

R8C/38C Group

Serial I/O Operation (Clock Synchronous Serial I/O Mode)

REJ05B1302-0100 Rev.1.00 June 7, 2010

1. Abstract

This document describes the setting method and an application example for transmitting and receiving 10-byte data continuously using clock synchronous serial I/O mode in the R8C/38C Group.

2. Introduction

The application example described in this document applies to the following microcomputer (MCU):

• MCU: R8C/38C Group

This application note can be used with other R8C Family MCUs which have the same special function registers (SFRs) as the above group. Check the manual for any modifications to functions. Careful evaluation is recommended before using the program described in this application note.

3. Application Example

3.1 **Program Outline**

Transmit and receive 10-byte data continuously in 1-byte units every 250 µs. Transmit and receive 10-byte data again after 1 ms after transmitting and receiving 10-byte data. During a single 3.5 ms cycle, repeatedly transmit and receive 10-byte data.

Settings

- Use the P1_4/TXD0 pin for serial data output.
- Use the P1_5/RXD0 pin for serial data input.
- Use the P1_6/CLK0 pin for transfer clock output.
- Use the P1_4/TXD0 pin for CMOS output.
- Use UART0 for the channel.
- Use clock synchronous serial I/O mode.
- Use the internal clock for the transfer clock.
- Use LSB first for the transfer format.
- Select the transmit data output at the falling edge and the receive data input at the rising edge of the transfer clock for CLK polarity.
- Set 125000 bps (transfer clock: 8 µs period) as the bit rate.
- Use f8 for the BRG count source.
- Use timer RA to generate the transmission/reception period.
- Disable continuous receive mode.
- Do not use the UART0 transmit interrupt or UART0 receive interrupt.

Bit rate calculation 125000 bps = 20 MHz × $1/8 \times 1/(9+1) \times 1/2$

Figure 3.1 shows a Block Diagram and Figure 3.2 shows a Transfer Format. Table 3.1 lists the pins used and their functions.

Figure 3.2 Transfer Format

Table 3.1Pins and Their Functions

Pin Name	I/O	Function
P1_4/TXD0	Output	Serial data output
P1_5/RXD0	Input	Serial data input
P1_6/CLK0	Output	Transfer clock output

3.2 Memory

Table 3.2 Memory

Memory	Size	Remarks
ROM	247 bytes	In the rej05b1302_src.c module
RAM	21 bytes	In the rej05b1302_src.c module
Maximum user stack	13 bytes	
Maximum interrupt stack	0 bytes	

Memory size varies depending on the C compiler version and compile options.

The above applies to the following conditions:

C compiler: M16C/60, 30, 20, 10, and Tiny and R8C/Tiny Series Compiler V.5.45 Release 00 Compile option: -c -finfo -dir "\$(CONFIGDIR)" -R8C

4. Software

This section shows the initial setting procedures and values to set the example described in section **3. Application Example**. Refer to the latest **R8C/38C Group hardware user's manual** for details on individual registers.

The \times in the register's Setting Value represents bits not used in this application, blank spaces represent bits that do not change, and the dash represents reserved bits or bits that have nothing assigned.

4.1 Function Tables

Declaration	void mcu_init(vo	void mcu_init(void)					
Outline	System clock se	System clock setting					
A route a st	Argument name)	Meaning				
Argument	None		—	—			
Variable (global)	Variable name		Contents				
valiable (global)	None		—				
Returned value	Туре	Value	Meaning				
	None	—	—				
Function	Set the system	clock (high-speed or	n-chip oscillator).				

Declaration	void timer_ra_init(vo	void timer_ra_init(void)					
Outline	Timer RA associate	imer RA associated SFR initial setting					
Argument	Argument name		Meaning				
	None		—				
Variable (global)	Variable name		Contents				
valiable (global)	None		—				
Returned value	Туре	Value	Meaning				
	None	—	—				
Function	Perform the initial se	etting for the SFR registe	er to use timer RA in timer mode.				

Declaration	void uart_init(void	void uart_init(void)					
Outline	Serial interface se	Serial interface setting					
Argument	Argument name		Meaning				
	None		—				
Variable (global)	Variable name		Contents				
valiable (global)	None		—				
Returned value	Туре	Value	Meaning				
	None	—	—				
Function	Set the serial inte	rface (clock synch	Set the serial interface (clock synchronous serial I/O mode).				

Declaration	void transmit_data_	void transmit_data_set(void)					
Outline	Transmit data settin	Fransmit data setting					
Argument	Argument name		Meaning				
	None		—				
Variable (global)	Variable name		Contents				
variable (global)	None		—				
Returned value	Туре	Value	Meaning				
	None	—	—				
Function		Make the transmit data. No processing is performed in this application note. Add processing based on the user system.					

Declaration	void cs_serial(void)	void cs_serial(void)						
Outline	Serial I/O (clock syr	nchronous serial I/O n	node) processing					
Argument	Argument name		Meaning					
Argument	None		—					
	Variable name		Contents					
Variable (global)	unsigned char seria	l_cnt	Transmit/receive data counter					
valiable (global)	unsigned char rcv_k	ouf[BUFF_SIZE]	Receive buffer					
	unsigned char trn_b	ouf[BUFF_SIZE]	Transmit buffer					
Returned value	Туре	Value	Meaning					
ittetuined value	None —		—					
Function	Transmit and receiv	e 10-byte data contin	nuously in 1-byte units every 250 μ s.					

4.2 Main Function

Flowchart

• Register settings

(1) Wait until the timer RA interrupt request is generated.

Interrupt Control Register (TRAIC)

ſ	Bit	Symbol	Bit Name	Function	R/W
	b3	IR	Interrupt request bit	0: No interrupt requested 1: Interrupt requested	R/W

(2) Clear the timer RA interrupt request flag.

Interrupt Control Register (TRAIC)

	-	-									
	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Setting	Value	—	—	—	—	0	0	0	0]	
Bit Symbol Bit Name						Function			R/W		
b0	ILVL0							R/W			
b1	ILVL1	Interru	terrupt priority level select bit b2 b1 b0 0 0 0: Level 0 (interrupt disabled)						R/W		
b2	ILVL2										R/W
b3	IR	Interru	upt request	bit		0: No interru	pt requeste	ed			R/W

4.3 System Clock Setting

• Flowchart

R8C/38C Group

• Register settings

(1) Enable writing to registers CM0, CM1, CM3, OCD, FRA0, FRA1, FRA2, and FRA3.

Protect Reg	jister (PF	RCR)						
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	_	—	—	—	х	х	х	1
_								
Bit Symb	l	Bit Nar	ne			Fu	nction	

Bit	Symbol	Bit Name	Function	R/W	
b0	PRC0		Enables writing to registers CM0, CM1, CM3, OCD, FRA0, FRA1, FRA2, and FRA3. 1: Write enabled	R/W	

(2) Start the low-speed on-chip oscillator.

System Clock Control Register 1 (CM1)

	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Setting	Value			—	0	х	х	х	х	
Bit	Symbol			Bit Name				Functio	n	R/W
b4	CM14	Low-s	speed on-c	hip oscillate	or stop bit	0: Lov	v-speed or	-chip oscill	ator on	R/W

(3) Set the division ratio for the high-speed on-chip oscillator.

High-Speed On-Chip Oscillator Control Register 2 (FRA2)

		Bit	b7	b6	b5	b4	k	b3	b2	b1	b0	
	Setting	Value		—	—	—	-		0	0	0]
Ī	Bit	Symbo	ol		Bit Name					Functio	on	
Î	hO	ED A 2	0					Divici	on coloction	0		

b0	FRA20		Division selection These bits select the division ratio for the	R/W
b1	FRA21	High-speed on-chip oscillator frequency switching bit	high-speed on-chip oscillator clock.	R/W
b2	FRA22		^{b2 b1 b0} 0 0 0: Divide-by-2 mode	R/W

(4) Start the high-speed on-chip oscillator.

High-Speed On-Chip Oscillator Control Register 0 (FRA0)

		Bit	b7	b6	b5	b4	b3		b2	b1	b0		
;	Setting V	Value	_		—	—	х				1]	
Γ	Bit	Symbo	bl		Bit Name					Functio	on		R/W
ſ	b0	FRA00) High	-speed on-	chip oscilla	tor enable	bit 1	: Hi	gh-speed o	on-chip oso	cillator on		R/W

(5) Wait until oscillation stabilizes.

R/W

- AA/

(6) Select the high-speed on-chip oscillator.

High-	Speed O	n-Chip	o Oscillato	r Control	Register	0 (FRA0)				
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Setting	Value	_	—	—	—	x	—	1		
Bit	Symbol			Bit Name				Function	on	R/W
b1	FRA01	High-	speed on-o	chip oscilla	tor select b	oit 1: ⊢	ligh-speed	on-chip oso	cillator selecte	ed R/W
		-	oscillator c		-	ock.				
	Bit	b7	b6	b5	_, b4	b3	b2	b1	b0	
Setting	Value	_		_	_	X	1	X	X	
Bit	Symbol		Bi	t Name	•		•	Function	<u> </u>	R/W
b2	OCD2	Syste	m clock sel			1: On-cł	nip oscillato			R/W
		Contro	ol Registe	. ,						
Setting	Bit	b7 0	b6 0	b5	b4	b3	b2	b1	b0	
Setting	value	0	0			X	X	Х	Х	
Bit	Symbol		Bit	Name				Function		R/W
b6	CM16	CPU	clock divisi	on select h	hit 1	b7 b6				R/W
b7	CM17	01.0				0 0: No c	livision mod	le		R/W
	•		ontrol regis							
,	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Setting		x	0	X	x	X	x		—	

Γ	Bit	Symbol	Bit Name	Function	R/W
ĺ	b6	CM06	CPU clock division select bit 0	0: Bits CM16 and CM17 in CM1 register enabled	R/W

(10) Disable writing to registers CM0, CM1, CM3, OCD, FRA0, FRA1, FRA2, and FRA3.

Prote	ct Regis	ster (PR	RCR)								
	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Setting	Value		—	—	—	х	х	х	0]	
Bit	Symbo	1	Bit Nar	ne			Fu	nction			R/W
	Cymbo		Dit Nai				-				10,00
b0	PRC0	Prote	ct bit 0			writing to r RA2, and F disabled		M0, CM1, 0	CM3, OCD	, FRA0,	R/W

4.4 Timer RA Associated SFR Initial Setting

Flowchart

• Register settings

(1) Disable the timer RA interrupt.

Interrupt Control Register (TRAIC)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	_	_	_	_	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0	ILVL0			R/W
b1	ILVL1	Interrupt priority level select bit	0 0 0: Level 0 (interrupt disabled)	R/W
b2	ILVL2			R/W
b3	IR	Interrupt request bit	0: No interrupt requested	R/W

(2) Stop the timer RA count.

Timer RA Control Register (TRACR)

	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Settin	g Value		—			—			0	
Bit	Symb	ol	Bit 1	Name				Function		R/W
b0	TSTAF	RT Tim	er RA count	start bit		0: Count sto	ps			R/W

(3) Wait until the timer RA count stops.

Timer RA Control Register (TRACR)

Ī	Bit	Symbol	Bit Name	Function	R/W
	b1	TCSTF	Limer RA count status flad	0: Count stops 1: During count operation	R

(4) Initialize bits TSTART and TCSTF, and registers TRAPRE and TRA.

Timer RA Control Register (TRACR)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value		—	0	0	_	1		0

Bit	Symbol	Bit Name	Function	R/W
b0	TSTART	Timer RA count start bit	0: Count stops	R/W
b1	TCSTF	Timer RA count status flag	0: Count stops 1: During count	R
b2	TSTOP	Timer RA count forcible stop bit	When this bit is set to 1, the count is forcibly stopped. When read, the content is 0.	R/W
b4	TEDGF	Active edge judgment flag	0: Active edge not received	R/W
b5	TUNDF	Timer RA underflow flag	0: No underflow	R/W

(5) Set the timer RA mode register.

Timer	RA Mod	e Regi	ister (TRA	MR)									
	Bit	b7	b6	b5	b4		b3	b2	b1	b0			
Setting	Value	0	0	0	1			0	0	0			
Bit	Symbol		Bit I	Name					Function			R/W	
b0	TMOD0	T :			1 4							R/W	
b1	TMOD1	bit	imer RA operating mode select it				^{b2 b1 b0} 0 0 0: Timer mode						
b2	TMOD2		it									R/W	
b4	TCK0											R/W	
b5	TCK1	Timer	RA count	source sele	ect bit	b6 b5 b4 0 0 1: f8						R/W	
b6	TCK2											R/W	
b7	TCKCUT	Timer	RA count	source cuto	off bit	0: F	Provides c	ount sourc	e			R/W	

(6) Set the timer RA I/O control register.

Timer RA I/O Control Register (TRAIOC)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0	TEDGSEL	TRAIO polarity switch bit		R/W
b1	TOPCR	TRAIO output control bit	Set to 0 in timer mode.	R/W
b2	TOENA	TRAO output enable bit		R/W
b3	TIOSEL	Hardware LIN function select bit	Set to 0. However, set to 1 when the hardware LIN function is used.	R/W
b4	TIPF0	TRAIO input filter select bit		R/W
b5	TIPF1		Set to 0 in timer mode.	R/W
b6	TIOGT0	TRAIO event input control bit		R/W
b7	TIOGT1			R/W

(7) Set the timer RA prescaler register to 25-1 (18h).

Timer RA Prescaler Register (TRAPRE)

Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Setting Value	0	0	0	1	1	0	0	0	

Bit	Mode	Function	Setting Range	R/W
b7 to b0	Timer mode	Counts an internal count source	00h to FFh	R/W

Timer F	RA Re	gister (ΓRA)							
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Setting Va	alue	0	0	0	1	1	0	0	0	
Bit		Mode			Functio	n		5	Setting Range	R/W
b7 to b0	Timer	mode	Counts	on underf	low of TRA	PRE regis	ter		00h to FFh	R/W

(8) Set the timer RA register to 25-1 (18h).

(9) Clear the timer RA interrupt request flag.

Interrupt Control Register (TRAIC)												
	Bit	b7	b6	b5	b4	b3	b2	b1	b0			
Setting	Setting Value — — —					0	0	0	0			
Bit	Symb	ol	Bit	Name				Function			R/W	
b0	ILVL(0						R/W				
b1	ILVL	1 Inter	rupt priority	level selec	t bit	0 0 0: Level	0 (interrup	t disabled)			R/W	
b2 ILVL2							· ·	,			R/W	
b3	IR	Inter	rupt request	t bit		0: No interru	pt requeste	ed			R/W	

(10) Start the timer RA count.

Timer	RAC	ontr	rol Reg	gister (TR	ACR)						
	Bit	k	o7	b6	b5	b4	b3	b2	b1	b0	
Setting	Value	-	_	—			—			1	
Bit	Symb	loc		Bit N	Name				Function		R/W
b0	TSTA	RT	Timer	RA count :	start bit		1: Count sta	rts			R/W

(11) Wait until the timer RA count starts.

Timer RA Control Register (TRACR)

Bit	Symbol	Bit Name	Function	R/W
b1	TCSTF	Limer RA count status flag	0: Count stops 1: During count operation	R

4.5 Serial Interface Setting

• Flowchart

• Register settings

(1) Set P1_5 as input mode.

Port F	P1 Dire	ectio	on Reg	gister (PD	1)						
	Bit	b	57	b6	b5	b4	b3	b2	b1	b0	
Setting	Value	2	х	х	0	х	х	х	х	х	
Bit	Symb	loc		Bi	t Name				Function		R/W
b5	PD1	5	Port P	1_5 directi	on bit		0: Input m	node (funct	ions as an	input port)	R/W

(2) Set the TXD0 pin as port P1_4, the RXD0 pin as port P1_5, and the CLK0 pin as port P1_6.

UART0 Pin Select Register (U0SR)													
	Bit	b7	b6	b5	b4	b3	b2	b1	b0				
Setting	Value	_	—	—	1	—	1	—	1				
Bit	Syr	nbol		Bit Name	1		Function						
b0	TXDC	SEL0	TXD0 pin s	elect bit		1: P1_	1: P1_4 assigned						
b2	RXD	SEL0	RXD0 pin s	elect bit		1: P1_	5 assigne	d			R/W		
b4	CLKC	SEL0	CLK0 pin s	elect bit		1: P1_	6 assigne	d			R/W		
											•		

(3) Disable the UART0 transmit interrupt.

Interrupt Control Register (S0TIC)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	—	—		—	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0	ILVL0			R/W
b1	ILVL1	Interrupt priority level select bit	0 0 0: Level 0 (interrupt disabled)	R/W
b2	ILVL2			R/W
b3	IR	Interrupt request bit	0: No interrupt requested	R/W

(4) Disable the UART0 receive interrupt.

Interrupt Control Register (SORIC)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value		—			0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0	ILVL0			R/W
b1	ILVL1	Interrupt priority level select bit	0 0 0: Level 0 (interrupt disabled)	R/W
b2	ILVL2			R/W
b3	IR	Interrupt request bit	0: No interrupt requested	R/W

UART	0 Trar	nsmit/F	Receive Con	trol Regis	ter 1 (U00	21)					
	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Setting	Value	—	—		Х	Х		Х	0		
Bit Symbol Bit Name								Function	n		R/W
b0	00 TE Transmit enable bit					0: Tra	0: Transmission disabled				

(5) Disable the UART0 transmit.

(6) Disable the UART0 receive.

UART0 Transmit/Receive Control Register 1 (U0C1)													
	Bit	b7	b6	3	b5	b4		b3	b2	b1	b0		
Setting	Value			-		х		Х	0	х			
Bit	Symbol Bit Name			Function							R/W		
b2	2 RE Receive enable bit					0: Reception disabled					R/W		

(7) Set the UART0 transmit/receive mode register.

UART0 Transmit/Receive Mode Register (U0MR)

	Bit b7		b6	b6 b5 b4		b3			b0			
Setting	Value	_	Х	Х	Х	0	0	0	1			
Bit	Symbol Bit Name						Function					
b0	SM	1D0										
b1	SM	1D1	Serial I/O me	ode select b	it		0 0 1: Clock synchronous serial I/O mode					
b2	SM	1D2										
b3	CKDIR Internal/external clock select bit				0: Inte	0: Internal clock						

(8) Set UART0 transmit/receive control register 0.

UART0 Transmit/Receive Control Register 0 (U0C0)

	Bit b7	b6 b5	b4	b3	b2	b1	b0	
Setting	Value 0	0 0	—	х		0	1	
Bit	Symbol	Bit Nam	10			Functior	1	R/W
b0	CLK0	BRG count source sel	oct hit	b1 b0	R/W			
b1	CLK1		ect bit	0 1: f8	selected			R/W
b5	NCH	Data output select bit		0: TXD	R/W			
b6	CKPOL	CLK polarity select bit		0: Tran rece trans	I R/W			
b7	UFORM	Transfer format select	bit	0: LSB	R/W			

(9) Disable UART0 continuous receive mode.

UART	T0 Tra	nsmit/l	Receive C	ontrol Re	egister	r 1 (U0C	;1)						
	Bit	b7	b6	b5		b4	b3	b2	b1	b0			
Setting	Value		—	0		Х	х		x				
Bit	Syr	nbol	bol Bit Name					Function					
b5 U0RRM			UART0 continuous receive mode enable bit				0: Cor	ntinuous re	ceive mod	e disabled		R/W	

(10) Set the UART0 bit rate register. Set 125000 bps in this application note. Set 10-1 (09h) based on the following calculation:

 $125000 \text{ bps} = 20 \text{ MHz} \times 1/8 \times 1/10 \times 1/2$

UART0 Bit Rate Register (U0BRG)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	0	0	0	0	1	0	0	1

Bit	Function	Setting Range	R/W
b7 to b0	If the setting value is n, U0BRG divides the count source by n+1.	00h to FFh	W

(11) Enable the UART0 transmit.

UAR	UART0 Transmit/Receive Control Register 1 (U0C1)												
	Bit	b7	b6	b5	b4	b3	b2	b1	b0				
Setting Value			—		х	х		х	1				
Bit	Sym	ymbol Bit Name				Function							
b0	T	E	Transmit ena	ble bit		1: Trai	1: Transmission enabled						

(12) Enable the UART0 receive.

UART0 Transmit/Receive Control Register 1 (U0C1)

	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Setting	Value	_	—		х	х	1	x		
Bit	Sym	bol		Bit Name				Function	n	R/

	Bit	Symbol	Bit Name	Function	R/W
I	b2	RE	Receive enable bit	1: Reception enabled	R/W

R/W

R/W

4.6 Serial I/O (Clock Synchronous Serial I/O Mode) Processing

• Flowchart

• Register settings

(1) Read the receive data in the UORB register.

UART0 Receive Buffer Register (U0RB)

Bit	Symbol	Bit Name	Function	R/W	
b0	—				
b1	—				
b2	—				
b3	—	1	Receive data (D7 to D0)		
b4	—				
b5	—				
b6	—				
b7	—				
b12	OER	Overrun error flag	0: No overrun error 1: Overrun error	R	
b13	FER	Framing error flag	0: No framing error 1: Framing error	R	
b14	PER	Parity error flag	0: No parity error 1: Parity error	R	
b15	SUM	Error sum flag	0: No error 1: Error	R	

(2) Set the transmit data to the low-order byte in the UART0 transmit buffer register.

	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Setting	Value	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Setting	Value	х	х	х	х	х	х	х	x	
Bit	Symt	ool				Funct	ion			R/W
b0	_									
b1	_									
b2										
b3			Transmit data							W
b4	_									vv
b5	_									
b6	_									
b7										

UART0 Transmit Buffer Register (U0TB)

5. Sample Program

A sample program can be downloaded from the Renesas Electronics website. To download, click "Application Notes" in the left-hand side menu of the R8C Family page.

6. Reference Documents

R8C/38C Group User's Manual: Hardware Rev.1.00 The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News The latest information can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website http://www.renesas.com/

Inquiries http://www.renesas.com/inquiry

Revision History	R8C/38C Group
Revision history	Serial I/O Operation (Clock Synchronous Serial I/O Mode)

Rev.	Date	Description				
ILEV.	Dale	Page	Summary			
1.00	June 7, 2010	_	First edition issued			

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renease Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renease Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product for which the soften where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product of soften an application categorized as "Specific" for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product of uses of any expression product of the prior written consent of Renesas Electronics.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools
- personal electronic equipment; and industrial robots.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically
 designed for life support.
- "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renease Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renease Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renease Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1528-585-100, Fax: +44-1528-585-900 Renease Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1528-585-900 Renease Electronics Corpog GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1528-585-900 Renease Electronics Corpog GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1528-585-900 Renease Electronics (Shanghai) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-12-8677-7818, Fax: +86-21-6887-7859 Renease Electronics (Shanghai) Co., Ltd. 10nt 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-12-8677-7818, Fax: +86-21-6887-7859 Renease Electronics Hong Kong Limited Unit 1801-1613, 16/F., Towrer 2, Grand Century Place, 139 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +88-24817-9800, Fax: +886 2-9175-9970 Renease Electronics Singapore Pte. Ltd. 7th No. 363 Fu Shing North Road Taipei, Taiwan Tel: +88-24915-9900, Fax: +886 2-9175-9970 Renease Electronics Mangapore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +68-2415-9200, Fax: +868 2-9175-9970 Renease Electronics Mangapore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +68-2415-9400, Fax: +868-29175-9570570 Renease Electronics Mangapore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +68-2415-9400, Fax: +868-2915-957-9510 Renease Electronics Mangapore Pte. Ltd. 1 harbourFront Avenue, #06-70, Keppel Bay Tower, Singapore 098632 T