
 Application Note

R11AN0750EU0130 Rev.1.30 Page 1 of 52
Jul.01.25

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet
Introduction
This application note describes IoT Cloud connectivity solutions in general and introduces you briefly
to the IoT Cloud solution provider, Microsoft Azure. It covers the RA FSP MQTT/TLS module along
with the Azure IoT SDK for embedded C.

This application project is built with the integrated “Azure IoT SDK for Embedded C” package, which
allows small embedded (IoT) devices like Renesas RA family of MCUs, RA6M3/RA6M4/RA6M5, to
communicate with Azure IoT services.

The application example uses Azure IoT DPS (Device Provisioning Service) to provision and
register the IoT device, and send and receive data to and from the development kit.

This application note enables you to effectively use the RA FSP modules in your own design with the FSP-
integrated Azure IoT SDK. Upon completion of this guide, you will be able to add the FSP modules to your
own design, configure it correctly with Azure IoT SDK for the target application, and write code using the
included application example code as a reference and efficient starting point. References to more detailed
API descriptions and sample code that demonstrate advanced usage of FSP modules are available in the
RA FSP Software Package (FSP) User’s Manual (see Next Steps section) and serve as valuable resources
in creating more complex designs. Explaining the underlying operation of the Azure IoT SDK for Embedded
C is beyond the scope of this document. Users should refer to the documentation from Microsoft for
education on topics related to the Azure IoT SDK section: https://docs.microsoft.com/en-us/azure/iot-hub/iot-
hub-devguide- sdks

In this release, the CK-RA6M5 v2 kit is used for the application project.

Required Resources

To build and run the MQTT/TLS application example, you need:

Development Tools and Software
• e2 studio version: v2025-04.1.
• RA FSP Software Package (FSP) v6.0.0
• SEGGER J-Link® RTT viewer version: 8.44a
• Azure IoT Explorer 0.15.12.0 or later (PC tool for validating the Cloud side). Download Link: Releases ·

Azure/azure-iot-explorer (github.com)
• Azure CLI 2.44 or later (Azure command-line interface is a set of commands used to create and manage

Azure resources) Download Link: How to install the Azure CLI | Microsoft Learn
• Access to Azure Cloud Connectivity Portal (https://portal.azure.com/#home) to create IoT Devices (If you

are new to Azure IoT)

Hardware
• Renesas CK-RA6M5 v2 kit (CK-RA6M5 - Cloud Kit Based on RA6M5 MCU Group | Renesas)
• PC running Windows® 10/11, Tera Term console or similar application, and an installed web browser

(Google Chrome, Internet Explorer, Microsoft Edge, Mozilla Firefox, or Safari).
• Micro USB cable
• USB-C cable
• Ethernet cable (CAT5/6)
• Router with an Ethernet port or Ethernet switch to connect to the router for Internet connectivity.

Prerequisites and Intended Audience
This application note assumes that you have some experience with the Renesas e2 studio ISDE and RA
Flexible Software Package (FSP). Before you perform the procedures in this application note, follow the
procedure in the FSP User Manual to build and run the Blinky project. Doing so enables you to become
familiar with the e2 studio and the FSP and also validates that the debug connection to your board functions

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-sdks
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-sdks
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-sdks
https://github.com/Azure/azure-iot-explorer/releases
https://github.com/Azure/azure-iot-explorer/releases
https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
https://portal.azure.com/#home
https://www.renesas.com/us/en/products/microcontrollers-microprocessors/ra-cortex-m-mcus/ck-ra6m5-cloud-kit-based-ra6m5-mcu-group

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 2 of 52
Jul.01.25

properly. In addition, this application note assumes you have some knowledge of MQTT/TLS and its
communication protocols.

The intended audience is users who want to connect to Azure Cloud using the Azure IoT SDK for Embedded
C on the Renesas RA/RA6 MCU Series.

Note: If you are a first-time user of e2 studio and FSP, we highly recommend you install e2 studio and FSP
on your system in order to run the Blinky Project and to get familiar with the e2 studio and FSP
development environment before proceeding to the next sections.

Note: If you are new to Azure Internet of Things, we recommend you get started with Introduction to the
Azure IoT https://learn.microsoft.com/en-us/azure/iot/iot-introduction

Prerequisites
• Access to online documentation available for Azure in the Cloud Connectivity References section.
• Access to the latest documentation for the identified Renesas Flexible Software Package.
• Prior knowledge of operating the e2 studio and the built-in (or standalone) RA Configurator.
• Access to associated hardware documentation, such as User Manuals and Schematics.

Using this Application Note
Section 1 of this document covers the General Overview of the Cloud Connectivity, Azure IoT Solution using
IoT Central, Azure DPS, MQTT, and TLS Protocols, and Device certificates and Keys used in the Cloud
Connectivity.

Section 2 covers the modules provided by RA FSP to establish connectivity to Cloud service providers and
the features supported by the module.

Section 3 covers the architecture of the reference application project, an overview of the software
components included, and step-by-step guidelines for recreation using the FSP configurator. It also covers
setting up the Azure IoT Hub, creating the self-signed certificates, and storing the certificates in the flash
using the application CLI.

Section 4 covers importing, building, and running the Application project.

Note: We recommend that you operate with your own Microsoft Azure Cloud credentials and use your
created Cloud configurations to run the application. The default sample configuration detailed in this
project is for reference only and may have access issues to Azure since the application is
communicating with a test account.

Note: For a quick validation using the provided application project, you can skip sections 1 to 2 and go to
sections 3 and 4 for instructions on setting up the Azure IoT Hub, creating the self-signed certificates,
storing the certificates in the flash using the application CLI, and running the application project on the
CK-RA6M5 v2 board.

https://learn.microsoft.com/en-us/azure/iot/iot-introduction

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 3 of 52
Jul.01.25

Contents

1. Introduction to Cloud Connectivity .. 5
1.1 Cloud Connectivity Overview ... 5
1.2 Microsoft Azure IoT Solution ... 6
1.2.1 Overview .. 6
1.2.2 IoT Hub Device Provisioning Service .. 6
1.2.3 Authentication Methods ... 7
1.3 MQTT Protocol Overview .. 7
1.4 TLS Protocol Overview .. 8
1.4.1 Device Certificates and Keys ... 9
1.4.2 Device Security Recommendations... 9

2. RA FSP MQTT/TLS Cloud Solution ... 10
2.1 MQTT Client Module Introduction .. 10
2.1.1 Design Considerations .. 10
2.1.2 Supported Features ... 10
2.2 TLS Session Module Introduction .. 10
2.2.1 Design Considerations .. 10
2.2.2 Supported Features ... 11
2.3 Azure IoT Device SDK Module Introduction .. 11
2.3.1 Design Considerations .. 11
2.3.2 Supported Features ... 11

3. MQTT/TLS Application Example .. 12
3.1 Application Overview ... 12
3.2 Creating the Application Project using the FSP Configurator .. 17
3.3 Install Azure CLI .. 26
3.4 Create an IoT Hub ... 26
3.5 Certificate Creation Process .. 29
3.6 View Device Properties ... 33
3.7 Set IoT Hub ... 33
3.8 Register an IoT Hub Device... 36
3.9 Prepare the Device .. 38
3.10 Building and Running the Application .. 39
3.11 Download and Run the Project .. 40
3.12 Storing Device Certificate, Host Name, Device ID .. 43
3.13 Send Device to Cloud Message .. 47
3.14 Send Cloud-to-Device Message .. 48

4. Importing, Building, and Loading the Project .. 49
4.1 Importing .. 49
4.2 Building the Latest Executable Binary ... 49

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 4 of 52
Jul.01.25

4.3 Loading the Executable Binary into the Target MCU .. 49
4.3.1 Using a Debugging Interface with e2 studio ... 49
4.3.2 Using J-Link Tools ... 49
4.3.3 Using Renesas Flash Programmer ... 49

5. Next Steps and References ... 50

6. MQTT/TLS References .. 50

7. Known Issues and Limitations ... 50

Revision History .. 52

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 5 of 52
Jul.01.25

1. Introduction to Cloud Connectivity
1.1 Cloud Connectivity Overview
Internet of Things (IoT) is a sprawling set of technologies described as connecting everyday objects,
like sensors or smartphones, to the World Wide Web. IoT devices are intelligently linked together to
enable new forms of communication between things and people, and among things.

These devices, or things, connect to the network. Using sensors, they provide the information they
gather from the environment or allow other systems to reach out and act on the world through
actuators. In the process, IoT devices generate massive amounts of data, and Cloud computing
provides a pathway, enabling data to travel to its destination.

The IoT Cloud Connectivity Solution includes the following major components:

1. Devices or Sensors
2. Gateway
3. IoT Cloud services
4. End-user application/system

Figure 1. IoT Cloud Connectivity Architecture
Devices or Sensors
A device includes hardware and software that interacts directly with the world. Devices connect to a
network to communicate with each other or to centralized applications. Devices may connect to the
Internet either directly or indirectly.

Gateway
A gateway enables devices that are not directly connected to the Internet to reach Cloud services. The data
from each device is sent to the Cloud platform, where it is processed and combined with data from other
devices, and potentially with other business-transactional data. Most of the common communication
gateways support one or more communication technologies such as Wi-Fi, Ethernet, or Cellular to connect to
the IoT Cloud service provider.
IoT Cloud
Many IoT devices produce lots of data. You need an efficient, scalable, affordable way to manage
those devices, handle all that information, and make it work for you. When it comes to storing,
processing, and analyzing data, especially big data, it is hard to surpass the Cloud.

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 6 of 52
Jul.01.25

1.2 Microsoft Azure IoT Solution
1.2.1 Overview
Microsoft’s end-to-end IoT platform is a complete IoT offering so that enterprises can build and realize value
from IoT solutions quickly and efficiently. Azure IoT Central solutions are used with backend support from the
Azure IoT Hub Device Provisioning Service.

Figure 2. Microsoft Azure IoT Cloud Solution

1.2.2 IoT Hub Device Provisioning Service
1.2.2.1 Azure IoT Hub and IoT Hub Device Provisioning Service (DPS)
IoT Hub provides built-in support for the MQTT v3.1.1 protocol. See the following webpage for
more understanding of the IoT Hub and Device Provisioning Services (DPS):
https://docs.microsoft.com/en-us/azure/iot-dps/

(1) Device Provisioning Service
A high-level sequence of events to connect a Device to the IoT Hub is as follows:

1. After the device is manufactured, the device enrollment information is added to the DPS. This is the only
manual step in the process.

2. At some point afterward, which could be a day or several months, the device goes online and connects
to DPS to find its IoT solution home.

3. DPS and the device go through an attestation handshake using the device enrollment information. DPS
proves the device’s identity.

4. DPS registers the device to the IoT hub and populates the initial desired device state.
5. IoT hub returns the connection info for the device.
6. DPS gives the device its IoT Hub connection information.
7. The device now establishes a connection with IoT Hub and retrieves its initial configuration from IoT

Hub, and makes any changes/updates, as needed.
8. The device starts sending telemetry to the IoT Hub.

(2) Embedded C SDK
The Embedded C SDK, the newer addition to the Azure SDKs family, was designed to allow
embedded IoT devices to leverage Azure services, like device to Cloud telemetry, Cloud to device
messages, direct methods, device twin, device provisioning, and IoT Plug and Play, all while
maintaining a minimal footprint.

It allows full control over memory allocation and the flexibility to bring your own MQTT client,
TLS, and Socket layers.

Written in C, this version of the SDK is optimized to be used on small and embedded devices with
limited capabilities and resources.

The Azure IoT SDK is open source and is published on GitHub (https://github.com/Azure/azure-sdk-
for-c). This is also distributed with FSP version 6.0.0 and above.

https://docs.microsoft.com/en-us/azure/iot-dps/
https://github.com/Azure/azure-sdk-for-c
https://github.com/Azure/azure-sdk-for-c

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 7 of 52
Jul.01.25

1.2.3 Authentication Methods
Security is a critical concern when deploying and managing IoT devices. IoT Hub offers the security features
described in the following sections.

1.2.3.1 X.509
The communication path between devices and Azure IoT Hub, or between gateways and Azure IoT Hub, is
secured using the industry-standard Transport Layer Security (TLS) with Azure IoT Hub, authenticated using
the X.509 standard.

To protect devices from unsolicited inbound connections, Azure IoT Hub does not open any connection to
the device. The device initiates all connections.

1.2.3.2 Per-Device Key Authentication
Figure 3 shows authentication in the IoT Hub using security tokens.

Figure 3. Authentication using Security Tokens

1. The device prepares a shared access signature (SAS) token using the device endpoint, device id, and
primary key (generated as part of the device addition to the IoT Hub).

2. When connecting to the IoT Hub, the device presents the SAS token as the password in the MQTT
CONNECT message. The username content is the combination of the device endpoint and device
name, along with the additional Azure-defined string.

3. The IoT Hub verifies the SAS token and registers the device, and a connection is established.
4. IoT Hub provides a Symmetric key for Data encryption.

Note: The connection is closed when the SAS token expires.

1.3 MQTT Protocol Overview
MQTT stands for Message Queuing Telemetry Transport. MQTT is a client-server publish-
subscribe messaging transport protocol. It is an extremely lightweight, open, simple messaging
protocol, designed for constrained devices, as well as low-bandwidth, high-latency, or unreliable
networks. These characteristics make it ideal for use in many situations, including constrained
environments, such as communication in machine-to-machine (M2M) and IoT contexts, where a small
code footprint is required, and/or network bandwidth is at a premium.

An MQTT client can publish information to other clients through a broker. A client, if interested in a
topic, can subscribe to the topic through the broker. A broker is responsible for authentication and
authorization of clients, as well as delivering published messages to any of its clients who subscribe to
the topic. In this publisher/subscriber model, multiple clients may publish data on the same topic. A
client will receive the messages published if the client subscribes to the same topic.

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 8 of 52
Jul.01.25

Figure 4. MQTT Client Publish/Subscribe Model
In the Pub/Sub model used by MQTT, there is no direct connection between a publisher and the
subscriber. To handle the challenges of a Pub/Sub system, MQTT generally uses quality of service
(QoS) levels.

There are three QoS levels in MQTT:

• At most once (0)
• At least once (1)
• Exactly once (2)

At most once (0)
A message will not be acknowledged by the receiver or stored and redelivered by the sender.

At least once (1)
It is guaranteed that a message will be delivered at least once to the receiver. But the message can
also be delivered more than once. The sender will store the message until it gets an acknowledgment
in the form of a PUBACK command message from the receiver.

Exactly once (2)
It guarantees that each message is received only once by the counterpart. It is the safest and the slowest
QoS level.

1.4 TLS Protocol Overview
Transport Layer Security (TLS) protocol and its predecessor, Secure Sockets Layer (SSL), are cryptographic
protocols that provide communications security over a computer network.

The TLS/ SSL protocol provides privacy and reliability between two communicating applications. It has the
following basic properties:

Encryption: The messages exchanged between communicating applications are encrypted to ensure that
the connection is private. A symmetric cryptography mechanism, such as AES (Advanced Encryption
Standard) is used for data encryption.

Authentication: A mechanism to check the peer’s identity using certificates.

Integrity: A mechanism to detect message tampering and forgery ensures that the connection is reliable. A
Message Authentication Code (MAC), such as the Secure Hash Algorithm (SHA), ensures message
integrity.

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 9 of 52
Jul.01.25

Figure 5. SSL/TLS Hierarchy

1.4.1 Device Certificates and Keys
Device certificates, public and private keys, and the ways they can be generated are discussed in this
section.

Security is a critical concern when deploying and managing IoT devices. In general, each of the IoT devices
needs an identity before they can communicate with the Cloud. Digital certificates are the most common
method for authenticating a remote host in TLS. Essentially, a digital certificate is a document with specific
formatting that provides identity information for a device.

TLS normally uses a format called X.509, a standard developed by the International Telecommunication
Union (ITU), though other formats for certificates may apply if TLS hosts can agree on a format to use.
X.509 defines a specific format for certificates and various encodings that can be used to produce a digital
document. Most X.509 certificates used with TLS are encoded using a variant of ASN.1, which is another
telecommunication standard. Within ASN.1 there are various digital encodings, but the most common
encoding for TLS certificates is the Distinguished Encoding Rules (DER) standard. DER is a simplified
subset of the ASN.1.

Though DER-formatted binary certificates are used in the actual TLS protocol, they may be generated and
stored in a number of different encodings, with file extensions such as .pem, .crt, and .p12. The most
common of the alternative certificate encodings is Privacy-Enhanced Mail (PEM). The PEM format is a base-
64 encoded version of the DER encoding.

Depending on your application, you may generate your own certificates, be provided certificates by a
manufacturer or government organization, or purchase certificates from a commercial certificate authority.

Loading Certificates onto your Device
To use a digital certificate in your NetX™ Secure application, you must first convert your certificate into a
binary DER format, and optionally convert the associated private key into a binary format, typically, a
PKCS#1-formatted, DER-encoded RSA key. Once converted, it is up to you how to load the certificate and
the private key onto the device. Possible options include using a flash-based file system or generating a C
array from the data (using a tool such as xxd from Linux® with the -i option) and compiling the certificate and
key into your application as constant data.

Once your certificate is loaded on the device, you can use the TLS API to associate your certificate with a
TLS session.

1.4.2 Device Security Recommendations
The following security recommendations are not enforced by Cloud IoT Core, but will help you secure your
devices and connections.

• The private key of the device should be kept secret.
• Use the latest version of TLS (v1.2 or above) when communicating with IoT Cloud and verify that the

server certificate is valid using trusted root certificate authorities.
• Each device should have a unique public/private key pair. If multiple devices share a single key and one

of those devices is compromised, an attacker could impersonate all the devices that have been
configured with that one key.

• Keep the public key secure when registering it with Cloud IoT Core. If an attacker can tamper with the
public key and trick the provisioner into swapping the public key and registering the wrong public key, the
attacker will subsequently be able to authenticate on behalf of the device.

• The key pair is used to authenticate the device to Cloud IoT Core and should not be used for other
purposes or protocols.

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 10 of 52
Jul.01.25

• Depending on the device’s ability to store keys securely, key pairs should be rotated periodically. When
practical, all keys should be discarded when the device is reset.

• If your device runs an operating system, make sure you have a way to securely update it. Android Things
provides a service for secure updates. For devices that don’t have an operating system, ensure that you
can securely update the device’s software if security vulnerabilities are discovered after deployment.

2. RA FSP MQTT/TLS Cloud Solution
2.1 MQTT Client Module Introduction
The NetX Duo MQTT Client module provides high-level APIs for a Message Queuing Telemetry Transport
(MQTT) protocol-based client. The MQTT protocol works on top of TCP/IP, and therefore, the MQTT client is
implemented on top of NetX Duo IP and NetX Duo Packet pool. NetX Duo IP attaches itself to the
appropriate link layer frameworks, such as Ethernet, Wi-Fi, or Cellular.

The NetX Duo MQTT client module can be used in normal or secure mode. In normal mode, the
communication between the MQTT client and broker is not secure. In secure mode, the communication
between the MQTT client and broker is secured using the TLS protocol.

2.1.1 Design Considerations
• By default, the MQTT client does not use TLS; communication is not secure between an MQTT client and

broker.
• The RA FSP Azure RTOS NetX Duo IoT middleware module provides the NetX Duo TLS session block. It

adds the Azure RTOS NetX Secure block. This block defines/controls the common properties of NetX
Secure.

2.1.2 Supported Features
NetX Duo MQTT Client supports the following features:

• Compliant with OASIS MQTT version 3.1.1 Oct 29, 2014. The specification can be found at
http://mqtt.org/.

• Provides an option to enable/disable TLS for secure communication using NetX Secure in FSP.
• Supports QoS and provides the ability to choose the levels that can be selected while publishing the

message.
• Internally buffers and maintains the queue of received messages.
• Provides a mechanism to register a callback when a new message is received.
• Provides a mechanism to register a callback when the connection with the broker is terminated.

2.2 TLS Session Module Introduction
The NetX Duo TLS session module provides high-level APIs for the TLS protocol-based client. It
uses services provided by the RA FSP Crypto Engine (SCE) to carry out hardware-accelerated
encryption and decryption.

The NetX Duo TLS Session module is based on Azure RTOS NetX Secure, which implements the
Secure Socket Layer (SSL) and its replacement, the TLS protocol, as described in RFC 2246
(version 1.0) and 5246 (version 1.2). NetX Secure also includes routines for the basic X.509 (RFC
5280) format. NetX Secure is intended for applications using ThreadX RTOS in the project.

2.2.1 Design Considerations
• NetX Secure TLS performs only basic path validation on incoming server certificates.

Once the basic path validation is complete, TLS then invokes the certificate verification callback supplied
by the application.

• It is the responsibility of the application to perform any additional validation of the certificate.
To help with the additional validation, NetX Secure provides X.509 routines for common validation
operations, including DNS validation and Certificate Revocation List checking.

• Software-based cryptography is processor-intensive.
NetX Secure software-based cryptographic routines have been optimized for performance, but depending
on the capabilities of the target processor, performance may result in very long operations. When
hardware-based cryptography is available, it should be used for optimal performance of the NetX secure
TLS.

http://mqtt.org/

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 11 of 52
Jul.01.25

• Due to the nature of embedded devices, some applications may not have the resources to support the
maximum TLS record size of 16 KB.
NetX Secure can handle 16 KB records on devices with sufficient resources.

2.2.2 Supported Features
• Support for RFC 2246 Transport Layer Security (TLS) Protocol Version 1.0
• Support for RFC 5246 TLS Protocol Version 1.2
• Support for RFC 5280 X.509 PKI Certificates (v3)
• Support for RFC 3268 Advanced Encryption Standard (AES) Cipher suites for TLS
• RFC 3447 Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1
• RFC 2104 HMAC: Keyed-Hashing for Message Authentication
• RFC 6234 US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)
• RFC 4279 Pre-Shared Key Cipher suites for TLS

2.3 Azure IoT Device SDK Module Introduction
The Azure IoT device SDK is a set of libraries designed to simplify the process of developing IoT applications
for the Azure Cloud to make sending and receiving messages easy from the Azure IoT Hub service. There
are different variations of the SDK, each targeting a specific platform, but in this application note, we will
describe the Azure IoT device SDK for C.

The Azure IoT device SDK for C is written in ANSI C (C99) to maximize portability. This feature makes the
libraries well-suited to operate on multiple platforms and devices, especially where minimizing disk and
memory footprint is a priority.

In this application note, we will cover how to initialize the device library, send data to the IoT Hub, and
receive messages from it.

More details on the Azure IoT Device SDK can be found in the reference link Azure IoT Hub device and
service SDKs | Microsoft Learn

2.3.1 Design Considerations
The Azure IoT Device SDK is integrated with FSP and is available for customers to use. To add the SDK to
the application, users are required to use the Stacks tab and select Networking > Azure RTOS NetX Duo
IOT Middleware.
When the components are selected using the Stacks tab, and the project is created, the SDK and libraries
can be seen under the ra/microsoft/azure-rtos/netxduo/addons/azure_iot and
ra/microsoft/azure-rtos/netxduo/addons/cloud folders.

Note: In the following sections, the step-by-step procedure for adding the Azure IoT middleware is explained
in detail.

2.3.2 Supported Features
Table 1. IoT SDK Supported features

Features Descriptions
Send device-to-cloud messages Send device-to-cloud messages to IoT Hub with the option to add

custom message properties.
Receive cloud-to-device messages Receive cloud-to-device messages and associated properties from

IoT Hub.
Device twins IoT Hub persists a device twin for each device that you connect to

IoT Hub. The device can perform operations such as retrieving twin
documents and subscribing to desired property updates.

Direct methods IoT Hub gives you the ability to invoke direct methods on devices
from the Cloud.

Device Provisioning Service (DPS) This SDK supports connecting your device to the Device
Provisioning Service, for example, through individual enrollment
using an X.509 leaf certificate.

Protocol The Azure SDK for Embedded C supports only MQTT.

https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-sdks
https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-sdks

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 12 of 52
Jul.01.25

Features Descriptions
Retry policies The Azure SDK for Embedded C provides guidelines for retries, but

actual retries should be handled by the application.
IoT plug-and-play IoT Plug and Play enables solution builders to integrate smart

devices with their solutions without any manual configuration.

3. MQTT/TLS Application Example
3.1 Application Overview
This application project demonstrates the Renesas RA IoT Cloud Connectivity solution using the FSP and
uses Microsoft® Azure as the cloud provider. Ethernet is the primary communication interface between the
MQTT device and the Azure IoT Services.

The CK-RA6M5 v2 kit acts as an MQTT node and connects to the Azure IoT service using the MQTT/TLS
protocol over the Ethernet interface. The application periodically reads the onboard sensor values and
publishes this information to the Azure IoT Hub. It also subscribes to a User LED state MQTT topic. You can
turn the User LEDs ON/OFF by publishing the LED state remotely. This application reads the updated LED
state and turns the User LEDs ON/OFF.

Figure 6. RA MQTT/TLS Application HW Connection Overview

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 13 of 52
Jul.01.25

Figure 7. MQTT Publish/Subscribe to/from Azure IoT Central
The following files from this application project serve as a reference.

Table 2. Files Used in Application Project

No. Filename Purpose
1. src/application_thread_entry.c Contains initialization code and has the main

thread used in the Cloud Connectivity
application.

2. src/common_init.h Contains macros, data structures, and
function prototypes used to initialize common
peripherals across the project.

3. src/common_utils.c Contains macros, data structures, and
functions commonly used across the project.

4. src/common_utils.h Contains macros, data structures, and
function prototypes commonly used across
the project.

5. src/Console_Thread_entry.c Contains the code for the command line
interface and flash memory operations.

6. src/ICM42605.c Contains the code for the 6-Axis MEMS
Motion Tracking™ Sensor (Gyroscope,
Accelerometer)

7. src/ICM42605.h Contains the Data structure function
prototypes for the 6-Axis MEMS Motion
Tracking™ Sensor (Gyroscope,
Accelerometer)

8. src/RA_ICM42605.c Contains codes for 6 Axis sensor (Gyroscope,
Accelerometer) sensor’s initialization and
measurement.

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 14 of 52
Jul.01.25

No. Filename Purpose
9. src/icm.h Contains user-defined data types and function

prototypes, which have implementation in
RA_ICM42605.c

10. src/ICP_20100.c Contains the code for the Barometric
Pressure and Temperature Sensor

11. src/ICP_20100.h Contains the Data structure and function
prototypes for the Barometric Pressure and
Temperature Sensor

12. src/RA_ICP20100.c Contains codes for the Barometric Pressure
and Temperature sensor’s initialization and
measurement.

13. src/icp.h Contains user-defined data types and function
prototypes that have an implementation in
RA_ICP20100.c

14. src/Sensor_Thread_entry.c Contains the Code to access the Sensor data
from the different sensors and the order topic
to publish

15. src/OB_1203_Thread_entry.c Contains the code for Heart Rate, Blood
Oxygen Concentration, Pulse Oximetry,
Proximity, Light, and Color Sensor

16. src/oximeter.c Contains data structures and functions used
for the oximeter sensor

17. src/oximeter.h Contains the Data structure and function
prototypes for the oximeter sensor

18. src/r_typedefs.h Contains the common derived data types
19. src/RA_HS3001.c Contains the code for the Renesas Relative

Humidity and Temperature Sensor
20. src/RA_HS3001.h Contains function prototypes for the Relative

Humidity and Temperature Sensor
21. src/RA_ZMOD4XXX_Common.c Contains the common code for Renesas

ZMOD sensors
22. src/RA_ZMOD4XXX_Common.h Contains the common data structure’s

function prototypes for the Renesas ZMOD
sensors

23. src/RA_ZMOD4XXX_IAQ1stGen.c Contains the common code for the Renesas
ZMOD Internal Air Quality sensors

24. src/RA_ZMOD4XXX_OAQ_NO2_O3.c Contains the common code for the Renesas
ZMOD Outer Air Quality sensors

25. src/RmcI2C.c Contains the I2C wrapper functions for the
third-party sensors not integrated with FSP

26. src/RmcI2C.h Contains the I2C function prototypes for
wrapper functions for the third-party sensors
not integrated with FSP

27. src/user_choice.h Contains the Function prototypes for the
Sensor and its user configuration for the
different sensors and their data accessibility.

28. src/usr_config.h To customize the user configuration to run the
application.

29. src/usr_hal.c Contains data structures and functions used
for the Hardware Abstraction Layer (HAL)
initialization and associated utilities.

30. src/usr_hal.h Accompanying header for exposing
functionality provided by usr_hal.c.

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 15 of 52
Jul.01.25

No. Filename Purpose
31. src/usr_network.c Contains data structures and functions used

to operate the NetX Duo TCP/IP and Ethernet
Module. This file is for Ethernet-specific
usage.

32. src/usr_network.h Accompanying header for exposing
functionality provided by usr_network.c.
This file is for Ethernet-specific use.

33. src/ZMOD4410_Thread_entry.c Contains the code for the indoor air quality
sensor.

34. src/sample_pnp_environmental_sensor_c
omponent.c

PNP Telemetry for HS3001 Temperature
sensor data.

35. src/sample_pnp_gas_component.c PNP Telemetry for ZMOD4410 IAQ Sensor
Data.

36. src/sample_pnp_barometric_pressure_se
nsor_component.c

PNP Telemetry for ICP20100 Pressure
Sensor data.

37. src/sample_pnp_inertial_sensor_compon
ent.c

PNP Telemetry for ICM42605 Inertial Sensor
data.

38. src/sample_pnp_gas_oaq.c PNP Telemetry for ZMOD4510 OAQ Sensor
Data.

39. src/sample_pnp_biometric_sensor_compo
nent.c

PNP Telemetry for OB1203 Biometric Sensor
Data.

40. src/ZMOD4510_Thread_entry.c Reading Outdoor Air Quality Data.
41. src/console_menu/console.c Contains data structures and functions used

to print data on the console using the UART.
42. src/console_menu/console.h Contains the Function prototypes used to print

data on the console using UART.
43. src/console_menu/menu_flash.c Contains data structures and functions used

to provide a CLI flash memory-related menu.
44. src/console_menu/menu_flash.h Contains the Function prototypes and macros

used to provide the CLI flash memory-related
menu.

45. src/console_menu/menu_kis.c Contains functions to get the FSP version, get
UUID, and help option for the main menu on
the CLI.

46. src/console_menu/menu_kis.h Contains the Function prototypes and macros
used to get the FSP version, get UUID, and
help option for the main menu on the CLI.

47. src/console_menu/menu_main.c Contains data structures and functions used
to provide CLI main menu options.

48. src/console_menu/menu_main.h Contains the Function prototypes and macros
used to provide CLI main menu options.

49. src/flash/flash_hp.c Contains data structures and functions used
to perform flash memory-related operations.

50. src/flash/flash_hp.h Contains the function prototypes and macros
used to perform flash memory-related
operations.

51. src/ob1203_bio/KALMAN/kalman.c Contains an algorithm for Heart Rate, Blood
Oxygen Concentration, Pulse Oximetry,
Proximity, Light, and Color Sensor sample
calculations.

52. src/ob1203_bio/KALMAN/kalman.h
53. src/ob1203_bio/SAVGOL/SAVGOL.c
54. src/ob1203_bio/SAVGOL/SAVGOL.h
55. src/ob1203_bio/SPO2/SPO2.c
56. src/ob1203_bio/SPO2/SPO2.h

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 16 of 52
Jul.01.25

No. Filename Purpose
57. src/ob1203_bio/ob1203_bio.c Contains codes for the OB1203 sensor’s

implementation to use with FSP stacks.
58. src/ob1203_bio/ob1203_bio.h Contain user data structure and function

prototypes used in ob1203_bio.c
59. src/ob1203_bio/OB1203_Config.c Initializes and configures two OB1203 sensor

instances (PPG and proximity) using the
OB_driver; defines control structures,
configuration parameters, and default
callbacks.

60. src/ob1203_bio/OB1203_Config.h Declares external instances, configuration
structures, and callbacks for OB1203 sensors
in PPG and proximity modes.

61. src/ob1203_bio/OB_driver/rm_ob1203/
ppg_mode/rm_ob1203_ppg_mode.c

Contains standalone OB1203 sensor driver
source code (PPG and Proximity modes)
extracted from Renesas FSP. Used
independently without integration via FSP
configurator.

62. src/ob1203_bio/OB_driver/rm_ob1203/
proximity_mode/
rm_ob1203_proximty_mode.c

63. src/ob1203_bio/OB_driver/rm_ob1203/
rm_ob1203_ra_driver.c

64. src/ob1203_bio/OB_driver/rm_ob1203/
rm_ob1203.c

65. src/ob1203_bio/OB_driver/rm_ob1203_
api.h

66. src/ob1203_bio/OB_driver/rm_ob1203_
cfg.h

67. src/ob1203_bio/OB_driver/rm_ob1203.h
68. src/SEGGER_RTT/SEGGER_RTT.c Implementation of SEGGER real-time transfer

(RTT) which allows real-time communication
on targets which support debugger memory
accesses while the CPU is running.

69. src/SEGGER_RTT/SEGGER_RTT.h
70. src/SEGGER_RTT/SEGGER_RTT_Conf.h
71. src/SEGGER_RTT/SEGGER_RTT_printf.c
72. src/nx_azure_iot_cert.c Azure IoT Interface code. These have the

reference to the working sample
implementation and other features such as
Device Twin and Direct Method. These files
can be used as a reference for developing the
application

73. src/nx_azure_iot_cert.h
74. src/nx_azure_iot_ciphersuites.c
75. src/nx_azure_iot_ciphersuites.h
76. src/sample_azure_iot_embedded_sdk.c
77. src/sample_config.h
78. src/usr_app.c Contains data structures and functions used

to operate the user application functions.
79. src/usr_app.h Accompanying header for exposing

functionality provided by usr_app.c.
80. src/base64_decode.c Contains a function used for BASE64 to Hex

Conversion
81. src/base64.h Contains a function prototype used for

BASE64 to Hex Conversion
82. src/c2d_thread_entry.c Contains data structures, functions, and the

main thread used in Cloud to Device message
handling.

83. src/hal_entry.c Auto-generated unused file for Non-RTOS
thing.

84. src/commandRX_Thread_entry.c Cloud to Device Commands reception.

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 17 of 52
Jul.01.25

3.2 Creating the Application Project using the FSP Configurator
Note: Skip this section if you are planning to import, build, and run the project attached to this application

note.
Complete the steps to create the project from the start using the e2 studio and FSP configurator. The
following table shows the step-by-step process of creating the project. It is assumed that the user is familiar
with the e2 studio and FSP configurator. Launch the installed e2 studio for the FSP.

Table 3. Step-by-step Details for Creating the Application Project
 Steps Intermediate Steps
1 Project Creation: File → New → Renesas C/C++ Project → Renesas RA

2 Project Template:
Templates for Renesas RA Project

Renesas RA C/C++ Project → Next

3 e2 studio - Project Configuration:
Renesas RA C/C++ Project
Project Name and Location

Project Name (Name for the project of your choice) →
Next

4 Device and Tools Selection
Device Selection FSP Version: 6.0.0

Board: CK-RA6M5 V2
Device: R7FA6M5BH3CFC
Language: C

5 Toolchains Toolchain: GNU ARM Embedded
Toolchain version: 13.2.1.arm-13-7
Debugger: J-Link ARM
→ Next

6 Project Type Selection Flat (Non-TrustZone) Project
→ Next

6a Preceding Project or Smart
Bundle Selection

None  Next

7 Build Artifact and RTOS Selection Build Artifact Selection: Executable
RTOS Selection: Azure RTOS ThreadX (v6.4.0+fsp.6.0.0)
→ Next

8 Project Template Selection Azure RTOS ThreadX – Minimal → Finish

9 Clock HOCO 20MHz →PLL Src: HOCO → PLL Div/2 →PLL Mul
x20.0 → PLL200MHz

10 Stacks tab (Part of the FSP
Configurator)

Threads → New Thread

11 Configure Properties → Thread Symbol: application_thread
Name: Application Thread
Stack size (bytes): 0x2400
Priority: 1
Auto start: Disabled
Time slicing interval (ticks): 25
Note: The stack size of the application thread needs to be
a minimum of 0x1000 bytes or greater. This is the
requirement for the NetX Duo Crypto use.

12 Adding the NetX DHCP, IoT Middleware, SNTP Clients, and Packet Pool to the Application Thread.
Keep the default names g_dhcp_client0, g_dns0, g_sntp_client0. The default configuration
provided by the FSP configurator is used, so there is no need to change any of the specific
configurations in the Property window.
Adding a DHCP Client
New Stack Networking → Azure RTOS NetX Duo DHCP IPv4 Client

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 18 of 52
Jul.01.25

Adding Packet Pool for the DHCP
Client

Click on Add NetX Duo Packet Pool → Use→
g_packet_pool0 Azure RTOS NetX Duo Packet Pool
Instance

Adding NetX Duo Network Driver Click on Add NetX Duo Network Driver → New →
NetX Duo Ethernet Driver

Properties setting for g_ether0
Ethernet → Module g_ether0
Ethernet (r_ether) → General →

Name: g_ether0
MAC address: <User needs to define the valid values
for their network>

Property Settings for g_ether_phy0
Ethernet → Pins

ET0_LinkSTA: None
ET0_WOL: None

→ Module g_ether_phy0 Ethernet PHY-LSI Address: 5
The properties setting for
g_ether_phy_lsi0 Ethernet PHY-LSI

PHY-LSI Address: 5

Modifying the BSP tab → Properties → RA Common (for Main stack and Heap Settings)
Property settings for RA Common Main stack size(bytes): 0x1000

Heap size (bytes): 0x1000
Adding Azure RTOS NetX Duo IoT Middleware
New Stack Networking → Azure RTOS NetX Duo IoT Middleware
Adding NetX Duo IP instance for DNS
Client

Click on Add NetX Duo IP Instance → Use → g_ip0
Azure RTOS NetX Duo IP Instance

Adding Packet Pool for the DNS Client Click on Add NetX Duo Packet Pool →Use →
g_packet_pool0 Azure RTOS NetX Duo Packet Pool
Instance

13 Note: After the Azure IoT Middleware is added, the configurator reports the following errors when you
hover over the red Blocks.
Error: NetX Duo Azure IoT Middleware Requires NetX Secure to be enabled.
Error: NetX Duo Azure IoT Middleware Requires IP Packet Filter to be enabled.
Error: NetX Duo Azure IoT Middleware Requires MQTT Cloud to be enabled.
Error: A NetX Crypto Implementation must be added.
Note: To fix these errors, enable them as explained in the following steps
Enable the NetX Secure g_dns0 Azure RTOS NetX Duo DNS Client →Property →

Common → MQTT → Client → NX Secure: Enable
Enable MQTT Cloud g_dns0 Azure RTOS NetX Duo DNS Client →Property →

Common → MQTT → Client → Cloud Enable: Enable
Enable IP Packet Filter g_dns0 Azure RTOS NetX Duo DNS Client →Property →

Common → Common → IP Packet Filter: Enabled
Add NetX Crypto Implementation Click on Add NetX Crypto SW Only or HW/SW

Implementation →
New → Azure RTOS NetX Crypto HW Acceleration

Enable the Extended Notify Support g_dns0 Azure RTOS NetX Duo DNS Client →Property
→ Common → Common →Extended Notify Support:
Enabled

14 NetX Secure Component is added from the HW Crypto perspective. IoT SDK also works with SW
crypto. But in this application, the HW Crypto Accelerators are used.
Configure Azure RTOS NetX Secure property values (Only values that changed from the default are
shown here)
PSK Cipher Suite Enable
ECC Cipher Suite Enable
TLSv1.0 Enable
TLSv1.1 Legacy Mode Enable
TLSV1.1 Enable
TLSV1.3 Disable
Server Mode Enable

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 19 of 52
Jul.01.25

Configure Azure RTOS NetX Crypto HW Acceleration property values (Only values that changed
from the default are shown here)
Common→Hardware
Acceleration→ Public Key
Cryptography (PKC)→ RSA→RSA

Use Hardware

Common→Hardware Acceleration→
Public Key Cryptography (PKC)→
RSA→RSA 3072 Verify/Encryption
(HW)

Enabled

Common→Hardware Acceleration
→ Public Key Cryptography (PKC)
→ RSA → RSA 4096
Verify/Encryption (HW)

Enabled

Common→Hardware Acceleration
→ Public Key Cryptography (PKC)
→ RSA → RSA Scratch Buffer Size

Disabled (HW)

Common→ Standalone Usage Use with TLS
Note: Increase the Stack size in the
BSP Tab to get rid of the error in
the configurator for NetX Crypto
HW Acceleration

Refer to the Modifying the BSP tab → Properties → RA
Common for (Main stack and Heap Settings) section in step
11 of this table
Note: For crypto operation, it is recommended to have a
stack size of 4K or more.

Adding SNTP Client
New Stack Networking → Azure RTOS NetX Duo SNTP Client
Adding NetX Duo IP instance for SNTP
Client

Click on Add NetX Duo IP Instance →Use → g_ip0
Azure RTOS NetX Duo IP Instance

Adding Packet Pool for the SNTP
Client

Click on Add NetX Duo Packet Pool →Use →
g_packet_pool0 Azure RTOS NetX Duo Packet Pool
Instance

15 Increase the Number of Packets in Pool
 Click on g_packet_pool0 Azure RTOS NetX Duo Packet

Pool Instance
→ Property → Module g_packet_pool0 Azure RTOS NetX
Duo Packet Pool Instance → Number of Packets in Pool.
Change from 16 to 50 (To allow enough buffer for the
packets). This can be tuned based on the frequency and size

Note: After adding the SNTP, the configurator reports the following errors when you hover over the red
Blocks.
Error: Maximum time adjustment (milliseconds) should be greater than unicast poll interval
(seconds).
Note: To fix these errors, enable them as explained in the following steps
Reduce the starting poll interval for
unicast update request (seconds)

g_sntp_client0 Azure RTOS NetX Duo SNTP Client →
Property → Common → SNTP → Client →Starting poll
interval for unicast update request (seconds): 36

16 Add Cloud to Device Processing Thread to the Application
Stacks tab (Part of the FSP
Configurator)

Threads → New Thread

Configure Thread Properties
Symbol c2d_thread
Name Cloud2Device Thread
Stack size (bytes) 2048
Priority 1
Auto start Disabled
Time slicing interval (ticks) 25

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 20 of 52
Jul.01.25

17 Adding the HAL Modules as required for the Application Project: GPT Timer0 for control publishing
sensor value into MQTT and display to console.
HAL/Common Stacks → New Stack Timers → Timer, General PWM on r_gpt
Property Settings for r_gpt → General Name: gpt

Channel: 0
Mode: Periodic
Period: 1
Period Unit: Seconds

Interrupts: Callback: g_gpt_timer_cb
Overflow/Crest Interrupt Priority: Priority 10

18 Adding Azure RTOS Objects for the Application (Topic Queue needs to be created for the application
– Message Queue)
Stacks Tab → Objects New Object → Queue
Property Settings for the Queue Name: Topic Queue

Symbol: g_topic_queue
Message Size (Words): 16
Queue Size (Bytes): 64

Stacks Tab → Objects New Object → Mutex

 Name: consolprint_mutex
Symbol: consolprint_mutex
Priority Inheritance: Disabled

Stacks Tab → Objects New Object → Queue

Property Settings for the Queue Name: HS3001 Queue
Symbol: g_hs3001_queue
Message Size (Words): 2
Queue Size (Bytes): 8

Stacks Tab → Objects New Object → Queue

Property Settings for the Queue Name: ZMOD4410 Queue
Symbol: g_iaq_queue
Message Size (Words): 3
Queue Size (Bytes): 12

Stacks Tab → Objects New Object → Queue

Property Settings for the Queue Name: ICM Queue
Symbol: g_icm_queue
Message Size (Words): 12
Queue Size (Bytes): 48

Stacks Tab → Objects New Object → Queue

Property Settings for the Queue Name: OB1203 Queue
Symbol: g_ob1203_queue
Message Size (Words): 3
Queue Size (Bytes): 12

Stacks Tab → Objects New Object → Queue

Property Settings for the Queue Name: ZMOD4510 Queue
Symbol: g_oaq_queue
Message Size (Words): 1
Queue Size (Bytes): 4

Stacks Tab → Objects New Object → Queue

Property Settings for the Queue Name: ICP Queue
Symbol: g_icp_queue

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 21 of 52
Jul.01.25

Message Size (Words): 4
Queue Size (Bytes): 16

19 Add Sensor Thread, this thread is used to access the sensor’s values of HS3001, ICP-20100, and ICM-
42605
Stacks tab (Part of the FSP
Configurator)

Threads → New Thread

Configure Thread Properties
Symbol Sensor_Thread
Name Sensor_Thread
Stack size (bytes) 8192
Priority 3
Auto start Disabled
Time slicing interval (ticks) 200

20 Adding the HS300X Temperature/Humidity Sensor Module to the Sensor Thread
New Stack → Sensor → HS300X Temperature/Humidity Sensor
Config HS300X sensor→ Name: g_hs300x_sensor0

Callback: hs300x_callback
Under I2C Shared Bus → Add I2C
Communications Peripheral →

New → I2C Master(r_iic_master)

Config for I2C Shared Bus → Name: g_comms_i2c_bus0
Channel: 0
Rate: Fast-mode

Config for I2C Master → Name: g_i2c_master0
Interrupt Priority Level: Priority 12

21 Adding ICP-20100 and ICM-42605 sensors to the Sensor Thread.
Note: FSP doesn’t provide an integrated module for ICP-20100 and ICM-42605 sensors. This needs to
be integrated via the i2c communication device and external IRQ manually. Also, its related sensor
driver code needs to be added to the src folder.
New Stack → Connectivity → I2C Communication Device
Config I2C Communication Device → Name: g_comms_i2c_device4

Slave Address: 0x63
Callback: ICP_comms_i2c_callback

Under the I2C Communication Device
→ Add I2C Shared Bus →

Use → g_comms_i2c_bus0 I2C Shared Bus

New Stack → Input → External IRQ
Config for External IRQ Name: g_external_irq6

Channel: 6
Trigger: Falling
Callback: ICP_IRQ_CALLBACK

22 Adding I2C Communication Device and External IRQ for ICM-42605 into Sensor Thread
New Stack → Connectivity → I2C Communication Device
Config I2C Communication Device → Name: g_comms_i2c_device5

Slave Address: 0x68
Callback: ICM_comms_i2c_callback

Under the I2C Communication Device
→ Add I2C Shared Bus →

Use → g_comms_i2c_bus0 I2C Shared Bus

New Stack → Input → External IRQ
Config for External IRQ Name: g_external_irq3

Channel: 3
Trigger: Falling
Callback: ICM_42605_Callback2

New Stack → Input → External IRQ

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 22 of 52
Jul.01.25

Config for External IRQ Name: g_external_irq12
Channel: 12
Trigger: Falling
Callback: ICM_42605_Callback1

23 Add ZMOD4410 Sensor (IAQ) Processing Thread to the Application
Stacks tab (Part of the FSP
Configurator)

Threads → New Thread

Configure Thread Properties
Symbol ZMOD4410_Thread
Name ZMOD4410_Thread
Stack size (bytes) 2048
Priority 3
Auto start Disabled
Time slicing interval (ticks) 1

24 Adding ZMOD4XXX Gas Sensor Module to ZMOD4410_Thread
New Stack → Sensor → ZMOD4XXX Gas Sensor
Config ZMOD4XXX Properties→ Add Requires ZMOD Library→ New→ZMOD4410 IAQ 1st

Generation
Add I2C Shared Bus→ New→ I2C Shared Bus
Add I2C Communications→New→ I2C Master
(r_iic_master)
Add IRQ Driver for Measurement →New→ External IRQ

Module g_zmod4xxx_sensor0 Name: g_zmod4xxx_sensor0
Comms I2C callback: zmod4xxx_comms_i2c_callback
IRQ Callbacks: zmod4xxx_irq0_callback

Under the ZMOD4410 IAQ 1st
Generation → I2C Communication
Device →

Name: g_comms_i2c_device1

Config I2C Shared bus → Name: g_comms_i2c_bus2
Channel: 2
Rate: Fast-mode

Config I2C Master → Name: g_i2c_master2
Interrupt Priority Level: Priority 12

Config External IRQ→ Name: g_external_irq4
Channel :4
Trigger: Falling
Pin Interrupt Priority: Priority 3
Pins→IRQ04: (Navigate to IRQ04): P402

25 Add ZMOD4510 Sensor (OAQ) Processing Thread to the Application
Stacks tab (Part of the FSP
Configurator)

Threads → New Thread

Configure Thread Properties
Symbol ZMOD4510_Thread
Name ZMOD4510_Thread
Stack size (bytes) 2048
Priority 2
Auto start Disabled
Time slicing interval (ticks) 1

26 Adding ZMOD4XXX Gas Sensor Module to ZMOD4510_Thread
New Stack → Sensor → ZMOD4XXX Gas Sensor
Config ZMOD4XXX Gas Sensor
Properties→

Add Required ZMOD Library→ New→ZMOD4510 NO2 O3
Add I2C Shared Bus→Use→g_comms_i2c_bus2 I2C
Shared Bus
Add IRQ Driver for Measurement→New→ External IRQ

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 23 of 52
Jul.01.25

Module g_zmod4xxx_sensor1 Name: g_zmod4xxx_sensor1
Comms I2C callback: zmod4xxx_comms_i2c1_callback
IRQ Callbacks: zmod4xxx_irq1_callback

Module g_comms_i2c_device2 I2C
Communication Device
(rm_comms_i2c)

Name: g_comms_i2c_device2

Config External IRQ→ Name: g_external_irq15
Channel: 15
Trigger: Falling
Pin Interrupt Priority:12
Pins→IRQ15: (Navigate to IRQ15): P404

27 Add OB1203 (optical biosensor) Processing Thread to the Application
Note: FSP v6.0.0 doesn’t provide an integrated module for the OB1203 sensor. This needs to be
integrated via the i2c communication device and external IRQ manually. Also, its related sensor driver
code needs to be added to the src folder
Stacks tab (Part of the FSP
Configurator)

Threads → New Thread

Configure Thread Properties
Symbol OB_1203_Thread
Name OB_1203_Thread
Stack size (bytes) 2048
Priority 2
Auto start Disabled
Time slicing interval (ticks) 25

28 Adding I2C Communication Device for OB1203 (PPG mode) into OB_1203_Thread.
New Stack → Connectivity → I2C Communication Device
Config I2C Communication Device
→

Name: g_comms_i2c_device3

 Slave Address: 0x53
 Callback: rm_ob1203_comms_i2c_callback
Under the I2C Communication Device
→ Add I2C Shared Bus →

New → I2C Shared Bus

Under I2C Shared Bus → Add I2C
Communications Peripheral →

New → I2C Master(r_iic_master)

Config for I2C Shared Bus →

Name: g_comms_i2c_bus1
Channel: 1
Rate: Standard

Config I2C Master → Name: g_i2c_master1
Interrupt Priority Level: Priority 12

29 Adding I2C Communication Device for OB1203 (Proximity mode) into OB_1203_Thread.
New Stack → Connectivity → I2C Communication Device
Config I2C Communication Device
→

Name: g_comms_i2c_device6

 Slave Address: 0x53
 Callback: rm_ob1203_comms_i2c_callback
Under the I2C Communication Device
→ Add I2C Shared Bus →

Use → g_comms_i2c_bus1 I2C Shared Bus

30 Adding External IRQ for OB1203 into OB_1203_Thread.
New Stack → Input → External IRQ
Config for External IRQ Name: g_external_irq14

Channel: 14
Trigger: Falling
Callback: rm_ob1203_irq_callback
Pin Interrupt Priority:12

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 24 of 52
Jul.01.25

Pins→IRQ14: (Navigate to IRQ14): P403
31 Add Cloud to Device Processing Thread to the Application

Stacks tab (Part of the FSP
Configurator)

Threads → New Thread

Configure Thread Properties
Symbol Console_Thread
Name Console_Thread
Stack size (bytes) 4096
Priority 4
Auto start Enabled
Time slicing interval (ticks) 50

32 Add Cloud to Device Command Reception Thread to the Application
Stacks tab (Part of the FSP
Configurator)

Threads → New Thread

Configure Thread Properties
Symbol CommandRX_Thread
Name CommandRX_Thread
Stack size (bytes) 2048
Priority 4
Auto start Disabled
Time slicing interval (ticks) 40

33 Adding UART to Console_Thread
New Stack → Connectivity→ UART
Config Common → FIFO Support: Enable

DTC Support: Enable
Flow Control Support: Enable

Config General → Name: g_console_uart
Channel: 5
Data Bits: 8bits
Parity: None
Stop Bits: 1bit

Config Baud→ Baudrate: 115200
Config Interrupts → Callback: user_uart_callback
Config Pins → TXD: P501

RXD: P502
34 Adding Flash to Console_Thread

New Stack → Storage→ Flash (r_flash_hp)
 Name: user_flash

Data Flash Background Operation: Disabled
Callback: flash_callback
Flash Ready Interrupt Priority: Priority 6
Flash Error Interrupt Priority: Priority 6

35 Enable “Use float with nano printf” to print float values.
Project → Properties → C/C++ Build
→ Settings → Tool Settings tab →
GNU ARM Cross C Linker →
Miscellaneous →Check the box

Use float with nano printf (-u _printf_float)

36 Add “--specs=rdimon.specs” to Other linker flags
Project → Properties → C/C++ Build
→ Settings → Tool Settings tab →
GNU ARM Cross C Linker →
Miscellaneous → Other linker flags
→

Add --specs=rdimon.specs
→ Apply → Apply and Close

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 25 of 52
Jul.01.25

The above configuration is a prerequisite to generate the required stack and features for the Cloud
connectivity application provided with this application note. Once the Generate Project Content button is
clicked, e2 studio generates the source code for the project. The generated source code contains the required
drivers, stacks, and middleware. The user application files must be added to the src folder.

For the validation of the created project, the same source files listed in the section 3, MQTT/TLS Application
Example, Table 2, may be added. This is the quickest way to create and build the application without writing
the code for the configuration created in the above section.

Note: Users are required to add the directory path and subdirectory for proper compilation. The following
paths need to be added to Project → Properties → C/C++ Build → Settings → Tool Settings tab
→ GNU Arm Cross C Compiler → Includes → Include paths (-I). Refer to the enclosed project for
more details.

Figure 8. Include src/ directory path before compiling the project
Note: After you follow the instructions in section 3.2 to recreate the Application project using the FSP

configurator and add the src code to the project, the project is ready for building.

Note: If you get an error while assigning a PIN to an External IRQ, go to Pin Configuration > Pin Number
and select the IRQ function for that pin number. For example, for External IRQ channel number 4, you
can select Function IRQ14 for Pin Number 4.

Note: As part of the manual creation of this project, you might encounter known issues/pin errors with the
Pin configurator while selecting the peripherals. We recommended selecting the operation mode,
disabling/enabling, and selecting the pins. You can also refer to the attached project as a working
reference.

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 26 of 52
Jul.01.25

3.3 Install Azure CLI
To prepare Azure Cloud resources and connect a device to Azure, you can use Azure CLI. Azure CLI can be
installed locally on your PC.

1. Azure CLI can be downloaded from the Microsoft site (https://learn.microsoft.com/en-us/cli/azure/install-
azure-cli)

2. The installer name will be similar to azure-cli-2.44.x.msi. or later. Click on the installer, and the
InstallShield will guide you through the installation process. When installing it, you can't choose the
installation location — it depends on the operating system you're using. For example, on Windows, the
64-bit Azure CLI is installed in C:\Program Files\Microsoft SDKs\Azure\CLI2.

3. Install the current release of the Azure CLI. After the installation is complete, you will need to close and
reopen any active Windows Command Prompt or PowerShell windows to use the Azure CLI.

4. After the Azure CLI installation is successful, open and launch Windows PowerShell to use the Azure
CLI. A screenshot of Windows PowerShell is shown below.

Figure 9. Windows PowerShell

5. If you already have Azure CLI installed locally, go to the directory of the installed AzureCLI and run az --
version to check the version. This application note requires Azure CLI 2.44.0 or later.

Figure 10. Azure CLI Version

3.4 Create an IoT Hub
You can use Azure CLI to create an IoT hub that handles events and messaging for your device.

Note 1: Before you start creating the IoT Hub, you are required to have a login to your Azure Portal via a
web browser. If not logged in, then you may notice an error that you are not logged in while creating
the IoT Hub:
https://portal.azure.com/

Note 2: If you do not have an Azure Account, you can create one that is valid for 12 months with limited
features from the following link:
https://azure.microsoft.com/en-us/free/

https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
https://portal.azure.com/
https://azure.microsoft.com/en-us/free/

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 27 of 52
Jul.01.25

To create an IoT hub:
Note 3: Some of the user parameters while creating the IoT Hub need to be unique. Users are required to

take care of this while creating the IoT Hub credentials.

1. In your CLI console, run the “az extension add” command to add the Microsoft Azure IoT Extension for
Azure CLI to your CLI shell. The IoT Extension adds IoT Hub, IoT Edge, and IoT Device Provisioning
Service (DPS) specific commands to Azure CLI.
 az extension add --name azure-iot

Note 4: When you run the command for the first time you may not notice output on the console as shown
below. It just accepts the command.

Figure 11. Add Extension for Azure CLI
2. Run the az login command to login to the Azure account. Running the az login command opens

the browser for login. You can enter the login credentials to login to the Azure account. You will notice a
similar message in the browser on successful login.

Note: You can find more info on the Azure CLI at Overview of the Azure CLI | Microsoft Docs

Figure 12. Successful Login to the Azure Account
3. Run the az group create command to create a resource group. The following command creates a

resource group named MyRAResourceGroup in the westus region.
4. Optionally, to set an alternate location, run az account list-locations to see available

locations. Then specify the alternate location in the following command in place of westus.
az group create --name MyRAResourceGroup --location westus

https://docs.microsoft.com/en-us/cli/azure/

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 28 of 52
Jul.01.25

Figure 13. Create Resource Group
5. Run the az iot hub create command to create an IoT hub. It might take a few minutes to create an

IoT Hub.
Replace the YourIotHubName placeholder below with the name you chose for your IoT hub. An IoT hub
name must be globally unique in Azure. This placeholder is used in the rest of this tutorial to represent
your unique IoT hub name. Use any command given below.
 az iot hub create --resource-group MyRAResourceGroup --name

{YourIoTHubName}
OR

 az iot hub create --resource-group MyRAResourceGroup --name
{YourIoTHubName} --location {YourLocation}

Note: It may take a few minutes to create the IoT Hub. In this case, the IoT Hub name used is
RACLOUDHUB.

Note: Microsoft recommends creating a new IoT Hub. The IoT Hub created previously (2-3 years old)
may not work as desired. So, we recommend creating a new IoT Hub to run the application to
yield the proper results

Figure 14. IoT Hub Creation in Progress

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 29 of 52
Jul.01.25

6. After the IoT Hub is created, view the JSON output in the console, and copy the hostName value to a safe
place. You use this value in a later step. The hostname value looks like the following example:
 {Your IoT hub name}.azure-devices.net

Figure 15. JSON Output after IoT Hub Creation

3.5 Certificate Creation Process
You can use the GIT Bash utility for this process. If not installed on your computer, you can download and
install it. (Git for Windows or Git for Windows (github.com)).

1. Install Git for Windows.
2. Launch the Git Bash.
3. Create a directory of your choice (for example, mkdir Azure).
4. Go to the directory and create the configuration. This created directory is the place where your self-

signed certificate is created and stored.
5. Copy and paste the configuration listed below to create x509_config.cfg as shown in the figure

below.
cat > x509_config.cfg <<EOT
[req]
req_extensions = client_auth
distinguished_name = req_distinguished_name

[req_distinguished_name]

https://gitforwindows.org/
https://github.com/git-for-windows

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 30 of 52
Jul.01.25

[client_auth]
basicConstraints = CA:FALSE
keyUsage = digitalSignature, keyEncipherment
extendedKeyUsage = clientAuth
EOT

Note: All OpenSSL commands and the self-signed certificate creation process are given at this link.

Steps are as follows:

1. Set the x509 configuration file for the common name in cert.

Figure 16. Set X509 Configuration File

2. Create an RSA self-signed certificate.
Generate private key and certificate (public key) using the command as shown in the snapshot
“openssl genrsa -out privkey.pem 2048”

Figure 17. Generate Private Key and Certificate (public key)

https://github.com/azure-rtos/netxduo/blob/master/addons/azure_iot/samples/README.md#steps-to-create-self-signed-certs-using-openssl

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 31 of 52
Jul.01.25

Note: If you use OpenSSL 3.0.0 or later, please add the “-traditional” flag to the generation command with
RSA header: “openssl genrsa -out privkey.pem -traditional 2048”

3. Embed Device ID in certificate.
This command will not give you any response if successfully executed.
openssl req -new -days 365 -nodes -x509 -key privkey.pem -out cert.pem -
config x509_config.cfg -subj "//CN=<Same as device Id>"
Note: In this example, the device ID name “CK_RA6M5_X509” is used. Note down this Device ID. This

will be used in future steps. Use your own Device ID to make it unique across your system.

Figure 18. Embed Device ID in Certificate

4. Run command to convert format of key from pem to der.
openssl rsa -outform der -in privkey.pem -out privkey.der

Here you get response “writing RSA key”

Figure 19. Convert Format from key to der

5. Run the command to convert the format of the cert from pem to der.
openssl x509 -outform der -in cert.pem -out cert.der

This command will not give you any response if successfully executed.

Figure 20. Convert Format of cert from pem to der
6. Convert der to hex array and set it in sample_device_identity.c file in the project.

For easier access, the command text is given as follows. The user can copy and paste text in the
command line to create sample_device_identity.c.

echo "#include \"nx_api.h\"
/**
device cert (`openssl x509 -in cert.pem -fingerprint -noout | sed 's/://g' `) :
`cat cert.pem`

device private key:
`cat privkey.pem`

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 32 of 52
Jul.01.25

*/
" > sample_device_identity.c

Figure 21. Convert the der to Hex Array and Set them in sample_device_identity.c
7. Run “ls” command to check whether sample_device_identity.c is created.
8. Run the following commands to produce sample_device_cert_ptr and

sample_device_private_key_ptr array containing device certificate and private key equivalent hex
values along with length.

xxd -i cert.der | sed -E "s/(unsigned char) (\w+)/\1
sample_device_cert_ptr/g; s/(unsigned int) (\w+)_len/\1
sample_device_cert_len/g" >> sample_device_identity.c

xxd -i privkey.der | sed -E "s/(unsigned char) (\w+)/\1
sample_device_private_key_ptr/g; s/(unsigned int) (\w+)_len/\1
sample_device_private_key_len/g" >> sample_device_identity.c

These commands will not give you any response if successfully executed.

Figure 22. Producing arrays containing hex values
Check the content of sample_device_identity.c with the cat command. In this file, you will get the
Device certificate along with SHA1 fingerprint, Device Private Key, sample_device_cert_ptr and
sample_device_private_key_ptr array along with their length. You will also notice the Fingerprint; you
need to use this fingerprint as a “thumbprint” in the device creation process using the IoT Explorer in later
sections. Please note down this Fingerprint.

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 33 of 52
Jul.01.25

Figure 23. Check the Content of sample_device_identity.c

3.6 View Device Properties
You can use the Azure IoT Explorer (Install and use Azure IoT explorer - Azure IoT | Microsoft Learn) to view
and manage the properties of your devices. In the following steps, you will add a connection to your IoT Hub
in IoT Explorer. With the connection, you can view properties for devices associated with the IoT Hub.

Download and install the latest (above v0.15.6.0) Azure IoT Explorer from:
https://github.com/Azure/azure-iot- explorer/releases

Note: Click and install the downloaded msi file Azure.IoT.Explorer.Preview.0.15.6.msi or a newer
version of the downloaded file. The install shield guides you through the installation process.

3.7 Set IoT Hub
To add a connection to your IoT Hub:
1. In your Azure CLI console, run the az iot hub connection-string show command to get the

connection string for your IoT Hub.
 az iot hub connection-string show -n {YourIoTHubName}
Note: See section Create an IoT Hub for the IoT Hub Name.

Figure 24. Connection String

2. Copy the connection string.
3. Open the Azure IoT Explorer and select IoT hubs > Add connection.
4. Paste the connection string into the Connection string box.
5. Select Save.

https://learn.microsoft.com/en-us/azure/iot/howto-use-iot-explorer
https://github.com/Azure/azure-iot-explorer/releases
https://github.com/Azure/azure-iot-explorer/releases

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 34 of 52
Jul.01.25

Figure 25. Adding Connection String
Note: In some cases, Azure IoT Explorer may report an error that the default port that IoT Explorer is trying

to use is being used by another application. In order to overcome this error, you can add a different
port number for the Azure IoT Explorer, shown as follows.

Note: In some cases, Azure IoT Explorer may report an error that “Failed to retrieve device list: request to
https://raxxxxxx.azure-devices.net/devices%2Fquery?api-version=2020-09-30 failed, reason: unable
to get local issuer certificate.” This error is due to the Zscaler tool running on your PC, set by IT. To
overcome this error, you try running the IOT Explorer on a PC without Zscaler or a Lab machine.

Reference: https://github.com/Azure/azure-iot-explorer/issues/604

On your PC, edit the system environmental variables as shown in the following screenshots.

https://github.com/Azure/azure-iot-explorer/issues/604

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 35 of 52
Jul.01.25

Figure 26. Editing System Environment Variable

Figure 27. Adding System Environment Variable for Alternate Port - Azure IoT Explorer

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 36 of 52
Jul.01.25

Figure 28. Added Alternate Port for Azure IoT Explorer

If the connection succeeds, the Azure IoT Explorer switches to a Devices view and lists your device.

Figure 29. Listed Devices

3.8 Register an IoT Hub Device
In this section, you create a new device instance and register it with the IoT Hub you created. You will use
the connection information for the newly registered device to securely connect your physical device in a later
section.

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 37 of 52
Jul.01.25

To register a device:

1. You can create a device with help of Azure IoT Explorer shown as follows.
Click on New.

Figure 30. New Device Creation Process with Azure IoT Explorer

2. In this stage, you have to enter the Device ID, Authentication type, Primary thumbprint, Secondary
thumbprint, and then click on Create. Use the fingerprint generated in Figure 23 in the section 3.5.
Certificate Creation Process, for the primary and secondary thumbprints. Follow steps 1-5 numbered in
the Figure 31, to create the device.

Figure 31. Naming, Authentication type, and Thumbprints

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 38 of 52
Jul.01.25

3. You can see your created device in the Devices section of Azure IoT Explorer.

Figure 32. Newly Created Device

3.9 Prepare the Device
To connect the device to Azure, modify a configuration file for Azure IoT settings (of your Device ID
and Hostname), and build and flash the image to the device.

Add configuration
1. Import the application project into an empty e2 studio. Open sample_config.h and make the changes

to the configuration as shown in the snapshot with the option USE_DEVICE_CERTIFICATE.

Figure 33. Configuration Changes to sample_config.h

Constant name Value
USE_DEVICE_CERTIFICATE 1

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 39 of 52
Jul.01.25

2. Open nx_azure_iot_cert.c to check the root CA data following the Azure IoT Hub. This application has
been migrated to use the root CA “DigiCert Global Root G2”

Figure 34. Root CA certificate in this project

Note: IoT Hub in Azure Cloud can change the root CA in the future. So please check and update the new
root CA at How to migrate hub root certificate - Azure IoT Hub | Microsoft Learn if you cannot connect to
Azure IoT Hub due to the expiration of the root CA issue.

You can download the root CA file at: DigiCert Root Certificates - Download & Test | DigiCert.com

Steps to change the root CA data in this project:

1. Download the root CA.

2. Using command “$xxd -i <file.cert> >> <output.c>” to convert file .pem to array in C.

3. Copy value into src/nx_azure_iot_cert.c

3.10 Building and Running the Application
The project is now ready to be compiled. Press the Build (hammer icon) to start building the project.

Figure 35. Starting to Build the Project
The toolchain will report compilation and build status to the console pane in the lower-right corner of
e2 studio. When the building has been completed, confirm that there are zero errors and few warnings.
Warnings, if any, may result from highly restrictive compilation warnings settings being applied by e2 studio
to third-party code.

Figure 36. Compilation and Build Status Report

https://learn.microsoft.com/en-us/azure/iot-hub/migrate-tls-certificate?tabs=portal
https://www.digicert.com/kb/digicert-root-certificates.htm

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 40 of 52
Jul.01.25

3.11 Download and Run the Project
1. To connect power to the board, connect the USB cable to the CK-RA6M5 v2 board’s J28 connector

(USBC) and the other end to the PC USB port.
2. Connect the second USB cable to J10 connector of the CK-RA6M5 v2 board and the other end to the

second USB port of the PC (this will be the console port for the application). Users are required to use
the Command Line Interface (CLI) to configure and run the application.

3. Make sure the Ethernet cable is connected to the RJ-45 connector (J5) of the board and the other end to
the router/switch as applicable for internet access.

4. In e2 studio, open the Debug Configurations dialog and launch the
azure_ck_ra6m5_v2_ethernet_app.elf debug configuration.

Figure 37. Start Debug

Figure 38. Resume the Debug

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 41 of 52
Jul.01.25

5. To view output, you have to use a serial terminal like tera term. To know your COM port, on the host PC,
open the Windows Device Manager. Expand Ports (COM & LPT), locate JLink CDC UART Port
(COMxx), and note down the COM port number for reference in the next step.
Note: JLink CDC UART drivers are required to communicate between the CK-RA6M5 v2 board and the

terminal application on the host PC.

Figure 39. JLink CDC UART in Windows Device Manager

6. Open Tera Term, select New connection, select Serial, and for the port, enter COMxx: JLink CDC
UART Port (COMxx) and click OK.
Note: Please use Tera Term version 4.99 to ensure the application functions correctly.

Figure 40. Selecting the UART Port on Tera Term

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 42 of 52
Jul.01.25

Figure 41. Select 115200 on the Speed Pulldown

7. Using the setup menu pull-down, select Serial port… and ensure that the speed is set to 115200, shown
as follows.

8. Complete the connection. The Configuration CLI menu will be displayed on the console, shown as
follows.
Note: Please reset the board by pressing the S1 user switch if the menu is not displayed.

Figure 42. Main Menu

9. Here, you can select options from the menu by pressing keys 1 to 5. Press the spacebar to go to the
previous menu, FSP version, and UUID details as follows.

Figure 43. FSP Version Information

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 43 of 52
Jul.01.25

Figure 44. Getting Board UUID Information

3.12 Storing Device Certificate, Host Name, Device ID
Please reset the board by pressing the S1 user switch if the menu is not displayed.

Figure 45. Main Menu

1. Press 2 on the Main Menu to display Data Flash-related commands as shown in the following
screenshots. This sub-menu has commands to store, read, and validate the data.

Figure 46. Data Flash Menu

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 44 of 52
Jul.01.25

2. Press b for Write Certificate.

Figure 47. Select the File to Write Data in the Data Flash

3. Go to Tera Term > File > Send file

Figure 48. Send File Option in File Menu

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 45 of 52
Jul.01.25

4. Browse to the folder where X509 certificates are generated as part of section 3.5, Certificate Creation
Process. Select cert.pem. Press Open.

Figure 49. Browse, Select, and Open the File to be Written

5. Status of Device Certificate Downloading is as follows.

Figure 50. Status of File Writing Process

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 46 of 52
Jul.01.25

6. To store the device’s private key, go back to the data flash menu by pressing the space bar key. Press c
in the Data Flash menu, go to Tera Term > File > Send file, select file privkey.pem from the folder
where you have generated certificates.

7. To store the MQTT Broker endpoint, that is, Host Name, first copy Host Name without double quotes,
then press d in the Data Flash menu, go to Tera Term > Edit > Paste <CR>; you will get the copied
Host Name in the clipboard. Please verify and confirm it, and press OK.

Figure 51. Input MQTT Broker Endpoint, aka Host Name

8. To store IoT Thing Name, that is, DEVICE ID, first copy the DEVICE ID created without double quotes,
press e in the Data Flash menu, and follow the procedure in step 5.

Figure 52. Input Device ID, aka IoT Thing name

9. To verify the data stored in Data Flash, press f in the Data Flash menu, scroll down to see the data.

Figure 53. Scroll Down and Verify the Data Stored in the Data Flash

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 47 of 52
Jul.01.25

10. To check the credentials stored in Data Flash, press g.
11. Press the spacebar to go to the previous menu or main menu.
12. Press 4 to start the application from the main menu.
13. Serial terminal output on successful start of application.

Figure 54. Device Connected to Azure IoT Hub

14. Sensor data output on serial terminal.

Figure 55. Sensor Data on Serial Terminal

3.13 Send Device to Cloud Message
With Azure IoT Explorer, you can view the flow of telemetry from your device to the Cloud. To view telemetry
in Azure IoT Explorer:

1. In IoT Explorer, select your created IoT Hub, and click on View Devices in this hub, click on the created
device (Device ID). Finally, select the Telemetry (Home > Your Host Name > Devices >
CK_RA6M5_X509 >Telemetry). Confirm that the use built-in event hub is set to Yes.
Note: As shown below, we use Host Name as RVCTESTINGNEW.

2. Select Start.
3. View the telemetry as the device sends messages to the Cloud.

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 48 of 52
Jul.01.25

Figure 56. Device Telemetry Details

3.14 Send Cloud-to-Device Message
To send a Cloud-to-device message in Azure IoT Explorer:

1. In IoT Explorer, select Cloud-to-device message.
2. Enter the message in the Message body = "LED", Key = LED, Value = Given in Table
3. Check Add timestamp to the message body.
4. Select Send message to device.

LED On Board Value
LED2 (Tri-Color LED) TC_GREEN_ON, TC_RED_ON, TC_BLUE_ON

TC_GREEN_OFF, TC_RED_OFF, TC_BLUE_OFF
LED4 BLUE BLUE_ON, BLUE_OFF

Figure 57. Device Telemetry Details

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 49 of 52
Jul.01.25

5. In the terminal window, you can see that the message is received by the IoT Device.

Figure 58. Serial Terminal Output

4. Importing, Building, and Loading the Project
For a quick validation of this application project, import and build the project. The following steps show
how to import, build, and download the project.

Note: To run the application project successfully and to communicate with the Cloud, follow the instructions
for setting up the Cloud interface as described in section 3.3, which details making changes to the
credentials and creating your own cloud devices, running and validating the application.

4.1 Importing
The application project bundled as part of this app note can be imported into e2 studio using the instructions
provided in the RA FSP User’s Manual. See Section Starting Development > e2 studio ISDE User Guide >
Importing an Existing Project into e2 studio ISDE.

4.2 Building the Latest Executable Binary
Upon successfully importing and/or modifying the project into the e2 studio IDE, follow the instructions
provided in the RA FSP User’s Manual to build an executable binary/hex/mot/elf file. See Section
Starting Development > e2 studio ISDE User Guide > Tutorial: Your First RA MCU Project > Build the Blinky
Project.

4.3 Loading the Executable Binary into the Target MCU
The executable file may be programmed into the target MCU through any one of three means.

4.3.1 Using a Debugging Interface with e2 studio
Instructions on how to program the executable binary are found in the latest RA FSP User Manual
(https://www.renesas.com/us/en/software-tool/flexible-software-package-fsp). See section Starting
Development > e2 studio ISDE User Guide > Tutorial: Your First RA MCU Project > Debug the Blinky Project.

This is the preferred method for programming as it allows for additional debugging functionality
available through the on-chip debugger.

4.3.2 Using J-Link Tools
SEGGER J-Link Tools, such as J-Flash, J-Flash Lite, and J-Link Commander, can be used to
program the executable binary into the target MCU. Refer to User Manuals UM08001 and UM08003
on www.segger.com.

4.3.3 Using Renesas Flash Programmer
The Renesas Flash Programmer (https://www.renesas.com/us/en/software-tool/renesas-flash-
programmer-programming-gui) provides usable and functional support for programming the on-chip

https://www.renesas.com/us/en/software-tool/flexible-software-package-fsp
http://www.segger.com/
https://www.renesas.com/us/en/software-tool/renesas-flash-programmer-programming-gui
https://www.renesas.com/us/en/software-tool/renesas-flash-programmer-programming-gui

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 50 of 52
Jul.01.25

flash memory of Renesas microcontrollers in each phase of development and mass production. The
software supports all RA MCUs, and the software user’s manual is available on renesas.com.

5. Next Steps and References
 Refer to the following GitHub repository for various FSP modules example projects and application

projects (https://github.com/renesas/ra-fsp-examples/)
 Refer to Establishing and Protecting Device Identity using SCE7 and Security MPU (R11AN0449) on

renesas.com
 Refer to Securing Data at Rest Utilizing the RA Security MPU (R11AN0416) on renesas.com
 Refer to the Azure GitHub link for more details on Azure SDK for Embedded C

(https://github.com/Azure/azure-sdk-for-c)

6. MQTT/TLS References
 FSP v6.0.0 User’s Manual (Flexible Software Package (FSP) | Renesas).
 Azure IoT documentation (https://docs.microsoft.com/en-us/azure/iot-hub/)

7. Known Issues and Limitations
1. Occasional outages in Cloud connectivity may be noticed during the demonstration due to changes in

the Cloud server. Contact the Renesas support team for questions.
2. Currently, there is no support for direct device-to-device communications with Azure IoT Hub.
3. Device will reconnect after 65 minutes due to the SAS token refresh. Currently, it is under SDK control.

Users need to know this when developing the application.
4. When running debug on e2 studio, if the application is rerun multiple times, it might randomly occur an

issue with i2c communication of the OB1203 sensor. Users need to reconnect the micro-USB cable
(J10) and USB-C cable (J28) to reset the OB1203 sensor and run the application again.

http://www.renesas.com/
https://github.com/renesas/ra-fsp-examples/
https://www.renesas.com/us/en
http://www.renesas.com/
https://github.com/Azure/azure-sdk-for-c
https://www.renesas.com/us/en/software-tool/flexible-software-package-fsp
https://docs.microsoft.com/en-us/azure/iot-hub/

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 51 of 52
Jul.01.25

Website and Support
Visit the following vanity URLs to learn about key elements of the RA family, download components and
related documentation, and get support.

CK-RA6M5 v2 Kit Information
RA Cloud Solutions
RA Product Information

renesas.com/ra/ck-ra6m5
renesas.com/cloudsolutions
renesas.com/ra

RA Product Support Forum renesas.com/ra/forum
RA Flexible Software Package renesas.com/FSP
Renesas Support renesas.com/support

http://www.renesas.com/ra/ck-ra6m5
http://www.renesas.com/cloudsolutions
http://www.renesas.com/ra
https://www.renesas.com/ra/forum
http://www.renesas.com/FSP
https://www.renesas.com/support

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

R11AN0750EU0130 Rev.1.30 Page 52 of 52
Jul.01.25

Revision History

Rev. Date
Description
Page Summary

1.00 Mar.22.23 — Initial release
1.01 May.05.23 Corrected the document number in the document footer
1.10 Dec.22.23 Updated to FSP 5.0.0
1.20 Sept.09.24 Updated to FSP 5.3.0
1.30 Jul.01.25 Updated to FSP 6.0.0

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2025 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Introduction to Cloud Connectivity
	1.1 Cloud Connectivity Overview
	1.2 Microsoft Azure IoT Solution
	1.2.1 Overview
	1.2.2 IoT Hub Device Provisioning Service
	1.2.2.1 Azure IoT Hub and IoT Hub Device Provisioning Service (DPS)
	(1) Device Provisioning Service
	(2) Embedded C SDK

	1.2.3 Authentication Methods
	1.2.3.1 X.509
	1.2.3.2 Per-Device Key Authentication

	1.3 MQTT Protocol Overview
	1.4 TLS Protocol Overview
	1.4.1 Device Certificates and Keys
	1.4.2 Device Security Recommendations

	2. RA FSP MQTT/TLS Cloud Solution
	2.1 MQTT Client Module Introduction
	2.1.1 Design Considerations
	2.1.2 Supported Features

	2.2 TLS Session Module Introduction
	2.2.1 Design Considerations
	2.2.2 Supported Features

	2.3 Azure IoT Device SDK Module Introduction
	2.3.1 Design Considerations
	2.3.2 Supported Features

	3. MQTT/TLS Application Example
	3.1 Application Overview
	3.2 Creating the Application Project using the FSP Configurator
	3.3 Install Azure CLI
	3.4 Create an IoT Hub
	3.5 Certificate Creation Process
	3.6 View Device Properties
	3.7 Set IoT Hub
	3.8 Register an IoT Hub Device
	3.9 Prepare the Device
	3.10 Building and Running the Application
	3.11 Download and Run the Project
	3.12 Storing Device Certificate, Host Name, Device ID
	3.13 Send Device to Cloud Message
	3.14 Send Cloud-to-Device Message

	4. Importing, Building, and Loading the Project
	4.1 Importing
	4.2 Building the Latest Executable Binary
	4.3 Loading the Executable Binary into the Target MCU
	4.3.1 Using a Debugging Interface with e2 studio
	4.3.2 Using J-Link Tools
	4.3.3 Using Renesas Flash Programmer

	5. Next Steps and References
	6. MQTT/TLS References
	7. Known Issues and Limitations
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

