
(Recursive stack)

Read/write Assembly-accessible.
Holds the local variables and parameters for enclosed calls of recursive
functions. Because SF_STACK is located in page 1 and subsequent
pages and because the compiler reserves 256 bytes of storage for it,
recursive calls cannot be used in the Zero-page model.

(Note 1) Writable strings (-y)
Syntax: -y

Causes the compiler to compile string literals and other constants as initialized variables.
Normally, string literals and constants are compiled as read-only. If you want to be able to write to them, use the Writable
strings (-y) option, causing them to be compiled as writable variables.
Note that arrays initialized with strings (ie char c[] = "string") are always compiled as initialized variables, and are not
affected by the Writable strings (-y) option.

(Note 2) WCSTR (Writable string literals)

TYPE: Read-write
DESCRIPTION: Assembly-accessible.

Normally strings are placed in the CSTR (ROM) or WCSTR (RAM) area. If you have specified writable and PROMable
strings, a special segment CCSTR (ROM) holds the string while the ECSTR (RAM) has the same amount of space. At run
time, CCSTR is assumed to be copied to ECSTR.

 81

2.3.4 Segment Map: ROM (up to FFFFH)
 The segment map of the ROM (up to FFFFH) is shown below.

Name (outline) Type Description
RCODE
(Startup code)

Read-only

Assembly-accessible code used by code generator intrinsic functions.
This segment can also be used for user-written assembler code that is
not called from C (interrupt handlers and similar resident code).

Z_CDATA
(Initialization constants)

Read-only Assembly-accessible.
CSTARTUP copies initialization values from this segment to the
Z_IDATA segment.

N_CDATA
(Initialization constants)

Read-only Assembly-accessible.
CSTARTUP copies initialization values from this segment to the
N_IDATA segment.

C_ICALL
(Table of indirect function
calls)

Read-only Compiler-only.
Holds a table of indirect function calls.

C_RECFN
(Table of recursive
functions)

Read-only Compiler-only.
Holds a table of recursive functions.

CSTR
(String literals)

Read-only Assembly-accessible.
Holds C string literals when the C ompiler Writable strings (-y) option is
active. For more information, see “-y” on page 103 of this application
notes. See also ECSTR and WCSTR (Note 2) of “2.3.3. Segment Map: N
Page RAM (beginning with 100H)” on page 80 and CCSTR of “2.3.4.
Segment Map: ROM (up to FFFFH)”on page 82.

C080H

FFFFH

FF00H

Movable within special
page

Start address of ROM
(differing with each MCU
type)

RCODE
Z_CDATA

CONST

C_ICALL
C_RECFN

CSTR
CCSTR

CODE

N_CDATA

C_FNT

INTVEC

Stores library code.

Interrupt vector table

Initial values for the Z_IDATA segment

Initial values for the N_IDATA segment
Table for indirect function calls

Table for recursive functions

Stores constants and strings

Stores constants.

Special page jump table Differing with
each MCU type

Stores initial values when the ICC740 option-y is
specified.

Stores a program code

 82

CCSTR
(String literals)

Read-only Assembly-accessible.
Holds C string literals. For more information, see “-y” on page 103 of this
application notes. See also ECSTR and WCSTR (Note 2) of “2.3.3.
Segment Map: N Page RAM (beginning with 100H)” on page 80 and
CSTR of “2.3.4. Segment Map: ROM (up to FFFFH)”on page 81.

CODE
(Code)

Read-only Assembly-accessible.
Holds user program code and various library routines.

CONST
(Constants)

Read-only Assembly-accessible.
Used for storing const objects. Can be used in assembly language
routines for declaring constant data.

C_FNT
(Special page branch table)

Read-only Assembly-accessible.
Holds the address of the function invoked according to tiny_func calling
rules. This segment must be located in a special page (FF00H–FFFFH).

INTVEC
(Interrupt vectors)

Read-only Assembly-accessible.
Holds the interrupt vector table generated by the use of the interrupt
extended keyword (which can also be used for user-written interrupt
vector table entries). The start of this segment should be the start
address of the vectors for your particular processor option.

83

2.4 Description of the Stack Area
2.4.1 Stack Management of ICC740

ICC740 uses multiple segments to exercise stack management.
The stack management of ICC740 is schematically shown below.

EXPR_STACK and INT_EXPR_STACK segments
Used as areas in which the return values and temporary variables of functions are stored.
Also used as areas in which the arguments, temporary variables and return values of C runtime functions are stored.
These segments are manipulated using the index register X, and are located in the address range 0x00 to 0xFF.
These segments are automatically switched to EXPR_STACK during normal operation or switched to
INT_EXPR_STACK during interrupt.
* Refer to EXPR_STACK and INT_EXPR_STACK in Section 2.3.2, “Segment Map: Z Page RAM (0H–FFH),” on

page 78.

CSTACK segment
Used by JSR, PHA, MUL and DIV instructions.
Also used to save the return address and registers when an interrupt occurs.
This segment is located in the address range 0x00 to 0xFF or 0x100 to 0x1FF as set by the CPU mode register.
* Refer to CSTACK in Section 2.3.3, “Segment Map: N Page RAM (beginning with 100H),” on page 79.

C_ARGN and C_ARGZ segments
An area for the local variables of functions.
Each local variable is located statically (at addresses specific to each).
Since a large amount of RAM is needed if all local variables are located at separate addresses, the linker XLINK
locates local variables at shared addresses based on the directive command DEFFN output by the compiler, taking
care not to destroy the local variables of upper-level functions. That way, it reduces the necessary RAM size.
* Refer to C_ARGZ segment in Section 2.3.2, “Segment Map: Z Page RAM (0H–FFH),” on page 78, and the

C_ARGN segment in Section 2.3.3, “Segment Map: N Page RAM (beginning with 100H),” on page 79.

{
 int aa;
 aa = func(0x12, 0x34);
}

int func(int xx, int yy)
{
 int zz;
 zz = xx * yy; /* Runtime function */
 /* ?S_MUL */
 return zz;
}

Return value
of ?S_MUL

Return value of
func()

Located at fixed addresses
every function

Used for recursive call

Stack pointer

Index register X
Value of yy

Value of xx

Return address
of ?S_MUL

Return address
of func()

34
00

Data of MUL

12
00

EXPR_STACK

CSTACK

C_ARGN

RF_STACK

84

RF_STACK segment
An area for the local variables of functions during recursive calls. This segment is located at address 0x100 and those
that follow.
The linker determines whether the call is recursive, according to which the linker set 0 bytes of area when there are
no recursive calls or 256 bytes of area (256 bytes for local variables and 2 bytes for management use) when there are
recursive calls.
* Refer to RF_STACK in Section 2.3.3, “Segment Map: N Page RAM (beginning with 100H),” on page 79.

85

2.4.2 Altering the CSTACK Segment
The following shows how to change the CSTACK segment to zero page.

First, open cstartup.s31 in the workspace.

The stack page in cstartup.s31 is set to page 1 (3803 group). To change it to zero page, rewrite “#0CH” on the 137th
line to “#08H.”

 RSEG RCODE:ROOT
init_C
 CLD

CLT
 LDM #0CH, 3BH
 LDX #LOW (SFE(CSTACK)-1)
 TXS

CPU mode register
(3803 group)

cstartup.s31:
137 line

Manual change LDM #08H, 3BH

Open

86

Next, open lnk740.xcl in the workspace.

CSTACK is set to page 1.
To change it to zero page, change “NPAGE” on the 57th line to “ZPAGE” and delete the address specification “=
100.” This change causes CSTACK to be located as the last segment of zero page.

lnk740.xcl:
57 line -Z(NPAGE)CSTACK+40=100

-Z(ZPAGE)CSTACK+20

Zero-page model

For Tiny or Zero-page model,
lnk740t.xcl

87

2.5 Description of the Object Format

2.5.1 Altering the Object Format

When an object is created, its format is set to IEEE695 format Note 1.
To check the set content, choose IAR ICC740 Toolchain from the Build menu to open Build Options. Then select the
Linker tab.

Note 1: The IEEE695 format is suitable for debugging with the debugger operating in HEW.

To alter the object format, change the string enclosed with a circle above.

To select the Intel Hex format, change this string as shown below.

-o "$(CONFIGDIR)\$(PROJECTNAME).hex" -Fintel-standard -Y0

To select the Motorola format, change this string as shown below.
-o "$(CONFIGDIR)\$(PROJECTNAME).mot" -Fmotorola

88

2.6 Description of the C Startup Module

2.6.1 Description of the C Startup Module
M3T-ICC740 uses the C startup module named “cstartup.s31” for project development.
cstartup.s31 is set up as shown below.

Microcomputer 3803 group
Stack pointer operating area Page 1 (100H–1FFH)

This section describes cstartup.s31 while at the same time explaining which part of it to change and how, as
necessary.

The C startup module needs to be changed in the following cases:

1. The processor mode register of the init_C routine is changed (as when the stack pointer area is changed to

zero-page memory).
2. Ports and other SFRs are set immediately after reset.
3. A target microcomputer whose interrupt vector information differs from the default vector information is

used.

Note that cstartup.s31 does not need to be rewritten for a change of memory models.

Note also that although the library contains the cstartup module, M3T-ICC740 uses this cstartup.s31. M3T-ICC740
has the following line written in lnk740.xcl to ensure that the cstartup module included in the library will not be used.
 -C c174001
Do not delete this -C.

For the contents of segments used in the description of cstartup.s31, refer to pages 76–80.

89

Description of cstartup.s31
cstartup.s31: Lines 1–40

;---
;
; cstartup.s31
;
; This file contains the MELPS 740 C startup routine
; and must usually be tailored to suit customer's hardware.
;
;
; You probably want to set up the mode register and you may
; have to change the reset vector.
;
; $Id: cstartup.s31 1.16 2001/07/16 14:16:13Z IJON Exp $
;
;---

#if 0
#if ((__TID__ >> 4) & 15) == 0
#define MELPS_MULDIV
#endif

#if ((__TID__ >> 4) & 15) == 2
#define MELPS_37600
#endif
#endif

;---
; Turning off 'interruptable ISRs':
; Do this if you need the extra byte(s)
;
; 1. Uncomment the define below
; 2. Assemble this file
; 3. Include the result in your linker command file:
; -C cstartup.r31
;
; Variable '?IES_USAGE' and its initialization will no longer
; be included.
;---
;#define NO_INTERRUPTABLE_ISR

M3T-ICC740 doe not use this part.

To use multiple interrupts (interrupt within
another interrupt), do not delete the semicolon (;)
at the beginning of the line.
When not using multiple interrupts, the semicolon
(;) at the beginning of the line may be deleted.
This will help to spare 1 byte of RAM and 4 bytes
of ROM.

Initial setting

90

cstartup.s31: Lines 41–80

 NAME CSTARTUP

 EXTERN main ; where to begin execution
 EXTERN __low_level_init
 DEFFN __low_level_init(32768,0,0,0)
 EXTERN exit ; where to go when program is done
 DEFFN exit(32770,0,0,0)

 PUBLIC ?INTERRUPT_EXPR_STACK ; Start address for interrupt

 PUBLIC ?CSTARTUP_INTVEC ; start (base address) of interrupt vector
 PUBLIC ?CSTARTUP_RESETVEC ; Location of reset vector

;---;
; CSTACK - The C stack segment ;
; ;
; Please, see in the link file lnk*.xcl how to increment ;
; the stack size without having to reassemble cstartup.s31 ! ;
;---;

 RSEG CSTACK:ROOT
 BLKB 0

;---;
; EXPR_STACK - The expression stack segment ;
; ;
; Please, see in the link file lnk*.xcl how to increment ;
; the stack size without having to reassemble cstartup.s31 ! ;
;---;

 RSEG EXPR_STACK:ROOT
 BLKB 0

;---;
; INT_EXPR_STACK - The interrupt expression stack segment ;
; ;

380th line: PUBLIC exit
405th line: PUBLIC __low_level_init
Although declared as “PUBLIC” in the
same source file, these each are a
separate module.
The IAR assembler A740 permits
multiple modules to be written in one
and the same file. For symbols to be
referenced between those modules,
however, “EXTERN” and “PUBLIC” are
required.

The mark “?” attached at the beginning of a
symbol name denotes that this is a reserved
symbol name of the compiler. Therefore, do
not use the symbol names that begin with “?.”

Declaring the hardware stack segment CSTACK

Declaring an expression stack segment

The specific size is set in the lnk740.xcl file, so
that 0 is specified as a temporary value here.

Declaring a segment

Starting the program module CSTARTUP

The specific size is set in the lnk740.xcl file, so
that 0 is specified as a temporary value here.

91

cstartup.s31: Lines 81–120

; Please, see in the link file lnk*.xcl how to increment ;
; the stack size without having to reassemble cstartup.s31 ! ;
;---;

 RSEG INT_EXPR_STACK:ROOT
 BLKB 0

#ifndef NO_INTERRUPTABLE_ISR
;---;
; ?IES_USAGE - Determines if the IES is setup and used.
;
; This variable is used for interrupt functions when compiling
; with the '-h' option.
;---;

 RSEG ZPAGE
 PUBLIC ?IES_USAGE
?IES_USAGE:
 BLKB 1
#endif

;---;
; This will insert the information needed by interrupts who use ;
; the interrupt expression stack. Do not alter it! ;
;---;

 RSEG CONST
?INTERRUPT_EXPR_STACK:
 BYTE SFE(INT_EXPR_STACK)

;---;
; Forward declarations of segment used during initialization ;
;---;
 RSEG Z_UDATA
 RSEG Z_IDATA
 RSEG Z_CDATA
 RSEG N_UDATA
 RSEG N_IDATA

The tail address of the INT_EXPR_STACK segment is
set in ?INTERRUPT_EXPR_STACK.
SEF() indicates the end address of the segment.

Declaring an interrupt expression stack segment

Setting multiple interrupts

Declaring various segments used by ICC740.

The specific size is set in the lnk740.xcl file, so that
0 is specified as a temporary value here.

Setting the interrupt stack

For multiple interrupts to be enabled in ICC740, the -h
option is required.

92

cstartup.s31: Lines 121–160

 RSEG N_CDATA
 RSEG ECSTR
 RSEG RF_STACK

 RSEG CCSTR
 RSEG CONST
 RSEG CSTR

;---;
; RCODE - where the execution actually begins ;
;---;
 RSEG RCODE:ROOT
init_C
 CLD ; set default mode
 CLT
 LDM #0CH, 3BH ; set stack page : 3803 Group
 LDX #LOW (SFE(CSTACK)-1) ; set up stack pointer
 TXS

#ifndef NO_INTERRUPTABLE_ISR
;---;
; Initialize ?IES_USAGE:
; 1 IES not used
; 0 First use of IES, need to setup IES
; <0 IES already setup and used
;---;
 LDA #1
 STA zp:?IES_USAGE
#endif

;---;
; If hardware must be initiated from assembly or if interrupts ;
; should be on when reaching main, this is the place to insert ;
; such code. ;
; ;
; NOTE: You probably want to initialize the mode register here. ;
;---;
;---;
; Call __low_level_init to perform initialization before ;

The stack operation page is set to page
1.
To change it to zero page,
 LDM #08h, 3Bh”; set stack page:
3803 Group
Make sure each bit in the CPU mode
register is set as suitable for the working
environment.

The trailing –1 of the CSTACK segment is
set in the stack pointer S.
LOW() indicates the lower byte of the
address.

At power-on, the program starts from here.
(This address is written in the reset vector.)

Setting the data for multiple interrupts

Initializes the multiple interrupt management
variable ?IES USAGE.

Although only a comment is written as
the default here, the necessary
processing if any to be performed
before variables are initialized may be
written below this comment.
For example, this will include port
settings that need to be set
immediately after power-on or
determination of hot start.

93

cstartup.s31: Lines 161–200

; initializing segments and calling main. ;
; If the function returns 0 no segment initialization should ;
; take place. ;
; ;
; Link with your own version of __low_level_init to override ;
; the default action: to do nothing but return 1. ;
;---;

 LDX #SFE(EXPR_STACK) ; set up expression stack
 JSR __low_level_init
 TAY ; test return value
 BEQ skip_seg_init

;---;
; If it is not a requirement that static/global data is set ;
; to zero or to some explicit value at startup, the following ;
; line refering to seg_init can be deleted, or commented. ;
;---;

 JSR seg_init ; initialize data segments
 LDX #SFE(EXPR_STACK) ; set up expression stack (again)
 ; as seg_init destroys it
skip_seg_init

;---;
; Set up expression stack ;
;---;

expr_stack_start EQU SFE(EXPR_STACK)

 LIMIT expr_stack_start,0,100h,"Expression stack out of range"

 LDX #expr_stack_start & 255 ; load initial expr stack pointer

 JSR main ; execute main()

;---;
; Now when we are ready with our C program we must perform a ;
; system-dependent action. In this case we just stop. ;

Before global variables are initialized
(segment initialization) and the Main
function is called, the __low_level_init
routine is called.
By default, __low_level_init is written to
only return the value 1 without executing
any action (403th line and on). If the
returned value of __low_level_init is 0 (i.e.,
there are no segments to be initialized),
the global variable initialization routine is
skipped.

LIMIT is the directive to check whether
the symbol is within a specified range.
It is written in the form LIMIT label,
minimum, maximum, message.
If the symbol is assigned any value that
is outside a specified range, an error
message is output.
More specifically, it checks to see if
expr_stack_start is located between 0
to 100h, i.e., located in zero page
correctly.
Note that this part is not output to the
object file.

Calls the global variable initialization
routine seg_init.

The end address of the EXPR_STACK
segment is reassigned to the index
register X.
The index register X is used in data
processing of the EXPR_STACK
segment.

Calls the main() function.

94

cstartup.s31: Lines 201–240

;---;
; DO NOT CHANGE THE NEXT LINE OF CSTARTUP IF YOU WANT TO RUN ;
; YOUR SOFTWARE WITH THE HELP OF THE C-SPY HLL DEBUGGER. ;
;---;

 JMP REFFN exit

;---;
; Copy initialized PROMmed code to shadow RAM and clear ;
; uninitialized variables. ;
;---;

 EXTERN ?DP0_L00, ?DP1_L00
seg_init

;---------------------------------------;
; Initialize recursive stack RF_STACK ;
;---------------------------------------;
 LDA #LOW(SFB(RF_STACK)+2)
 STA np:SFB(RF_STACK)+0
 LDA #HIGH(SFB(RF_STACK)+2)
 STA np:SFB(RF_STACK)+1

;---------------------------------------;
; Zero out Z_UDATA ;
;---------------------------------------;
 LDY #SIZEOF(Z_UDATA)
 BEQ skip1
 LDX #SFB(Z_UDATA)
 LDA #0
loop1 STA 0,X
 INX
 DEY
 BNE loop1
skip1

;---------------------------------------;

Initialization processing of global variables
that have no initial values assigned
(zero-page memory)

Initializing the recursive stack (RF_STACK segment)

A data pointer. It is used in data
transfers between segments.

The Z_UDATA segment is cleared to 0 using
the index registers X and Y.

Registers the address of the RF_STACK
segment.
SFB() indicates the start address of the
segment.
HIGH() indicates the lower byte of the address.

Jumps to the processing routine to
be executed when the main()
function processing is completed.

95

cstartup.s31: Lines 241–280

; Copy Z_CDATA into Z_IDATA ;
;---------------------------------------;
 LDY #SIZEOF(Z_CDATA)
 BEQ skip2
loop2: LDA NP:SFB(Z_CDATA)-1,Y
 STA NP:SFB(Z_IDATA)-1,Y
 DEY
 BNE loop2
skip2

;---------------------------------------;
; Zero out N_UDATA ;
;---------------------------------------;
 LDM #LOW(SFB(N_UDATA)),?DP0_L00
 LDM #HIGH(SFB(N_UDATA)),?DP0_L00+1
 LDA #0
 TAY
 LDX #HIGH(SIZEOF(N_UDATA))
 BEQ skip3
loop3 STA (?DP0_L00),Y
 INY
 BNE loop3
 INC ZP:?DP0_L00+1
 DEX
 BNE loop3
skip3
 LDX #LOW(SIZEOF(N_UDATA))
 BEQ skip4
loop4 STA (?DP0_L00),Y
 INY
 DEX
 BNE loop4
skip4

;---------------------------------------;
; Copy CCSTR into ECSTR ;
;---------------------------------------;
 LDM #LOW(SFB(CCSTR)),?DP0_L00
 LDM #HIGH(SFB(CCSTR)),?DP0_L00+1

Initializers for C string literals when –y
compiler option is used in ICC740.

Initialize global variables with initial values
specified (zero page memory)

Initialize global variables with no initial
values specified (N page memory)

Initial values are copied from the
Z_CDATA segment to the Z_IDATA
segment using the index register Y.

The N_UDATA segment is cleared to 0 using
the data pointer ?DP0_L00.

96

cstartup.s31: Lines 281–320

 LDM #LOW(SFB(ECSTR)),?DP1_L00
 LDM #HIGH(SFB(ECSTR)),?DP1_L00+1
 LDX #HIGH(SIZEOF(CCSTR))
data pointers?DP0_L00 BEQ skip5
 JSR large_copy_mem
skip5
 LDX #LOW(SIZEOF(CCSTR))
 BEQ skip6
 JSR small_copy_mem
skip6

;---------------------------------------;
; Copy N_CDATA into N_IDATA ;
;---------------------------------------;
 LDM #LOW(SFB(N_CDATA)),?DP0_L00
 LDM #HIGH(SFB(N_CDATA)),?DP0_L00+1
 LDM #LOW(SFB(N_IDATA)),?DP1_L00
 LDM #HIGH(SFB(N_IDATA)),?DP1_L00+1
 LDX #HIGH(SIZEOF(N_CDATA))
 BEQ skip7
 JSR large_copy_mem
skip7
 LDX #LOW(SIZEOF(N_CDATA))
 BEQ return

; fall into small_copy_mem to do final copy

;---------------------------------------;
; Copy memory ;
;---------------------------------------;
small_copy_mem
 LDY #0
small_loop
 LDA (?DP0_L00),Y
 STA (?DP1_L00),Y
 INY
 DEX
 BNE small_loop
return RTS

Initialize global variables with initial values
specified (N page memory)

Copy processing routine

Initial values are copied from the CCSTR
segment to the ECSTR segment using the
data pointers ?DP0_L00 and ?DP1_L00.

Initial values are copied from the N_CDATA
segment to the N_IDATA segment using the
data pointers ?DP0_L00 and ?DP1_L00.

97

cstartup.s31: Lines 321–360

large_copy_mem
 LDY #0
large_loop
 LDA (?DP0_L00),Y
 STA (?DP1_L00),Y
 INY
 BNE large_loop
 INC ?DP0_L00+1 ; update high pointers
 INC ?DP1_L00+1
 DEX
 BNE large_loop ; no, move next block
 RTS

;---;
; Interrupt vectors must be inserted here by the user. ;
; ;
; It is assumed that the interrupt vector segment starts ;
; at address xxE0 on all chips except 37600 where it is ;
; starts at xxC0. The reset vector is assumed to be located ;
; at xxF?. We simply skip to xxF? and insert the reset vector. ;
; ;
; Chip group Default reset vector ;
; -- ;
; -v0 FFFC ;
; -v1 FFFE ;
; -v2 FFFA ;
; ;
; If this does not match your specific chip derivative, you ;
; have to make changes below. ;
;---;

 COMMON INTVEC

?CSTARTUP_INTVEC:
 BLKB 0FFFEH - 0FFDCH -2 ; 3803 Group
#if 0
#if defined(MELPS_37600)
 BLKB 40H - 6 ; FFFA (FFC0 + 40 - 6) (-v2)

Declares the INTVEC segment as a
common segment.
Common segments are overwritten.
The start address of the INTVEC segment
is written in lnk740.xcl.

Setting the INTVEC segment

Sets a memory size equal to the interrupt vector minus the reset interrupt vector.
Here, the memory size is calculated as shown below.

End address of
interrupt vector

–
Initial address of
interrupt vector

– Size of reset interrupt vector

The value of each interrupt vector is set in interrupt [] that is written in ICC740.
 interrupt [16] void intr_timer2(void)
In the above example, the address of intr_timer2 is written over at the INTVEC segment start
address + 16 when linked.

98

cstartup.s31: Lines 361–400

#elif defined(MELPS_MULDIV)
 BLKB 20H - 4 ; FFFC
#else
 BLKB 20H - 2 ; FFFE
#endif
#endif
?CSTARTUP_RESETVEC:
 WORD init_C
 ENDMOD init_C

;---;
; Function/module: exit (int code) ;
; ;
; When C-SPY is used this code will automatically be replaced ;
; by a 'debug' version of exit(). ;
;---;
 MODULE exit

 PUBLIC exit
 DEFFN exit(0,0,0,0,32770,0,0,0)
 PUBLIC ?C_EXIT

 RSEG RCODE

?C_EXIT
exit

;--;
; The next line can be replaced by user defined code. ;
;--;
 BRA *

 ENDMOD

;---;
; Function/module: default __low_level_init ;
; You can replace this routine by linking with your own version.;
; The default action is to do nothing and return 1. ;

This asterisk (*) denotes a location counter.
The jump address is the counter itself,
comprising an endless loop.

Sets the reset vector.
The program starts from init_C after
reset.

Defines termination of the module exit.

Defines termination of the Init_C module.

Module exit

Module lowinit

Defines start of the module exit.

99

cstartup.s31: Lines 401–413

;---;

 MODULE lowinit

 PUBLIC __low_level_init
 DEFFN __low_level_init(0,0,0,0,32768,0,0,0)
 RSEG RCODE
__low_level_init
 LDA #1
 RTS

 END
 Defines end of the source file.

Indicates start of the module lowinit.

Processing of the lowinit module is written
here.
By default, it only returns the value 1.
If all segments need to be initialized here,
alter the processing written here to return the
value 0.

100

Processing of the C startup mode is schematically shown below.

 – –RAM – –
 Zero-page memory

0H

 ZPAGE

 C_ARGZ

 Z_UDATA

 Z_IDATA – –ROM – –

 EXPR_STACK Code memory
 INT_ EXPR_STACK RCODE
 (CSTACK) * Z_CDATA

FFH
 N_CDATA

 C_ICALL
 N page memory C_RECFN

100H CSTACK CSTR
 NPAGE CCSTR
 C_ARGN CODE
 N_UDATA CONST
 N_IDATA
 ECSTR C_FNT
 RF_STACK
 INTVEC

FFFFH

Initialized to 0

The order in which the respective segments
are located is specified in the lnk740.xcl file.

 copy

Initialized to 0

 copy

 copy

* If the stack bit of
the processor
mode register is
set to 0

Switched

101

2.7 Setting Values in a Special Area

2.7.1 Setting Values in a Special Area
To set values in an area used for special purposes such as ID code, create a segment for that area in the lnk740.xcl file
and set values in an assembly language file.
This area differs with each product. Consult the data sheet of each MCU used.

An example of an assembly language file and lnk740.xcl setup is shown below.

・Example for the 7542 group (flash memory version)
 lnk740.xcl file
FFD4h ID1 -Z(CODE)RCODE, … (line next to this line)
FFD5h ID2 -Z(CODE)ID_CODE=FFD4-FFDB
FFD6h ID3
FFD7h ID4 Assembly language file:
FFD8h ID5 RSEG ID_CODE
FFD9h ID6 BYTE 0FFH
FFDAh ID7 BYTE 0FFH
FFDBh ROM code protect BYTE 0FFH
 BYTE 0FFH
 BYTE 0FFH
 BYTE 0FFH
 BYTE 0FFH
 ROMCP:
 BYTE 0FFH ; ROM Code Protect

 Set the ID code and ROM code protect values.

・Example for the 7545 group (QzROM version)

 lnk740.xcl file
FFD4h Area used for shipping inspection by Renesas -Z(CODE)RCODE, …(line next to this line)
FFD5h Area used for shipping inspection by Renesas -Z(CODE)RESERVE1,FUNCTION_SET_ROM,RESERVE2=FFD4-FFDB
FFD6h Area used for shipping inspection by Renesas
FFD7h Area used for shipping inspection by Renesas Assembly language file:
FFD8h Area used for shipping inspection by Renesas RSEG RESERVE1
FFD9h Area used for shipping inspection by Renesas BLKB 01H
FFDAh Function setting ROM data BLKB 01H
FFDBh ROM code protect BLKB 01H
 BLKB 01H
 BLKB 01H
 BLKB 01H
 RSEG FUNCTION_SET_ROM
 BYTE 12H ; Function Set Rom Data
 RSEG RESERVE2
 BLKB 01H ; ROM Code Protect

Do not write anything to the area used for shipping inspection by
Renesas.
Set the function setting ROM data value.

 Use the ROM writer to set the ROM code protect value.

102

Chapter 3
C Compiler: ICC740

3.1 Description of Basic Options
3.2 About the Extended Features

This chapter describes the options and functionality of the C compiler, ICC740.

103

3.1 Description of Basic Options

3.1.1 Summary of the Compiler Options
The following is a summary of all the compiler options.

Option Description

-Aprefix Assembly output to prefixed filename.

-a filename Assembly output to named file.

-b Make a LIBRARY module.

-C Allow nested comments.

-c ‘char’ is ‘signed char’.

-Dsymb[xx] Defined symbols.

-e Enable language extensions.

-F Form feed after function.

-f filename Extend the command line.

-G Open standard input as source.

-g[0][A] Global strict type checking.

-h Manages the INT_EXPR_STACK segment during multiple interrupts.

-Hname Set object module name.
-Iprefix Include paths.

-i Add #include file text.

-K Allow ‘//’ comments.

-L[prefix] List to prefixed source name.

-l filename List to named file.

-m[tl] Memory model.

-Nprefix Preprocessor to prefixed filename.

-n filename Preprocessor to named file.

-Oprefix Set object filename prefix.

-o filename Set object filename.

-P Generate PROMable code.

-plines Formats a list into a page.

-q Insert mnemonics.

-Rname Code segment.

-r[012inre] Generate debug information.

-S Set silent operation.

-s[0-9] Optimize for speed.

-T Active lines only.

-tn Tab spacing.

-Usymb Undefine symbol.

-vn Processor configuration.

-w Disable warnings.

-X Explain C declarations.

-x[D][F][T][2] Cross reference.

-y Writable strings.

-z[0-9] Optimize for size.

104

3.2 Language extensions
This chapter summarizes the extensions provided in the 740 C Compiler to support specific features of the 740
microprocessor.

Introduction
The extensions are provided in three ways:

 As extended keywords. By default, the compiler conforms to the ANSI specifications and 740 extensions
are not available. The command line option -e makes the extended keywords available, and hence
reserves them so that they cannot be used as variable names.

 As #pragma keywords. These provide #pragma directives which control how the compiler allocates
memory, whether the compiler allows extended keywords, and whether the compiler outputs warning
messages.

 As intrinsic functions. These provide direct access to very low-level processor details.

3.2.1 Extended keywords summary
The extended keywords provide the following facilities:

Addressing control
Variables may be forced into the Zero Page area with zpage, or out of Zero Page with npage.
Also, variables can be declared as a single-bit zero page variable depending on a bit.
zpage, npage

Non-volatile ram
Variables may be placed in non-volatile RAM by using the following data type modifier:
no_init

I/O access
The sfr data type can be used to declare byte I/O identifiers.
sfr

Interrupt routines
Interrupt handlers and non-interruptable routines may be written in C using the following keywords:
interrupt monitor

Calling procedure
Functions can have the calling sequences altered using the keyword give below.
tiny-func

105

3.2.2 Pragma directive summary
#pragma directives provide control of extension features while remaining within the standard language syntax.
Note that #pragma directives are available regardless of the -e option.
The following categories of #pragma functions are available:

Bitfield orientation
#pragma bitfields=default
#pragma bitfields=reversed

Extention control
#pragma language=default
#pragma language=extended

Function attribute
#pragma function=default
#pragma function=interrupt
#pragma function=intrinsic
#pragma function=monitor
#pragma function=tiny_func

Memory usage
#pragma codeseg
#pragma memory=constseg
#pragma memory=dataseg
#pragma memory=default
#pragma memory=no_init
#pragma memory=zpage
#pragma memory=npage

Warning message control
#pragma warnings=default
#pragma warnings=off
#pragma warnings=on

106

3.2.3 Predefined symbolssummary
Predefined symbols allow inspection of the compile-time environment.

Function Description

DATE Current date in Mmm dd yyyy format.
FILE Current source filename.
_IAR_SYSTEMS_ICC_ IAR C compiler identifier.
LINE Current source line number.
STDC ANSI C compiler identifier.
TID Target identifier.
TIME Current time in hh:mm:ss format.
VER Returns the version number as an int.

3.2.4 Other extensions

$ character
The character $ has been added to the set of valid characters in identifiers for compatibility with DEC/VMS C.

Use of sizeof at compile time
The ANSI-specified restriction that the sizeof operator cannot be used in #if and #elif expressions has been
eliminated.

107

Chapter 4
Assembler: A740

4.1 Description of Basic Options
4.2 Assembly Language Interface

This chapter describes the options and other features of the assembler, A740.

108

4.1 Description of Basic Options

4.1.1 Outline of the Assembler Options
The following is a summary of all the assembler options.

Option Description

-B Outputs macro execution information.

-b Make a LIBRARY module.

-c{DMEAO} Sets list options.

-Dsymb[=xx] Defined symbols.

-d Does not check whether #ifdef and #endif are in pairs.

-Enumber Sets the maximum number of errors.

-f filename Extend the command line.

-G Open standard input as source.

-Iprefix Adds include search prefix.

-i Lists include files.

-L[prefix] Generates a list in the prefixed source name.

-l filename Generates a list in the named file.

-Mab Sets macro argument quoted character

-N Does not attach a header to a list.

-Oprefix Set object filename prefix.

-o filename Set object filename.

-pnn Sets the number of lines in each page.

-r[en] Enables debugger output in an object.

-S Set silent operation.

-s{+|-} Discriminates user symbols between uppercase and lowercase.

-T Active lines only.

-tn Tab spacing.

-vn Processor configuration.

-Usymb Undefine symbol.

-uN Sets 16-bit addressing.

-w[string] Disables warning.

-x{DI2} Generates a cross reference list.

109

4.2 Assembly Language Interface
This section describes the interface between assembly language subroutines and C language functions that is used
when calling an assembly language subroutine from a C language function and vice versa.

4.2.1 Function Declaration
No matter which side whether a function is called from the C language or the assembly language side, a declaration of
the called function must be written on the assembly language side.
For this function declaration, write the assembler directive DEFFN in an assembly language source file. DEFFN is
required for the calculation of the C_ARGZ and C_ARGN segment sizes.

1) To call an assembly language subroutine from C language
 Set the auto-variable and argument sizes in the assembler directive DEFFN.
 Furthermore, if a function call is involved, write the called function in “call1,...”

If the function is to be used in interrupt handling, be sure to set the first parameter as shown below.

2) To call a C language function from assembly language
Set the argument sizes in the assembler directive DEFFN.

DEFFN sub1(0x200+a, 0, b, 0, 0x8000+x, 0, y, 0) [, call1, call2, ...]

 Auto-variable size to be set in the C_ARGZ segment

 Argument size to be set in the C_ARGZ segment

DEFFN sub1(a, 0, b, 0, 0x8000+x, 0, y, 0) [, call1, call2, ...]

 Argument size to be set in the C_ARGN segment

 Auto-variable size to be set in the C_ARGN segment

 Argument size to be set in the C_ARGZ segment

DEFFN sub2(0x8000+x, 0, y, 0)

 Argument size to be set in the C_ARGN segment

110

4.2.2 Calling an Assembly Language Subroutine from C Language
1) To call an assembly language subroutine without arguments and return values from C language

The following shows an example of how to write a program fragment for calling an assembly language subroutine
without arguments and return values from C language.

In the C language source, declare the assembly language subroutine as extern before it is called. In the called
assembly language subroutine, write processes for saving and restoring the index register X and processor status
register.

4.2.3 Calling a C Language Function from Assembly Language
1) To call a C language function without arguments and return values from assembly language

The following shows an example of how to write a program fragment for calling a C language function without
arguments and return values from assembly language.

To call a C language function in an assembly language subroutine, add REFFN in front of the function to be
called.
In the C language function, the EXPR_STACK segment (or INT_EXPR_STACK segment if an interrupt occurs)
is used for C runtime function calls, etc. This segment is manipulated with the index register X.
If the index register X is not indicating the EXPR_STACK segment, set up the index register X before a function
call.

 Example: LDX #LOW(SFE(EXPR_STACK))

extern void sub(void);
func5(void)
{

sub();
}

DEFFN sub(0,0,0,0,0x8000,0,0,0)
PUB sub
RSEG P:CODE

sub:
. . .
RTS

Saving/restoring:
Register X and
flag

a.c b.s31

void func1(void)
{

}

EXTERN func1
DEFFN func1(0x8000,0,0,0)
JSR REFFN func1

a.c

b.s31

Function call

Area for func1

CODE
segment

REFFN func1

111

2) To call a C language function with arguments from assembly language (Large model)
The following shows an example of how to write a program fragment for calling a C language function that has
arguments from assembly language.

Use PRMBN to set arguments to a C language function in an assembly language subroutine. The “PRMBN
function name + offset” indicates the position of the argument.

PRMBN func2+0

PRMBN func2+1

PRMBN func2+2

void func2(int i1,char c2)
{

}

a.c

; func2(0x123, 4);
EXTERN func2
DEFFN func2(0x8000, 0, 3, 0)
#define i1_low PRMBN func2+0
#define i1_high PRMBN func2+1
#define c2 PRMBN func2+2
LDA 4h
STA c2
LDA 23h
STA i1_low
LDA 1h
STA i1_high
JSR REFFN func2

b.s31

set 0x123

set 0x04

func2

C_ARGN segment

For Tiny or Zero-page model
this is PRMBZ

Argument size of the
C_ARGN segment

112

3) To call a C language function with return values from assembly language
The following shows an example of how to write a program fragment for calling a C language function that has
return values from assembly language.

The return value from a C language function, if char type or 1-byte data, is set in the accumulator. The return
values of other data types are stored in the EXPR_STACK segment.
Make sure that after a C language function is called in an assembly language subroutine, the return value is
assigned to assembly language data according to its type.
If the return value is stored in the EXPR_STACK segment, use the index register X for this assignment because
the position of the return value is indicated by the index register X. After assignment, increment the index register
X by an amount equal to the size of the return value.

char func3(void)
{

return c;
}
int func4(void)
{

return i;
}

; char_val = func3();
EXTERN func3
DEFFN func3(0x8000,0,0,0)
JSR REFFN func3
STA char_val

; int_val = func4();
EXTERN func4
DEFFN func4(0x8000,0,0,0)
JSR REFFN func4
LDA 0,X
STA int_val
LDA 1,X
STA int_val+1
INX
INX

a.c

c.s31

b.s31

Accumulator

Register X
Return value

EXPR_STACK
segment

Return value assigned
here

Return value
assigned here

 113

Chapter 5
Linker: XLINK

5.1 Description of the Basic Options
5.2 Description of Option Files

This chapter describes the options and other features of the linker, XLINK.

 114

5.1 Description of the Basic Options

5.1.1 Outline of the Options
The table below outlines the XLINK options used by the 740 family.

Option Content

–! comment –! Comment delimiter.

–C file,... Loads the file as a library.
 Supplement: To use cstartup.s31, specify –C.
 (Reason: The library contains a cstartup module, so that unless –C is specified, this
 module and cstartup.s31 will be used, resulting in a double-module error.)

-ccpu Processor type.
–D symbol = value Define symbol.

-d Disable code generation.

–e new = old [, old]... Rename external symbols.

–F format Output format.

–f file XCL filename.

-G No global type checking.

–H hexa value Disable code generation.

–I path Include paths.

–J size, method [, complement] Generates checksum.

–L directory Specifies a list file director.

–I file List to named file.

–o file Output file.

–p number of lines Lines/page.

-R[w] Disable range check.

-S Silent operation.

–w[number|s|t] Disable warnings.

-x[e][h][i][m][n][s][o] Cross reference.
 (Note: Refer to xlink.pdf.)

–Y[string] Format variant.

–y[string] Format variant.

–Z[@] segment Define segments.

 (Note: Refer to xlink.pdf.)

-z Segment overlap warnings.

 115

5.2 Description of Option Files

5.2.1 Description of the Link Command File
The link command file has a template prepared in it. To make it adapted for the target system, it must be altered
partly.
This section describes the link command file (lnk740.xcl) while at the same time explaining which part of it to change
and how, as necessary.

The link command file needs to be changed in the following cases:
1. A microcomputer that has different interrupt vector and memory locations from those of the default

microcomputer is used.
2. The C stack area is switched from 1-page memory to zero-page memory.
3. Location of each segment is changed.

Note that the numeric values in the link command file are processed in hexadecimal.

 116

Description of the lnk740.xcl file
lnk740.xcl: Lines 1–30

-! - lnk740.xcl -

 XLINK 4.44, or higher, command file to be used with the 740
 C-compiler V1.xx
 Usage: xlink your_file(s) -f lnk740

 $Id: lnk740.xcl 1.4 2001/07/16 14:14:59Z IJON Exp $

 IMPORTANT: 1. Use a COPY of this file.
 2. Select a C library at the end of this file
 that matches the compilation switches.
 3. If you use the 37600, see note about the
 INTVEC segment futher down.

 MODIFICATION: M38034M4

 First: define CPU -!

-c740

-! Setup "bit" segments (always zero if there is no need to reserve
 bit variable space for some other purpose) -!

-Z(BIT)BITVARS=200 -! address 40 (only) -!

-! Setup "ZPAGE" segments.
 We allocate 41-FF for zero page by default. It is assumed that
 00-3F is for SFRs while 40 is for a few "bit" variables.

Fixed to the 740 family

–Z specifies segment placement.
The word in () assigns type to the segment.
This type affects the manner in which segment overlapping is processed.
The following types are used in this link command file:
 BIT Bit memory
 ZPAGE Zero-page data memory
 NPAGE Data memory accessed by absolute addressing
 CODE Code memory

BITVARS locates variables whose
addresses are undetermined by a bit
declaration.
The BITVARS segment is specified
by a bit address (address in bit units)
from address 0.
For the 3803 group, since the SFR is
located at addresses up to 3FH, the
next address 40H is indicated by a
number of bits, 200H (= 40H x 8).

Defining the CPU

Defining the BITVARS segment

A range of lines from this to the
second occurrence of -!
comprises a comment.

 117

lnk740.xcl: Lines 31–60

 The following segment defintions (EXPR_STACK, INT_EXPR_STACK and
 CSTACK) that do not have an address given must fit inside the
 "41-FF" address range.
 If you have the CSTACK (processor stack) segment outside zero page,
 you have to give it an address and XLINK will no longer try to
 fit it within zero page. -!

-Z(ZPAGE)ZPAGE,C_ARGZ,Z_UDATA,Z_IDATA=41-FF

-! Setup "EXPR_STACK" segment. This zero page located stack is used
 to hold temporary when evaluating complex expressions.
 It is set to 20(hex) below. -!

-Z(ZPAGE)EXPR_STACK+20

-! Setup "INT_EXPR_STACK" segment. This zero page located stack is used
 to hold temporary when evaluating complex expressions for interrupt
 routines written in C. It is set to 0 below.
 You must give this stack space if you have C written interrupts that
 need an expression stack. -!

-Z(ZPAGE)INT_EXPR_STACK+0

-! Setup "CSTACK" segment. This is the CPU stack. Note that this can
 either reside in page 0 or 1 -!

-Z(NPAGE)CSTACK+40=100

Segment name + YY: The segment is
allocated in such a way that it will have
the set memory size (YYH bytes).

The segments separated by a comma
(,) are mapped to memory in the order
they are written.

The “ +0” here specifies that the size is 0.
Alter it as necessary.

The “ +20” here specifies that the size is 20H.
Alter it as necessary.

Setting an expression stack segment

Setting an interrupt expression stack segment

Setting a C stack segment

Setting zero-page RAM

* Note
The segments listed below must be located in zero page.
 BITVARS, ZPAGE, C_ARGZ, Z_UDATA, Z_IDATA,

EXPR_STACK and INT_EXPR_STACK

Specifies the address range 100H to 13FH for a C stack area.
To locate a C stack area in zero page, alter this line as shown below.
 -Z(ZPAGE) +40
 40H bytes of area will be allocated after INT_EXPR_STACK.
 * cstartup.s31 also needs to be altered.

Segment name = YY (-ZZ): The segment is
allocated in such a way that it will start from
the beginning address YYH of the specified
range. If no address ranges need to be
specified, write only the beginning address.

 118

lnk740.xcl: Lines 61–90

-! Setup "NPAGE" segments at address 1000-7FFF -!

-Z(NPAGE)NPAGE,C_ARGN,N_UDATA,N_IDATA,ECSTR=100-43F

-! Setup "RF_STACK" segment. This stack is used for recursive function.
 It is by default given a size of 256 bytes by the library. By giving
 a non-zero size below, you _expand_ the stack by that amount. -!

-Z(NPAGE)RF_STACK+0

-! Setup all read-only segments (PROM) at address 8000 -!

-Z(CODE)RCODE,Z_CDATA,N_CDATA,C_ICALL,C_RECFN,CSTR,CCSTR,CODE,CO
NST=C080-FEFF

-! Setup the "INTVEC" interrupt segment.
 If you are using the 37600 (chip group -v2) and the default cstartup
 reset vector, you must change the INTVEC line below to:
 -Z(CODE)INTVEC=FFC0-FFFF
 If you have a tiny chip derivative that does not have the interrupt
 vectors in page FF, you can change the page of the addresses below.
 CSTARTUP inserts the reset vector relative to INTVEC start which
 means that you can change the page without any problems:
 -Z(CODE)INTVEC=1FE0-1FFF
 -Z(CODE)C_FNT=1F00 -!

Setting nonzero-page RAM

Setting the special page C_FNT (next page)

Sets a area for the functions that use extended description
tiny_func. If CONST, etc. exceeds FF00H, C_FNT is located
following that segment.

When not using recursive functions,
specify +0 here.
When using recursive functions,
specify any value other than 0 here,
so that the stack is assigned 256 + 2
bytes of storage. Two bytes are used
to hold the address of RF_STACK for
management purpose.

Specify an address range from the beginning of the
interrupt vector to the end of the reset vector.
The example here applies to the 3803 group. Alter it to
suit the MCU used.

Setting ROM

Specifies the segments to be located in
N-page memory.
Although this specification begins with
address 100H, since CSTACK uses an
address range of up to 13FH, NPAGE is
140H.
2 bytes are used to hold the address of
RF_STACK.

Setting the interrupt vector INTVEC (next page)

Sets the segments to be located in
ROM and their addresses.
For microcomputers that have a
reserved area, make sure these
addresses do not include the reserved
area.
Make sure also that these addresses
do not include the vector area.

 119

lnk740.xcl: Lines 91–122

-Z(CODE)INTVEC=FFDC-FFFD
-Z(CODE)C_FNT=FF00-FFDB

-! See configuration section concerning printf/sprintf -!
-e_small_write=_formatted_write

-! See configuration section concerning scanf/sscanf -!
-e_medium_read=_formatted_read

-! This example files selects the default library which is
 tiny memory model and a 740 with MUL/DIV.
 This corresponds to option -mt and -v0 to the compiler.
 If you want to use another library, you can do it by
 removing the comments around it and adding comments around
 the default library. -!

-C cl7400l

-! -C cl7400t -! -! -v0 -mt -!
-! -C cl7400l -! -! -v0 -ml -!
-! -C cl7401t -! -! -v1 -mt -!
-! -C cl7401l -! -! -v1 -ml -!
-! -C cl7402t -! -! -v2 -mt -!
-! -C cl7402l -! -! -v2 -ml -!

-! Code will now reside on file aout.a31 in INTEL-STANDARD format -!

-e A=B: Changes the existing external symbol name B to a
new name A.

–medium_write Floating-point numbers unsupported
–small_write Only %%, %d, %o, %c, %s and %x

supported
–medium_read Floating-point numbers unsupported

Changing the formats of printf, scanf, etc.

Since the library functions that use printf and other
formats are large in size, the necessary size may
be reduced by changing the types of variables to
be displayed.
When not using printf and other formats, there is
no need to change.

 120

The segment placement in the lnk740.xcl file is as shown below.

 Zero-page RAM

(Zero-page memory)

Nonzero-page RAM
(N-page memory)

ROM
(Code memory)

0x00
 0x100

CSTACK (0x40)
0xC080

RCODE (Variable)

0x40
 BITBARS (0x1) 0x140 NPAGE (Variable) Z_CDATA (Variable)

0x41
 ZPAGE (Variable) C_ARGN (Variable) N_CDATA (Variable)

 C_ARGZ (Variable) N_UDATA (Variable) C_ICALL (Variable)

 Z_UDATA (Variable) N_IDATA (Variable) C_RECFN (Variable)

 Z_IDATA (Variable) ECSTR (Variable) CSTR (Variable)

 EXPR_STACK (0x20) RF_STACK (0x0) CCSTR (Variable)

INT_
EXPR_STACK (0x20)

CODE (Variable)

0xFF CONST (Variable)

 0x43F

 0xFFxx C_FNT (Variable)

0xFFDC

0xFFFD

INTVEC (0x22)

0xFFFF

The variable segment sizes are set by the linker XLINK.
Although C_FNT can be located beginning with 0xFF00, if the CONST segment exceeds 0xFF00, C_FNT is located
following that segment.

121

Chapter 6
Debugger

6.1 Starting the Debugger
6.2 Setting Up the Simulator

6.3 Creating a MCU File for the Simulator

This chapter describes mainly the functionality of the High-performance
Embedded Workshop (HEW) as a “debugger.”

122

6.1 Starting the Debugger
This section describes how to connect and close the 740 simulator in the debugger.
The debugging can be started by connecting with the simulator.

6.1.1 Connecting the Simulator
Connect the simulator by simply switching the session file to one in which the setting for the simulator use has been
registered.

Select “Session740_Simulator” from the drop-down list of the tool bar shown below.

After the session name is selected, the dialog box for setting the debugger is displayed and the simulator will be
connected.
For details on setting-up, see section 6.2 and 6.3.
After the setting is finished, the connection will be completed.

6.1.2 Ending the Simulator
The simulator can be exited by using the following methods:
1. Selecting the "DefaultSession"

Select the "DefaultSession" in the list box that was used at the time of simulator connection.
2. Exiting the High-performance Embedded

Workshop Select [Exit] from the [File] menu. High-performance Embedded Workshop will be ended.

The message box, that asks whether to save a session, will be displayed when the session is switched or HEW is
exited. If necessary to save it, click the [Yes] button. If not necessary, click the [No] button

123

6.2 Setting Up the Simulator

6.2.1 Init Dialog
The Init dialog box is provided for setting the items that need to be set when the debugger starts up. The contents set
from this dialog box are also effective the next time the debugger starts.
In the Init dialog box, specify an MCU file. You can use “Refer…” button and select an MCU file from the ensuing
list. If the MCU file for your microcomputer cannot be found, create an MCU file.

You can open the Init dialog using either one of the following methods:
• After the simulator gets started, select Menu - [Setup] → [Simulator] → [System...].
• Start Debugger while holding down the Ctrl key.

124

6.3 Creating an MCU File for the Simulator
If the MCU file for your microcomputer cannot be found, create an MCU file here.
In the MCU file, write the following contents in the order listed below. For the file name, specify the MCU name
(“m3xxxx.mcu). For the extension, specify ".mcu". Write each address in hexadecimal. Do not add the prefix that
represents the radix.
Please describe information on 3-6 referring to the data book on MCU used.

1. MCU name
2. Reserved number
3. CPU mode register address and stack page select bit number
4. Reset Vector address
5. BRK vector address
6 Interrupt vector address information
• MCU name and Reserved number

Always be sure to add a semicolon (;)

• CPU mode register address and stack page select bit number

Separate the CPU mode register address and the stack page select bit number with a colon (:).

• Reset vector address information

Add the word ":RST" after the reset vector address.

• BRK vector address information

Add the word ":BRK" after the BRK vector address.

• Interrupt vector address information

Separate between the interrupt vector address and interrupt control register address, and between the interrupt control register
address and interrupt control bit number with a colon (:). Interrupt vector information can be written for up to 32 points.

Example

The following shows an example (m38000.mcu).

;M38000
;1
3B:2
FFFC:RST
FFDC:BRK
FFFA:3E:0
FFF8:3E:1
FFF6:3E:2
FFF4:3E:3
FFF2:3E:4
FFF0:3E:5
FFEE:3E:6
FFEC:3E:7
FFEA:3F:0
FFE8:3F:1
FFE6:3F:2
FFE4:3F:3
FFE2:3F:4
FFE0:3F:5

125

Chapter 7
Tips for Coding

Paying only a little attention during coding in C language is in many cases
conducive to creating a program with better code efficiency. This chapter
provides tips for the increased efficiency of coding.

126

1) Use optimization options

Although not a tip for coding, specifying an optimization option helps to improve on code size or execution
speed.
There are two types of optimization options, one designed to reduce the code size, and one aiming to increase
the execution speed.

 Value Level
 0 Not optimized
 1–3 Fully debuggable
 4–6 Some structures undebuggable
 7–9 Fully optimized

 The –s option cannot be used simultaneously with the –z option.

–z1 to –z9: Size priority optimization

–s1 to –s9: Speed priority optimization

127

2) Use the smallest integer type possible

To define variables, try using the smallest integer type possible according to the purpose of use. This will
lead to generation of codes efficient in both code size and execution speed.

ex
char ch;
short si;
long li;

void main(void)
{
 ch--;
 si--;
 li--;
}

 7 ch--;
\ 000000 C6.. DEC zp:ch
 8 si--;
\ 000002 C6.. DEC zp:si
\ 000004 A5.. LDA zp:si
\ 000006 3A INC A
\ 000007 D002 BNE ?0000
\ 000009 C6.. DEC zp:si+1
\ ?0000:
 9 li--;
\ 00000B 32 SET
\ 00000C CA DEX
\ 00000D A5.. LDA zp:li+3
\ 00000F CA DEX
\ 000010 A5.. LDA zp:li+2
\ 000012 CA DEX
\ 000013 A5.. LDA zp:li+1
\ 000015 CA DEX
\ 000016 A5.. LDA zp:li
\ 000018 12 CLT
\ 000019 32 SET
\ 00001A CA DEX
\ 00001B A9FF LDA #255
\ 00001D CA DEX
\ 00001E A9FF LDA #255
\ 000020 CA DEX
\ 000021 A9FF LDA #255
\ 000023 CA DEX
\ 000024 A9FF LDA #255
\ 000026 12 CLT
\ 000027 20.... JSR np:?L_ADD_L03
\ 00002A B500 LDA zp:0,X
\ 00002C 85.. STA zp:li
\ 00002E B501 LDA zp:1,X
\ 000030 85.. STA zp:li+1
\ 000032 B502 LDA zp:2,X
\ 000034 85.. STA zp:li+2
\ 000036 B503 LDA zp:3,X
\ 000038 85.. STA zp:li+3
\ 00003A E8 INX
\ 00003B E8 INX
\ 00003C E8 INX
\ 00003D E8 INX

30bytes

128

3) Use variables of unsigned int type

The 740 family is characteristic in that better ROM efficiency is obtained by using variables of unsigned int
type rather than using variables of signed int type. The ROM efficiency is increased especially when type
conversion, comparison, array indexing, shift or division are performed.

ex int i;

if (i<5) i=0;

unsigned int ui;

 if (ui<5) ui=0;

\ 000010 32 SET
\ 000011 CA DEX
\ 000012 AD.... LDA np:i+1
\ 000015 CA DEX
\ 000016 AD.... LDA np:i
\ 000019 CA DEX
\ 00001A A900 LDA #0
\ 00001C CA DEX
\ 00001D A905 LDA #5
\ 00001F 12 CLT
\ 000020 20.... JSR np:?SS_CMP_L02
\ 000023 B008 BCS ?0004
\ 000025 A000 LDY #0
\ 000027 8C.... STY np:I
\ 00002A 8C.... STY np:i+1

\ 00002E 38 SEC
\ 00002F AD.... LDA np:ui
\ 000032 E905 SBC #5
\ 000034 AD.... LDA np:ui+1
\ 000037 E900 SBC #0
\ 000039 B008 BCS ?0006
\ 00003B A000 LDY #0
\ 00003D 8C.... STY np:ui
\ 000040 8C.... STY np:ui+1

129

4) Use bit fields for bit processing

For bit determination or on/off, better code efficiency is obtained by using bit fields rather than using AND
or OR.

ex

typedef union {
 unsigned char byte;
 struct {
 unsigned char b0:1;
 unsigned char b1:1;
 unsigned char b2:1;
 unsigned char b3:1;
 unsigned char b4:1;
 unsigned char b5:1;
 unsigned char b6:1;
 unsigned char b7:1;
 } bitf;
} BYTE_BIT;
unsigned char uc;
BYTE_BIT data;
if ((uc & 0x04) == 0) {
 uc |= 0x04;
}
if (data.bitf.b2 == 0) {
 data.bitf.b2 = 1;
}

000063 A904 LDA #4
000065 2D.... AND np:uc
000068 1A DEC A
000069 D007 BNE ?0005
00006B AD.... LDA np:uc
00006E 4B SEB 2,A
00006F 8D.... STA np:uc
 ?0005:

000072 AD.... LDA np:data
000075 4304 BBS 2,A,?0007
000077 4B SEB 2,A
000078 8D.... STA np:data
 ?0007:

130

5) For switch statements, pay attention to the type of condition determination expression and the number of
case labels

The switch statement uses a jump table-based C runtime library according to the type of condition
determination expression and the number of case labels.
The ROM efficiency can be increased by using a small-size C runtime library.

Type Number of
case labels

C runtime library Library size

4 – signed char
5 ?C_S_SWITCH_L06
4 – unsigned char
5 ?C_S_SWITCH_L06

signed short 1 ?S_V_SWITCH_L06
unsigned short 1 ?S_V_SWITCH_L06

signed int 1 ?S_V_SWITCH_L06
unsigned int 1 ?S_V_SWITCH_L06
signed long 1 ?L_V_SWITCH_L06

unsigned long 1 ?L_V_SWITCH_L06

small

big

switch(type) {
case 1:
 ...
 ...
case xx:
}

ex

131

6) Declare the function prototype

If any function is called without making a prototype declaration, the compiler assumes that the called
function is one that returns a value of int type.
This will result in unnecessary codes being generated. Therefore, always be sure to write a function prototype
declaration before calling the function.

\ 000000 20.... JSR np:REFFN func1
\ 000003 E8 INX
\ 000004 E8 INX

\ 000000 20.... JSR np:REFFN func1

ex

void xxx(void)
{
 func1();

void func1(void);
void xxx(void)
{
 func1();

Warning[52]:

740 specific: 'No prototype for function "func1",

assuming that it returns int'

132

7) Use an explicit cast

Use an explicit cast.

8) Write expressions simply

Rather than writing one complex expression, divide it into two or more simple expressions.

9) Avoid a complicated use of suffix operators

Use of suffix operators requires full knowledge about the priority and associativity of operators. An
inconsiderate use of suffix operators may produce unexpected results.

char c1; int i1,i2;
c1 = i1 + i2;

char c1; int i1,i2;
c1 = (char)i1 + (char)i2;

ex

((6+ch1)*ch2)*ch1;
tmp = 6+ch1;
tmp = tmp*ch2; /* char tmp; */
return tmp*ch1;

ex

 char *src ;
 char *dest ;
 while(*src){
 *dest = *src ;
 dest++ ;
 src++ ;
 }

 char *src ;
 char *dest ;
 while(*src){
 *dest++ = *src++ ;
 }

ex

133

Chapter 8
Estimating the Stack Size

8.1 Default Stack Size
8.2 EXPR_STACK and INT_EXPR_STACK

Segments

8.3 CSTACK Segment

8.4 C_ARGN and C_ARGZ Segments

8.5 RF_STACK Segment

8.6 Amount of Stack Used by ICC740 Runtime

Functions

This chapter explains how to estimate the necessary stack size.

134

8.1 Default Stack Size
In the C compiler package for the 740, when a project is created the respective stack sizes are set by default, as shown
below.

EXPR_STACK segment 32 bytes
INT_EXPR_STACK segment 32 bytes (for Tiny model, 16 bytes)
CSTACK segment 64 bytes
C_ARGN segment Set by the linker
C_ARGZ segment Set by the linker
RF_STACK segment Set by the linker

To change the default stack sizes, estimate the necessary size of each stack as described below.

8.2 EXPR_STACK and INT_EXPR_STACK Segments
Estimation method: Use the size (a) or (b) whichever is larger.

(a) Amount of stack used by runtime functions

(a-1) Simple estimate
• 4 bytes for arithmetic operations of short and int types
• 8 bytes for arithmetic operations of long type
• 16 bytes for arithmetic operations (additions) of float and double types

(a-2) Detail estimate
• Maximum value of the runtime functions used

(b) Maximum size out of the return value sizes of user-defined functions

* If return values are used directly in arithmetic operations without being assigned to variables, add the sizes
of return values.

8.3 CSTACK Segment
Estimation method: Add up the sizes (a) through (f).

(a) Maximum number of nested levels of function 2 bytes (return address)
(b) Maximum number of nested levels of interrupt function 2 bytes (return address)
(c) Amount of stack used during interrupt (2 bytes for return address + 4 bytes for register)
(d) Amount of stack used when MUL/DIV instructions are executed
(e) Amount of stack manipulated in an assembly language statement
(f) Amount of CSTACK used by runtime functions

* The nested structures of functions can be confirmed by specifying the option -xmso to the linker.

135

8.4 C_ARGN and C_ARGZ Segments
Estimation method: No stack sizes can be set because the linker sets the stack size.

8.5 RF_STACK Segment
Estimation method: If an area larger than 256 bytes set by the linker needs to be set, set the desired additional size.

 -Z(NPAGE) RF_STACK+10

136

8.6 Amount of Stack Used by ICC740 Runtime Functions
RunTime Function EXPR_STACK CSTACK Call
8-bit integer
?C_ADD_L01 add 2 2
?C_SUB_L01 sub 2 2
?C_MUL_L01 multiplication 2 3
?C_FIND_SIGN_L01 character sign finding 2 3
?C_DIVMOD_L01 character division and modulo 3 2

?SC_DIV_L01

signed character division 3

5

?C_DIVMOD_L01
?C_FIND_SIGN_L01

?UC_DIV_L01 unsigned division 2 3

?SC_MOD_L01

signed character modulo 3

6

?C_DIVMOD_L01
?C_FIND_SIGN_L01

?UC_MOD_L01 unsigned modulo 2 4
?C_SHL_L01 left_shift_A_Y_steps 0 2
?SC_SHR_L01 right_signed_shift_A_Y_steps 0 2
?UC_SHR_L01 right_unsigned_shift_A_Y_steps 0 2
?UC_CMP_L01 unsigned_compare 2 2
?SC_CMP_L01 signed_compare 2 2
16-bit integer
?S_ADD_L02 add 4 2
?S_AND_L02 and 4 2
?S_ORA_L02 or 4 2
?S_EOR_L02 xor 4 2
?S_SUB_L02 sub 4 2
?S_MUL_L02 multiplication 6 3
?S_FIND_SIGN_L02 character sign finding 4 3
?US_DIV_L02 unsigned division 7 2
?S_DIVMOD_L02 character division and modulo 7 2

?SS_DIV_L02

signed word division 7

5

?S_DIVMOD_L02
?S_FIND_SIGN_L02

?SS_MOD_L02 signed word modulo 7 6 ?S_DIVMOD_L02
?S_FIND_SIGN_L02

?US_MOD_L02 unsigned modulo 7 4 ?S_DIVMOD_L02
?S_SHL_L02 left_shift_NOS_TOS:8_steps 3 2
?SS_SHR_L02 right_signed_shift_NOS_TOS:8_steps 3 2 (?US_SHR_L02)
?US_SHR_L02 right_unsigned_shift_NOS_TOS:8_steps 3 2
?SS_CMP_L02 signed_compare 4 2
?US_CMP_L02 unsigned_compare 4 2
?US_ZERO_L02 is_zero 2 2
32-bit integer
?L_ADD_L03 add 8 2
?L_AND_L03 and 8 2
?L_OR_L03 or 8 2
?L_XOR_L03 xor 8 2
?L_SUB_L03 sub 8 2
?L_MUL_L03 multiplication 12 3
?L_FIND_SIGN_L03 character sign finding 8 3
?UL_DIV_L03 unsigned division 13 2
?L_DIVMOD_L03 long division and modulo 13 2

137

?SL_DIV_L03

signed long division 13

5

?L_DIVMOD_L03
?L_FIND_SIGN_L03
?L_NOT_L03
?L_INC_L03

?SL_MOD_L03

signed long modulo 13

6

?L_DIVMOD_L03
?L_FIND_SIGN_L03
?L_NOT_L03
?L_INC_L03

?UL_MOD_L03 unsigned modulo 13 4 ?L_DIVMOD_L03
?L_SHL_L03 left_shift_NOS_TOS:8_steps 5 2
?SL_SHR_L03 right_signed_shift_NOS_TOS:8_steps 5 2 (?UL_SHR_L03)
?UL_SHR_L03 right_unsigned_shift_NOS_TOS:8_steps 5 2
?SL_CMP_L03 signed_compare 8 2
?UL_CMP_L03 unsigned_compare 8 2
?L_ZERO_L03 is_zero 4 2

?L_TEST_L03

test 8

4

?L_SUB_L03,
(?L_ZERO_L03)

?L_NOT_L03 not 4 2
?L_INC_L03 increment 4 2
32-bit floating-point

?F_MUL_L04

Floating point Multiplication 12

4

?F_UNPACK_L04
(?F_PACK_2_L04)
(?F_ROUND_L04)
(?F_OVERFLOW_TEST_L
04)
(?F_OVERFLOW_TEST1_
L04)
(?F_UNDERFLOW_L04)
(?F_EXIT_L04)

?F_DIV_L04

Floating point division 12

4

?F_UNPACK_L04
(?F_PACK_L04)
(?F_PACK_2_L04)
(?F_UNDERFLOW_L04)
(?F_OVERFLOW_TEST1_
L04)
(?F_UP_ROUND_L04)

?F_ADD_L04

Floating point addition 12

4

?F_UNPACK_L04
(?F_PACK_2_L04)
(?F_ROUND_L04)
(?F_EXIT_L04)
(?F_UNDERFLOW_L04)
(?F_OVERFLOW_L04)

?F_SUB_L04

Floating point subtraction 12

4

?F_UNPACK_L04
(?F_PACK_2_L04)
(?F_ROUND_L04)
(?F_EXIT_L04)
(?F_UNDERFLOW_L04)
(?F_OVERFLOW_L04)

?SL_TO_F_L04 Cast a signed long integer 4 5 ?F_0_SUB_L04
?UL_TO_F_L04 Cast a unsigned long integer 4 3
?F_TO_L_L04 Cast a floating point 4 3 (?F_0_SUB_L04)
?F_CMP_L04 Float compare 8 2
?F_UNPACK_L04 Internal entry 0 0

?F_ROUND_L04

Internal entry 0

0

(?F_PACK_L04)
(?F_UP_ROUND_L04)

?F_UP_ROUND_L04 Internal entry 0 0 (?F_PACK_L04)

138

?F_PACK_L04

Internal entry 0

0

(?F_UNDERFLOW_L04)
(?F_OVERFLOW_TEST_
L04)
(?F_EXIT_L04)

?F_PACK_2_L04 Internal entry 0 0 ?F_PACK_L04)
?F_UNDERFLOW_L04 Internal entry 0 0 (?F_EXIT_L04)
?F_OVERFLOW_L04 Internal entry 0 0 (?F_EXIT_L04)
?F_OVERFLOW_TEST_L04 Internal entry 0 0 (?F_EXIT_L04)
?F_OVERFLOW_TEST1_L04 Internal entry 0 0 (?F_EXIT_L04)
?F_NEG_OVERFLOW_L04Internal entry 0 0 (?F_EXIT_L04)
?F_0_SUB_L04 Internal entry 0 0
?F_EXIT_L04 Internal entry 0 0
switch
?C_S_SWITCH_L06 switch (char):series 1 2
?S_S_SWITCH_L06 switch (short):series 2 2
?L_S_SWITCH_L06 switch (long):series 6 2
?C_V_SWITCH_L06 switch (char) 2 2
?S_V_SWITCH_L06 switch (short) 4 2
?L_V_SWITCH_L06 switch (long) 6 2
Function enter/leave
?ENTER_L08 Function enter, save DP0 and DP1 0 4
?LEAVE_L08 Function leave, restore DP0 and DP1 0 0
?ENTER_FP_L08 Function enter, save DP0, DP1 and FP 0 6
?LEAVE_FP_L08 Function leave, restore DP0, DP1 and FP 0 0
Stack
?IND_STK_16_DP0_L09 (tos) -> tos 2 3
?IND_STK_16_DP1_L09 (tos) -> tos 2 3
?IND_STK_16_L09 (tos) -> tos 2 5
?IND_DP0_DP1_L09 (dp0) -> dp1 0 3
?IND_DP1_DP0_L09 (dp1) -> dp0 0 3
?STK_TO_DP0_L09 TOS -> dp0 2 3
?STK_TO_DP1_L09 TOS -> dp1 2 3
?DP0_TO_STK_L09 DP0 -> TOS 0 2
?DP1_TO_STK_L09 DP1 -> TOS 0 2
?IND_DP0_L09 (dp0) -> dp1 0 4
?IND_DP1_L09 (dp1) -> dp0 0 4
?PUSH_A_16_L09 0 A -> TOS 0 3
?MOVE_LONG_L09 Block move (dp1) -> (dp0) 2 3
?PUSH_DP0_L09 dp0 -> cpu stack 0 4
?POP_DP0_L09 cpu stack --> dp0 0 0
?PUSH_DP1_L09 dp1 -> cpu stack 0 4
?POP_DP1_L09 cpu stack --> dp1 0 0

For the functions such as four rules of arithmetic that have a return value, the return value is set in the area of
EXPR_STACK.
For () of Call, the jmp instruction is used.
If a call to any lower-level function is involved, the stack size of the lower-level function is included.
For CSTACK, the return address size of lower-level function 1 is included.
0 for ?POP_DP0_L09 includes a subtracted value (–2) from 2 for ?PUSH_DP0_L09. The same applies
to ?POP_DP1_L09 too.
The Internal entry value under the heading “32-bit floating-point” is included in the upper-level function, so that the
stack size is 0.
?LEAVE_L08 is a pair function of ?ENTER_L08. LEAVE_FP_L08 is a pair function of ?ENTER_FP_L08.

139

Chapter 9
Interrupt Handling

9.1 Interrupt Handling
9.2 Multiple Interrupts

This chapter describes interrupt handling of ICC740.

140

9.1 Interrupt Handling
The ICC740 allows interrupt handling to be written as C language functions. The procedure consists of the following
four steps:

(1) Writing the interrupt handling function
(2) Setting the interrupt disable flag (I flag)
 Do this by using an inline function.
(3) Registering the interrupt vector area
(4) Setting up the interrupt vector segment

9.1.1 Example for Writing Interrupt Handling Functions
This section shows an example for writing a program that clears the content of the “counter” to 0 each time an INT0
interrupt (rising edge) occurs in the 3803 group and counts up the content of the “counter” each time an INT2
interrupt (falling edge) occurs.

Example for writing interrupt handling functions
An example of how to write the source file is shown below.

#include <intr740.h> /* Header file for inline function */
#include "sfr_3803h.h" /* SFR header file for the 3803H group */
unsigned char counter ;

interrupt [30] void INT0_TimerZ(void) /* Interrupt handling function */
{
 cld_instruction() ; /* CLD instruction to initialize decimal mode flag */
 counter = 0 ;
}

interrupt [8] void Int2(void) /* Interrupt handling function */
{
 cld_instruction() ; /* CLD instruction to initialize decimal mode flag */
 if(counter < 9){
 counter++ ;
 } else {
 counter = 0 ;
 }
}

void main(void)
{
 /* (1) Set the interrupt edge select bit and interrupt source bit */
 INTEDGE.0 = 1 ; /* INT0 asserted by a rising edge */
 INTEDGE.3 = 0 ; /* INT2 asserted by a falling edge */
 INTSEL.0 = 0 ; /* Interrupt source → INT0 interrupt */

 /* (2) Past one or more instructions, set the corresponding interrupt request bit to 0 (not
requested) */
 nop_instruction() ; /* Insert one instruction */
 IREQ1.0 = 0 ; /* INT0 interrupt request bit → Not requested */
 IREQ2.3 = 0 ; /* INT2 interrupt request bit → Not requested */

 /* (3) Set the corresponding interrupt enable bit to 1 (enabled) */
 ICON1.0 = 1 ; /* INT0 interrupt enable bit → Enabled */

ICON2.3 = 1 ; /* INT2 interrupt enable bit → Enabled */

 enable_interrupt() ; /* CLI instruction to enable interrupt */
 while(1) ; /* Interrupt wait loop */
}

Defined in “sfr_3803h.h”
sfr INTSEL = 0x00039;
sfr INTEDGE = 0x0003a;
sfr IREQ1 = 0x0003c;
sfr IREQ2 = 0x0003d;
sfr ICON1 = 0x0003e;
sfr ICON2 = 0x0003f;

ICON1.0 denotes bit 0 of SFR
ICON1.

Processor Status Register
(Automatically saved to the stack
during interrupt)
• D and T flags

Initialized by init_C in
cstartup.s31.

• I flag
Set to 1 (disabled) immediately
after the microcomputer is reset.

If none of the decimal mode flags
are used in the program, they do
not need to be initialized in the
interrupt handling function.

141

9.1.2 Writing Interrupt Handling Functions
The ICC740 allows interrupt handling functions to be written in C or assembly language.
This section describes the basic method for writing interrupt handling functions in C language.

Basic method for writing interrupt handling functions (C language)

Use the extended keyword interrupt to define interrupt handling functions. An example of how to write and
an expanded image are shown below.

When written as shown above, the program saves and restores the 740 family registers and generates the RTI
instruction, in addition to ordinary function procedures on entry and exit to and from the function. Note that
the number of registers to be saved and restored varies depending on the content of the interrupt handling
function concerned.

By specifying the off-set value with a bracket from the starting address of the interrupt vector immediately
after “interrupt”, an address of the interrupt handling routine is inserted into the vector and this function is
called when an interrupt is generated. When the off-set value is not specified, the vector table of the interrupt
function is defined in the cstartup.s31 file (declare the interrupt handling function by the simulated
instruction “EXTERN” as an external reference and register it to the interrupt vector).

* The valid types of interrupt handling functions are only the void type, for both arguments and return values.

All other types, if any declared, result in an error when compiled.

Notes on Interrupt
Do not call the function which is normally called in the interrupt function.

<Reason>
Since dynamic variable is located statically, the automatic variable of the function is rewritten when an
interrupt is generated while the function is normally called.

To call the function which is normally called in the interrupt function, provide two same functions for normal
and interrupts.

The indirect calling function has the same limitations as above.

 RSEG CODE
intr:
 PHA
 ...
 ; Interrupt handling
 ...
 PLA
 RTI

Expanded
image

Save registers

Restore registers

Return by RTI instruction

interrupt [4] void intr (void)
{
 ...
 /* Interrupt handling */
 ...
}

Off-set value from the beginning
address of the interrupt vector Interrupt function name

Valid only for the “void” type, for both
arguments and return values.

142

The unfilled functions which do not describe sentences are left for the unused interrupt functions as follows.

Only the RTI instruction is generated by describing as above. Therefore, the RTI instruction is executed and
program continues when an unexpected interrupt is generated.
When the unexpected interrupt is generated as another description besides the above-mentioned, describe as
follows to execute from init_C as at reset:

9.1.3 Setting the Interrupt Disable Flag (I Flag)

Setting the interrupt disable flag (I flag)

For interrupts to be generated, the interrupt disable flag (I flag) must be cleared to 0 (enabled) by the CLI instruction.
The ICC740 allows the I flag to be set by an inline function. To use inline functions, make sure “intr740.h” is
included.

In the above example, enable_interrupt() and disable_interrupt() are replaced with the CLI instruction to clear the I
flag to 0 and the SEI instruction to set the I flag to 1, respectively.

#include <intr740.h>

void main(void)
{
 enable_interrupt() ;
 while(1) ;
 disable_interrupt() ;
}

main:
 CLI
?0003:
 BRA ?0003
 SEI
 RTS

Expanded
image

enable_interrupt()

disable_interrupt()

Column How to jump to init_C (startup) from interrupt handling function

extern void init_C(void) ;
 ・
 ・
 ・
interrupt [28] void Int1(void)
{
 __asm("JMP init_C") ;
}

c source file

DEFFN init_C(0, 0, 0, 0, 0x8000, 0, 0, 0)
PUBLIC init_C

startup.s31 file
Add one line to declare
init_C (assembly language
function) as extern

Interrupt function which is not normally called

Describe an instruction to jump
to init_C using asm function

Add these two lines to the
point before init_C
(beginning of the file)

interrupt [28] void Int1(void)
{
}

143

9.1.4 Registering the Interrupt Vector Area

Registering interrupt vector area

Alter the content of the INTVEC segment in the cstartup.s31 included with the ICC740 according to the interrupt
area of the microcomputer used.

Assign the size of the interrupt vector area with the BLKB simulated instruction. At this time, since reset is not an
interrupt to be generated on purpose, specify the size in which two bytes are subtracted.

The reset vector is set at the bottom. At reset, the program starts from init_C that is registered in the reset vector.

9.1.5 Setting Up the Interrupt Vector Segment

Setting up the interrupt vector segment

To set up the interrupt vector segment, set the addresses given below in the interrupt vector segment
“INTVEC” of the link command file “lnk740.xcl.”

* Make sure the beginning and ending addresses of the interrupt vector area you set here suit the
microcomputer used.

 COMMON INTVEC

?CSTARTUP_INTVEC:
 BLKB 0FFFEH - 0FFDCH -2 ; 3803 Group
#if 0
#if defined(MELPS_37600)
 BLKB 40H - 6 ; FFFA (FFC0 + 40 - 6) (-v2)
#elif defined(MELPS_MULDIV)
 BLKB 20H - 4 ; FFFC
#else
 BLKB 20H - 2 ; FFFE
#endif
#endif
?CSTARTUP_RESETVEC:
 WORD init_C

ENDMOD init_C

-Z(CODE)INTVEC=FFDC-FFFD
Beginning and ending addresses of the
interrupt vector area

144

9.2 Multiple Interrupts

9.2.1 How to Use Multiple Interrupts
This section describes necessary setting, notes, and how to describe functions to use multiple interrupts.

Notes to use multiple interrupts

Program the interrupt function B with the following points in the program such as the figure below
• Simple handling such as the flag setting or counter update
• Do not call C run time library.
• Do not use a function as a multiple interrupt function when it has a local variable used for an interrupt
function which enables multiple interrupts.
<Reason>
To call the C run time library and functions but the char type return value, an interrupt expression stack is
used.
The interrupt expression stack is an area to hold the result temporarily while the expression is evaluated by
the interrupt handling.
This area is commonly used for all interrupts. Therefore, they are used for the interrupt function A will be
overwritten by using the interrupt expression stack for the interrupt function B.

* The C run time library is to be automatically called according to the need of a compiler, but it cannot be
expressly called on a program. The C run time library can be called by multiple calculations such as
signed char type division.

Compile option

To use multiple interrupts, it is necessary to add -h to the compile option of the ICC740.

There are the following ways to use the interrupt expression stack for the interrupt function B in the above
diagram.
• An interrupt is disabled while the interrupt expression stack is used for the interrupt function A. However, real

time program will be lost.
• Describe the calculation parts of the interrupt function B in the assembly language and try not to use the

interrupt expression stack.
• If the interrupt expression stack has not been used for the interrupt function A, there is no problem to use the

interrupt expression stack for the interrupt function B.
 (The content of the interrupt expression stack will not be overwritten if either the interrupt function A or B is

used.)

Column Application example to use interrupt expression stack by multiple interrupts

main
func Interrupt

function A
Interrupt

function B

145

9.2.2 Definition on multiple interrupts

Setting is performed to use multiple interrupts in the following cstartup.s31.

“Use” is selected for the default. To use multiple interrupts, leave this line. When multiple interrupts are not
used, delete ; at the beginning of the last line and use as not a comment line but a valid line.

The settings are performed for multiple interrupts at these 2 points. To use multiple interrupts
(NO_INTERRUPTABLE_ISR is not defined), this point is assembled. When multiple interrupts are not used
(NO_INTERRUPTABLE_ISR is defined), this point is not assembled.

;---
; Turning off 'interruptable ISRs':
; Do this if you need the extra byte(s)
;
; 1. Uncomment the define below
; 2. Assemble this file
; 3. Include the result in your linker command file:
; -C cstartup.r31
;
; Variable '?IES_USAGE' and its initialization will no longer
; be included.
;---
;#define NO_INTERRUPTABLE_ISR

#ifndef NO_INTERRUPTABLE_ISR
;---;
; ?IES_USAGE - Determines if the IES is setup and used.
;
; This variable is used for interrupt functions when compiling
; with the '-h' option.
;---;

 RSEG ZPAGE
 PUBLIC ?IES_USAGE
?IES_USAGE:
 BLKB 1
#endif

#ifndef NO_INTERRUPTABLE_ISR
;---;
; Initialize ?IES_USAGE:
; 1 IES not used
; 0 First use of IES, need to setup IES
; <0 IES already setup and used
;---;
 LDA #1
 STA zp:?IES_USAGE
#endif

To use (multiple interrupts), do not leave ';'
(semicolon).

146

9.2.3 Descriptions of Multiple Interrupt Handling Functions

Program descriptions with the following specifications are listed below based on the notes described above.

Function Content Interrupt Priority State
INT1 interrupt handling function unusual handling

(emergency halt)
1 Multiple interrupts

disabled
Serial I/O1 receive interrupt handling
function

communication
received

2 Multiple interrupts for only
one interrupt enabled

Timer 2 interrupt handling function general handling 3 Multiple interrupts enabled

For (3) of the main function, set the enable bit of the interrupts to be generated to enable. For the interrupt handling
function of timer 2, all interrupts are enabled by executing the CLI instruction at the front. This allows multiple
interrupts. However, multiple interrupts to the executed interrupt are disabled. For the interrupt handling function of
the serial I/O 1 reception, setting the interrupts other than INT1 to disable and executing the CLI instruction allows
multiple interrupts for only the INT1 interrupt. Multiple interrupts are not generated while the functions are executed
and the interrupts are disabled for the INT1 interrupt handling function.

Also, the interrupts are disabled (I flag = 1) immediately after reset. The interrupts are disabled (I flag = 1) to enter
the interrupt function, and they are enabled (I flag = 0) to exit the interrupt function (by the RTI instruction).

#include <intr740.h> /* Header file for inline function */
#include "sfr_3803h.h" /* SFR header file for the 3803H Group */

void main(void)
{
 ・
 ・
 ・
 /* (1) Set the interrupt edge select bit (and interrupt source bit) */
 INTEDGE.1 = 1 ; /* INT1 rising edge active */

 /* (2) Set the appropriate interrupt request bit to 0 (no request) after waiting more than one
instruction. */
 nop_instruction() ; /* Wait one instruction */
 IREQ1.1 = 0 ; /* INT1 interrupt request bit → clear */
 IREQ1.2 = 0 ; /* Serial I/O1 receive interrupt request bit → clear */
 IREQ1.7 = 0 ; /* Timer 2 interrupt request bit → clear */

 /* (3) Set the appropriate interrupt enable bit to 1(enabled) */
 ICON1.1 = 1 ; /* INT1 interrupt enable bit → enabled */
 ICON1.2 = 1 ; /* Serial I/O1 receive interrupt enable bit → enabled */
 ICON1.7 = 1 ; /* Timer 2 interrupt enable bit → enabled */

 enable_interrupt() ; /* Interrupt enabled CLI instruction */

 while(1) ; /* Interrupt wait loop */
}

set the enable bit of the
interrupts to be generated
to enable.

147

#include <intr740.h> /* Header file for inline function */
#include "sfr_3803h.h" /* SFR header file for the 3803H Group */

unsigned char Cntr ;
unsigned char T_5msec = 1 ;
unsigned char T_flg = 0 ;
unsigned char Val ;

interrupt [28] void Int1(void) /* INT1 interrupt handling function [emergency halt] */
{
 Cntr = 0 ;
}

interrupt [26] void SIO1R(void) /* Serial I/O1 receive interrupt handling function */
{
 ICON1.2 = 0 ; /* Serial I/O1 receive interrupt enable bit → disabled */
 ICON1.7 = 0 ; /* Timer 2 interrupt enable bit → disabled */
 enable_interrupt() ; /* Interrupt enabled CLI instruction */
 ￤
 T_flg = 1 ;
 ￤
 disable_interrupt() ; /* Interrupt disabled SEI instruction */
 ICON1.2 = 1 ; /* Serial I/O1 receive interrupt enable bit → enabled */
 ICON1.7 = 1 ; /* Timer 2 interrupt enable bit → enabled */
}

interrupt [16] void Timer2(void) /* Timer 2 interrupt handling function */
{
 ICON1.7 = 0 ; /* Timer 2 interrupt enable bit → disabled */
 enable_interrupt() ; /* Interrupt enabled CLI instruction */

 if(T_5msec){
 T_5msec = 0 ;
 if(Cntr < 9){
 Cntr++ ;
 } else {
 Cntr = 0 ;
 }
 if(T_flg){
 Val = Cntr ;
 T_flg = 0 ;
 }
 } else {
 T_5msec = 1 ;
 }

 disable_interrupt() ; /* Interrupt disabled SEI instruction */
 ICON1.7 = 1 ; /* Timer 2 interrupt enable bit → enabled */
}

• Multiple interrupts disabled
• Interrupt expression stack
 cannot be used
 (refer to notes)

• Multiple interrupts enabled
for only emergency halt

• Interrupt expression stack
cannot be used (refer to
notes)

• Multiple interrupts
enabled

• Interrupt expression
stack can be used

Interrupt to timer 2
disabled

Interrupt to timer 2
enabled

C Compiler Package for 740 Family M3T-ICC740 Application Notes

Publication Date: Sep. 16, 2006 Rev.1.00

Published by:
Sales Strategic Planning Div.
Renesas Technology Corp.

Edited by: Microcomputer Tool Development Department
Renesas Solutions Corp.

© 2006. Renesas Technology Corp. and Renesas Solutions Corp., All rights reserved. Printed in Japan.

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

C Compiler Package for 740 Family

REJ06J0005-0100

Application Notes

	Preface
	Table of Contents
	Chapter 1 Introduction to C Language
	1.1 Programming in C Language
	1.1.1 Assembly Language and C Language
	1.1.2 Program Development Procedure
	1.1.3 Easily Understandable Program

	1.2 Data Types
	1.2.1 "Constants" in C Language
	1.2.2 Variables
	1.2.3 Data Characteristics

	1.3 Operators
	1.3.1 Operators of ICC740
	1.3.2 Operators for Numeric Calculations
	1.3.3 Operators for Processing Data
	1.3.4 Operators for Examining Condition
	1.3.5 Other Operators
	1.3.6 Priorities of Operators
	1.3.7 Examples for Easily Mistaken Use of Operators

	1.4 Control Statements
	1.4.1 Structuring of Program
	1.4.2 Branching Processing Depending on Condition (Branch Processing)
	1.4.3 Repetition of Same Processing (Repeat Processing)
	1.4.4 Suspending Processing

	1.5 Functions
	1.5.1 Functions and Subroutines
	1.5.2 Creating Functions
	1.5.3 Exchanging Data between Functions

	1.6 Storage Classes
	1.6.1 Effective Range of Variables and Functions
	1.6.2 Storage Classes of Variables
	1.6.3 Storage Classes of Functions

	1.7 Arrays and Pointers
	1.7.1 Arrays
	1.7.2 Creating an Array
	1.7.3 Pointers
	1.7.4 Using Pointers
	1.7.5 Placing Pointers into an Array
	1.7.6 Table Jump Using Function Pointer

	1.8 Structures and Unions
	1.8.1 Structures and Unions
	1.8.2 Creating New Data Types

	1.9 Preprocess Commands
	1.9.1 Preprocess Commands of ICC740
	1.9.2 Including a File
	1.9.3 Macro Definition
	1.9.4 Conditional Compile

	Chapter 2 Explains about project settings
	2.1 Set Content
	2.2 Description of Memory Models
	2.2.1 Details of Memory Models
	2.2.2 Changing Memory Models

	2.3 Segment Configuration
	2.3.1 Segment Configuration of ICC740
	2.3.2 Segment Map: Z Page RAM (0H–FFH)
	2.3.3 Segment Map: N Page RAM (beginning with 100H)
	2.3.4 Segment Map: ROM (up to FFFFH)

	2.4 Description of the Stack Area
	2.4.1 Stack Management of ICC740
	2.4.2 Altering the CSTACK Segment

	2.5 Description of the Object Format
	2.5.1 Altering the Object Format

	2.6 Description of the C Startup Module
	2.6.1 Description of the C Startup Module

	2.7 Setting Values in a Special Area
	2.7.1 Setting Values in a Special Area

	Chapter 3 C Compiler: ICC740
	3.1 Description of Basic Options
	3.1.1 Summary of the Compiler Options

	3.2 Language extensions
	3.2.1 Extended keywords summary
	3.2.2 Pragma directive summary
	3.2.3 Predefined symbolssummary
	3.2.4 Other extensions

	Chapter 4 Assembler: A740
	4.1 Description of Basic Options
	4.1.1 Outline of the Assembler Options

	4.2 Assembly Language Interface
	4.2.1 Function Declaration
	4.2.2 Calling an Assembly Language Subroutine from C Language
	4.2.3 Calling a C Language Function from Assembly Language

	Chapter 5 Linker: XLINK
	5.1 Description of the Basic Options
	5.1.1 Outline of the Options

	5.2 Description of Option Files
	5.2.1 Description of the Link Command File

	Chapter 6 Debugger
	6.1 Starting the Debugger
	6.1.1 Connecting the Simulator
	6.1.2 Ending the Simulator

	6.2 Setting Up the Simulator
	6.2.1 Init Dialog

	6.3 Creating an MCU File for the Simulator

	Chapter 7 Tips for Coding
	Chapter 8 Estimating the Stack Size
	8.1 Default Stack Size
	8.2 EXPR_STACK and INT_EXPR_STACK Segments
	8.3 CSTACK Segment
	8.4 C_ARGN and C_ARGZ Segments
	8.5 RF_STACK Segment
	8.6 Amount of Stack Used by ICC740 Runtime Functions

	Chapter 9 Interrupt Handling
	9.1 Interrupt Handling
	9.1.1 Example for Writing Interrupt Handling Functions
	9.1.2 Writing Interrupt Handling Functions
	9.1.3 Setting the Interrupt Disable Flag (I Flag)
	9.1.4 Registering the Interrupt Vector Area
	9.1.5 Setting Up the Interrupt Vector Segment

	9.2 Multiple Interrupts
	9.2.1 How to Use Multiple Interrupts
	9.2.2 Definition on multiple interrupts
	9.2.3 Descriptions of Multiple Interrupt Handling Functions

