RENESAS Application Note

Renesas RA Family
RAG Booting Encrypted Image using MCUboot and
QSPI

Introduction

MCUboot is a secure bootloader for 32-bit MCUs. It defines a common infrastructure for the bootloader,
defines system flash layout on microcontroller systems, and provides a secure bootloader that enables easy
software update. MCUboot is independent of operating system and hardware and relies on hardware porting
layers from the operating system it works with. The Renesas Flexible Software Package (FSP) integrates an
MCUboot port starting from FSP v3.0.0. Users can benefit from using the FSP MCUboot Module to create a
Root of Trust (RoT) for the system and perform secure booting and fail-safe application updates.

The MCUboot is maintained by Linaro in the GitHub mcu-tools page https://github.com/mcu-tools/mcuboot.
There is a \docs folder that holds the documentation for MCUboot in .md file format. This application note
refers to the above-mentioned documents wherever possible and is intended to provide additional
information that is related to using the MCUboot module with Renesas RA FSP v3.0.0 or later.

To provide confidentiality of image data while in transport to the device or while residing on an external flash,
MCUboot has support for encrypting/decrypting images on-the-fly while upgrading. When upgrading the
image from the secondary slot to the primary slot, it is automatically decrypted after validation. Image
encryption is supported by FSP v3.8.0 or later.

For using MCUboot module with the internal flash in code flash linear mode without encryption support for
the RA6 Family MCUs, user can reference application project (R11AN0497). This application project should
be reviewed and followed if users want to create a MCUboot based secure bootloader from scratch.

For the Booting Encrypted Image using MCUboot and QSPI application project, a set of secure bootloader
and matching application projects using MCUboot and internal code flash without encryption is included. This
application project then walks the user through the updates to the bootloader to add encryption for the QSPI
based secondary image storage.

The example projects included in this application project are based on the EK-RA6M4 evaluation kit. The
application examples implemented image downloading to the QSPI secondary slot over USB PCDC.
MCUboot with encryption also supports internal flash encryption. The operations are very similar to the QSPI
usage and are not demonstrated in this application project.

For using MCUboot module with the internal code flash dual bank mode without encryption support for the
RA6 Family MCUs, user can reference application project (R11AN0570).

Required Resources
Development tools and software

e The e? studio ISDE v2024-07
e Renesas Flexible Software Package (FSP) v5.5.0
e SEGGER J-link® USB driver

The above three software components: the FSP, J-Link USB drivers and e? studio are bundled in a
downloadable platform installer available on the FSP webpage at renesas.com/ra/fsp.

e Python v3.9 or later - https://www.python.org/downloads/

Hardware

e EK-RA6M4 Evaluation Kit for RA6M4 MCU Group (http://www.renesas.com/ra/ek-rabm4)
e  Workstation running Windows® 10 and Tera Term console, or similar application
e Two USB device cables (type-A male to micro-B male)

R11ANO567EU0130 Rev.1.30 Page 1 of 41
Oct.21.24 RENESAS


https://github.com/mcu-tools/mcuboot
http://www.renesas.com/fsp
https://www.python.org/downloads/
http://www.renesas.com/ra/ek-ra6m4

Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

Prerequisites and Intended Audience

This application note assumes you have some experience with the Renesas e? studio IDE and Arm®
TrustZone® based development models with e? studio. Users are required to read the entire FSP User’'s
Manual on the MCUboot Port section and review the RA6 Basic Secure Bootloader Design using MCUboot
Application Project (R11AN0497) prior to moving forward with this application project. In addition, the
application note assumes that you have some knowledge of cryptography. Prior knowledge of Python usage
is also helpful.

The intended audience are product developers, product manufacturers, product support, or end users who
are involved with designing application systems involving usage of a secure bootloader.

Using this Application Note

Section 1 covers the general overview of MCUboot and the application upgrade methods supported by the
MCUboot. If you have worked with MCUboot module-based bootloader previously, this section can be
bypassed.

Section 2 covers the general flow of architecting a system using FSP MCUboot module. If you have
previously worked with the MCUboot system using FSP, this section can be bypassed.

Section 3 covers the walk throughs of running the initial example projects which do not include encryption
support. These example projects use swap test update mode and internal code flash for both primary and
secondary applications. Image downloader using XModem over USB PCDC is implemented in the primary
and secondary applications. MCUboot provided example keys are used for image sighing and encryption
support.

Section 4 covers adding encryption support to the bootloader and applications using internal code flash for
both the primary and secondary applications.

Section 5 covers updating the projects created in section 4 to use QSPI for secondary image storage. Note
that for the user’'s convenience, an end solution for this section is provided for the user’s reference.

Section 6 covers using custom image signing and image encryption keys in the projects created in Section 5.

Section 7 covers production-related topics.

R11ANO567EU0130 Rev.1.30 Page 2 of 41
Oct.21.24 RENESAS



Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

Contents

1. MCUDOOt FUNCHONANTIES OVEIVIEW .....ceviiiiiii e eee e e et e e e e e et a e e e e e e e e eaaraaaeeeeeeas 5
1.1 Validate Application before Booting and Updating............occcuuiiiiieeeiiiiiiiiieece s ccireee e e e e s snvnnee e e e e e e 5
0 00 Y =1 103 Y/ o) (=Y Y o o] [fox= L o g IS0 oo = L = SRR 6
2. Architecting an Application with MCUboot Module using FSP..............uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiene 6
2.1 MCU Memory Configuration using MCUboot Module With FSP ...........ccccoiiiiiii e 6
2.2 Application Image Format for ENCrypted IMage .......cuuviiviieiiiiiiiieie e e e e e e snnrn e e e e 7
2.3 Designing Bootloader and the Initial Primary Application OVEIVIEW ..........ceeeveeeeiiiiiiiiirieeeeeessciiinneeeeeen 7
2.4 General Guidelines using the MCUboot Module Across RA Family MCUS ..........cccoviiiiiniie e, 7
2.5  CUStOMIZE the BOOIOAUET ........eeeiiiiieie e ettt e e et e e e e e e s st e e e e e e e e santnteeeeeeeeesannsnnaeeeeaeeeas 8
P I o (oo [N [od1To] g R TV o] oo H PP PP PRT T PTPPRP 8
2.6.1  KEY PrOVISIONING .. .uuuuiiiiiiiiiiiiiiiiiiiitiiiieie s 8
2.6.2 Make the bootloader immutable for enhanced SECUNILY ... 8
2.6.3 Advance the device lifecycle states prior to the deploy the product to the field..............ccooeeieiiiiieiennnn. 8
3.  Running the Initial EXample PrOJECLS .....ccooiiiiiiiiiei e e e e e aaeees 8
3.1 Set Up the Python Image Signing ENVIFONMENT...........uuiiiii s 10
3.2  Running the Initial EXamPle PrOJECES. ... ...uuiuiiiiiiiiii s 10
3.2.1  SEtUP the HAIOWAIE ..ottt et e et e e e st bt e e e abb e e e e sbbeeeeabbeeeeaae 10
K 1] o 1o i { g T o ][ od £ T PP PPUPRPTPPPRRN 11
3.2.3 Configure the Python Signing ENVIFONMENT .........coiiiiiiiiiiie et 11
3.2.4 Compile All tNE PrOJECLS ....uuuiiiiiiiiiii s 12
3.2.5 Debug the APPIICALIONS .......uueiiiiiiiiii s 13
3.2.6 Downloading and Running the Secondary APPlCAtiON ............ccccoiiiiiiiiiiiii e 13
4. Add Encryption to the Initial EXample Project..........ccooiiiiiiiiiiii e, 16
4.1 Configure the Bootloader for ENCryption SUPPOIT ... 16
4.2 Configure the Application Project for ENCryption SUPPOIt......ccooeeeiieiieeeeicieceeee e 22
5. Use QSPI as Secondary StOrage AlBa .......cccuueeiuuuuiiie e e e e et e e e e e eeeeeaa e eeeeas 26
5.1 Configure the Bootloader to Use QSPI for Secondary Application Storage ..........ccceeeveeeeniiiiiiiieeeeeennn. 27
5.2  Update the Primary Application Project to SUPPOrt QSPl ........uuiiiiiiiiiiie e 30
6. Using Custom Signing Key and ENCryption KeY...........ooo oo 32
I Y o] 0 1= 1o 1) G TSR 38
7.1  Making the Bootloader for Cortex-M33 IMmuULabIe ... 38
7.2  Making the Bootloader for Cortex-M4 Immutable ... 39
7.3 Device Lifecycle Management for Renesas RA CorteX-M33 MCUS...........coiiiiiiiiiiiiiiiiiiee e 39
7.4  Device Lifecycle Management for Renesas RA CorteX-M4 MCUS..........c.cuueeiiiiiiiiiiiiiiieeee e 39
S T U= (=T =T Lol 39
R11AN0567EU0130 Rev.1.30 Page 3 of 41

Oct.21.24 RENESAS



Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

S TV =T o 1S £ I= T To S o] oL A PSR 40
YAV E 0] T 151 (o] Y2 41
R11ANO0567EU0130 Rev.1.30 Page 4 of 41

Oct.21.24 RENESAS



Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

1. MCUboot Functionalities Overview

MCUBoot handles the firmware authenticity check after start-up and the firmware switch part of the firmware
update process. Downloading the new version of the firmware is out-of-scope for MCUBoot. Typically,
downloading the new version of the firmware is functionality that is provided by the application project itself.
This application project provides an example of this functionality using XModem transfer protocol over USB
PCDC port to download image to the external QSPI secondary image storage area.

1.1 Validate Application before Booting and Updating

For applications using MCUboot, the MCU memory is separated into MCUboot, Primary App, Secondary App
and the Scratch Area. The following is an example of the single image MCUboot memory map when using
the internal code flash.

Scratch Area

Secondary App

Primary App

MCUboot

Figure 1. Single Image MCUboot Memory Code Flash Map

The following is an example of the single image MCUboot memory map when using external flash storage as
the secondary storage area.

Scratch Area
Plaintext
Primary App
Encrypted
mcuboot Secondary App
0x0 0x60000000
MCUboot Memory Map with QSPI

Figure 2. Single Image MCUboot Flash Memory Map with QSPI

For more information on the MCUboot memory layout, refer to the Flash Map section of the reference
MCUboot website.

The functionality of the MCUboot during booting and updating follows the process below:

The bootloader starts when CPU is released from reset. For TrustZone®-based MCUs, MCUboot is designed
to run in Secure mode with all access privileges available to it. If there are images in the Secondary App
memory marked as to be updated, the bootloader performs the following actions:

1. The bootloader will authenticate the Secondary image.

2. Upon successful authentication, the bootloader will switch to the new image based on the selected
update method. Available update methods are introduced in section 1.1.1.

3. The bootloader will boot the new image.

If there is no new image in the Secondary App memory region, the bootloader will authenticate the Primary
applications and boot the Primary image.

R11ANO567EU0130 Rev.1.30 Page 5 of 41
Oct.21.24 RENESAS


https://docs.mcuboot.com/design.html#flash-map

Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

The authentication of the application is configurable in terms of the authentication methods and whether the
authentication is to be performed with MCUboot. If authentication is to be performed, the available methods
are RSA or ECDSA. The firmware image is authenticated by hash (SHA-256) and digital signature validation.
The public key used for digital signature validation can be built into the bootloader image or provisioned into
the MCU during manufacturing. In the examples included in this application project, the public key is built into
the bootloader images.

The image header needs to flag this image as ENCRYPTED (0x04) and a TLV with the key must be present
in the image.

There is a signing tool included with the MCUboot: imgtool .py. This tool provides services for creating

Root keys, key management, and signing and packaging an image with version controls. User needs to read
the MCUboot documentation to use and understand these operations.

1.1.1 Encrypted Applications Update

The major use case for encrypted image update is for external flash update image storage. External flash
content is prone to theft in many ways. It is critical to secure the external flash secondary image storage area
via encryption. Another relatively rare use case is the internal flash update image storage if the image is
downloaded via insecure channel.

Encrypted image boot is supported with swap and overwrite upgrade mode on all RA MCUs via FSP. Direct
XIP upgrade mode is not supported. The cryptographic operation for RA MCU is supported by MbedCrypto
and TinyCrypt. User can reference Table 1 for the selection of the cryptographic library.

We recommend acquiring more details on the upgrade mode by reviewing the corresponding sections in
application project (R11AN0497) as well as the MCUboot design page:

https://github.com/mcu-tools/mcuboot/blob/master/docs/design.md.

If swap upgrades are enabled, the image located in the primary slot, also having the ENCRYPTED flag set
and the corresponding Type Length Value (TLV) field present, the primary image is re-encrypted while
swapping to the secondary slot.

e The image is encrypted using AES-CTR-128, with a counter that starts from zero (over the payload
blocks) and increments by 1 for each 16-byte block. AES-CTR was chosen for speed/simplicity and
allowing for any block to be encrypted/decrypted without requiring knowledge of any other block
(allowing for simple resume operations on swap interruptions). MCUboot also supports AES-CTR-256,
this is not supported from FSP side.

2. Architecting an Application with MCUboot Module using FSP

This section provides an overview of the FSP MCUboot module, which integrates MCUboot as a module into
the FSP. The available upgrade modes and memory architecture design are discussed. In addition, signing
and mastering new images are discussed.

2.1 MCU Memory Configuration using MCUboot Module with FSP

For the general support information, the user can reference the MCUboot port section of the FSP User’s
Manual.

It is also highly recommended that the user reviews the MCUboot encrypted image page for background on
the encryption scheme.

https://github.com/mcu-tools/mcuboot/blob/main/docs/encrypted images.md

Users can gain hands on experience in configuring the memory regions using the MCUboot module in the
walkthrough section in section 3, section 4 and section 5.

R11ANO567EU0130 Rev.1.30 Page 6 of 41
Oct.21.24 RENESAS


https://github.com/mcu-tools/mcuboot/blob/master/docs/imgtool.md
https://github.com/mcu-tools/mcuboot/blob/master/docs/design.md
https://github.com/mcu-tools/mcuboot/blob/main/docs/encrypted_images.md

Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

2.2 Application Image Format for Encrypted Image

Figure 3 is a more detailed application image format that can be referenced to understand the booting
process.

RABM4
Code Flash

Scratch Area

. Trailer
Primary araler

slot

Trailer

Application 1
(Plaintext) | | Secondary
e Application2 | I slot
= (Encrypted)

Bootloader

Hea_der

Figure 3. Application Image Format

To signal the bootloader as an encrypted image, the application adds the ENCRYPTED flag in the header
area. In addition, the image encryption key is included encrypted in the Trailer area. The key that is used to
encrypt the image encryption key is shared between the image encryption process and the image decryption
process via ECIES P256 or RSA OAEP 2048.

2.3 Designing Bootloader and the Initial Primary Application Overview

A bootloader is typically designed with an existing initial primary application. The following are the general
guidelines for designing the bootloader with the initial primary application.

e Develop the bootloader and analyze the MCU memory resource allocation needed for the bootloader
and the application. The bootloader memory usage is influenced by the application image update mode,
signature type and whether to validate the Primary Image.

e The bootloader maintains a memory map of all the different images. User needs to perform the memory
usage analysis of the application and update the bootloader defined memory map for consistency and
adjust as needed.

¢ When changing the image authentication and image update mode, the bootloader memory allocation
may need to be adjusted.

Most of these design aspects are addressed in the walk-through in this application note.

2.4 General Guidelines using the MCUboot Module Across RA Family MCUs

The MCUboot module is supported on all RA Family MCUs. The cryptographic support is provided via
MbedTLS Crypto only module and Tiny Crypt module.

Users can reference the following table when choosing the cryptographic module with or without encryption
support.

Table 1. Cryptographic Support for RA MCUs

Crypto Stack RA2 No RA2 with RA4E1, RAAT1, RAGEL, RAGE2, RA6M1/M2/M3, RA6T1,
Encryption | Encryption | RA4W1, RA4M1, RA6T2/T3 with RA4M2/M3, RA6M4/M5
or without Encryption * with or without Encryption
MbedTLS X
(Crypto Only)
HW
MbedTLS X
(Crypto Only)
SW
R11ANO567EU0130 Rev.1.30 Page 7 of 41

Oct.21.24 RENESAS



Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

TinyCrypt X
(HW AES)

TinyCrypt X
(SW Only)

Note *: some of the MCUs in this group have AES Hardware Support which can be used in the MCUboot
based encrypted application booting. Please refer to the Hardware User’'s Manual to understand if this
security feature exists on the MCU of interest.

2.5 Customize the Bootloader

The following are some aspects that need to be considered when customizing the bootloader in a product
design.

e Customized method to download the application.
e Adjust the flash memory allocation in the bootloader project for the bootloader as well as the application
image.

Porting the EK-RA6M4 example bootloader and application projects to EK-RA6M3 and EK-RAG6M5:

e The user is recommended to recreate the project with all the stack components in e2 studio. In this step,
the bootloader size and image size can be adjusted based on the MCU flash memory size and the
application image size.

e There is no code update needed when porting the included example projects to RA6M3 and RA6M5.
After the configurator stack is created, the user can copy over the application source code under \src
folder to the newly created project \src folder.

2.6 Production Support

2.6.1 Key Provisioning

By default, the public key is embedded in the bootloader code and its hash is added to the image manifest
as a KEYHASH TLV entry. See section 6 for more details about the public key and private key which are
used for testing purposes. For production support, the user needs to follow the example shown in key.c to
add their public key. A more secure solution is to inject the image verification public key. In addition, the user
needs to update the private key for application image signing. This application project provides examples of
how to use imgtool.py to create custom image signing keys and encryption keys in section 6.

As an alternative, the bootloader can be made independent of the included test keys by setting the
MCUBOOT HW KEY option. In this case the hash of the public key must be provisioned to the target device
and MCUboot must be able to retrieve the key-hash from there. For this reason, the target must provide a
definition for the boot retrieve public key hash () function that is declared in
boot/bootutil/include/bootutil/sign key.h. Itis also required to use the full option for the --
public-key-format imgtool argument in order to add the whole public key (PUBKEY TLV) to the image
manifest instead of its hash (KEYHASH TLV).

During boot, the public key is validated before it is used for signature verification. MCUboot calculates the
hash of the public key from the TLV area and compares it with the key-hash that was retrieved from the
device. This way, MCUboot is independent from the public key(s). The key(s) can be provisioned any time
and by different parties.

2.6.2 Make the bootloader immutable for enhanced security

For Cortex-M33 MCU, refer to section 7.1 to make the bootloader immutable. For Arm® Cortex-M4 MCU,
refer to section 7.2 to make the bootloader immutable.

2.6.3 Advance the device lifecycle states prior to the deploy the product to the field

For Cortex-M33 MCU, user can refer to section 7.3 for the device lifecycle management of the MCU. For
Cortex-M4 MCU, user can refer to section 7.4 for the device lifecycle management of the MCU.

3. Running the Initial Example Projects

This section provides a walkthrough of running the included initial example projects. The initial projects use
internal flash for both primary and secondary applications. To demonstrate the image encryption support,

R11ANO567EU0130 Rev.1.30 Page 8 of 41
Oct.21.24 RENESAS



Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

instructions on how to add encryption support to these projects and change the secondary slot from the
internal flash to external QSPI are provided in the next section.

To learn how to establish a bootloader using MCUboot module from scratch, user can reference application
project R11AN0497.

Prior to signing the application project, the Python package needs to be installed. The instructions on how to
install the Python components used for MCUboot is included in section 3.2.3.

Unzip MCUboot Encryption Initial Projects.zip you can see there are three projects:

Marme
app_rabrmd_primary_enc_xmodem
app_rabmd_secondary_enc_xmodem

ra_mecuboot_rabmd_swap_enc_gspi

Figure 4. Initial Example Projects
The description for these projects is provided in the following table.

Table 2. Description of the Initial Example Projects

Projects Description

app_raém4_primary_enc_xmodem | Primary application:
e Blinky thread blinks three LEDs (red, green, blue)
e Downloader thread implemented XModem over USB PCDC support.

app_raém4_secondary_enc_xmod | Secondary application:
em ¢ Blinky thread blinks blue LED.
e Downloader thread implemented XModem over USB PCDC support.

ra_mcuboot_raém4_swap_enc_qs | The bootloader project:

pi e The bootloader is configured with swap upgrade mode.
e Swap test mode is enabled in the secondary application.
e The maximum application image size is configured.

¢ All application images are plaintext.

e Secondary slot is in internal code flash.

e Code flash is linear mode.

In this section, we will run the example projects through the following stages.
First, we will erase the MCU. Then we will download the primary application to the internal flash.

In the next stage, we can use the image downloader implemented in the primary application to download the
secondary image to the secondary slot. Upon the next reboot, the secondary image will be booted.

Code flash state 1 Code flash state 2 Code flash state 3
Not used
0xF8000
Scratch Area Scratch Area Scratch Area
0xF0000 (swap upgrade) (swap upgrade) (swap upgrade)
Blank Application 2 icati
0x80000 pplication Appllca‘.‘t{‘on 1
At ot Application 1 » Application 1 » Application 2
ctive slot  mmmp laintext i laintext
“0x10000 p plaintext p
Bootloader Bootloader Bootloader
0x0
Figure 5. Operational Flow with Swap Update Mode
R11ANO0567EU0130 Rev.1.30 Page 9 of 41

Oct.21.24 RENESAS




Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

Note that in the initial application projects, the application image size is defined as 0x70000 which is the
maximum application image size based on the example bootloader included when using internal flash for
primary and secondary image storage with code flash linear mode.

3.1 Set Up the Python Image Signing Environment
Download and Install Python v3.9 or later.

Python v3.9 or later - https://www.python.org/downloads/

Set up the Python development environment by following section 3.2, step 3.2.3. Note that this step only
needs to be performed once.

3.2 Running the Initial Example Projects

Use the following steps to run the included initial example projects. The instructions on establishing the initial
bootloader are provided in the application project R11AN0497 which is available for download on Renesas
website.

3.2.1 Set Up the Hardware

e The default jumper setting of EK-RA6M4 is used for the example projects. In particular, ensure USB FS
device mode is set up properly: connect pin 2, 3 on J12, conn ect jumper J15.

e Connect J10 (USB Debug) using a USB micro to B cable from EK-RA6M4 to the development PC to
provide power and debug connection using the on-board debugger.

e Connect J11 (USB FS) using a USB micro to B cable from EK-RA6M4 to the development PC to provide
USB Device connection.

Once the EK-RA6M4 is powered up, the user needs to initialize the MCU prior to exercising the bootloader
project. This will create a clean environment to start the bootloader project verification.

Erase the entire MCU flash using J-Flash Lite.

J-Flash Lite is a free, simple graphical user interface which allows downloading into flash memory of target
systems. J-Flash Lite is part of the J-Link Software and Documentation package that is installed when the
J-Link software & documentation pack is installed.

1. Touse J-Flash Lite, connect the USB Debug port J10 to the PC and launch J-Flash Lite. Select the
Device and debug Interface and communication speed.

ﬂ SEGGER J-Flash Lite V7.98b - X
Device Interface
] s -] [som0ke ~

Figure 6. Launch the J-Flash Lite

2. Click OK. In the next screen, select Erase Chip.

File Help
Target
Device Interface Speed
[R7FABMAAF | [swo | [4000 ktz |
Data File (bin / hex /mot fsrec/..) Prog. addr. (bin file only)
| | | 0x00000000 | I Erase Chip Ir
Figure 7. Select Erase Chip
R11ANO567EU0130 Rev.1.30 Page 10 of 41

Oct.21.24 RENESAS



https://www.python.org/downloads/
https://www.segger.com/downloads/jlink/

Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

3. Ensure the erase is successful.

Log

Connecting to J-Link...
Coppectips to target...
Erasing...
Done.

Figure 8. Erase Successful

3.2.2 Import the Projects

For new users, please refer to the FSP User's Manual section on Importing Projects into the IDE for
guidelines.

Import Projects — .

L
Select a directory to search for existing Eclipse projects. f A

(®) Select root directe Wil Rcts\MCUboot_Encryption_Initial_Projectsied

() Select archive file: Brows

Projects:

app_rafmd_primary_enc_xmaodem (ChMCUboot\Lab_Projects), Select All
app_rafmd_secondary_enc_xmodem [CAMCUboot\Lab_Project:
ra_mecuboot_rafm4_swap_enc_gspi (§AMCUboot\Lab_Projectsy Deselect All

Figure 9. Initial Example Projects

3.2.3 Configure the Python Signing Environment

If this is NOT the first time you have used the python script signing tool on your computer, you can skip to
section 3.2.4.

If this is the first time you are using the Python script signing tool on your system, you will need to install the
dependencies required for the script to work.

Inthe ra mcuboot ratmé4 swap enc gspi project, openthe configuration.xml file, click Generate
Project Content. Navigate to the ra mcuboot raém4 swap enc gspi>ra>mcu-tools>MCUboot

folder in the Project Explorer and select Command Prompt. This will open a command window with the
path set to the \mcu-tools\MCUboot folder.

R11AN0567EU0130 Rev.1.30

Page 11 of 41
Oct.21.24 RENESAS




Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

») Includes
vBra

»
> arm

» &= board
= fsp

>
V &% mcu-tools

. MCUboot

» 5 ra_gen New >
(B src Go Into
' (= Debug Open in New Window
= racfg Show In Alt+Shift+W >
» = script <
" : . = Copy Ctri+C
¢ configuration.xr 16 g,
Paste Ctrl+V
R7TFAGMAAF3CF :
Delete Delete
ra_cfg.txt
Source >
X ra_mcuboot_ra€ M
= ove...
(?) Developer Assis
Rename... F2
x4 Import..
.23 Export..
Build Project Ctrl+B
Refresh F5
Index >
Build Targets >
Resource Configurations >
Source >
Team >
Compare With >
Restore from Local History...
3 C/C++ Project Settings Ctrl+Alt+P
Renesas C/C++ Project Settings >

3 Run C/C++ Code Analysis
M System Explorer

Ii Command Prompt I

v| Validate

Source >

Properties Alt+Enter

Figure 10. Open the Command Prompt
We recommend upgrading pip prior to installing the dependencies. Enter the following command to update
pIp:
python -m pip install --upgrade pip
Next, in the command window, enter the following command line to install all the MCUboot dependencies:
pip3 install --user -r scripts/requirements.txt

This will verify and install any dependencies that are required.

3.2.4 Compile all the projects
Use the following sequence to build the three projects. For each of these projects, open the
configuration.xml file, click Generate Project Content and then click to build the project.

1. ra mcuboot raébmé4 swap enc_ gspi
2. app_ra6tmé4 primary enc_xmodem
3. app_ra6m4 secondary enc_ xmodem

The signed image for the application projects is located under the \Debug folder:
/app_raébm4 primary enc_xmodem/Debug/app raémé4 primary enc_ xmodem.bin.signed

and

R11ANO567EU0130 Rev.1.30 Page 12 of 41
Oct.21.24 RENESAS



Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

/app_ raébmd4 secondary enc xmodem/Debug/app raém4 secondary enc_ xmodem.bin.signed

3.2.5 Debug the Applications
Choose to debug from primary application project app ratm4 primary enc xmodem.

Right click on project app _ra6m4 primary enc_ xmodem and select Debug As > Debug Configurations.
Select app_raém4_primary_enc_xmodem Debug_Flat > Startup and confirm that the following
configuration exists.

O ré} DBE X | B ? s Name: | app_rabm4_primary_enc_xmodem Debug_Flat
type filter text | Main |?§§‘- Debugger _ i5] Cumman‘ i) Suurce|
C/C++ Application Initialization Commands o
C/C++ Remote Application [JReset and Delay (seconds): | 3
=/ EASE Script e
GDB Hardware Debugging LlHale
GDB OpenOCD Debugging
[£7 GDE Sirmulator Debugging (RHA50)
Java Applet
Java Application
g Launch Group Load image and symbols
[Z, Remote lava Application Ny
w e ¥ Renesas GDB Hardware Debugging Filename Load type Offset (hex) __ On conny
7 app_rabmd_primary_enc_xmodem Debug_Fl Program Binary [app_rafmd_primary_enc_xrmodem.elf] Symbols only Yes
[c¥ zpp_rabmd_secondary_enc_xmodem Debug, app_rabmd_primary_enc_xmodem.bin.signed [CA\MCUb... Raw Binary 10000 Yes Edit...
ra_mcuboot_rabmd_swap_enc_qspi Debug_ /] ra_mcuboot_rabmd_swap_enc_gspi.elf [C: ootila.. Imageand Symbols es -
& boot_rabmd. Debug_F b B4 p. qspi.elf [CAMCUbootiL: Image and Symbal ] e ..
[£7 Renesas Simulator Debugging (RX, RL78)
Move up
Move down
<
Runtime Options
[ 5et program counter at (hex):
[] Set breakpoint at:
[ Resume
Run Commands
| | v

£ > |
Filter matched 15 of 17 items

® | Debug | | Close |

Figure 11. Debug Configurations

e Under the Startup configuration, verify the Load type of app raé6m4 primary enc xmodem.elf is
Symbols only rather than Image and Symbols.

e Theapp ra6tm4 primary enc xmodem.bin signed entry exists with Load type as Raw Binary and
the Offset is set to 0x10000 since that is the beginning of the primary application.

e The ra mcuboot raé6m4 swap enc gspi.elfis added with Load type as Image and Symbols with an
Offset of 0 since the bootloader starts from 0x0.

Click Debug, then Resume the execution twice by clicking U The primary application is then booted, and
the three LEDs are blinking.

3.2.6 Downloading and Running the Secondary Application
Use the following steps to download and run the secondary application.

1. Launch Tera Term and selected the enumerated COM port “USB Serial Device”. Your port number may
be different from this. Click OK.

@ Serial Port: [COMS: USB Serial Device (COM5) - |

‘ Cancel Help

Figure 12. Launch Tera Term

R11ANO567EU0130 Rev.1.30 Page 13 of 41
Oct.21.24 RENESAS



Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

2. Below message will be printed.

Please select from below menu options:

1 — Display image slot info
2 — Download and boot the new image (XModem>

Figure 13. Menu item

3. View option 1 result. We can see Secondary image is empty.

Please select from below menu options:

- Display image slot info
>1— Douwnload and boot the new image (XModem)

* Primary Image Slot =

Image version: 61.880 <(Rev: B, Build: @)
rimary image start address: 8008
Header size: 8x02080 (512 hytes>
rotected TLU size: 8008080 <@ bytes>

Image size: Gx08000B258 (45648 hytes)

= Secondary Image Slot ==

Image version: 255.255 (Rev: 65535, Build: -1>
Secondary image start address: 9x0008 6000
Header size: BxFFFF <65535 bhytes)

rotected TLU size: BxFFFF (65535 hytes>

Image size: BxFFFFFFFF (-1 hytes>

Please select from below menu options:

— Display image slot info
— Download and hoot the new image (XModem>

Figure 14. Primary and Secondary Slot Status

4. Now use the image downloader to load the new secondary application image. Choose option 2 to
download the secondary image.

2
Blank checking the secondary slot...
NS Secondary slot bhlank

Start Xmodem transfer...
System will automatically reset after successful download...

Figure 15. Initiate Secondary Image Download

R11ANO567EU0130 Rev.1.30 Page 14 of 41
Oct.21.24 RENESAS




Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

5. Choose File > Transfer > XMODEM > Send

‘T COMS5 - Tera Term VT

[File |€edit Setup Control Window Help

New connection... Alt+N
slot...

Duplicate session Alt+D
Cygwin connection Jisca et after successful download...
Log...
Pause Logging

nment to Le

ew Log

) dialog

Stop Logging (Q
Send file...

SSH SCP XMODEM > Receive...

Change directory... YMODEM
Replay Log... ZMODEM

Figure 16. Choose to use XModem

6. Select the signed secondary image binary.

l Y1 Tera Term: XMODEM Send

{ Look in: Debug | @ ¥

Name
ra
ra_gen

Src

| app_rabm4_secondary_enc_xmodem.bin.signed

app_rabm4_secondary_enc_xmodem.elf
app_rabm4_secondary_enc_xmodem.elf.in

B app_rabm4_secondary_enc_xmodem.map
app_rabm4_secondary_enc_xmodem.rpd
app_rabm4_secondary_enc_xmodem.sbd
app_rabm4_secondary_enc_xmodem.srec
app_rabm4_secondary_enc_xmodem.temp.bin
makefile
makefile.init
memory_regions.ld

BJ objects.mk

B sources.mk |

Figure 17. Select the Sighed Secondary Image

7. It takes about 25 seconds to download the new image.

Tera Term: XMODEM Send Pat

Filename: lapp_rabm4_secondar

Protocol: XMODEM [checksum]
Packet#: 1142
Bytes transferred: 146176
Elapsed time: 0:14 (10.11KB{s)

e 31.9%

Figure 18. Download the Secondary Image using XModem

R11ANO567EU0130 Rev.1.30 Page 15 of 41
Oct.21.24 RENESAS




Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

8. The primary application will reset the system once the entire secondary application is downloaded. The

menu from the secondary application is printed. Wait about two seconds prior to the output of the new
menu. The Blue LED should be blinking.

Rezetting the system

FPleaze select from below menu options:

1 — Display image slot info
2 — Download and boot the new image (XModem>

Figure 19. Secondary Image is booted

9. Reset the application from the debugger, the blue LED should still be blinking. There is no revert back to

the original Primary application because the swap test mode is implemented with the secondary
application.

4. Add Encryption to the Initial Example Project

In this section, we will add encryption to the application image. The bootloader is first updated and then the
application projects are configured to use the new bootloader.

The system will go through the following stages. Note that when encryption is enabled, the bootloader image

size increases to about 83 kB. With the code flash boundary at 32 kB, the bootloader image is allocated
96 kB.

Code flash state 1
Initial encrypted image
is loaded to the

Code flash state 2
Initial image is
decrypted to primary

Code flash state 3
New Application is
loaded to the

Code flash state 4
New Application is
swapped to primary

0x100000 secondary slot slot and booted secondary slot slot and booted
Scratch Area Scratch Area Scratch Area Scratch Area
0xF8000 _
Application 1 el T
Secondary slot — Application 2 Application 1
L (Encrypted) Blank (Encrypted) (Encrypted)
0x88000
. [ Application 1 Application 1 Application 2
Primary slot  — Blank (plaintext) (plaintext) (plaintext)
0x18000 Active Slot Active Slot Active Slot
- _
Bootloader Bootloader Bootloader Bootloader
0x0

Figure 20. Booting Encrypted Image (Secondary Image Stored in Internal Flash)

Note that the initial application is downloaded to the secondary slot as encrypted rather than downloaded to

the primary slot as plaintext image. This allows plaintext image being swapped to the secondary slot as
plaintext.

4.1 Configure the Bootloader for Encryption Support

Stay in the same Workspace from the previous section and start to configure the bootloader using the
following steps:

1. Double click and open the configuration.xml file from ra_mcuboot_raém4_swap_enc_qspi project.
2. Navigate to the Stacks tab, select MCUboot > Settings > Property > Common > Signing and
Encryption Options > Encryption Scheme > ECIES-P256.

R11AN0567EU0130 Rev.1.30

Page 16 of 41
Oct.21.24

RENESAS




Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

&) Mew Thread HAL/Common Stacks &) New Stack > =% Extend Stack > & ] Rer
K Remove B

== |port /O Port
\L/Common \port)

g_ioport /0 Port (r
MCUboot

> 4 MCUboot Port for RA (rm_mcuboot_port)

O]

<

3SP Clocks | Pins | Interrupts | Event Links | Stacks | Components
-

s | B console| [[] Properties | @ Smart Browser | L} Smart Manual

3

Property Value
w Common
» General
> TrustZone

Signature Type ECDSA P-256
Boot Record
Custom --pad
Pythan python

Encryption Scheme
» Flash Layout
» Data Sharing - ﬁ {_ 2048 only)
Encryption Disabled

Figure 21. Choose ECIES-P256

3. Update the Bootloader Flash Area Size from 0x10000 to 0x18000.
MCUboot > Settings > Property > Common > Flash Layout > Bootloader Flash Area Size (Bytes):
0x18000

v Flash Layout

TrustZone

| Boctloader Flash Area Size (Bytes) | 0x 18000
Image 1 Header Size (-Bytes] 0x200
Image 1 Flash Area Size (Bytes) 0x 70000
Scratch Flash Area Size (Bytes) 0x8000

Figure 22. Update the Bootloader Flash Area Size

R11ANO567EU0130 Rev.1.30 Page 17 of 41
Oct.21.24 RENESAS




Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

4. Navigate to the BSP tab and update the BSP heap size from 0x600 to 0x1000. When encryption is used,
a minimum of 0x200 heap needs to be added. This increased heap usage came from the added AES
algorithm usage.

ry | BSP | Clocks | Pins | Interrupts | Event Links | Stacks | Components

lems [ Console [ JZCRENTEIDYEN @ Smart Browser [} Smart Manual [J Memory

i6M4

Is Property Value
R7FAEM4AF3CFB
v RABM4
series 6
RAEM4 Family
v RA Common
Main stack size (bytes) 0x1000
Heap size (bytes)

Figure 23. Update the Heap size to 0x1000

R11ANO567EU0130 Rev.1.30 Page 18 of 41
Oct.21.24 RENESAS




Renesas RA Family

RA6 Booting Encrypted Image using MCUboot and QSPI

5. Right click on the bootloader project and select Properties (at the end of the menu tree).

VI“:E’ r:_mcuhnnt_r.ﬁmd_uip_enc_q.pi I nghuﬂi

a.' Bimaries
) Includes
2 ra
2 ra_gen
& src
¥ = Debug
(= ra
(= ra_gen
& src
ﬁ ra_mcuboot_rabm4_swap_enc_c
& makefile
makefile.init
|L, memaory_regions.d
@& objects.mk
ra_mcuboot_rabm4_swap_enc_c

ra_mcuboot_rabm4_swap_enc_c

ra_mcuboot_rabm4_swap_enc_c 5

ra_mcuboot_rabm4d_swap_enc_c
ra_mcuboot_rabm4d_swap_enc_c
et ra_mcuboot_rabm4_swap_enc_c
@& sources.mk
(= ra_cfg
(= script
{8} configurationxmi
R7TFABMAAFICFB.pincfg
ra_cfg.txt
X| ra_mcuboot_rabm4_swap_enc_qspi

@ Developer Assistance

MNew
Go Into

Open in New Window
Show In

& Copy
Paste

¥ Delete
Source
Move...

Rename...

L= Import..
3 Export..
Renesas FSP Export

Build Project

Clean Project

Refresh

Close Project

Close Unrelated Projects

Build Targets
Index

Build Configurations
Source

O FRunas
1% Debug As
Team
Compare With
Restore from Local History...
MISRA-C
& CJ/C++ Project Settings
Renesas C/C++ Project Settings
'55" Run C/C++ Code Analysis
W System Explorer
@ Command Prompt
+  Validate

Configure
Source

| Properties |

Alt+Shift+W > |
Ctri+C }

Ctri+V

Delete

> |

F5

>

Ctrl+Alt+P
»

Alt+Enter

Figure 24. Open the Properties Window

R11AN0567EU0130 Rev.1.30
Oct.21.24

RENESAS

Page 19 of 41




Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

6. Navigate to the C/C++ Build > Settings > Tool Settings > GNU Arm Cross C Compiler >

Preprocessor.
& Properties for ra_mcuboot_raémd_swap_enc_gspi O *
type filter text Settings =1 v §
» Resource
Builders
v (/C++ Build Configuration: Debug [ Active ] ~ | | Manage Configurations_.
Build Variables
Environment -
Logging ) Tool Settings| &) Toolchain| #* Build Steps Build Artifact | [e1h Binary Parsers| € Error Parsers
) 1 o el "
Tool Chain Editor %\ Target Processor [[J Do not search system directories (-nostdinc)
> C/C++ General (2 Optimization [ Preprocess anly (-E)
= 2
Project Natures @ Warnings Defined symbols (-D) ,,_ =N
Project References (£ Debugging
~ %) GNU Arm Cross Assembler _RA_CORE=CM33
Renesas QF
' (2 Preprocessor -RENESAS_RA_
Run/Debug Settings 5 Includ _RA_ORDINAL=1
Task Tags %\ neludes
» Validation (£ Wamings
"_"-‘"1 Miscellaneous
w0 Arm Cr mpiler
(2 Includes
(2 Optimization
(3 warnings
(2 Miscellaneous
~ ) GNU Arm Cross C Linker |
(2 General Undefined symbols (-U) a8y
;f! Libraries
(2 Miscellaneous
~ &) GNU Arm Cross Create Flash Image
2 General
v B3 GNU Arm Cross Print Size
= General

Figure 25. Add Preprocessor setting

7. Click the green ‘+’ sign and add MCUBOOT BOOTSTRAP. This preprocessor enables booting the first
encrypted image from the secondary slot when having an empty image from the primary slot. Click OK.

&) Enter Value X

Defined symbaels (-D)
|| McuBooT BOOTSTRAR| |

Cance'

Figure 26. Add Preprocessor MCUBOOT_BOOTSTRAP

8. Click Apply and Close.

R11AN0567EU0130 Rev.1.30 Page 20 of 41

Oct.21.24 RENESAS




Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

3 Tool Settings | ¥ Toolchain | # Build Steps Build Artifact | luj Binary Parsers| @ Error Parsers |

(#2 Target Processor [[] Do not search system directories (-nostdine)
E“ Optimization (] Preprocess only (-E)
(= Warnings
(= Debugging
v B8 GNU Arm Cross Assembler
,_'}3 Preprocessor
.:3 Includes
(=} Warnings
(&2 Miscellaneous
v B GNU Arm Cross C Compiler
(% Preprocessor
(23 Includes

(=} Optimization

Defined symbols (-D) LA RN

_RA_ =CM33
MCUBOOT_BOOTSTRAP
_RENESAS_RA_

_RA_ORDINAL=1

(=2 Warnings
(5 Miscellaneous
v B8 GNU Arm Cross C Linker

= = . -
(= General Undefined symbols (-U) LI YRR RAR
(= Libraries

(= Miscellaneous

~ 83 GNU Arm Cross Create Flash Image
(= General

~ 3 GNU Arm Cross Print Size

5]
2} General

Apply and Clnsel Cancel

Figure 27. Add Preprocessor MCUBOOT_BOOTSTRAP

9. Check Remember my decision and click Rebuild Index if below window pops up.

& Settings X

Some build settings changes may affect the index. These changes won't take effect
until the index until it is rebuilt. Do you wish to rebuild it now?

| Remember my decision

Rebuild Index ||| No

Figure 28. Add Preprocessor MCUBOOT_BOOTSTRAP

R11ANO567EU0130 Rev.1.30 Page 21 of 41
Oct.21.24 RENESAS




Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

10. Click Generate Project Contents and then compile the bootloader project. Check Always save and
generate without asking if this window pops up. Click Proceed and compile the updated bootloader.

[ ﬁ Generate Project Content *

I.-"'_"‘-.I Configuration must be saved before generating project content.
"\__ ._/'-
Proceed with save and generate?

1 Iwa}rs save and generate without asking

Figure 29. Configure settings for Generate Project Content

4.2 Configure the Application Project for Encryption Support
Follow the steps below to configure the application project to support image encryption.

1. Right click on the Primary Application app_raém4_primary_enc_xmodem, select Properties > C/C++
Build > Environment.

Click Add and define the New variable Name as:
MCUBOOT_IMAGE_ENC_KEY

Define the Value as:

${workspace loc:ra mcuboot raé6mé4 swap enc gspi}/ra/mcu-tools/MCUboot/enc-
ec256-pub.pem

@ New variable X

Name: | MCUBOOT_IMAGE_ENC_KEY

Value: ‘ spi}/ra/mcu-tools/MCUboot/enc-ec256-pub.pem ‘ Variables

Add to all configurations

Figure 30. Configure the ECDSA Public Key to be Used in Image Encryption

R11ANO567EU0130 Rev.1.30 Page 22 of 41
Oct.21.24 RENESAS



Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

2. Review the Build Variable Settings and click Apply and Close.

Environment P~ §
Configuration: 'Debug [ Active ] ~ | Manage Configurations...
Environment variables to set Add...

Variable Value Origin Select..
WD I 112n...  BUILD SYSTEM

GCC_VERSION 13.2.1 BUILD SYSTEM Edit..
MCUBOOT_IMAGE_ENC_KEY S{workspace_locra_mcuboot_rabm4_swap_enc_gspi).. USER: CONFIG _
MCUBOOT_IMAGE_SIGNING_KEY ${workspace_locra_mcuboot_raémd_swap_enc_gspi}.. USER: CONFIG
MCUBOOT_IMAGE_VERSION 1.0.0 USER: CONFIG Undefine
PATH C\Program Files (x86)\Arm GNU Toolchain arm-non..  BUILD SYSTEM

PWD I 1 2n..  BUILD SYSTEM

TCINSTALL C\Program Files (x86)\Arm GNU Toolchain arm-non..  BUILD SYSTEM

TC_VERSION 13.2.1.arm-13-7 BUILD SYSTEM

< >
(O Append variables to native environment

@ Replace native environment with specified one
Restore Defaults Apply

Apply and Close Cancel

Figure 31. Review the Application Project Encryption Support Setting

3. Update the \app raé6m4 primary enc xmodem\src\header.h file. This update takes care of the
application image location change due to the change in the bootloader size.

Update below address configuration from:

#define PRIMARY IMAGE START ADDRESS 0x00010000
#define PRIMARY IMAGE END ADDRESS 0x0007FFFF
#define SECONDARY IMAGE START ADDRESS 0x00080000
#define SECONDARY IMAGE END ADDRESS 0x000EFFFF
To:

#define PRIMARY IMAGE START ADDRESS 0x00018000
#define PRIMARY IMAGE END ADDRESS 0x00087FFF
#define SECONDARY IMAGE START ADDRESS 0x00088000
#define SECONDARY IMAGE END ADDRESS 0x000F7FFF

4. Double click configuration.xml to open the smart configurator, click Generate Project Content and
compile the Primary application.

Ensure \Debug\app ra6m4 primary enc xmodem.bin.signed.encrypted is generated.

R11ANO567EU0130 Rev.1.30 Page 23 of 41
Oct.21.24 RENESAS




Renesas RA Family

RA6 Booting Encrypted Image using MCUboot and QSPI

&= src
ts app_rabmd_primary_enc_xmodem.elf - [arm/le]
=| app_rabm4_primary_enc_xmodem.bin.signed

= app_rabm4_primary_enc_xmodem.bin.signed.encrypted |

= app_rabmd_primary_enc_xmodem.elf.in

Figure 32. Ensure the Encrypted Binary is Generated

5. Repeat previous steps 1, 2, 3 and 4 in this section for the secondary project.

o

Follow step 2, 3 in section

3.2.1 to Erase the chip.

7. Update the Debug configuration.
Right click on the Primary application app_raém4_primary_enc_xmodem > Debug As > Debug
Configurations, make sure the Primary application is selected and navigate to the Startup window.
Update the Startup configuration Load image and symbols area as shown below.

¢ Remove the entry of app raémé4 primary enc xmodem.bin.signed.

e Click Add > Workspace and browse to the file
app_ra6tm4 primary enc_xmodem.bin.signed.encrypted.

&) Add download module Od

Select a workspace resource

v (= Debug

=
= ra_gen
& src

=| app_rabm4_primary_enc_xmodem.bin.signed

= app_rabm4_primary_enc_xmodem.bin.signed.encrypted |

lo1p app_rabmd4_primary_enc_xmodem.elf
=| app_rabm4_primary_enc_xmodem.elf.in
B app_rabm4_primary_enc_xmodem.map

Cancel

Click OK.

Figure 33. Update the Debug Configuration

R11AN0567EU0130 Rev.1.30
Oct.21.24

RENESAS

Page 24 of 41




Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

8. Update the Primary Image download address and Load type.
Change the Load type to of the app raém4 primary enc xmodem.bin.signed.encryptedto
Raw Binary. Update the Offset to the secondary slot address based on the new bootloader size.

Main %# Debugger m 1 Common | & Source

Initialization Commands

[ Reset and Delay (seconds):

[OHait

Load image and symbols

Filename Load type Offset (hey Add
Program Binary [app_raém4_primary_enc_xmodem.elf] Symbols only
ra_mcuboot_rabmd_swap_enc_gspi.elf [C\MCUboot\Lab_Projects\MCUboot_Encrypted_Initial_Project.. Image and Symbols 0 Edit..
| [l app_rabm4_primary_enc_xmodem binsigned.encrypted lC:\MCUbour‘\Lab_ProJefts\MCUbom_Encryp...l Raw Binary I . | 88000 [ ) T
Move up
< >
Runtime Options
[[]Set program counter at (hex):
[~] Set breakpoint at: main >
Revert Apply

.

Figure 34. Update the Primary Application Load Address

9. Click Debug and resume UP the execution twice; the Primary application will be booted, and three LEDs
should be blinking.

10. Follow steps 3 to 8 in section 3.2.6 to use the X Modem downloader to download the secondary
application.

11. Make sure to select the encrypted secondary image.

When downloading the seconday image, make sure to select the encrypted image.

R11ANO567EU0130 Rev.1.30 Page 25 of 41
Oct.21.24 RENESAS




Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

YT Tera Term: XMODEM Send

Name

ra
ra_gen
src

| app_rabm4_secondary_enc_xmodem.bin.signed

_| app_rabm4_secondary_enc_xmodem.bin.signed.encrypted

| app_rabm4_secondary_enc_xmodem.elf

| app_rabmd_secondary_enc_xmodem.elf.in
B app_rabmd_secondary_enc_xmodem.map

| app_rabm4_secondary_enc_xmodem.rpd

| app_rabm4_secondary_enc_xmodem.sbd

| app_rabm4_secondary_enc_xmodem.srec
| | app_rabm4_secondary_enc_xmodem.temp.bin

| makefile

| makefile.init

| memory_regions.ld
B objects.mk

Look in: Debug vi@ F E* L

Figure 35. Select the Encrypted Secondary Image

12. After the secondary image is downloaded, it will be booted after the bootloader verified the image. The

blue LED should be blinking.
5. Use QSPI as Secondary Storage Area

In this section, we will switch the secondary image storage area from internal flash to QSPI. User can also
benefit from this section in terms of learning the key steps in the image downloader design when using

XModem. Below is the memory layout of the resulting system.

RAGM4
Code Flash
0x100000
Scratch
Area EK-RABIM4
OXFSOOO,— essss——— QSPI
. _ Ox600E0000
Primary
slot =
Blank Application 1 Secondary
Encrypted " slot
0x18000— ( pied)
Bootloader
0x0 I 0x60000000

Figure 36. Using QSPI for Secondary Image Storage

Note that the primary and secondary application image sizes are increased to benefit from the usage of the

QSPI.

There are four stages the system will go through by following the steps layout described in this section,

which is generally similar to the case of using internal flash.

R11ANO567EU0130 Rev.1.30
Oct.21.24 RENESAS

Page 26 of 41




Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

RAGM4 State 1 RABM4 State 2 RAGM4 State 3 RAGM4 Stata 4
Initial encrypted The bootloader decrypts New encrypted Tha boatloader decrypts
application is loaded the initial image and load application (app2) is the new image and
to QSPI (the it to the primary slot and loaded to the QSPI ;’;Ia'giti’oa;i lgﬁ%;’:ﬁ ;i‘t’v
secondary slot) booted the primary image The bootloader boots the
new image
Scratch Scratch Scratch Scratch
Area Area Area Area
SPI
QsPI Q QsPI QsPI
Application 1 Application 1 Application 2
Blank B ettt (Plgmtext) | (Pla.lntext) - (Ple.umext)
(Encrypted) Active Slot Blank Active Slot Application 2 Active Slot Application 1
(Encrypted) (Encrypted)
Bootloader Bootloader Bootloader Bootloader

Figure 37. Functional Stages

5.1 Configure the Bootloader to Use QSPI for Secondary Application Storage

Use the following steps to update the secondary storage area to QSPI.

1. Openthe configuration.xml file from the bootloader project
ra_mcuboot ra6mé4 swap enc_gspi.

2. Click on MCUboot > MCUboot Port for RA (rm_mcuboot_port) > Add External Memory
Implementation (Optional), select New > MCUboot External Memory (QSPI) to add the QSPI stack:

I
4 MCUboot logging

®
I I
4 g_flashO Flash ~. Add External Memory
(r_flash_hp) Implementation
(Optional)

®

New > |4 MCUboot External Memory (QSPI) ‘

Figure 38. Choose QSPI from the Smart Configurator Stack Tab

3. Navigate to the Pins tab Peripherals group and select the Storage:QSPI > QSPIO. First select B only
for the Pin Group Selection, then select Quad as the Operation Mode. The correct Input/Output pins
will be automatically selected. We need to do this because the bootloader uses a minimal pin
configuration rather than the pin configuration for EK-RA6M4.

R11ANO567EU0130 Rev.1.30 Page 27 of 41
Oct.21.24 RENESAS



Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

Select Pin Configuration E Export to CSV file Configure Pin Driver Warning
| R7FABMAAF3CFB.pincfg Vl Manage configurations... [ Generate data: I g_bsp_pin_cfg
Pin Selection = laz Pin Configuration
| Type filter text ‘ Name Value Lock  Link
7 Peripherals A Pin Group Selection _Bonly
> Analog:AjC IOperat(i}on Mode Quad -
» . v Input/Output [
7 naeg0ic aspaix - b P o
> Connectivity:CAN QssL v P306 (e I |
,  Connectivity:ETHERC Qoo v P307 (o [ ]
> Connectivity:IIC Qlot v P308 I =
> Connectivity:5Cl Qo2 v P09 Ce [ ]
5 Connectivity:SPI Qo3 v P310 Il =
> Connectivity:S5l
> ¢ Connectivity:USB
> Input:CTSU
> Input:ICU
» Moeonitoring:CAC
> Storage:0SPI
v « Storage:Q5SPI
v QsPi0 | Module name:  QSPID
> Storage:SD|-V| Usage: For QSPI, same Pin Group Recommended

¥ System:BUS

& Covni, Pt atal

Pin Functiun| Pin Number|

Summary \BSP lCIocks | Pins_\ Interruptsl Event Linksl Stacksl Componentsl

Figure 39. Configure the QSPI Pin and Operation Mode

4. Navigate to the Stacks tab, highlight the QSPI stack and update the Bus Timing Minimum QSSL
Deselect Cycles to 8 QSPICLK.

g_qspi0 QSPI (r_qspi)

Settings  Property Value
APl Info | v Common
Parameter Checking Default (BSP)
Support Multiple Line Program in Extended SPI Mode Disabled
v Module g_gspi0 QSPI (r_gspi)
General

Command Definitions
~ Bus Timing

I Minimum QSSL Deselect Cycles I 8 QSPCLK

22 Dime

Figure 40. Update the QSPI Bus Timing Minimum QSSL Deselect Property

R11ANO0567EU0130 Rev.1.30 Page 28 of 41
Oct.21.24 RENESAS




Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

5. Highlight the MCUboot stack and change the Image 1 Flash Area Size Configuration using the value
indicated below. When using QSPI, a much larger image is supported.

———— mimeeee g ————————

v Signing and Encryption Options

TrustZone

Signature Type ECDSA P-256

Boot Record

Custom --pad

Python python

Encryption Scheme ECIES-P256
[Fiogod]

TrustZone

Bootloader Flash Area Size (Bytes) Ox18000

Image 1 Header Size (Bytes) (200

Image 1 Flash Area Size (Bytes)

Scratch Flash Area Size (Bytes) (8000

Figure 41. Configure the QSPI Pin and Operation Mode

6. Inside the bootloader project, add these variable definitions to the beginning of hal entry. c file after
the R_BSP WarmStart function call:

FSP_CPP_HEADER
void R_BSP_WarmStart(bsp_warm_start_event_t event);
FSP_CPP_FOOTER

/* SREG pay-load size */

#define SREG SIZE (0x03)

/* Status register pay-load */

#define STATUS REG PAYLOAD {0x01,0x40,0x00}

uint8 t data sreg[SREG_SIZE] = STATUS REG_PAYLOAD;

Figure 42. Add QSPI Variable Definition

7. Stay with hal entry.c, add below code to the beginning of hal_entry() function and before the line
mcuboot quick setup();.

fsp_err t err = FSP SUCCESS;

R QSPI Open (&g gspiO_ctrl, &g gspiO_cfqg);

/* write enable for further operations */

err = R QSPI DirectWrite (&g _gspiO_ctrl, &(g_gspiO_cfg.write enable command), 1, false);

if (FSP SUCCESS == err)

{
err = R QSPI DirectWrite(&g gspiO ctrl, data sreg, SREG SIZE, false);
if (FSP_SUCCESS != err)

{
while (1) ;

Figure 43. Set up the QSPI

8. Within the bootloader smart configurator, click Generate Project Content and compile the bootloader
project.

R11ANO567EU0130 Rev.1.30 Page 29 of 41
Oct.21.24 RENESAS




Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

5.2 Update the Primary Application Project to Support QSPI

1. Within the primary application smart configurator, click Downloader Thread > New Stack > Storage >
QSPI, add the QSPI stack.

{é} [app_rabmd_primary_enc_xmodem] FSP Configuration X ‘ =7

Stacks Configuration Generate Project Content

Threads &) NewThread #|Remove [-]  Downloader Thread Stacks £ Corand Chnclos 423D
Al

>
v £ HAL/Common i -
e s 2 @ g_flashO Flash 4 g_pcdc0 USB PCDC (r_usb_pcdc) 42 FreeRTOS Heap 4 Analog >
%7 g_ioport I/O Port (r_ioport) (r_flash_np) Audio >
47 FreeRTOS Port (rm_freertos_port) o Bootloader >
& Blinky Thread [©) @ [©) CapTouch >
Vv i Downloader Thread 7S Connectivity >
P g_flashO Flash (r_flash_hp) " ! DsP >
W T 4 g_basic0 USB (r_usb_basic
4 g_pcdc0 USB PCDC (r_usb_pcdc) 9- (rusb_basic) Input >
42 FreeRTOS Heap 4 Monitoring >
® Motor >
~ Networking >
- L L Power >
4 g_transfer0 Transfer @ g_transfer1 Transfer RTOS 3
(r_dmac) USBFS FIFO 1 (r_dmac) USBFS FIFO 0 Securi S
Objects &) New Object > % ] Rem (DMA transfer request (DMA transfer request Scuy
1 [OR m 0 Sensor >
® g_usb_write_complete_binary_semaphore Binary Semz 4 Block Media Custom Implementation (rm_block_media_user) [ StoraEe >
® g_usb_read_queue Queue 4 Block Media RAM Implementation (rm_block_media_ram) System >
4 Block Media SD/MMC (rm_block_media_sdmmc) Timers %
. 5 4 Block Media SPI Flash (rm_block_media_spi) Transfer 2
e R _ @ Block Media USB (rm_block_media_usb) 4’ Search.. -
Summary |BSP | Clocks | Pins : Interrupts | Event Links | Stacks Components} 4 Flash (r_flash_hp)
I#] Problems 1 B Console| [T Properties X | @ Smart Browser | & Smart Manual‘ 0 Memory @ FreeRTOS+FAT [z 35 i)
B B @ LittleFs
4 OSPI Flash (r_ospi)
Properties are not available. 4 OSPI RAM (r_ospi)
- QSPI (r_qgspi)
€ SD/MMC (r_schi)
4 Virtual EEPROM on Flash (rm_vee_flash)

Figure 44. Add the QSPI Stack
2. Highlight the QSPI stack and update the Bus Timing, Minimum QSSL Deselect Cycles to 8 QSPCLK.

g_qspi0 QSPI (r_qgspi)

Settings Property Value
APl Info | v Common
Parameter Checking Default (BSP)
Support Multiple Line Program in Extended SPI Mode Disabled
v Module g_qspi0 QSPI (r_gspi)
General

Command Definitions

A~ 5
IMinimum QSSL Deselect Cycles 8 QSPCLK I

«s Dine

Figure 45. Add the QSPI Stack

3. Copy below files from the gspi souce.zip to overwrite the existing files in the primary application
project. The updates related with supporting QSPI usage are explained in the updates performed
column.

Table 3. Source File Updates Moving from Internal Flash to QSPI for Secondary Image Storage

Files to overwrite Updates Performed

downloader_thread entry.c | Remove code flash initialization and add QSPI initialization

menu.c Prior to image download over USB PCDC, the flash area needs to
be erased. The update performed is to switch from erasing the code
flash to erasing the QSPI.

R11ANO567EU0130 Rev.1.30 Page 30 of 41
Oct.21.24 RENESAS



Renesas RA Family

RA6 Booting Encrypted Image using MCUboot and QSPI

xmodem. C

xmodem. ¢ handles downloading the new image and writing to the
secondary application storage area. The updates to this file are to
change from writing to internal flash to writing to QSPI.

header.h

The header. h file has definitions on the start and end location of
the primary and secondary slot. The update to this file is to change
the secondary application starting address as well as the size of the
primary and secondary application based on the new bootloader
image size configuration and the QSPI address.

4. Copy the highlighted files gspi source.zip to the \src folder for the primary project. These are files

supporting QSPI operations.

\h| gqspi_ep.h
.c| gspi_operations.c

\h| gspi_operations.h

Figure 46. QSPI related Source Files

5. Save all files. Navigate to the smart configurator, click Generate Project Content and compile the

Primary application.

6. Perform the same update steps from step 1 to 5 for the secondary application project.

~

Follow step 2, 3 in section 3.2.1 to Erase the chip.

8. Update the Debug Configuration of the primary application. Right click on
app_raé6m4 primary enc_ xmodem, select Debug As > Debug Configurations. Navigate to the
Startup window and update the primary image download Offset to the address of the secondary slot

0x60000000.

? Debug Configurations

reate, manage, and run configurations

IR B Y-

type filter text l

[c] C/C++ Application

[c] C/C++ Remote Application

=/ EASE Script

[c] GDB Hardware Debugging

[c] GDB OpenOCD Debugging

[€7] GDB Simulator Debugging (RH850)
i Java Applet

Java Application

@ Launch Group

[T Remote Java Application

v |cl

[c7] app_rabm4_primary_enc_xmodem Debug_Flat
c*| app_rabm4_secondary_enc_xmodem Debug_F

Name: I app_rabmd_primary_enc_xmodem Debug_Flat

2 Main | %5 Debugger 5] Common| &/ Source

Initialization Commands

[JReset and Delay (seconds): 3
[JHatt

Load image and symbols

Filename Load type Offset (hex)  On connect A
Program Binary [app_rabm4_primary_enc_xmodem.elf] Symbols only Yes
5 enc gspi.elf [C: ini . Yes

Yes Re

app_rabmd_primary_enc_xmodem.bin.signed.encrypted [C:... Raw Binary 60000000)

[c] ra_mcuboot_rabm4_swap_enc_gspi Debug_Fla
[c7] Renesas Simulator Debugging (RX, RL78)
Mc
Mov
< > e
ilter matched 15 of 17 items £ve
©)

Figure 47. Configure the Debug Configuration

R11AN0567EU0130 Rev.1.30
Oct.21.24

Re Page 31 of 41
RENESAS




Renesas RA Family

RA6 Booting Encrypted Image using MCUboot and QSPI

9. Click Debug and resume the execution twice to boot the primary application. The three LEDs should be

blinking.

10. Follow section 3.2.6 to download and exercise the secondary application.

Note that a solution to this section is provided with this application project as
MCUboot Encryption QSPI Solution.zip for user’s reference.

6. Using Custom Signing Key and Encryption Key

In this section, you will generate two sets of ECDSA SECP256R1 keys using the imgtool.py tool included
with MCUboot. One set will be used for image signing support, the other pair will be used for image

encryption support.

User can also use other key generation method to generate the keys, for example OpenSSL. OpenSSL
encodes its keys in SEC1 format, while MCUboot uses PKCS#8. So, if customer uses OpenSSL, a
conversion needs to take place. The command used for this conversion is inserted in line in the lab steps for

your reference.

The stack MCUboot Example Keys stack generates the example keys used in the image signing/verifying
and image encryption/decryption process. The custom keys generated in this section replace these example

keys.

These are the two example key structures in the bootloader project

\ra mcuboot raémé4 swap enc_gspilra\mcu-tools\MCUboot\sim\mcuboot-sys\csupport

\keys.c file.

The root_pub_der array is the public key for image verification.

const unsign;d char root_pub_der[]

const unsigned int root_pub

ex30,
9x48,
9x86,
ox42,
oxfe,
oxid,
ox14,
8x39,
exd7,
oxb2,
ox8b,
@x8e,

2x59,
@xce,
2x48,
2x00,
Oxed,
Oxae,
exfb,
@x88,
@xcd,
@x4a,
2x68,
oxfa,

ox30,
ox3d,
Oxce,
oxe4,
2x5b,
Oxed,
ex2f,
exd9,
exds,
@x6a,
ox34,
oxcl,

ox13,
oxez,
ex3d,
ex2a,
2xa4,
exdb,
ex24,
ex94,
ex3e,
ox81,
@xcc,

b

2x06,
2xo1,
exes,
excb,
2x49,
@xbe,
ex57,
exb9,
@x8a,
@x0e,
@x3a,

=i
ox0e7,
2x06,
exe1,
2x40,
ox95,
ex19,
ex37,
exdeé,
exdé6,
oxes,
@x6a,

ox2a,
2x08,
oxe7,
@x3c,
@xal,
ox37,
oxeS,
ex5a,
oxfe,
oxfe,
exfc,

_der_len = 91;

0x86,
9x2a,
9xes3,
Oxes8,
oxa9,
@xcd,
2x95,
@xeb,
2x48,
ox7d,
@x53,

Figure 48. Public Key used for Image Verification

The enc_key array is the private key used in the image decryption process.

unsigned char enc key[] = {

ax30,
ax48,
axa3,
Bxfo,
Ox64,
Axa5,

Gx81,
Bxce,
ax01,
Axle,
0x3b,
0x28,

Gx43,
@x3d,
axa7,
ax51,
0x54,
Pxca,

};

static unsighed int

axaz2,
axaz2,
axa4,
Bx9d,
Bxda,
PAxcc,

0xe1,
0xe1,
0x29,
0xf8,
Bx3d,
Bx6b,

enc_key _len =

0x09,
0x06,
0x39,
Bxfa,
Bxda,
ax67,

70;

0x38,
0x08,
Bx27,
Bxdd,
ax1f,
0x%e,

ax13,
Bx2a,
axaz2,
Axal,
Axe5,
0x06,

axa6,
ax86,
axa1,
Bxb7,
0x78,
Axal,

0xe7,
0x48,
0x01,
Bxd9,
Bxd9,
Ax44,

Bx2a,
Bxce,
ax04 ,
Pxag,
ax17,

0x86,
@x3d,
0x20,
ax64,
0x98,

Figure 49. Private Key used for Image Decryption

The matching private key for the public key root_pub_der is root-ec-p256.pem. We will generate a
custom private key ecc_sign private.pemn to replace the usage of root-ec-p256.pem which is used
in the image signing process. The matching public key for the private key enc_key is enc-ec256-pub.pemn.
For custom encryption support, we will generate a custom public key ecc _enc public.pem to replace
enc-ec256-pub.pem Which is used in the image encryption process.

R11AN0567EU0130 Rev.1.30
Oct.21.24

RENESAS

Page 32 of 41




Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

v £ mcu-tools
v (= MCUboot
= boot
(& scripts
v (= sim
v (= mcuboot-sys
v (= csupport
[€) keys.c
8 enc-ec256-priv.pem
lE enc-ecZSS-Eub.Eem l

enc-rsa2048-priv.pem

R

2 _enc-rsa2048-pub.pem
IE root-ec-p256.pem I

& root-rsa-2048.pem

8 root-rsa-3072.pem

Figure 50. Image Signing Private Key and ECDSA SECP256R1 Public Key used in Image Encryption

Process
Use the following steps to create and replace example keys generated by the MCUboot stack:

1. Inthe bootloader project, copy keys.c from the MCUboot folder to the \ src folder of the bootloader

project.

v,{ﬂra

% arm
(& board
= fsp
v &£ mcu-tools
v (= MCUboot
& boot
(> scripts
B ;

& sim

v (Z mcuboot-sys

v (= csupport
L] keys.c

viss ra_mcuboot_rabmd4_swap_enc_qgspi

¥ Binaries
8 enc-ec256-priv.pem ) Includes
8 enc-ec256-pub.pem 2 ra
8 enc-rsa2048-priv.pem - (2 ra_gen
8 enc-rsa2048-pub.pem v (8 src
8 root-ec-p256.pem L] hal_entry.c
& root-rsa-2048.pem
8 root-rsa-3072.pem v (& Debug

Figure 51. Copy the Example keys.c
R11ANO567EU0130 Rev.1.30 Page 33 of 41
Oct.21.24 RENESAS




Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

2. Open the configurator for ra mcuboot raém4 swap enc_gspi, right click on MCUboot Example
Keys and select Delete.

&) NewStack > - [ tend “tach - 55| Remove é] 7‘
I Shadow
I Reflection
I Glow
A
I I> Soft Edges
MCUboot loggi
. not i I> 3-D Format
®
Team
I
4 MCUboot External Resource Configurations
Memory (QSPI) ] Validate
® of Cut
. 5 Copy '
4 g_qspi0 QSPI (r_gspi) 2
[# Delete
Non-secure Callable
@ |
mport...
4 Export..
Figure 52. Delete the MCUboot Example Keys Stack
R11ANO0567EU0130 Rev.1.30 Page 34 of 41

Oct.21.24 RENESAS




Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

3. Extend ra mcuboot raé6m4 swap enc gspi, right click on folder \scripts. Select Command
Prompt from this folder.

v -5 ra_mcuboot_rabmd_swap_enc_gspi | Debug)

Q’ Binaries
ni) Includes
v (S
f arm
= board
& fsp
v ‘_--'- mcu-tools
Vv & MCUboot
» = boot
i zeripts]
& img New ?
ass: Go Into
 flas Open in New Window
* gdt Show In Alt+Shift+W >
im¢ B Copy Ctrl+C
L Paste Ctri+V
- 199 3¢ Delete Delete
p.st Source >
s Move...
eq Rename... F2
- Slmsen i Import..
enc-ec & Export...
enc-ec Build Project Ctri+B
enc-rs. Refresh F5
enc-rs Index >
root-e Build Targets > W
root-r: Resource Configurations 4
root-rs Source 5 E
& ra_gen Team >
v® s:c bkl Compare With >
i Restore from Local History...
e ¥ C/C++ Project Settings Ctri+Alt+P
& ra.cly Renesas C/C++ Project Settings >
-3 %’ Run C/C++ Code Analysis
%o configuration.xi ~ Syafers Bxpicrar
R7FAGM4AF3CH
e | Command Prompt |
X ra_mcuboot_rat L VA
(?) Developer Assit Source 4
Properties Alt+Enter

Figure 53. Start Command Prompt under the \MCUboot\scripts Folder
4. Under the command window, execture command:

python imgtool.py keygen -k ecc_sign private.pem -t ecdsa-p256

R11ANO567EU0130 Rev.1.30 Page 35 of 41
Oct.21.24 RENESAS




Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

5. Copy the generated ecc_sign_private.pem to folder \ra mcuboot ra6ém4 swap enc gspi\src
6. Extract the public key from ecc_sign_private.pem to use in the bootloader project.

Execute command:

python imgtool.py getpub -k ecc sign private.pem

-
] BN CAWINDOWS\system32\cmd.exe - (] X
i \ra_mcu t_rabmd_ g
swap_enc_qgspi\ra‘\mcu-tools\MCUboot\scripts>python imgtool.py getpub -k ecc_sign_private.pem
1.py, do not edit. */

1={

+;

const unsigned int ecdsa_pub_key len

Figure 54. Generate ECDSA Public Key

7. Copy the generated content of ecdsa_pub_key from Figure 54 to array root pub_der in
\src\keys.c. Replace the original root pub der content.

8. Execute the following command to generate the ecc private key to be used in the application image
encryption process:
python imgtool.py keygen -k ecc_enc private.pem -t ecdsa-p256

9. Copy the generated ecc_enc _private.pemto folder \ra mcuboot raém4 swap enc gspi\src.

10. Extract the private key to include in the bootloader.
Execute command: python imgtool.py getpriv --minimal -k ecc enc private.pem
Remove superfluous fields from the ASN1 by passing it --minimal.

BN Select CHWINDOWS\system32\emd.exe - O X

\ra_mcuboot_ra6md S
swap_enc_gspi\ra\mcu-tools\MCUboot\scripts>python imgtool.py getpriv --minimal -k ecc_enc_private.pem.
/* Autogenerated by imgtool.py, do not edit. */
igned char enc_priv_key[]
A1 1, oxeo, @ axes6,
Bxa1,
O3

Figure 55. Generate the Private Key used for Image Encryption

11. Copy the content of enc_priv_key array generated in Figure 55 to the array enc_key in
\src\keys.c. Replace the orginal enc_key array content.

12. User need to download OpenSSL tool at https://sourceforge.net/projects/openssl-for-
windowsl/files/OpenSSL-1.1.1h_win32.zip/download. Then, unzip OpenSSL-1.1.1h win32.zip. Open
another command line window under folder \OpenSSL-1.1.1h win32.

13. Copy ecc_enc_private.pemto folder \OpenSSL-1.1.1h win32.

R11ANO567EU0130 Rev.1.30 Page 36 of 41
Oct.21.24 RENESAS


https://sourceforge.net/projects/openssl-for-windows/files/OpenSSL-1.1.1h_win32.zip/download
https://sourceforge.net/projects/openssl-for-windows/files/OpenSSL-1.1.1h_win32.zip/download

Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

14. We will derive the encryption public key in pem format using the private key using OpenSSL.
Execute command:

openssl ec -in ecc enc private.pem -pubout -out ecc enc public.pem

C: \MCUboot\training_Oct_2022\Lab_Materials\OpenSSL-1.1.1h_win32>openssl ec -in ecc_enc_private.pem -pubout -out ecc_enc
public.pem

read EC key
writing EC key

Figure 56. Generate the Public using the Private Key

15. Copy the generated ecc_enc_public.pen to the folder

\ra mcuboot raébmé4 swap enc gspilsrc.
16. Click Generate Project Content and compile the bootloader project.
17. Update the signing key configuration of the primary application project

Right click on the Primary Application app_raébm4_primary_enc_xmodem, select Properties > C/C++ Build
> Environment.

Choose “MCUBOOT_IMAGE_SIGNING_KEY” Variable, click Edit and define the Value as:
${workspace_loc:ra_mcuboot ra6m4_swap_enc_qgspi}/src/ecc_sign_private.pem

Click OK.
-]
| type filter text Environment o~ 8
Resaurce
Buildars
w CfC++ Build Configuration: | Debug [ Active | ~| | Manage Configurations..
Build Yariables
Enwironment
Legging Enviranment variables to set Add..
Settings — —
Tool Chain Editor ariable Value Origin Select..
€/Chs Gengral o N 501 Encrypt BUILD §
Project Natures GOC_VERSION 1321 Bt
Project References MCUBQOT_IMAGE_ENC_KEY $iwarkspace Jacra meuha GO TRL_ 5 ST G ECE_enc_public.permn USER: Delete
Renesas QF |/ MCUBOOT_IMAGE SIGNING_KEY ${workspace_locra_mcuboot_rabmd_swap_enc_gspilisre/ece_sign_private.pem |
Run/Debug Settings MCUEBQOT_IMAGE_VERSION 100 UsER:C| | Undefine
Task Tags FATH ChProgram Files (xBEMNAM GNU Toolchain arme-none-eabin13.2 ReBini:Sfrenesas. BUILD S
» Validation PWD [\WCUboot Encrypt. BUILD 5
TCINSTALL ChPragram Files (xBEMArm GNU Toolchain armerine-eabit13.2 Rel T, BUILD §
TC_VERSION 13.2.0.arm-13-7 BUILD §
B edit variable ®
Mame: MCUBDOT_IMAGE SIGNING KL
Value: | i_laﬁm"l_swap_cnc_qsulIfsrcr’cct_sign_privalt.:lcn'l || Variables
< >
(®) Append variables to native environment
(j) Replace native environment with specified ang
Restore Defaults Apply
'C’_"":' Apply and Clese Cancel
Figure 57. Configure the Application Project to use the Custom Image Signing
R11AN0567EU0130 Rev.1.30 Page 37 of 41

Oct.21.24 RENESAS




Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

18. Update the encryption key configuration of the primary application project.
Choose “MCUBOOT_IMAGE_ENC_KEY” Variable, click Edit and define the Value as:
${workspace_loc:ra_mcuboot_raém4_swap_enc_qgspi}/src/ecc_enc_public.pem
Click OK > Apply and Close.

Environment
Configuration: Debug [ Active ] | | Manage Configurations...
Environment variables to set Add...
Variable Value Origin | Seloct.
cwD N CUbc0t Encrypt.  BUILD S|
GCC_VERSION 13.2.1 |
|MCUBOO‘-‘I' IMAGE ENC KEY S{workspace locra mcuboot rabm4d swap enc gspil/src/ecc_enc_publicpem
MCUBOOT_IMAGE_SIGNING_KEY S{workspace_locra_mcuboot_rabmd_swap_enc_qspil/srcfecc_sign_private.pem
MCUBOOT_IMAGE_VERSION 1.00 USER: €| | Undefine
PATH £ Edit variabl el 1\binyE{renesas.. BUILD Si
it wariable
WD MCUboot_Encrypt..  BUILD Si
TCINSTALL Name: MCUBOOT_IMAGE_ENC_KEY el BUILD Si
TC_VERSIOM - - = BUILD §|
Value: I :lt_ra6rn4_5wap_enc_qspl}f’srcfecc_enc_publlc.perr‘| | Variables
€ >
® Append variables to native environment
() Replace native environment with specified one
Restare Defaults Apply

Apply and Close Cancel

Figure 58. Configure the Application Project to use the Custom Key for the Image Encryption
Process

19. For the primary application project, navigate to the smart configurator, click Generate Project Content
and recompile the application.

20. Repeat steps 17, 18 and 19 for the secondary application project.

21. Follow steps in section 3.2.1 to erase the flash.

22. Start the Debug session from the primary application project, resume twice to boot the primary
application. The three LEDs should be blinking.
User can now use the XModem to download and verify the operation fo the secondary application image.

7. Appendix

7.1 Making the Bootloader for Cortex-M33 Immutable

To make the bootloader immutable, the flash blocks containing the bootloader must be locked from being
programmed and erased.

R11ANO567EU0130 Rev.1.30 Page 38 of 41
Oct.21.24 RENESAS



Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

The RA6M4 features two sets of registers which facilitate flash block locking. Block Protect Setting (BPS)
registers feature bits that map to individual flash blocks. When a bit is set to zero, the corresponding flash
block cannot be erased or programmed. The Permanent Block Protect Setting (PBPS) Registers have a
similar bit mapping to flash blocks. When a bit is set in one of these registers, the corresponding flash block
is permanently locked from being erased and programmed so long as the same bit in the Block Protect
Setting Register is also cleared to zero. This process is irreversible. Once a flash block is permanently
locked, it cannot be unlocked again.

Based on the example bootloaders provided in this application project, the flash blocks used by the
bootloader are:

e RAG6M4 Overwrite Mode: block 0-7
e RA6M4 Swap Mode: block 0-8
¢ RAG6M3 Overwrite Mode: block 0-7

Users can refer to the RA Family MCU Securing Data at Rest using Arm TrustZone Application Project to
understand the operational flow of setting up the Flash Block Protection.

Note that ticking the BSPO and PBPSO0 Flash Block settings will permanently lock the flash blocks. This
CANNOT be reversed. Further details can be found in sections 6.2.6 and 6.2.7 of the RA6M4 Hardware
User's Manual.

7.2 Making the Bootloader for Cortex-M4 Immutable

Customers can refer to the Renesas RA MCU Family Securing Data at Rest Utilizing the Renesas Security
MPU application project section Permanent Locking of the FAW Region to understand how to make the
bootloader for Cortex-M4 Immutable. Section PC Application to Permanently Lock the FAW in the same
application note describes how to handle Flash locking in production mode.

7.3 Device Lifecycle Management for Renesas RA Cortex-M33 MCUs

Once the bootloader development is finished, the user may want to transition the Device Lifecycle State of
the RA Cortex-M33 MCU to lock down the debugger and the serial programming interface.

We recommend referring to the Device Lifecycle State Transitions in the Production Flow section in the
Renesas RA Family MCU Device Lifecycle Management Key Installation Application Note to understand the
device lifecycle management options during production.

The operational overview of how to use Renesas Flash Programmer to perform these transitions is explained
in the Overview of Device Lifecycle State Transitions using Renesas Flash Programmer section.

7.4 Device Lifecycle Management for Renesas RA Cortex-M4 MCUs

Once the bootloader development is finished, you may want to set up the ID Code protection on Renesas RA
Cortex-M4 MCU to lock down the debugger and the serial programming interface.

You can refer to the Securing Data at Rest Utilizing the Renesas Security MPU Application Project section
Setting up the Security Control for Debugging for the desired setting to control the device lifecycle
management of the RA Cortex-M4 MCUs using the ID Code protection method.

8. References
1. Renesas RA Family MCU Securing Data at Rest using Security MPU Application Project (R11AN0416)

2. Renesas RA Family MCU Securing Data at Rest using Arm TrustZone® Application Project

(R11AN0468)
Renesas RA Family MCU Device Lifecycle Management Key Injection Application Project (R11AN0469)

4. Renesas RA Family MCU Security Design with TrustZone — IP Protection Application Project
(R11ANO467)

R11ANO567EU0130 Rev.1.30 Page 39 of 41
Oct.21.24 RENESAS


https://www.renesas.com/document/apn/securing-data-rest-utilizing-renesas-security-mpu?language=en&r=1168086
https://www.renesas.com/document/apn/securing-data-rest-utilizing-renesas-security-mpu?language=en&r=1168086
https://www.renesas.com/document/apn/renesas-ra-securing-data-rest-using-arm-trustzone?language=en&r=1353811
https://www.renesas.com/document/apn/renesas-ra-family-device-lifecycle-management-key-installation?language=en&r=1353811
https://www.renesas.com/document/apn/renesas-ra-family-device-lifecycle-management-key-installation?language=en&r=1353811
https://www.renesas.com/us/en/document/apn/security-design-arm-trustzone-ip-protection
https://www.renesas.com/us/en/document/apn/security-design-arm-trustzone-ip-protection

Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

9. Website and Support

Visit the following URLSs to learn about the RA family of microcontrollers, download tools and documentation,
and get support.

EK-RA6M4 Resources renesas.com/ra/ek-ra6m4
EK-RA6M3 Resources renesas.com/ra/ek-rabm3
RA Product Information renesas.com/ra
Flexible Software Package (FSP) renesas.com/ra/fsp
RA Product Support Forum renesas.com/ra/forum
Renesas Support renesas.com/support
R11AN0567EU0130 Rev.1.30 Page 40 of 41

Oct.21.24 RENESAS


https://www.renesas.com/ra/ek-ra6m4
https://www.renesas.com/ra/ek-ra6m3
https://www.renesas.com/ra
http://www.renesas.com/fsp
https://www.renesas.com/ra/forum
https://www.renesas.com/support

Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI

Revision History

Description
Rev. Date Page Summary
1.00 Oct.28.22 - First release document
1.10 Nov.02.23 - Update to FSPv5.0.0
1.20 Jan.24.24 - Updates throughout the document
1.30 Oct.21.24 - Update to FSPv5.5.0
R11AN0567EU0130 Rev.1.30 Page 41 of 41

Oct.21.24 RENESAS



Notice

1.

10.

11.

12.

13.
14.

(Notel)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home
electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc.
Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products
outside of such specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you
are responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.
“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
WWWw.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)
Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2024 Renesas Electronics Corporation. All rights reserved.


https://www.renesas.com/
https://www.renesas.com/contact/

	1.  MCUboot Functionalities Overview
	1.1 Validate Application before Booting and Updating
	1.1.1 Encrypted Applications Update


	2. Architecting an Application with MCUboot Module using FSP
	2.1 MCU Memory Configuration using MCUboot Module with FSP
	2.2 Application Image Format for Encrypted Image
	2.3 Designing Bootloader and the Initial Primary Application Overview
	2.4 General Guidelines using the MCUboot Module Across RA Family MCUs
	2.5 Customize the Bootloader
	2.6 Production Support
	2.6.1 Key Provisioning
	2.6.2 Make the bootloader immutable for enhanced security
	2.6.3 Advance the device lifecycle states prior to the deploy the product to the field


	3. Running the Initial Example Projects
	3.1 Set Up the Python Image Signing Environment
	3.2 Running the Initial Example Projects
	3.2.1 Set Up the Hardware
	3.2.2 Import the Projects
	3.2.3 Configure the Python Signing Environment
	3.2.4 Compile all the projects
	3.2.5 Debug the Applications
	3.2.6 Downloading and Running the Secondary Application


	4. Add Encryption to the Initial Example Project
	4.1 Configure the Bootloader for Encryption Support
	4.2 Configure the Application Project for Encryption Support

	5. Use QSPI as Secondary Storage Area
	5.1 Configure the Bootloader to Use QSPI for Secondary Application Storage
	5.2 Update the Primary Application Project to Support QSPI

	6. Using Custom Signing Key and Encryption Key
	7. Appendix
	7.1 Making the Bootloader for Cortex-M33 Immutable
	7.2 Making the Bootloader for Cortex-M4 Immutable
	7.3 Device Lifecycle Management for Renesas RA Cortex-M33 MCUs
	7.4 Device Lifecycle Management for Renesas RA Cortex-M4 MCUs

	8. References
	9. Website and Support
	Revision History

