
APPLICATION NOTE

R20UT4026EJ0105 Rev.1.05 Page 1 of 44
Mar.15.211

Renesas Compilers
Professional Editions
Contents

1. Introduction .. 3
1.1 Types of Licenses to Renesas Compilers ... 3
1.2 Evaluating the Features of the Professional Edition ... 4

2. Checking of Source Code against MISRA-C:2004/2012 Rules ... 5
2.1 MISRA-C:2004/2012 Rules ... 5
2.2 Number of Rules to be Checked ... 5
2.3 Specifying Rules .. 6
2.4 Examples of C Source Code ... 8

3. Detection of Stack Smashing .. 11
3.1 Overview of the Feature .. 11
3.2 Overview of Generated Code .. 12
3.3 How to Use This Feature ... 13
3.4 Examples of C Source Code ... 15

4. Enhanced Security for Dynamic Memory Management Functions .. 17
4.1 Overview of the Feature .. 17
4.2 Overview of Generated Code .. 18
4.3 How to Use This Feature ... 19
4.4 Examples of C Source Code ... 21

5. Half-precision Floating Point .. 24
5.1 Overview of the Feature .. 24
5.2 Overview of Generated Code .. 25
5.3 How to Specify the Half-precision Floating-point Type ... 26
5.4 Example of C Source Code ... 27

6. Synchronization Features in the Updating of Control Registers .. 28
6.1 Overview of the Features .. 28
6.2 Overview of Generated Code .. 29
6.3 How to Use These Features .. 30
6.4 Example of C Source Code ... 32
6.5 Supplementary Items .. 34

7. Detection of Illicit Indirect Function Calls ... 35
7.1 Overview of the Feature .. 35
7.2 Overview of Generated Code .. 35

R20UT4026EJ0105
Rev.1.05

Mar.15.21

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 2 of 44
Mar.15.211

7.3 How to Use This Feature ... 37
7.4 Example of C Source Code ... 40

Revision History .. 42

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 3 of 44
Mar.15.211

1. Introduction
This application note is for those customers who are considering the professional edition of a Renesas
compiler. It gives an overview, covers usage, and has useful examples of C source code that are specific to
the professional edition.

1.1 Types of Licenses to Renesas Compilers
Renesas provides standard and professional editions of the licenses for its CC-RL, CC-RX, and CC-RH
compilers.

 Standard edition
The C-language specifications that comply with the ANSI standard are supported.
The standard edition also provides powerful optimization functions and the basic functions that are
required for writing embedded program code.

 Professional edition

In addition to the features of the standard editions, this edition provides additional features which help to
improve the quality of the customer’s programs and shorten development periods.
The features will be continuously expanded in the future.

Table 1-1 Features of the Professional Editions

√: Supported. : Support is not planned.

Features of the professional editions CC-RL CC-RX CC-RH

Checking of source code against MISRA-C: 2004/2012 rules √ √ √

Detection of stack smashing √ √ √

Enhanced security for dynamic memory management functions √ √ √

Half-precision floating-point   √

Synchronization features in the updating of control registers   √

Detection of illicit indirect function calls √ √ √

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 4 of 44
Mar.15.211

You can use the features of the professional edition by purchasing the compiler license for the professional
edition or using either of the following.
 Upgrade (edition) license

If you have a license for the standard edition, this license especially for upgrading from the standard
edition to the professional edition is available for purchase. Note that this license only works with a
node-locked license (permanent); it does not work with floating or annual licenses.

Figure 1-1 Upgrade (edition) License

 Annual license
This license is valid for one year. You can use the features of the professional edition for one year with
an annual license for the professional edition. The annual license can provide a thorough introduction to
the professional edition at a low price relative to a permanent license.
Annual licenses are useful in terms of flexibility in response to varying numbers of users in your team
over time.

Figure 1-2 Annual License

1.2 Evaluating the Features of the Professional Edition
When you want to evaluate or confirm the features of the professional edition, use the evaluation version.

After you have installed the evaluation version for the first time, you can try its features for 60 days from the
date of the first building. After the 61st day, the features become limited to those of the standard edition and
the linkage size (the size of programs that can be generated) also becomes limited.

Make use of the examples of the C source code in this application note, since they demonstrate features of
the professional edition.

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 5 of 44
Mar.15.211

2. Checking of Source Code against MISRA-C:2004/2012 Rules
When a compiler is started, it can check code against MISRA-C rules and output messages if the source
code deviates from those rules. This feature can improve quality of the user program.

2.1 MISRA-C:2004/2012 Rules
MISRA-C is a set of software development guidelines for the C language developed by the Motor Industry
Software Reliability Association (MISRA). The purpose is to maintain the safety, portability, and reliability of
embedded systems programmed in the C language. MISRA-C:2004 and MISRA-C:2012 are the rules as
standardized in 2004 and 2012, respectively.

2.2 Number of Rules to be Checked
Table 2-1 Number of Rules in MISRA-C:2004

Table 2-2 Number of Rules in MISRA-C:2012

The numbers of supported rules depend on the revisions of the compilers.

Classification of Rules CC-RL V1.10.00 CC-RX V3.03.00 CC-RH V2.03.00

Required rules (121) 79 79 79

Advisory rules (20) 13 13 13

Total number of rules (141) 92 92 92

Classification of Rules CC-RL V1.10.00 CC-RX V3.03.00 CC-RH V2.03.00

Mandatory rules (16) 7 7 7

Required rules (108) 90 90 90

Advisory rules (32) 27 27 27

Total number of rules (156) 124 124 124

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 6 of 44
Mar.15.211

2.3 Specifying Rules
You can easily start the rule checkers for MISRA-C:2004 and 2012 by specifying compiler options.

Parameters to control the rule numbers that are to be checked or ignored can also be specified for the
options.

Table 2-3 Options of Rule Checker for MISRA-C:2004 and 2012

 Note1. This option is usable CC-RL V1.08.00, CC-RX V3.01.00, CC-RH V2.01.00 or later version.

When you are using CS+ or the e2 studio as the integrated development environment, you can control the
specification of options by operations in the GUI.

• For CS+

Select rules from 2004 or 2012 by selecting the [Compile Options] tabbed page -> [MISRA-C Rule
Check] category -> [MISRA-C specification] property. Detailed settings are enabled for [Apply rule],
[Rule check exclusion file], [Output message of the enhanced key word and extended specifications] and
[Enable checking that spans files]properties.

Figure 2-1 Specifying Options in CS+

 Option

Description CC-RL CC-RX CC-RH

This option checks source code against the
MISRA-C:2004 rules. -misra2004 -misra2004 -Xmisra2004

This option checks source code against the
MISRA-C:2012 rules. -misra2012 -misra2012 -Xmisra2012

This option specifies files that will not be checked
against the MISRA-C:2004 or MISRA-C:2012 rules. -ignore_files_misra -ignore_files_misra -Xignore_files_misr

a
This option enables the source-code checking of
the MISRA-C:2004 or MISRA-C:2012 rules, which
are partially suppressed by the extended language
specifications.

-check_language_
extension

-check_language_
extension

-Xcheck_language
_extension

This option checks source code in multiple files
against the MISRA-C:2012 rules (Note1). -misra_intermodule -misra_intermodule -misra_intermodule

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 7 of 44
Mar.15.211

• For the e2 studio
Activate the property dialog box of the project from [Project] -> [Renesas Tool Settings] and select
[C/C++ build] -> [Settings]. Selecting 2004 rules or 2012 rules from [Compiler] -> [MISRA C Rule Check]
-> [Check the sourse by MISRA-C] on the [Tool Settings] tabbed page enables detailed settings for
[Apply rule], [Rule check exclusion file], [Output message of the enhanced key word and extended
specifications], [Enable inter-module checking] and so on.

Figure 2-2 Specifying Options in the e2 studio

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 8 of 44
Mar.15.211

2.4 Examples of C Source Code
This section describes examples of C source code which violates MISRA-C:2004/2012 rules and the
corresponding output messages.

• Example 1: A violation of rule 2.7 of MISRA-C:2012

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:

typedef signed int int32_t;

void func(int32_t a, int32_t b);
void sub_func(int32_t a);

void func(int32_t a, int32_t b){

if (a != 0){
sub_func(a);
 }

 /* Parameter variable b is not used.*/
 return;
}

Since parameter variable b declared in the sixth line is not used in the function func, the following message
is displayed through the standard error output. The message is displayed in the output window in the case
of CS+ and in the console in the case of the e2 studio.

file name.c(6):M0523086:Rule 2.7:There should be no unused parameters in functions

• Example 2: Violations of rule 9.2 of MISRA-C:2004 and rule 9.3 of MISRA-C:2012

MISRA-C Standards Rule No. Classification Guideline

MISRA-C:2012 2.7 Advisory rule There should be no unused parameters in functions

MISRA-C Standards Rule No. Classification Guideline

MISRA-C:2004 9.2 Required rule
Braces shall be used to indicate and match the
structure in the non-zero initialisation of arrays and
structures.

MISRA-C:2012 9.3 Required rule Arrays shall not be partially initialized

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 9 of 44
Mar.15.211

1:
2:
3:
4:

typedef int int32_t;
#define ARRAY_SIZE 10

extern int32_t array_a[ARRAY_SIZE] = {1,2,3,4,5,6,7,8,9};

In the fourth line, since only nine elements are initialized but the array has 10 elements, the following
messages are displayed through the standard error output. The messages are displayed in the output
window in the case of CS+ and in the console in the case of the e2 studio.

• For the MISRA-C:2004 rule:

file name.c(4):M0523028:Rule 9.2: Braces shall be used to indicate and match the structure in the non-zero
initialisation of arrays and structures.

• For the MISRA-C:2012 rule:

file name.c(4): M0523086:Rule 9.3: Arrays shall not be partially initialized

• Example 3: Violations of rule 10.1 of MISRA-C:2004 and rule 10.3 of MISRA-C:2012

1:
2:
3:

typedef unsigned short uint16_t;

extern uint16_t b = sizeof(b);

In the third line, since a different type (the value returned by the sizeof operator) is assigned to a variable of
the unsigned short type, the following messages are displayed through the standard error output. The
messages are displayed in the output window in the case of CS+ and in the console in the case of the e2
studio.

• For the MISRA-C:2004 rule:

file name.c(3):M0523028:Rule 10.1: The value of an expression of integer type shall not be implicitly
converted to a different underlying type if: (a) it is not a conversion to a wider integer type of the same
signedness, or (b) the expression is complex, or (c) the expression is not constant and is a function
argument, or (d) the expression is not constant and is a return expression

MISRA-C Standards Rule No. Classification Guideline

MISRA-C:2004 10.1 Required rule

The value of an expression of integer type shall not
be implicitly converted to a different underlying type
if: (a) it is not a conversion to a wider integer type of
the same signedness, or (b) the expression is
complex, or (c) the expression is not constant and is
a function argument, or (d) the expression is not
constant and is a return expression

MISRA-C:2012 10.3 Required rule
The value of an expression shall not be assigned to
an object with a narrower essential type or of a
different essential type category

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 10 of 44
Mar.15.211

• For the MISRA-C:2012 rule:

file name.c(3): M0523086:Rule 10.3: The value of an expression shall not be assigned to an object with a
narrower essential type or of a different essential type category

• Example 4: Violations of rules 12.1 and 20.7 for MISRA-C:2012

1:
2:
3:
4:
5:
6:
7:
8:
9:

typedef int int32_t;

#define FIELD_SIZE(x) (x * 2)
#define MAIN_SIZE 128
#define HEADER_SIZE 16

extern int32_t text_areasize;

int32_t text_areasize = FIELD_SIZE(MAIN_SIZE - HEADER_SIZE);

In the ninth line, since the precedence in the macro-expanded expression is not explicit and the macro
parameters are not enclosed in parentheses, the following messages are displayed through the standard
error output. The messages are displayed in the output window in the case of CS+ and in the console in the
case of the e2 studio.

Note that the macro-expanded expression is calculated as ‘128 -16 * 2’, which causes an incorrect result if
you had intended ‘(128 -16) * 2’.

file name.c(9):M0523086:Rule 20.7: Expressions resulting from the expression of macro parameters shall be
enclosed in parentheses
file name.c(9):M0523086:Rule 12.1: The precedence of operators within expressions should be made
explicit

MISRA-C Standards Rule No. Classification Guideline

MISRA-C:2012 12.1 Advisory rule The precedence of operators within expressions
should be made explicit

MISRA-C:2012 20.7 Required rule Expressions resulting from the expression of macro
parameters shall be enclosed in parentheses

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 11 of 44
Mar.15.211

3. Detection of Stack Smashing
When the compiler generates the code for dynamically checking whether the stack area is smashed or not,
it is possible to develop a program with improved safety features such as the prevention of stack overflows
or security attacks.

3.1 Overview of the Feature
An area of stack is reserved for each function on entry to the function (prologue processing) and consists of
the local variable area and register saving area used in that function. When the detection of stack smashing
is applied to the stack, a 4-byte area (2-byte area for CC-RL) immediately before the local variable area of
the stack (in the direction of increasing addresses) that is related to the function is acquired and a specified
value is stored there. The user can specify the value or the compiler can specify an arbitrary value. This is
referred to as the monitoring area in this document.

High-order
address

Local variable area

Register saving area

Local variable area

Register saving area

Monitoring area

[Stack without this feature] [Stack with this feature]

Monitoring area

Monitoring area

Monitoring area

Monitoring area

Stack areas
for
individual
functions

Figure 3-1 Images of Stacks
After the function is executed, the stack area it was using is released. Generate the code that checks
whether the value stored in the monitoring area has not been overwritten at the exit from the function
(epilogue processing). If that value has been overwritten, an overflow is considered to have occurred in the
local variable area of the stack and the monitoring area or the areas at the higher addresses (register saving
areas) might have been smashed.

Figure 3-2 Images of Stack Smashing

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 12 of 44
Mar.15.211

Since information on the address for the return of execution from a function when the function ends is saved
in the register saving area, if the address for return has been smashed, the program will jump to an
unintended address and may enter runaway execution.

If stack smashing occurs, using the detection feature causes a branch to an error function, which enables
dynamic checking for the generation of stack smashing and protects the program against entering runaway
execution.

3.2 Overview of Generated Code
When this feature is not used, the function is executed after reserving the stack, the stack is released after
the function has been executed, and exit from the function proceeds.

When this feature is enabled, a monitoring area is stored in the stack area when the stack area is reserved
and a check that the monitoring area has not been overwritten is run after the function has been executed. If
the monitoring area has been overwritten, the program branches to the error function “__stack_chk_fail”.

Figure 3-3 Code Generated by a Compiler

If stack smashing occurs while this feature is not in use, the program may enter runaway execution in the
subsequent processing. Debugging must start with investigation of the reason for the runaway condition.

While this feature is in use, “__stack_chk_fail” is called during the execution of a program. Even if stack
smashing occurs, you can stop the program entering runaway execution, by simply identifying the function
that called “__stack_chk_fail” during debugging, and review the processing by the function at an early
stage.

The __stack_chk_fail function needs to be defined by the user. Describe the processing to be executed
upon detection of stack smashing.

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 13 of 44
Mar.15.211

3.3 How to Use This Feature
The detection of stack smashing can be activated and controlled by compiler options or extended language
directives.

a. Specifying compiler options
When the compiler options below are specified, functions satisfying a specific condition can be set as
targets for the detection of stack smashing or all functions can be made targets for the detection of stack
smashing. When a numeric value is specified as a parameter, the value specified as the parameter is
stored in the monitoring area. If this parameter is omitted, the compiler automatically specifies and stores
a value.

Table 3-1 Options for Detecting Stack Smashing

When you are using CS+ or the e2 studio as the integrated development environment, you can control the
specification of options by operations in the GUI.

• For CS+

Select [Yes] or [No] for the [Detect stack smashing] property from the [Quality Improvement] category on
the [Compile Options] tabbed page. The value to be stored in the monitoring area can be specified as the
[Value to be embedded for detecting stack smashing] property.

Figure 3-4 Specifying Options in CS+

 Option
Description CC-RL CC-RX CC-RH
This option generates a code for
detection of stack smashing for only
functions having a structure, union, or
array that exceeds eight bytes as a local
variable.

-stack_protector -stack_protector -Xstack_protector

This option generates a code for
detection of stack smashing for all
functions.

-stack_protector_all -stack_protector_all -Xstack_protector_all

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 14 of 44
Mar.15.211

• For the e2 studio
Activate the Property dialog box of the project from [Project] -> [Renesas Tool Settings] and select
[C/C++ build] -> [Settings]. Select [Yes] or [No] for [Detect stack overflow] from [Compiler] ->
[miscellaneous] on the [Tool Settings] tabbed page. The value to be stored in the monitoring area can be
specified as the [Value to be embedded for detecting stack overflow] property.

Figure 3-5 Specifying Options in the e2 studio

b. Using extended language directives to specify detection

When the extended language directive below is specified, specific functions can be made targets for the
detection of stack smashing.

[Syntax]

The function specified by function name is the target for the detection of stack smashing and the specified
value is stored in the monitoring area. When (num=specified value) is omitted, the compiler automatically
specifies and stores a value.

[Syntax]

The function specified by function name is not a target for the detection of stack smashing. When both
compiler options and extended language directives are specified, the directives are given priority.

#pragma stack_protector function name (num=Specified value)

#pragma no_stack_protector function name

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 15 of 44
Mar.15.211

3.4 Examples of C Source Code
The following gives examples of the C source code in which this feature is enabled. Note that the CC-RX
compiler does not include the __halt(); intrinsic function.

• Example 1: Incorrect calculation of an area

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

#include <stdlib.h>
#include <string.h>

typedef struct{
char e_c[2];
char line[8];

} str_t;

#define STR_MAX 16
#define BUF_SIZE (sizeof(str_t*) * STR_MAX)

#pragma stack_protector func
void func (str_t * str);

void func (str_t * str){
int i;
char buf[BUF_SIZE];

for(i=0; i< BUF_SIZE; i+=sizeof(str_t)){
memcpy(&buf[i], str, sizeof(str_t));
}

}

void __stack_chk_fail(void) {
 __halt();
}

In the 10th line, where sizeof(str_t*) has wrongly been written although it should have been sizeof(str_t), the
value of BUF_SIZE is not the size of structure str_t (10) × 16 but the size of the pointer × 16. Thus less area
than was assumed is secured, and more area than was secured is written by the for loop in the 19th to 21th
lines and stack smashing occurs.

When the feature for detection is enabled, the error function “__stack_chk_fail” is called at the end of the
function func, so detection of stack smashing is easy.

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 16 of 44
Mar.15.211

• Example 2: Failure to apply exclusive control

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

#define I_MAX (10)
#define S_MAX (20)

int g_cnt_max;
int s_buf[S_MAX];

void func(int a){
 int i;
 int buf[I_MAX];

 if(I_MAX > a) {
 g_cnt_max = a;
 } else {
 g_cnt_max = I_MAX;
 }

 /* <= Generation of an interrupt with intrpt_func() as the service routine.*/

 for (i= 0; i < g_cnt_max; i++){
 buf[i] = s_buf[g_cnt_max-i-1];
 }
}

#pragma interrupt intpt_func
void intrpt_func(){
 g_cnt_max = S_MAX;
}

void __stack_chk_fail(void) {
 __halt();
}

If an interrupt with “intrpt_func” as its service routine occurs in the 17th line, the value of variable g_cnt_max
is overwritten, processing of the for loop from line 19 leads to writing beyond the area for the local variable
buf, and the stack is smashed.

If this feature is enabled, the error function “__stack_chk_fail” is called at the end of the function func and
stack smashing has easily been detected.

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 17 of 44
Mar.15.211

4. Enhanced Security for Dynamic Memory Management Functions
Using the calloc, malloc, and realloc functions which have safety features for reserving memory in the heap
enables the development of programs for which security is enhanced by preventing problems such as
releasing memory twice or overflows in the heap.

4.1 Overview of the Feature
When part of the heap is reserved by the calloc, malloc, or realloc function, reserve the preceding and
following four bytes (2 bytes for CC-RL) of the heap and store any value in those areas. This is referred to
as the monitoring area in this document.

int *ip;

ip = malloc(20);

Heap area

Start address

20 bytes

ip

Heap area

Start address

Monitoring area

[Heap without this feature] [Heap with this feature]

Monitoring area

[Example of C source
code]

Figure 4-1 Image of a Heap
After an operation involving the heap, the given area is released by calling the free or realloc function. The
value stored in the monitoring area is checked to see that it has not been overwritten. If the value has been
overwritten, the program is regarded as incorrect because it causes an overflow in the heap and execution
then branches to error processing.

Figure 4-2 Image of an Overflow Generated in the Heap

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 18 of 44
Mar.15.211

If the following operations are performed when parts of the heap are released by the free or realloc function,
execution will similarly branch to error processing.

 The pointer to an area other than that allocated by calloc, malloc, or realloc is passed to free or realloc.
 The pointer to an area released by free is passed again to free or realloc.

Performing an illicit operation on the heap causes execution to branch to an error function, which enables
dynamic checking for the generation of erroneous operations in the heap, so that such malfunctions in
programs are detectable at an early stage.

4.2 Overview of Generated Code
When this feature is not in use, reserve and proceed with operations in the area from the heap, and then
use free or calloc to release the heap area.

When this feature is enabled, check that the monitoring area is not overwritten when the reserved heap area
is released. If the monitoring area has been overwritten, the program branches to the error function
“__heap_chk_fail”. The program also branches to this function if the pointer is to an area other than one
reserved by calloc, malloc, or realloc or the pointer is to an area that has already been released.

Figure 4-3 Code Generated by a Compiler

If erroneous operation occurs in the heap while this feature is not in use, the program may enter runaway
execution in the subsequent processing. Debugging must start with investigation of the reason for the
runaway condition.

While this feature is in use, “__heap_chk_fail” is called during the execution of a program. Even if erroneous
operation occurs in the heap, you can stop the program entering runaway execution, by simply identifying
the function that called “__heap_chk_fail” during debugging, and review the processing by the function at an
early stage.

The __heap_chk_fail function needs to be defined by the user. Describe the processing to be executed
when an error occurs in management of dynamic memory.

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 19 of 44
Mar.15.211

4.3 How to Use This Feature
This feature is used by linking to standard libraries that include versions of the calloc, malloc, and realloc
functions with the safety feature included. The method of linking of this library differs from each compiler.

Table 4-1 Libraries for Linking that Include the Safety Feature

When you are using CS+ or the e2 studio as the integrated development environment, you can control
specifying options by operating the GUI.

• For CS+

For CC-RL and CC-RH, select [Yes] or [No] for the [Check memory smashing on releasing memory]
property from the [Library] category on the [Link Options] tabbed page. For CC-RX, select [Yes] or [No]
for the [Check memory smashing on releasing memory] property from the [Object] category on the
[Library Generate Options] tabbed page.

Figure 4-4 Specifying Options in CS+

CC-RL Link the following library with the linker option “-library”.
CS+¥CC¥CC-RL¥Vx.xx.xx¥lib¥malloc_s.lib

CC-RX Specify the library generator option “-secure_malloc”.

CC-RH Link the following library with the linker option “-library”.
CS+¥CC¥CC-RH¥Vx.xx.xx¥lib¥v850e3v5¥secure¥libmalloc.lib

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 20 of 44
Mar.15.211

• For the e2 studio
For CC-RL, activate the Property dialog box of the project from [Project] -> [Renesas Tool Settings] and
select [C/C++ build] -> [Settings]. On the [Tool Settings] tabbed page, select or deselect the checkbox of
[Check memory smashing on releasing memory] from [Linker] -> [Input]. For CC-RX, on the [Tool
Settings] tabbed page, select or deselect the checkbox of [Check memory smashing on releasing
memory] from [Standard Library] -> [Object].

Figure 4-5 Specifying Options in the e2 studio (CC-RL)

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 21 of 44
Mar.15.211

4.4 Examples of C Source Code
The following gives examples of the C source code in which this feature is enabled. Note that the CC-RX
compiler does not include the __halt(); intrinsic function.

• Example 1: The area at the destination for copying is smaller than the area taken up by the data at the

source, memcpy is executed with the size parameter indicating the amount of data at the
source, so a buffer overflows.

 func.c

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

#include <stddef.h>
#include <stdlib.h>
#include <string.h>

typedef struct{

char e_c[4];
char line[28];

} buf_t;

void func(char *line){
 buf_t *bufa = NULL;
 bufa = (buf_t *)malloc(sizeof(buf_t));

 memcpy(bufa, line, strlen(line));

 free(bufa);

}

void __heap_chk_fail(void) {
 __halt();
}

 main.c

1:
2:
3:
4:
5:
6:
7:
8:

extern void func(char *line);

char *line;

void main (void) {
 line = "ABCD1234567890qwertyuiopasdfghjklzxcvbnm";
 func(line);
}

In the 14th line of func.c, memcpy is executed with the size parameter indicating the length of line, which is
the data at the source for copying, instead of the size of bufa, which is the destination for copying. If line
takes up more space than is available in bufa, the bufa part of the heap will be smashed.

When func is called in the seventh line of main.c, since line takes up 40 bytes and the bufa type has 32
bytes, the program smashes the area for bufa in the heap.

When the feature for detection is enabled, the error-handling function “__heap_chk_fail” is called when the
bufa area is released, so detection of the buffer overflow is easy.

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 22 of 44
Mar.15.211

• Example 2: Double release of an area in the heap due to erroneous release of the area by a called
function

 func.c

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

#include <stddef.h>
#include <stdlib.h>

typedef struct{

char e_c[4];
char line[8];

} struct_t;

extern int status;
void sub_func(struct_t *s);

void func(int cond) {

struct_t *strct = NULL;
 strct = (struct_t*)malloc(sizeof(struct_t));

 if (cond == 0){
 } else {
 sub_func(strct);
 }

 if(strct!=NULL){
 free(strct);
 }
}

void sub_func(struct_t *s){
 if(status < 0){
 free(s);
 }
}

void __heap_chk_fail(void) {
 __halt();
}

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 23 of 44
Mar.15.211

 main.c

1:
2:
3:
4:
5:
6:
7:

extern void func(int cond);
int status;

void main (void) {
 status = -10;
 func(status);
}

When status in the 27th line in func.c is less than 0, the area reserved in the 14th line is released on the
28th line. Since the same area is later released on the 22nd line, a pointer to an area that has already been
released will be released again.

Since -10 is assigned to status in the fifth line of main.c and the program then branches to the function
func, an area in the heap is released twice.

When the feature for detection is enabled, the error-handling function “__heap_chk_fail” is called during
execution of the 22nd line of func.c, so detection of the area in the heap being released twice is easy.

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 24 of 44
Mar.15.211

5. Half-precision Floating Point
Support for the 2-byte half-precision floating-point type can reduce the size of programs that contain large
amounts of floating-point data.

Note that this feature is specific to CC-RH compiler.

5.1 Overview of the Feature
CC-RH supports 2-byte floating-point format (in addition to the typical 4- and 8-byte floating-point type
formats). This data type is called half-precision floating-point, and can be defined as __fp16 type.

The size and the alignment condition are two bytes and the internal representation of data conforms to
binary16 in the IEEE 754-2008 standard.

S E M

15 14 10 9 0

__fp16:

2 bytes
S: Sign bit of mantissa portion
E: Exponent portion (5 bits)
M: Mantissa portion (10 bits)

S E M

31 30 23 22 0

S E M

63 62 52 51 0

double type:

float type:

4 bytes

8 bytes

Figure 5-1 __fp16 Type for Half-precision Floating Point

The compiler supports the following operations.

 Assignment between __fp16 type values

 Type conversion from __fp16 to float

 Type conversion from float to __fp16

Other operations are to be performed after values have been converted into the float type, and the result will
have the same type as that when the same operation is performed for variables of the float type. For
example, in the case of type conversion from __fp16 to double, this proceeds after the value has been
initially converted into the float type.

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 25 of 44
Mar.15.211

5.2 Overview of Generated Code
Float-type and double-type floating point values are loaded from memory to general-purpose registers to
perform operations and the register values are then stored in memory.

Half-precision floating point values are loaded from memory to general-purpose registers and the values in
the general-purpose registers are converted into single-precision floating point values by the FPU
instruction CVTF.HS (Convert Floating-point Half to Single). Operations proceed with the single-precision
floating point values and the resulting values in the general-purpose registers are stored in memory after
they have been converted from single-precision floating point to half-precision floating point by the FPU
instruction CVTF.SH (Convert Floating-point Single to Half).

Figure 5-2 Code Generated by a Compiler

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 26 of 44
Mar.15.211

5.3 How to Specify the Half-precision Floating-point Type
Specifying the compiler option “-Xuse_fp16” allows use of the half-precision floating-point type.

When you are using CS+ as the integrated development environment, you can control the specification of
options by operations in the GUI.

• For CS+
Select [Yes] or [No] for the [Enable half precision floating-point type] property from the [Output Code]
category on the [Compile Options] tabbed page.

Figure 5-3 Specifying Options in CS+

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 27 of 44
Mar.15.211

5.4 Example of C Source Code
• Example: Use of a large number of floating-point constant values

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:

const __fp16 coef[20] = {
 1.000000, 0.000000, 0.809017, 0.587785, 0.309017, 0.951057,
 -0.309017, 0.951057, -0.809017, 0.587785, -1.000000, 0.000000,
 -0.809017, -0.587785, -0.309017, -0.951057, 0.309017, -0.951057,
 0.809017, -0.587785
};

void func(float *x, float *y, int r) {
 float xtmp = (*x);
 (*x) = coef[r] * (*x) - coef[r+1] * (*y);
 (*y) = coef[r] * (*y) + coef[r+1] * xtmp;
}

When a large amount of floating-point constant data is used as shown in the first to sixth lines, using the
half-precision floating-point type reduces the size of array coef. The size of the array is 40 bytes when it is
defined as half-precision floating-point but 80 bytes when defined as single-precision floating-point; the
amount of data is thus halved.

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 28 of 44
Mar.15.211

6. Synchronization Features in the Updating of Control Registers
These features reduce the load on the user when control registers of an RH850 are successively updated.

Note that these features are specific to the CC-RH compiler.

6.1 Overview of the Features
When control registers of an RH850 are successively updated by store instructions, the order of the control
registers may not match that in which they were written in the source file. To make the order match,
synchronization processing, which causes a wait until completion of the execution of a preceding instruction
before proceeding with execution of the next instruction, must be manually inserted.

However, synchronization processing is not always required to guarantee the order. When control registers
in the same peripheral group are successively updated, synchronization processing is not required because
the order is guaranteed.

Thus, for a source file that includes processing for the updating of all control registers, the user is required to
visually determine to which peripheral groups the control registers belong through reference to the hardware
manual and to manually insert synchronization processing.

Figure 6-1 Problems in the Updating of Control Registers

In CC-RH, the following features solve the two problems indicated in Figure 6-1.

We refer to these as features for synchronization in the updating of control registers.

 Feature for the insertion of synchronization processing

→Problems 1 and 2 are solved at the same time.

 Feature for the detection of writing to control registers

→Problem 1 is solved.

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 29 of 44
Mar.15.211

6.2 Overview of Generated Code

 Feature for the insertion of synchronization processing
In the case of writing to control registers, the compiler automatically inserts synchronization processing in
the assembler source file. If the control registers are in the same peripheral group, the synchronization
processing is omitted. Thus the user determines whether synchronization processing is required and
need not manually insert code for synchronization processing.

Example: When registers are successively updated in the order REG1 (CPU group), REG2 (CPU group),

then REG3 (0 group), the compiler outputs code for synchronization processing as shown in red
text below.

 Feature for the detection of writing to control registers
Information messages are output showing the names of source files that include writing to control registers,
the line numbers, and the names of peripheral groups to which the control registers belong and the
addresses of the registers.

src.c(9):M0536001:control register is written.(id=group ID, address of the control register)

src.c(10):M0536001:control register is written.(id= group ID, address of the control register)

src.c(11):M0536001:control register is written.(id= group ID, address of the control register)

For the feature for the insertion of synchronization processing, synchronization processing is inserted even
in cases where the order of the control registers need not match that in which they were written in the
source file. Accordingly, when synchronization processing is to be manually inserted only in the required
locations on the basis of judgment by the user, use the feature for the detection of writing to control registers.
This can eliminate the load of referring to the hardware manual for the names of peripheral groups
to which the registers belong.

REG1 = 0;

REG2 = 1;

dummy = REG2; /* Dummy read for synchronization */

__syncp(); /* Synchronization instruction */

REG3 = 2;

Synchronization is
required because
the groups are
different.

Synchronization is not
required because the
group is the same.

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 30 of 44
Mar.15.211

6.3 How to Use These Features
The feature for the insertion of synchronization processing during the updating of control registers becomes
available through the following steps a and b.

a. Specifying the address ranges of peripheral groups with a language extension
Specify the start address and end address of each peripheral group with the following language
extension.

Format:

#pragma register_group start-address, end-address, id=“group-ID”

The group-ID is an identifier for specifying the peripheral group to which the control registers belong. Refer
to the peripheral group and address information that are described in the register list in the hardware
manual and specify the address range for each peripheral group. In some cases, the address range may
not be contiguous even for the same group and the same group-ID can be specified for more than one
#pragma register_group directive.

The names of the peripheral groups need not match those given in the hardware manual.

If you are using an MCU which incorporates the G4MH core, the automatic generation of a file containing
this language extension to define the ranges of peripheral groups is available. Refer to section 6.5,
Supplementary Items, for details.

b. Specifying a compiler option
The feature for the insertion of synchronization processing during the updating of control registers
becomes available by specifying the -store_reg compiler option.

Format:

-store_reg=item

Table 6-1 Options for Synchronization Features

Option Description

-store_reg=sync

Enables the feature for the insertion of synchronization processing.
This option allows the compiler to detect writing to control registers in the
ranges specified by #pragma register_group and insert synchronization
processing after write instructions for these registers, except where the
succeeding instructions will clearly be for writing to the same group, in which
case the compiler does not insert synchronization processing.

-store_reg=list

Enables the feature for the detection of writing to control registers.
This option allows the compiler to detect writing to control registers in the
ranges specified by #pragma register_group and display the line numbers in the
source code of the write instructions in the standard error output, except where
the succeeding instructions will clearly be for writing to the same group, in which
case the compiler does not display the line number.

-store_reg=list_all

Enables the feature for the detection of writing to control registers.
This option allows the compiler to detect writing to control registers in the
ranges specified by #pragma register_group and display the line numbers in the
source code of the write instructions in the standard error output. The line
numbers are displayed regardless of whether the succeeding instructions will
clearly be for writing to the same group.

-store_reg=ignore Any #pragma register_group directives are ignored.

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 31 of 44
Mar.15.211

When you are using the CS+ integrated development environment, specifying these options can be
controlled through the GUI.

The options can be selected in the [Handling mode of writing control register] property in the [Output Code]
category on the [Compile Options] tabbed page.

Figure 6-2 Specifying Options in CS+

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 32 of 44
Mar.15.211

6.4 Example of C Source Code
Example: When two peripheral groups (CPU and 0 groups) are defined with #pragma register_group

[pgroup.h]

#pragma register_group 0xfedf0000, 0xfedfffff, id="CPU"
#pragma register_group 0xfee00000, 0xfee0ffff, id="0"

[iodefine.h]

#define REG1 (*(volatile unsigned char*)0xfedf0000) /* Control register of CPU group */
#define REG2 (*(volatile unsigned char*)0xfedf0001) /* Control register of CPU group */
#define REG3 (*(volatile unsigned short*)0xfee00000) /* Control register of 0 group */

[src.c]

1:
2:
3:
4:
5:
6:
7:
8:

#include “pgroup.h”
#include “iodefine.h”

void func(void) {
REG1 = 0; // Control register of CPU group is updated.
REG2 = 1; // Control register of CPU group is updated.
REG3 = 2; // Control register of 0 group is updated.
}

In the fifth to seventh lines, values are written to control registers in the order REG1, REG2, and REG3.

When the control registers must be updated in this order without using this feature, the peripheral groups to
which REG1 to REG3 belong must be specified through reference to the hardware manual since whether
the insertion of synchronization processing is required must be considered.

Consequently, since writing is for the same group on the fifth to sixth lines and for different groups on the
sixth to seventh lines, synchronization processing must be inserted between the assignments to REG2 and
REG3. In addition, if a value may be written to a control register which belongs to a different group after
processing of func has completed, synchronization processing must also be inserted after updating of
REG3.

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 33 of 44
Mar.15.211

 Specifying the -store_reg=sync option
The compiler generates the assembly instructions shown below during compilation.

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:

_func:
.stack _func = 0
movhi 0x0000FEDF, r0, r2
st.b r0, 0x00000000[r2]
movhi 0x0000FEDF, r0, r2
mov 0x00000001, r5
st.b r5, 0x00000001[r2]
ld.bu 0x00000001[r2], r10
syncp ;
movhi 0x0000FEE0, r0, r2
mov 0x00000002, r5
st.h r5, 0x00000000[r2]
ld.hu 0x00000002[r2], r10
syncp ;
jmp [r31]

 Specifying the -store_reg=list option
The compiler displays the messages shown below in the standard error output so that the user can easily
consider whether synchronization processing must be inserted or not, except where the succeeding
instructions will clearly be for writing to the same group, in which case the compiler does not display the line
number.

src.c(6):M0536001:M0536001:control register is written.(id=CPU, 0xfedf0001)
src.c(7):M0536001:M0536001:control register is written.(id=0, 0xfee00000)

 Specifying the -store_reg=list_all option
The compiler displays the messages shown below in the standard error output so that the user can easily
consider whether synchronization processing must be inserted or not. The line numbers are displayed
regardless of whether the succeeding instructions will clearly be for writing to the same group.

src.c(5):M0536001:M0536001:control register is written.(id=CPU, 0xfedf0000)
src.c(6):M0536001:M0536001:control register is written.(id=CPU, 0xfedf0001)
src.c(7):M0536001:M0536001:control register is written.(id=0, 0xfee00000)

Synchronization processing is not inserted because
this is followed by writing to the same group.

The fifth line is not indicated.

The fifth line is also indicated.

REG1 (CPU group) is

REG2 (CPU group) is updated.
Synchronization processing is inserted because
this is followed by writing to a different group.

REG3 (0 group) is updated.

Synchronization processing is inserted because
processing after return from func() is undefined.

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 34 of 44
Mar.15.211

6.5 Supplementary Items
If you are using an MCU which incorporates the G4MH core, you can set up the automatic generation of an
“iodefine_pgroup.h” file for the MCU specified in the CS+ project. This header file contains #pragma
register_group directives (a language extension of the CC-RH compiler) that specify the address ranges of
the peripheral groups of the MCU.

The following procedure sets up automatic generation of the “iodefine_pgroup.h” file by CS+.

• From the [I/O Header File Generating Options] tabbed page of the [CC-RH Property] panel, select [Yes
(Checking the property)] for [Update I/O header file on build].

• Select [Yes (-pragma_peripheral_group=on)] for [Output pragma directives for peripheral groups].

Figure 6-3 Property Settings in CS+

• Select [Save the project] from the [File] menu to save the project once.
• “iodefine_pgroup.h” is generated in the project folder.

Including this header file in the C source file places statements involving the updating of control registers
within the scope of the synchronization feature when the C source file is compiled.

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 35 of 44
Mar.15.211

7. Detection of Illicit Indirect Function Calls
This feature improves the quality of user programs by preventing indirect function calls to non-trusted
addresses.

7.1 Overview of the Feature
An indirect function call is a method of calling a function in which the address of the function to be called is
acquired at runtime. Suppose a case where a buffer is located next to a function pointer area and data are
to be written to the buffer. If the processing for writing to the buffer includes a vulnerability that allows
modification of the data outside the buffer, the value of the function pointer can be modified through external
input. When the modified function pointer is used in an indirect function call, software execution may go out
of control or, in the worst-case scenario, the system may be taken over by a malicious attacker. The feature
for detecting illicit function calls is provided to prevent this situation.

The compiler automatically executes the following processing.

1. Extracts from programs the functions that may be indirectly called and registers them in a list of such
functions.

2. Generates code for checking the address of each function immediately before the function is indirectly
called.

7.2 Overview of Generated Code
During compilation, the compiler automatically extracts from the C source programs the functions that may
be indirectly called. The extracted information on the functions is collected in a list of safe function
addresses (a list of the correct addresses of functions that may be indirectly called) during linkage.

Figure 7-1 Registration in the List of Safe Function Addresses

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 36 of 44
Mar.15.211

The checking function “__control_flow_integrity” is called immediately before each indirect function call.

This function receives the destination address of the branch caused by the indirect function call as an
argument. At runtime, the checking function searches the list of safe function addresses for the received
destination address. If the address is found in the list, the function call is handled normally.

Figure 7-2 Call of a Function at an Address Found in the List

If the called function is not found in the list of safe function addresses, the indirect function call is judged to
be illicit, and the “__control_flow_chk_fail” function is called to branch to the error-handling process.

In this way, indirect calls of functions that are not registered in the list of safe function addresses can be
prevented, and the system can be protected against the program going out of control or its area being
maliciously overwritten.

The checking function “__control_flow_integrity” is provided as part of the standard library.

Figure 7-3 Call of a Function at an Address Not in the List

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 37 of 44
Mar.15.211

7.3 How to Use This Feature
Specify the following options to activate this feature.

Compiler Option:
The following option selects the generation of code for detecting illicit indirect function calls.

-control_flow_integrity

Linker Option:
The following option selects generation of the list of safe function addresses to be used in detecting illicit
indirect function calls.

-cfi

If you are using CS+ or the e2 studio as the integrated development environment, you can control the
specification of these options through the GUI.

For CS+:
Select [Yes] or [No] for the [Detect invalid indirect function call] property under the [Quality Improvement]
category on the [Compile Options] tabbed page.

Figure 7-4 Specifying the Compiler Option in CS+

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 38 of 44
Mar.15.211

If the linker option “–cfi” is not specified before the compiler option “-control_flow_integrity”, the following
warning (W0293007) will be displayed.

Figure 7-5 Warning when Specifying the Option

Clicking on [OK] in the warning message box will change the setting for the [Generate function list used for
detecting invalid indirect function call] property under the [Output Code] category on the [Link Options]
tabbed page to [Yes].

Specifying this option selects generation of the list of safe function addresses to be used in detecting
indirect function calls.

Figure 7-6 [Link Options] Tabbed Page

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 39 of 44
Mar.15.211

For the e2 studio:
Open the Property dialog box by selecting [Properties] from the [Project] menu. Select [C/C++ Build] ->
[Settings] and activate or deactivate [Generate an incorrect indirect function call detection code] for
[Miscellaneous] under [Compiler] on the [Tool Settings] tabbed page.

Figure 7-7 Specifying the Option in the e2 studio

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 40 of 44
Mar.15.211

7.4 Example of C Source Code
The following gives an example of source code generated with this feature enabled.

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

#include <string.h>
#define MAX 100

void __control_flow_chk_fail(void) // Definition of the error-handling function
{
 __halt();
}

void func2(void);
void func3(char* buf);

char lbuf[MAX];
void func(int a, int b, int c, int d, void (*pf)(void)) {
 char buf[] = “buf”;
 func3(buf);
 pf(); // Indirect function call
}

void func2(void) {
 return;
}

void func3(char* buf) {
 int I;
 for (i=0; i!=MAX; ++i) {
 buf[i] = ‘a’;
 }
}

void main(void) {
 func(1,2,3,4, &func2); // Passed through the stack
}

func3() causes the buffer to overflow and modifies the value of the parameter “pf” in the stack frame as
shown in figure 7-8. As a result, execution branches to an illicit address other than that intended at line 16.

When this feature is enabled, the checking function “__control_flow_integrity” is called with the value of “pf”
passed as an argument immediately before line 16. As the value of “pf” is not found in the list of safe
function addresses generated through the setting of the option “-cfi”, the error-handling function
“__control_flow_chk_fail” from line 4 is called. The user defines the “__control_flow_chk_fail” function; write
the desired processing to be done when an illicit indirect function call is detected.

Renesas Compilers Professional Editions Professional Editions

R20UT4026EJ0105 Rev.1.055 Page 41 of 44
Mar.15.211

Figure 7-8 Image of the Stack

All trademarks and registered trademarks are the property of their respective owners.

Revision History

Rev. Date
Description
Page Summary

1.00 Jun 12, 2017  First edition issued
1.01 Sep 12, 2017 2 The title “Features of the Professional Editions” was added to

table 1-1.
4 The number of rules in table 2-2 was modified according to the

latest revision.
14
15

In section 3.4, Examples of C Source Code, examples of C
source code were extended and error processing
“__stack_chk_fail()” was added.

20
22

In section 4.4, Examples of C Source Code, examples of C
source code were extended and error processing
“__heap_chk_fail()” was added.

28-34 Section 6, Synchronization Features in the Updating of Control
Registers, was newly added.

1.02 May 07, 2018 2 The title “Features of the Professional Editions” was added to
table 1-1.

4 The number of rules in table 2-2 was modified according to the
latest revision.

35-43 Section 7, Detection of Illicit Indirect Function Calls, was newly
added.

1.03 Mar. 01, 2019 5 The revision numbers of the compilers in tables 2-1 and 2-2
were updated. The numbers of the required rules and the total
number of the rules in table 2-2 were modified.

29 Figure 6-1 was added.

37 Section 6.5, Supplementary Items, was newly added.

1.04 Mar. 24, 2020 3 In section 1.1, the name of “Upgrade license” was changed to
“Upgrade (edition) license” and the related statement was
modified.

5 The revision numbers of the compilers in tables 2-1 and 2-2
were updated. The numbers of the required rules, advisory
rules, and the total number of rules in table 2-2 were modified.

1.05 Mar. 15, 2021 4 Figure 1-1 and 1-2 were added.

5 The revision numbers of the compilers in tables 2-1 and 2-2
were updated.

6 The option “-misra_intermodule” was added to table 2-3.

Figure 2-1 and 2-2 were updated.

12 The __stack_chk_fail function was added to figure 3-3.

18 In figure 4-3, the processing flow was revised and the
__heap_chk_fail function was added.

25 Figure 5-2 was updated.

© 2021 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Introduction
	1.1 Types of Licenses to Renesas Compilers
	1.2 Evaluating the Features of the Professional Edition

	2. Checking of Source Code against MISRA-C:2004/2012 Rules
	2.1 MISRA-C:2004/2012 Rules
	2.2 Number of Rules to be Checked
	2.3 Specifying Rules
	2.4 Examples of C Source Code

	3. Detection of Stack Smashing
	3.1 Overview of the Feature
	3.2 Overview of Generated Code
	3.3 How to Use This Feature
	3.4 Examples of C Source Code

	4. Enhanced Security for Dynamic Memory Management Functions
	4.1 Overview of the Feature
	4.2 Overview of Generated Code
	4.3 How to Use This Feature
	4.4 Examples of C Source Code

	5. Half-precision Floating Point
	5.1 Overview of the Feature
	5.2 Overview of Generated Code
	5.3 How to Specify the Half-precision Floating-point Type
	5.4 Example of C Source Code

	6. Synchronization Features in the Updating of Control Registers
	6.1 Overview of the Features
	6.2 Overview of Generated Code
	6.3 How to Use These Features
	6.4 Example of C Source Code
	6.5 Supplementary Items

	7. Detection of Illicit Indirect Function Calls
	7.1 Overview of the Feature
	7.2 Overview of Generated Code
	7.3 How to Use This Feature
	7.4 Example of C Source Code

	Revision History

