RE N ESAS Application Note

Radio Driver

Reference Guide

Introduction

This application note is an API reference guide for the Radio Driver and MCU timer driver.
The Radio Driver supports LoRa®-based modulation technology and (G)FSK modulation.
Target Devices

e RA2E1 (R7FA2E1A9xxFM) + RF (Semtech SX1261/SX1262)

e RA2L1 (R7FA2L1ABxxFP) + RF (Semtech SX1261/SX1262)

e RAOE1 (R7FAOE1073CFJ) + RF (Semtech SX1261/SX1262)

e RAOE2 (R7FAOE2094CFM) + RF (Semtech SX1261/SX1262)

e RL78/G23 (R7F100GLG, R7F100GSN) + RF (Semtech SX1261/SX1262)

e RL78/G22 (R7F102GGE) + RF (Semtech SX1261/SX1262)

e RL78/L23 (R7F100LPL) + RF (Semtech SX1261/SX1262)

e RL78/G14 (R5F104ML) + RF (Semtech SX1261/SX1262)

Note: Radio driver uses MCU peripherals (see section 1.3 Resource Usage) and has radio interface defines
(see section 2.1 Defines), please confirm your device configuration.

Contents

1. OVEBIVIBW ..ottt oo oo oottt et e e o4 oo ettt et e e e e e e b e e e e e e e e e e e e 4
1.1 Radio Driver Component DIagramccouo oottt e e e e e e e e e e e e e e e e nnneeneeas 4
1.2 Directories (INFOMMATIVE)i it et e st e e e snbe e e e anne e e e e annneeeas 4
1.3 RESOUICE USAGE ettt ettt ettt e e sttt e e a bt e e e sttt e e s ante e e e e anbeeeesnnbeeesannneeens 5
1.4 Related DOCUMENTAtIONooiiiiiiie et e sttt e st e e e s eae et e e e snne e e e e ansbeeeeannneeens 5
2. Radio Interface (LORA / (G)FSK).. .o 6
g B I =Y {1 =T SRR 7
b2 I I =To Y=o I eTo) g e [0 =1 o T o KU PSPPSR 7
A I /1 oSSR USRI 8
D O o 13- - 3 | - USRS 9
221 RADIO_WAKEUP _TIME ...ttt ettt ettt et e e st e et e e s ste e e beeesmbeeeneeesnteeeaneeesnneeans 9
220G T = o 11 4 1= =4 9
bR Tt B o e To o)1 [oTo =1 o < T PSP T PP PPPP PP OPPT 9
D I S ¥ T [0 13 = | (= S PRSPPI 9
2.3.3 RadioTCXOCHIVOIAGE T ... et e e e et e e s raaeeeeaaes 9
A T | = T USROS 9
2.3.5 RAIORESUI .ottt ettt e e e e e e ettt e e e e e e e e nae e e e e e e e e e e neeeeeeaaeeeaannnneneas 11
D N G T =l (o gl =T S o 0 PRSP 11
R11AN0227EJ0480 Rev.4.80 Page 1 of 30

Aug.21.25 RENESAS

Radio Driver Reference Guide

ARG T A S ¥-To [T 107 o] o1 iTe | 2{=Te 1] o N PSPPSR 11
P 1Y/ o 1= (= 11 a1 1] o ISP UT PRI 11
D22 T | 1 U T (3 SR 11
D22 Tt B o =T o =Y o | (= SR 11
I S ¥ T [l I o= 11 = (U SRR PP 12
2.6 Radio APIs (RAdio_S RAIO)ccuuiiiiiiiie it e e e e e e e e e e e s e e e e e e e e e annrnaees 13
D20 0 I 1 PR 14
2.6.2 SEIRXCONTIG ettt h et h e e e e bt e e s abe e e e s nnn e e e e nneee s 15
PR TS 1= 0 I (O7e 11 o T SOOI 16
D2 S 1= (0 o =1 o o1 SR 17
DG TR TS 1= 111 oo 1= o SRR 17
2.6.6 SetMaxPayloadLength ... e e e e e e e e e e e aae s 18
DG A S 1= | W o] o N =Y Ao T SRR 18
DGR T = o SRS 18
DG TS 1= o o SRS 19
P OIS =TT o B S 1oL =T o)A = T o o SRR 20
D2 S = 4 T | oSSR 20
2.6.12 SetTXCONINUOUSWVAVE..........uiiiiiiiiie et e ettt sttt e sttt e e st e e s st e e e s este e e e s ansaeeesassseeesanseeeeesnnseeeeansneeens 20
2.6.13 SetTXINfINHEPreambIle o et e e e 20
D2 Tt S o1 SRR 21
D22 Tt S T 112 0 1=T @ o N SO 21
2.6.16 CheCKRIFTEQUENCYeeiiiitiiee ettt sttt ettt e e st e e s sttt e e s annte e e s annneeenn 21
B T A C 11 1] = (1 L PP 21
2.6.18 ISCRANNEIFTEE ...ttt e e e oottt e e e e e e s b aeeeee e e e e e e annbsbeeeeeeeeeaannneneeeas 22
B2 Tt R I %= g T Lo o o I U PUEPPT 22
PG W [(0| o (o1 SRR 22
DS T o ISP ST PRROPI 22
2.8.22 GIPID ...t e e e —— e e e e e ——— e e e a——eeeea——eee e e a—eeeeaaraeeeanraeaan 23
DG TS 1= 1 o TSRO 23
DG Y= 1= 6 o SRR 23
D T2 TS =Y =Y o1 @7 01 23
P R 0% 111 o] =1 (=] [0 T o 1= Y SRR 23
P G A €T (=1 o T o =T SRR 24
2.8.28 WV .. .veeeeeiteiee ettt e e e ettt e et e e ettt e e e ea— e e e e ea———eeaaa—eeeeaaaa—eeeeeaaeeeeabteeeaaareeeeaareeeeanraeaas 24
DG A T o = T SRR 24
DI O C Tt I 0 1= o] NN L= I USRS 24
B B C Tt A AT = 1o 0 o I = SR 25
2.7 Radio Driver Event Handler (RAdiOEVENES t)......cciiiiiiiiiiiiiiie ettt 25
D 0 B B (B Lo T PP PPPPPR PP 25
D A " I {12 1=To 10 S SRR 25
B2 A T o 0 { Do o T SRS 25
R11AN0227EJ0480 Rev.4.80 Page 2 of 30

Aug.21.25 RENESAS

Radio Driver Reference Guide

2.7.4 RXTIMEOUL ...ttt e e e e oo h ettt e e e e e o s be b ettt e e e e e s abbbe e et e e e e e sannbb b e e et eeeeeaannnenneeas 26
D A0 T o 0 =1 o] S 26
2.8 Radio Driver API CONSIraiNt ...t e e e e e e e e e e e e e e e e e e e s nneeeeeeeeeeeeanneneeeas 26
D22 < Tt B |V Fo o 1= o T o T =10 0 =T T S 26
2.8.2 State of Available t0 CalliNg APIS.........cooiiiiieeee e e e e e e e e e e e e e e e eanerae s 27
R T I o = 28
3.1 TYPE DEFINILION. ...ttt bt e e e s b e e e s bb e e e ab e e e e abe e e e e an 28
311 TIMEIEVENT L. s 28
31,2 TIMEITIME oot s 28
0 {0 1Y Y £ PP 28
R 2 O I 10 T 1o T SRR 28
0 {4 =Y ST Y £ 1= SR 28
B 0 N I {0 1=) = o SR 29
B N N 10 1=] (o] o SO RSP PPRP 29
.25 TIMEIRESEL ...ttt e oo oottt et e e e e e e aa b ettt e e e e e e e e aab et ee e e e e e e e nnbeeeeaaaeean 29
3.2.6 TIimMErGetCUITENTTIME ...oiiiiiie ittt e st e ettt e e e ettt e e e sttt e e e abteeeesbeeeeesseeeeeansbeeeeannteeaeannseeaennns 29
3.2.7 TIimerGetEIapSEATIMEcoiiiiiiiii ettt ettt e e e sbb e e e sbe e e e e eabteeeesanbeeeeaan 29
(Y] o] g T 1] (o] Y PSSP 30
R11AN0227EJ0480 Rev.4.80 Page 3 of 30

Aug.21.25 RENESAS

Radio Driver Reference Guide

1. Overview
This application note contains the API of the radio driver and timer functions.

1.1 Radio Driver Component Diagram
Figure 1 shows a block diagram of the radio driver and related components overview.

Apps (user application)

Drivers

Radio Peripherals System
Utilities: timer

and so forth

Boards, boards/mcu

Target Device

Note: This document covers the radio driver and timer utilities.

Figure 1. Radio Driver and Related Components Overview
1.2 Directories (informative)
Table 1 shows a basic concept of the type of codes that each directory includes. This is just for information.

Table 1. Directories

Directories Description

src/apps Application code

src/boards Board specific codes

src/boards/mcu MCU drivers (except RL78/G23, RL78/G22 and RL78/L23).

src/radio Radio driver

src/system Utility APIs and so forth

src/peripherals Peripheral drivers

<ProjectDir>/src/smc_gen MCU drivers for RL78/G23, RL78/G22 and RL78/L23 generated by
RL78 Smart Configurator.
* <ProjectDir> is a folder for e2studio/CS+ project.

R11AN0227EJ0480 Rev.4.80 Page 4 of 30
Aug.21.25 RENESAS

Radio Driver

Reference Guide

1.3 Resource Usage

Please refer to the following Application Notes:

1.4 Related Documentation

For RL78: RL78/G23, RL78/G22, RL78/L23, RL78/G14 LoRa®-based Wireless Software Package
(R11AN0595)

For RA2 and RAO: RA2E1, RA2L1, RAOE1, RAOE2 LoRa®-based Wireless Software Package
(R11AN0596)

No. Title Author Language
[1] R11AN0834 Radio Driver Support Functions for Regional | Renesas Electronics | English
Radio Regulations
[2] | R11AN0937 Smart Configurator Usage for RL78 LoRa®- | Renesas Electronics | English
based Wireless Software Reference Guide
R11AN0227EJ0480 Rev.4.80 Page 5 of 30

Aug.21.25

RENESAS

Radio Driver

Reference Guide

2. Radio Interface (LoRa / (G)FSK)

This section provides the Radio driver definition. The Radio driver can be used by the APIs described in this

section.

At a minimum, the following APIs should be executed to send or receive configuration.

Type / Functions

Description

RadioEvents_t

Events handler function table to handle the event from radio.

Radio.Init()

Initialize the radio driver with RadioEvents_t event handler.

Radio.SetTxConfig()

Set Tx parameters to send data.

Radio.SetRxConfig()

Set Rx parameters to receive data.

Radio.SetChannel()

Set channel frequency to send or receive.

To send or to receive data, the following APls are used.

Type / Functions

Description

Radio.Send()

Set the radio to transmission mode.

Radio.Rx()

Set the radio to reception mode.

Radio.IrgProcess()

Process radio IRQ and call event handler (e.g., RxDone(), TxDone()).

R11AN0227EJ0480 Rev.4.80 Page 6 of 30

Aug.21.25

RENESAS

Radio Driver

Reference Guide

2.1 Defines
2.1.1 Board configuration

RP_CPU_CLK

Set the operating clock frequency of the MCU [MHz]. Choose
between 32 [MHz] and 8 [MHZz]. To change the frequency for RL78,
it is necessary to change the user option byte as below (example).
RP_CPU_CLK=32 : option byte:
6e7ae8(RL78/G23)/6effe8(RL78/G14)

RP_CPU_CLK=8 : option byte:
6e7aaa(RL78/G23)/6effaa(RL78/G14)

RP_USE_DCDC_FOR_RADIO

If this macro is defined radio driver works as circuit has also LDO
and DC-DC converter on the board. If it is not defined, radio driver
works as circuit has LDO only. (default: Defined)

RP_USE_TCXO_FOR_RADIO

If this macro is defined, radio circuit uses external TCXO. If it is not
defined, radio driver uses external crystal oscillator. (default: NOT
defined)

RP_TCXO_CTRL_VOLTAGE

TCXO applied voltage . valid value is defined at
RadioTcxoCtrlVoltage_t. (default: TCXO_CTRL_1_8V)

RP_TCXO_STAB_TIME

TCXO oscillation stabilization time defined below:
RP_TCXO_STAB_TIME * 15.625 us. (default: 640)

DEFAULT_POWER_SELECT

RADIO_LOPOWER_SEL (1):
It means Radio signal power upper limit is +15 dBm. (applied to
SX1261)

RADIO_HIPOWER_SEL (2):

It means Radio signal power upper limit is +22 dBm. (applied to
SX1262)

(default: RADIO_LOPOWER_SEL)

RP_USE_RF_SWITCH

RF switch configuration. If uses a board with RF switch, this macro
should be defined. (default: NOT defined)

RP_CONTROL_ANTSW_
BY_MCU

Define if MCU controls power supply of RF switch. (default: defined)

RP_DETECT_BOARD_
CONFIG

If this macro is defined, radio driver detects board configuration
regarding SX1261/SX1262 and XTAL/TCXO. In this case, board
settings specified by DEFAULT_POWER_SELECT and
RP_USE_TCXO_FOR_RADIO are ignored. (default: defined)
Note: This macro works with SEMTECH LoRa Shield ONLY.

R11AN0227EJ0480 Rev.4.80
Aug.21.25

Re Page 7 of 30
RENESAS

Radio Driver Reference Guide

21.2 Misc
RADIO_FAR Specifying memory allocation area. This indication is that address
range 0x000000 to OxOFFFFF for all RAM data, ROM data and
functions. (default: __ far). This macro is for RL78.
RP_USE_RADIO_CFG_CHECK If this macro is not defined, the radio configurations validation
function (See [1]) regarding PIB_RADIO _CFG_CHECK_ENABLE is
disabled to save ROM size.
RADIO_CFG_EU_ENABLED Enable the radio configurations validation for Europa region if
RP_USE_RADIO_CFG_CHECK is defined.
RADIO_CFG_IN_ENABLED Enable the radio configurations validation for India if
RP_USE_RADIO_CFG_CHECK is defined.
RADIO_CFG_AS1_ENABLED Enable the radio configurations validation for Asia region 1 if
RP_USE_RADIO_CFG_CHECK is defined.
RADIO_CFG_AS2 ENABLED Enable the radio configurations validation for Asia region 2 if
RP_USE_RADIO_CFG_CHECK is defined.
RADIO_CFG_AS3_ENABLED Enable the radio configurations validation for Asia region 3 if
RP_USE_RADIO_CFG_CHECK is defined.
RADIO_CFG_AS4_ENABLED Enable the radio configurations validation for Asia region 4 if
RP_USE_RADIO_CFG_CHECK is defined.
RADIO_CFG_US_ENABLED Enable the radio configurations validation for United States if
RP_USE_RADIO_CFG_CHECK is defined.
RADIO_CFG_AU_ENABLED Enable the radio configurations validation for Australia if
RP_USE_RADIO_CFG_CHECK is defined.
RADIO_CFG_KR_ENABLED Enable the radio configurations validation for Korea if
RP_USE_RADIO_CFG_CHECK is defined.
RADIO_CFG_JP_ENABLED Enable the radio configurations validation for Japan (without low
duty cycle method) if RP_USE_RADIO_CFG_CHECK is defined.
RADIO_CFG_JP_LDC_ENABLED | Enable the radio configurations validation for Japan (with low duty
cycle method) if RP_USE_RADIO_CFG_CHECK is defined.

R11AN0227EJ0480 Rev.4.80 Page 8 of 30
Aug.21.25 RENESAS

Radio Driver Reference Guide

2.2 Constants
2.2.1 RADIO_WAKEUP_TIME

RADIO_WAKEUP_TIME Radio complete Wake-up Time [ms] with margin for temperature
compensation

2.3 Enumeration

2.3.1 RadioModems_t
Radio driver supported modems.

MODEM_FSK 0 Uses radio with (G)FSK mode (default)

MODEM_LORA 1 Uses radio with LoRa mode

2.3.2 RadioState_t
Radio driver status.

RF_IDLE Radio driver is idle state. (default)

RF_RX_RUNNING Radio driver is in reception state.

RF_TX_RUNNING Radio driver is in transmission state.

RF_CAD Radio driver is channel activity detection state.

RF_COLD_SLLEP Radio driver is cold sleep state.

QB |WIN|~|O

RF_WARM_SLLEP Radio driver is warm sleep state.

2.3.3 RadioTcxoCtrlVoltage_t
DIO3 TCXO voltage.

TCXO_CTRL_1_6V 0x00 1.6V
TCXO_CTRL_1_7V 0x01 1.7V
TCXO_CTRL_1_8V 0x02 1.8V (default)
TCXO_CTRL_2_2V 0x03 2.2V
TCXO_CTRL_2_4V 0x04 2.4V
TCXO_CTRL_2_7V 0x05 2.7V
TCXO_CTRL_3_0V 0x06 3.0V
TCXO_CTRL_3_3V 0x07 3.3V
234 PIB_t
The PHY information list. PIB is initialized in Init() and should be set in RF_IDLE.
PIB_RSSI_OFFSET 0 Offset of RSSI [dB] (int8_t, Default 0)
PIB_CCA_BANDWIDTH 1 Bandwidth [Hz] for IsChannelFree() / Ed() function
[Setting value] (uint32_t)
0 (default):
Bandwidth of SetRxConfig is used for
IsChannelFree() / Ed() function.
Others:
Specified bandwidth is used for IsChannelFree()
/ Ed() function. valid values below:
4800, 5800, 7300, 9700, 11700, 14600, 19500,
23400, 29300, 39000, 46900, 58600, 78200,
93800, 117300, 156200, 187200, 234300,
312000, 373600, 467000
R11AN0227EJ0480 Rev.4.80 Page 9 of 30

Aug.21.25 RENESAS

Radio Driver

Reference Guide

PIB_CALL_RX_DONE_IN_
PAYLOAD CRC_ERROR

Change RxDone called or not when payload CRC
error is occurred.
[Setting value] (bool)
false (default):
RxDone is not called when payload CRC error
is occurred.
true:

RxDone is called when payload CRC error is
occurred.

PIB_GAIN_BOOSTED

Change Rx Gain Configuration.
[Setting value] (bool)
true:
Uses Rx boosted gain
false (default):
Uses Rx power saving gain

PIB_XTAL_XTA_TRIM

XTAL trimming cap register value for XTA pin.
Default: 0x13, uint8_t, range: 0x00(11.3pF) —
0x2F(33.4pF)

PIB_XTAL_XTB_TRIM

XTAL trimming cap register value for XTB pin.
Default: 0x13, uint8_t, range: 0x00(11.3pF) —
O0x2F(33.4pF)

PIB_RADIO_CFG_CHECK_
ENABLE

Enable radio configurations validation for
transmission and reception. When true is set, radio
configurations are checked based on preconfigured
validation items every time (See [1])
Radio.Send(), Radio.Rx(),
Radio.SetTxContinuousWave,
Radio.SetTxInfinitePreamble or
Radio.CheckRfFrequency() is called.
[Setting value] (bool)
true:

Enable validation.
false (default):

Disable validation.

PIB_RADIO_CFG_REGION

Region or country used for the radio configurations
validation. See 2.3.7.

PIB_RADIO_CFG_FREQ_HOPPING_USED

Operation mode condition whether the upper layer
uses the frequency hopping method or not used for
the radio configurations validation.
This setting is effective if
PIB_RADIO_CFG_REGION is set to
RADIO_CFG_US of RADIO_CFG_EU.
[Setting value] (bool)
false (default):
The upper layer does not use the frequency
hopping method.
true:
The upper layer uses the frequency hopping
method.

R11AN0227EJ0480 Rev.4.80
Aug.21.25

Page 10 of 30

RENESAS

Radio Driver

Reference Guide

2.3.5 RadioResult_t
Return values of API.

RADIO_SUCCESS 0 APl is success.
RADIO_ARG_IS NULL 1 Argument has NULL pointer.
RADIO_ARG_IS_INVALID 2 Argument is not correct.
RADIO_FAIL 3 Radio operation is failed.
RADIO_CHECK_FAIL 100 Reception cannot be started due to invalid reception
_RX_CFG configurations.
RADIO_CHECK_FAIL 101 Transmission cannot be started due to invalid transmission
_TX_CFG configurations.
RADIO_CHECK_FAIL 102 Transmission cannot be started due to restriction of minimum
_TX_DUTY_CYCLE transmission interval or duty cycle.
RADIO_CHECK_FAIL_ 103 Carrier sense detected radio signal in the target channel and
_TX_CHANNEL_BUSY transmission cannot be started.
2.3.6 Error Flags of Rx
Radio error occurred on receiving.
RADIO_ERROR_NONE 0x0000 | No error on receiving.
RADIO_PAYLOAD_CRC_ 0x0040 | Receive CRC error frame.

ERROR

2.3.7 RadioConfigRegion_t

Region or country used for the radio configurations validation.

RADIO_CFG_EU 0 Europe region
RADIO_CFG_IN 1 India
RADIO_CFG_ASH1 2 Asia region 1
RADIO_CFG_AS2 3 Asia region 2
RADIO_CFG_AS3 4 Asia region 3
RADIO_CFG_AS4 5 Asia region 4
RADIO_CFG_US 6 United states
RADIO_CFG_AU 7 Australia
RADIO_CFG_KR 8 Korea
RADIO_CFG_JP 9 Japan (without low duty cycle method)
RADIO_CFG_JP_LDC 10 Japan (with low duty cycle method)
2.4 Type definition
None.
2.5 Structure
2.5.1 RadioEvents_t
void (RADIO_FAR *)(void) TxDone Tx done callback
Packet transmission succeeded normally.
void (RADIO_FAR *)(void) TxTimeout Tx timeout callback
Tx is aborted or fails.
void (RADIO_FAR *)(uint8_t *, | RxDone Rx done callback
uint16_t ", int16_t, int8_t) Packet reception succeeded normally.
void (RADIO_FAR *)(void) RxTimeout Rx timeout callback

R11AN0227EJ0480 Rev.4.80

Aug.21.25

Re Page 11 of 30
RENESAS

Radio Driver

Reference Guide

Not detect packet, or not complete reception
in the time.

void (RADIO_FAR *)(void) RxError Rx error callback
Wrong CRC received.

void (RADIO_FAR *)(uint8_t) FhssChangeChannel N/A

void (RADIO_FAR *)(bool) CadDone N/A

2.5.2 RadioTxFailStatus_t

This structure contains packet transmission failure flags for each predefined radio band. Users can read the
flags in this structure to analyze the cause for the latest packet transmission failure.

uint8_t numBands Number of radio bands defined.
RadioTxFailStatus_t * pFlag Pointer to the head of the failure flag array.
Failure flags of a band with the band ID of
bandld is stored in *(pFlag + bandld). Note
that bandld should not exceed numBands. (0
< bandld < numBands).
R11AN0227EJ0480 Rev.4.80 Page 12 of 30
Aug.21.25 RENESAS

Radio Driver

Reference Guide

2.6 Radio APIs (Radio_s Radio)

This section contains members of Radio_s. The radio interface could be used through the instance “Radio”

of Radio_s structure. For example, call the Radio.Send () member function to execute Send ().

Note: All APIs cannot be called in the MCU interrupt handler.

Table 2 shows functions in this structure.

Table 2. Radio interface APIs

Function Description

Init() Initializes the radio driver.

SetRxConfig() Sets the reception parameters.

SetTxConfig() Sets the transmission parameters.
SetChannel() Sets the channel frequency.

SetModem() Configures the radio modem.
SetMaxPayloadLength() Sets the maximum payload length.
SetPublicNetwork() Set the network configuration to public or private.
Rx() Sets the radio in reception mode.

Send() Sets the radio in transmission mode.

Sleep() / SleepWarm() Sets the radio in warm sleep mode (RC64K off).
Standby() Sets the radio standby mode.

SetTxContinuousWave()

Sets the radio in continuous wave transmission mode.

SetTxInfinitePreamble()

Sets the radio in modulated continuous preamble transmission mode.

Rssi() Reads the instantaneous RSSI value.

TimeOnAir() Computes the packet occupied time on air.
CheckRfFrequency() Checks the channel frequency is supported by the hardware.
GetStatus() Gets current radio status.

IsChannelFree() Checks whether the channel is free.

Random() Generates a 32bit random value.

IrgProcess() Processes radio IRQ events.

Ed() Gets energy detection value.

GetPib() Gets PIB. (PHY information block)

SetPib() Sets PIB. (PHY information block)

WakeUp() Wakes up the radio and recover board configuration.
SleepCold() Sets the radio in cold sleep mode (RC64K off).
Calibratelmage() Executes image calibration.

GetErrorFlag() Gets the radio Rx error flags.

Write() Writes to the radio register at the specified address.

Read() Reads the radio register at the specified address.
GetTimeToNextTx() Acquires estimated time for next packet transmission.
GetWakeupTime() Gets the time required for the board plus radio to get out of sleep.

R11AN0227EJ0480 Rev.4.80
Aug.21.25

Page 13 of 30

RENESAS

Radio Driver

Reference Guide

2.6.1 Init

RadioResult_t (RADIO_FAR *Init)(RadioEvents_t *event)

Initializes the radio and register event callback.

Parameters:
*event Structure containing the Radio driver callback functions

(RADIO_FAR *TxDone)(void) [IN] Tx Done callback function address or NULL
(Discard event).
See section 2.7.1 TxDone

(RADIO_FAR *TxTimeout)(void) [IN] Tx Timeout callback function address or NULL
(Discard event).
See section 2.7.2 TxTimeout

(RADIO_FAR * RxDone)(uint8_t [IN] Rx Done callback function address or NULL

*payload, uint16_t size, int16_t (Discard event).

rssi, int8_t snr)
See section 2.7.3 RxDone

(RADIO_FAR *RxTimeout)(void) [IN] Rx Timeout callback function address or NULL
(Discard event).
See section 2.7.4 RxTimeout

(RADIO_FAR *RxError)(void) [IN] Rx Error callback function address or NULL
(Discard event).
See section 2.7.5 RxError

(RADIO_FAR [IN] N/A set to NULL

*FhssChangeChannel)(uint8_t

currentChannel)

(RADIO_FAR *CadDone) (bool [IN] N/A set to NULL

channelActivityDetected)

Return:

RADIO_SUCCESS

Radio initialization success.

RADIO_FAIL

Radio initialization fails.

RADIO_ARG_IS_NULL *event is null
R11AN0227EJ0480 Rev.4.80 Page 14 of 30
Aug.21.25 RENESAS

Radio Driver

Reference Guide

2.6.2 SetRxConfig

RadioResult_t (RADIO_FAR *SetRxConfig)(RadioModems_t modem, uint32_t bandwidth,
uint32_t datarate, uint8_t coderate, uint32_t bandwidthAfc, uint16_t preambleLen,
uint16_t symbTimeout, bool fixLen, uint8_t payloadLen, bool crcOn, bool FreqHopOn,
uint8_t HopPeriod, bool iginverted, bool rxContinuous)

This function sets the reception parameters.

Parameters:

modem

[IN] Radio modem to be used
0:
(G)FSK

LoRa
(see section 2.3.1 RadioModems_t)

bandwidth

[IN] Sets the bandwidth

(G)FSK:
>= 4800 and <= 467000 Hz

LoRa:
0: 125 kHz, 1: 250 kHz, 2: 500 kHz, 3: 62 kHz, 4: 41 kHz,
5: 31 kHz, 6: 20 kHz, 7: 15 kHz, 8: 10 kHz, 9: 7 kHz

datarate

[IN] Sets the data rate
(G)FSK:

600...300000 bits/s
LoRa:

5: SF5, ..., 12: SF12

coderate

[IN] Sets the coding rate (LoRa only)
(G)FSK:

N/A (set to 0)
LoRa:

1:4/5, 2: 4/6, 3: 4/7, 4: 4/8

bandwidthAfc

[IN] N/A (set to 0)

preamblelLen

[IN] Sets the Preamble length
(G)FSK:
Number of bytes (1...8191),
LoRa:
Length in symbols (1...0xffff)
Note: In SF5 or 6, preamblelLen is modified 12 if preamblelLen less
than 12.

symbTimeout

[IN] Set timeout for detection of frame reception in case of Rx single
mode (i.e. rxContinuous is set to false).
(G)FSK:

Timeout in number of bytes (0...0xffff). maximum 262 seconds.
LoRa:

The “SymbNum” parameter (0...0xff). For more detail, please

refer to the SetLoRaSymbNumTimeout in SX126x Datasheet.
Set 0 in case of RX continuous mode (i.e. rxContinuous is set to
true).

fixLen [IN] Fixed length packets
false:
Variable/Explicit header
true:
Fixed/Implicit header
payloadLen [IN] Sets payload length when fixed length is used (0...255)
crcOn [IN] Enables CRC

R11AN0227EJ0480 Rev.4.80
Aug.21.25

Re Page 15 of 30
RENESAS

Radio Driver

Reference Guide

false:
CRC OFF
true:
CRC ON
Note: Only enable at fixLen = false

FreqHopOn

[IN] N/A (set to false)

HopPeriod

[IN] N/A (set to 0)

iglnverted

[IN] Inverts 1Q signals (LoRa only)
(G)FSK:
N/A (set to false)
LoRa:
false:
not inverted
true:
inverted

rxContinuous

[IN] Sets the reception in RX continuous mode
false:

RX single mode
true:

RX continuous mode

Return:

| RADIO_SUCCESS

Radio Config success.

2.6.3 SetTxConfig

timeout)

RadioResult_t (RADIO_FAR* SetTxConfig)(RadioModems_t modem, int8_t power, uint32_t fdev,
uint32_t bandwidth, uint32_t datarate, uint8_t coderate, uint16_t preambleLen, bool
fixLen, bool crcOn, bool FreqHopOn, uint8_t HopPeriod, bool iginverted, uint32_t

This function sets the transmission parameters.

Parameters:

modem

[IN] Radio modem to be used [0: (G)FSK, 1: LoRa]
(see section 2.3.1 RadioModems_t)

power

[IN] Sets the output power [dBm]

Low Power (SX1261):
-17...15[dBm]

High Power (SX1262):
-9...22[dBm]

fdev

[IN] Sets the frequency deviation ((G)FSK only)
(G)FSK:

0x000000...0xFFFFFF [Hz]
LoRa:

setto 0

bandwidth

[IN] Sets the bandwidth

(G)FSK:
setto 0

LoRa:
0: 125 kHz, 1: 250 kHz, 2: 500 kHz, 3: 62 kHz, 4: 41 kHz,
5: 31 kHz, 6: 20 kHz, 7: 15 kHz, 8: 10 kHz, 9: 7 kHz

datarate

[IN] Sets the data rate
(G)FSK:

600...300000 bits/s
LoRa:

5: SF5, ... ,12: SF12

R11AN0227EJ0480 Rev.4.80
Aug.21.25

Re Page 16 of 30
RENESAS

Radio Driver Reference Guide

coderate [IN] Sets the coding rate (LoRa only)
(G)FSK:
N/A (set to 0)
LoRa:
1: 4/5, 2: 4/6, 3: 4/7, 4: 4/8
preamblelLen [IN] Sets the preamble length
(G)FSK:
Number of bytes (1...8191),
LoRa:

Length in symbols (1...0xffff)
Note: Set SF5 or 6, preamblelLen is modified 12 if preambleLen

less than 12.
fixLen false:
Variable/Explicit header
true:
Fixed/Implicit header
crcOn [IN] Enables CRC
false: CRC OFF
true: CRC ON
Note: Only enable at fixLen=false
FreqHopOn [IN] N/A (set to false)
HopPeriod [IN] N/A (set to 0)
iglnverted [IN] Inverts 1Q signals (LoRa only)
(G)FSK:
N/A (set to false)
LoRa:

false: not inverted
true: inverted

timeout [IN] Transmission timeout [ms] (0 to 4294967295)

Return:
| RADIO_SUCCESS

Radio Config success.

2.6.4 SetChannel
void (RADIO_FAR *SetChannel)(uint32_t freq)
This function sets the channel frequency to radio
Parameters:
| freq | [IN] Channel frequency [Hz] (426000000...928000000)
Return:
|None

2.6.5 SetModem

void (RADIO_FAR *SetModem)(RadioModems_t modem)
Configures the radio modem.

Parameters:
modem [IN] Modem to be used [0: (G)FSK, 1: LoRa]
(see section 2.3.1 RadioModems_t)
Return:
None
R11AN0227EJ0480 Rev.4.80 Page 17 of 30

Aug.21.25 RENESAS

Radio Driver Reference Guide

2.6.6 SetMaxPayloadLength

void (RADIO_FAR *SetMaxPayloadLength)(RadioModems_t modem, uint8_t max)

This function sets the maximum payload length. This is only needed in fixed length payload (Implicit
header). When user calls this API, it should be called after SetRxConfig().

Parameters:
Modem [IN] Radio modem to be used [0: (G)FSK, 1: LoRa]
(see section 2.3.1 RadioModems_t)
Max [IN] Maximum payload length in bytes (0...255)
Return:
| None

2.6.7 SetPublicNetwork
void (RADIO_FAR *SetPublicNetwork)(bool enable)
This function sets public or private network and changes radio modem to LoRa.

Parameters:
enable [IN]
true:
set public network sync word for LoRaWAN®
false:
set private network sync word
Return:
| None
2.6.8 Rx

RadioResult_t (RADIO_FAR *Rx)(uint32_t timeout)
This function sets the radio to reception mode.
(see section 2.7.3 RxDone, section 2.7.4 RxTimeout and section 2.7.5 RxError)

Parameters:
timeout [IN] Reception timeout (0 to 4294967295) [ms]
RxTimeout() callback is called as follows:
[Rx Single mode]
RxTimeout() is called when argument timeout or symbTimeout (*1) is
expired.
[Rx Continuous mode (*2)]
RxTimeout() is called when argument timeout is expired.
(*1) section 2.6.2 SetRxConfig symbTimeout
(*2) section 2.6.2 SetRxConfig rxContinuous (true)
Return:
RADIO_SUCCESS Success
RADIO_CHECK_FAIL Reception cannot be started due to unsupported modulation
_RX_CFG configurations. This value can return only when
PIB_RADIO_CFG_CHECK_ENABLE is “true”.
R11AN0227EJ0480 Rev.4.80 Page 18 of 30

Aug.21.25 RENESAS

Radio Driver

Reference Guide

2.6.9 Send

RadioResult_t (RADIO_FAR *Send)(uint8_t RADIO_FAR *buffer, uint8_t size)

This function sends buffer data. Prepares the packet to be sent and sets the radio to transmission.
(see section 2.7.1 TxDone and section 2.7.2 TxTimeout)

Parameters:

*buffer [IN] Buffer pointer

size [IN] Buffer size [bytes] (0...255)
Return:

RADIO_SUCCESS Success

RADIO_ARG IS NULL *buffer is null

RADIO_CHECK_FAIL_
TX_CFG

Transmission cannot be started due to unsupported modulation
configurations. This value can return only when
PIB_RADIO_CFG_CHECK_ENABLE is “true”.

RADIO_CHECK_FAIL_
TX_DUTY_CYCLE

Transmission cannot be started due to restriction of transmission
pause or duty cycle. This value can return only when
PIB_RADIO_CFG_CHECK_ENABLE is “true”.

RADIO_CHECK_FAIL_
TX_CHANNEL_BUSY

Radio channel is busy, and transmission cannot be started. This value
can return only when PIB_RADIO_CFG_CHECK_ENABLE is “true”.

R11AN0227EJ0480 Rev.4.80
Aug.21.25

Re Page 19 of 30
RENESAS

Radio Driver Reference Guide

2.6.10 Sleep / SleepWarm
void (RADIO_FAR *Sleep / *SleepWarm)(void)
This function sets the radio to the warm sleep mode (RC64K off). SleepWarm() is alias of the Sleep().
WakeUp() and almost all APIs accessing the radio will wake the radio from the warm sleep state.
Parameters:
| None
Return:
| None

2.6.11 Standby
void (RADIO_FAR *Standby)(void)
This function sets the radio to the standby mode. This function can be called any time after Init().
Parameters:
| None
Return:
| None

2.6.12 SetTxContinuousWave

RadioResult_t (RADIO_FAR *SetTxContinuousWave)(uint32_t freq, int8_t power, uint16_t time)
This function sets the radio in unmodulated continuous wave transmission mode.
When time expired, TxTimeout() is called.
Parameters:
freq [IN] Channel frequency [Hz] (426000000...928000000)
power [IN] Sets the transmission power [dBm]
(Low Power: -17...15, High Power: -9...22)
time [IN] Transmission mode timeout [s] (0...65535)
Return:
RADIO_SUCCESS Success.
RADIO_CHECK_FAIL Transmission cannot be started due to restriction on continuous
_TX_CFG transmission. This value can return only when
PIB_RADIO_CFG_CHECK_ENABLE is “true”.

2.6.13 SetTxInfinitePreamble

RadioResult_t (RADIO_FAR *SetTxInfinitePreamble)(uint32_t freq, int8_t power, uint16_t time)
This function sets the radio in LoRa modulated continuous preamble transmission mode.
When time expired, TxTimeout() is called.
Parameters:
freq [IN] Channel frequency [Hz] (426000000...928000000)
power [IN] Sets the transmission power [dBm]
(Low Power: -17 to 15, High Power: -9 to 22)
time [IN] Transmission mode timeout [s] (0...65535)
Return:
RADIO_SUCCESS Success.
RADIO_CHECK_FAIL Transmission cannot be started due to restriction on continuous
_TX_CFG transmission. This value can return only when
PIB_RADIO_CFG_CHECK_ENABLE is “true”.
R11AN0227EJ0480 Rev.4.80 Page 20 of 30

Aug.21.25 RENESAS

Radio Driver Reference Guide

2.6.14 Rssi
int16_t (RADIO_FAR *Rssi)(RadioModems_t modem)
This function reads the instantaneous RSSI value with current modem.

Parameters:
| modem | Don’t care
Return:
(0to-127) + instantaneous RSSI value in [dBm]

PIB_RSSI_OFFSET'’s value

2.6.15 TimeOnAir
uint32_t (RADIO_FAR *TimeOnAir)(RadioModems_t modem, uint8_t pktLen)

This function computes the packet time on air in ms for the given payload. Modem parameters must be
preset. (e.g., SetRxConfig() or SetTxConfig())

Parameters:
modem [IN] Radio mode to be used [0: (G)FSK, 1: LoRa]
(see section 2.3.1 RadioModems_t)
pktLen [IN] Packet payload length
Return:
| time | Time [ms] for the given packet payload length

2.6.16 CheckRfFrequency
bool (*CheckRfFrequency)(uint32_t frequency)
This function returns whether the driver supports the specified frequency.

Parameters:
frequency [IN] channel frequency to be checked
Return:
true supported
false unsupported. This value can return only when
PIB_RADIO_CFG_CHECK_ENABLE is “true”.

2.6.17 GetStatus

RadioState_t (RADIO_FAR *GetStatus)(void)
This function returns current radio status.

Parameters:
| None

Return:
RF_IDLE Radio driver is idle(default).
RF_RX_RUNNING Radio driver is in reception state.
RF_TX_RUNNING Radio driver is in transmission state.
RF_CAD Radio driver is channel activity detection state.
RF_COLD_SLEEP Radio driver is cold sleep state.
RF_WARM_SLEEP Radio driver is warm sleep state.

R11AN0227EJ0480 Rev.4.80 Page 21 of 30

Aug.21.25 RENESAS

Radio Driver Reference Guide

2.6.18 IsChannelFree
bool (RADIO_FAR *IsChannelFree)(RadioModems_t modem, uint32_t freq, int16_t rssiThresh,
uint32_t maxCarrierSenseTime)
Checks whether the channel is free.
Note: Modem and bandwidth for carrier sense must be set by the following API parameter.
Modem: section 2.3.1 RadioModems_t
Bandwidth: section 2.3.4 PIB_t PIB_CCA_BANDWIDTH or section 2.6.2 SetRxConfig bandwidth
Parameters:

modem Don't care.

freq [IN] Channel frequency [Hz] (426000000...928000000)

rssiThresh [IN] RSSI threshold [dBm] (-127...0)

maxCarrierSenseTime [IN] Maximum time for RSSI measurement [ms] (1...10)
Return:

true 1 Channel is free (signal is less than rssiThresh)

false 0 Channel is not free (signal is rssiThresh and over)

2.6.19 Random
uint32_t (RADIO_FAR *Random)(void)
This function generates a 32 bits random value.
Parameters:
| None
Return:
| uint32_t | 32 bits random value

2.6.20 IrgProcess
bool (RADIO_FAR *IrgProcess)(void)
Process radio IRQ event. This function calls event handler registered in RadioEvents_t when
corresponding IRQ event has occurred.
Note: for processing involving radio IRQ events, it is necessary to set a timeout period that considers the
period until this APl is called.
Parameters:
None
Return:
true 1 next event remains in IRQ (IrgProcess() should be called again).

false 0 No event remained.

2.6.21 Ed

int16_t (RADIO_FAR *Ed)(uint32_t freq, int32_t edTime)
Gets maximum RSSI value in [dBm].
Note: Modem and bandwidth for carrier sense must be set by the following API parameter.
Modem: section 2.3.1 RadioModems_t
Bandwidth: section 2.3.4 PIB_t PIB_CCA_BANDWIDTH or section 2.6.2 SetRxConfig bandwidth
Parameters:

Freq [IN] Channel frequency [Hz] (426000000...928000000)
edTime [IN] ED scan time[ms] (1...50)

Return:
(0 to-127) + maximum RSSI [dBm] value in edTime duration.
PIB_RSSI_OFFSET value

R11AN0227EJ0480 Rev.4.80 Page 22 of 30
Aug.21.25 RENESAS

Radio Driver Reference Guide
2.6.22 GetPib

bool (RADIO_FAR *GetPib)(PIB_t id, uint8_t RADIO_FAR * pOutVal)
Gets PIB value.
Parameters:
id [IN] PIB Id.
(see section 2.3.4 PIB_t)
pOutVal [OUT] address of PIB value
Return:
true 1 Get success
false 0 Get fail
2.6.23 SetPib

bool (RADIO_FAR *SetPib)(PIB_t id, uint8_t RADIO_FAR * pInVal)
Sets PIB value.

Parameters:
id [IN] PIB Id.
(see section 2.3.4 PIB_t)
pInVal [IN] address of PIB value
Return:
true 1 Set success
false 0 Set fail

2.6.24 WakeUp
void (RADIO_FAR *WakeUp)(void)

Wake up the radio from the cold or warm sleep mode. When radio is in the cold sleep mode, this function
will recover the board related device settings (RF switch settings, TCXO settings, Regulator settings).
Parameters:

| None
Return:
| None

2.6.25 SleepCold
void (RADIO_FAR *SleepCold)(void)
Sets the radio in cold sleep mode and RC64K off. (Note: modem/register parameter lost)

To activate radio, call section 2.6.24 WakeUp (see section 2.8.1 Modem parameter)
Parameters:

| None
Return:
| None

2.6.26 Calibratelmage
void (RADIO_FAR *Calibratelmage)(uint32_t freq)

Execute Image Calibration (Calibrate the image signal rejection filter for operating frequency band).
Parameters:

| freq | Channel frequency (426000000...928000000)
Return:

| None

R11AN0227EJ0480 Rev.4.80 Page 23 of 30
Aug.21.25 RENESAS

Radio Driver

Reference Guide

2.6.27 GetErrorFlag

uint16_t (RADIO_FAR * GetErrorFlag)(void)

This function returns radio Rx error flags. It is available in the RxDone() callback only.

Parameters:

| None

Return:

| Rx Error Flags see section 2.3.6 Error Flags of Rx

2.6.28 Write

void (*Write)(uint16_t addr, uint8_t data)

Writes to the radio register at the specified address.

Parameters:

addr [IN] Register address

data [IN] Write data

Return:

| None

2.6.29 Read

uint8_t (*Read)(uint16_t addr)

Reads the radio register at the specified address.

Parameters:

| addr | [IN] Register address
Return:

| data | Read data

2.6.30 GetTimeToNextTx

int32_t (*GetTimeToNextTx)(void)

called only when PIB_RADIO_CFG_CHECK_ENABLE is “enable”.

Acquires estimated time for next packet transmission in a predefined radio band. This function can be

Parameters:

None
Return:

-1 Invalid radio band ID is specified, or calculation
failed.

0 Radio driver can accept a packet transmission
request in the specified radio band.

1 to 40000 Estimated minimum time in millisecond (ms) until
next packet transmission becomes possible in the
radio band specified.

R11AN0227EJ0480 Rev.4.80
Aug.21.25 RENESAS

Page 24 of 30

Radio Driver Reference Guide

2.6.31 GetWakeupTime
uint32_t (*GetWakeupTime)(void)
Gets the time required for the board plus radio to get out of sleep.[ms].
Parameters:
| None
Return:
time When using a XTAL, RADIO_WAKEUP_TIME is returned.

When using a TCXO, RADIO_WAKEUP_TIME +
RP_TCXO_STAB_TIME * 15.625 / 1000 is returned.

2.7 Radio Driver Event Handler (RadioEvents_t)

To handle events from Radio driver, set handler functions in RadioEvents_t and call the initialize API, “Init()”.
(see section 2.7.1 RadioEvents_t)

If user changes the state of the radio driver (RadioState_t) by API, the handler corresponding to the previous
state will not be called. (e.g., call “Standby()” in RF_RX_RUNNING state for cancelling receive)

2.71 TxDone
void (*TxDone) (void)
Tx Done callback. This function is called when packet transmission succeeded normally.
Parameters:
| None
Return:
| None

2.7.2 TxTimeout
void (*TxTimeout) (void)
Tx timeout timer callback. This function is called when Tx is aborted or fails.
Parameters:
| None
Return:
| None

2.7.3 RxDone

void (RADIO_FAR *RxDone)(uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr)
Rx Done callback. This function is called when packet reception succeeded normally.
Parameters:

*payload [IN] Received buffer pointer.
Note: Header and CRC data are not included in payload.
size [IN] Received buffer size [bytes] (0...255)
rssi [IN] RSSI value computed while receiving the frame [dBm]
snr [IN] Raw SNR value given by the radio hardware.
(G)FSK:
N/A
LoRa:
SNR value in dB
Return:
None
R11AN0227EJ0480 Rev.4.80 Page 25 of 30

Aug.21.25 RENESAS

Radio Driver

Reference Guide

2.7.4 RxTimeout

void (RADIO_FAR *RxTimeout)(void)

Rx Timeout callback. This function is called when not detect packet, or not complete reception in the time.

Parameters:

| None

Return:

| None

2.7.5 RxError

void (RADIO_FAR *RxTimeout)(void)

Rx Error callback. This function is called when an incorrect CRC is received.

Parameters:

| None

Return:

| None

2.8 Radio Driver API Constraint
2.8.1 Modem parameter

Following APIs will change the modem parameter. So, when these APIs are called, modem parameter

should be set again. (*1)

API

Description

Init ()

Initialize all parameters.

SetTxContinuousWave ()

Operation frequency and Tx Power are changed to argument
values.

SetTxInfinitePreamble ()

Operation frequency and Tx Power are changed to argument
values.

IsChannelFree ()

Operation frequency is changed to argument value.

Ed () Operation frequency is changed to argument value.

Sleep(), Only configuration for the activated modem before going to

SleepWarm() sleep is retained in the device(SX1261/SX1262). Configuration
of the other modems is lost and must be re-configured.

SleepCold () Initialize all parameters.

(*1) [API for modem parameters]

2.6.5 SetModem () , 2.6.7 SetPublicNetwork () ,2.6.3 SetTxConfig () , 2.6.2 SetRxConfig (),
2.6.6 SetMaxPayloadLength () ,2.6.4 SetChannel ()

R11AN0227EJ0480 Rev.4.80

Aug.21.25

Re Page 26 of 30
RENESAS

Radio Driver

Reference Guide

2.8.2 State of Available to Calling APIs
Following table is relation between state and API.

Yes: Available

No: Not available / invalid, do not call the API in that state.

Table 3. Relation between state and API

State | RF RF_RX RF_TX RF_COLD

API _IDLE _RUNNING _RUNNING _SLEEP
Init() Yes Yes Yes Yes
SetRxConfig() Yes No No No
SetTxConfig() Yes No No No
SetChannel() Yes No No No
SetModem() Yes No No No
SetMaxPayloadLength() Yes No No No
SetPublicNetwork() Yes No No No
Rx() Yes No Yes No
Send() Yes Yes No No
Sleep() Yes No No No
Standby() Yes Yes Yes No
SetTxContinuousWave() Yes No No No
SetTxInfinitePreamble() Yes No No No
Rssi() No Yes No No
TimeOnAir() Yes Yes Yes Yes
CheckRfFrequency() Yes Yes Yes Yes
GetStatus() Yes Yes Yes Yes
IsChannelFree() Yes No No No
Random() Yes No No No
IrgProcess() Yes Yes Yes Yes
Ed() Yes No No No
GetPib() Yes No No Yes
SetPib() Yes No No Yes
WakeUp() Yes No No Yes
SleepWarm() Yes No No No
SleepCold() Yes No No No
Calibratelmage() Yes No No No
GetErrorFlag() (*1) - - - -
Write() Yes No No No
Read() Yes No No No
GetTimeToNextTx() Yes Yes No Yes
GetWakeupTime() Yes Yes Yes Yes

(*1) Only available within RxDone() callback.

R11AN0227EJ0480 Rev.4.80 Page 27 of 30

Aug.21.25 RENESAS

Radio Driver Reference Guide

3. Timer

Timer provides timer event and a system time value.
3.1 Type Definition

Timer uses the following types.

Table 4. Type Definition

Type Description
TimerEvent_t Timer object structure. To initialize this object, call Timerlnit()
TimerTime_t Timer time variable integer in millisecond

3.1.1 TimerEvent_t

TimerEvent_t is timer control block used in the timer module internally. The detailed description is omitted in
this document.

3.1.2 TimerTime_t

Table 5. TimerTime_t

| typedef uint64_t TimerTime_t; | Timer time variable integer in millisecond

3.2 Timer APIs
The following functions are available for Timer.

Function Description

Timerlnit() Initializes the timer object
TimerSetValue() Sets timer new timeout value.
TimerStart() Starts timer.

TimerStop() Stops timer

TimerReset() Reset the timer object
TimerGetCurrentTime() Gets the current time in millisecond
TimerGetElapsedTime() Gets the time elapsed since fixed moment

3.2.1 Timerlnit

void Timerlnit(TimerEvent_t *obj, void (*callback)(void))

This function initializes the timer object. To set timeout value, TimerSetValue() function must be called
before starting the timer. this function initializes timer object with timeout value 0. To stop and initialize a
timer object that is already running, call TimerStop() before calling this function.

Parameters:
obj [IN] Structure containing the timer object parameters. See section 3.1.1
for the timer object.
callback [IN] Callback function called at the end of the timeout
Return:
| None

3.2.2 TimerSetValue
void TimerSetValue(TimerEvent_t *obj, uint32_t value)
This function set timer new timeout value. Do not call this function for a timer object that is running.
Parameters:

obj [IN] Structure containing the timer object parameters
value [IN] New timer timeout value[ms]. Valid argument range (decimal) is 0
to 3,888,000,000.
Return:
| None
R11AN0227EJ0480 Rev.4.80 Page 28 of 30

Aug.21.25 RENESAS

Radio Driver Reference Guide

3.2.3 TimerStart
void TimerStart(TimerEvent_t *obj)
This function starts timer and adds the timer object to the list of timer events.
Parameters:
| obj | [IN] Structure containing the timer object parameters.
Return:
| None

3.2.4 TimerStop
void TimerStop(TimerEvent_t *obj)
This function stops timer and removes the timer object from the list of timer events.
Parameters:

| obj | [IN] Structure containing the timer object parameters.
Return:

| None

3.2.5 TimerReset
void TimerReset(TimerEvent_t *obj)
This function resets the timer object. This function stops timer running and then restart it.
Parameters:
| obj | [IN] Structure containing the timer object parameters.
Return:
| None

3.2.6 TimerGetCurrentTime
TimerTime_t TimerGetCurrentTime(void)
This function returns the current time in millisecond.
Parameters:
None
Return:

TimerTime_t Current time [ms].

Note: OxFFFFFFFFFFFFFFFF is returned as
error if internal hardware calendar holds
time earlier than the system startup time.

3.2.7 TimerGetElapsedTime
TimerTime_t TimerGetElapsedTime(TimerTime_t savedTime)
This function returns the time elapsed since a fix moment in millisecond.

Parameters:
savedTime Fix moment in Time
Return:
TimerTime_t Elapsed time [ms].
Note: OxFFFFFFFFFFFFFFFF is returned if current time value is
larger than savedTime,
R11AN0227EJ0480 Rev.4.80 Page 29 of 30

Aug.21.25 RENESAS

Radio Driver

Reference Guide

Revision History

Description
Rev. Date Page Summary
1.00 Jan.23.19 - First official version.
3.00 Mar.03.21 1,5, 7 Support RL78/G23(rl78923-64pfpb_sx126Xx).
Delete default RP_CPU_CLK, add option byte for RL78/G23.
3.01 Jun.30.21 Update resource information.
3.10 Sep.20.21 1,5, 7 Support RL78/G23(rl78g23-128pfpb_sx126Xx).
Change option bytes settings for RL78/G23.
3.11 Nov.05.21 - Revised version number, no functional changes.
3.12 Jan.17.22 - No API changes. Fixed a timer implementation bug.
4.00 Aug.29.22 1,57 Support RA2E1.
Add RP_USE_RADIO_CFG_CHECK macro for RA2.
4.10 Nov.29.22 7 Support RP_USE_RADIO_CFG_CHECK macro for RL78
4.20 Mar.31.23 1,5 Support RA2L1.
4.30 Jun.30.23 1,5 Support RL78/G22
4.40 Dec.22.23 14 Changed reference document
2.1.2 Added compiling macros for the radio configurations
validations.
2.34 Added PIB_RADIO_CFG_REGION and
PIB_RADIO_CFG_FREQ_HOPPING_USED
237 Added RadioConfigRegion_t
4.50 May.24.24 1,5 Support RAOE1.
4.60 Sep.27.24 1.2 Updated directories.
14 Added related document [2].
4.70 Apr.18.25 - Support RAOE2.
4.80 Aug.21.25 --- Support RL78/L23.

R11AN0227EJ0480 Rev.4.80

Aug.21.25

Re Page 30 of 30
RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an 1/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V.
(Max.) and Vi1 (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Vi (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.

Notice

1.

10.

1.

12.

13.
14.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information

TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology, the most up-to-date
Koto-ku, Tokyo 135-0061, Japan version of a document, or your nearest sales office, please visit:
WwWw.renesas.com www.renesas.com/contact/.

Trademarks

Arm® and Cortex® are registered trademarks of Arm Limited. Semtech, the Semtech logo, LoRa, LoRaWAN and LoRa Alliance are registered trademarks
or service marks, or trademarks or service marks, of Semtech Corporation and/or its affiliates. Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2022 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Radio Driver Component Diagram
	1.2 Directories (informative)
	1.3 Resource Usage
	1.4 Related Documentation

	2. Radio Interface (LoRa / (G)FSK)
	2.1 Defines
	2.1.1 Board configuration
	2.1.2 Misc

	2.2 Constants
	2.2.1 RADIO_WAKEUP_TIME

	2.3 Enumeration
	2.3.1 RadioModems_t
	2.3.2 RadioState_t
	2.3.3 RadioTcxoCtrlVoltage_t
	2.3.4 PIB_t
	2.3.5 RadioResult_t
	2.3.6 Error Flags of Rx
	2.3.7 RadioConfigRegion_t

	2.4 Type definition
	2.5 Structure
	2.5.1 RadioEvents_t
	2.5.2 RadioTxFailStatus_t

	2.6 Radio APIs (Radio_s Radio)
	2.6.1 Init
	2.6.2 SetRxConfig
	2.6.3 SetTxConfig
	2.6.4 SetChannel
	2.6.5 SetModem
	2.6.6 SetMaxPayloadLength
	2.6.7 SetPublicNetwork
	2.6.8 Rx
	2.6.9 Send
	2.6.10 Sleep / SleepWarm
	2.6.11 Standby
	2.6.12 SetTxContinuousWave
	2.6.13 SetTxInfinitePreamble
	2.6.14 Rssi
	2.6.15 TimeOnAir
	2.6.16 CheckRfFrequency
	2.6.17 GetStatus
	2.6.18 IsChannelFree
	2.6.19 Random
	2.6.20 IrqProcess
	2.6.21 Ed
	2.6.22 GetPib
	2.6.23 SetPib
	2.6.24 WakeUp
	2.6.25 SleepCold
	2.6.26 CalibrateImage
	2.6.27 GetErrorFlag
	2.6.28 Write
	2.6.29 Read
	2.6.30 GetTimeToNextTx
	2.6.31 GetWakeupTime

	2.7 Radio Driver Event Handler (RadioEvents_t)
	2.7.1 TxDone
	2.7.2 TxTimeout
	2.7.3 RxDone
	2.7.4 RxTimeout
	2.7.5 RxError

	2.8 Radio Driver API Constraint
	2.8.1 Modem parameter
	2.8.2 State of Available to Calling APIs

	3. Timer
	3.1 Type Definition
	3.1.1 TimerEvent_t
	3.1.2 TimerTime_t

	3.2 Timer APIs
	3.2.1 TimerInit
	3.2.2 TimerSetValue
	3.2.3 TimerStart
	3.2.4 TimerStop
	3.2.5 TimerReset
	3.2.6 TimerGetCurrentTime
	3.2.7 TimerGetElapsedTime

	Revision History

