REN ESAS Application Note

Renesas RA Family
RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

Introduction

This application note describes loT Cloud connectivity solutions in general and introduces you briefly
to the loT Cloud solution provider, Microsoft Azure. It covers the RA FSP MQTT/TLS module along
with the Azure loT SDK for embedded C.

This application project is built with the integrated “Azure loT SDK for Embedded C” package, which
allows small embedded (IoT) devices like Renesas RA family of MCUs, RA6M3/RA6M4/RA6M5, to
communicate with Azure loT services.

The application example uses Azure IoT DPS (Device Provisioning Service) to provision and
register the loT device, and send and receive data to and from the development kit.

This application note enables you to effectively use the RA FSP modules in your own design with the FSP-
integrated Azure loT SDK. Upon completion of this guide, you will be able to add the FSP modules to your
own design, configure it correctly with Azure lIoT SDK for the target application, and write code using the
included application example code as a reference and efficient starting point. References to more detailed
API descriptions and sample code that demonstrate advanced usage of FSP modules are available in the
RA FSP Software Package (FSP) User’s Manual (see Next Steps section) and serve as valuable resources
in creating more complex designs. Explaining the underlying operation of the Azure loT SDK for Embedded
C is beyond the scope of this document. Users should refer to the documentation from Microsoft for
education ontopics related to the Azure lIoT SDK section: https://docs.microsoft.com/en-us/azure/iot-hub/iot-
hub-devguide- sdks

In this release, the CK-RA6MS5 v2 kit is used for the application project.
Required Resources

To build and run the MQTT/TLS application example, you need:
Development Tools and Software

e e?studio version: v2025-04.1.

o RA FSP Software Package (FSP) v6.0.0

e SEGGER J-Link® RTT viewer version: 8.44a

e Azure loT Explorer 0.15.12.0 or later (PC tool for validating the Cloud side). Download Link: Releases -
Azure/azure-iot-explorer (github.com)

o Azure CLI 2.44 or later (Azure command-line interface is a set of commands used to create and manage
Azure resources) Download Link: How to install the Azure CLI | Microsoft Learn

o Access to Azure Cloud Connectivity Portal (https://portal.azure.com/#home) to create loT Devices (If you
are new to Azure loT)

Hardware

¢ Renesas CK-RAB6M5 v2 kit (CK-RABMS5 - Cloud Kit Based on RA6M5 MCU Group | Renesas)

e PC running Windows® 10/1 1, Tera Term console or similar application, and an installed web browser
(Google Chrome, Internet Explorer, Microsoft Edge, Mozilla Firefox, or Safari).

e Micro USB cable

e USB-C cable

e Ethernet cable (CAT5/6)

¢ Router with an Ethernet port or Ethernet switch to connect to the router for Internet connectivity.

Prerequisites and Intended Audience

This application note assumes that you have some experience with the Renesas e? studio ISDE and RA
Flexible Software Package (FSP). Before you perform the procedures in this application note, follow the
procedure in the FSP User Manual to build and run the Blinky project. Doing so enables you to become
familiar with the e2 studio and the FSP and also validates that the debug connection to your board functions

R11ANO750EU0130 Rev.1.30 Page 1 of 52
Jul.01.25 RENESAS

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-sdks
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-sdks
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-sdks
https://github.com/Azure/azure-iot-explorer/releases
https://github.com/Azure/azure-iot-explorer/releases
https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
https://portal.azure.com/#home
https://www.renesas.com/us/en/products/microcontrollers-microprocessors/ra-cortex-m-mcus/ck-ra6m5-cloud-kit-based-ra6m5-mcu-group

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

properly. In addition, this application note assumes you have some knowledge of MQTT/TLS and its
communication protocols.

The intended audience is users who want to connect to Azure Cloud using the Azure loT SDK forEmbedded
C on the Renesas RA/RA6 MCU Series.

Note: If you are a first-time user of €2 studio and FSP, we highly recommend you install e? studio and FSP
on your system in order to run the Blinky Project and to get familiar with the e? studio and FSP
development environment before proceeding to the next sections.

Note: If you are new to Azure Internet of Things, we recommend you get started with Introduction to the
AzureloT https://learn.microsoft.com/en-us/azure/iot/iot-introduction

Prerequisites

Access to online documentation available for Azure in the Cloud Connectivity References section.
Access to the latest documentation for the identified Renesas Flexible Software Package.

Prior knowledge of operating the e? studio and the built-in (or standalone) RA Configurator.
Access to associated hardware documentation, such as User Manuals and Schematics.

Using this Application Note

Section 1 of this document covers the General Overview of the Cloud Connectivity, Azure loT Solution using
loT Central, Azure DPS, MQTT, and TLS Protocols, and Device certificates and Keys used in the Cloud
Connectivity.

Section 2 covers the modules provided by RA FSP to establish connectivity to Cloud service providers and
the features supported by the module.

Section 3 covers the architecture of the reference application project, an overview of the software
components included, and step-by-step guidelines for recreation using the FSP configurator. It also covers
setting up the Azure loT Hub, creating the self-signed certificates, and storing the certificates in the flash
using the application CLI.

Section 4 covers importing, building, and running the Application project.

Note: We recommend that you operate with your own Microsoft Azure Cloud credentials and use your
created Cloud configurations to run the application. The default sample configuration detailed in this
project is for reference only and may have access issues to Azure since the application is
communicating with a test account.

Note: For a quick validation using the provided application project, you can skip sections 1 to 2 and go to
sections 3 and 4 for instructions on setting up the Azure loT Hub, creating the self-signed certificates,
storing the certificates in the flash using the application CLI, and running the application project on the
CK-RABM5 v2 board.

R11AN0750EU0130 Rev.1.30 Page 2 of 52
Jul.01.25 RENESAS

https://learn.microsoft.com/en-us/azure/iot/iot-introduction

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

Contents

1. Introduction to Cloud CONNECHIVILY........cooiiiiiiiiiii e 5
1.1 Cloud ConNECHIVIEY OVEIVIEW.eeiiiiiiee ettt e e e e e e e s et e e e e e e e e s eanbaaeeeaeessesannraneeaaeeas 5
1.2 Microsoft AZUre 10T SOIULIONoiiiiiiiie ittt e e st e e e st e e e sabee e e e enbeeeesanneeeaen 6
L2 B © V=T VoS URPTPRR 6
1.2.2 10T Hub Device ProviSioNiNg SEIVICEcoouiiiiiiiiii ittt e b e e 6
1.2.3 Authentication MEthOASoooi e e et e e e e e e e ae e e e e e e e e ennnneeeeaaeeas 7
1.3 MQTT ProtoCOI OVEIVIEWcoiiiiiiiiiiieee ettt e e e e e et e e e e e e e e e e eaeeeeeaaeeeaansnnneeaaeeeaannnneeeaaeens 7
T4 TLS ProtOCOI OVEIVIEWcoiiiiiiieiitiiie et ee ettt ettt ettt e e sttt e e sttt e e e s te e e e e amteeeeeanteeeeeanteeeesanteeeesanneeeennns 8
1.4.1 Device Certificates @nd KEYS..........uuiiiiiiii e e e e e e e e e st e e e e e s s e raaeeaaeeas 9
1.4.2 Device Security ReCOMMENAALIONS.........oooiiiiiiiiiiiii ettt e e s sreeee e 9
2. RAFSP MQTT/TLS Cloud SOIULIONcieiieeeeicee e e e 10
21 MQTT Client Module INTrOQUCHIONo.ueiie e e e et e e s st e e e e snreeeeens 10
211 DeSIGN CONSIAEIALIONScoiiiiiiiiiiiiiie e e et e e e e e e e e e e e e e e e se b e beeeeaeesesaasbeaeeeaeeeseannsraneeaaeeas 10
D2t I U o) oo Ty (Yo [== L 1] =Y SRR 10
2.2 TLS Session Module INtrodUCHIONcoo et e e e e e e e e e e eeeaee s 10
2.2.1 DeSign CONSIAEIAtIONSeeiiiiiiiiee ittt e b e e e et e e e e st et e e e aabe e e e e aabeeeeeanbeeeeaan 10
2.2.2 SUPPOMEA FEALUIMES ...ttt e e e e et e e e e e e st e e e e e e e s e saabeaeeeaeeesasansrnneaaaeeas 11
2.3 Azure |oT Device SDK Module INtrodUCHIONeiiiiiiiiie et 11
D2 Tt B B =TT To | o @] g 13 (o 1= = T 1 PSPPI 1
DA I U o) oo Ty (Yo [Y= L 1] =Y SRR 11
3. MQTT/TLS Application EXAMPIEuuiiiiiiii e e e e e e e e e e e aeeaaeas 12
K Tt B AN o o [Tor=1 o) g W @AY= oY T SO PPPPRN 12
3.2 Creating the Application Project using the FSP Configurator............ccccoiiiiiiiiie e 17
TR N 1 1 = | 24U =T I USSR 26
K O Y= (== o T o I o 11] o USSR 26
3.5 Certificate Creation PrOCESS.cii ittt et e et e e et e e e snb e e s e enbe e e e enteeeeennees 29
3.6 VIEW DEVICE PrOPEITIESuuuiuiiiiiiiiiiiiiiiiiiiieiiieieeeeeteteeetatetatetaee s teeetstete s tsssss s tssstssssssssssssssssssnsnsnnnsnnnnnnns 33
K A 1= 0 [0 X N o 11 o SRS 33
3.8 Register an [T HUD DEVICE..........iiiiiiiiie ettt e 36
3.9 Prepare the DEVICEooiiiiiiii ettt e oottt et e e e e e et e e e e e e e e e e aeene e e e e e e e nenneeeaeeeaaannes 38
3.10 Building and Running the APPlICatioNooiiiiiiiiii e e 39
3.11 Download and RUN the ProjECt.............uuuieiiiiiiiiiiiiii e eee e e baeeeeeseeesssssenssensnsnsssnsnsnnes 40
3.12 Storing Device Certificate, Host Name, DeVIiCe IDcooiiiiiiiii et 43
3.13 Send Device t0 ClOUA MESSAQEccoiiiiiiiie ettt e e e e e e e e e e e e s et ae e e e e e e e sentsreeeeaeeaaannes 47
3.14 Send Cloud-t0-DeViCe MESSAGE.........uueiiiiiiiie ittt e s b e e 48
4. Importing, Building, and Loading the Project ... e 49
I | 4T o {1 T 49
4.2 Building the Latest Executable BiNary ...t 49
R11ANO750EU0130 Rev.1.30 Page 3 of 52

Jul.01.25 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

4.3 Loading the Executable Binary into the Target MCUcooiiiiiiiiiiiiiie e 49
4.3.1 Using a Debugging Interface with €2 Studio............ccoiiiii e 49
4.3.2 USING J-LINK TOOIS ...ttt bttt et e e s e e e sane e e e anneee s 49
4.3.3 Using Renesas Flash Programmeroooiiiiiiiiie ettt 49
5. Next Steps and REfErENCESuuuiiiiiiiiiiiiiiii s 50
6. MQTT/TLS REEIENCES......uuiiiiiiiiiiiiiiiiiiiii s 50
7. Known Issues and Limitationsoouuiiii i 50
REVISION HISTOMY ...ttt nnnnnnnnnnnne 52
R11ANO750EU0130 Rev.1.30 Page 4 of 52

Jul.01.25 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

1. Introduction to Cloud Connectivity

1.1 Cloud Connectivity Overview

Internet of Things (loT) is a sprawling set of technologies described as connecting everyday objects,
like sensors or smartphones, to the World Wide Web. loT devices are intelligently linked together to
enable newforms of communication between things and people, and among things.

These devices, or things, connect to the network. Using sensors, they provide the information they
gather from the environment or allow other systems to reach out and act on the world through
actuators. In the process, 10T devices generate massive amounts of data, and Cloud computing
provides a pathway, enabling data to travel to its destination.

The loT Cloud Connectivity Solution includes the following major components:

1. Devices or Sensors

2. Gateway

3. loT Cloud services

4. End-user application/system

Devices

.

laT Cloud

Sensors N

Gateway

Figure 1. 10T Cloud Connectivity Architecture
Devices or Sensors

A device includes hardware and software that interacts directly with the world. Devices connect to a
network to communicate with each other or to centralized applications. Devices may connect to the
Internet either directly or indirectly.

Gateway

A gateway enables devices that are not directly connected to the Internet to reach Cloud services. The data
from each device is sent to the Cloud platform, where it is processed and combined with data from other
devices, and potentially with other business-transactional data. Most of the common communication
gateways support one or more communication technologies such as Wi-Fi, Ethernet, or Cellular to connect to
the loT Cloud service provider.

loT Cloud

Many loT devices produce lots of data. You need an efficient, scalable, affordable way to manage
those devices, handle all that information, and make it work for you. When it comes to storing,
processing, and analyzing data, especially big data, it is hard to surpass the Cloud.

R11AN0750EU0130 Rev.1.30 Page 5 of 52
Jul.01.25 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

1.2 Microsoft Azure loT Solution

1.2.1 Overview

Microsoft's end-to-end loT platform is a complete loT offering so that enterprises can build and realize value
from loT solutions quickly and efficiently. Azure loT Central solutions are used with backend support from the
Azure loT Hub Device Provisioning Service.

Azure loT Reference Dynamics Connected
?éi’::g c:g: @ gzau;; loT Central »[ﬂpr;:g]eclure & Accelerators D :éél;is?enrice
Azure loT Hub Azure Stream Analytics Azure Active Directory
Azure loT Hub Device Azure Cosmos DB Azure Monitor
Azire b | Provisioning Service Azure Al Azure DevOps
Services for loT l:i ure Digrial fwins Azure Cognitive Services Power Bl
Azure Time Series Insights Azure ML Azure Data Share
Azure Maps Azure Logic Apps Azure Spatial Anchors
Azure Sphere Windows loT Azure ML
loT & Edge @ Azure Certified for loT—Device Azure SQL
Device Support o Azure o ge Catalog Azure Functions
Data Box Edge Azure Stream Analytics Azure Cognitive Services
Azure Storage

Figure 2. Microsoft Azure loT Cloud Solution

1.2.2 10T Hub Device Provisioning Service
1.2.2.1 Azure loT Hub and loT Hub Device Provisioning Service (DPS)
loT Hub provides built-in support for the MQTT v3.1.1 protocol. See the following webpage for

more understanding of the loT Hub and Device Provisioning Services (DPS):
https://docs.microsoft.com/en-us/azure/iot-dps/

(1) Device Provisioning Service
A high-level sequence of events to connect a Device to the IoT Hub is as follows:

1. After the device is manufactured, the device enroliment information is added to the DPS. This is the only
manual step in the process.

2. At some point afterward, which could be a day or several months, the device goes online and connects
to DPS to find its loT solution home.

3. DPS and the device go through an attestation handshake using the device enroliment information. DPS

proves the device’s identity.

DPS registers the device to the loT hub and populates the initial desired device state.

loT hub returns the connection info for the device.

DPS gives the device its loT Hub connection information.

The device now establishes a connection with 1oT Hub and retrieves its initial configuration from loT

Hub, and makes any changes/updates, as needed.

8. The device starts sending telemetry to the loT Hub.

No ok

(2) Embedded C SDK

The Embedded C SDK, the newer addition to the Azure SDKs family, was designed to allow
embedded loT devices to leverage Azure services, like device to Cloud telemetry, Cloud to device
messages, direct methods, device twin, device provisioning, and loT Plug and Play, all while
maintaining a minimal footprint.

It allows full control over memory allocation and the flexibility to bring your own MQTT client,
TLS, and Socket layers.

Written in C, this version of the SDK is optimized to be used on small and embedded devices with
limited capabilities and resources.

The Azure loT SDK is open source and is published on GitHub (https://github.com/Azure/azure-sdk-
for-c). This is also distributed with FSP version 6.0.0 and above.

R11AN0750EU0130 Rev.1.30 Page 6 of 52
Jul.01.25 RENESAS

https://docs.microsoft.com/en-us/azure/iot-dps/
https://github.com/Azure/azure-sdk-for-c
https://github.com/Azure/azure-sdk-for-c

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

1.2.3 Authentication Methods
Security is a critical concern when deploying and managing loT devices. loT Hub offers the security features
described in the following sections.

1.2.3.1 X.509

The communication path between devices and Azure IoT Hub, or between gateways and Azure loT Hub, is
secured using the industry-standard Transport Layer Security (TLS) with Azure loT Hub, authenticated using
the X.509 standard.

To protect devices from unsolicited inbound connections, Azure IoT Hub does not open any connection to
the device. The device initiates all connections.

1.2.3.2 Per-Device Key Authentication

Figure 3 shows authentication in the loT Hub using security tokens.

Figure 3. Authentication using Security Tokens

1. The device prepares a shared access signature (SAS) token using the device endpoint, device id,and
primary key (generated as part of the device addition to the loT Hub).
2. When connecting to the loT Hub, the device presents the SAS token as the password in the MQTT
CONNECT message. The username content is the combination of the device endpoint and device
name, along with the additional Azure-defined string.
The loT Hub verifies the SAS token and registers the device, and a connection is established.
4. loT Hub provides a Symmetric key for Data encryption.
Note: The connection is closed when the SAS token expires.

i

1.3 MQTT Protocol Overview

MQTT stands for Message Queuing Telemetry Transport. MQTT is a client-server publish-
subscribe messaging transport protocol. It is an extremely lightweight, open, simple messaging
protocol, designed forconstrained devices, as well as low-bandwidth, high-latency, or unreliable
networks. These characteristics make it ideal for use in many situations, including constrained
environments, such as communication in machine-to-machine (M2M) and loT contexts, where a small
code footprint is required, and/or network bandwidth is at a premium.

An MQTT client can publish information to other clients through a broker. A client, if interested in a
topic, can subscribe to the topic through the broker. A broker is responsible for authentication and
authorization of clients, as well as delivering published messages to any of its clients who subscribe to
the topic. In this publisher/subscriber model, multiple clients may publish data on the same topic. A
client will receive the messages published if the client subscribes to the same topic.

R11AN0750EU0130 Rev.1.30 Page 7 of 52
Jul.01.25 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

PUBLISH to Thing

PUBLISH to Thing

SUBSCRIBE to Thing

SUBSCRIBE to Thing

Figure 4. MQTT Client Publish/Subscribe Model

In the Pub/Sub model used by MQTT, there is no direct connection between a publisher and the
subscriber.To handle the challenges of a Pub/Sub system, MQTT generally uses quality of service
(QoS) levels.

There are three QoS levels in MQTT:

e At most once (0)

e Atleastonce (1)

e Exactly once (2)

At most once (0)

A message will not be acknowledged by the receiver or stored and redelivered by the sender.
At least once (1)

It is guaranteed that a message will be delivered at least once to the receiver. But the message can
also bedelivered more than once. The sender will store the message until it gets an acknowledgment
in the form of a PUBACK command message from the receiver.

Exactly once (2)

It guarantees that each message is received only once by the counterpart. It is the safest and the slowest
QoS level.

1.4 TLS Protocol Overview

Transport Layer Security (TLS) protocol and its predecessor, Secure Sockets Layer (SSL), are cryptographic
protocols that provide communications security over a computer network.

The TLS/ SSL protocol provides privacy and reliability between two communicating applications. It has the
following basic properties:

Encryption: The messages exchanged between communicating applications are encrypted to ensure that
the connection is private. A symmetric cryptography mechanism, such as AES (Advanced Encryption
Standard) is used for data encryption.

Authentication: A mechanism to check the peer’s identity using certificates.

Integrity: A mechanism to detect message tampering and forgery ensures that the connection is reliable. A
Message Authentication Code (MAC), such as the Secure Hash Algorithm (SHA), ensures message
integrity.

R11AN0750EU0130 Rev.1.30 Page 8 of 52
Jul.01.25 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

Figure 5. SSL/TLS Hierarchy

1.4.1 Device Certificates and Keys

Device certificates, public and private keys, and the ways they can be generated are discussed in this
section.

Security is a critical concern when deploying and managing loT devices. In general, each of the loT devices
needs an identity before they can communicate with the Cloud. Digital certificates are the most common
method for authenticating a remote host in TLS. Essentially, a digital certificate is a document with specific
formatting that provides identity information for a device.

TLS normally uses a format called X.509, a standard developed by the International Telecommunication
Union (ITU), though other formats for certificates may apply if TLS hosts can agree on a format to use.
X.509 defines a specific format for certificates and various encodings that can be used to produce a digital
document. Most X.509 certificates used with TLS are encoded using a variant of ASN.1, which is another
telecommunication standard. Within ASN.1 there are various digital encodings, but the most common
encoding for TLS certificates is the Distinguished Encoding Rules (DER) standard. DER is a simplified
subset of the ASN.1.

Though DER-formatted binary certificates are used in the actual TLS protocol, they may be generated and
stored in a number of different encodings, with file extensions such as .pem, .crt, and .p12. The most
common of the alternative certificate encodings is Privacy-Enhanced Mail (PEM). The PEM format is a base-
64 encoded version of the DER encoding.

Depending on your application, you may generate your own certificates, be provided certificates by a
manufacturer or government organization, or purchase certificates from a commercial certificate authority.

Loading Certificates onto your Device

To use a digital certificate in your NetX™ Secure application, you must first convert your certificate into a
binary DER format, and optionally convert the associated private key into a binary format, typically, a
PKCS#1-formatted, DER-encoded RSA key. Once converted, it is up to you how to load the certificate and
the private key onto the device. Possible options include using a flash-based file system or generating a C
array from the data (using a tool such as xxd from Linux® with the -i option) and compiling the certificate and
key into your application as constant data.

Once your certificate is loaded on the device, you can use the TLS API to associate your certificate with a
TLS session.

1.4.2 Device Security Recommendations

The following security recommendations are not enforced by Cloud loT Core, but will help you secure your
devices and connections.

o The private key of the device should be kept secret.

o Use the latest version of TLS (v1.2 or above) when communicating with 10T Cloud and verify that the
server certificate is valid using trusted root certificate authorities.

e Each device should have a unique public/private key pair. If multiple devices share a single key and one
of those devices is compromised, an attacker could impersonate all the devices that have been
configured with that one key.

o Keep the public key secure when registering it with Cloud loT Core. If an attacker can tamper with the
public key and trick the provisioner into swapping the public key and registering the wrong public key, the
attacker will subsequently be able to authenticate on behalf of the device.

e The key pair is used to authenticate the device to Cloud IoT Core and should not be used for other
purposes or protocols.

R11AN0750EU0130 Rev.1.30 Page 9 of 52
Jul.01.25 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

e Depending on the device’s ability to store keys securely, key pairs should be rotated periodically. When
practical, all keys should be discarded when the device is reset.

e If your device runs an operating system, make sure you have a way to securely update it. Android Things
provides a service for secure updates. For devices that don’t have an operating system, ensurethat you
can securely update the device’s software if security vulnerabilities are discovered after deployment.

2. RAFSP MQTT/TLS Cloud Solution

2.1 MQTT Client Module Introduction

The NetX Duo MQTT Client module provides high-level APIs for a Message Queuing Telemetry Transport
(MQTT) protocol-based client. The MQTT protocol works on top of TCP/IP, and therefore, the MQTT client is
implemented on top of NetX Duo IP and NetX Duo Packet pool. NetX Duo IP attaches itself to the
appropriate link layer frameworks, such as Ethernet, Wi-Fi, or Cellular.

The NetX Duo MQTT client module can be used in normal or secure mode. In normal mode, the
communication between the MQTT client and broker is not secure. In secure mode, the communication
between the MQTT client and broker is secured using the TLS protocol.

2.1.1 Design Considerations

e By default, the MQTT client does not use TLS; communication is not secure between an MQTT client and
broker.

e The RA FSP Azure RTOS NetX Duo IoT middleware module provides the NetX Duo TLS session block. It
adds the Azure RTOS NetX Secure block. This block defines/controls the common properties of NetX
Secure.

2.1.2 Supported Features

NetX Duo MQTT Client supports the following features:

e Compliant with OASIS MQTT version 3.1.1 Oct 29, 2014. The specification can be found at
http://matt.org/.

e Provides an option to enable/disable TLS for secure communication using NetX Secure in FSP.

e Supports QoS and provides the ability to choose the levels that can be selected while publishing the
message.

¢ Internally buffers and maintains the queue of received messages.

e Provides a mechanism to register a callback when a new message is received.

e Provides a mechanism to register a callback when the connection with the broker is terminated.

2.2 TLS Session Module Introduction

The NetX Duo TLS session module provides high-level APIs for the TLS protocol-based client. It
uses services provided by the RA FSP Crypto Engine (SCE) to carry out hardware-accelerated
encryption anddecryption.

The NetX Duo TLS Session module is based on Azure RTOS NetX Secure, which implements the
SecureSocket Layer (SSL) and its replacement, the TLS protocol, as described in RFC 2246
(version 1.0) and 5246(version 1.2). NetX Secure also includes routines for the basic X.509 (RFC
5280) format. NetX Secure is intended for applications using ThreadX RTOS in the project.

2.2.1 Design Considerations

o NetX Secure TLS performs only basic path validation on incoming server certificates.
Once the basic path validation is complete, TLS then invokes the certificate verification callback supplied
by the application.

o ltis the responsibility of the application to perform any additional validation of the certificate.
To help with the additional validation, NetX Secure provides X.509 routines for common validation
operations, including DNS validation and Certificate Revocation List checking.

e Software-based cryptography is processor-intensive.
NetX Secure software-based cryptographic routines have been optimized for performance, but depending
on the capabilities of the target processor, performance may result in very long operations. When
hardware-based cryptography is available, it should be used for optimal performance of the NetX secure
TLS.

R11AN0750EU0130 Rev.1.30 Page 10 of 52
Jul.01.25 RENESAS

http://mqtt.org/

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

e Due to the nature of embedded devices, some applications may not have the resources to support the
maximum TLS record size of 16 KB.
NetX Secure can handle 16 KB records on devices with sufficient resources.

2.2.2 Supported Features

e Support for RFC 2246 Transport Layer Security (TLS) Protocol Version 1.0

e Support for RFC 5246 TLS Protocol Version 1.2

e Support for RFC 5280 X.509 PKI Certificates (v3)

e Support for RFC 3268 Advanced Encryption Standard (AES) Cipher suites for TLS

o RFC 3447 Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version2.1
e RFC 2104 HMAC: Keyed-Hashing for Message Authentication

e RFC 6234 US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)

e RFC 4279 Pre-Shared Key Cipher suites for TLS

2.3 Azure loT Device SDK Module Introduction

The Azure loT device SDK is a set of libraries designed to simplify the process of developing loT applications
for the Azure Cloud to make sending and receiving messages easy from the Azure loT Hub service. There
are different variations of the SDK, each targeting a specific platform, but in this application note, we will
describe the Azure loT device SDK for C.

The Azure loT device SDK for C is written in ANSI C (C99) to maximize portability. This feature makes the
libraries well-suited to operate on multiple platforms and devices, especially where minimizing disk and
memory footprint is a priority.

In this application note, we will cover how to initialize the device library, send data to the loT Hub, and
receive messages from it.

More details on the Azure loT Device SDK can be found in the reference link Azure loT Hub device and
service SDKs | Microsoft Learn

2.3.1 Design Considerations

The Azure loT Device SDK is integrated with FSP and is available for customers to use. To add the SDKto
the application, users are required to use the Stacks tab and select Networking > Azure RTOS NetX Duo
IOT Middleware.

When the components are selected using the Stacks tab, and the project is created, the SDK and libraries
can be seen under the ra/microsoft/azure-rtos/netxduo/addons/azure iot and
ra/microsoft/azure-rtos/netxduo/addons/cloud folders.

Note: In the following sections, the step-by-step procedure for adding the Azure loT middleware is explained
in detail.

2.3.2 Supported Features
Table 1. loT SDK Supported features

Features Descriptions

Send device-to-cloud messages Send device-to-cloud messages to loT Hub with the option to add
custom message properties.

Receive cloud-to-device messages Receive cloud-to-device messages and associated properties from
loT Hub.

Device twins IoT Hub persists a device twin for each device that you connect to

IoT Hub. The device can perform operations such as retrieving twin
documents and subscribing to desired property updates.

Direct methods loT Hub gives you the ability to invoke direct methods on devices
from the Cloud.
Device Provisioning Service (DPS) This SDK supports connecting your device to the Device

Provisioning Service, for example, through individual enroliment
using an X.509 leaf certificate.
Protocol The Azure SDK for Embedded C supports only MQTT.

R11AN0750EU0130 Rev.1.30 Page 11 of 52
Jul.01.25 RENESAS

https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-sdks
https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-sdks

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

Features Descriptions

Retry policies The Azure SDK for Embedded C provides guidelines for retries, but
actual retries should be handled by the application.

loT plug-and-play loT Plug and Play enables solution builders to integrate smart
devices with their solutions without any manual configuration.

3. MAQTT/TLS Application Example

3.1 Application Overview

This application project demonstrates the Renesas RA loT Cloud Connectivity solution using the FSP and
uses Microsoft® Azure as the cloud provider. Ethernet is the primary communication interface between the
MQTT device and the Azure loT Services.

The CK-RABM5 v2 kit acts as an MQTT node and connects to the Azure IoT service using the MQTT/TLS
protocol over the Ethernet interface. The application periodically reads the onboard sensor values and
publishes this information to the Azure loT Hub. It also subscribes to a User LED state MQTT topic. You can
turn the User LEDs ON/OFF by publishing the LED state remotely. This application reads the updated LED
state and turns the User LEDs ON/OFF.

-_—— TTEm . - (OTHUB

i ; g

Ethernet switch/router

Figure 6. RA MQTT/TLS Application HW Connection Overview

R11AN0750EU0130 Rev.1.30 Page 12 of 52
Jul.01.25 RENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

Iy

On/Oft (Actuation) Subrscribe 10 LED ONJOFF 7 - —

I
ETITTR

" g \
———— - Telemetry PUbSNG—. ” b% |
J: — A \

TTTT 5 (Actuation) : !)
Mcy T : \ Azure loT Hub }
PUBLISH / SUBSCRIBE :
\:_\:_'_::’ Subicribe 1o the Sensor D!fl;_
— . E
Publizh Senzor Data
SENSOR

Figure 7. MQTT Publish/Subscribe to/from Azure loT Central

The following files from this application project serve as a reference.

Table 2. Files Used in Application Project

No. Filename

Purpose

1. src/application thread entry.c

Contains initialization code and has the main
thread used in the Cloud Connectivity
application.

2. src/common_init.h

Contains macros, data structures, and
function prototypes used to initialize common
peripherals across the project.

3. src/common_utils.c

Contains macros, data structures, and
functions commonly used across the project.

4. src/common _utils.h

Contains macros, data structures, and
function prototypes commonly used across
the project.

5. src/Console Thread entry.c

Contains the code for the command line
interface and flash memory operations.

6. src/ICM42605.c

Contains the code for the 6-Axis MEMS
Motion Tracking™ Sensor (Gyroscope,
Accelerometer)

7. src/ICM42605.h

Contains the Data structure function
prototypes for the 6-Axis MEMS Motion
Tracking™ Sensor (Gyroscope,
Accelerometer)

8. src/RA_ICM42605.c

Contains codes for 6 Axis sensor (Gyroscope,
Accelerometer) sensor’s initialization and
measurement.

R11ANO750EU0130 Rev.1.30

Page 13 of 52

Jul.01.25 RENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

No. Filename

Purpose

9. src/icm.h

Contains user-defined data types and function
prototypes, which have implementation in
RA ICM42605.c

10. src/ICP _20100.c

Contains the code for the Barometric
Pressure and Temperature Sensor

11. src/ICP_20100.h

Contains the Data structure and function
prototypes for the Barometric Pressure and
Temperature Sensor

12. src/RA_ICP20100.c

Contains codes for the Barometric Pressure
and Temperature sensor’s initialization and
measurement.

13. src/icp.h

Contains user-defined data types and function
prototypes that have an implementation in
RA ICP20100.c

14. src/Sensor Thread entry.c

Contains the Code to access the Sensor data
from the different sensors and the order topic
to publish

15. src/OB 1203 Thread entry.c

Contains the code for Heart Rate, Blood
Oxygen Concentration, Pulse Oximetry,
Proximity, Light, and Color Sensor

16. src/oximeter.c Contains data structures and functions used
for the oximeter sensor
17. src/oximeter.h Contains the Data structure and function

prototypes for the oximeter sensor

18. src/r typedefs.h

Contains the common derived data types

19. src/RA _HS3001.c

Contains the code for the Renesas Relative
Humidity and Temperature Sensor

20. src/RA_HS3001.h

Contains function prototypes for the Relative
Humidity and Temperature Sensor

21. src/RA_ZMOD4XXX Common.c

Contains the common code for Renesas
ZMOD sensors

22. src/RA ZMOD4XXX Common.h

Contains the common data structure’s
function prototypes for the Renesas ZMOD
sensors

23. | src/RA_ZMOD4XXX IAQlstGen.c

Contains the common code for the Renesas
ZMOD Internal Air Quality sensors

24. src/RA_ZMOD4XXX OAQ NO2 03.c

Contains the common code for the Renesas
ZMOD Outer Air Quality sensors

25. src/RmcI2C.c

Contains the 12C wrapper functions for the
third-party sensors not integrated with FSP

26. src/RmcI2C.h

Contains the 12C function prototypes for
wrapper functions for the third-party sensors
not integrated with FSP

27. src/user choice.h Contains the Function prototypes for the
Sensor and its user configuration for the
different sensors and their data accessibility.

28. src/usr_config.h To customize the user configuration to run the
application.

29. src/usr_hal.c Contains data structures and functions used

for the Hardware Abstraction Layer (HAL)
initialization and associated utilities.

30. src/usr_hal.h

Accompanying header for exposing
functionality provided by usr hal.c.

R11ANO750EU0130 Rev.1.30

Page 14 of 52

Jul.01.25 RENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

No. | Filename Purpose

31. src/usr_network.c Contains data structures and functions used
tooperate the NetX Duo TCP/IP and Ethernet
Module. This file is for Ethernet-specific
usage.

32. src/usr network.h Accompanying header for exposing
functionality provided by usr network.c.
This file is for Ethernet-specific use.

33. src/ZMOD4410 Thread entry.c Contains the code for the indoor air quality
sensor.

34. src/sample pnp environmental sensor c | PNP Telemetry for HS3001 Temperature

omponent.c sensor data.

35. src/sample pnp gas_component.c PNP Telemetry for ZMOD4410 IAQ Sensor
Data.

36. src/sample pnp barometric pressure se | PNP Telemetry for ICP20100 Pressure

nsor component.c Sensor data.

37. src/sample pnp inertial sensor compon | PNP Telemetry for ICM42605 Inertial Sensor

ent.c data.

38. src/sample pnp gas_oaq.c PNP Telemetry for ZMOD4510 OAQ Sensor
Data.

39. src/sample pnp biometric sensor compo | PNP Telemetry for OB1203 Biometric Sensor

nent.c Data.

40. src/ZMOD4510 Thread entry.c Reading Outdoor Air Quality Data.

41. src/console menu/console.c Contains data structures and functions used
to print data on the console using the UART.

42. src/console menu/console.h Contains the Function prototypes used to print
data on the console using UART.

43. src/console menu/menu_flash.c Contains data structures and functions used
to provide a CLI flash memory-related menu.

44. src/console menu/menu_flash.h Contains the Function prototypes and macros
used to provide the CLI flash memory-related
menu.

45. src/console menu/menu kis.c Contains functions to get the FSP version, get
UUID, and help option for the main menu on
the CLI.

46. src/console menu/menu_kis.h Contains the Function prototypes and macros
used to get the FSP version, get UUID, and
help option for the main menu on the CLI.

47. src/console menu/menu main.c Contains data structures and functions used
to provide CLI main menu options.

48. src/console menu/menu main.h Contains the Function prototypes and macros
used to provide CLI main menu options.

49. src/flash/flash _hp.c Contains data structures and functions used
to perform flash memory-related operations.

50. src/flash/flash hp.h Contains the function prototypes and macros
used to perform flash memory-related
operations.

51. src/obl1203 bio/KALMAN/kalman.c Contains an algorithm for Heart Rate, Blood

52. | src/ob1203 bio/KALMAN/kalman.h Oxygen Concentration, Pulse Oximetry,

53. | src/obl1203 bio/SAVGOL/SAVGOL.c Proximity, Light, and Color Sensor sample

54. | src/ob1203 bio/SAVGOL/SAVGOL.h calculations.

55. src/obl1203 bio/SP02/SPO2.c

56. src/obl203 bio/SP0O2/SPO2.h

R11AN0750EU0130 Rev.1.30 Page 15 of 52
Jul.01.25 RENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

No. | Filename Purpose
57. src/obl203 bio/obl203 bio.c Contains codes for the OB1203 sensor’s
B a implementation to use with FSP stacks.
58. src/obl203 bio/obl203 bio.h Contain user data structure and function
prototypes used in 0b1203 bio.c
59. src/obl203 bio/0B1203 Config.c Initializes and configures two OB1203 sensor
instances (PPG and proximity) using the
OB_driver; defines control structures,
configuration parameters, and default
callbacks.
60. src/obl1203 bio/0OB1203 Config.h Declares external instances, configuration
B a structures, and callbacks for OB1203 sensors
in PPG and proximity modes.
61. src/obl203 bio/OB driver/rm obl203/ Contains standalone OB1203 sensor driver
ppg mode/rm ob1203 ppg mode.c source code (PPG and Proximity modes)
62. src/obl203 bio/OB driver/rm obl203/ extracted from Renesas FSP. Used
proximity mode/ o independently without integration via FSP
rm_ob1203:proximty_mode.c configurator.
63. src/obl203 bio/OB driver/rm obl203/
rm obl203 ra driver.c
64. src/obl203 bio/OB driver/rm obl203/
rm obl203.c
65. src/obl203 bio/OB driver/rm obl203
api.h
66. src/obl203 bio/OB driver/rm obl203
cfg.h
67. src/obl203 bio/OB driver/rm obl203.h
68. src/SEGGER_RTT/SEGGER RTT.c Implementation of SEGGER real-time transfer
69. src/SEGGER_RTT/SEGGER_RTT.h (RTT) which allows real-time communication
70. | src/SEGGER RTT/SEGGER RTT Conf.h on targets which support debugger memory
71. | src/SEGGER RTT/SEGGER RTT printf.c accesses while the CPU is running.
72. src/nx_azure iot cert.c Azure IoT Interface code. These have the
73. | src/nx azure iot cert.h reference to the working sample
74. | src/nx azure iot ciphersuites.c implementation and other features such as
75. src/nxiazureiioticiphersuites h Device Twin and Direct Method. These _files
= = can be used as a reference for developing the
76. src/sample azure iot embedded sdk.c application
77. src/sample config.h
78. src/usr_app.c Contains data structures and functions used
to operate the user application functions.
79. src/usr app.h Accompanying header for exposing
B functionalityprovided by usr app.c.
80. src/base64 decode.c Contains a function used for BASE64 to Hex
B Conversion
81. src/base64.h Contains a function prototype used for
BASEG64 to Hex Conversion
82. src/c2d_thread entry.c Contains data structures, functions, and the
main thread used in Cloud to Device message
handling.
83. src/hal entry.c Auto-generated unused file for Non-RTOS
B thing.
84. src/commandRX Thread entry.c Cloud to Device Commands reception.

R11ANO750EU0130 Rev.1.30

Jul.01.25

Page 16 of 52

RENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

3.2 Creating the Application Project using the FSP Configurator

Note:

Skip this section if you are planning to import, build, and run the project attached to this application

note.

Complete the steps to create the project from the start using the e? studio and FSP configurator. The
following table shows the step-by-step process of creating the project. It is assumed that the user is familiar
with the e? studio and FSP configurator. Launch the installed e? studio for the FSP.

Table 3. Step-by-step Details for Creating the Application Project

Steps

Intermediate Steps

Project Creation:

File — New — Renesas C/C++ Project —» Renesas RA

2 Project Template: Renesas RA C/C++ Project — Next
Templates for Renesas RA Project
3 e? studio - Project Configuration: Project Name (Name for the project of your choice) —
Renesas RA C/C++ Project Next
Project Name and Location
4 Device and Tools Selection
Device Selection FSP Version: 6.0.0
Board: CK-RA6M5 V2
Device: R7TFA6M5BH3CFC
Language: C
5 Toolchains Toolchain: GNU ARM Embedded
Toolchain version: 13.2.1.arm-13-7
Debugger: J-Link ARM
— Next
6 Project Type Selection Flat (Non-TrustZone) Project
— Next
6a Preceding Project or Smart None 2> Next
Bundle Selection
7 Build Artifact and RTOS Selection Build Artifact Selection: Executable
RTOS Selection: Azure RTOS ThreadX (v6.4.0+fsp.6.0.0)
— Next
Project Template Selection Azure RTOS ThreadX — Minimal — Finish
Clock HOCO 20MHz —PLL Src: HOCO — PLL Div/2 —PLL Mul
x20.0 —» PLL200MHz
10 Stacks tab (Part of the FSP Threads — New Thread
Configurator)
11 Configure Properties — Thread Symbol: application_thread
Name: Application Thread
Stack size (bytes): 0x2400
Priority: 1
Auto start: Disabled
Time slicing interval (ticks): 25
Note: The stack size of the application thread needs to be
aminimum of 0x1000 bytes or greater. This is the
requirement for the NetX Duo Crypto use.
12 Adding the NetX DHCP, loT Middleware, SNTP Clients, and Packet Pool to the Application Thread.

Keep the default names g_dhcp_client0, g_dns0, g_sntp_client0. The default configuration
provided by the FSP configurator is used, so there is no need to change any of the specific

configurations in the Property window.

Adding a DHCP Client

New Stack

| Networking — Azure RTOS NetX Duo DHCP IPv4 Client

R11ANO750EU0130 Rev.1.30
Jul.01.25

Page 17 of 52

RENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

Adding Packet Pool for the DHCP
Client

Click on Add NetX Duo Packet Pool — Use—
dg_packet_pool0 Azure RTOS NetX Duo Packet Pool
Instance

Adding NetX Duo Network Driver

Click on Add NetX Duo Network Driver — New —
NetXDuo Ethernet Driver

Properties setting for g_ether0
Ethernet — Module g_ether0
Ethernet (r_ether) — General —

Name: g_ether0
MAC address: <User needs to define the valid values
for their network>

Property Settings for g_ether_phy0
Ethernet — Pins

ETO_LinkSTA: None
ETO_WOL: None

— Module g_ether_phy0 Ethernet

PHY-LSI Address: 5

The properties setting for
| g_ether_phy_lsi0 Ethernet PHY-LSI

PHY-LSI Address: 5

Modifying the BSP tab — Properties —

RA Common (for Main stack and Heap Settings)

Property settings for RA Common

Main stack size(bytes): 0x1000

Heap size (bytes): 0x1000

Adding Azure RTOS NetX Duo loT Midd

leware

New Stack

Networking — Azure RTOS NetX Duo loT Middleware

Adding NetX Duo IP instance for DNS
Client

Click on Add NetX Duo IP Instance — Use — g_ip0
Azure RTOS NetXDuo IP Instance

Adding Packet Pool for the DNS Client

Click on Add NetX Duo Packet Pool —Use —
g_packet_pool0 Azure RTOS NetX Duo Packet Pool
Instance

13 Note: After the Azure IoT Middleware is added, the configurator reports the following errors when you

hover over the red Blocks.

Error: NetX Duo Azure loT Middleware Requires NetX Secure to be enabled.

Error: NetX Duo Azure loT Middleware Requires IP Packet Filter to be enabled.

Error: NetX Duo Azure loT Middleware Requires MQTT Cloud to be enabled.

Error: A NetX Crypto Implementation must be added.

Note: To fix these errors, enable them as explained in the following steps

Enable the NetX Secure g_dns0 Azure RTOS NetX Duo DNS Client —Property —
Common — MQTT — Client — NX Secure: Enable

Enable MQTT Cloud g_dns0 Azure RTOS NetX Duo DNS Client —Property —
Common — MQTT — Client — Cloud Enable: Enable

Enable IP Packet Filter g_dns0 Azure RTOS NetX Duo DNS Client —Property —
Common — Common — IP Packet Filter: Enabled

Add NetX Crypto Implementation Click on Add NetX Crypto SW Only or HW/SW
Implementation —
New — Azure RTOS NetX Crypto HW Acceleration

Enable the Extended Notify Support g_dns0 Azure RTOS NetX Duo DNS Client —Property
—Common — Common —Extended Notify Support:
Enabled

14 NetX Secure Component is added from the HW Crypto perspective. loT SDK also works with SW

crypto. But in this application, the HW Crypto Accelerators are used.

shown here)

Configure Azure RTOS NetX Secure property values (Only values that changed from the default are

PSK Cipher Suite Enable
ECC Cipher Suite Enable
TLSv1.0 Enable
TLSv1.1 Legacy Mode Enable
TLSV1.1 Enable
TLSV1.3 Disable
Server Mode Enable

R11ANO750EU0130 Rev.1.30

Jul.01.25

Page 18 of 52

RENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

Configure Azure RTOS NetX Crypto HW Acceleration property values (Only values that changed

from the default are shown here)

Common—Hardware
Acceleration—Public Key
Cryptography (PKC)— RSA—RSA

Use Hardware

Common—Hardware Acceleration— | Enabled
Public Key Cryptography (PKC)—

RSA—RSA 3072 Verify/Encryption

(HW)

Common—Hardware Acceleration Enabled

— Public Key Cryptography (PKC)
— RSA — RSA 4096
Verify/Encryption (HW)

Common—Hardware Acceleration
— Public Key Cryptography (PKC)
— RSA — RSA Scratch Buffer Size

Disabled (HW)

Common— Standalone Usage

Use with TLS

Note: Increase the Stack size in the
BSP Tab to get rid of the errorin
the configurator for NetX Crypto
HW Acceleration

Refer to the Modifying the BSP tab — Properties — RA
Common for (Main stack and Heap Settings) section in step
11 of this table

Note: For crypto operation, it is recommended to have a
stack size of 4K or more.

Adding SNTP Client

New Stack

Networking — Azure RTOS NetX Duo SNTP Client

Adding NetX Duo IP instance for SNTP
Client

Click on Add NetX Duo IP Instance —Use — g_ip0
Azure RTOS NetXDuo IP Instance

Adding Packet Pool for the SNTP
Client

Click on Add NetX Duo Packet Pool —-Use —

g_packet_pool0 Azure RTOS NetX Duo Packet Pool
Instance

15 Increase the Number of Packets in Pool
Click on g_packet_pool0 Azure RTOS NetX Duo Packet
Pool Instance
— Property — Module g_packet_pool0 Azure RTOS NetX
Duo Packet Pool Instance — Number of Packets in Pool.
Change from 16 to 50 (To allow enough buffer for the
packets). This can be tuned based on the frequency and size
Note: After adding the SNTP, the configurator reports the following errors when you hover over the red
Blocks.
Error: Maximum time adjustment (milliseconds) should be greater than unicast poll interval
(seconds).
Note: To fix these errors, enable them as explained in the following steps
Reduce the starting poll interval for g_sntp_client0 Azure RTOS NetX Duo SNTP Client —
unicast update request (seconds) Property -~ Common — SNTP — Client —Starting poll
interval for unicast update request (seconds): 36
16 Add Cloud to Device Processing Thread to the Application

Stacks tab (Part of the FSP
Configurator)

Threads — New Thread

Configure Thread Properties

Symbol c2d_thread

Name Cloud2Device Thread

Stack size (bytes) 2048

Priority 1

Auto start Disabled

Time slicing interval (ticks) 25
R11ANO0750EU0130 Rev.1.30 Page 19 of 52
Jul.01.25 RENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

17 Adding the HAL Modules as required for the Application Project: GPT Timer0 for control publishing

sensor value into MQTT and display to console.

HAL/Common Stacks — New Stack

Timers — Timer, General PWM on r_gpt

Property Settings for r_gpt — General

Name: gpt

Channel: 0

Mode: Periodic

Period: 1

Period Unit: Seconds

Interrupts:

Callback: g_gpt_timer_cb

Overflow/Crest Interrupt Priority: Priority 10

18 Adding Azure RTOS Objects for the Application (Topic Queue needs to be created for the application

—Message Queue)

Stacks Tab — Objects

New Object — Queue

Property Settings for the Queue

Name: Topic Queue

Symbol: g_topic_queue

Message Size (Words): 16

Queue Size (Bytes): 64

Stacks Tab — Objects

New Object — Mutex

Name: consolprint_mutex

Symbol: consolprint_mutex

Priority Inheritance: Disabled

Stacks Tab — Objects

New Object — Queue

Property Settings for the Queue

Name: HS3001 Queue

Symbol: g_hs3001_queue

Message Size (Words): 2

Queue Size (Bytes): 8

Stacks Tab — Objects

New Object — Queue

Property Settings for the Queue

Name: ZMOD4410 Queue

Symbol: g_iaq_queue

Message Size (Words): 3

Queue Size (Bytes): 12

Stacks Tab — Objects

New Object — Queue

Property Settings for the Queue

Name: ICM Queue

Symbol: g_icm_queue

Message Size (Words): 12

Queue Size (Bytes): 48

Stacks Tab — Objects

New Object — Queue

Property Settings for the Queue

Name: OB1203 Queue

Symbol: g_ob1203_queue

Message Size (Words): 3

Queue Size (Bytes): 12

Stacks Tab — Objects

New Object — Queue

Property Settings for the Queue

Name: ZMOD4510 Queue

Symbol: g_oaq_queue

Message Size (Words): 1

Queue Size (Bytes): 4

Stacks Tab — Objects

New Object — Queue

Property Settings for the Queue

Name: ICP Queue

Symbol: g_icp_queue

R11ANO750EU0130 Rev.1.30
Jul.01.25

Page 20 of 52

RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

Message Size (Words): 4

Queue Size (Bytes): 16

19 Add Sensor Thread, this thread is used to access the sensor’s values of HS3001, ICP-20100, and ICM-
42605

Stacks tab (Part of the FSP Threads — New Thread
Configurator)

Configure Thread Properties

Symbol Sensor_Thread
Name Sensor_Thread
Stack size (bytes) 8192
Priority 3
Auto start Disabled
Time slicing interval (ticks) 200
20 Adding the HS300X Temperature/Humidity Sensor Module to the Sensor Thread
New Stack — Sensor — HS300X Temperature/Humidity Sensor
Config HS300X sensor— Name: g_hs300x_sensor0

Callback: hs300x_callback

Under 12C Shared Bus — Add 12C New — 12C Master(r_iic_master)
Communications Peripheral —

Config for 12C Shared Bus — Name: g_comms_i2c_bus0
Channel: 0
Rate: Fast-mode

Config for 12C Master — Name: g_i2c_master0

Interrupt Priority Level: Priority 12

21 Adding ICP-20100 and ICM-42605 sensors to the Sensor Thread.

Note: FSP doesn’t provide an integrated module for ICP-20100 and ICM-42605 sensors. This needs to
be integrated via the i2c communication device and external IRQ manually. Also, its related sensor
driver code needs to be added to the src folder.

New Stack — Connectivity — 12C Communication Device

Config 12C Communication Device — |[Name: g_comms_i2c_device4

Slave Address: 0x63

Callback: ICP_comms_i2c_callback

Under the 12C Communication Device [Use — g_comms_i2c_bus0 I12C Shared Bus
— Add 12C Shared Bus —

New Stack — Input — External IRQ
Config for External IRQ Name: g_external_irq6
Channel: 6

Trigger: Falling

Callback: ICP_IRQ_CALLBACK

22 Adding 12C Communication Device and External IRQ for ICM-42605 into Sensor Thread

New Stack — Connectivity — 12C Communication Device
Config 12C Communication Device — |[Name: g_comms_i2c_device5

Slave Address: 0x68

Callback: ICM_comms_i2c_callback

Under the 12C Communication Device [Use — g_comms_i2¢c_bus0 I12C Shared Bus
— Add 12C Shared Bus —

New Stack — Input — External IRQ
Config for External IRQ Name: g_external_irq3
Channel: 3

Trigger: Falling
Callback: ICM_42605_Callback2
New Stack — Input — External IRQ

R11AN0750EU0130 Rev.1.30 Page 21 of 52
Jul.01.25 RENESAS

Renesas RA Family

RAMQTT

/TLS Azure Cloud Connectivity Solution - Ethernet

Config for External IRQ

Name: g_external_irq12

Channel: 12

Trigger: Falling

Callback: ICM_42605_Callback1

23 Add ZMOD4410 Sensor (IAQ) Processing Thread to the Application
Stacks tab (Part of the FSP Threads — New Thread
Configurator)
Configure Thread Properties
Symbol ZMOD4410_Thread
Name ZMOD4410_Thread
Stack size (bytes) 2048
Priority 3
Auto start Disabled
Time slicing interval (ticks) 1
24 Adding ZMOD4XXX Gas Sensor Module to ZMOD4410_Thread
New Stack — Sensor — ZMOD4XXX Gas Sensor
Config ZMOD4XXX Properties— Add Requires ZMOD Library— New—ZMOD4410 IAQ 1st
Generation
Add 12C Shared Bus— New— 12C Shared Bus
Add 12C Communications—New— 12C Master
(r_iic_master)
Add IRQ Driver for Measurement —New— External IRQ
Module g_zmod4xxx_sensor0 Name: g_zmod4xxx_sensor0
Comms I2C callback: zmod4xxx_comms_i2c_callback
IRQ Callbacks: zmod4xxx_irq0_callback
Under the ZMOD4410 IAQ 1st Name: g_comms_i2c_device1
Generation — 12C Communication
Device —
Config I12C Shared bus — Name: g_comms_i2c_bus2
Channel: 2
Rate: Fast-mode
Config I12C Master — Name: g_i2c_master2
Interrupt Priority Level: Priority 12
Config External IRQ— Name: g_external_irq4
Channel :4
Trigger: Falling
Pin Interrupt Priority: Priority 3
Pins—IRQ04: (Navigate to IRQ04): P402
25 Add ZMOD4510 Sensor (OAQ) Processing Thread to the Application
Stacks tab (Part of the FSP Threads — New Thread
Configurator)
Configure Thread Properties
Symbol ZMOD4510_Thread
Name ZMOD4510_Thread
Stack size (bytes) 2048
Priority 2
Auto start Disabled
Time slicing interval (ticks) 1
26 Adding ZMOD4XXX Gas Sensor Module to ZMOD4510_Thread

New Stack —

Sensor — ZMOD4XXX Gas Sensor

Config ZMOD4XXX Gas Sensor

Add Required ZMOD Library— New—ZMOD4510 NO2 O3

Properties—

Add 12C Shared Bus—Use—g_comms_i2c_bus2 12C
Shared Bus

Add IRQ Driver for Measurement—New— External IRQ

R11ANO750EU0130 Rev.1.30

Jul.01.25

Page 22 of 52

RENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

Module g_zmod4xxx_sensor1i

Name: g_zmod4xxx_sensor1

Comms I2C callback: zmod4xxx_comms_i2c1_callback

IRQ Callbacks: zmod4xxx_irg1_callback

Module g_comms_i2c_device2 I12C
Communication Device
(rm_comms_i2c)

Name: g_comms_i2c_device2

Config External IRQ—

Name: g_external_irq15

Channel: 15

Trigger: Falling

Pin Interrupt Priority:12

Pins—IRQ15: (Navigate to IRQ15): P404

27 Add OB1203 (optical biosensor) Processing Thread to the Application
Note: FSP v6.0.0 doesn’t provide an integrated module for the OB1203 sensor. This needs to be
integrated via the i2c communication device and external IRQ manually. Also, its related sensor driver
code needs to be added to the src folder
Stacks tab (Part of the FSP Threads — New Thread
Configurator)
Configure Thread Properties
Symbol OB_1203_Thread
Name OB_1203_Thread
Stack size (bytes) 2048
Priority 2
Auto start Disabled
Time slicing interval (ticks) 25
28 Adding 12C Communication Device for OB1203 (PPG mode) into OB_1203_Thread.
New Stack — Connectivity — 12C Communication Device
Config 12C Communication Device Name: g_comms_i2c_device3
Slave Address: 0x53
Callback: rm_ob1203_comms_i2c_callback
Under the 12C Communication Device| New — I12C Shared Bus
— Add 12C Shared Bus —
Under I12C Shared Bus — Add 12C New — 12C Master(r_iic_master)
Communications Peripheral —
Config for 12C Shared Bus — Name: g_comms_i2c_bus1
Channel: 1
Rate: Standard
Config I12C Master — Name: g_i2c_master1
Interrupt Priority Level: Priority 12
29 Adding 12C Communication Device for OB1203 (Proximity mode) into OB_1203_Thread.
New Stack — Connectivity — 12C Communication Device
Config 12C Communication Device Name: g_comms_i2c_device6
Slave Address: 0x53
Callback: rm_ob1203_comms_i2c_callback
Under the 12C Communication Device| Use — g_comms_i2c_bus1 12C Shared Bus
— Add 12C Shared Bus —
30 Adding External IRQ for OB1203 into OB_1203_Thread.

New Stack —

Input — External IRQ

Config for External IRQ

Name: g_external_irq14

Channel: 14

Trigger: Falling

Callback: rm_ob1203_irq_callback

Pin Interrupt Priority:12

R11ANO750EU0130 Rev.1.30

Jul.01.25

Page 23 of 52

RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

| Pins—IRQ14: (Navigate to IRQ14): P403

31 Add Cloud to Device Processing Thread to the Application

Stacks tab (Part of the FSP Threads — New Thread
Configurator)

Configure Thread Properties

Symbol Console_Thread
Name Console_Thread
Stack size (bytes) 4096
Priority 4
Auto start Enabled
Time slicing interval (ticks) 50
32 Add Cloud to Device Command Reception Thread to the Application
Stacks tab (Part of the FSP Threads — New Thread

Configurator)

Configure Thread Properties

Symbol CommandRX_Thread
Name CommandRX_Thread
Stack size (bytes) 2048
Priority 4
Auto start Disabled
Time slicing interval (ticks) 40

33 Adding UART to Console_Thread
New Stack — Connectivity— UART
Config Common — FIFO Support: Enable

DTC Support: Enable

Flow Control Support: Enable

Config General — Name: g_console_uart

Channel: 5

Data Bits: 8bits

Parity: None

Stop Bits: 1bit

Config Baud— Baudrate: 115200

Config Interrupts — Callback: user_uart_callback

Config Pins — TXD: P501

RXD: P502

34 Adding Flash to Console_Thread

New Stack — Storage— Flash (r_flash_hp)

Name: user_flash

Data Flash Background Operation: Disabled

Callback: flash callback

Flash Ready Interrupt Priority: Priority 6

Flash Error Interrupt Priority: Priority 6

35 Enable “Use float with nano printf’ to print float values.

Project — Properties — C/C++ Build | Use float with nano printf (-u _printf_float)
— Settings — Tool Settings tab —
GNU ARM Cross C Linker —
Miscellaneous —Check the box

36 Add “--specs=rdimon.specs” to Other linker flags

Project — Properties — C/C++ Build | Add --specs=rdimon.specs
— Settings — Tool Settings tab — — Apply — Apply and Close
GNU ARM Cross C Linker —

Miscellaneous — Other linker flags
N

R11AN0750EU0130 Rev.1.30 Page 24 of 52
Jul.01.25 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

The above configuration is a prerequisite to generate the required stack and features for the Cloud
connectivity application provided with this application note. Once the Generate Project Content button is
clicked,e? studio generates the source code for the project. The generated source code contains the required
drivers, stacks, and middleware. The user application files must be added to the src folder.

For the validation of the created project, the same source files listed in the section 3, MQTT/TLS Application
Example, Table 2, may be added. This is the quickest way to create and build the application without writing
the code for the configuration created in the above section.

Note: Users are required to add the directory path and subdirectory for proper compilation. The following
paths need to be added to Project — Properties — C/C++ Build — Settings — Tool Settings tab
— GNU Arm Cross C Compiler — Includes — Include paths (-l). Refer to the enclosed project for

more details.
type filter text Settings " "
Resource
Builders
v C/C++ Build Configuration: |Debug [Active] ~ | Manage Configurations...
Build Variables
) 2
Environment
JSON Compilation Datg 3 Tool Settings || 33 Toolchain | # Build Steps Build Artifact |ai§ Binary Parsers| € Error Parsers a4
Logging 5 -
1 (#2 Target Processor Include paths (-1) LEIRSIET
Tool Chain Editor : A
C/C++ General = ; “${workspace_loc;/${ProjName}/ra/fsp/inc}”
Project Natures — Debugging "${workspace_loc:/${ProjName}/ra/fsp/inc/apils
Project References NU Arm Cross Assembler “${workspace_loc:/${ProjName)/ra/fspémerinstances)”
Renesas QF *3 Preprocessor "${workspace_loc:/${ProjNaj /fsp/src/rm_threadx_port}”
Run/Debug Settings (2 Includes "${workspace_loc; ame}/ra/microsoft/azure-rtos/threadx/co@mon/inc}”
9 ng) Warnings "${works) =toc:/${ProjName}/ra/arm/CMSIS_6/CMSIS/Core/Ing#lide}”
Task Tags -y-,_-< Miscell " pace_loc:/${ProjName}/ra_gen}" -
Validation @ Miscellaneous [LR PSR VRpRNY'7. 77, VTN TR S Sy 7 S J g, T}
2 GNU Arm Cross C Compil < >
\ Preprocessg Include system paths (-isystem) €
(2 Optimization @ Add directory path X
(22 warnings
(% Miscellaneous Directory: 5
~ % GNU Arm Cross C Linker
% General I ${workspace_loc:/${ProjName}/src}
2 Libraries
% Miscellaneous
~ 183 GNU Arm Cross Create Flash Image
(2 General
~ B GNU Arm Cross Print Size E
2 General Cancel File system...
< > Restore Defaults Apply
7N
&) 8 Apply and Close Cancel

Figure 8. Include src/ directory path before compiling the project

Note: After you follow the instructions in section 3.2 to recreate the Application project using the FSP
configuratorand add the src code to the project, the project is ready for building.

Note: If you get an error while assigning a PIN to an External IRQ, go to Pin Configuration > Pin Number
and select the IRQ function for that pin number. For example, for External IRQ channel number 4, you
can select Function IRQ14 for Pin Number 4.

Note: As part of the manual creation of this project, you might encounter known issues/pin errors with the
Pin configurator while selecting the peripherals. We recommended selecting the operation mode,
disabling/enabling, and selecting the pins. You can also refer to the attached project as a working
reference.

R11AN0750EU0130 Rev.1.30 Page 25 of 52
Jul.01.25 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

3.3 Install Azure CLI

To prepare Azure Cloud resources and connect a device to Azure, you can use Azure CLI. Azure CLI can be
installed locally on your PC.

1. Azure CLI can be downloaded from the Microsoft site (https://learn.microsoft.com/en-us/cli/azure/install-
azure-cli)

2. The installer name will be similar to azure-cl1i-2.44.x.msi. or later. Click on the installer, and the
InstallShield will guide you through the installation process. When installing it, you can't choose the
installation location — it depends on the operating system you're using. For example, on Windows, the
64-bit Azure CLl is installed in C:\Program Files\Microsoft SDKs\Azure\CLI2.

3. Install the current release of the Azure CLI. After the installation is complete, you will need to close and
reopen any active Windows Command Prompt or PowerShell windows to use the Azure CLI.

4. After the Azure CLlI installation is successful, open and launch Windows PowerShell to use the Azure
CLI. A screenshot of Windows PowerShell is shown below.

Select Administrator: Windows PowerShell — O >

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscoreb

Figure 9. Windows PowerShell

5. If you already have Azure CLlI installed locally, go to the directory of the installed AzureCLI and run az --
version to check the version. This application note requires Azure CLI 2.44.0 or later.

E¥ Administrator: Windows PowerShell - a >

PS C:\Users\ \AzureCLI> az
azure-cli 2.45.0

core 2_A5"
telemetry 1.0.

Extensions:
azure-devops 0.20.0
azure-iot 9.10.14

Dependencies:
msal 1.20.0
azure-mgmt-resource 21.1.0b1

Python location 'C:\Program Files (x86)\Microsoft SDKs\Azure\CLI2\python.exe'
Extensions directory ‘C:\Users) \.azure\cliextensions"

Python (Windows) 3.10.8 (tags/v3.10.8:aaaf517, Oct 11 2022, 16:37:59) [MSC v.1933 32 bit
(Intel)]

Figure 10. Azure CLI Version

3.4 Create an loT Hub
You can use Azure CLI to create an loT hub that handles events and messaging for your device.

Note 1: Before you start creating the 1oT Hub, you are required to have a login to your Azure Portal via a
webbrowser. If not logged in, then you may notice an error that you are not logged in while creating
the loT Hub:
https://portal.azure.com/

Note 2: If you do not have an Azure Account, you can create one that is valid for 12 months with limited
features from the following link:
https://azure.microsoft.com/en-us/free/

R11AN0750EU0130 Rev.1.30 Page 26 of 52
Jul.01.25 RENESAS

https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
https://portal.azure.com/
https://azure.microsoft.com/en-us/free/

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

To create an loT hub:

Note 3: Some of the user parameters while creating the loT Hub need to be unique. Users are required to
take care of this while creating the IoT Hub credentials.

1. In your CLI console, run the “az extension add” command to add the Microsoft Azure loT Extension for
Azure CLI to your CLI shell. The IoT Extension adds loT Hub, loT Edge, and loT Device Provisioning
Service (DPS) specific commands to Azure CLI.

— az extension add --name azure-iot

Note 4: When you run the command for the first time you may not notice output on the console as shown
below. It just accepts the command.

E¥ select Administrator: Windows PowerShell = O et

PS C:\Users)\ \AzureCLI>
PS C:\Users\ \AzureCLI> az extension add azure-iot

Extension ‘azure-iot’ ©.10.14 is already installed.
PS C:\Users\ \AzureCLI>

Figure 11. Add Extension for Azure CLI

2. Runthe az login command to login to the Azure account. Running the az login command opens
the browser for login. You can enter the login credentials to login to the Azure account. You will notice a
similar message in the browser on successful login.

Note: You can find more info on the Azure CLI at Overview of the Azure CLI | Microsoft Docs

You have logged into Microsoft Azure!

You can close this window, or we will redirect you to the Azure CLI documentation in 1 minute.

Announcements

[Windows anly] Starting in May 2023, Azure CLI will authenticate using the Web Account Manager (WAM) broker by default.

To help us collect feedback on the new login experience, you may opt-in to use WAM by running the following commands:
az config set core.allow broker=true

az account clear
az login

Figure 12. Successful Login to the Azure Account

3. Runthe az group create command to create a resource group. The following command creates a
resource group named MyRAResourceGroup in the westus region.

4. Optionally, to set an alternate 1ocation, run az account list-locations to see available
locations. Then specify the alternate location in the following command in place of westus.
az group create —--name MyRAResourceGroup --location westus

R11AN0750EU0130 Rev.1.30 Page 27 of 52
Jul.01.25 RENESAS

https://docs.microsoft.com/en-us/cli/azure/

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

E¥ Administrator: Windows PowerShell - [m] X

PS C:\Users\ \AzureCLI> az group create MyRAResourceGroup westus
{

*id": "/subscriptions/c2abca52-fdcb-4329-b720-8d20dbcdfab3/resourceGroups/MyRAResourceGroup”,

"location™: "westus”,

"managedBy": null,

"name": "MyRAResourceGroup”,

"properties™: {
"provisioningState”: "Succeeded”

*: null,
"type": "Microsoft.Resources/resourceGroups™
1

}
PS C:\Users\ \AzureCLI> _

Figure 13. Create Resource Group

5. Runthe az iot hub create command to create an loT hub. It might take a few minutes to create an
loT Hub.
Replace the YourIotHubName placeholder below with the name you chose for your loT hub. An loT hub
name must be globally unique in Azure. This placeholder is used in the rest of this tutorial to represent
your unique loT hub name. Use any command given below.

— az ilot hub create --resource-group MyRAResourceGroup --name
{YourIoTHubName}
OR
— az 1ot hub create --resource-group MyRAResourceGroup --name
{YourIoTHubName} --location {YourLocation}

Note: It may take a few minutes to create the 10T Hub. In this case, the loT Hub name used is
RACLOUDHUB.

Note: Microsoft recommends creating a new loT Hub. The loT Hub created previously (2-3 years old)
may not work as desired. So, we recommend creating a new loT Hub to run the application to
yield the proper results

E¥ Administrator: Windows PowerShell -] X

https:, Cs ft. -US/cli/azure/iot/hub#az_iot_hub_create

PS C:\Users\ > az iot hub create MyRAResourceGroup RACLOUDHUB
westus
| Running ..

Figure 14. loT Hub Creation in Progress

R11AN0750EU0130 Rev.1.30 Page 28 of 52
Jul.01.25 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

6. After the loT Hub is created, view the JSON output in the console, and copy the hostNamevalue to a safe
place. You use this value in a later step. The hostname value looks like the following example:
— {Your IoT hub name}.azure-devices.net

celaroup RAC LOUDHLUY

otifications”: false,

thub-ns-racloudhub-153

B.azure-devices.net",

Figure 15. JSON Output after loT Hub Creation

3.5 Certificate Creation Process

You can use the GIT Bash utility for this process. If not installed on your computer, you can download and
install it. (Git for Windows or Git for Windows (github.com)).

1. Install Git for Windows.

2. Launch the Git Bash.

3. Create a directory of your choice (for example, mkdir Azure).

4. Go to the directory and create the configuration. This created directory is the place where your self-
signed certificate is created and stored.

5. Copy and paste the configuration listed below to create x509 config.cfg as shown in the figure
below.
cat > x509 config.cfg <<EOT
[req]
req_extensions = client auth
distinguished name = req_distinguished name

[reqg distinguished name]

R11AN0750EU0130 Rev.1.30 Page 29 of 52
Jul.01.25 RENESAS

https://gitforwindows.org/
https://github.com/git-for-windows

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

[client auth]

basicConstraints = CA:FALSE

keyUsage = digitalSignature, keyEncipherment
extendedKeyUsage = clientAuth

EQT

Note: All OpenSSL commands and the self-signed certificate creation process are given at this link.

Steps are as follows:

1. Set the x509 configuration file for the common name in cert.

MINGW&6G4:/c/Users/ [Azure - O X

mkdir Azure

cd Azure

cat > x509_config.cfg <<EOT
[req]

> req_extensions = client_auth

> distinguished_name = req_distinguished_name
[req_distinguished_name]

> [client_auth]

> basicConstraints = CA:FALSE

> keyUsage = digitalSignature, keyEncipherment
> extendedKeyUsage = clientAuth

> EOT

Figure 16. Set X509 Configuration File

2. Create an RSA self-signed certificate.
Generate private key and certificate (public key) using the command as shown in the snapshot
“‘openssl genrsa -out privkey.pem 2048”

MINGW&64:/c/Users; /Azure — O X

~/AzZure
$ openss1 genrsa -out privkey.pem 2048
Generating RSA private key, 2048 b1t long modulus (2 primes)

Figure 17. Generate Private Key and Certificate (public key)

R11AN0750EU0130 Rev.1.30 Page 30 of 52
Jul.01.25 RENESAS

https://github.com/azure-rtos/netxduo/blob/master/addons/azure_iot/samples/README.md#steps-to-create-self-signed-certs-using-openssl

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

Note: If you use OpenSSL 3.0.0 or later, please add the “~traditional” flag to the generation command with
RSA header: “openssl genrsa -out privkey.pem -traditional 2048”

3. Embed Device ID in certificate.
This command will not give you any response if successfully executed.
openssl reqg -new -days 365 -nodes -x509 -key privkey.pem -out cert.pem -
config x509 config.cfg -subj "//CN=<Same as device Id>"
Note: In this example, the device ID name “CK_RABM5_X509” is used. Note down this Device ID. This
will be used in future steps. Use your own Device ID to make it unique across your system.

MINGW&4:/c/Users; fAzure -) X

$lopenss| req ew -day 55 -nodes 5 cey privkey.pem -out cert.pem -config x509_config.ctg -subj “//CN=CK_RA6M5_X509"

Figure 18. Embed Device ID in Certificate

4. Run command to convert format of key from pem to der.
openssl rsa -outform der -in privkey.pem -out privkey.der
Here you get response “writing RSA key”

MINGWE4:/c/Users/ [/Azure o O X

JUre
$ openss1 rsa -outform der -in privkey.pem -out privkey.der
writing KSA Key

Figure 19. Convert Format from key to der

5. Run the command to convert the format of the cert from pem to der.
openssl x509 -outform der -in cert.pem -out cert.der

This command will not give you any response if successfully executed.

MINGW#64:/c/Users/ [Azure - O X

Figure 20. Convert Format of cert from pem to der

6. Convert derto hex array and setitin sample device identity.c filein the project.

For easier access, the command text is given as follows. The user can copy and paste text in the
command line to create sample device identity.c.

echo "#include \"nx_api.h\"

/**

device cert (‘openssl x509 -in cert.pem -fingerprint -noout | sed 's/://g')
‘cat cert.pem’

device private key:
‘cat privkey.pem®

R11AN0750EU0130 Rev.1.30 Page 31 of 52
Jul.01.25 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

*/

" > sample device identity.c

MINGW&64:/c/Users/ [Azure - a X

at privkey.pem’
e = - 3
> sample_device_identity.c
~/AZure
1s

%
cert.der cert.pem privkey.der privkey.pem 'sample_device_identity.c 'x509_config.cfg

~/AzZure

Figure 21. Convert the der to Hex Array and Set them in sample_device_identity.c

7. Run “ls” command to check whether sample device identity.c is created.

8. Run the following commands to produce sample device cert ptr and
sample device private key ptr array containing device certificate and private key equivalent hex
values along with length.

xxd -1 cert.der | sed -E "s/(unsigned char) (\w+)/\1
sample device cert ptr/g; s/ (unsigned int) (\w+) len/\1
sample device cert len/g" >> sample device identity.c

xxd -1 privkey.der | sed -E "s/(unsigned char) (\w+)/\1

sample device private key ptr/g; s/ (unsigned int) (\w+) len/\1
sample device private key len/g" >> sample device identity.c

These commands will not give you any response if successfully executed.

MINGW®64:/c/Users/ [Azure - O X

$ xxd -1 cert.der | sed
sample_device_cert_len/g

~/AZure
",

§ xxd -1 privkey.der | sed -E "s/(unsigned char) (\w+)/\1 sample_device_private_key_ptr/g; s/(unsigned int) (\w
+)_len/\1 sample_device_private_key_len/g" >> sampl ce_identity

~/Azure

Figure 22. Producing arrays containing hex values

Check the content of sample device identity.c with the cat command. In this file, you will get the
Device certificate along with SHA1 fingerprint, Device Private Key, sample device cert ptr and
sample device private key ptr array along with their length. You will also notice the Fingerprint; you
need to use this fingerprint as a “thumbprint” in the device creation process using the loT Explorer in later
sections. Please note down this Fingerprint.

R11AN0750EU0130 Rev.1.30 Page 32 of 52
Jul.01.25 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

MINGW64:/c/Users/ [Azure - 0 X

Figure 23. Check the Content of sample_device_identity.c

3.6 View Device Properties

You can use the Azure loT Explorer (Install and use Azure IoT explorer - Azure 10T | Microsoft Learn) to view
and manage the properties of your devices. In the following steps, you will add a connection to your loT Hub
in loT Explorer. With the connection, you can view properties for devices associated with the loT Hub.

Download and install the latest (above v0.15.6.0) Azure loT Explorer from:
https://github.com/Azure/azure-iot-explorer/releases

Note: Click and install the downloaded msi file Azure.IoT.Explorer.Preview.0.15.6.msi or a newer
version of the downloaded file. The install shield guides you through the installation process.

3.7 SetloT Hub
To add a connection to your loT Hub:

1. Inyour Azure CLI console, runthe az iot hub connection-string show command to get the
connection string for your [oT Hub.
— az 1ot hub connection-string show -n {YourIoTHubName}
Note: See section Create an loT Hub for the loT Hub Name.

E¥ Administrator: Windows PowerShell - O X
PS C:\Users\ \AzureCLI> az iot hub connection-string show RACLOUDHUB

{
"connectionString™: "HostName=RACLOUDHUB.azure-devices.net;SharedAccessKeyName=iothubowner;SharedAccessKey
=54 ZXCY="

~
J
PS C:\Users! \AzureCLI> _

Figure 24. Connection String

2. Copy the connection string.

3. Open the Azure |oT Explorer and select loT hubs > Add connection.

4. Paste the connection string into the Connection string box.

5. Select Save.

R11ANO750EU0130 Rev.1.30 Page 33 of 52

Jul.01.25 RENESAS

https://learn.microsoft.com/en-us/azure/iot/howto-use-iot-explorer
https://github.com/Azure/azure-iot-explorer/releases
https://github.com/Azure/azure-iot-explorer/releases

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

% Azure loT Explo

File Edit View Window Help

Azure loT Explorer (preview)

Add connection string
|Home > loT hubs |

Connection string *

Add connection Switch authentication method HostName=RACLOUDHUB.azure-
devices.net;SharedAccessKeyName=iothubowner;SharedAccessKey=US +
1oT hubs IXCY=
No connections to display
oT Plug and Play Settings
- - You will need to add an loT hub connection string. Con
storage and can be edited or removed at any time by i
Notification Center
4
Help: €re a0 T getan 101 Nub connection suing?
Please do not save your hub connection string to any unsafe locations
Where do I get an loT hub connection string?
Host name
‘ RACLOUDHUB.azure-devices.net ‘ I%}
Shared access policy name
‘ iothubowner ‘ %}
Shared access policy key
‘ @ ‘ I

‘ cance' ‘

Figure 25. Adding Connection String

Note: In some cases, Azure loT Explorer may report an error that the default port that loT Explorer is trying

to use is being used by another application. In order to overcome this error, you can add a different
port number for the Azure 10T Explorer, shown as follows.

Note: In some cases, Azure loT Explorer may report an error that “Failed to retrieve device list: request to
https://raxxxxxx.azure-devices.net/devices % 2Fquery ?api-version=2020-09-30 failed, reason: unable
to get local issuer cettificate.” This error is due to the Zscaler tool running on your PC, set by IT. To
overcome this error, you try running the IOT Explorer on a PC without Zscaler or a Lab machine.

Reference: https://github.com/Azure/azure-iot-explorer/issues/604

On your PC, edit the system environmental variables as shown in the following screenshots.

R11AN0750EU0130 Rev.1.30 Page 34 of 52
Jul.01.25 RENESAS

https://github.com/Azure/azure-iot-explorer/issues/604

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

System Properties E

Computer Name Hardwares System Protection Remots

You musl be logged on a3 an Adminisbalor 1o make most of thete changes
Farformance
Visual efects, Processor Sehe Mulng. Memory USEge, Bnd virtal memory

Uner Profiles
Deskiop setings related 1o your sign-n

Sumngs
Siariup and Recovery
System stamup. system failure. and debugging information
Sapngs
Envircpmant Vanables. .
[+1.4 Cancel Apply

Fenings

ll_;a Echit the system environment varisbies |

3 Edit enwirsnmant variables fer your
account

m &8

Figure 26.

Editing System Environment Variable

| Environment Variables

User varniables for

I Variable
EMWI_DIR
OneDnve
Path
TEMP
T™P

New System Variable

~

Value
C\Program Files (x86\Embedded Wizard 9.30\
CAUsers\Administrator\OneDrive

CA\Program Files (x86)\GNU Teol: ARM Embedded\8 2019-q3-upd...

CAUsers
C\Users\

VappData\LocahTemp
VippData\Local\Temp

Varnable name:

AZURE_IOT_EXPLORER_PORT

y Variable value: | 9999|

Browse Directory...

ComSpec

CV_Instance001
DEFLOGDIR

DriverData
NUMBER_OF_PROCESSORS
OPENSSL_CONF

Browse File—..

CAWINDOWS\system32\omd.exe

C\Program Files\Commvault\ContentStore\Base
CAProgramData\McAfee\Endpoint Secunty\Logs
CA\Windows\System32\Drivers\DriverData

8

CAOpenSSL-Winé4\bin\openssl.cfg

1 [
=]

Edit...

-‘ =

Delete

Cancel

Figure 27. Adding System Environment Variable for Alternate Port - Azure loT Explorer

R11ANO750EU0130 Rev.1.30
Jul.01.25

RENESAS

Page 35 of 52

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

Ernvironment Variables =

User varables for

Variable Value

EMWI_DIR CAProgram Files (xB6\Embedded Wizard 9.300

OneDrive CAUsars\Administrator\OnaDrive

Path CAProgram Files (xBE\NGNU Tecls ARM Embedded\8 2019-q3-upd...
TEMP C\Users! VappData\Locaf\Ternp

T™P Ch\Users' VvappData\Locafh\Temp

MNew... Eavt... Delete
System vanables
Variable Value "~
B AZURE 10T _EXPLORER_PORT 9999 I
ComSpec CAWINDOWS\system 3 2\cmd exe
CV_InstanceD0 Ch\Program Files\Commvault\CententStore\Base
DEFLOGDIR CAProgramData\MeAlea\Endpoint Security\Logs
DriverData CAWIndows\System32\Drivers\DriverData
NUMBER_OF_PROCESSORS &
OPENSSL_CONF CAOpenSSL-Winbd\bin\openssi.cig “~
Mew... Ecst... Delate
OK Cancel

Figure 28. Added Alternate Port for Azure loT Explorer

If the connection succeeds, the Azure 10T Explorer switches to a Devices view and lists your device.

4 Azure loT Explorer (preview)
File Edit View Window Help

Azure loT Explorer

q Settings
(preview) etting

Home > RACLOUDHUB > Devices

New () Refresh

Query by device ID... JORE ‘ (Y Add query parameter

Device ID Status Connection st... Authenticatio... Last status up... loTPlugand ... Edge device

Figure 29. Listed Devices
3.8 Register an loT Hub Device

In this section, you create a new device instance and register it with the loT Hub you created. You will use

the connection information for the newly registered device to securely connect your physical device in a later
section.

R11AN0750EU0130 Rev.1.30 Page 36 of 52
Jul.01.25 RENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

To register a device:

1. You can create a device with help of Azure loT Explorer shown as follows.

Click on New.

Azure loT Explorer (preview)
File Edit View Window Help
Azure loT Explorer
(preview)

Home > RACLOUDHUB > Devices

New | () Refresh

‘ Query by device ID...

2= ‘ 7 Add query parameter

Device ID Status Connectionst... Authenticatio... Last status up...

loT Plug and ...

Settings

Edge de

Figure 30. New Device Creation Process with Azure loT Explorer

2. Inthis stage, you have to enter the Device ID, Authentication type, Primary thumbprint, Secondary
thumbprint, and then click on Create. Use the fingerprint generated in Figure 23 in the section 3.5.
Certificate Creation Process, for the primary and secondary thumbprints. Follow steps 1-5 numbered in

the Figure 31, to create the device.

+ Azure loT Explorer (preview)

File Edit View Window Help
Azure loT Explorer

(preview)

Home > RACLOUDHUB > Devices > Create a new identity
5

X Cancel

Device ID *

Settings

CK_RAEMS5_X509 1

Authentication typei*

O Symmetric key | (@)

Primary thumbprint *

OFFACT216TBEAEACOATFCBAASATOD16CEO3B44FS

Secondary thumbprint *

9FFACT1216T1BEAEACSATFCBAA4ATOO16CEO3B44FS)

Connect this device to loT hub ©

0 Enable

Figure 31.

Naming, Authentication type, and Thumbprints

R11ANO750EU0130 Rev.1.30

Jul.01.25 RENESAS

Page 37 of 52

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

3. You can see your created device in the Devices section of Azure loT Explorer.

+ Azure loT Explorer (preview) - [m] x
File Edit View Window Help

Azure loT Explorer

Settings

(preview)

Home > RACLOUDHUB > Devices

New () Refresh

Query by device ID... 20— ‘ (’? Add query parameteD
Device ID Status Connection st... Authenticatio... Laststatusup... loTPlugand .. Edge device
CK_RABMS_X503 Enabled Disconnected SelfSigned --

Figure 32. Newly Created Device

3.9 Prepare the Device

To connect the device to Azure, modify a configuration file for Azure loT settings (of your Device ID
and Hostname), and build and flash the image to the device.

Add configuration

1. Import the application project into an empty e? studio. Open sample config.h and make the changes
to the configuration as shown in the snapshot with the option USE_DEVICE_CERTIFICATE.

t flash_hp.c h sample_configh > =g
3 @ /* Copyright (c) Microsoft Corporation. All rights reserved. */ A
1: = #ifndef SAMPLE_CONFIG_H
13 #define SAMPLE_CONFIG_H
15 #ifdef _ cplusplus
16 extern st il
17 #endif
19 #include "nx_azure_iot_hub_client.h"
20 #include “nx_azure_iot_provisioning_client.h"
” 3e s: Configure core settings of application for your IoTHub.
’-: #define SAMPLE_PNP_MODEL_ID “dtmi:renesas:ra:ckraéms:AZCKRAGMSETH;2"
33 * Defined, @
4 /e ne ENABLE_DPS_S
5 * Defined, telemetry iis
5 #define DISABLE_TELEMETRY_SAMPLE
37 * Defined, C2D is disabled. f
38 #define DISABLE_C2D_SAMPLE
39 /* Defined, Direct method is disabled.
48 #define DISABLE_DIRECT_METHOD_SAMPLE
41 * Defined, Device twin is disabled.
42 #define DISABLE_DEVICE_TWIN_SAMPLE
a4 - #ifndef ENABLE_DPS_SAMPLE
Figure 33. Configuration Changes to sample_config.h
Constant name Value
USE DEVICE CERTIFICATE 1
R11ANO750EU0130 Rev.1.30 Page 38 of 52

Jul.01.25 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

2. Open nx_azure_iot_cert.c to check the root CA data following the Azure IoT Hub. This application has
been migrated to use the root CA “DigiCert Global Root G2”

[€] nx_azure jot_cert.c ‘

3 @/ Copyright (c) Microsoft Corporation. All rights reserved. =M
11
12 /* This file contains c¢grts needed to communicate with Azure (IoT) */
13

B 1a #include "nx_azure_iot_cert.h”|
15
16 /* DpigiCert Global Root G2 --Used Globally-- =/
17

= 18 const unsigned char _nx azure iot root cert[] =
19 1
28 Bx38, Bx82, 8xB3, BxB8e, Bx30, @x82, ©@x82, Bx76, ©xald, Exe3, 8xe2, exel,
21 8xp2, Bx82, Bx10, Bx83, @x3a, exfl, exe6, Bxa7, exll, exad, exad, @xbb,
22 Bx28, Bx64, Bxbl, Bx1ld, @xe9, exfa, 8xe5, Bx38, exed, exes, exed, ex2a,
23 Bx86, Bx48, Bx86, Bxf7, @x@d, @xel, @x@l, @xeb, 8xes5, exee, 8x38, ex6l,
24 Bx31, OxBb, Bx30, Bx09, OxP6, @x@3, Ox55, x4, Ox06, ex13, Ox82, °x55,
25 Bx53, Bx31, @x15, Bx38, Bx13, Ox@6, @x83, Bx55, Oxed, BxBa, @x13, @x@c,
26 Oxd4, Dx63, Bx67, Dx69, Bx43, @x65, Ox72, Bx74, Ox20, Ox49, OxGe, OX63,
27 Bx31, 8x19, Bx38, Bx17, @x@6, @x@3, @x55, Bxe4, exeb, ex13, exie, ex77,
28 ax77, 8x77, 6x2e, Bx64, 8x69, Ox67, 8x69, Bx63, Bx65, Ox72, 8x74, Ox2e,

Figure 34. Root CA certificate in this project

Note: loT Hub in Azure Cloud can change the root CA in the future. So please check and update the new
root CA at How to migrate hub root certificate - Azure 1oT Hub | Microsoft Learn if you cannot connect to
Azure loT Hub due to the expiration of the root CA issue.

You can download the root CA file at: DigiCert Root Certificates - Download & Test | DigiCert.com

Steps to change the root CA data in this project:
1. Download the root CA.
2. Using command “$xxd -i <file.cert> >> <output.c>" to convert file .pem to array in C.
3. Copy value into src/nx_azure_iot_cert.c

3.10 Building and Running the Application
The project is now ready to be compiled. Press the Build (hammer icon) to start building the project.

&/ ~

Figure 35. Starting to Build the Project

The toolchain will report compilation and build status to the console pane in the lower-right corner of

e? studio. When the building has been completed, confirm that there are zero errors and few warnings.
Warnings, if any, may result from highly restrictive compilation warnings settings being applied by e? studio
to third-party code.

& Console > |* Problems| @ Smart Browser

COT Build Console [azure_ck_rabm5_v2_ethernet_app]

Building file: ../ra/fsp/src/bsp/CmsiCr g i Console [azure ck rabms v2 cthemet app]
Building file: ../ra/fsp/src/bsp/cmsisroevecernencomorsvurcersysveme :

Building file: ../ra/board/raém5_ck_v2/board_init.c
Building file: ../ra/board/raém5_ck_v2/board_leds.c
Building target: azure_ck_raém5_v2_ethernet_app.elf
arm-none-eabi-objcopy -0 srec "azure_ck_raém5_v2_ethernet_app.elf" “azure_ck_raém5_v2_ethernet_app.srec”
arm-none-eabi-size --format=berkeley "azure_ck_raém5_v2_ethernet_app.elf"
text data bss dec hex filename
487036 2776 528092 929984 e3@7@ azure_ck_raém5_v2_ethernet_app.elf

13:46:85 Build Finished. @ errors, 96 warnings. (took 9m:43s.383ms)

Figure 36. Compilation and Build Status Report

R11AN0750EU0130 Rev.1.30 Page 39 of 52
Jul.01.25 RENESAS

https://learn.microsoft.com/en-us/azure/iot-hub/migrate-tls-certificate?tabs=portal
https://www.digicert.com/kb/digicert-root-certificates.htm

Renesas RA Family

3.11 Download and Run the Project

1.

2.

To connect power to the board, connect the USB cable to the CK-RA6MS5 v2 board’s J28 connector
(USBC) and the other end to the PC USB port.

Connect the second USB cable to J10 connector of the CK-RA6M5 v2 board and the other end to the
second USB port of the PC (this will be the console port for the application). Users are required to use

the Command Line Interface (CLI) to configure and run the application.

Make sure the Ethernet cable is connected to the RJ-45 connector (J5) of the board and the other end to

the router/switch as applicable for internet access.
In e2 studio, open the Debug Configurations dialog and launch the
azure_ck_rabm5_v2_ethernet_app.elf debug configuration.

RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

|Q Debug Configurations I O X

Create, manage, and run configurations ﬁ'\

BEeEX BT~
I

Name: ‘ azure_ck_rabm5_v2_ethernet_app.elf |

‘ || Main| %5 Debugger| B+ Startup| %~ Source| [C] Common

[©]¢/C++ Application
[€]C/C++ Remote Application
EASE Script IazureickiraGm57v27ethemet7app I Browse...
[©] GDB Hardware Debugging
[©]GDB OpenOCD Debugging
[©] GDB SEGGER J-Link Debugging
[c"] GDB Simulator Debugging (RH850) Variables... Search Project... Browse...
1 Java Applet
[71 Java Application
i Launch Group Build Configuration: |Use Active v
E Remote Java Application

Project:

C/C++ Application:

I Debug/azure_ck rabm5_v2_ethernet_app.elf I

Build (if required) before launching

o Enable auto build Disable auto build
[€"] Renesas GDB Hardware Debugging o i o) .
[2zure_ck_rabmb,v2_ethemet_app.elf] (®) Use workspace settings Configure Workspace Settings...
[€7] Renesas Simulator Debugging (RX, RL7¢
< >
Filter matched 14 of 18 items ST Apply

@ Close

Figure 37. Start Debug

Q N - 2zure_ck_rabm5_v2_ethernet_app/ra/fsp/src/bsp/cmsis/Device/RENESAS/Source/startup.c - e studio

File Edit Source Refactor Navigate rch Project Renesas Views Run Renesas Al Window Help

|®~-& -~ Bu|mimee.o|iPSR H- Q- ik BS Q (&
45 Debug X = \|Resume O] |12 startup.c X | [¢] Sensor Threa.. [usr_configh [n sample_configh =, =g

v [£7] azure_ck_rabm5_v2_ethernet_app.elf [Renesas GDB 4 ©0e562c4 SystemInit(); ~

Py) 5
v o azureickiraﬁm57\/.27ethernet7app.elf [1] [cores: | c /% Call user application. */
~ f Thread #1 1 (single core) [core: 0] (Suspende 7 BoB562ca main();
= Reset_Handler() at startup.c:64 0x562c4 8
4 arm-none-eabi-gdb (12.1) 9 008562ce © while (1)
s Renesas GDB server (Host) e ..
1 /* Infinite Loop. */
2
3 ¥
4
76 ® * Default exception handler.[]
78 - void Default_Handler (void)
79
80 * /** A error has occurred. The user will need to investiga
84 000562c0 BSP_CFG_HANDLE_UNRECOVERABLE_ERROR (@) ;
85 }
86
87 /* Main stack */
88 static uint8_t g_main_stack[BSP_CFG_STACK_MAIN_BYTES + BSP_TZ
89 BSP_PLACE_IN_SECTION(BSP_SECTION_STACK);
20
91 /% Haan */ v
< >
Figure 38. Resume the Debug
R11ANO750EU0130 Rev.1.30 Page 40 of 52

Jul.01.25 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

5. To view output, you have to use a serial terminal like tera term. To know your COM port, on the host PC,
open the Windows Device Manager. Expand Ports (COM & LPT), locate JLink CDC UART Port
(COMxx), and note down the COM port number for reference in the next step.

Note: JLink CDC UART drivers are required to communicate between the CK-RA6MS5 v2 board and the
terminal application on the host PC.

M Device Manager — O X
File Action View Help
&= @ HF
v o L184 ~
Iy Audio inputs and outputs
ﬁ Batteries
ﬂ Bluetooth
® Cameras
4 Computer

== Disk drives

E# Display adapters

; Firmware

¢ Human Interface Devices

— Keyboards

1 Memory technology devices

@ Mice and other pointing devices

[Monitors

ﬁ Network adapters

E? Other devices

~ & Ports (COM 8(LPT)

i ECP Printer Port (LPT1)
ﬁ Intel(R) Active Management Technology - SOL (COM4)
i JLink CDC UART Port (COM15)
ﬁ Standard Serial over Bluetooth link (COM®)
? Standard Serial over Bluetooth link (COM7)
E Standard Serial over Bluetooth link (COMS)
ﬁ Standard Serial over Bluetooth link (COM9)
i USB Serial Port (COM11)

—
= Drint miioniac

Figure 39. JLink CDC UART in Windows Device Manager

6. Open Tera Term, select New connection, select Serial, and for the port, enter COMxx: JLink CDC
UART Port (COMxx) and click OK.
Note: Please use Tera Term version 4.99 to ensure the application functions correctly.

Tera Term: New connection

OTCPHP myhost.example.com

History
Telnet
SSH
Other

® Serial Port: COMI15: JLink CDC UART Port (COM15) ~ v

Cancel Help

Figure 40. Selecting the UART Port on Tera Term

R11AN0750EU0130 Rev.1.30 Page 41 of 52
Jul.01.25 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

FIlE | Tera Term: Serial port setup and connection X

Port: COM15 v :
- New setting
Speed: 115200
Data: 8 bit v et
Parity: none v
Stop bits: 1 bit Help
Flow control: none
Transmit delay ~

0 msecichar 0 mseciline

Figure 41. Select 115200 on the Speed Pulildown

7. Using the setup menu pull-down, select Serial port... and ensure that the speed is set to 115200, shown
as follows.

8. Complete the connection. The Configuration CLI menu will be displayed on the console, shown as
follows.
Note: Please reset the board by pressing the S1 user switch if the menu is not displayed.

T COM15 - Tera Term VT — O K

File Edit Setup Control Window Help

> Select from the options in the menu bhelow:

ENU

1. Get FSP version
2. Data flash

3. Get UUID

4. Start Application
5. Help

> Enter {(1-5> to select options

Figure 42. Main Menu

9. Here, you can select options from the menu by pressing keys 1 to 5. Press the spacebar to go to the
previous menu, FSP version, and UUID details as follows.

File Edit Setup Control Window Help

. GET FSP VERSION
6.0.8

> Press space bar to return to MEMU

Figure 43. FSP Version Information

R11AN0750EU0130 Rev.1.30 Page 42 of 52
Jul.01.25 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

T COMA15 - Tera Term VT — O X

File Edit Setup Control Window Help

GET UUID

RA MCU 128-bit Unique ID <hex> = 2d

> Press space bar to return to MENU

Figure 44. Getting Board UUID Information

3.12 Storing Device Certificate, Host Name, Device ID
Please reset the board by pressing the S1 user switch if the menu is not displayed.

T COM15 - Tera Term VT — O X

File Edit Setup Control Window Help

> Select from the options in the menu below:

1. Get FSP version
Data flash

Get UUID

Start Application
Help

> Enter (1-5)> to select options

Figure 45. Main Menu

1. Press 2 on the Main Menu to display Data Flash-related commands as shown in the following
screenshots. This sub-menu has commands to store, read, and validate the data.

T COM15 - Tera Term VT — O X

File Edit Setup Control Window Help

> Select from the options in the menu below:
2. DATA FLASH

a)> Info

b> Urite Certificate

c) WUrite Private Key

d> UWrite MQTIT Broker end point

e? Urite IOT Thing name

f> Read Flash

g)> Check credentials stored in flash memory
h> Help

> Enter (a — h) to select options <(or press space bar to return to main MENU>

Figure 46. Data Flash Menu

R11AN0750EU0130 Rev.1.30 Page 43 of 52
Jul.01.25 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

2. Press b for Write Certificate.

T COM15 - Tera Term VT — O X

File Edit Setup Control Window Help

DATA FLASH WRITE CERTIFICATE

Select the file to write data in data flash

Figure 47. Select the File to Write Data in the Data Flash

3. Goto Tera Term > File > Send file

W COMT15 - Tera Term VT = O X
Edit Setup Control Window Help

New connection... Alt+N
Duplicate session Alt+D

P & ta in data flash
Cygwin connection Alt+G

Log...

Send file...

Transfer >

Change directory...

Replay Log...
TTY Record
TTY Replay
Print... Alt+P
Disconnect Alt+
Exit Alt+Q
Exit All
Figure 48. Send File Option in File Menu
R11ANO750EUO0130 Rev.1.30 Page 44 of 52

Jul.01.25 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

4. Browse to the folder where X509 certificates are generated as part of section 3.5, Certificate Creation
Process. Select cert.pem. Press Open.

0

[DATA FLASH WRITE CERTIFICATE
Select the file to write data in data flash

T Tera Term: Send file

Lookgn. @ > @

Name Date modified Type a2
gl cert.der 11/23/2023 2:04 PM Security Certifi
1| | cert.pem | 11/23/2023 2:04 PM PEM File
pl privkey.der 11/23/.] Security Certifi
privkey.pem 11723/ H v PEM File

[&f sample_device_identity.c 11/23/2023 2: C File v
< >

File name:
Files of type: AI(") v Cancel
Help
Option
D Binary

Figure 49. Browse, Select, and Open the File to be Written

5. Status of Device Certificate Downloading is as follows.

T COM15 - Tera Term VT — O K

File Edit Setup Control Window Help

DATA FLASH WRITE CERTIFICATE
Select the file to write data in data flash

Writing flash data is successful

> Press space bar to return to MENU

Figure 50. Status of File Writing Process

R11AN0750EU0130 Rev.1.30 Page 45 of 52
Jul.01.25 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

6. To store the device’s private key, go back to the data flash menu by pressing the space bar key. Press ¢
in the Data Flash menu, go to Tera Term > File > Send file, select file privkey.pem from the folder
where you have generated certificates.

7. To store the MQTT Broker endpoint, that is, Host Name, first copy Host Name without double quotes,
then press d in the Data Flash menu, go to Tera Term > Edit > Paste <CR>; you will get the copied
Host Name in the clipboard. Please verify and confirm it, and press OK.

Tl COM15 - Tera Term VT - O X
File Setup Control Window Help
DATA = AtteC - B
Ty S press enter to save credentials in flash
Paste Alt+V
Alt+R B ' Tera Term: Clipboard confirmation X
Clear screen

e RACLOUDHUB.azure-devices.net |

Cancel selection

Cancel

Select screen

Select all

Figure 51. Input MQTT Broker Endpoint, aka Host Name

8. To store loT Thing Name, that is, DEVICE ID, first copy the DEVICE ID created without double quotes,
press e in the Data Flash menu, and follow the procedure in step 5.

A COM15 - Tera Term VT - O X
Fl\eSetup Control Window Help

—opy table
press enter to save credentials in flash

Paste Alt+V

Clear screen

Clear buffer CK_RAGM5_X509

Cancel selection

B! Tera Term: Clipboard confirmation X

Select screen Cancel

Select all

Figure 52. Input Device ID, aka loT Thing name

9. To verify the data stored in Data Flash, press f in the Data Flash menu, scroll down to see the data.

T COM15 - Tera Term VT — O X

File Edit Setup Control Window Help

DATA FLASH READ

ZURE certificate read successful

————END CERTIFICATE————— osUHvQf UgdUktsU+pedzUtWEhSM2 jTJeLye4Qzn

RE private key read is successful

————END RSA PRIUATE KEY p2U4iy+uyD?DJBACE6USSeBdWQ==st6ivUbE

end point read successful
ACLOUDHUB.azure—devices.net

thing name read successful

> Press space bhar to return to MENU

Figure 53. Scroll Down and Verify the Data Stored in the Data Flash

R11AN0750EU0130 Rev.1.30 Page 46 of 52
Jul.01.25 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

10. To check the credentials stored in Data Flash, press g.

11. Press the spacebar to go to the previous menu or main menu.
12. Press 4 to start the application from the main menu.

13. Serial terminal output on successful start of application.

File Edit Setup Control Window Help

CHECK CREDENTIALS STORED IN DATA FLASH

Certificate saved in data flash is verified and successful
Private key saved in data flash is verified and successful
MQTT end point saved in data flash iz verified and successful

I0T thing name saved in data flash is verified and successful

Starting AZURE Ethernet cloud Application....

3o -Snf e -Sef e -Sef e PP - - - - - - JoE-JoE-JoE- oo oo oo oo oo oo oo o oS-SS -3 Sef oo oo e
[Renesas F8P Application Project for Azure IoT C—SDK *
had Application Project Uersion 1.8 *
had Flex Software Pack Uersion 6.0.8 *
Eadaiaiaiaiaieiataiadaioioioiaioisisiatataiatatstatotateiadeiotaioiaioisiaiataioiaiaiotaiaistoiotoioiotoisboiastatotaioiatatotatatateiotsiokatieisioistatiotaiotatal
Refer to Application Mote for more details on Application Project and

FSF User’s Manual for more information about Azure IoT C-SDK

Thiz Application project demonstrates the I0T functionalities of Azure I0T SDK Client
using Azure RTOS and Met® Duo with Ethernet Interface Module running on Renesas RA MCU's
3o -Snf e -Sef e -Sef e PP - - - - - - JoE-JoE-JoE- oo oo oo oo oo oo oo o oS-SS -3 Sef oo oo e

HAL Initialization

Figure 54. Device Connected to Azure loT Hub

14. Sensor data output on serial terminal.

0B1283 sensor setup success
[ZMOD4510 sensor setup success
Periodic MSG Sending TIMER Start B ¢
HS 3801

TEMP = 33.959999
HUMIDITY = 34.888001

ZMOD4418

EC0Z = B.086080
ETOH 0.0800000
TVoC B.8808080

ICP28186
TEMP = 33.483647
ChPressure = 100531 .921875

Figure 55. Sensor Data on Serial Terminal

3.13 Send Device to Cloud Message

With Azure loT Explorer, you can view the flow of telemetry from your device to the Cloud. To view telemetry
in Azure loT Explorer:

1. InloT Explorer, select your created IoT Hub, and click on View Devices in this hub, click on the created
device (Device ID). Finally, select the Telemetry (Home > Your Host Name > Devices >
CK_RAG6M5_X509 >Telemetry). Confirm that the use built-in event hub is set to Yes.

Note: As shown below, we use Host Name as RVCTESTINGNEW.

2. Select Start.

3. View the telemetry as the device sends messages to the Cloud.

R11AN0750EU0130 Rev.1.30 Page 47 of 52
Jul.01.25 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

Azure loT Explorer (preview)

Home > RVCTESTINGNEW > Devices > CK_RA6M5_X509 > Telemetry

= B Stop T Clear events {} Simulate a device

B Device identity . .
Telemetry You can monitor telemetry that the device sends to the loT hub

3 Device twin
Consumer group ©

[Telemetry

< Direct method

v,

Show system properties
=1 Cloud-to-device message D v prop
@ Receiving events...

& Module identities

-

Mon Jun 16 2025 11:37:53 GMT+0700 (Indochina Time):

&’ 10T Plug and Play components

"enqueuedTime™: "Mon Jun 16 2025 11:37: 0700 (Indechina Time)™

Figure 56. Device Telemetry Details

3.14 Send Cloud-to-Device Message
To send a Cloud-to-device message in Azure loT Explorer:
1. InloT Explorer, select Cloud-to-device message.
Enter the message in the Message body = "LED", Key = LED, Value = Given in Table

2.
3. Check Add timestamp to the message body.
4. Select Send message to device.

LED On Board Value

LED2 (Tri-Color LED) TC_GREEN _ON, TC_RED ON, TC_BLUE_ON
TC_GREEN_OFF, TC_RED_OFF, TC_BLUE_OFF

LED4 BLUE BLUE_ON, BLUE_OFF

P Azure loT Explorer (preview) - x

File Edit View Window Help
Azure loT Explorer (preview) Settings

X

Home > RVCTESTINGNEW > Devices > CK_RA6M5_X509 > Cloud-to-device message @ successfully send message
'6/16/2025, 11:49:28 AM - LED'
to device 'CK_RAGMS5_X509.

= = Send message to device | 6
Q0 Notification center D

B Device identity 11:49:29 AM

Cloud-to-device message You can send messages to a device in your loT Hub. Messages have both a body and optional propertie:

5 Device twin
Message body ©

[Telemetry e | 2

>¢ Direct method

= Cloud-to-device message 1 =
I Add timestamp to message body 5

& Module identities

” A\ Properties ©
&7 IoT Plug and Play components
@ Add custom property @ Add system property

Key Value ~ 4

ILED | 3 ‘ |'C_GREE\I_3V\ | ‘

Figure 57. Device Telemetry Details

R11AN0750EU0130 Rev.1.30 Page 48 of 52
Jul.01.25 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

5. Inthe terminal window, you can see that the message is received by the loT Device.

0B1203

spo2 val = 0
heart _rate Val
breathing rate

r p2p = 0.000000

HS36001
TEMP = 31.549999
HUMIDITY = 45.750000

ZM0D4410

EC02 = 416.145172

ETOH = 0.032433

TvVOC 0.060975

Topic Received from Cloud TC_GREEN_ON

3CGREEN LED ON

Figure 58. Serial Terminal Output

4. Importing, Building, and Loading the Project

For a quick validation of this application project, import and build the project. The following steps show
how to import, build, and download the project.

Note: To run the application project successfully and to communicate with the Cloud, follow the instructions
forsetting up the Cloud interface as described in section 3.3, which details making changes to the
credentials and creating your own cloud devices, running and validating the application.

4.1 Importing

The application project bundled as part of this app note can be imported into e? studio using the instructions
provided in the RA FSP User’s Manual. See Section Starting Development > e? studio ISDE User Guide >
Importing an Existing Project into e? studio ISDE.

4.2 Building the Latest Executable Binary

Upon successfully importing and/or modifying the project into the e? studio IDE, follow the instructions
provided in the RA FSP User’s Manual to build an executable binary/hex/mot/elf file. See Section
Starting Development > e? studio ISDE User Guide > Tutorial: Your First RA MCU Project > Build the Blinky
Project.

4.3 Loading the Executable Binary into the Target MCU
The executable file may be programmed into the target MCU through any one of three means.

4.3.1 Using a Debugging Interface with e? studio

Instructions on how to program the executable binary are found in the latest RA FSP User Manual
(https://www.renesas.com/us/en/software-tool/flexible-software-package-fsp). See sectionStarting
Development > e? studio ISDE User Guide > Tutorial: Your First RA MCU Project > Debug theBlinky Project.

This is the preferred method for programming as it allows for additional debugging functionality
available through the on-chip debugger.

4.3.2 Using J-Link Tools

SEGGER J-Link Tools, such as J-Flash, J-Flash Lite, and J-Link Commander, can be used to
program the executable binary into the target MCU. Refer to User Manuals UM08001 and UM08003
on www.segger.com.

4.3.3 Using Renesas Flash Programmer

The Renesas Flash Programmer (https://www.renesas.com/us/en/software-tool/renesas-flash-
programmer-programming-gui) provides usable and functional support for programming the on-chip

R11AN0750EU0130 Rev.1.30 Page 49 of 52
Jul.01.25 RENESAS

https://www.renesas.com/us/en/software-tool/flexible-software-package-fsp
http://www.segger.com/
https://www.renesas.com/us/en/software-tool/renesas-flash-programmer-programming-gui
https://www.renesas.com/us/en/software-tool/renesas-flash-programmer-programming-gui

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

flash memory of Renesas microcontrollers in each phase of development and mass production. The
software supports all RA MCUs, and the software user’'s manual is available on renesas.com.

5.

6.

7.

Next Steps and References

— Refer to the following GitHub repository for various FSP modules example projects and application
projects (https://github.com/renesas/ra-fsp-examples/)

— Refer to Establishing and Protecting Device Identity using SCE7 and Security MPU (R11AN0449) on
renesas.com

— Refer to Securing Data at Rest Utilizing the RA Security MPU (R11AN0416) on renesas.com

— Refer to the Azure GitHub link for more details on Azure SDK for Embedded C
(https://github.com/Azure/azure-sdk-for-c)

MQTT/TLS References

— FSP v6.0.0 User’'s Manual (Flexible Software Package (FSP) | Renesas).
— Azure loT documentation (https://docs.microsoft.com/en-us/azure/iot-hub/)

Known Issues and Limitations

Occasional outages in Cloud connectivity may be noticed during the demonstration due to changes in
the Cloud server. Contact the Renesas support team for questions.

Currently, there is no support for direct device-to-device communications with Azure loT Hub.

Device will reconnect after 65 minutes due to the SAS token refresh. Currently, it is under SDK control.
Usersneed to know this when developing the application.

When running debug on e? studio, if the application is rerun multiple times, it might randomly occur an
issue with i2c communication of the OB1203 sensor. Users need to reconnect the micro-USB cable
(J10) and USB-C cable (J28) to reset the OB1203 sensor and run the application again.

R11AN0750EU0130 Rev.1.30 Page 50 of 52
Jul.01.25 RENESAS

http://www.renesas.com/
https://github.com/renesas/ra-fsp-examples/
https://www.renesas.com/us/en
http://www.renesas.com/
https://github.com/Azure/azure-sdk-for-c
https://www.renesas.com/us/en/software-tool/flexible-software-package-fsp
https://docs.microsoft.com/en-us/azure/iot-hub/

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

Website and Support

Visit the following vanity URLSs to learn about key elements of the RA family, download components and
related documentation, and get support.

CK-RAB6MS v2 Kit Information renesas.com/ra/ck-rabms
RA Cloud Solutions renesas.com/cloudsolutions
RA Product Information renesas.com/ra
RA Product Support Forum renesas.com/ra/forum
RA Flexible Software Package renesas.com/FSP
Renesas Support renesas.com/support
R11AN0O750EU0130 Rev.1.30 Page 51 of 52

Jul.01.25 RENESAS

http://www.renesas.com/ra/ck-ra6m5
http://www.renesas.com/cloudsolutions
http://www.renesas.com/ra
https://www.renesas.com/ra/forum
http://www.renesas.com/FSP
https://www.renesas.com/support

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

Revision History

Description
Rev. Date Page Summary
1.00 Mar.22.23 — Initial release
1.01 May.05.23 Corrected the document number in the document footer
1.10 Dec.22.23 Updated to FSP 5.0.0
1.20 Sept.09.24 Updated to FSP 5.3.0
1.30 Jul.01.25 Updated to FSP 6.0.0

R11ANO750EU0130 Rev.1.30

Jul.01.25

Re Page 52 of 52
RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an 1/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or /0
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between Vi
(Max.) and Vin (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between ViL (Max.) and Vi (Min.).
7. Pronhibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.

Notice

1.

10.

1.

12.

13.
14.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’'s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information

TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology, the most up-to-date
Koto-ku, Tokyo 135-0061, Japan version of a document, or your nearest sales office, please visit:
www.renesas.com www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property
of their respective owners.

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Introduction to Cloud Connectivity
	1.1 Cloud Connectivity Overview
	1.2 Microsoft Azure IoT Solution
	1.2.1 Overview
	1.2.2 IoT Hub Device Provisioning Service
	1.2.2.1 Azure IoT Hub and IoT Hub Device Provisioning Service (DPS)
	(1) Device Provisioning Service
	(2) Embedded C SDK

	1.2.3 Authentication Methods
	1.2.3.1 X.509
	1.2.3.2 Per-Device Key Authentication

	1.3 MQTT Protocol Overview
	1.4 TLS Protocol Overview
	1.4.1 Device Certificates and Keys
	1.4.2 Device Security Recommendations

	2. RA FSP MQTT/TLS Cloud Solution
	2.1 MQTT Client Module Introduction
	2.1.1 Design Considerations
	2.1.2 Supported Features

	2.2 TLS Session Module Introduction
	2.2.1 Design Considerations
	2.2.2 Supported Features

	2.3 Azure IoT Device SDK Module Introduction
	2.3.1 Design Considerations
	2.3.2 Supported Features

	3. MQTT/TLS Application Example
	3.1 Application Overview
	3.2 Creating the Application Project using the FSP Configurator
	3.3 Install Azure CLI
	3.4 Create an IoT Hub
	3.5 Certificate Creation Process
	3.6 View Device Properties
	3.7 Set IoT Hub
	3.8 Register an IoT Hub Device
	3.9 Prepare the Device
	3.10 Building and Running the Application
	3.11 Download and Run the Project
	3.12 Storing Device Certificate, Host Name, Device ID
	3.13 Send Device to Cloud Message
	3.14 Send Cloud-to-Device Message

	4. Importing, Building, and Loading the Project
	4.1 Importing
	4.2 Building the Latest Executable Binary
	4.3 Loading the Executable Binary into the Target MCU
	4.3.1 Using a Debugging Interface with e2 studio
	4.3.2 Using J-Link Tools
	4.3.3 Using Renesas Flash Programmer

	5. Next Steps and References
	6. MQTT/TLS References
	7. Known Issues and Limitations
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

