

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

Introduction

This application note describes IoT Cloud connectivity solutions in general and introduces you briefly to the IoT Cloud solution provider, Microsoft Azure. It covers the RA FSP MQTT/TLS module along with the Azure IoT SDK for embedded C.

This application project is built with the integrated "Azure IoT SDK for Embedded C" package, which allows small embedded (IoT) devices like Renesas RA family of MCUs, RA6M3/RA6M4/RA6M5, to communicate with Azure IoT services.

The application example uses Azure IoT DPS (Device Provisioning Service) to provision and register the IoT device, and send and receive data to and from the development kit.

This application note enables you to effectively use the RA FSP modules in your own design with the FSP-integrated Azure IoT SDK. Upon completion of this guide, you will be able to add the FSP modules to your own design, configure it correctly with Azure IoT SDK for the target application, and write code using the included application example code as a reference and efficient starting point. References to more detailed API descriptions and sample code that demonstrate advanced usage of FSP modules are available in the RA FSP Software Package (FSP) User's Manual (see Next Steps section) and serve as valuable resources in creating more complex designs. Explaining the underlying operation of the Azure IoT SDK for Embedded C is beyond the scope of this document. Users should refer to the documentation from Microsoft for education ontopics related to the Azure IoT SDK section: https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-sdks

In this release, the CK-RA6M5 v2 kit is used for the application project.

Required Resources

To build and run the MQTT/TLS application example, you need:

Development Tools and Software

- e² studio version: v2025-04.1.
- RA FSP Software Package (FSP) v6.0.0
- SEGGER J-Link® RTT viewer version: 8.44a
- Azure IoT Explorer 0.15.12.0 or later (PC tool for validating the Cloud side). Download Link: Releases · Azure/azure-iot-explorer (github.com)
- Azure CLI 2.44 or later (Azure command-line interface is a set of commands used to create and manage Azure resources) Download Link: How to install the Azure CLI | Microsoft Learn
- Access to Azure Cloud Connectivity Portal (https://portal.azure.com/#home) to create IoT Devices (If you are new to Azure IoT)

Hardware

- Renesas CK-RA6M5 v2 kit (<u>CK-RA6M5 Cloud Kit Based on RA6M5 MCU Group | Renesas</u>)
- PC running Windows[®] 10/11, Tera Term console or similar application, and an installed web browser (Google Chrome, Internet Explorer, Microsoft Edge, Mozilla Firefox, or Safari).
- Micro USB cable
- USB-C cable
- Ethernet cable (CAT5/6)
- Router with an Ethernet port or Ethernet switch to connect to the router for Internet connectivity.

Prerequisites and Intended Audience

This application note assumes that you have some experience with the Renesas e² studio ISDE and RA Flexible Software Package (FSP). Before you perform the procedures in this application note, follow the procedure in the *FSP User Manual* to build and run the Blinky project. Doing so enables you to become familiar with the e² studio and the FSP and also validates that the debug connection to your board functions

RENESAS

properly. In addition, this application note assumes you have some knowledge of MQTT/TLS and its communication protocols.

The intended audience is users who want to connect to Azure Cloud using the Azure IoT SDK forEmbedded C on the Renesas RA/RA6 MCU Series.

Note: If you are a first-time user of e² studio and FSP, we highly recommend you install e² studio and FSP on your system in order to run the Blinky Project and to get familiar with the e² studio and FSP development environment before proceeding to the next sections.

Note: If you are new to Azure Internet of Things, we recommend you get started with Introduction to the AzureIoT https://learn.microsoft.com/en-us/azure/iot/iot-introduction

Prerequisites

- Access to online documentation available for Azure in the Cloud Connectivity References section.
- Access to the latest documentation for the identified Renesas Flexible Software Package.
- Prior knowledge of operating the e² studio and the built-in (or standalone) RA Configurator.
- Access to associated hardware documentation, such as User Manuals and Schematics.

Using this Application Note

Section 1 of this document covers the General Overview of the Cloud Connectivity, Azure IoT Solution using IoT Central, Azure DPS, MQTT, and TLS Protocols, and Device certificates and Keys used in the Cloud Connectivity.

Section 2 covers the modules provided by RA FSP to establish connectivity to Cloud service providers and the features supported by the module.

Section 3 covers the architecture of the reference application project, an overview of the software components included, and step-by-step guidelines for recreation using the FSP configurator. It also covers setting up the Azure IoT Hub, creating the self-signed certificates, and storing the certificates in the flash using the application CLI.

Section 4 covers importing, building, and running the Application project.

Note: We recommend that you operate with your own Microsoft Azure Cloud credentials and use your created Cloud configurations to run the application. The default sample configuration detailed in this project is for reference only and may have access issues to Azure since the application is communicating with a test account.

Note: For a quick validation using the provided application project, you can skip sections 1 to 2 and go to sections 3 and 4 for instructions on setting up the Azure IoT Hub, creating the self-signed certificates, storing the certificates in the flash using the application CLI, and running the application project on the CK-RA6M5 v2 board.

Contents

1.	Introduction to Cloud Connectivity	5
1.1	Cloud Connectivity Overview	5
1.2	Microsoft Azure IoT Solution	6
1.2.1	1 Overview	6
1.2.2	2 IoT Hub Device Provisioning Service	6
1.2.3	3 Authentication Methods	7
1.3	MQTT Protocol Overview	7
1.4	TLS Protocol Overview	8
1.4.1	1 Device Certificates and Keys	g
1.4.2	2 Device Security Recommendations	g
2.	RA FSP MQTT/TLS Cloud Solution	10
2.1	MQTT Client Module Introduction	10
2.1.1	1 Design Considerations	10
2.1.2	2 Supported Features	10
2.2	TLS Session Module Introduction	10
2.2.1	1 Design Considerations	10
2.2.2	2 Supported Features	11
2.3	Azure IoT Device SDK Module Introduction	11
2.3.1	1 Design Considerations	11
2.3.2	2 Supported Features	11
3.	MQTT/TLS Application Example	12
3.1	Application Overview	12
3.2	Creating the Application Project using the FSP Configurator	17
3.3	Install Azure CLI	26
3.4	Create an IoT Hub	26
3.5	Certificate Creation Process	29
3.6	View Device Properties	33
3.7	Set IoT Hub	33
3.8	Register an IoT Hub Device	36
3.9	Prepare the Device	38
3.10) Building and Running the Application	39
3.11	Download and Run the Project	40
3.12	2 Storing Device Certificate, Host Name, Device ID	43
3.13	3 Send Device to Cloud Message	47
3.14	Send Cloud-to-Device Message	48
4.	Importing, Building, and Loading the Project	49
4.1	Importing	49
4.2	Building the Latest Executable Binary	49

4.3	Loading the Executable Binary into the Target MCU	49
4.3.1	Using a Debugging Interface with e² studio	49
4.3.2	! Using J-Link Tools	49
4.3.3	Using Renesas Flash Programmer	49
5.	Next Steps and References	50
6.	MQTT/TLS References	50
7.	Known Issues and Limitations	50
Revi	ision History	52

1. Introduction to Cloud Connectivity

1.1 Cloud Connectivity Overview

Internet of Things (IoT) is a sprawling set of technologies described as connecting everyday objects, like sensors or smartphones, to the World Wide Web. IoT devices are intelligently linked together to enable newforms of communication between things and people, and among things.

These devices, or things, connect to the network. Using sensors, they provide the information they gather from the environment or allow other systems to reach out and act on the world through actuators. In the process, IoT devices generate massive amounts of data, and Cloud computing provides a pathway, enabling data to travel to its destination.

The IoT Cloud Connectivity Solution includes the following major components:

- 1. Devices or Sensors
- 2. Gateway
- 3. IoT Cloud services
- 4. End-user application/system

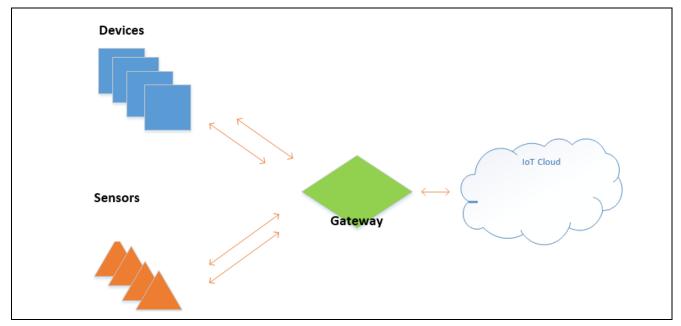


Figure 1. IoT Cloud Connectivity Architecture

Devices or Sensors

A device includes hardware and software that interacts directly with the world. Devices connect to a network to communicate with each other or to centralized applications. Devices may connect to the Internet either directly or indirectly.

Gateway

A gateway enables devices that are not directly connected to the Internet to reach Cloud services. The data from each device is sent to the Cloud platform, where it is processed and combined with data from other devices, and potentially with other business-transactional data. Most of the common communication gateways support one or more communication technologies such as Wi-Fi, Ethernet, or Cellular to connect to the IoT Cloud service provider.

IoT Cloud

Many IoT devices produce lots of data. You need an efficient, scalable, affordable way to manage those devices, handle all that information, and make it work for you. When it comes to storing, processing, and analyzing data, especially big data, it is hard to surpass the Cloud.

1.2 Microsoft Azure IoT Solution

1.2.1 Overview

Microsoft's end-to-end IoT platform is a complete IoT offering so that enterprises can build and realize value from IoT solutions quickly and efficiently. Azure IoT Central solutions are used with backend support from the Azure IoT Hub Device Provisioning Service.

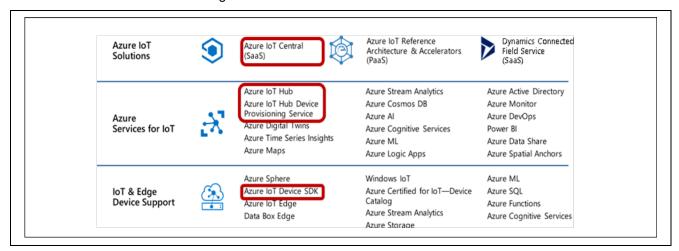


Figure 2. Microsoft Azure IoT Cloud Solution

1.2.2 IoT Hub Device Provisioning Service

1.2.2.1 Azure IoT Hub and IoT Hub Device Provisioning Service (DPS)

IoT Hub provides built-in support for the MQTT v3.1.1 protocol. See the following webpage for more understanding of the IoT Hub and Device Provisioning Services (DPS): https://docs.microsoft.com/en-us/azure/iot-dps/

(1) Device Provisioning Service

A high-level sequence of events to connect a Device to the IoT Hub is as follows:

- 1. After the device is manufactured, the device enrollment information is added to the DPS. This is the only manual step in the process.
- 2. At some point afterward, which could be a day or several months, the device goes online and connects to DPS to find its IoT solution home.
- 3. DPS and the device go through an attestation handshake using the device enrollment information. DPS proves the device's identity.
- 4. DPS registers the device to the IoT hub and populates the initial desired device state.
- 5. IoT hub returns the connection info for the device.
- 6. DPS gives the device its IoT Hub connection information.
- 7. The device now establishes a connection with IoT Hub and retrieves its initial configuration from IoT Hub, and makes any changes/updates, as needed.
- 8. The device starts sending telemetry to the IoT Hub.

(2) Embedded C SDK

The Embedded C SDK, the newer addition to the Azure SDKs family, was designed to allow embedded IoT devices to leverage Azure services, like device to Cloud telemetry, Cloud to device messages, direct methods, device twin, device provisioning, and IoT Plug and Play, all while maintaining a minimal footprint.

It allows full control over memory allocation and the flexibility to bring your own MQTT client, TLS, and Socket layers.

Written in C, this version of the SDK is optimized to be used on small and embedded devices with limited capabilities and resources.

The Azure IoT SDK is open source and is published on GitHub (https://github.com/Azure/azure-sdk-for-c). This is also distributed with FSP version 6.0.0 and above.

1.2.3 Authentication Methods

Security is a critical concern when deploying and managing IoT devices. IoT Hub offers the security features described in the following sections.

1.2.3.1 X.509

The communication path between devices and Azure IoT Hub, or between gateways and Azure IoT Hub, is secured using the industry-standard Transport Layer Security (TLS) with Azure IoT Hub, authenticated using the X.509 standard.

To protect devices from unsolicited inbound connections, Azure IoT Hub does not open any connection to the device. The device initiates all connections.

1.2.3.2 Per-Device Key Authentication

Figure 3 shows authentication in the IoT Hub using security tokens.

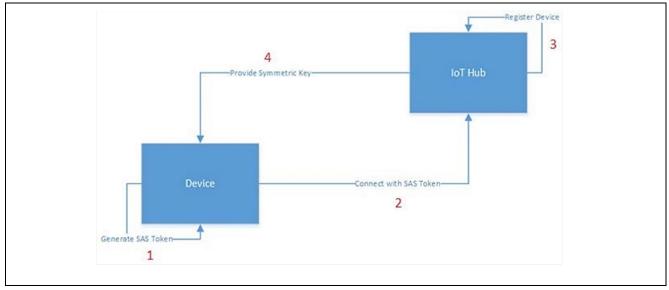


Figure 3. Authentication using Security Tokens

- 1. The device prepares a shared access signature (SAS) token using the device endpoint, device id, and primary key (generated as part of the device addition to the IoT Hub).
- 2. When connecting to the IoT Hub, the device presents the SAS token as the password in the MQTT CONNECT message. The username content is the combination of the device endpoint and device name, along with the additional Azure-defined string.
- 3. The IoT Hub verifies the SAS token and registers the device, and a connection is established.
- 4. IoT Hub provides a Symmetric key for Data encryption.

 Note: The connection is closed when the SAS token expires.

1.3 MQTT Protocol Overview

MQTT stands for **Message Queuing Telemetry Transport**. MQTT is a client-server publish-subscribe messaging transport protocol. It is an extremely lightweight, open, simple messaging protocol, designed forconstrained devices, as well as low-bandwidth, high-latency, or unreliable networks. These characteristics make it ideal for use in many situations, including constrained environments, such as communication in machine-to-machine (M2M) and IoT contexts, where a small code footprint is required, and/or network bandwidth is at a premium.

An MQTT client can publish information to other clients through a broker. A client, if interested in a topic, can subscribe to the topic through the broker. A broker is responsible for authentication and authorization of clients, as well as delivering published messages to any of its clients who subscribe to the topic. In this publisher/subscriber model, multiple clients may publish data on the same topic. A client will receive the messages published if the client subscribes to the same topic.

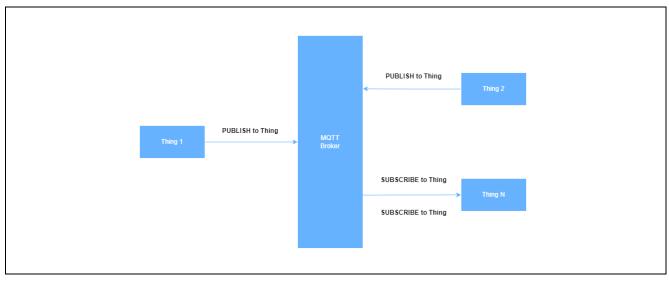


Figure 4. MQTT Client Publish/Subscribe Model

In the Pub/Sub model used by MQTT, there is no direct connection between a publisher and the subscriber. To handle the challenges of a Pub/Sub system, MQTT generally uses quality of service (QoS) levels.

There are three QoS levels in MQTT:

- At most once (0)
- At least once (1)
- Exactly once (2)

At most once (0)

A message will not be acknowledged by the receiver or stored and redelivered by the sender.

At least once (1)

It is guaranteed that a message will be delivered at least once to the receiver. But the message can also bedelivered more than once. The sender will store the message until it gets an acknowledgment in the form of a PUBACK command message from the receiver.

Exactly once (2)

It guarantees that each message is received only once by the counterpart. It is the safest and the slowest QoS level.

1.4 TLS Protocol Overview

Transport Layer Security (TLS) protocol and its predecessor, Secure Sockets Layer (SSL), are cryptographic protocols that provide communications security over a computer network.

The TLS/ SSL protocol provides privacy and reliability between two communicating applications. It has the following basic properties:

Encryption: The messages exchanged between communicating applications are encrypted to ensure that the connection is private. A symmetric cryptography mechanism, such as AES (Advanced Encryption Standard) is used for data encryption.

Authentication: A mechanism to check the peer's identity using certificates.

Integrity: A mechanism to detect message tampering and forgery ensures that the connection is reliable. A Message Authentication Code (MAC), such as the Secure Hash Algorithm (SHA), ensures message integrity.

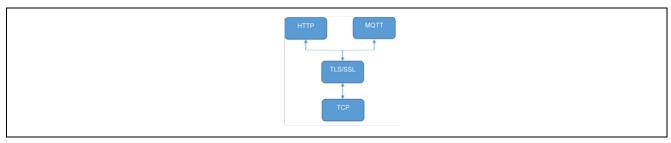


Figure 5. SSL/TLS Hierarchy

1.4.1 Device Certificates and Keys

Device certificates, public and private keys, and the ways they can be generated are discussed in this section.

Security is a critical concern when deploying and managing IoT devices. In general, each of the IoT devices needs an identity before they can communicate with the Cloud. Digital certificates are the most common method for authenticating a remote host in TLS. Essentially, a digital certificate is a document with specific formatting that provides identity information for a device.

TLS normally uses a format called X.509, a standard developed by the International Telecommunication Union (ITU), though other formats for certificates may apply if TLS hosts can agree on a format to use. X.509 defines a specific format for certificates and various encodings that can be used to produce a digital document. Most X.509 certificates used with TLS are encoded using a variant of ASN.1, which is another telecommunication standard. Within ASN.1 there are various digital encodings, but the most common encoding for TLS certificates is the Distinguished Encoding Rules (DER) standard. DER is a simplified subset of the ASN.1.

Though DER-formatted binary certificates are used in the actual TLS protocol, they may be generated and stored in a number of different encodings, with file extensions such as <code>.pem, .crt</code>, and <code>.p12</code>. The most common of the alternative certificate encodings is Privacy-Enhanced Mail (PEM). The PEM format is a base-64 encoded version of the DER encoding.

Depending on your application, you may generate your own certificates, be provided certificates by a manufacturer or government organization, or purchase certificates from a commercial certificate authority.

Loading Certificates onto your Device

To use a digital certificate in your NetX[™] Secure application, you must first convert your certificate into a binary DER format, and optionally convert the associated private key into a binary format, typically, a PKCS#1-formatted, DER-encoded RSA key. Once converted, it is up to you how to load the certificate and the private key onto the device. Possible options include using a flash-based file system or generating a C array from the data (using a tool such as xxd from Linux® with the -i option) and compiling the certificate and key into your application as constant data.

Once your certificate is loaded on the device, you can use the TLS API to associate your certificate with a TLS session.

1.4.2 Device Security Recommendations

The following security recommendations are not enforced by Cloud IoT Core, but will help you secure your devices and connections.

- The private key of the device should be kept secret.
- Use the latest version of TLS (v1.2 or above) when communicating with IoT Cloud and verify that the server certificate is valid using trusted root certificate authorities.
- Each device should have a unique public/private key pair. If multiple devices share a single key and one
 of those devices is compromised, an attacker could impersonate all the devices that have been
 configured with that one key.
- Keep the public key secure when registering it with Cloud IoT Core. If an attacker can tamper with the
 public key and trick the provisioner into swapping the public key and registering the wrong public key, the
 attacker will subsequently be able to authenticate on behalf of the device.
- The key pair is used to authenticate the device to Cloud IoT Core and should not be used for other purposes or protocols.

- Depending on the device's ability to store keys securely, key pairs should be rotated periodically. When practical, all keys should be discarded when the device is reset.
- If your device runs an operating system, make sure you have a way to securely update it. Android Things provides a service for secure updates. For devices that don't have an operating system, ensurethat you can securely update the device's software if security vulnerabilities are discovered after deployment.

2. RA FSP MQTT/TLS Cloud Solution

2.1 MQTT Client Module Introduction

The NetX Duo MQTT Client module provides high-level APIs for a Message Queuing Telemetry Transport (MQTT) protocol-based client. The MQTT protocol works on top of TCP/IP, and therefore, the MQTT client is implemented on top of NetX Duo IP and NetX Duo Packet pool. NetX Duo IP attaches itself to the appropriate link layer frameworks, such as Ethernet, Wi-Fi, or Cellular.

The NetX Duo MQTT client module can be used in normal or secure mode. In normal mode, the communication between the MQTT client and broker is not secure. In secure mode, the communication between the MQTT client and broker is secured using the TLS protocol.

2.1.1 Design Considerations

- By default, the MQTT client does not use TLS; communication is not secure between an MQTT client and broker.
- The RA FSP Azure RTOS NetX Duo IoT middleware module provides the NetX Duo TLS session block. It
 adds the Azure RTOS NetX Secure block. This block defines/controls the common properties of NetX
 Secure.

2.1.2 Supported Features

NetX Duo MQTT Client supports the following features:

- Compliant with OASIS MQTT version 3.1.1 Oct 29, 2014. The specification can be found at http://mqtt.org/.
- Provides an option to enable/disable TLS for secure communication using NetX Secure in FSP.
- Supports QoS and provides the ability to choose the levels that can be selected while publishing the message.
- Internally buffers and maintains the queue of received messages.
- Provides a mechanism to register a callback when a new message is received.
- Provides a mechanism to register a callback when the connection with the broker is terminated.

2.2 TLS Session Module Introduction

The NetX Duo TLS session module provides high-level APIs for the TLS protocol-based client. It uses services provided by the RA FSP Crypto Engine (SCE) to carry out hardware-accelerated encryption and decryption.

The NetX Duo TLS Session module is based on Azure RTOS NetX Secure, which implements the SecureSocket Layer (SSL) and its replacement, the TLS protocol, as described in RFC 2246 (version 1.0) and 5246(version 1.2). NetX Secure also includes routines for the basic X.509 (RFC 5280) format. NetX Secure is intended for applications using ThreadX RTOS in the project.

2.2.1 Design Considerations

- NetX Secure TLS performs only basic path validation on incoming server certificates.
 Once the basic path validation is complete, TLS then invokes the certificate verification callback supplied by the application.
- It is the responsibility of the application to perform any additional validation of the certificate.
 To help with the additional validation, NetX Secure provides X.509 routines for common validation operations, including DNS validation and Certificate Revocation List checking.
- Software-based cryptography is processor-intensive.
 NetX Secure software-based cryptographic routines have been optimized for performance, but depending on the capabilities of the target processor, performance may result in very long operations. When hardware-based cryptography is available, it should be used for optimal performance of the NetX secure TLS.

• Due to the nature of embedded devices, some applications may not have the resources to support the maximum TLS record size of 16 KB.

NetX Secure can handle 16 KB records on devices with sufficient resources.

2.2.2 Supported Features

- Support for RFC 2246 Transport Layer Security (TLS) Protocol Version 1.0
- Support for RFC 5246 TLS Protocol Version 1.2
- Support for RFC 5280 X.509 PKI Certificates (v3)
- Support for RFC 3268 Advanced Encryption Standard (AES) Cipher suites for TLS
- RFC 3447 Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version2.1
- RFC 2104 HMAC: Keyed-Hashing for Message Authentication
- RFC 6234 US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)
- RFC 4279 Pre-Shared Key Cipher suites for TLS

2.3 Azure IoT Device SDK Module Introduction

The Azure IoT device SDK is a set of libraries designed to simplify the process of developing IoT applications for the Azure Cloud to make sending and receiving messages easy from the Azure IoT Hub service. There are different variations of the SDK, each targeting a specific platform, but in this application note, we will describe the Azure IoT device SDK for C.

The Azure IoT device SDK for C is written in ANSI C (C99) to maximize portability. This feature makes the libraries well-suited to operate on multiple platforms and devices, especially where minimizing disk and memory footprint is a priority.

In this application note, we will cover how to initialize the device library, send data to the IoT Hub, and receive messages from it.

More details on the Azure IoT Device SDK can be found in the reference link <u>Azure IoT Hub device and</u> service SDKs | Microsoft Learn

2.3.1 Design Considerations

The Azure IoT Device SDK is integrated with FSP and is available for customers to use. To add the SDKto the application, users are required to use the **Stacks** tab and select **Networking > Azure RTOS NetX Duo IOT Middleware.**

When the components are selected using the **Stacks** tab, and the project is created, the SDK and libraries can be seen under the ra/microsoft/azure-rtos/netxduo/addons/azure_iot and ra/microsoft/azure-rtos/netxduo/addons/cloud folders.

Note: In the following sections, the step-by-step procedure for adding the Azure IoT middleware is explained in detail.

2.3.2 Supported Features

Table 1. IoT SDK Supported features

Features	Descriptions
Send device-to-cloud messages	Send device-to-cloud messages to IoT Hub with the option to add
	custom message properties.
Receive cloud-to-device messages	Receive cloud-to-device messages and associated properties from loT Hub.
Device twins	loT Hub persists a device twin for each device that you connect to loT Hub. The device can perform operations such as retrieving twin documents and subscribing to desired property updates.
Direct methods	IoT Hub gives you the ability to invoke direct methods on devices from the Cloud.
Device Provisioning Service (DPS)	This SDK supports connecting your device to the Device Provisioning Service, for example, through individual enrollment using an X.509 leaf certificate.
Protocol	The Azure SDK for Embedded C supports only MQTT.

Features	Descriptions
Retry policies	The Azure SDK for Embedded C provides guidelines for retries, but actual retries should be handled by the application.
loT plug-and-play	loT Plug and Play enables solution builders to integrate smart devices with their solutions without any manual configuration.

MQTT/TLS Application Example 3.

3.1 **Application Overview**

This application project demonstrates the Renesas RA IoT Cloud Connectivity solution using the FSP and uses Microsoft® Azure as the cloud provider. Ethernet is the primary communication interface between the MQTT device and the Azure IoT Services.

The CK-RA6M5 v2 kit acts as an MQTT node and connects to the Azure IoT service using the MQTT/TLS protocol over the Ethernet interface. The application periodically reads the onboard sensor values and publishes this information to the Azure IoT Hub. It also subscribes to a User LED state MQTT topic. You can turn the User LEDs ON/OFF by publishing the LED state remotely. This application reads the updated LED state and turns the User LEDs ON/OFF.

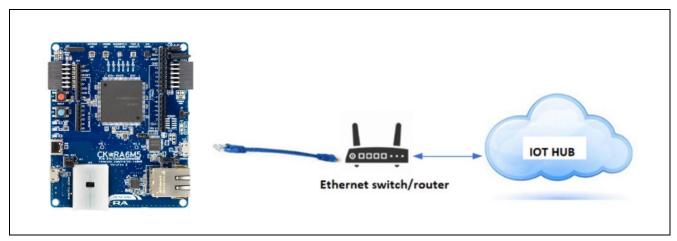


Figure 6. RA MQTT/TLS Application HW Connection Overview

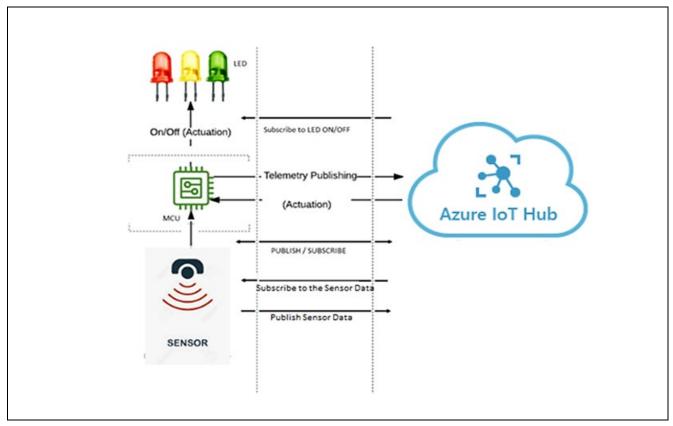


Figure 7. MQTT Publish/Subscribe to/from Azure IoT Central

The following files from this application project serve as a reference.

Table 2. Files Used in Application Project

No.	Filename	Purpose
1.	<pre>src/application_thread_entry.c</pre>	Contains initialization code and has the main thread used in the Cloud Connectivity application.
2.	<pre>src/common_init.h</pre>	Contains macros, data structures, and function prototypes used to initialize common peripherals across the project.
3.	<pre>src/common_utils.c</pre>	Contains macros, data structures, and functions commonly used across the project.
4.	<pre>src/common_utils.h</pre>	Contains macros, data structures, and function prototypes commonly used across the project.
5.	src/Console_Thread_entry.c	Contains the code for the command line interface and flash memory operations.
6.	src/ICM42605.c	Contains the code for the 6-Axis MEMS Motion Tracking™ Sensor (Gyroscope, Accelerometer)
7.	src/ICM42605.h	Contains the Data structure function prototypes for the 6-Axis MEMS Motion Tracking™ Sensor (Gyroscope, Accelerometer)
8.	src/RA_ICM42605.c	Contains codes for 6 Axis sensor (Gyroscope, Accelerometer) sensor's initialization and measurement.

No.	Filename	Purpose
9.	src/icm.h	Contains user-defined data types and function
		prototypes, which have implementation in
		RA ICM42605.c
10.	src/ICP 20100.c	Contains the code for the Barometric
	_	Pressure and Temperature Sensor
11.	src/ICP_20100.h	Contains the Data structure and function
		prototypes for the Barometric Pressure and
		Temperature Sensor
12.	src/RA_ICP20100.c	Contains codes for the Barometric Pressure
		and Temperature sensor's initialization and
		measurement.
13.	src/icp.h	Contains user-defined data types and function
		prototypes that have an implementation in
		RA_ICP20100.c
14.	src/Sensor_Thread_entry.c	Contains the Code to access the Sensor data
		from the different sensors and the order topic
4.5	/on 1000 ml	to publish
15.	src/OB_1203_Thread_entry.c	Contains the code for Heart Rate, Blood
		Oxygen Concentration, Pulse Oximetry, Proximity, Light, and Color Sensor
16.	src/oximeter.c	Contains data structures and functions used
10.	SIC/OXIMETER.C	for the oximeter sensor
17.	src/oximeter.h	Contains the Data structure and function
17.	SIC/OXIMECEI.II	prototypes for the oximeter sensor
18.	src/r typedefs.h	Contains the common derived data types
19.	src/RA HS3001.c	Contains the code for the Renesas Relative
10.	810/141_1103001.0	Humidity and Temperature Sensor
20.	src/RA HS3001.h	Contains function prototypes for the Relative
		Humidity and Temperature Sensor
21.	src/RA ZMOD4XXX Common.c	Contains the common code for Renesas
		ZMOD sensors
22.	src/RA_ZMOD4XXX_Common.h	Contains the common data structure's
		function prototypes for the Renesas ZMOD
		sensors
23.	<pre>src/RA_ZMOD4XXX_IAQ1stGen.c</pre>	Contains the common code for the Renesas
		ZMOD Internal Air Quality sensors
24.	src/RA_ZMOD4XXX_OAQ_NO2_O3.c	Contains the common code for the Renesas
		ZMOD Outer Air Quality sensors
25.	src/RmcI2C.c	Contains the I2C wrapper functions for the
		third-party sensors not integrated with FSP
26.	src/RmcI2C.h	Contains the I2C function prototypes for
		wrapper functions for the third-party sensors
07		not integrated with FSP
27.	src/user_choice.h	Contains the Function prototypes for the
		Sensor and its user configuration for the
28.	arg/ugr config h	different sensors and their data accessibility. To customize the user configuration to run the
20.	src/usr_config.h	application.
29.	lerg/uer hal c	Contains data structures and functions used
29.	src/usr_hal.c	for the Hardware Abstraction Layer (HAL)
		initialization and associated utilities.
30.	src/usr hal.h	Accompanying header for exposing
33.	010, 001_101.11	functionality provided by usr hal.c.
L	1	

No.	Filename	Purpose
31.	src/usr network.c	Contains data structures and functions used
• · ·		tooperate the NetX Duo TCP/IP and Ethernet
		Module. This file is for Ethernet-specific
		usage.
32.	src/usr network.h	Accompanying header for exposing
	_	functionality provided by usr network.c.
		This file is for Ethernet-specific use.
33.	src/ZMOD4410_Thread_entry.c	Contains the code for the indoor air quality
		sensor.
34.	<pre>src/sample_pnp_environmental_sensor_c</pre>	PNP Telemetry for HS3001 Temperature
	omponent.c	sensor data.
35.	<pre>src/sample_pnp_gas_component.c</pre>	PNP Telemetry for ZMOD4410 IAQ Sensor
		Data.
36.	<pre>src/sample_pnp_barometric_pressure_se</pre>	PNP Telemetry for ICP20100 Pressure
	nsor_component.c	Sensor data.
37.	<pre>src/sample_pnp_inertial_sensor_compon</pre>	PNP Telemetry for ICM42605 Inertial Sensor
	ent.c	data.
38.	<pre>src/sample_pnp_gas_oaq.c</pre>	PNP Telemetry for ZMOD4510 OAQ Sensor
		Data.
39.	src/sample_pnp_biometric_sensor_compo	PNP Telemetry for OB1203 Biometric Sensor
10	nent.c	Data.
40.	src/ZMOD4510_Thread_entry.c	Reading Outdoor Air Quality Data.
41.	src/console_menu/console.c	Contains data structures and functions used
40		to print data on the console using the UART.
42.	src/console_menu/console.h	Contains the Function prototypes used to print data on the console using UART.
43.	and the same and a manual manual file about	Contains data structures and functions used
43.	src/console_menu/menu_flash.c	to provide a CLI flash memory-related menu.
44.	src/console menu/menu flash.h	Contains the Function prototypes and macros
77.	Sic/console_menu/menu_frash.n	used to provide the CLI flash memory-related
		menu.
45.	src/console menu/menu kis.c	Contains functions to get the FSP version, get
		UUID, and help option for the main menu on
		the CLI.
46.	src/console_menu/menu_kis.h	Contains the Function prototypes and macros
		used to get the FSP version, get UUID, and
		help option for the main menu on the CLI.
47.	<pre>src/console_menu/menu_main.c</pre>	Contains data structures and functions used
		to provide CLI main menu options.
48.	src/console_menu/menu_main.h	Contains the Function prototypes and macros
		used to provide CLI main menu options.
49.	<pre>src/flash/flash_hp.c</pre>	Contains data structures and functions used
		to perform flash memory-related operations.
50.	<pre>src/flash/flash_hp.h</pre>	Contains the function prototypes and macros
		used to perform flash memory-related
F.4	(11000 11 (operations.
51.	src/ob1203_bio/KALMAN/kalman.c	Contains an algorithm for Heart Rate, Blood
52.	src/ob1203_bio/KALMAN/kalman.h	Oxygen Concentration, Pulse Oximetry,
53.	src/ob1203_bio/SAVGOL/SAVGOL.c	Proximity, Light, and Color Sensor sample calculations.
54.	src/ob1203_bio/SAVGOL/SAVGOL.h	Galoulations.
55.	src/ob1203_bio/SPO2/SPO2.c	
56.	src/ob1203_bio/SPO2/SPO2.h	

No.	Filename	Purpose
57.	src/ob1203 bio/ob1203 bio.c	Contains codes for the OB1203 sensor's
		implementation to use with FSP stacks.
58.	src/ob1203_bio/ob1203_bio.h	Contain user data structure and function
		prototypes used in ob1203_bio.c
59.	src/ob1203_bio/OB1203_Config.c	Initializes and configures two OB1203 sensor
		instances (PPG and proximity) using the OB driver; defines control structures,
		configuration parameters, and default
		callbacks.
60.	src/ob1203 bio/OB1203 Config.h	Declares external instances, configuration
		structures, and callbacks for OB1203 sensors
		in PPG and proximity modes.
61.	src/ob1203_bio/OB_driver/rm_ob1203/	Contains standalone OB1203 sensor driver
	ppg_mode/rm_ob1203_ppg_mode.c	source code (PPG and Proximity modes) extracted from Renesas FSP. Used
62.	src/ob1203_bio/OB_driver/rm_ob1203/	independently without integration via FSP
	proximity_mode/	configurator.
63.	<pre>rm_ob1203_proximty_mode.c src/ob1203 bio/OB driver/rm ob1203/</pre>	-
03.	rm ob1203 ra driver.c	
64.	src/ob1203 bio/OB driver/rm ob1203/	-
0	rm ob1203.c	
65.	src/ob1203_bio/OB_driver/rm_ob1203_	
	api.h	
66.	src/ob1203_bio/OB_driver/rm_ob1203_	7
	cfg.h	
67.	src/ob1203_bio/OB_driver/rm_ob1203.h	
68.	src/SEGGER_RTT/SEGGER_RTT.c	Implementation of SEGGER real-time transfer
69.	src/SEGGER_RTT/SEGGER_RTT.h	(RTT) which allows real-time communication on targets which support debugger memory
70.	src/SEGGER_RTT/SEGGER_RTT_Conf.h	accesses while the CPU is running.
71.	src/SEGGER_RTT/SEGGER_RTT_printf.c	
72.	src/nx_azure_iot_cert.c	Azure IoT Interface code. These have the reference to the working sample
73. 74.	<pre>src/nx_azure_iot_cert.h src/nx azure iot ciphersuites.c</pre>	implementation and other features such as
75.	src/nx azure iot ciphersuites.h	Device Twin and Direct Method. These files
76.	src/sample azure iot embedded sdk.c	can be used as a reference for developing the
77.	src/sample config.h	application
78.	src/usr app.c	Contains data structures and functions used
		to operate the user application functions.
79.	src/usr_app.h	Accompanying header for exposing
		functionalityprovided by usr_app.c.
80.	src/base64_decode.c	Contains a function used for BASE64 to Hex
04		Conversion
81.	src/base64.h	Contains a function prototype used for BASE64 to Hex Conversion
82.	src/c2d thread entry.c	Contains data structures, functions, and the
02.	510,024_011044_011019.0	main thread used in Cloud to Device message
		handling.
83.	src/hal_entry.c	Auto-generated unused file for Non-RTOS
	_	thing.
84.	<pre>src/commandRX_Thread_entry.c</pre>	Cloud to Device Commands reception.

3.2 Creating the Application Project using the FSP Configurator

Note: Skip this section if you are planning to import, build, and run the project attached to this application

Complete the steps to create the project from the start using the e^2 studio and FSP configurator. The following table shows the step-by-step process of creating the project. It is assumed that the user is familiar with the e^2 studio and FSP configurator. Launch the installed e^2 studio for the FSP.

Table 3. Step-by-step Details for Creating the Application Project

	Steps	Intermediate Steps
1	Project Creation:	$\textbf{File} \rightarrow \textbf{New} \rightarrow \textbf{Renesas} \ \textbf{C/C++ Project} \rightarrow \textbf{Renesas} \ \textbf{RA}$
2	Project Template: Templates for Renesas RA Project	Renesas RA C/C++ Project → Next
3	e² studio - Project Configuration: Renesas RA C/C++ Project Project Name and Location	Project Name (Name for the project of your choice) → Next
4	Device and Tools Selection	•
	Device Selection	FSP Version: 6.0.0
		Board: CK-RA6M5 V2
		Device: R7FA6M5BH3CFC
		Language: C
5	Toolchains	Toolchain: GNU ARM Embedded
		Toolchain version: 13.2.1.arm-13-7
		Debugger: J-Link ARM
		\rightarrow Next
6	Project Type Selection	Flat (Non-TrustZone) Project
		\rightarrow Next
6а	Preceding Project or Smart Bundle Selection	None → Next
7	Build Artifact and RTOS Selection	Build Artifact Selection: Executable
		RTOS Selection: Azure RTOS ThreadX (v6.4.0+fsp.6.0.0) → Next
8	Project Template Selection	Azure RTOS ThreadX – Minimal → Finish
9	Clock	HOCO 20MHz \rightarrow PLL Src: HOCO \rightarrow PLL Div/2 \rightarrow PLL Mul x20.0 \rightarrow PLL200MHz
10	Stacks tab (Part of the FSP Configurator)	Threads → New Thread
11	Configure Properties → Thread	Symbol: application_thread
		Name: Application Thread
		Stack size (bytes): 0x2400
		Priority: 1
		Auto start: Disabled
		Time slicing interval (ticks): 25
		Note: The stack size of the application thread needs to be
		aminimum of 0x1000 bytes or greater. This is the
		requirement for the NetX Duo Crypto use.
12	_	e, SNTP Clients, and Packet Pool to the Application Thread.
	Keep the default names g_dhcp_client0 , g_dns0 , g_sntp_client0 . The default configuration	
	provided by the FSP configurator is used, so there is no need to change any of the specific	
	configurations in the Property window.	
	Adding a DHCP Client	Naturalisma Amusa DTOO NatV Data DUOD ID-4 OU-14
	New Stack	Networking → Azure RTOS NetX Duo DHCP IPv4 Client

	Adding Packet Pool for the DHCP Client	Click on Add NetX Duo Packet Pool → Use→ g_packet_pool0 Azure RTOS NetX Duo Packet Pool Instance
	Adding NetX Duo Network Driver	Click on Add NetX Duo Network Driver → New → NetXDuo Ethernet Driver
	Properties setting for g_ether0	Name: g_ether0
	Ethernet → Module g_ether0	MAC address: <user define="" needs="" td="" the="" to="" valid="" values<=""></user>
	Ethernet (r_ether) → General →	for their network>
	Property Settings for g_ether_phy0	ET0_LinkSTA: None
	Ethernet → Pins	ET0_WOL: None
	→ Module g_ether_phy0 Ethernet	PHY-LSI Address: 5
	The properties setting for g_ether_phy_lsi0 Ethernet PHY-LSI	PHY-LSI Address: 5
		RA Common (for Main stack and Heap Settings)
	Property settings for RA Common	Main stack size(bytes): 0x1000
		Heap size (bytes): 0x1000
	Adding Azure RTOS NetX Duo IoT Midd	
	New Stack	Networking → Azure RTOS NetX Duo IoT Middleware
	Adding NetX Duo IP instance for DNS Client	Click on Add NetX Duo IP Instance → Use → g_ip0 Azure RTOS NetXDuo IP Instance
	Adding Packet Pool for the DNS Client	Click on Add NetX Duo Packet Pool →Use →
		g_packet_pool0 Azure RTOS NetX Duo Packet Pool Instance
	Error: NetX Duo Azure IoT Middlewar	e Requires NetX Secure to be enabled.
		e Requires MQTT Cloud to be enabled. must be added. s explained in the following steps g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → MQTT → Client → NX Secure: Enable g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → MQTT → Client → Cloud Enable: Enable g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → Common → IP Packet Filter: Enabled Click on Add NetX Crypto SW Only or HW/SW Implementation → New → Azure RTOS NetX Crypto HW Acceleration
	Error: NetX Duo Azure IoT Middleward Error: A NetX Crypto Implementation Note: To fix these errors, enable them as Enable the NetX Secure Enable MQTT Cloud Enable IP Packet Filter	e Requires MQTT Cloud to be enabled. must be added. s explained in the following steps g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → MQTT → Client → NX Secure: Enable g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → MQTT → Client → Cloud Enable: Enable g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → Common → IP Packet Filter: Enabled Click on Add NetX Crypto SW Only or HW/SW Implementation →
14	Error: NetX Duo Azure IoT Middleward Error: A NetX Crypto Implementation Note: To fix these errors, enable them as Enable the NetX Secure Enable MQTT Cloud Enable IP Packet Filter Add NetX Crypto Implementation Enable the Extended Notify Support NetX Secure Component is added from	e Requires MQTT Cloud to be enabled. must be added. s explained in the following steps g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → MQTT → Client → NX Secure: Enable g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → MQTT → Client → Cloud Enable: Enable g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → Common → IP Packet Filter: Enabled Click on Add NetX Crypto SW Only or HW/SW Implementation → New → Azure RTOS NetX Crypto HW Acceleration g_dns0 Azure RTOS NetX Duo DNS Client →Property →Common → Common →Extended Notify Support: Enabled the HW Crypto perspective. IoT SDK also works with SW
14	Error: NetX Duo Azure IoT Middleward Error: A NetX Crypto Implementation Note: To fix these errors, enable them as Enable the NetX Secure Enable MQTT Cloud Enable IP Packet Filter Add NetX Crypto Implementation Enable the Extended Notify Support NetX Secure Component is added from crypto. But in this application, the HW Cr	Requires MQTT Cloud to be enabled. must be added. s explained in the following steps g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → MQTT → Client → NX Secure: Enable g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → MQTT → Client → Cloud Enable: Enable g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → Common → IP Packet Filter: Enabled Click on Add NetX Crypto SW Only or HW/SW Implementation → New → Azure RTOS NetX Crypto HW Acceleration g_dns0 Azure RTOS NetX Duo DNS Client →Property →Common → Common →Extended Notify Support: Enabled the HW Crypto perspective. IoT SDK also works with SW rypto Accelerators are used.
14	Error: NetX Duo Azure IoT Middleward Error: A NetX Crypto Implementation Note: To fix these errors, enable them as Enable the NetX Secure Enable MQTT Cloud Enable IP Packet Filter Add NetX Crypto Implementation Enable the Extended Notify Support NetX Secure Component is added from crypto. But in this application, the HW Component of the Configure Azure RTOS NetX Secure preshown here)	e Requires MQTT Cloud to be enabled. must be added. s explained in the following steps g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → MQTT → Client → NX Secure: Enable g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → MQTT → Client → Cloud Enable: Enable g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → Common → IP Packet Filter: Enabled Click on Add NetX Crypto SW Only or HW/SW Implementation → New → Azure RTOS NetX Crypto HW Acceleration g_dns0 Azure RTOS NetX Duo DNS Client →Property →Common → Common →Extended Notify Support: Enabled the HW Crypto perspective. IoT SDK also works with SW rypto Accelerators are used. roperty values (Only values that changed from the default are
14	Error: NetX Duo Azure IoT Middleward Error: A NetX Crypto Implementation Note: To fix these errors, enable them as Enable the NetX Secure Enable MQTT Cloud Enable IP Packet Filter Add NetX Crypto Implementation Enable the Extended Notify Support NetX Secure Component is added from crypto. But in this application, the HW Component is shown here) PSK Cipher Suite	e Requires MQTT Cloud to be enabled. must be added. s explained in the following steps g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → MQTT → Client → NX Secure: Enable g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → MQTT → Client → Cloud Enable: Enable g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → Common → IP Packet Filter: Enabled Click on Add NetX Crypto SW Only or HW/SW Implementation → New → Azure RTOS NetX Crypto HW Acceleration g_dns0 Azure RTOS NetX Duo DNS Client →Property →Common → Common →Extended Notify Support: Enabled the HW Crypto perspective. IoT SDK also works with SW rypto Accelerators are used. roperty values (Only values that changed from the default are
14	Error: NetX Duo Azure IoT Middleward Error: A NetX Crypto Implementation Note: To fix these errors, enable them as Enable the NetX Secure Enable MQTT Cloud Enable IP Packet Filter Add NetX Crypto Implementation Enable the Extended Notify Support NetX Secure Component is added from crypto. But in this application, the HW Crypto Implementation application, the HW Crypto. But in this application, the HW Crypto Implementation and Indiana Ind	e Requires MQTT Cloud to be enabled. must be added. s explained in the following steps g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → MQTT → Client → NX Secure: Enable g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → MQTT → Client → Cloud Enable: Enable g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → Common → IP Packet Filter: Enabled Click on Add NetX Crypto SW Only or HW/SW Implementation → New → Azure RTOS NetX Crypto HW Acceleration g_dns0 Azure RTOS NetX Duo DNS Client →Property →Common → Common →Extended Notify Support: Enabled the HW Crypto perspective. IoT SDK also works with SW rypto Accelerators are used. roperty values (Only values that changed from the default are
14	Error: NetX Duo Azure IoT Middleward Error: A NetX Crypto Implementation Note: To fix these errors, enable them as Enable the NetX Secure Enable MQTT Cloud Enable IP Packet Filter Add NetX Crypto Implementation Enable the Extended Notify Support NetX Secure Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application is added from crypton in this application is added from cry	e Requires MQTT Cloud to be enabled. must be added. s explained in the following steps g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → MQTT → Client → NX Secure: Enable g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → MQTT → Client → Cloud Enable: Enable g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → Common → IP Packet Filter: Enabled Click on Add NetX Crypto SW Only or HW/SW Implementation → New → Azure RTOS NetX Crypto HW Acceleration g_dns0 Azure RTOS NetX Duo DNS Client →Property →Common → Common →Extended Notify Support: Enabled the HW Crypto perspective. IoT SDK also works with SW rypto Accelerators are used. roperty values (Only values that changed from the default are
14	Error: NetX Duo Azure IoT Middleward Error: A NetX Crypto Implementation Note: To fix these errors, enable them as Enable the NetX Secure Enable MQTT Cloud Enable IP Packet Filter Add NetX Crypto Implementation Enable the Extended Notify Support NetX Secure Component is added from crypto. But in this application, the HW Crypto Implementation application, the HW Crypto. But in this application, the HW Crypto Implementation and Indiana Ind	Requires MQTT Cloud to be enabled. must be added. s explained in the following steps g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → MQTT → Client → NX Secure: Enable g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → MQTT → Client → Cloud Enable: Enable g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → Common → IP Packet Filter: Enabled Click on Add NetX Crypto SW Only or HW/SW Implementation → New → Azure RTOS NetX Crypto HW Acceleration g_dns0 Azure RTOS NetX Duo DNS Client →Property →Common → Common →Extended Notify Support: Enabled the HW Crypto perspective. IoT SDK also works with SW rypto Accelerators are used. roperty values (Only values that changed from the default are Enable Enable
14	Error: NetX Duo Azure IoT Middleward Error: A NetX Crypto Implementation Note: To fix these errors, enable them as Enable the NetX Secure Enable MQTT Cloud Enable IP Packet Filter Add NetX Crypto Implementation Enable the Extended Notify Support NetX Secure Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application is added from crypton in this application is added from cry	re Requires MQTT Cloud to be enabled. must be added. s explained in the following steps g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → MQTT → Client → NX Secure: Enable g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → MQTT → Client → Cloud Enable: Enable g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → Common → IP Packet Filter: Enabled Click on Add NetX Crypto SW Only or HW/SW Implementation → New → Azure RTOS NetX Crypto HW Acceleration g_dns0 Azure RTOS NetX Duo DNS Client →Property →Common → Common →Extended Notify Support: Enabled the HW Crypto perspective. IoT SDK also works with SW rypto Accelerators are used. roperty values (Only values that changed from the default are Enable Enable Enable
14	Error: NetX Duo Azure IoT Middleward Error: A NetX Crypto Implementation Note: To fix these errors, enable them as Enable the NetX Secure Enable MQTT Cloud Enable IP Packet Filter Add NetX Crypto Implementation Enable the Extended Notify Support NetX Secure Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application, the HW Component is added from crypto. But in this application is added from crypto. B	re Requires MQTT Cloud to be enabled. must be added. s explained in the following steps g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → MQTT → Client → NX Secure: Enable g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → MQTT → Client → Cloud Enable: Enable g_dns0 Azure RTOS NetX Duo DNS Client →Property → Common → Common → IP Packet Filter: Enabled Click on Add NetX Crypto SW Only or HW/SW Implementation → New → Azure RTOS NetX Crypto HW Acceleration g_dns0 Azure RTOS NetX Duo DNS Client →Property →Common → Common →Extended Notify Support: Enabled the HW Crypto perspective. IoT SDK also works with SW rypto Accelerators are used. roperty values (Only values that changed from the default are Enable Enable Enable Enable

	from the default are shown here)	N Acceleration property values (Only values that changed
	Common → Hardware	Use Hardware
	Acceleration→Public Key	
	Cryptography (PKC)→ RSA→RSA	
	Common→Hardware Acceleration→	Enabled
	Public Key Cryptography (PKC)→	
	RSA→RSA 3072 Verify/Encryption	
	(HW)	
	Common→Hardware Acceleration	Enabled
	→ Public Key Cryptography (PKC)	
	→ RSA → RSA 4096	
	Verify/Encryption (HW)	
	Common→Hardware Acceleration	Disabled (HW)
	→ Public Key Cryptography (PKC)	Diodolog (IIII)
	→ RSA → RSA Scratch Buffer Size	
	Common→ Standalone Usage	Use with TLS
	Note: Increase the Stack size in the	Refer to the Modifying the BSP tab → Properties → RA
	BSP Tab to get rid of the error in	Common for (Main stack and Heap Settings) section in step
	the configurator for NetX Crypto	11 of this table
	HW Acceleration	Note: For crypto operation, it is recommended to have a
	1100 Acceleration	stack size of 4K or more.
	Adding SNTD Client	Stack Size of 4K of filore.
	Adding SNTP Client New Stack	Networking → Azure RTOS NetX Duo SNTP Client
	Adding NetX Duo IP instance for SNTP	Click on Add NetX Duo IP Instance →Use → g_ip0
	Client	Azure RTOS NetXDuo IP Instance
	Adding Packet Pool for the SNTP	Click on Add NetX Duo Packet Pool →Use →
	Client	g_packet_pool0 Azure RTOS NetX Duo Packet Pool
		Instance
15	Increase the Number of Packets in Pool	
		Click on g_packet_pool0 Azure RTOS NetX Duo Packet Pool Instance
		→ Property → Module g_packet_pool0 Azure RTOS NetX
		Duo Packet Pool Instance → Number of Packets in Pool.
		Change from 16 to 50 (To allow enough buffer for the
		packets). This can be tuned based on the frequency and size
	Note: After adding the SNTP, the configu	rator reports the following errors when you hover over the red
	Blocks.	
	1	iseconds) should be greater than unicast poll interval
	(seconds).	
	Note: To fix these errors, enable them as	<u> </u>
	Reduce the starting poll interval for	g_sntp_client0 Azure RTOS NetX Duo SNTP Client →
	unicast update request (seconds)	Property → Common → SNTP → Client →Starting poll
		interval for unicast update request (seconds): 36
16	Add Cloud to Device Processing Thread	• •
	Stacks tab (Part of the FSP	Threads → New Thread
	Configura Thread Preparties	
	Configure Thread Properties	ald throad
	Symbol Name	c2d_thread Cloud2Device Thread
	Stack size (bytes)	2048
	Priority	1 Disabled
	Auto start	Disabled
	Time slicing interval (ticks)	25

sensor value into MQTT and display to console.		
HAL/Common Stacks → New Stack	Timers → Timer, General PWM on r_gpt	
Property Settings for r_gpt → General	Name: gpt	
	Channel: 0	
	Mode: Periodic	
	Period: 1	
	Period Unit: Seconds	
Interrupts:	Callback: g_gpt_timer_cb	
	Overflow/Crest Interrupt Priority: Priority 10	
-Message Queue)	olication (Topic Queue needs to be created for the application	
Stacks Tab → Objects	New Object → Queue	
Property Settings for the Queue	Name: Topic Queue	
	Symbol: g_topic_queue	
	Message Size (Words): 16	
	Queue Size (Bytes): 64	
Stacks Tab → Objects	New Object → Mutex	
·	Names concelerate mutay	
	Name: consolprint_mutex	
	Symbol: consolprint_mutex	
	Priority Inheritance: Disabled	
Stacks Tab → Objects	New Object → Queue	
Property Settings for the Queue	Name: HS3001 Queue	
	Symbol: g_hs3001_queue	
	Message Size (Words): 2	
	Queue Size (Bytes): 8	
Stacks Tab → Objects	New Object → Queue	
Property Settings for the Queue	Name: ZMOD4410 Queue	
Topony cominge for the Queue	Symbol: g_iaq_queue	
	Message Size (Words): 3	
	Queue Size (Bytes): 12	
Stacks Tab → Objects	New Object → Queue	
-	•	
Property Settings for the Queue	Name: ICM Queue	
	Symbol: g_icm_queue	
	Message Size (Words): 12	
	Queue Size (Bytes): 48	
Stacks Tab → Objects	New Object → Queue	
Property Settings for the Queue	Name: OB1203 Queue	
	Symbol: g_ob1203_queue	
	Message Size (Words): 3	
	Queue Size (Bytes): 12	
Stacks Tab → Objects	New Object → Queue	
Property Settings for the Queue	Name: ZMOD4510 Queue	
i Toporty Detailigs for the Queue	Symbol: g_oaq_queue	
	· · · · · · · · · · · · · · · · · · ·	
	Message Size (Words): 1	
Otracka Take Old d	Queue Size (Bytes): 4	
Stacks Tab → Objects	New Object → Queue	
Property Settings for the Queue	Name: ICP Queue	
	Symbol: g_icp_queue	

		Message Size (Words): 4	
		Queue Size (Bytes): 16	
19	Add Sensor Thread, this thread is used to access the sensor's values of HS3001, ICP-20100, and ICM-42605		
	Stacks tab (Part of the FSP Configurator)	Threads → New Thread	
	Configure Thread Properties		
	Symbol	Sensor_Thread	
	Name	Sensor_Thread	
	Stack size (bytes)	8192	
	Priority	3	
	Auto start	Disabled	
	Time slicing interval (ticks)	200	
20	Adding the HS300X Temperature/Humid	ity Sensor Module to the Sensor Thread	
	New Stack →	Sensor → HS300X Temperature/Humidity Sensor	
	Config HS300X sensor→	Name: g_hs300x_sensor0	
		Callback: hs300x_callback	
	Under I2C Shared Bus → Add I2C	New → I2C Master(r_iic_master)	
	Communications Peripheral →	, ,	
	Config for I2C Shared Bus →	Name: g_comms_i2c_bus0	
		Channel: 0	
		Rate: Fast-mode	
	Config for I2C Master →	Name: g_i2c_master0	
		Interrupt Priority Level: Priority 12	
21	Adding ICP-20100 and ICM-42605 sensors to the Sensor Thread.		
	Note: FSP doesn't provide an integrated module for ICP-20100 and ICM-42605 sensors. This needs to		
	be integrated via the i2c communication device and external IRQ manually. Also, its related sensor		
	driver code needs to be added to the src		
	New Stack →	Connectivity → I2C Communication Device	
	Config I2C Communication Device →	Name: g_comms_i2c_device4	
		Slave Address: 0x63	
		Callback: ICP_comms_i2c_callback	
	Under the I2C Communication Device → Add I2C Shared Bus →	Use → g_comms_i2c_bus0 I2C Shared Bus	
	New Stack →	Input → External IRQ	
	Config for External IRQ	Name: g_external_irq6	
	_	Channel: 6	
		Trigger: Falling	
		Callback: ICP_IRQ_CALLBACK	
22	Adding I2C Communication Device and E	External IRQ for ICM-42605 into Sensor Thread	
	New Stack →	Connectivity → I2C Communication Device	
	Config I2C Communication Device →	Name: g_comms_i2c_device5	
		Slave Address: 0x68	
		Callback: ICM_comms_i2c_callback	
	Under the I2C Communication Device → Add I2C Shared Bus →	Use → g_comms_i2c_bus0 I2C Shared Bus	
	New Stack →	Input → External IRQ	
	Config for External IRQ	Name: g_external_irq3	
		Channel: 3	
		Trigger: Falling	
		Callback: ICM_42605_Callback2	
	New Stack →	Input → External IRQ	
	INEW Stack -	Inhar -> Fyreinai ii/A	

RENESAS

	Config for External IRQ	Name: g_external_irq12
		Channel: 12
		Trigger: Falling
		Callback: ICM_42605_Callback1
23	Add ZMOD4410 Sensor (IAQ) Processii	
	Stacks tab (Part of the FSP	Threads → New Thread
	Configurator)	
	Configure Thread Properties	
	Symbol	ZMOD4410_Thread
	Name	ZMOD4410_Thread
	Stack size (bytes)	2048
	Priority	3
	Auto start	Disabled
	Time slicing interval (ticks)	1
24	Adding ZMOD4XXX Gas Sensor Module	e to ZMOD4410. Thread
	New Stack →	Sensor → ZMOD4XXX Gas Sensor
	Config ZMOD4XXX Properties→	Add Requires ZMOD Library→ New→ZMOD4410 IAQ 1st
	Coming ZWOD4XXX Properties—	Generation
		Add I2C Shared Bus→ New→ I2C Shared Bus
		Add I2C Communications—New—I2C Master
		(r_iic_master)
		Add IRQ Driver for Measurement →New→ External IRQ
	Module g_zmod4xxx_sensor0	Name: g_zmod4xxx_sensor0
	moudio g_imou issue_concore	Comms I2C callback: zmod4xxx_comms_i2c_callback
		IRQ Callbacks: zmod4xxx_irq0_callback
	Under the ZMOD4410 IAQ 1st	Name: g_comms_i2c_device1
	Generation → I2C Communication Device →	
	Config I2C Shared bus →	Name: g_comms_i2c_bus2
		Channel: 2
		Rate: Fast-mode
	Config I2C Master →	Name: g_i2c_master2
	3	Interrupt Priority Level: Priority 12
	Config External IRQ→	Name: g_external_irq4
	- Coming External little	Channel:4
		Trigger: Falling
		Pin Interrupt Priority: Priority 3
		Pins→IRQ04: (Navigate to IRQ04): P402
25	Add ZMOD4510 Sensor (OAQ) Process	
	Stacks tab (Part of the FSP	Threads → New Thread
	Configurator)	
	Configure Thread Properties	
	Symbol	ZMOD4510_Thread
	Name	ZMOD4510_Thread
	Stack size (bytes)	2048
	Priority	2
	Auto start	Disabled
	Time slicing interval (ticks)	1
26	Adding ZMOD4XXX Gas Sensor Module	e to ZMOD4510 Thread
	New Stack →	Sensor → ZMOD4XXX Gas Sensor
	Config ZMOD4XXX Gas Sensor	Add Required ZMOD Library→ New→ZMOD4510 NO2 O3
	Properties→	Add I2C Shared Bus—Use—g_comms_i2c_bus2 I2C
		Shared Bus
1		Add IRQ Driver for Measurement→New→ External IRQ

	Module g_zmod4xxx_sensor1	Name: g_zmod4xxx_sensor1
		Comms I2C callback: zmod4xxx_comms_i2c1_callback
		IRQ Callbacks: zmod4xxx_irq1_callback
	Module g_comms_i2c_device2 I2C	Name: g_comms_i2c_device2
	Communication Device	
	(rm_comms_i2c)	
	Config External IRQ→	Name: g_external_irq15
		Channel: 15
		Trigger: Falling
		Pin Interrupt Priority:12
	A 11 OP 1000 (1: 11:) P	Pins→IRQ15: (Navigate to IRQ15): P404
27	Add OB1203 (optical biosensor) Process	
		egrated module for the OB1203 sensor. This needs to be vice and external IRQ manually. Also, its related sensor driver
	code needs to be added to the src folder	
	Stacks tab (Part of the FSP	Threads → New Thread
	Configurator)	Timodas 7 Now Timoda
	Configure Thread Properties	
	Symbol	OB_1203_Thread
	Name	OB_1203_Thread
	Stack size (bytes)	2048
	· • · · ·	2
	Priority	
	Auto start	Disabled
	Time slicing interval (ticks)	25
28		B1203 (PPG mode) into OB_1203_Thread.
	New Stack →	Connectivity → I2C Communication Device
	Config I2C Communication Device	Name: g_comms_i2c_device3
	→	Clave Address OvE2
		Slave Address: 0x53
	11 1 11 12 2	Callback: rm_ob1203_comms_i2c_callback
	Under the I2C Communication Device → Add I2C Shared Bus →	
	Under I2C Shared Bus → Add I2C Communications Peripheral →	New → I2C Master(r_iic_master)
	Config for I2C Shared Bus →	Name: g_comms_i2c_bus1
		Channel: 1
		Rate: Standard
	Config I2C Master →	Name: g_i2c_master1
		Interrupt Priority Level: Priority 12
29	Adding I2C Communication Device for O	B1203 (Proximity mode) into OB 1203 Thread.
	New Stack →	Connectivity → I2C Communication Device
	Config I2C Communication Device →	Name: g_comms_i2c_device6
		Slave Address: 0x53
		Callback: rm_ob1203_comms_i2c_callback
	Under the I2C Communication Device	
0.0	→ Add I2C Shared Bus →	1000 Thurs I
30	Adding External IRQ for OB1203 into OB	
	New Stack →	Input → External IRQ
	Config for External IRQ	Name: g_external_irq14
		Channel: 14
		Trigger: Falling
		Callback: rm_ob1203_irq_callback
		Pin Interrupt Priority:12

		Pins→IRQ14: (Navigate to IRQ14): P403
31	Add Cloud to Device Processing Thread	, , ,
31	Stacks tab (Part of the FSP Configurator)	Threads → New Thread
	Configurator) Configure Thread Properties	
	Symbol	Console_Thread
	Name	Console_Thread
	Stack size (bytes)	4096
	Priority	4
	Auto start	Enabled
20	Time slicing interval (ticks)	50
32	Add Cloud to Device Command Reception	
	Stacks tab (Part of the FSP Configurator)	Threads → New Thread
	Configure Thread Properties	
	Symbol	CommandRX_Thread
	Name	CommandRX_Thread
	Stack size (bytes)	2048
	Priority	4
	Auto start	Disabled
	Time slicing interval (ticks)	40
33	Adding UART to Console_Thread	
	New Stack →	Connectivity→ UART
	Config Common →	FIFO Support: Enable
		DTC Support: Enable
		Flow Control Support: Enable
	Config General →	Name: g_console_uart
		Channel: 5
		Data Bits: 8bits
		Parity: None
	Confin Board	Stop Bits: 1bit
	Config Baud→ Config Interrupts →	Baudrate: 115200
	Config linerrupts → Config Pins →	Callback: user_uart_callback TXD: P501
	Coming Finis ->	RXD: P502
34	Adding Flash to Console_Thread	1002
	New Stack →	Storage→ Flash (r_flash_hp)
		Name: user_flash
		Data Flash Background Operation: Disabled
		Callback: flash_callback
		Flash Ready Interrupt Priority: Priority 6
		Flash Error Interrupt Priority: Priority 6
35	Enable "Use float with nano printf" to print	
	Project → Properties → C/C++ Build	Use float with nano printf (-u _printf_float)
	ightarrow Settings $ ightarrow$ Tool Settings tab $ ightarrow$ GNU ARM Cross C Linker $ ightarrow$	
	Miscellaneous → Check the box	
36	Add "specs=rdimon.specs" to Other linker flags	
-	Project → Properties → C/C++ Build	Addspecs=rdimon.specs
	ightarrow Settings $ ightarrow$ Tool Settings tab $ ightarrow$	→ Apply → Apply and Close
	GNU ARM Cross C Linker →	
	Miscellaneous → Other linker flags	
	\rightarrow	

The above configuration is a prerequisite to generate the required stack and features for the Cloud connectivity application provided with this application note. Once the Generate Project Content button is clicked, e² studio generates the source code for the project. The generated source code contains the required drivers, stacks, and middleware. The user application files must be added to the src folder.

For the validation of the created project, the same source files listed in the section 3, MQTT/TLS Application Example, Table 2, may be added. This is the quickest way to create and build the application without writing the code for the configuration created in the above section.

Note: Users are required to add the directory path and subdirectory for proper compilation. The following paths need to be added to Project → Properties → C/C++ Build → Settings → Tool Settings tab → GNU Arm Cross C Compiler → Includes → Include paths (-I). Refer to the enclosed project for more details.

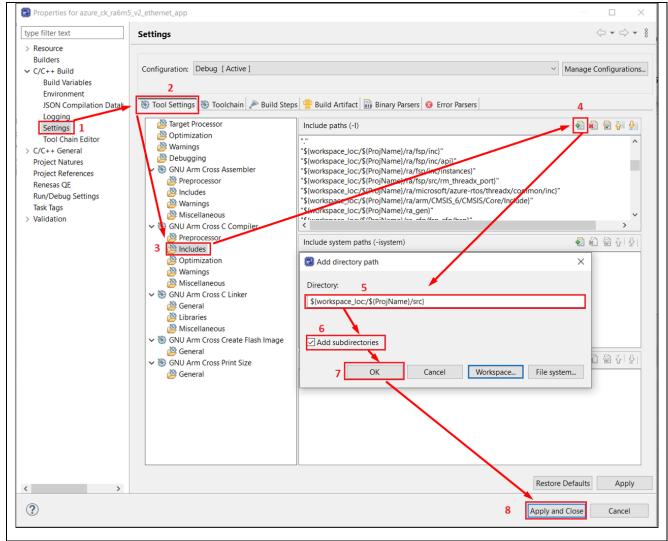


Figure 8. Include src/ directory path before compiling the project

Note: After you follow the instructions in section 3.2 to recreate the Application project using the FSP configuratorand add the src code to the project, the project is ready for building.

Note: If you get an error while assigning a PIN to an External IRQ, go to Pin Configuration > Pin Number and select the IRQ function for that pin number. For example, for External IRQ channel number 4, you can select Function IRQ14 for Pin Number 4.

Note: As part of the manual creation of this project, you might encounter known issues/pin errors with the Pin configurator while selecting the peripherals. We recommended selecting the operation mode. disabling/enabling, and selecting the pins. You can also refer to the attached project as a working reference.

3.3 Install Azure CLI

To prepare Azure Cloud resources and connect a device to Azure, you can use Azure CLI. Azure CLI can be installed locally on your PC.

- 1. Azure CLI can be downloaded from the Microsoft site (https://learn.microsoft.com/en-us/cli/azure/install-azure-cli)
- 2. The installer name will be similar to <code>azure-cli-2.44.x.msi</code> or later. Click on the installer, and the InstallShield will guide you through the installation process. When installing it, you can't choose the installation location it depends on the operating system you're using. For example, on Windows, the 64-bit Azure CLI is installed in <code>C:\Program Files\Microsoft SDKs\Azure\CLI2</code>.
- 3. Install the current release of the Azure CLI. After the installation is complete, you will need to close and reopen any active Windows Command Prompt or PowerShell windows to use the Azure CLI.
- 4. After the Azure CLI installation is successful, open and launch Windows PowerShell to use the Azure CLI. A screenshot of Windows PowerShell is shown below.

Figure 9. Windows PowerShell

5. If you already have Azure CLI installed locally, go to the directory of the installed AzureCLI and run *az* -- *version* to check the version. This application note requires Azure CLI 2.44.0 or later.

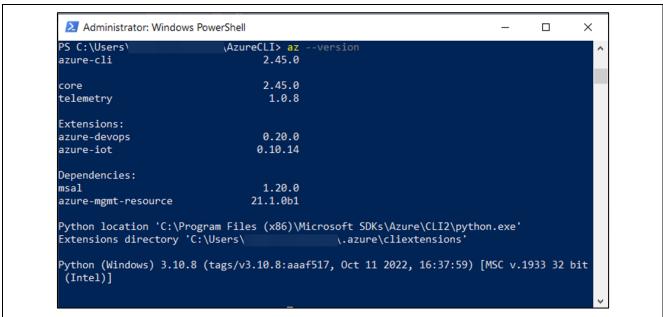


Figure 10. Azure CLI Version

3.4 Create an IoT Hub

You can use Azure CLI to create an IoT hub that handles events and messaging for your device.

Note 1: Before you start creating the IoT Hub, you are required to have a login to your Azure Portal via a webbrowser. If not logged in, then you may notice an error that you are not logged in while creating the IoT Hub:

https://portal.azure.com/

Note 2: If you do not have an Azure Account, you can create one that is valid for 12 months with limited features from the following link:

https://azure.microsoft.com/en-us/free/

To create an IoT hub:

- Note 3: Some of the user parameters while creating the IoT Hub need to be unique. Users are required to take care of this while creating the IoT Hub credentials.
- In your CLI console, run the "az extension add" command to add the Microsoft Azure IoT Extension for Azure CLI to your CLI shell. The IoT Extension adds IoT Hub, IoT Edge, and IoT Device Provisioning Service (DPS) specific commands to Azure CLI.

```
— az extension add --name azure-iot
```

Note 4: When you run the command for the first time you may not notice output on the console as shown below. It just accepts the command.

Figure 11. Add Extension for Azure CLI

2. Run the az login command to login to the Azure account. Running the az login command opens the browser for login. You can enter the login credentials to login to the Azure account. You will notice a similar message in the browser on successful login.

Note: You can find more info on the Azure CLI at Overview of the Azure CLI | Microsoft Docs

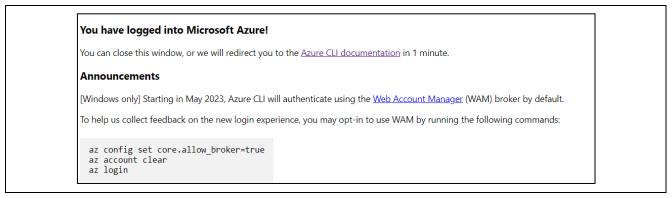


Figure 12. Successful Login to the Azure Account

- 3. Run the az group create command to create a resource group. The following command creates a resource group named MyRAResourceGroup in the westus region.
- 4. Optionally, to set an alternate location, run az account list-locations to see available locations. Then specify the alternate location in the following command in place of westus.

```
az group create --name MyRAResourceGroup --location westus
```

Figure 13. Create Resource Group

5. Run the az iot hub create command to create an IoT hub. It might take a few minutes to create an IoT Hub.

Replace the YourIotHubName placeholder below with the name you chose for your IoT hub. An IoT hub name must be globally unique in Azure. This placeholder is used in the rest of this tutorial to represent your unique IoT hub name. Use any command given below.

```
— az iot hub create --resource-group MyRAResourceGroup --name
{YourIoTHubName}
    OR

— az iot hub create --resource-group MyRAResourceGroup --name
{YourIoTHubName} --location {YourLocation}
```

Note: It may take a few minutes to create the IoT Hub. In this case, the IoT Hub name used is RACLOUDHUB.

Note: Microsoft recommends creating a new IoT Hub. The IoT Hub created previously (2-3 years old) may not work as desired. So, we recommend creating a new IoT Hub to run the application to yield the proper results

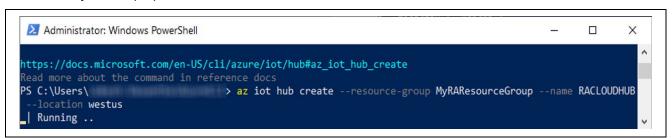


Figure 14. IoT Hub Creation in Progress

- 6. After the IoT Hub is created, view the JSON output in the console, and copy the hostName value to a safe place. You use this value in a later step. The hostname value looks like the following example:
 - {Your IoT hub name}.azure-devices.net

```
> az iot hub create --resource-group MyKAKesourceGroup --name KACLOUDHUB
S C:\Users\
  "etag": "AAAADHyUlkI=",
"id": "/subscriptions/c2abca52-fdcb-4329-b720-8d20dbcdfa63/resourceGroups/MyRAResourceGroup/providers/Micr
soft.Devices/IotHubs/RACLOUDHUB",
  "identity": {
    "principalId": null,
     "tenantId": null,
"type": "None",
     "userAssignedIdentities": null
 },
"location": "westus",
"name": "RACLOUDHUB",
  "properties": {
   "allowedFqdnList": [],
   "authorizationPolicies": null,
      "cloudToDevice": {
   "defaultTtlAsIso8601": "1:00:00",
            "lockDurationAsIso8601": "0:00:05",
           "maxDeliveryCount": 10,
"ttlAsIso8601": "1:00:00"
        },
"maxDeliveryCount": 10
    },
"comments": null,
     "deviceStreams": null,
"disableDeviceSas": null,
"disableLocalAuth": null,
     "disableLocalAuth : null,
"disableModuleSas": null,
"enableDataResidency": null,
      'enableFileUploadNotifications": false,
      "encryption": null,
"eventHubEndpoints": {
          ementablispoints : {
    "events": {
        "endpoint": "sb://iothub-ns-racloudhub-15367392-546ab7522b.servicebus.windows.net/",
        "partitionCount": 4,
        "partitionIds": [
        "arritionIds": [
              "0",
"1",
            ,
"path": "racloudhub",
"retentionTimeInDays": 1
    },
"features": "GWV2".
"hostName": "RACLOUDHUB.azure-devices.net",
"ipFilterRules": [],
```

Figure 15. JSON Output after IoT Hub Creation

3.5 Certificate Creation Process

You can use the GIT Bash utility for this process. If not installed on your computer, you can download and install it. (<u>Git for Windows</u> or <u>Git for Windows</u> (<u>github.com</u>)).

- 1. Install Git for Windows.
- 2. Launch the Git Bash.
- 3. Create a directory of your choice (for example, mkdir Azure).
- Go to the directory and create the configuration. This created directory is the place where your selfsigned certificate is created and stored.
- 5. Copy and paste the configuration listed below to create x509_config.cfg as shown in the figure below.

```
cat > x509_config.cfg <<EOT
[req]
req_extensions = client_auth
distinguished_name = req_distinguished_name
[req_distinguished_name]</pre>
```

```
[ client_auth ]
basicConstraints = CA:FALSE
keyUsage = digitalSignature, keyEncipherment
extendedKeyUsage = clientAuth
EOT
```

Note: All OpenSSL commands and the self-signed certificate creation process are given at this <u>link</u>. Steps are as follows:

1. Set the x509 configuration file for the common name in cert.

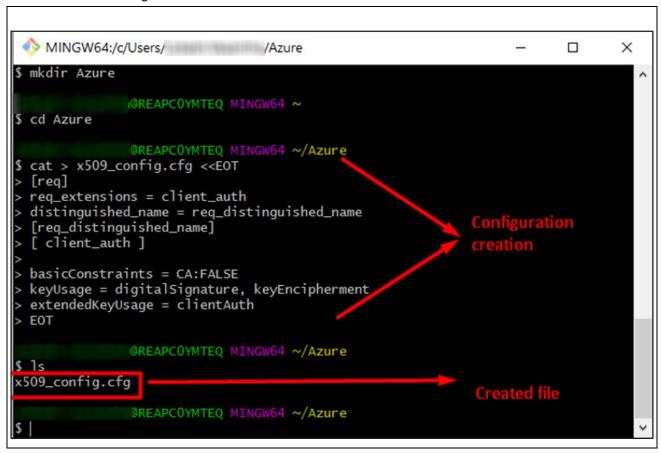


Figure 16. Set X509 Configuration File

2. Create an RSA self-signed certificate.

Generate private key and certificate (public key) using the command as shown in the snapshot "openssl genrsa -out privkey.pem 2048"

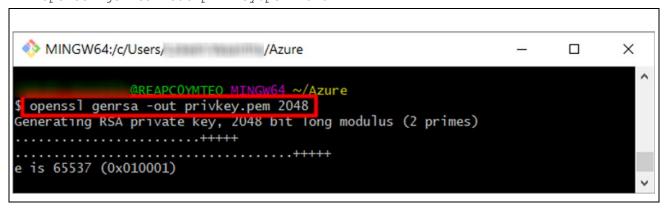


Figure 17. Generate Private Key and Certificate (public key)

Note: If you use OpenSSL 3.0.0 or later, please add the "-traditional" flag to the generation command with RSA header: "openssl genrsa -out privkey.pem -traditional 2048"

3. Embed Device ID in certificate.

This command will not give you any response if successfully executed.

```
openssl req -new -days 365 -nodes -x509 -key privkey.pem -out cert.pem - config x509 config.cfg -subj "//CN=<Same as device Id>"
```

Note: In this example, the device ID name "CK_RA6M5_X509" is used. Note down this Device ID. This will be used in future steps. Use your own Device ID to make it unique across your system.

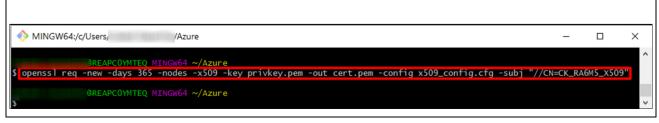


Figure 18. Embed Device ID in Certificate

4. Run command to convert format of key from pem to der.

```
openssl rsa -outform der -in privkey.pem -out privkey.der Here you get response "writing RSA key"
```

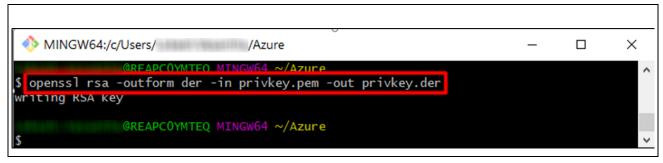


Figure 19. Convert Format from key to der

5. Run the command to convert the format of the cert from pem to der.

openssl x509 -outform der -in cert.pem -out cert.der

This command will not give you any response if successfully executed.

Figure 20. Convert Format of cert from pem to der

6. Convert der to hex array and set it in <code>sample_device_identity.c</code> file in the project. For easier access, the command text is given as follows. The user can copy and paste text in the command line to create <code>sample device identity.c</code>.

```
echo "#include \"nx_api.h\"
/**
device cert (`openssl x509 -in cert.pem -fingerprint -noout | sed 's/://g' `) :
    cat cert.pem`

device private key:
    `cat privkey.pem`
```

```
*/
" > sample_device_identity.c
```

```
MINGW64:/c/Users/
                                                                                             ×
                              /Azure
cert.der cert.pem privkey.der privkey.pem x509_config.cfg
        @REAPCOYMTEO MINGW64 ~/Azure
 echo "#include \"nx_api.h\"
 device cert (`openssl x509 -in cert.pem -fingerprint -noout | sed 's/://g' `) :
  cat cert.pem
 device private key :
  cat privkey.pem
 "' > sample_device_identity.c
             @REAPCOYMTEQ MINGW64 ~/Azure
cert.der
        cert.pem privkey.der privkey.pem
                                           sample_device_identity.c x509_config.cfg
             @REAPCOYMTEQ MINGW64 ~/Azure
```

Figure 21. Convert the der to Hex Array and Set them in sample_device_identity.c

- 7. Run "Is" command to check whether sample device identity.c is created.
- 8. Run the following commands to produce <code>sample_device_cert_ptr</code> and <code>sample_device_private_key_ptr</code> array containing device certificate and private key equivalent hex values along with length.

```
xxd -i cert.der | sed -E "s/(unsigned char) (\w+)/\1
sample_device_cert_ptr/g; s/(unsigned int) (\w+)_len/\1
sample_device_cert_len/g" >> sample_device_identity.c

xxd -i privkey.der | sed -E "s/(unsigned char) (\w+)/\1
sample_device_private_key_ptr/g; s/(unsigned int) (\w+)_len/\1
sample device private key len/g" >> sample device identity.c
```

These commands will not give you any response if successfully executed.

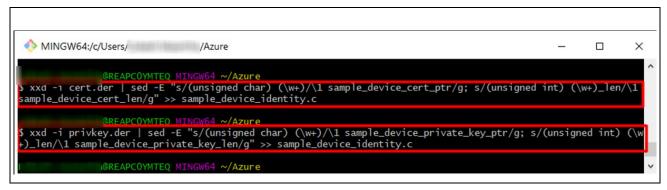


Figure 22. Producing arrays containing hex values

Check the content of <code>sample_device_identity.c</code> with the cat command. In this file, you will get the Device certificate along with SHA1 fingerprint, Device Private Key, <code>sample_device_cert_ptr</code> and <code>sample_device_private_key_ptr</code> array along with their length. You will also notice the Fingerprint; you need to use this fingerprint as a "thumbprint" in the device creation process using the IoT Explorer in later sections. Please note down this Fingerprint.

Figure 23. Check the Content of sample_device_identity.c

3.6 View Device Properties

You can use the Azure IoT Explorer (<u>Install and use Azure IoT explorer - Azure IoT | Microsoft Learn</u>) to view and manage the properties of your devices. In the following steps, you will add a connection to your IoT Hub in IoT Explorer. With the connection, you can view properties for devices associated with the IoT Hub.

Download and install the latest (above v0.15.6.0) Azure IoT Explorer from: https://github.com/Azure/azure-iot-explorer/releases

Note: Click and install the downloaded msi file Azure.IoT.Explorer.Preview.0.15.6.msi or a newer version of the downloaded file. The install shield guides you through the installation process.

3.7 Set IoT Hub

To add a connection to your IoT Hub:

1. In your Azure CLI console, run the az iot hub connection-string show command to get the connection string for your IoT Hub.

— az iot hub connection-string show -n {YourIoTHubName}

Note: See section Create an IoT Hub for the IoT Hub Name.

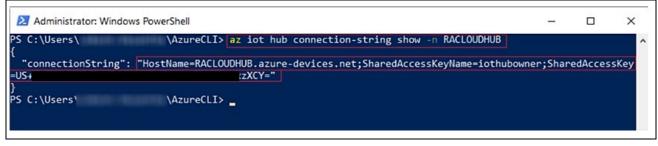


Figure 24. Connection String

- 2. Copy the connection string.
- 3. Open the Azure IoT Explorer and select IoT hubs > Add connection.
- 4. Paste the connection string into the **Connection string** box.
- 5. Select Save.

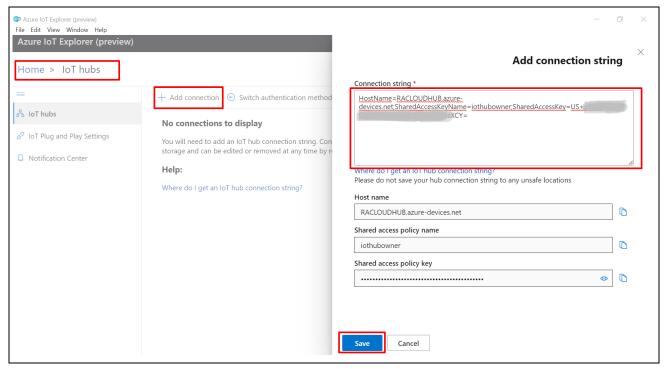


Figure 25. Adding Connection String

Note: In some cases, Azure IoT Explorer may report an error that the default port that IoT Explorer is trying to use is being used by another application. In order to overcome this error, you can add a different port number for the Azure IoT Explorer, shown as follows.

Note: In some cases, Azure IoT Explorer may report an error that "Failed to retrieve device list: request to https://raxxxxxx.azure-devices.net/devices%2Fquery?api-version=2020-09-30 failed, reason: unable to get local issuer certificate." This error is due to the Zscaler tool running on your PC, set by IT. To overcome this error, you try running the IOT Explorer on a PC without Zscaler or a Lab machine.

Reference: https://github.com/Azure/azure-iot-explorer/issues/604

On your PC, edit the system environmental variables as shown in the following screenshots.

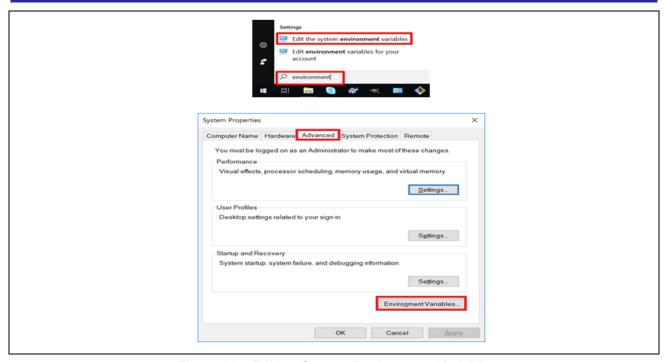


Figure 26. Editing System Environment Variable

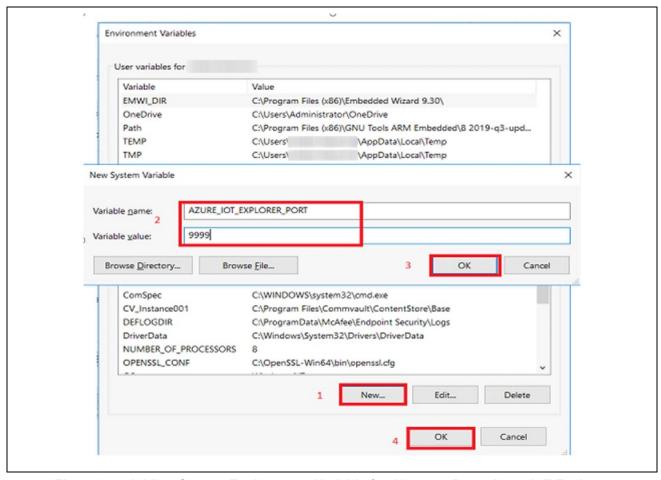


Figure 27. Adding System Environment Variable for Alternate Port - Azure IoT Explorer

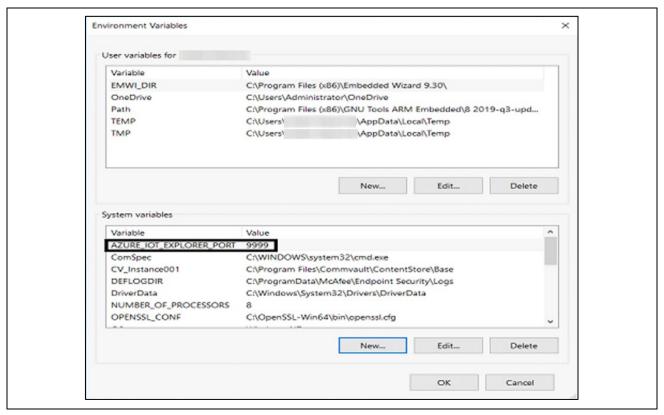


Figure 28. Added Alternate Port for Azure IoT Explorer

If the connection succeeds, the Azure IoT Explorer switches to a Devices view and lists your device.

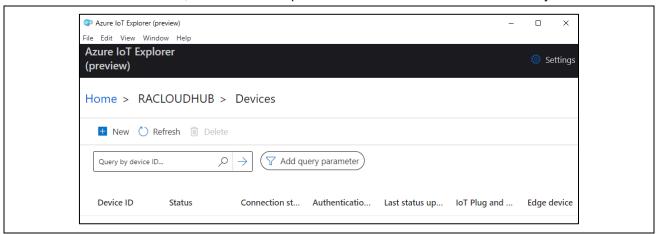


Figure 29. Listed Devices

3.8 Register an IoT Hub Device

In this section, you create a new device instance and register it with the IoT Hub you created. You will use the connection information for the newly registered device to securely connect your physical device in a later section.

To register a device:

You can create a device with help of Azure IoT Explorer shown as follows.
 Click on New.

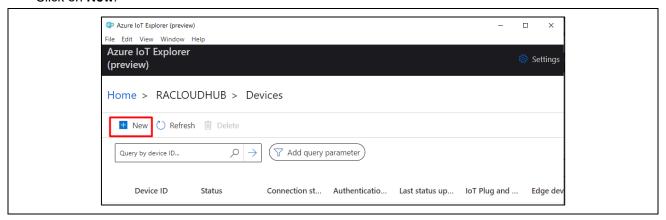


Figure 30. New Device Creation Process with Azure IoT Explorer

2. In this stage, you have to enter the Device ID, Authentication type, Primary thumbprint, Secondary thumbprint, and then click on **Create**. Use the fingerprint generated in Figure 23 in the section 3.5. Certificate Creation Process, for the primary and secondary thumbprints. Follow steps 1-5 numbered in the Figure 31, to create the device.

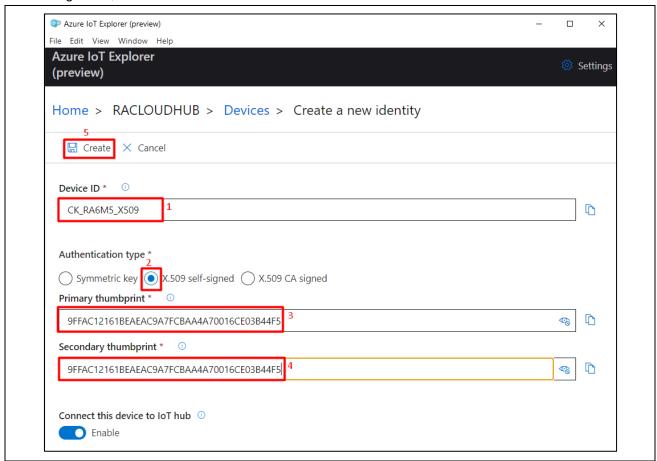


Figure 31. Naming, Authentication type, and Thumbprints

3. You can see your created device in the Devices section of Azure IoT Explorer.

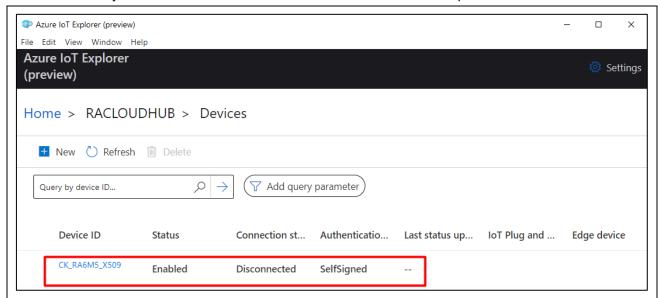


Figure 32. Newly Created Device

3.9 Prepare the Device

To connect the device to Azure, modify a configuration file for Azure IoT settings (of your Device ID and Hostname), and build and flash the image to the device.

Add configuration

1. Import the application project into an empty e² studio. Open sample_config.h and make the changes to the configuration as shown in the snapshot with the option USE_DEVICE_CERTIFICATE.

```
flash_hp.c
                   ■ sample_config.h ×
                      · /*
                                      Copyright (c) Microsoft Corporation. All rights reserved.
                                                                                                                                      */
   11
   12
                      #ifndef SAMPLE_CONFIG_H
                        #define SAMPLE_CONFIG_H
   13
   14
15
                      extern __cplusplus
extern __C" {
                        extern
#endif
   18
                      #include "nx_azure_iot_hub_client.h"
#include "nx_azure_iot_provisioning_client.h"
   20
21
22
23
24
25
26
27
28
29
30
                      ⊕/* This sample uses Symmetric key (SAS) to connect to IoT Hub by default, simply defining USE_DEVICE_CERTIFICATE and setting your device certificate in sample_device_identity.c to connect to IoT Hub with x509 certificate. Set up X.509 security in your Azure IoT Hub, refer to https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-security-x509-get-started */
                       #define USE_DEVICE_CERTIFICATE
                         TODO's: Configure core settings of application for your IoTHub.
    31
                         #define SAMPLE_PNP_MODEL_ID "dtmi:renesas:ra:ckra6m5:AZCKRA6M5ETH;2"
   33
34
35
36
37
38
                       ⊖/* Defined, DPS is enabled.
//#define ENABLE_DPS_SAMPLE
                             Defined, telemetry is disabled, */
                         #define DISABLE_TELEMETRY_SAMPLE
                         #define DISABLE_C2D_SAMPLE
   39
                                                       ethod is disabled. */
                         #define DISABLE_DIRECT_METHOD_SAMPLE
   41
   42
                         #define DISABLE_DEVICE_TWIN_SAMPLE
   43
                       45
```

Figure 33. Configuration Changes to sample_config.h

Constant name	Value
USE_DEVICE_CERTIFICATE	1

2. Open nx_azure_iot_cert.c to check the root CA data following the Azure IoT Hub. This application has been migrated to use the root CA "DigiCert Global Root G2"

Figure 34. Root CA certificate in this project

Note: IoT Hub in Azure Cloud can change the root CA in the future. So please check and update the new root CA at <u>How to migrate hub root certificate - Azure IoT Hub | Microsoft Learn</u> if you cannot connect to Azure IoT Hub due to the expiration of the root CA issue.

You can download the root CA file at: <u>DigiCert Root Certificates - Download & Test | DigiCert.com</u>
Steps to change the root CA data in this project:

- 1. Download the root CA.
- 2. Using command "\$xxd -i <file.cert> >> <output.c>" to convert file .pem to array in C.
- 3. Copy value into src/nx azure iot cert.c

3.10 Building and Running the Application

The project is now ready to be compiled. Press the **Build** (hammer icon) to start building the project.

Figure 35. Starting to Build the Project

The toolchain will report compilation and build status to the console pane in the lower-right corner of e² studio. When the building has been completed, confirm that there are zero errors and few warnings. Warnings, if any, may result from highly restrictive compilation warnings settings being applied by e² studio to third-party code.

Figure 36. Compilation and Build Status Report

3.11 Download and Run the Project

- To connect power to the board, connect the USB cable to the CK-RA6M5 v2 board's J28 connector (USBC) and the other end to the PC USB port.
- 2. Connect the second USB cable to J10 connector of the CK-RA6M5 v2 board and the other end to the second USB port of the PC (this will be the console port for the application). Users are required to use the Command Line Interface (CLI) to configure and run the application.
- 3. Make sure the Ethernet cable is connected to the RJ-45 connector (J5) of the board and the other end to the router/switch as applicable for internet access.
- 4. In e² studio, open the **Debug Configurations** dialog and launch the **azure_ck_ra6m5_v2_ethernet_app.elf** debug configuration.

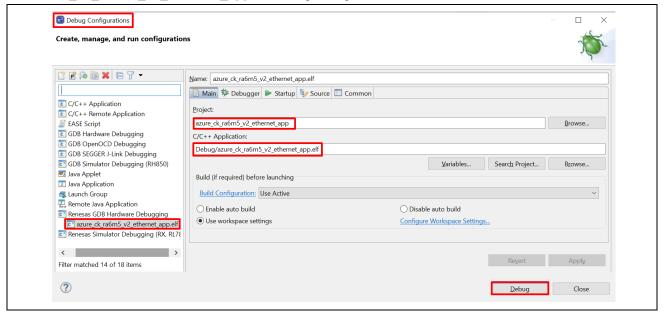


Figure 37. Start Debug

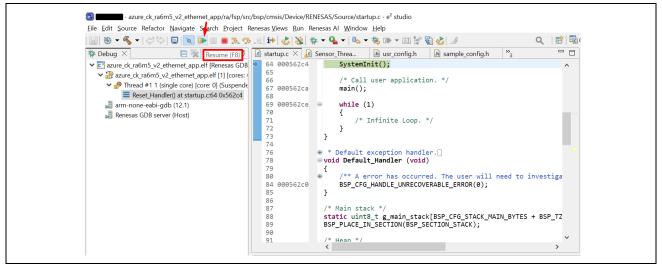


Figure 38. Resume the Debug

- 5. To view output, you have to use a serial terminal like tera term. To know your COM port, on the host PC, open the Windows Device Manager. Expand **Ports (COM & LPT)**, locate **JLink CDC UART Port (COMxx)**, and note down the COM port number for reference in the next step.
 - Note: JLink CDC UART drivers are required to communicate between the CK-RA6M5 v2 board and the terminal application on the host PC.

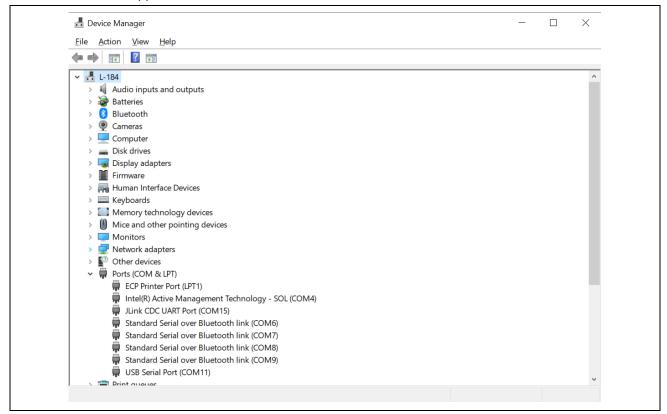


Figure 39. JLink CDC UART in Windows Device Manager

6. Open Tera Term, select **New connection**, select **Serial**, and for the port, enter **COMxx**: **JLink CDC UART Port** (**COMxx**) and click **OK**.

Note: Please use Tera Term version 4.99 to ensure the application functions correctly.

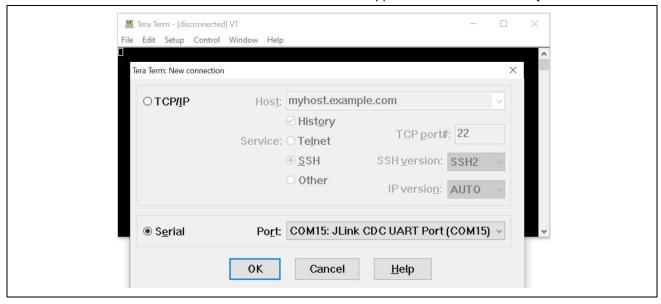


Figure 40. Selecting the UART Port on Tera Term

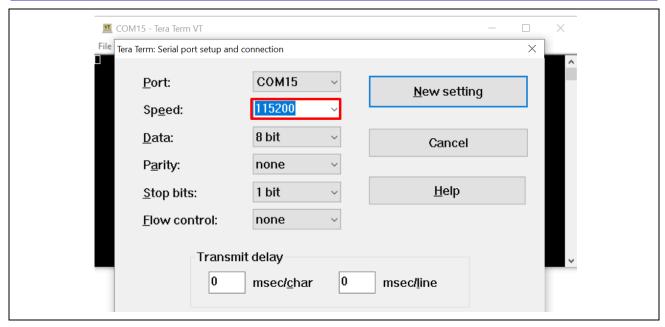


Figure 41. Select 115200 on the Speed Pulldown

- 7. Using the setup menu pull-down, select **Serial port**... and ensure that the speed is set to **115200**, shown as follows.
- 8. Complete the connection. The Configuration CLI menu will be displayed on the console, shown as follows.

Note: Please reset the board by pressing the S1 user switch if the menu is not displayed.

```
☐ COM15 - Tera Term VT — X

File Edit Setup Control Window Help

> Select from the options in the menu below:

MENU

1. Get FSP version
2. Data flash
3. Get UUID
4. Start Application
5. Help

> Enter (1-5) to select options
```

Figure 42. Main Menu

9. Here, you can select options from the menu by pressing keys **1 to 5**. Press the spacebar to go to the previous menu, FSP version, and UUID details as follows.

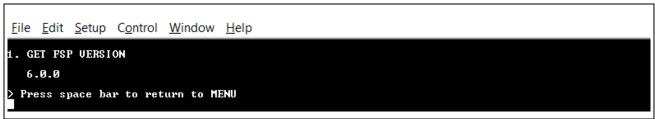


Figure 43. FSP Version Information

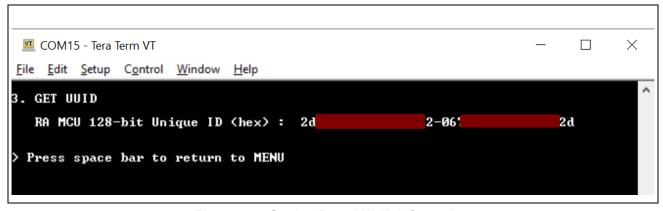


Figure 44. Getting Board UUID Information

3.12 Storing Device Certificate, Host Name, Device ID

Please reset the board by pressing the S1 user switch if the menu is not displayed.

Figure 45. Main Menu

1. Press **2** on the Main Menu to display Data Flash-related commands as shown in the following screenshots. This sub-menu has commands to store, read, and validate the data.

```
COM15 - Tera Term VT

File Edit Setup Control Window Help

Select from the options in the menu below:

2. DATA FLASH

a) Info
b) Write Certificate
c) Write Private Key
d) Write MQTT Broker end point
e) Write IOT Thing name
f) Read Flash
g) Check credentials stored in flash memory
h) Help

> Enter (a - h) to select options (or press space bar to return to main MENU)
```

Figure 46. Data Flash Menu

2. Press **b** for Write Certificate.

Figure 47. Select the File to Write Data in the Data Flash

3. Go to Tera Term > File > Send file

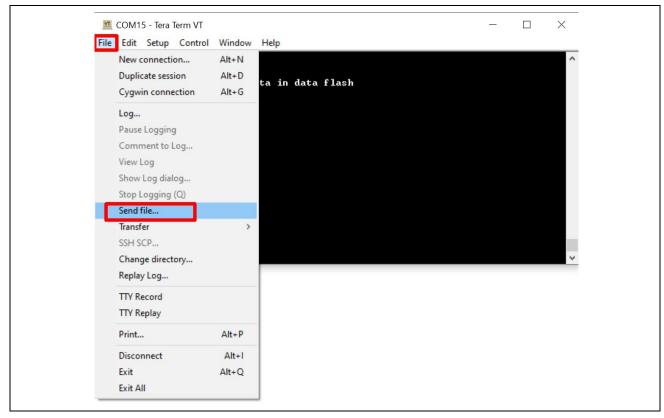


Figure 48. Send File Option in File Menu

4. Browse to the folder where X509 certificates are generated as part of section 3.5, Certificate Creation Process. Select **cert.pem**. Press **Open**.

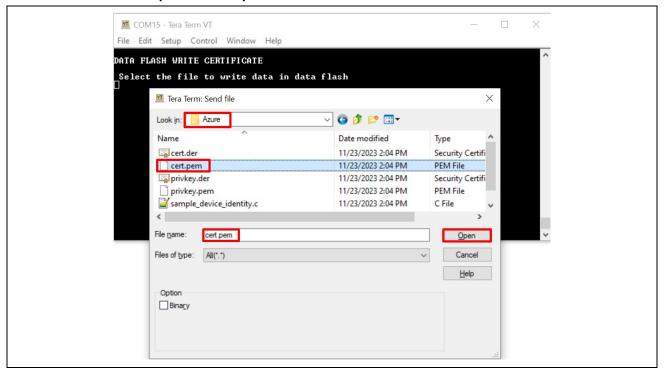


Figure 49. Browse, Select, and Open the File to be Written

5. Status of Device Certificate Downloading is as follows.

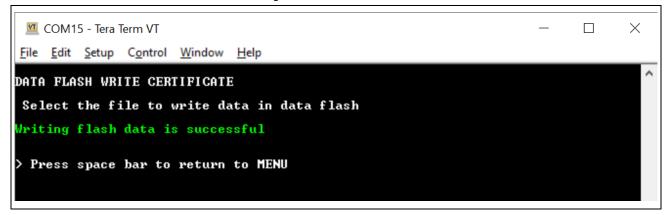


Figure 50. Status of File Writing Process

- To store the device's private key, go back to the data flash menu by pressing the space bar key. Press c in the Data Flash menu, go to Tera Term > File > Send file, select file privkey.pem from the folder where you have generated certificates.
- 7. To store the MQTT Broker endpoint, that is, **Host Name**, first copy Host Name without double quotes, then **press d** in **the Data Flash** menu, go to **Tera Term > Edit > Paste <CR>;** you will get the copied Host Name in the clipboard. Please verify and confirm it, and press **OK**.

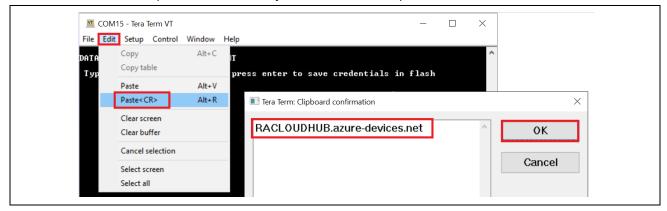


Figure 51. Input MQTT Broker Endpoint, aka Host Name

8. To store IoT Thing Name, that is, **DEVICE ID**, first copy the DEVICE ID created without double quotes, **press e** in the **Data Flash** menu, and follow the procedure in step 5.

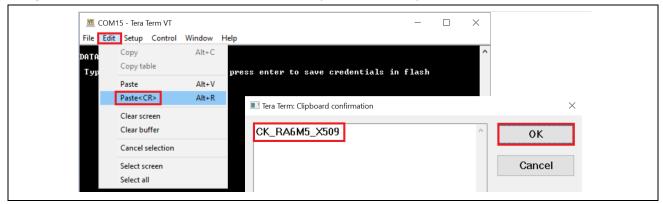


Figure 52. Input Device ID, aka IoT Thing name

9. To verify the data stored in Data Flash, press f in the Data Flash menu, scroll down to see the data.

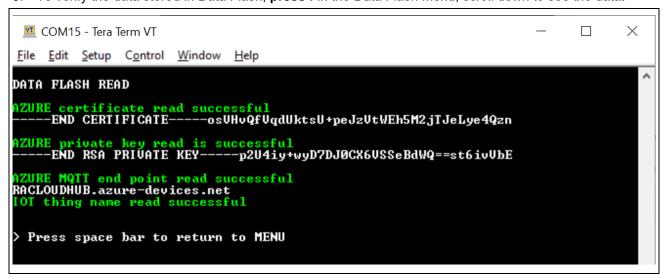


Figure 53. Scroll Down and Verify the Data Stored in the Data Flash

- 10. To check the credentials stored in Data Flash, press g.
- 11. Press the spacebar to go to the previous menu or main menu.
- 12. Press 4 to start the application from the main menu.
- 13. Serial terminal output on successful start of application.

Figure 54. Device Connected to Azure IoT Hub

14. Sensor data output on serial terminal.

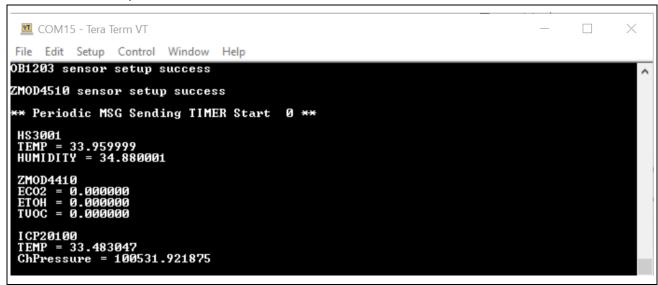


Figure 55. Sensor Data on Serial Terminal

3.13 Send Device to Cloud Message

With Azure IoT Explorer, you can view the flow of telemetry from your device to the Cloud. To view telemetry in Azure IoT Explorer:

- In IoT Explorer, select your created IoT Hub, and click on View Devices in this hub, click on the created device (Device ID). Finally, select the Telemetry (Home > Your Host Name > Devices > CK_RA6M5_X509 > Telemetry). Confirm that the use built-in event hub is set to Yes.
 Note: As shown below, we use Host Name as RVCTESTINGNEW.
- 2. Select Start.
- 3. View the telemetry as the device sends messages to the Cloud.

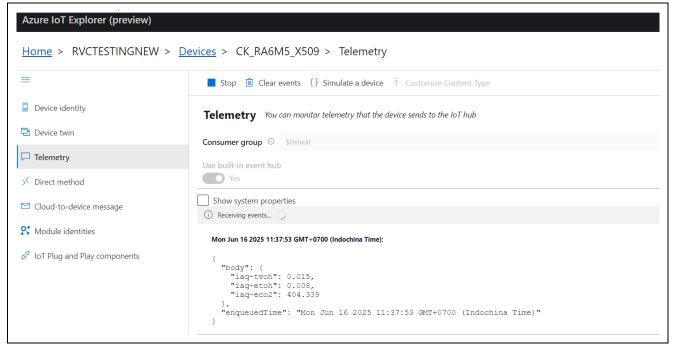


Figure 56. Device Telemetry Details

3.14 Send Cloud-to-Device Message

To send a Cloud-to-device message in Azure IoT Explorer:

- In IoT Explorer, select Cloud-to-device message.
- 2. Enter the message in the Message body = "LED", Key = LED, Value = Given in Table
- 3. Check Add timestamp to the message body.
- 4. Select Send message to device.

LED On Board	Value	
LED2 (Tri-Color LED)	TC_GREEN_ON, TC_RED_ON, TC_BLUE_ON	
	TC_GREEN_OFF, TC_RED_OFF, TC_BLUE_OFF	
LED4 BLUE	BLUE_ON, BLUE_OFF	

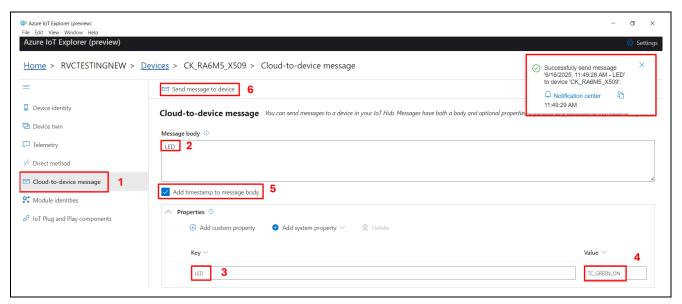


Figure 57. Device Telemetry Details

5. In the terminal window, you can see that the message is received by the IoT Device.

```
OB1203
spo2_val = 0
heart_rate_Val = 0
breathing_rate = 0
r_p2p = 0.000000

HS3001
TEMP = 31.549999
HUMIDITY = 45.750000

ZMOD4410
ECO2 = 416.145172
ETOH = 0.032433
TVOC = 0.060975
Topic Received from Cloud TC_GREEN_ON

3CGREEN LED ON
```

Figure 58. Serial Terminal Output

4. Importing, Building, and Loading the Project

For a quick validation of this application project, import and build the project. The following steps show how to import, build, and download the project.

Note: To run the application project successfully and to communicate with the Cloud, follow the instructions forsetting up the Cloud interface as described in section 3.3, which details making changes to the credentials and creating your own cloud devices, running and validating the application.

4.1 Importing

The application project bundled as part of this app note can be imported into e² studio using the instructions provided in the RA FSP User's Manual. See Section Starting Development > e² studio ISDE User Guide > Importing an Existing Project into e² studio ISDE.

4.2 Building the Latest Executable Binary

Upon successfully importing and/or modifying the project into the e^2 studio IDE, follow the instructions provided in the RA FSP User's Manual to build an executable binary/hex/mot/elf file. See Section Starting Development > e^2 studio ISDE User Guide > Tutorial: Your First RA MCU Project > Build the Blinky Project.

4.3 Loading the Executable Binary into the Target MCU

The executable file may be programmed into the target MCU through any one of three means.

4.3.1 Using a Debugging Interface with e² studio

Instructions on how to program the executable binary are found in the latest *RA FSP User Manual* (https://www.renesas.com/us/en/software-tool/flexible-software-package-fsp). See section Starting Development > e² studio ISDE User Guide > Tutorial: Your First RA MCU Project > Debug the Blinky Project.

This is the preferred method for programming as it allows for additional debugging functionality available through the on-chip debugger.

4.3.2 Using J-Link Tools

SEGGER J-Link Tools, such as J-Flash, J-Flash Lite, and J-Link Commander, can be used to program the executable binary into the target MCU. Refer to User Manuals UM08001 and UM08003 on www.segger.com.

4.3.3 Using Renesas Flash Programmer

The Renesas Flash Programmer (https://www.renesas.com/us/en/software-tool/renesas-flash-programming-qui) provides usable and functional support for programming the on-chip

flash memory of Renesas microcontrollers in each phase of development and mass production. The software supports all RA MCUs, and the software user's manual is available on renesas.com.

5. Next Steps and References

- Refer to the following GitHub repository for various FSP modules example projects and application projects (https://github.com/renesas/ra-fsp-examples/)
- Refer to Establishing and Protecting Device Identity using SCE7 and Security MPU (R11AN0449) on renesas.com
- Refer to Securing Data at Rest Utilizing the RA Security MPU (R11AN0416) on renesas.com
- Refer to the Azure GitHub link for more details on Azure SDK for Embedded C (https://github.com/Azure/azure-sdk-for-c)

6. MQTT/TLS References

- FSP v6.0.0 User's Manual (Flexible Software Package (FSP) | Renesas).
- Azure IoT documentation (https://docs.microsoft.com/en-us/azure/iot-hub/)

7. Known Issues and Limitations

- 1. Occasional outages in Cloud connectivity may be noticed during the demonstration due to changes in the Cloud server. Contact the Renesas support team for questions.
- 2. Currently, there is no support for direct device-to-device communications with Azure IoT Hub.
- 3. Device will reconnect after 65 minutes due to the SAS token refresh. Currently, it is under SDK control. Usersneed to know this when developing the application.
- 4. When running debug on e² studio, if the application is rerun multiple times, it might randomly occur an issue with i2c communication of the OB1203 sensor. Users need to reconnect the micro-USB cable (J10) and USB-C cable (J28) to reset the OB1203 sensor and run the application again.

Website and Support

Visit the following vanity URLs to learn about key elements of the RA family, download components and related documentation, and get support.

CK-RA6M5 v2 Kit Information <u>renesas.com/ra/ck-ra6m5</u>
RA Cloud Solutions <u>renesas.com/cloudsolutions</u>

RA Product Information renesas.com/ra
RA Product Support Forum renesas.com/ra/forum
RA Flexible Software Package renesas.com/FSP
Renesas Support renesas.com/support

Revision History

		Description	
Rev.	Date	Page	Summary
1.00	Mar.22.23		Initial release
1.01	May.05.23		Corrected the document number in the document footer
1.10	Dec.22.23		Updated to FSP 5.0.0
1.20	Sept.09.24		Updated to FSP 5.3.0
1.30	Jul.01.25		Updated to FSP 6.0.0

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

- 1. Precaution against Electrostatic Discharge (ESD)
 - A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
- 2. Processing at power-on
 - The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.
- 3. Input of signal during power-off state
 - Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.
- 4. Handling of unused pins
 - Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.
- Clock signals
 - After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
- 6. Voltage application waveform at input pin
 - Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).
- 7. Prohibition of access to reserved addresses
 - Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.
- 8. Differences between products
 - Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
 and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
 product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
 of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.