
 APPLICATION NOTE

R01AN0643EJ0215 Rev.2.15 Page 1 of 45

Mar 28, 2016

Renesas USB MCU

USB Host Communication Device Class Driver (HCDC) using Basic Mini Firmware

Introduction

This document is an application note describing use of the USB Host Communication Device Class Driver (HCDC)

build using the USB Basic Mini Firmware of the Renesas USB MCU.

Target Device

RL78/G1C, R8C/3MK, R8C/34K

This program can be used with other microcontrollers that have the same USB module as the above target devices.

When using this code in an end product or other application, its operation must be tested and evaluated thoroughly.

This program has been evaluated using the corresponding MCU’s Renesas Starter Kit board.

Contents

1. Overview ... 2

2. How to Register the Class Driver ... 4

3. Operating Confirmation Environment ... 4

4. Software Configuration ... 4

5. Host CDC Sample Application Program (APL) ... 8

6. Communication Device Class (CDC), PSTN, and ACM ... 19

7. USB Host Communication Device Class Driver (HCDC) ... 21

8. Limitations .. 41

9. Setup for the e2 studio project ... 42

10. Using the e2 studio project with CS+ .. 44

R01AN0643EJ0215
Rev.2.15

 Mar 28, 2016

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 2 of 45

Mar 28, 2016

1. Overview

This application note describes the USB Host Communication Device Class Driver (HCDC) and the sample application

using the USB-BASIC-F/W (refer to the Chapter 1.2).

1.1 Functions and Features

The USB Host Communication Device Class Driver (HCDC) conforms to the Abstract Control Model, a Subclass

Specification of PSTN Devices, in the USB Communications Device Class specification (CDC from now on). This

enables communication with a CDC peripheral device.

This class driver is intended to be used in combination with the USB Basic Mini Firmware provided from Renesas

Electronics.

1.2 Related Documents

1. Universal Serial Bus Revision 2.0 specification

2. USB Class Definitions for Communications Devices Revision 1.2

3. USB Communications Class Subclass Specification for PSTN Devices Revision 1.2

[http://www.usb.org/developers/docs/]

4. User's Manual: Hardware

5. USB Basic Mini Firmware Application Note

 Available from the Renesas Electronics Website

・ Renesas Electronics Website

http://www.renesas.com/

・ USB Devices Page

http://www.renesas.com/prod/usb/

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 3 of 45

Mar 28, 2016

1.3 Terms and Abbreviations

Terms and abbreviations used in this document are listed below.

API : Application Program Interface

APL : Application program

ACM : Abstract Control Model. This is the USB interface subclass used for virtual COM ports,

based in the old V.250 (AT) command standard. See PSTN below

CDC : Communications devices class

CDCC : Communications Devices Class － Communications Class Interface

CDCD : Communications Devices Class － Data Class Interface

cstd : Prefix for peripheral & host common function of USB-BASIC-F/W

CS+ : Renesas integration development environment

Data Transfer : Generic name of Control transfer, Bulk transfer and Interrupt transfer

HCD : Host control driver of USB-BASIC-F/W

HCDC : USB Host Communication Device Class Driver (HCDC)

hcdc : Prefix for host function & file of HCDC

HDCD : Host device class driver (device driver and USB class driver)

HEW : High-performance Embedded Workshop

HM : Hardware Manual

hstd : Prefix for host function of USB-BASIC-F/W

MGR : Peripheral device state manager of HCD

PP : Pre-processed definition

PSTN : Public Switched Telephone Network. Contains the ACM (above) standard. See also

Chapter 1.2

RSK : Renesas Starter Kit

Scheduler : Used to schedule functions, like a simplified OS

Scheduler Macro : Used to call a scheduler function

SW1/SW2/SW3 : User switches on RSK

Task : Processing unit

USB : Universal Serial Bus

USB-BASIC-FW : USB Basic Mini Firmware

(Peripheral & Host USB Basic Mini Firmware(USB low level) for Renesas USB

MCU)

1.4 How to Read This Document

This document is not intended for reading straight through. Use it first to gain acquaintance with the package, then to

look up information on functionality and interfaces as needed for your particular solution.

To get acquainted with the source code, read Chapter 4.3 and note which MCU-specific files you need.

Observe which files belong to the application level “APL”. Chapter 5 explains how the sample application works. You

will change this to create your own solution.

Understand how execution is divided into tasks, and that these tasks pass messages to one another. This is so that

functions (tasks) can execute in the order determined by a scheduler, and not strictly in a predetermined order. This way

more important tasks can have a higher priority. Further, tasks are intended to be non-blocking by using a documented

callback mechanism. The task mechanism is described in 1.2 above, "USB-BASIC-F/W Application Note". All HCDC

tasks are listed in Chapter 4.4 below.

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 4 of 45

Mar 28, 2016

2. How to Register the Class Driver

The class driver, even when modified by the user, must be registered with the USB-BASIC-F/W. Please consult

function usb_hapl_registration() in r_usb_hcdc_apl.c to register the class driver with USB-BASIC-F/W. For details,

please refer to the USB-BASIC-F/W application note.

3. Operating Confirmation Environment

3.1 Compiler

The compilers which is used for the operating confirmation are follows.

a. CA78K0R Compiler V.1.71

b. CC-RL Compiler V.1.01

c. IAR C/C++ Compiler for RL78 version 2.10.4

d. KPIT GNURL78-ELF v15.02

e. C/C++ Compiler Package for M16C Series and R8C Family V.6.00 Release 00

3.2 Evaluation Board

The evaluation boards which is used for the operating confirmation are follows.

a. Renesas Starter Kit for RL78/G1C (Product No: R0K5010JGC001BR)

b. R8C/34K Group USB Host Evaluation Board (Product No: R0K5R8C34DK2HBR)

4. Software Configuration

4.1 Module Configuration

Figure 4.1 shows the structure of the HCDC software modules. Table 4-1 lists the modules and an overview of each.

RSK driver

LED output driver

Key input driver

LCD output driver

USB Host Control Driver (HCD)

LCD/LED/KEY (H/W) USB Host controller (H/W)

User application (APL)

USB-BASIC-F/W

Manager (MGR)

USB Host Communication device driver

（HCDC）

Figure 4.1 Module Structure

Table 4-1 Module Function Descriptions

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 5 of 45

Mar 28, 2016

Module Name Description Notes

APL The user application program.

The switches change the UART setting of the CDC device.

The LCD displays the CDC device state.

Created by

the

customer.

HCDC The registered device class driver checks operation of a connected

device. The USB-BASIC-F/W notifies APL whether the connected

device corresponds to the CDC class. The following data transfers are

requested by APL of USB-BASIC-F/W.

1) Control of connected device by CDC requests

2) State confirmation of connected device by CDC notifications

3) Data transfer with connected device

The transfer result is notified to APL via a pre-registered callback

function.

USB-BASIC-

F/W

The USB Basic Mini Firmware (Host Hardware Control & Device state

Management)

4.2 Overview of Application Program Functions

The main functions of the host demo application are to.

1. Set the serial state as baud rate etc for the connected USB peripheral.

2. The sample APL loops back (returns) the received data back to the USB peripheral. In other words the HCDC APL

echos received user data back to the USB pripheral.

3. Make changes to the baud rate when the user presses SW2 and SW3 on the USB evaluation board. Please do not

change transmission speed during a data transmission.

Switch input operation is described in Table 4-2.

Table 4-2 User switch input operation

Switch Function Description Switch Number

Baud Rate Selection To select communication speed

(1200→2400→4800→.…)
SW2

Baud Rate Setting Activate the selected baud rate. SW3

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 6 of 45

Mar 28, 2016

4.3 File Configuration List

4.3.1 Folder Structure

The folder structure of the files supplied with the device class is shown below.

The source code used depends on the MCU and its evaluation board, and is stored in the repecctive hardware resource

folder (\devicename\src\HwResource).

workspace

 ＋ [RL78/G1C / R8C]

 ＋[CCRL / CS+ / IAR / e2 studio / HEW]

 ＋[RL78G1C / R8C3MK / R8C34K]

 ＋ HOST Build result

 ＋ src

 ＋――― CDCFW [Communication Device Class driver] See Table 4-3

 ｜ ＋――― inc Common header file of CDC driver

 ｜ ＋――― src CDC driver

 ＋―――SmplMain [Sample Application]

 ｜ ＋――― APL Loop back application

 ＋―――USBSTDFW [Common USB code that is used by all USB firmware]

 ｜ ＋――― inc Common header file of USB driver

 ｜ ＋――― src USB driver

 ＋――― HwResource [Hardware access layer; to initialize the MCU]

 ＋――― inc Common header file of hardware resource

 ＋―――src Hardware resource

[Note]

a. The project for CA78K0R compiler is stored under the CS+ folder.

b. The project for KPIT GNU compiler is stored under the e2 studio folder.

c. Refer to 10 Using the e2 studio project with CS+ section when using CC-RL compiler on CS+.

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 7 of 45

Mar 28, 2016

4.3.2 File Structure

Table 4-3 shows the HCDC file structure .

Table 4-3 File Structure

Folder File Name Description Notes

CDCFW/inc r_usb_class_usrcfg.h USB host CDC user definitions

CDCFW/inc r_usb_hcdc_define.h HCDC type definitions and macro definitions

CDCFW/inc r_usb_hcdc_api.h HCDC API function prototypes

CDCFW/src r_usb_hcdc_api.c HCDC API functions

CDCFW/src r_usb_hcdc_driver.c HCDC driver functions

SmplMain main.c Main loop processing

SmplMain/APL r_usb_hcdc_apl.c Sample application program

4.4 System Resources

4.4.1 System Resource Definitions

Table 4-4 lists the Task IDs and the task priorities used when registering the tasks with the scheduler.

These are defined in the r_usb_ckernelid.h header file.

Table 4-4 List of Scheduler Registration IDs

Scheduler registration task Description Notes

USB_HCDC_TSK HCDC (R_usb_hcdc_task)

Task ID: USB_HCDC_TSK

Task priority: 2

USB_HCDCSMP_TSK APL (usb_hcdc_main_task)

Task ID: USB_HCDCSMP_TSK

Task priority: 3

USB_HCD_TSK HCD (R_usb_hstd_HcdTask)

Task ID: USB_HCD_TSK

Task priority: 0

USB_MGR_TSK MGR (R_usb_hstd_MgrTask)

Task ID: USB_MGR_TSK

Task priority: 1

Mailbox ID / Default receive task Message description Notes

USB_HCDC_MBX

/ USB_HCDC_TSK

HCDC -> HCDC / APL -> HCDC mailbox ID

USB_HCDCSMP_MBX

/ USB_HCDCSMP_TSK

HCDC -> APL mailbox ID

USB_HCD_MBX

/ USB_HCD_TSK

HCD task mailbox ID

USB_MGR_MBX

/ USB_MGR_TSK

MGR task mailbox ID

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 8 of 45

Mar 28, 2016

5. Host CDC Sample Application Program (APL)

The host demo application performs loopback communication of USB user data when connected to a CDC device. The

HCDC application complies with the Abstract Control Model subclass as specified in the USB Communications Device

Class specification and its PSTN subclass specification. See Chapter 1.2, items 2 and 3.

5.1 Operating Environment

Figure 5.1 below shows a sample operating environment for the software. If a PC, the rightmost box in the figure, does

not have a serial port, two chained USB-serial converters can be used instead of one. Note that many USB-serial

converters are of type Vendor class, and not strict CDC class devices (CDC ACM). To be able to use such converters

the HCDC code needs to change according to Chapter 5.4 to work.

RSK Board

Host CDC device
Peripheral CDC device

RS232C

 cableSerial

port

Enumeration and

class request

(PIPE0 control transfer)

Data communication
(PIPE4, PIPE5 bulk

transfer)

Class notification

(PIPE6 interrupt transfer)

USB

PORT

USB

PORT

USB cable

RS232C-USB

converter, etc.

Serial port

communication

target device

Control target

device with

serial port

“E.g. a PC

serial port”

HCDC

+

USB-BASIC-F/W

Figure 5.1 Example Operating Environment

5.2 Application Program Processing

The following lists application operation with respect to Figure 5.2 and Figure 5.5.

・ CDC device attachment. (Corresponding to Process No.0-1)

・ The connected CDC device is automatically initialized. (Process 2-1)

Set RTS and DTR by using class request SET_CONTROL_LINE_STATE.

To set communication speed, number of data bits, number of stop bits, and parity bit settings, use class request

SET_LINE_CODING.

To get communication speed, number of data bits, number of stop bits, and parity bit settings, use class request

GET_LINE_CODING.

・ Data Communication Start. (Process 2-2)

Register a callback function to receive a report of the UART state. (Start Interrupt-IN transfer)

From start of data receptionto completion (Bulk-IN forwarding start and callback generation)

・ Change the baud rate of the connected device. (Process 4-1)

If switch 2 is pressed, a new baud rate is selected. (Process 5-1)

If switch 3 is pressed, the selected baud rate is activated. (Process5-2)

And then transmit the SET_LINE_CODING request to the connected device.

・ Data reception is completed. (Process 4-2)

Communication with a USB device is completed when the callback function is generated from HCDC.

・ Data transmission start. (Process 6-1)

The received data is transmitted to the CDC device (loop back), and the data transmission is completed. (Bulk-

OUT forwarding begins and the callback is generated)

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 9 of 45

Mar 28, 2016

・ Data transmission is completed. (Process 7-2)

Data reception is restarted. (Bulk-IN forwarding begins)

・ Serial status reception is completed. (Process 4-3)

Communication with a USB device is completed when the callback function(usb_hcdc_smp_SerialStateReceive)

is generated from HCDC.

・ Note: When data reception or data transmission fails, data reception is restarted.

5.3 Endpoint Specifications

The endpoints use by HCDC are shown in Table 5-1.

Table 5-1 Endpoint Specifications

Endpoint Number Pipe Number Transfer Method Description

0 0 Control In/Out Standard request, class request

Follows received

Descriptor*1

4 or 5 Bulk In Data transfer from device to host

4 or 5 Bulk Out Data transfer from host to device

6 Interrupt In*2 State notification from device to host

Note)

*1 The Endpoint numbers are determined by the device’s endpoint descriptors.

*2 The CDC device of the vendor class is connected, the interrupt transfer is not executed.

5.4 Connected CDC Peripheral

Please confirm the characteristics of the CDC peripheral before attempting to use it. When using a commercial USB-

serial converter together with the CDC peripheral, check that the interface class code in the interface descriptor is

"communication interface class" and not Vendor class. If it is, the CDC converter will not work.

If the USB serial converter is Vendor class, the following changes are necessary.

File: r_usb_class_usrcfg.h

/**

Macro definitions (USER DEFINE)

***/

/* Select CDC Interface class */

//#define USB_HCDC_IF_CLASS USB_IFCLS_VEN /* CDC Device Vendor class */

#define USB_HCDC_IF_CLASS USB_IFCLS_CDCC /* CDC Device CDC class */

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 10 of 45

Mar 28, 2016

5.5 List of APL Functions

Table 5-2 lists the functions of the sample application.

Table 5-2 List of Functions of Sample Application

Function Name Description

Main Main loop processing

usb_hcdc_main_init System initialization

Task start up processing for Host USB

usb_hcdc_main_task HCDC sample application task

usb_hcdc_registration HCDC driver registration

usb_hsmpl_class_check Check connected device

usb_hsmpl_device_state HCDC sample application status change callback function

usb_hcdc_smp_SendEncapsulatedCommand Send class request : SendEncapsulatedCommand

usb_hcdc_smp_GetEncapsulatedResponse Send class request : GetEncapsulatedResponse

usb_hcdc_smp_SetCommFeature Send class request : SetCommFeature

usb_hcdc_smp_GetCommFeature Send class request : GetCommFeature

usb_hcdc_smp_ClrCommFeature Send class request : ClearCommFeature

usb_hcdc_smp_SetLineCoding Send class request : SetLineCoding

usb_hcdc_smp_GetLineCoding Send class request : GetLineCoding

usb_hcdc_smp_SendBreak Send class request : SendBreak

usb_hcdc_smp_SetControlLineState Send class request : SetControlLineState

usb_hcdc_smp_SerialStateReceive Call-back function at Interrupt-IN notification

usb_hcdc_smp_InTransResult Call-back function at Bulk-IN transaction end

usb_hcdc_smp_OutTransResult Call-back function at Bulk-OUT transaction end

usb_hcdc_smp_crass_request_result Call-back function at Send class request

usb_hcdc_smp_init Function that transmits initialization request message to

sample application

usb_hcdc_sw_request Send switch check request

usb_hcdc_sw_process Processing for pressed switch

usb_hcdc_get_line_coding_rcv_process Processing received data from device after a

GetLineCoding request above

usb_hcdc_smpl_message_send Transfer message to mail box of demo sample application

usb_hsmpl_transfer_result Transfer message to mail box of sample application by

the transfer end

usb_hsmpl_dummy_fnc Call-back dummy function

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 11 of 45

Mar 28, 2016

5.6 Host Application Task Sequence

The following explains how the LCD display is updated, control of state transitions, and other operations.

5.6.1 State Transitions

Figure 5.2 shows the application state transition. Each block is a program “state”.

[Process No. 0-0]

Power-onDETACH

ATTACH

DETACH

0. Initialization 7. Detach
(USB_HCDC_CMD_CLOSE)

[Process No. 7-0]

DETACH

1. Open (configured)

2. Application Start

3. Connected Device

 Initialized

[Process 0-1]

USB CDC peripheral device attachment

usb_hsmpl_device_state()

[Process 1-1]

Initialization of connected device is

automatically executed.
usb_hcdc_main_task()

Device

Attach

[Process 2-1]

Set UART state of connected device

R_usb_hcdc_class_request()

explanatory note

State
User

oparation
LCD

display

[Process x-x]

process number

4. Receive Wait

5. Change baud rate state

 operation SW2 SW3

[Process 4-1]

Change baud rate of

Connected device

usb_hcdc_sw_process()

6. Loopback

[Process 4-2]

Data is received

usb_hcdc_smp_InTransResult()

Switch

pressed

19200bps

SW3 SET

[Process 2-2]

When initialization of the connected device ends,

reception wait state is entered.

R_usb_hcdc_serial_state_trans() /

R_usb_hcdc_receive_data()

[Process 5-1]

When SW2 is pressed,

 A new baud rate is selected

usb_hcdc_sw_process()

[Process 5-2]

When SW3 is pressed,

 selected baud rate is activated

usb_hcdc_sw_process()

7. Transmitted

[Process 6-1]

R e c e i v e d d a t a t r a n s m i s s i o n

(back to USB peripheral)

R_usb_hcdc_send_data()

[Process 7-1]

When USB data is transmitted

usb_hcdc_smp_OutTransResult()

8. Change UART state

[Process 4-3]

ReceIve report of UART state
usb_hcdc_smp_SerialStateReceive()

Figure 5.2 Application State Transitions

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 12 of 45

Mar 28, 2016

5.7 Processing Flow Graphs

The following shows the application task processing flow overview. Refer to the Table 5-3 for details on command

processing.

usb_hcdc_main_task

SendBreak flag

Command classification

Data receive request flag

Line state request flag

Receive message

R_USB_RCV_MSG

Request class request

usb_hcdc_smp_SendBreak

During normal operation, messages are received from a call-back function that was triggered

due to a previous request from this or other task. See Table 4-3.

CDC data receive processing

R_usb_hcdc_receive_data

HCDC serial port state acquisition processing

R_usb_hcdc_serial_state_trans

= Off

· SEND_BREAK request

= Off

= Off

= On

= On

= On

· USB_HCDCSMP_MBX mailbox

Figure 5.3 Outline of Host Application Task Processing Sequence

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 13 of 45

Mar 28, 2016

Table 5-3 Host Application Task Processing Details

Signal Meaning Remarks

USB_HCDC_CMD_INIT ・ Application initialization ・ Display application title.

Ask the HCDC task to send class request

SetControlLineState via

usb_hcdc_smp_SetControlLineState ().

USB_HCDC_CMD_

SET_CONTROL_LINE_STATE

Class request

SetControlLineState transfer

completed

Ask the HCDC task to send class request

SetLineCoding via

usb_hcdc_smp_SetLineCoding ().

USB_HCDC_CMD_

SET_LINE_CODING

Class request SetLineCoding

transfer completed.

Ask HCDC to send class request

GetLineCoding via

usb_hcdc_smp_GetLineCoding ()

USB_HCDC_CMD_

GET_LINE_CODING

Class request

GetLineCoding transfer

completed.

Display acquired communication

conditions.

Set data receive request flag to ON.

Set SetLineState request flag to ON.

USB_HCDC_CMD_RX_OK ・ Acquire receive data

・ (receive length > 0)

Loopback transmit using

usb_hcdc_smp_OutTransResult ().

USB_HCDC_CMD_RX_NG

Did not receive any data Set data receive request flag to ON.

 (Default demo is keep trying to receive.)

USB_HCDC_CMD_TX_OK

USB_HCDC_CMD_TX_NG

Data transmit ended.

Data transmit failed.

Set data receive request flag to ON.

 (Default demo is keep trying to receive.)

USB_HCDC_CMD_

RCV_SERIAL_STATE

Received class notification of

SerialState.

Display line state.

Set SetLineState request flag to ON.

USB_HCDC_CMD_

RCV_SERIAL_STATE_NG

Received class notification of

SerialState failure.

Set SetLineState request flag to ON.

USB_HCDC_CMD_

SEND_BREAK

Class request SendBreak

transfer completed.

Display SendBreak end message.

USB_HCDC_CMD_

SET_COMM_FEATURE

Class request

SetCommFeature transfer

completed.

Display SetCommFeature end message.

USB_HCDC_CMD_

GET_COMM_FEATURE

Class request

GetCommFeature transfer

completed.

Display GetCommFeature end message.

USB_HCDC_CMD_

CLR_COMM_FEATURE

Class request

ClearCommFeature transfer

completed.

Display ClearCommFeature end

message.

USB_HCDC_CMD_

SEND_ENCAPSULATED_COMMAND

Class request

SendEncapsulatedCommand

transfer completed.

Display SendEncapsulatedCommand end

message.

USB_HCDC_CMD_

GET_ENCAPSULATED_RESPONSE

Class request

GetEncapsulatedResponse

transfer completed.

Display GetEncapsulatedResponse end

message.

USB_HCDC_CMD_SW_CHECK Periodic processing.

Select baud rate by user

switch input.

SW2: The temporary baud rate is

updated.

Send USB_HCDC_CMD_SW_CHECK

message to APL task.

SW3: The baud rate is fixed and send

USB_HCDC_CMD

_SET_CONTROL_LINE_STATE message

to APL task.

Undefined signal Display received command.

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 14 of 45

Mar 28, 2016

5.8 Sequences charts APL-HCDC-HCD

The operation sequence of the sample application program is described below.

5.8.1 Startup to CDC Device Attachment

The sequence from sample application program startup through completion of enumeration, application task startup,

and completion of pipe control register setting is illustrated in Figure 5.4 and Figure 5.5

HCDC USB-BASIC-F/W

Continue with startup to CDC device attachment sequence 2/2.

CDC device attach

Start main task

R_usb_hcdc_smp_class_check()

(*driver->statediagram)
usb_hsmpl_device_state()

Pipe registration
R_usb_hstd_SetPipeRegistration()

Set three pipes
Bulk In
Bulk Out
Int IN

HW Reset processing

@cstart/PowerON_Reset_PC

Main task

call !!_main

Return

Enumeration

（Get Device Descriptor，

 Set Address,

　Get Configuration Descriptor)

Enumeration

（SET_CONFIGURATION)

APL

Initialization

call !!_hdwinit/
usb_cpu_mcu_initialize

Register HCDC class driver
R_usb_hstd_DriverRegistration()

Return

Start HCDC task
R_usb_hcdc_driver_start()

Return

Start USB-BASIC-F/W
R_usb_hstd_HcdOpen()

Start task scheduling (main loop)

Enumeration processing

usb_hcdc_Enumeration()

Check OK

R_usb_hstd_ReturnEnuMGR()

Get StringDescriptor，etc

Return

Return

USB-BASIC-F/W

R_usb_hstd_HcdTask
R_usb_hstd_MgrTask

HCDC task

R_usb_hcdc_task
Application task

usb_hcdc_main_task

usb_hsmpl_device_state()

operates by the context of

USB-BASIC-FW.

usb_hcdc_class_check()

Return

USB_HCDC_CMD_INIT

Command processing request

usb_hcdc_smp_message_send()

Explanatory

 Task Start (Receive Massage)

 Send Message

 Task Stop (Return to mainloop)

Processing function

System call function (Send Message)

Processing (Program executing)

R_usb_hcdc_SetPipeRegistration()

Figure 5.4 Startup to CDC Device Attachment Sequence (1/2)

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 15 of 45

Mar 28, 2016

APL HCDC USB-BASIC-F/W

Control transfer

Transfer end

SET_CONTROL_LINE_STATE
Command notification

Class request SetControlLineState
R_usb_hcdc_class_request()

SET_CONTROL_LINE_STATE
R_usb_hstd_TransferStart()

Class request SetLineCoding
R_usb_hcdc_class_request()

Class request GetLineCoding
R_usb_hcdc_class_request()

LCD display of value acquired
from GET_LINE_CODING

Class notification (Serial State) request

R_usb_hcdc_serial_state_trans()

Interrupt IN transfer

Note: Notification

occurs when

a serial port

state change

is detected.

transmit end call-back

Continuation from startup to CDC device attachment sequence 1/2.

Continue with data communication sequence.

Data receive request
R_usb_hcdc_receive_data()

Bulk IN transfer

Note: Callback

occurs when

the data was

received.

USB_HCDC_TCMD_CLASS_REQ

Control transfer

Transfer end

SET_LINE_CODING
R_usb_hstd_TransferStart()USB_HCDC_TCMD_CLASS_REQ

Control transfer

Transfer end

GET_LINE_CODING
R_usb_hstd_TransferStart()USB_HCDC_TCMD_CLASS_REQ

PIPE4 or PIPE5 Bulk-IN
R_usb_hstd_TransferStart()USB_HCDC_TCMD_RECEIVE

PIPE6 Interrupt-IN
R_usb_hstd_TransferStart()

USB_HCDC_TCMD_CLASS_NOTIFY

usb_hcdc_smp_crass_request_result()

SET_LINE_CODING
Command notification transmit end call-back

usb_hcdc_smp_crass_request_result()

GET_LINE_CODING
Command notification transmit end call-back

usb_hcdc_smp_crass_request_result()

USB_HCDC_

CMD_INIT

USB_HCDC_
SET_CONTROL_
LINE_STATE

USB_HCDC_
SET_LINE_CODING

USB_HCDC_
GET_LINE_CODING

Figure 5.5 Startup to CDC Device Attachment Sequence (2/2)

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 16 of 45

Mar 28, 2016

5.8.2 Data Communication

The data transfer sequence is illustrated in Figure 5.6.

APL HCDC USB-BASIC-F/W

Bulk-IN transfer
R_usb_hstd_TransferStart()

Continue from startup to CDC device attachment sequence 2/2.

Continue with data communication sequence.

USB_HCDC_TCMD_RECEIVE

Data receive request

R_usb_hcdc_receive_data()

Bulk IN transfer

Transfer end
transmit end call-back

usb_hcdc_smp_InTransResult()
usb_hcdc_InTransferResult()

Bulk-OUT transfer
R_usb_hstd_TransferStart()USB_HCDC_TCMD_SEND

Data transmit request (receive data loopback)

R_usb_hcdc_send_data()

Bulk OUT transfer

Transfer end
transmit end call-back

usb_hcdc_smp_OutTransResult()
usb_hcdc_OutTransferResult()

USB_HCDC_
GET_LINE_CODING

USB_HCDC_
CMD_RX_OK

CMD_RX_OK
Command notification

USB_HCDC_
CMD_TX_OK

Bulk-IN transfer
R_usb_hstd_TransferStart()USB_HCDC_TCMD_RECEIVE

Data receive request

R_usb_hcdc_receive_data()

Bulk IN transfer

Transfer end
transmit end call-back

usb_hcdc_smp_InTransResult()
usb_hcdc_InTransferResult()

CMD_RX_OK
Command notification

Bulk-OUT transfer
R_usb_hstd_TransferStart()USB_HCDC_TCMD_SEND

Data transmit request (receive data loopback)

R_usb_hcdc_send_data()

Bulk OUT transfer

Transfer end
transmit end call-back

usb_hcdc_smp_OutTransResult()
usb_hcdc_OutTransferResult()

USB_HCDC_
CMD_RX_OK

CMD_TX_OK
Command notification

CMD_TX_OK
Command notification

USB_HCDC_
CMD_TX_OK

Data receive request

R_usb_hcdc_receive_data()

Figure 5.6 Data Communication Sequence

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 17 of 45

Mar 28, 2016

5.8.3 Serial Port State Change Notification

The serial port state change notification sequence is illustrated in Figure 5.7.

In order to receive a serial port state change, first perform the CDC notification SerialState receive processing.

APL HCDC USB-BASIC-F/W

Continue from startup to CDC device attachment sequence 2/2.

Continue with data communication sequence.

Interrupt IN transfer

Transfer end
transmit end call-back

usb_hcdc_smp_SerialStateReceive()
usb_hcdc_SerialStateTransResult()

USB_HCDC_
GET_LINE_CODING

USB_HCDC_
CMD_RCV_SERIAL_
STATE

CMD_RCV_SERIAL_STATE
Command notification

Class notification (Serial State) request

R_usb_hcdc_serial_state_trans()

PIPE6 Interrupt-IN
R_usb_hstd_TransferStart()

USB_HCDC_TCMD_CLASS_NOTIFY

State change detected

Receive the UART State bitmap

Class notification (Serial State) request

R_usb_hcdc_serial_state_trans()

Figure 5.7 Serial Port State Change Notification Sequence

5.8.4 BREAK Signal Output

The BREAK signal output is illustrated in Figure 5.8.

The BREAK signal is demanded to the connected CDC peripheral device by the SEND_BREAK request when the

global variable usb_shcdc_test_send_break is setting by USB_ON.

APL HCDC USB-BASIC-F/W

Continue from startup to CDC device attachment sequence 2/2.

Continue with data communication sequence.

usb_shcdc_tes
t_send_break
= USB_ON

USB_HCDC_CMD
_SEND_BREAK

USB_HCDC_SEND_BREAK

Class request SendBreak
R_usb_hcdc_class_request()

SEND_BREAK
R_usb_hstd_TransferStart()

Control transfer

Transfer end

SEND_BREAK
Command notification transmit end call-back

usb_hcdc_smp_crass_request_result()

Figure 5.8 Break Signal Output Sequence

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 18 of 45

Mar 28, 2016

5.8.5 CDC Device Detach

The sequence when the CDC device is detached is illustrated in Figure 5.9.

APL HCDC USB-BASIC-F/W

Continue from startup to CDC device attachment sequence 2/2.

Continue with data communication sequence.

Detach detected

Initialized HCDC application

global variable

Initialized pipe information table

Return

usb_hsmpl_device_state()

operates by the context of

USB-BASIC-FW.

USB_HCDC_CMD_CLOSE

Command processing request

usb_hcdc_smp_message_send()

R_usb_hcdc_driver_stop()

(*driver->statediagram)
usb_hsmpl_device_state()

Figure 5.9 CDC Device Detach Sequence

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 19 of 45

Mar 28, 2016

6. Communication Device Class (CDC), PSTN, and ACM

This software conforms to the Abstract Control Model (ACM) subclass of the Communication Device Class

specification, as specified in detail in the PSTN Subclass document listed in Chapter 1.2.

The Abstract Control Model subclass is a technology that bridges the gap between USB devices and earlier modems

(employing RS-232C connections), enabling use of application programs designed for older modems, but also, for new

applications that need only bulk transfer - large amounts of non time critical data – the CDC ACM model may be the

most straightforward class solution.

6.1 Basic Functions

The main functions of HCDC are as follows.

1. Verify connected devices

2. Make communication line settings

3. Acquire the communication line state

4. Transfer data to and from the CDC peripheral device

6.2 Abstract Control Model Class Requests (Host to Device)

The software supports the following ACM class requests.

Table 6-1 CDC Requests

Request Code Description Support

SendEncapsulatedCommand 0x00 Transmits AT commands, etc., as defined by the ACM

protocol.

Yes

GetEncapsulatedResponse 0x01 Requests a response to a command transmitted by

SendEncapsulatedCommand.

Yes

SetCommFeature 0x02 Enables or disables features such as device-specific 2-

byte code and country setting.

Yes

GetCommFeature 0x03 Acquires the enabled/disabled state of features such as

device-specific 2-byte code and country setting.

Yes

ClearCommFeature 0x04 Restores the default enabled/disabled settings of

features such as device-specific 2-byte code and

country setting.

Yes

SetLineCoding 0x20 Makes communication line settings (communication

speed, data length, parity bit, and stop bit length).

Yes

GetLineCoding 0x21 Acquires the communication line setting state. Yes

SetControlLineState 0x22 Makes communication line control signal (RTS, DTR)

settings.

Yes

SendBreak 0x23 Transmits a break signal. Yes

For details concerning the Management Element Requests, refer to Table 19, “Class-Specific Request Codes” in “USB

Class Definitions for Communications Devices”, Revision 1.2, and the Abstract Control Model requests, refer to Table

11, “Requests - Abstract Control Model” in “USB Communications Class Subclass Specification for PSTN Devices”,

Revision 1.2.

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 20 of 45

Mar 28, 2016

6.3 CDC Notifications (Notifications from Device to Host)

The CDC notifications supported and not supported by the software are shown by Table 6-2.

Table 6-2 CDC Notifications

Notification Code Description Supported

NetworkConnection 0x00 Notification of network connection state No

ResponseAvailable 0x01 Response to GET_ENCAPSLATED_RESPONSE No

SerialState 0x20 Notification of serial line state Yes

For details concerning the Management Element Requests, refer to Table 20, “Class-Specific Notification Codes” in

“USB Class Definitions for Communications Devices”, Revision 1.2, and the Abstract Control Model requests, refer to

Table 28, “Requests - Abstract Control Model” in “USB Communications Class Subclass Specification for PSTN

Devices”, Revision 1.2.

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 21 of 45

Mar 28, 2016

7. USB Host Communication Device Class Driver (HCDC)

7.1 Basic Functions

This software conforms to the Abstract Control Model subclass of the communication device class specification. See

Chapter 1.2 item 2 and 3.

The main functions of HCDC are to:

1. Send class requests to the CDC peripheral

2. Transfer data to and from the CDC peripheral

3. Receive communication error information from the CDC peripheral

7.2 HCDC Task Description

This task receives messages to mailbox USB_HCDC_MBX and performs processing according to the message. See

Table 7-1.

Table 7-1 Processing according to Received HCDC Message Type

Message Processing Message Source

USB_HCDC_

TCMD_OPEN

Gets the string descriptor and

sets the pipe according to the

enumeration sequence.

usb_hsmp_class_check()

usb_hcdc_CheckResult()

Using the callback functions above, USB-

BASIC-F/W and HCDC check for correct

operation of the connected device during

enumeration.

USB_HCDC_

TCMD_RECEIVE

"A Bulk-IN transfer is started.

The application is later notified

when the data transfer is

completed."

When a Bulk-IN transfer is complete the

API function R_usb_hcdc_receive_data()

is executed.

USB_HCDC_

TCMD_SEND

"A Bulk-OUT transfer is started.

The application is later notified

when the data transfer is

completed."

When Bulk-OUT transfer is completed the

API function R_usb_hcdc_send_data()

is executed.

USB_HCDC_TCMD_

CLASS_NOTIFY

Start Interrupt-IN transfer.

The application is later notified

when the data transfer is

completed.

When an Interrupt-IN transfer is completed,

the API function

R_usb_hcdc_serial_state_trans()

is executed.

USB_HCDC_TCMD_

CLASS_REQ

A CDC class request is issued

as specified by application

argument. The application is

notified when the control transfer

is completed.

The API function mingis executed .

7.3 Target Peripheral List (TPL)

Ahost, conforming to a class specification, is not required to support operation with all types of USB peripherals. It is

up to the manufacturer of the host to determine what peripherals the device will support, and to provide a list of those

peripherals. This is the called the “Target Peripheral List (TPL)”.

TPL consists of VIDs and PIDs . If all VIDs (/PIDs) are to be ignored, USB_NOVENDOR (/USB_NOPRODUCT) is

written to TPL. Please refer to the usb_hcdc_Enumaration() function in the r_usb_hcdc_driver.c file for TPL.

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 22 of 45

Mar 28, 2016

7.4 Structures

7.4.1 HCDC Request Structure

Table 7-2 describes the “UART settings” parameter structure used for the CDC requests SetLineCoding and

GetLineCoding.

Table 7-2 USB_HCDC_LineCoding_t Structure

Type Member Description Remarks

uint32_t dwDTERate Line speed Unit: bps

uint8_t bCharFormat Stop bits setting

uint8_t bParityType Parity setting

uint8_t bDataBits Data bit length

Table 7-3 describes the “UART settings” parameter structure used for the CDC requests SetControlLineState.

Table 7-3 USB_HCDC_ControlLineState_t Structure

Type Member Description Remarks

uint16_t (D15-D8) rsv1:8 Reserved1

uint16_t (D7-D2) rsv2:6 Reserved2

uint16_t (D1) bRTS:1 Carrier control for half duplex modems

0 - Deactivate carrier, 1 - Activate carrier

uint16_t (D0) bDTR:1 Indicates to DCE if DTE is present or not

0 - Not Present, 1 - Present

Table 7-4 describes the “AT command” parameter structure used for the CDC requests SendEncapsulatedCommand

and GetEncapsulatedResponse.

Table 7-4 USB_HCDC_Encapsulated_t Structure

Type Member Description Remarks

uint8_t *p_data Area where AT command data is stored

uint16_t wLength Size of AT command data Unit: byte

Table 7-5 describes the “Break signal” parameter structure used for the CDC requests SendBreak.

Table 7-5 USB_HCDC_BreakDuration_t Structure

Type Member Description Remarks

uint16_t wTime_ms Duration of Break Unit: ms

7.4.2 CommFeature Function Selection Union

Table 7-6 and Table 7-7 describe the “Feature Selector” parameter structure used for the CDC requests

SetCommFeature and GetCommFeature, and Table 7-8 describes the parameter union.

Table 7-6 USB_HCDC_AbstractState_t Structure

Type Member Description Remarks

uint16_t rsv1:8 Reserved1

uint16_t rsv2:6 Reserved2

uint16_t bDMS:1 Data Multiplexed State

iomt16_t bIS:1 Idle Setting

Table 7-7 USB_HCDC_CountrySetting_t Structure

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 23 of 45

Mar 28, 2016

Type Member Description Remarks

uint16_t country_code Country code in hexadecimal format as defined in [ISO3166],

Table 7-8 USB_HCDC_CommFeature_t Structure

Type Member Description Remarks

union uint16_t data Status data

USB_HCDC_AbstractState_t AbstractState Abstract Control Model selection

parameters. Refer to Table 7-6

USB_HCDC_CountrySetting_t CountrySetting Country Setting selection

parameters. Refer to Table 7-7

uint16_t wValue Feature selector code

7.4.3 CDC Request Input Parameter Union

Table 7-9 describes the common parameter structure for CDC requests.

Table 7-9 USB_HCDC_ClassRequestParm_t Structure

Request Request code

Structure type

Member name Description

SetLineCoding USB_HCDC_SET_LINE_CODING

/ USB_HCDC_LineCoding_t

LineCoding Data address send and

receive in data stage.

Refer to Table 7-2

GetLineCoding USB_HCDC_GET_LINE_CODING

/ USB_HCDC_LineCoding_t

SetControlState USB_HCDC_SET_

CONTROL_LINE_STATE

/ USB_HCDC_ControlLineState_t

ControlLineState Value set to the wValue

field.

Refer to Table 7-3

SendEncapsulated

Command

USB_HCDC_SEND_

ENCAPSULATED_COMMAND

/ USB_HCDC_Encapsulated_t

Encapsulated Data address send and

receive in data stage,

and value set to the

wValue field.

Refer to Table 7-4

GetEncapsulated

Response

USB_HCDC_GET_

ENACAPSULATED_RESPONSE

/ USB_HCDC_Encapsulated_t

SendBreak USB_HCDC_SEND_BREAK

/ USB_HCDC_BreakDuration_t

BreakDuration Value set to the wValue

field.

Refer to Table 7-5

SetCommFeature USB_HCDC_SET_

COMM_FEATURE

/ USB_HCDC_CommFeature_t

*CommFeature Data address send and

receive in data stage.

Refer to Table 7-8

GetCommFeature USB_HCDC_GET_

COMM_FEATURE

/ USB_HCDC_CommFeature_t

ClearCommFeature USB_HCDC_CLR_COMM_FEATURE

No structure

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 24 of 45

Mar 28, 2016

7.4.4 CDC Request API Function Structure

Table 7-10 describes the CDC request parameter structure.

Table 7-10 USB_HCDC_ClassRequest_UTR_t Structure

Type Member Description

usb_addr_t devadr Device address

uint8_t bRequestCode Class request code. Refer to Table 7-9

USB_CDC_ClassRequestParm_t parm Parameter setup value. Refer to Table 7-9

usb_cb_t complete Class request processing end call-back function

7.4.5 CDC Notification Format
Table 7-11 and Table 7-12 describe the data format of the CDC notification.

Table 7-11 Response_Available notification format

Type Member Description Remarks

uint8_t bmRequestType 0xA1

uint8_t bRequest RESPONSE_AVAILABLE (0x01)

uint16_t wValue 0x0000

uint16_t wIndex Interface

uint16_t wLength 0x0000

uint8_t Data --

Table 7-12 Serial_State notification format

Type Member Description Remarks

uint8_t bmRequestType 0xA1

uint8_t bRequest SERIAL_STATE (0x20)

uint16_t wValue 0x0000

uint16_t wIndex Interface

uint16_t wLength 0x0002

uint16_t Data UART State bitmap Refer to Table 7-13

The host is notified of the “SerialState” when a change in the UART port state is detected. Table 7-13 describes the

structure of the UART State bitmap.

Table 7-13 USB_HCDC_SerialState_t Structure

Type Member Description Remarks

uint16_t (D15-D8) rsv1:8 Reserved1

uint16_t (D7) rsv2:1 Reserved2

uint16_t (D6) bOverRun:1 Overrun error detected

uint16_t (D5) bParity:1 Parity error detected

uint16_t (D4) bFraming:1 Framing error detected

uint16_t (D3) bRingSignal:1 Incoming signal (Ring signal) detected

uint16_t (D2) bBreak:1 Break signal detected

uint16_t (D1) bTxCarrier:1 Line connected and ready for communication Data Set Ready

uint16_t (D0) bRxCarrier:1 Carrier detected on line Data Carrier Detect

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 25 of 45

Mar 28, 2016

h

7.5 List of HCDC API Functions

The HCDC API is shown in Table 7-14. The API functions are called by the application program.

Table 7-14 List of HCDC API Functions

Function Description Notes

R_usb_hcdc_task HCDC task processing

R_usb_hcdc_smp_class_check Check for correct operation of connected device

R_usb_hcdc_driver_start HCDC driver task start

R_usb_hcdc_driver_stop HCDC driver task stop

R_usb_hcdc_SetPipeRegistration Pipe Information Table update and pipe setting

processing

R_usb_hcdc_receive_data HCDC USB data reception request to HCDC

R_usb_hcdc_receive_data_end USB data receive termination request to HCDC

R_usb_hcdc_send_data request USB data transmission of HCDC

R_usb_hcdc_send_data_end USB data transfer termination request of HCDC.

R_usb_hcdc_serial_state_trans CDC notification request of HCDC

R_usb_hcdc_serial_state_trans_stop CDC notify termination request of HCDC

R_usb_hcdc_device_information The USB state of a connected device is acquired from

HCDC

R_usb_hcdc_change_device_state The USB status change of the connected device is

requested of HCDC

R_usb_hcdc_class_request Sends CDC request

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 26 of 45

Mar 28, 2016

R_usb_hcdc_task

HCDC task processing

Format

void R_usb_hcdc_task(void)

Argument

－ －

Return Value

－ －

Description

Calls the usb_hcdc_task() function. The HCDC task processes requests from the application, and the result is

notified back to the application.

Note

Please refer to the USB-BASIC-F/W application note about this program loop.

Example

void usb_apl_task_switch(void)

{

 while(1)

 {

 if(USB_FLGSET == R_usb_cstd_Scheduler()) /* Scheduler */

 {

 R_usb_hstd_HcdTask(); /* HCD Task */

 R_usb_hstd_MgrTask(); /* MGR Task */

 usb_hcdc_main_task(); /* HCDC Application Task */

 R_usb_hcdc_task(); /* HCDC Task */

 }

 else

 {

 }

 }

}

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 27 of 45

Mar 28, 2016

R_usb_hcdc_smp_class_check

Check descriptor

Format

void R_usb_hcdc_smp_class_check (uint8_t **table)

Argument

**table Address array of the device information

 [0] : Address of Device Descriptor

 [1] : Address of Configuration Descriptor

 [2] : Address of global variable that mean the Device Address

Return Value

－ －

Description

This function asks the HCDC task whether operation of the connected device has been succeeded or not. Call this

function when the USB-BASIC-F/W executes the classcheck callback.

The HCDC task references the endpoint descriptor of the device’s configuration descriptor, then edits the Pipe

Information Table and checks the pipe information of the pipes to be used.

Note

Example

void usb_hcdc_registration(void)

{

 usb_hcdreg_t driver;

 driver.ifclass = USB_IFCLS_CDCC;

 driver.classcheck = &R_usb_hcdc_smp_class_check;

 driver.statediagram = &usb_hcdc_device_state;

 R_usb_hstd_DriverRegistration(&driver);

}

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 28 of 45

Mar 28, 2016

R_usb_hcdc_driver_start

HCDC driver start

Format

void R_usb_hcdc_driver_start(void)

Argument

－ －

Return Value

－ －

Description

This function starts the HCDC driver task.

Note

Example

void usb_hcdc_task_start(void)

{

 /* Target board initialize */

 usb_cpu_target_init();

 /* USB-IP initialized */

 R_usb_hstd_ChangeDeviceState(USB_DO_INITHWFUNCTION);

 /* HCD driver open & registration */

 R_usb_hstd_HcdOpen(); /* HCD task, MGR task open */

 usb_hcdc_registration(); /* HCDC driver registration */

 R_usb_hcdc_driver_start(); /* HCDC Task start */

 /* Scheduler initialized */

 R_usb_hstd_ChangeDeviceState(USB_DO_SETHWFUNCTION);

}

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 29 of 45

Mar 28, 2016

R_usb_hcdc_driver_stop

HCDC driver stop

Format

void R_usb_hcdc_driver_stop(void)

Argument

－ －

Return Value

－ －

Description

This function initializes the pipe information table.

Note

Example

USB_STATIC void usb_hcdc_device_state(uint16_t data, uint16_t state)

{

 switch(state)

 {

 case USB_STS_DETACH:

 usb_smpl_set_suspend_flag(USB_NO);

 usb_shcdc_line_speed_control_seq = USB_HCDC_SMP_LINE_SPEED_INIT;

 R_usb_hcdc_driver_stop();

 usb_hcdc_smp_message_send(USB_HCDC_CMD_CLOSE);

 break;

 ・

 ・

 ・

}

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 30 of 45

Mar 28, 2016

R_usb_hcdc_SetPipeRegistration

Pipe information table update and pipe setting processing

Format

void R_usb_hcdc_SetPipeRegistration (usb_addr_t devaddr)

Argument

devaddr Device address

Return Value

－ －

Description

This function updates the address field of the Pipe Information Table, and selects the pipe used by the hardware

for CDC communication.

A total of three pipes are set in HCDC: The Bulk IN and Bulk OUT pipes for data communications, as well as an

Interrupt IN pipe for receiving the serial state.

Note

1. Refer to the USB-BASIC-F/W application note for information about the Pipe Information Table.

2. Please set another field in the Pipe Information Table beforehand by referring to the endpoint descriptor.

Example

void usb_hcdc_smp_open(usb_adrr_t devadr)

{

 usb_er_t err;

 if (devadr != 0)

 {

 usb_shcdc_devadr = devadr; /* Device Address store */

 /* Host CDC Pipe Registration */

 err = R_usb_hcdc_SetPipeRegistration(usb_shcdc_devadr);

 }

}

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 31 of 45

Mar 28, 2016

R_usb_hcdc_receive_data

Request data reception

Format

usb_er_t R_usb_hcdc_receive_data (uint8_t *table, usb_leng_t size, usb_cb_t complete)

Argument

*table Pointer to receive data buffer address

size Reception size

complete Process completion notice callback function

Return Value

USB_E_OK Success

USB_E_ERROR Failure, argument error

Description

This function requests USB data reception of USB-BASIC-F/W

 “size” bytes is later received at the address given by argument “*table”.

When data reception is complete, (that is, data reception count is "size" bytes or there was a short packet reception,

the callback function is executed.

Note

1. The data receive process results are obtained by the argument “usb_utr_t *” of the callback function

2. Refer to the USB-BASIC-F/W application note for the Data Transfer structure usb_utr_t.

Example

/* Example of usage. */

 uint8_t data[64]; /* Data buff */

 usb_leng_t size = 64; /* Data size */

 R_usb_hcdc_receive_data((uint8_t *)data, size, (usb_cb_t)&usb_complete)

/* Callback function */

void usb_complete(usb_utr_t *mess);

{

 /* Describe the processing performed when the USB receive is completed. */

}

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 32 of 45

Mar 28, 2016

R_usb_hcdc_receive_data_end

End of data reception

Format

usb_er_t R_usb_hcdc_receive_data_end (void)

Argument

－ －

Return Value

USB_E_OK Success

USB_E_ERROR Failure, argument error

USB_E_QOVR Overlap (transfer end request for the pipe during transfer end.)

Description

This function requests USB-BASIC-F/W to forcibly end a data receive transfer.

End of transfer is notified via the callback function that was specified when the data transfer was requested with

R_usb_hcdc_receive_data(). The remaining data length of transmission and reception, pipe control register value,

and transfer status = USB_DATA_STOP are found in the argument of the callback function (in the usb_utr_t

structure).

Note

1. The data transmit process results are obtained by the argument “usb_utr_t *” of the callback function, see

Description above .

2. Refer to the USB-BASIC-F/W application note for the Data Transfer structure usb_utr_t.

Example

void usb_smp_task(void)

{

 /* reception end request */

 err = R_usb_hcdc_receive_data_end();

 return err;

 ：

}

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 33 of 45

Mar 28, 2016

R_usb_hcdc_send_data

Request data transmission

Format

usb_er_t R_usb_hcdc_send_data(uint8_t *table, usb_leng_t size, usb_cb_t complete)

Argument

*table Pointer to transmit data buffer address

size Transfer size

complete Process completion notice callback function

Return Value

USB_E_OK Success

USB_E_ERROR Failure, argument error

Description

This function requests a USB data transmission fo the USB-BASIC-F/W.

 “size” bytes are transmitted from the address given by argument “*table”.

When the data transmit processing is complete, the callback function complete is called.

Note

1. Data transmission results are obtained by the argument "usb_utr_t *" of the callback function

2. Refer to the USB-BASIC-F/W application note forinformation ob the Data Transfer structure usb_utr_t.

Example

/* Example of usage. */

 uint8_t data[] = {0x01,0x02,0x03,0x04,0x05}; /* USB send data */

 usb_leng_t size = 5; /* Data size */

 R_usb_hcdc_send_data((uint8_t *)data, size,(usb_cb_t)&usb_complete)

/* Callback function */

void usb_complete(usb_utr_t *mess);

{

 /* Describe the processing performed when the USB transmit is completed. */

}

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 34 of 45

Mar 28, 2016

R_usb_hcdc_send_data_end

Terminate a data transmission transfer

Format

usb_er_t R_usb_hcdc_send_data_end (void)

Argument

－ －

Return Value

USB_E_OK Success

USB_E_ERROR Failure, argument error

USB_E_QOVR Overlap (transfer end request for the pipe during transfer end.)

Description

This function requests USB-BASIC-F/W to forcibly end a data transfer .

Transfer end is notified by the callback function which was given given when the data transfer was requested by

R_usb_hcdc_send_data(). The remaining data length of the transmission, pipe control register value, and transfer

status = USB_DATA_STOP are found in the argument of the callback function (in the usb_utr_t structure).

Note

1. The data transmit process results are obtained by the argument “usb_utr_t *” of the callback function. See

above.

2. Refer to the USB-BASIC-F/W application note for information about the Data Transfer structure usb_utr_t.

Example

void usb_smp_task(void)

{

 /* Transfer end request */

 err = R_usb_hcdc_send_data_end();

 return err;

 ：

}

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 35 of 45

Mar 28, 2016

R_usb_hcdc_serial_state_trans

Request CDC notification

Format

usb_er_t R_usb_hcdc_serial_state_trans(usb_cb_t *complete)

Argument

complete Process completion notice callback function

Return Value

USB_E_OK Success

USB_E_ERROR Failure, argument error

Description

This function starts the reception of CDC notification (see Chapter 7.4.5).

The callback function complete is called after reception of CDC notification.

The argument of the callback function is of type usb_utr_t*, a global variable of HCDC. Stored HCDC reception

data is in the tranadr member of the usb_utr_t* structure. The member "result" of this structure is USB_YES if

the CDC notification was received correctly. The start address of “CDC Notification Format” (Refer to Table

7-12) area is set in the member (tranadr) of the argument which the callback function has. The serial state is

found from “UART State bitmap” in this area.

Note

1. For information concerning the serial status bit pattern, refer to “Table 7-13”.

2. The data transmit process results are obtained by the argument “usb_utr_t *” of the callback function

3. Refer to the USB-BASIC-F/W application note for the Data Transfer structure usb_utr_t.

4. When the connected device is a vendor class device, the CDC notification is not demanded.

5. It doesn't correspond to the ResponseAvailable notification.

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 36 of 45

Mar 28, 2016

Example

void usb_hcdc_main_task(void)

{

 USB_MGRINFO_t *mess;

 usb_er_t err;

 while (1)

 {

 err = R_USB_RCV_MSG(USB_HCDCSMP_MBX,(USB_MSG_t**)&mess);

 if (err == USB_E_OK)

 {

 err = R_usb_hcdc_serial_state_trans(mess,

 (usb_cb_t *)&usb_hcdc_smp_SerialStateReceive);

 if(err != USB_E_OK)

 {

 USB_PRINTF0("### usb_pcdc_MainTask function bulk read error\n");

 }

 }

}

/* Example of a callback function of R_usb_hcdc_serial_state_trans */

void usb_hcdc_smp_SerialStateReceive(usb_utr_t *mess)

{

 uint16_t *status;

 uint16_t msginfo;

 if (mess->result == USB_YES)

 {

 /* Command set */

 msginfo = USB_HCDC_CMD_RCV_SERIAL_STATE;

 }

 else

 {

 /* Command set */

 msginfo = USB_HCDC_CMD_RCV_SERIAL_STATE_NG;

 }

 status = (uint16_t *)mess->tranadr; /* Status set */

 /* [0] bmRequestType/bRequest */

 /* [1] wValue */

 /* [2] wIndex */

 /* [3] wLength :2 */

 /* [4] data : Serial State(UART State bitmap) */

 usb_hcdc_smp_message_send(mess, status[4]);

}

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 37 of 45

Mar 28, 2016

R_usb_hcdc_serial_state_trans_end

CDC notification termination request

Format

usb_er_t R_usb_hcdc_serial_state_trans_end (void)

Argument

－ －

Return Value

USB_E_OK Success

USB_E_ERROR Failure, argument error

USB_E_QOVR Overlap (transfer end request for the pipe during transfer end.)

Description

This function requests USB-BASIC-F/W to forcibly end the data transfer.

The transfer end is notified via the callback function specified when the data transfer was requested

R_usb_hcdc_serial_satte_trans(). The remaining data length of transmission and reception, pipe control register

value, and transfer status = USB_DATA_STOP are found in the argument of the callback function (usb_utr_t).

Note

1. The data transmit process results are obtained by the argument “usb_utr_t *” of the callback function. See

Description above.

2. Refer to the USB-BASIC-F/W application note for information on the Data Transfer structure usb_utr_t.

Example

void usb_smp_task(void)

{

 /* notification end request */

 err = R_usb_hcdc_serial_state_trans_end();

 return err;

 ：

}

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 38 of 45

Mar 28, 2016

R_usb_hcdc_class_request

Send a CDC class request

Format

usb_er_t R_usb_hcdc_class_request (USB_HCDC_ClassRequest_UTR_t *pram)

Argument

*pram CDC class request parameter.

Return Value

－ Error code (USB_E_OK/USB_E_ERROR)

Description

The following CDC requests can be sent to the HCDC driver.

The request type is specified by the structure member bRequestCode of argument *parm.

1. SendEncapsulatedCommand

2. GetEncapsulatedResponse

3. SetCommFeature

4. GetCommFeature

5. ClearCommFeature

6. SetLineCoding

7. GetLineCoding

8. SetControlLineState

9. SendBreak

Please refer to the sample application in r_usb_hcdc_apl.c for details on how to use this API.

Refer to Chapter 7.4.4 for the type USB_HCDC_ClassRequest_UTR_t structure of the argument.

Note

1. The class request transmission result is obtained by the argument "usb_utr_t *" of the callback function.

2. Refer to the USB-BASIC-F/W application note for the Data Transfer structure usb_utr_t.

Example

USB_HCDC_LineCoding_t usb_shcdc_line_coding;

USB_HCDC_ClassRequest_UTR_t utr_req;

/* Example of usage. */

 usb_shcdc_line_coding.dwDTERate = USB_HCDC_SPEED_9600;

 usb_shcdc_line_coding.bDataBits = USB_HCDC_DATA_BIT_8;

 usb_shcdc_line_coding.bCharFormat = USB_HCDC_STOP_BIT_1;

 usb_shcdc_line_coding.bParityType = USB_HCDC_PARITY_BIT_NONE;

 utr_req.bRequestCode = USB_HCDC_SET_LINE_CODING;

 utr_req.complete = (usb_cb_t)&usb_hcdc_smp_SetLine_CODING_Result;

 utr_req.parm.LineCoding = &usb_shcdc_line_coding;

 utr_req.devadr = devadr;

 return = R_usb_hcdc_class_request(utr_req);

/* Example of callback function. */

void usb_hcdc_smp_SetLine_CODING_Result(usb_utr_t *mess)

{

 /* Describe the processing performed when the class request is completed. */

}

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 39 of 45

Mar 28, 2016

R_usb_hcdc_device_information

Obtain USB device state information

Format

void R_usb_hcdc_device_information(uint16_t *deviceinfo)

Argument

*deviceinfo Table address to store the device information

Return Value

－ －

Description

Obtain the USB device information. Store the following information to an address specified to the argument

"*deviceinfo".

[0]: Root port number (port 0: USB_0, port 1: USB_1)

[1]: USB state (unconnected: USB_STS_DETACH, enumerated: USB_STS_DEFAULT/USB_STS_ADDRESS,

connected: USB_STS_CONFIGURED, suspended: USB_STS_SUSPEND)

[2]: Structure number (g_usb_HcdDevInfo[g_usb_MgrDevAddr].config)

[3]: Connection speed (FS: USB_FSCONNECT, LS: USB_LSCONNECT, unconnected: USB_NOCONNECT)

Notes

1. Provide 4 word area for the argument *deviceinfo.

2. This function is called when the device address is 0, the following information is returned.

(1) When there is not a device during enumeration (device is not connected).

table[0] = USB_NOPORT, table[1] = USB_STS_DETACH

(2) When there is a device during enumeration.

table[0] = Port number, table[1] = USB_STS_DEFAULT

Example

void usb_smp_task(void)

{

 uint16_t tbl[4];

 ：

 /* Device information check */

 R_usb_hcdc_device_information(tbl);

 ：

}

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 40 of 45

Mar 28, 2016

R_usb_hcdc_change_device_state

USB device state change request

Format

usb_er_t R_usb_hcdc_change_device_state (usb_strct_t msginfo,

usb_strct_t keyword,

usb_cb_info_t complete)

Arguments

msginfo USB state to be changed to.

keyword Content varies depending on msginfo, for example port

 number.

complete Callback function executed when the USB state has changed.

Return Value

USB_E_OK Success

USB_E_ERROR Failure, argument error

Description

Set the following value to argument msginfo to request to change the device state of the USB-BASIC-F/W.

· USB_DO_PORT_ENABLE / USB_DO_PORT_DISABLE

Enable or disable a port specified by a keyword (on/off control of VBUS output).

· USB_DO_GLOBAL_SUSPEND

Suspend a port specified by a keyword.

· USB_DO_GLOBAL_RESUME

Resume a port specified by a keyword.

· USB_DO_CLEAR_STALL

Cancel STALL of the device that uses a pipe specified by a keyword.

Notes

1. When a connection or disconnection is detected by the USB-BASIC-F/W, the enumeration sequence or the

detach sequence is processed automatically by the USB-BASIC-F/W.

2. When transiting the USB state using this function, the USB state transition callback of the driver structure

registered using the API function R_usb_hstd_DriverRegistration() is not called.

Example

void usb_smp_task(void)

{

 R_usb_hcdc_change_device_state

 (USB_DO_GLOBAL_SUSPEND, USB_PORT0, usb_hsmpl_status_result);

}

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 41 of 45

Mar 28, 2016

8. Limitations

HDCD is subject to the following limitations.

1. The structures contain members of different types. (Depending on the compiler, this may cause address

misalignment of structure members.)

2. Devices can connect to the HCDC, this is the only one. Please do not connect two or more devices simultaneously.

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 42 of 45

Mar 28, 2016

9. Setup for the e2 studio project

(1). Start up e2 studio.

* If starting up e2 studio for the first time, the Workspace Launcher dialog box will appear first. Specify the folder

which will store the project.

(2). Select [File]  [Import]; the import dialog box will appear.

(3). In the Import dialog box, select [Existing Projects into Workspace].

Figure 9-1 Select Import Source

(4). Press [Browse] for [Select root directory]. Select the folder in which [.cproject] (project file) is stored.

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 43 of 45

Mar 28, 2016

Figure 9-2 Project Import Dialog Box

(5). Click [Finish].

This completes the step for importing a project to the project workspace.

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 44 of 45

Mar 28, 2016

10. Using the e2 studio project with CS+

This package contains a project only for e2 studio. When you use this project with CS+, import the project to CS+ by

following procedures.

Note:

The rcpc file is stored in "workspace\RL78\CCRL\devicename" folder.

Figure 10-1 Using the e2 studio project with CS+

Select the device used in
the project.

Select Project type, and specify the
project name and its location.
Click OK button if they are OK.

Select the used project

e.g. Sample

The project name depends on the AN.

Launch CS+ and click “Start”.

Select [Open Exsisting e2studio/CubeSuite/High-performance Embedded

Workshop/PM+ project] in Start menu.

Select [project file for
e2studio] Select the file with the extension

[.rcpc] and click Open button.

Renesas USB MCU USB Host Communication Device Class Driver (HCDC)

R01AN0643EJ0215 Rev.2.15 Page 45 of 45

Mar 28, 2016

Website and Support

Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/
http://www.renesas.com/contact/

A-1

Revision Record

Rev.

Date

Description

Page Summary

1.00 Apl.28.11 — First edition issued

2.00 Nov. 30.12 — Revision of the document by firmware upgrade

2.10 Aug. 01.13 — RX111 is supported.

Error is fixed.

2.11 Oct. 31. 13 — 1.4 Folder path fixed.

3.3.1 Folder Structure was corrected.

Error is fixed.

2.12 Mar. 31.14 — R8C is supported.

Error is fixed.

2.13 Mar. 16. 15 — RX111 is deleted from Target Device

2.14 Jan. 18. 16 — Supported Technical Update (Document No. TN-RL*-A055A/E)

2.15 Mar. 28. 16 — CC-RL compiler is supported.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the

products covered by this document, refer to the relevant sections of the document as well as any technical updates that

have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the

manual.

 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an

associated shoot-through current flows internally, and malfunctions occur due to the false

recognition of the pin state as an input signal become possible. Unused pins should be handled as

described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins

are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function

are not guaranteed from the moment when power is supplied until the power reaches the level at

which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has

stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.

Moreover, when switching to a clock signal produced with an external resonator (or by an external

oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm

that the change will not lead to problems.

 The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect

the ranges of electrical characteristics, such as characteristic values, operating margins, immunity

to noise, and amount of radiated noise. When changing to a product with a different part number,

implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2016 Renesas Electronics Corporation. All rights reserved.

Colophon 5.0

	1. Overview
	1.1 Functions and Features
	1.2 Related Documents
	1.3 Terms and Abbreviations
	1.4 How to Read This Document

	2. How to Register the Class Driver
	3. Operating Confirmation Environment
	3.1 Compiler
	3.2 Evaluation Board

	4. Software Configuration
	4.1 Module Configuration
	4.2 Overview of Application Program Functions
	4.3 File Configuration List
	4.3.1 Folder Structure
	4.3.2 File Structure

	4.4 System Resources
	4.4.1 System Resource Definitions

	5. Host CDC Sample Application Program (APL)
	5.1 Operating Environment
	5.2 Application Program Processing
	5.3 Endpoint Specifications
	5.4 Connected CDC Peripheral
	5.5 List of APL Functions
	5.6 Host Application Task Sequence
	5.6.1 State Transitions

	5.7 Processing Flow Graphs
	5.8 Sequences charts APL-HCDC-HCD
	5.8.1 Startup to CDC Device Attachment
	5.8.2 Data Communication
	5.8.3 Serial Port State Change Notification
	5.8.4 BREAK Signal Output
	5.8.5 CDC Device Detach

	6. Communication Device Class (CDC), PSTN, and ACM
	6.1 Basic Functions
	6.2 Abstract Control Model Class Requests (Host to Device)
	6.3 CDC Notifications (Notifications from Device to Host)

	7. USB Host Communication Device Class Driver (HCDC)
	7.1 Basic Functions
	7.2 HCDC Task Description
	7.3 Target Peripheral List (TPL)
	7.4 Structures
	7.4.1 HCDC Request Structure
	7.4.2 CommFeature Function Selection Union
	7.4.3 CDC Request Input Parameter Union
	7.4.4 CDC Request API Function Structure
	7.4.5 CDC Notification Format

	7.5 List of HCDC API Functions

	8. Limitations
	9. Setup for the e2 studio project
	10. Using the e2 studio project with CS+

