
 Application Note

R11AN0484EJ0220 Rev.2.20 Page 1 of 47

Jul.31.25

RL78 Family

CTSU Module Software Integration System

Introduction

This application note describes the CTSU Module.

Target Device

RL78/G23 Group

RL78/G22 Group

RL78/G16 Group

RL78/F25 Group

RL78/F22 Group

RL78/L23 Group

Related Documents

 RL78 Family TOUCH Module Software Integration System (R11AN0485)

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 2 of 47

Jul.31.25

Contents

1. Overview ..3
1.1 Functions ...3

1.1.1 QE for Capacitive Touch Usage ..3
1.1.2 Measurements and Obtaining Data ...3
1.1.3 Sensor CCO Correction function ...3
1.1.4 Initial Offset Adjustment ...4
1.1.5 Random Pulse Frequency Measurement (CTSU1) ...5
1.1.6 Multi-Clock Measurements (CTSU2L) ...5
1.1.7 Shield Function (CTSU2L) ...7
1.1.8 Measurement Error Message ..7
1.1.9 Moving Average ...8
1.1.10 Diagnosis Function...8
1.1.11 Automatic judgment measurement using SNOOZE Mode Sequencer (SMS) (RL78/G22,

RL78/G23, RL78/L23) ...8
1.1.12 Multiple Electrode Connection (MEC) Function (CTSUb, CTSU2La)9
1.1.13 Automatic CCO Correction (CTSU2SLa) .. 10
1.1.14 Automatic Frequency Correction (CTSU2SLa) ... 10
1.1.15 Automatic Judgement (CTSU2SLa) .. 10

1.2 Measurement Mode .. 14
1.2.1 Self-capacitance Mode ... 14
1.2.2 Mutual Capacitance Mode .. 14
1.2.3 Current Measurement Mode (CTSU2L) .. 15
1.2.4 Temperature Correction Mode (CTSU2L)... 15
1.2.5 Diagnosis Mode .. 16

1.3 Measurement Timing .. 17
1.4 API Overview .. 17

2. API Information ... 18
2.1 Hardware Requirements ... 18
2.2 Software Requirements .. 18
2.3 Supported Toolchains ... 18
2.4 Restrictions ... 18
2.5 Header File ... 19
2.6 Integer Type .. 19
2.7 Compilation Settings ... 20
2.8 Code Size ... 23
2.9 Arguments .. 24
2.10 Return Values ... 30
2.11 Callback function .. 31

3. API Functions .. 32
3.1 R_CTSU_Open ... 32
3.2 R_CTSU_ScanStart.. 33
3.3 R_CTSU_DataGet .. 34
3.4 R_CTSU_CallbackSet .. 35
3.5 R_CTSU_SmsSet ... 36
3.6 R_CTSU_Close .. 38
3.7 R_CTSU_Diagnosis.. 39
3.8 R_CTSU_ScanStop .. 40
3.9 R_CTSU_SpecificDataGet ... 41
3.10 R_CTSU_DataInsert ... 42
3.11 R_CTSU_OffsetTuning ... 43
3.12 R_CTSU_AutoJudgementDataGet ... 44

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 3 of 47

Jul.31.25

1. Overview

The CTSU module is a CTSU driver for the Touch Module. The CTSU module is configured assuming

access via the Touch middleware layer but can also be accessed from the user application.

There are 4 types of CTSU peripherals, which are CTSUb, CTSU2L, CTSU2La and CTSU2SLa.These are

functionally different. Versions of CTSU peripherals which each device is equipped with are shown below.

CTSU2SLa：RL78/F25, RL78/F22

CTSU2La：RL78/G22, RL78/L23

CTSU2L：RL78/G23

CTSUb：RL78/G16

CTSUb is described as CTSU1 in this document. CTSUb, CTSU2L, CTSU2La and CTSU2SLa have different

features and for the sake of explanation, CTSU2L, CTSU2La and CTSU2SLa are described below.

・Common description for CTSUb, CTSU2L, CTSU2La and CTSU2SLa-> CTSU

・Description only for CTSUb -> CTSU1

・Common description for CTSU2L, CTSU2La and CTSU2SLa -> CTSU2L

・Common description for CTSU2La and CTSU2SLa -> CTSU2La

・Description only for CTSU2SLa -> CTSU2SLa

1.1 Functions

The CTSU module supports the following functions.

1.1.1 QE for Capacitive Touch Usage

The module provides various capacitive touch measurements based on configuration settings generated by

QE for Capacitive Touch.

As a part of the configuration settings, the touch interface configuration displays the combination of pins to

be measured (referred to as TS) and the corresponding measurement mode. Multi-touch interface

configurations are necessary when the development product has a combination of different measurement

modes or when the active shield is used.

1.1.2 Measurements and Obtaining Data

Measurements can be started by a software trigger or by an external event trigger (generated e.g. by the

Event Link Controller).

The CTSU module processes INTCTSUWR and INTCTSURD if generated during a measurement. The data

transfer controller (DTC) can also be used for these processes.

When the measurement complete interrupt (INTCTSUFN) process is complete, the application is notified in a

callback function. Make sure you obtain the measurement results before the next measurement is started as

internal processes are also executed when a measurement is completed.

Start the measurement with API function R_CTSU_ScanStart().

Obtain the measurement results with API function R_CTSU_DataGet().

1.1.3 Sensor CCO Correction function

The CTSU peripheral has a built-in correction circuit to handle the potential microvariations related to the

manufacturing process of the sensor CCO MCU.

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 4 of 47

Jul.31.25

This module uses the correction circuit during initialization after power on to generate a correction coefficient

to ensure accurate sensor measurement values. This correction coefficient is used to correct the

measurement value.

When temperature correction for CTSU2L is enabled, an external resistor connected to a TS pin is used to

periodically update the correction coefficient. By using an external resistor that is not dependent on

temperature, you can even correct the temperature drift of the sensor CCO.

1.1.4 Initial Offset Adjustment

The CTSU peripheral was designed with a built-in offset current circuit in consideration of the amount of

change in current due to touch. The offset current circuit cancels enough of the parasitic capacitance for it to

fit within the sensor CCO dynamic range.

This module adjusts the offset current setting. As the adjustment uses the normal measurement process,

R_CTSU_ScanStart() and R_CTSU_DataGet() must be repeated several times after startup. Because the

ctsu_element_cfg_t member “so” is the starting point for adjustments, you can set the appropriate value for

“so” in order to reduce the number of times the two functions must be run to complete the adjustment.

Normally, the value used for “so” is a value adjusted by QE for Capacitive Touch.

This function can be turned off in the configuration settings.

Default target value

Mode Default target value (CTSU1) Default target value (CTSU2L)

Self-capacitance 15360 (37.5%) 11520 (37.5%)

Self-capacitance using active shield - 4608 (15%)

Mutual-capacitance 10240 (25%) 7680 (25%)

The percentage is based on 100% being the maximum input current applied to the CCO.

CTSU1 : 100% is the measured value 40960 when the measurement time is 526us(base time).

CTSU2L : 100% is the measured value 30720 when the measurement time is 256us(base time).

When the measurement time is changed, the target value is adjusted by the ratio with the base time.

Example of target value in combination of CTSUSNUM and CTSUSDPA

・CTSU1 (CTSU clock = 32MHz、Self-capacitance mode)

Target value CTSUSNUM CTSUSDPA Measurement time

15360 0x3 0x7 526us

30720 0x7 0x7 1052us

30720 0x3 0xF 1052us

7680 0x1 0x7 263us

7680 0x3 0x3 263us

The measurement time changes depending on the combination of CTSUSNUM and CTSUSDPA.

Recommended CTSUPRRTIO, CTSUPRMODE are used. Changing this value is deprecated. For details,

refer to the hardware manual of each capacitive touch sensor.

・CTSU2L (Self-capacitance mode)

Target value Target value (multi-clock) CTSUSNUM Measurement time

5760 11520 (128us + 128us) 0x7 128us

11520 23040 (256us + 256us) 0xF 256us

2880 5760 (64us + 64us) 0x3 64us

The measurement time changes depending on CTSUSNUM. If STCLK cannot be set to 0.5MHz, it will not

support the table above. Regarding STCLK, refer to the hardware manual.

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 5 of 47

Jul.31.25

1.1.5 Random Pulse Frequency Measurement (CTSU1)

The CTSU1 peripheral measures at one drive pulse frequency.

The drive pulse frequency determines the amperage to the electrode and generally uses the value tuned

with QE for Capacitive Touch.

The actual drive pulse is phase-shifted and frequency-spread with respect to the base clock as a measure

against external environmental noise. This module is fixed at initialization and sets the following.

CTSUSOFF = 0, CTSUSSMOD = 0, CTSUSSCNT = 3

The base clock is calculated as below.

It is determined by fCLK frequency input to CTSU, CTSU Count Source Select bit(CTSUCLK), and CTSU

Sensor Drive pulse Division Control bit(CTSUSDPA). For example, If it is set fCLK =32MHz, CTSUCLK =

PLCK/2, and CTSUSDPA = 1/16, then base clock is 0.5MHz. CTSUSDPA can change for each TS port.

Figure 1 Base clock settings

1.1.6 Multi-Clock Measurements (CTSU2L)

The CTSU2L peripheral can measure in one of four drive pulse frequencies to avoid synchronous noise.

By default, this module measures at three different frequencies and makes a majority judgment on the three

measurement results obtained.

Figure 2 Multi-Clock Measurements

There are two types of majority judgment modes for the three measurement results: JMM (Judgment Majority

Mode) and VMM (Value Majority Mode). JMM only supports self-capacitance buttons and mutual-

capacitance buttons.

Figure 3 shows the flowchart of JMM and VMM with the Touch module.

CTSU operating clock

selection bit

fCLK

 fCLK /2

 fCLK /4

CTSU base clock setting bit

2 divisions

4 divisions

・

・

64 divisions

fCLK Base clock

CTSU_CFG_PCLK_DIVISION r_element_cfg : sdpa
Config

Setting

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 6 of 47

Jul.31.25

TOUCH Middleware

Measured value acquisition

Sensor CCO correction

Moving average

Touch detection

Majority vote

Measured value acquisition

Sensor CCO correction

Touch detection

Frequency correction

Combine value

CTSU Driver

Moving average

JMM VMM

User program User program

Figure 3 Flowchart of JMM and VMM

JMM makes a final touch judgment by using majority touch judgment results for each of the three CCO-

corrected measurement values.

VMM performs frequency correction to standardize the three CCO-corrected measurements to the measured

values at the first frequency and adds two measurements with similar values. This results in a measurement

value that doubles the measurement time. Touch judgment is made with this measured value.

Example VMM Calculations

From the frequency-corrected values 1,2 and 3, the difference values 1,2 and 3 for each pair are calculated,

and the smaller pair is selected by comparing the absolute values of the difference values. To prevent

chattering, a combination of value 1 and value 2 is given weight to be selected. When comparing value 3,

multiply the difference value 2 by 2 and multiply the difference value 3 by 1.5.

Value 1 Value 2 Value 3 Difference

value 1

Difference

value 2

Difference

value 3

Result Added

Value

7734 7734 7663 0 71 71 Value 1+2 15468

7689 7739 7666 50 23 73 Value 1+3 15355

7734 7679 7664 55 70 15 Value 2+3 15343

7721 7719 7694 2 27 25 Value 1+2 15440

7716 7747 7693 31 23 54 Value 1+2 15463

You can set JMM or VMM for each touch interface configuration. If the ctsu_cfg_t member “majority_mode” is

set to 1, it works in JMM, and if it is set to 0, it works in VMM.

R_CTSU_DataGet() can get the data after conducting the moving average. To retrieve the data of each

previous processes, use R_CTSU_SepcificDataGet(). These data can also be used to determine the data

with its own noise filter in the Touch module. See Chapter 3.9 and 3.10 for more information.

Drive pulse frequency is determined based on the config settings. The module sets registers according to the

config settings and sets the three drive pulse frequencies.

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 7 of 47

Jul.31.25

Drive pulse frequency is calculated in the following equation:

(fCLK frequency / CLK / STCLK) x SUMULTIn / SDPA : n = 0, 1, 2

Figure 4 shows the settings for generating a 2MHz drive pulse frequency when the fCLK frequency is 32 MHz.

SDPA can be set for each touch interface configuration.

Figure 4 Drive Pulse Frequency Settings (CTSU2L)

1.1.7 Shield Function (CTSU2L)

The CTSU2L peripheral has a built-in function that outputs a shield signal in phase with the drive pulse from

the shield pin and the non-measurement pin in order to shield against external influences while suppressing

any increase in parasitic capacitance. This function can only be used during self-capacitance measurements.

This module allows the user to set a shield for each touch interface configuration.

For example, for the electrode configuration shown in, the members of ctsu_cfg_t should be set as follows.

Other members have been omitted for the example.

.txvsel = CTSU_TXVSEL_INTERNAL_POWER,

.txvsel2 = CTSU_TXVSEL_MODE,

.md = CTSU_MODE_SELF_MULTI_SCAN,

.posel = CTSU_POSEL_SAME_PULSE,

.ctsuchac0 = 0x0F,

.ctsuchtrc0 = 0x08,

Figure 5 Example of Shield Electrode Structure

1.1.8 Measurement Error Message

When the CTSU peripheral detects an abnormal measurement, it sets the status register bit to 1.

In the measurement complete interrupt process, This module reads CTSUICOMP and CTSUSOVF for

CTSU1, ICOMP0, ICOMP1, and SENSOVF for CTSU2L, and notifies the results in the callback function.

fCLK

STCLK

SUCLK

STCLK

SUMULTIn

SDPA

Drive Freq

32MHz

0.5MHz

24MHz

2MHz

64div (/2, /4,,, /64 ,,,/128)

48mul (x32,,,x48,,,x64)

12div (/2, /4,,, /12,,,/512)

Auto-set STCLK bit so that STCLK is 0.5MHz

CTSU_CFG_SUMULTIn

Common setting for 3 frequencies
sdpa of r_element_cfg

CLK 1div (/1, /2, /4, /8)

CTSU_CFG_PCLK_DIVISION

Config Setting Register Clock

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 8 of 47

Jul.31.25

The status register is reset after the contents are read. For more details on abnormal measurements, refer to

“member event” in the ctsu_callback_args_t callback function argument.

1.1.9 Moving Average

This function calculates the moving average of the measured results. Set the number of times the moving

average should be calculated in the config settings.

1.1.10 Diagnosis Function

The CTSU peripheral has a built-in function that diagnoses its own inner circuit. This diagnosis function

provides the API for diagnosing the inner circuit.

The diagnostic requirements are different for CTSU1 and CTSU2L providing 5 types of diagnosis for CTSU1

and 9 types for CTSU2L. The diagnosis function is executed by calling the API function. This is executed

independently from the other measurements.

To enable the diagnosis function, set CTSU_CFG_DIAG_SUPPORT_ENABLE to 1.

CTSU1 and CTSU2L use ADC.

For CTSU1, 27pF condenser should be connected externally. After diagnostic function measurement, wait

about 1ms before starting touch scanning.

1.1.11 Automatic judgment measurement using SNOOZE Mode Sequencer (SMS) (RL78/G22,
RL78/G23, RL78/L23)

This function uses SMS to operate from measurement to touch judgment without CPU operation. Since the

CPU operates only in STOP mode and SNOOZE mode, it can measure with low power consumption. Only

external trigger setting and DTC setting is supported. Please use 32-bit interval timer with fsxp selected as the

operating clock for the external trigger.

For the touch interface for which you want to use this function, please call R_CTSU_SmsSet () and then start

measurement with R_CTSU_ScanStart (). It is recommended to execute after the initial offset adjustment is

completed.

Every time the CTSU peripheral measures with an external trigger and reads the result, SMS performs the

processing equivalent to R_CTSU_DataGet () and the touch judgment processing.

When touch ON is determined, an INTSMSE interrupt is occurred and the same callback function as for

normal measurement is called and cancel the SMS measurement setting. At that time the application can get

the measurement result by calling R_CTSU_DataGet () as in the normal operation.

When using this function, SMS cannot be used for other processing of the system.

Majority judgment mode is set to JMM while using SMS.

To enable this function, set the measurement setting by external trigger and

CTSU_CFG_DTC_SUPPORT_ENABLE to 1 and CTSU_CFG_SMS_SUPPORT_ENABLE to 1. Since DTC

repeat transmission is used, the lower 8 bits of the variable specified in the repeat area must be 00H.

Therefore, set the address of the RAM area and the address where the lower 8 bits are 00H in

CTSU_CFG_SMS_TRANSFER_ADDRESS and CTSU_CFG_SMS_CTSUWR_ADDRESS. Variables placed

in CTSU_CFG_SMS_TRANSFER_ADDRESS use 544 bytes. The variable placed in

CTSU_CFG_SMS_CTSUWR_ADDRESS uses (4 * number of elements * number of multi-clock). For

example, 36 bytes are used for 3 frequency measurement with 3 self-capacity buttons.

To tuning with the QE for Capacitive Touch, set CTSU_CFG_SMS_TRANSFER_ADDRESS to value other

than 0xFEF00 to 0xFC800, and CTSU_CFG_SMS_CTSUWR_ADDRESS to value other than 0xFF200 to

0xFCB00.

For RL78/G22, this feature does not perform with the self-capacitance to 9 elements or more and the mutual

capacitance to 8 elements or more.

Figure 6 shows the flow of modules used for SMS measurement with RL78/G22.

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 9 of 47

Jul.31.25

Port output using DTC from CTSU2L CTSURD interrupt. An interrupt signal is generated using the signal

output from the port. An interrupt signal triggers the ELC to start SMS processing.

Therefore, connect the port to the pin used for the external interrupt. However, it cannot be connected inside

the MCU, so connect it with an external circuit.

To perform automatic judgment measurement using SMS in the RL78/G22, set the following.

i. Setting Port

Set the port register to CTSU_CFG_SMS_EXTRIGGER_PORT, and set the bit used by the register to

CTSU_CFG_SMS_EXTRIGGER_BIT. For example, when using P140 register, set

CTSU_CFG_SMS_EXTRIGGER_PORT to P14 and CTSU_CFG_SMS_EXTRIGGER_BIT to 1. Also set

the used port to output and set to low before starting measurement.

Note: DTC transfer rewrites the port register (Pxx) in 8-bit units. Therefore, in automatic judgment

measurement processing using SMS, the port register (Pxx) that is the DTC transfer destination

cannot be used for other functions. Select the port register (Pxx) to be used to avoid conflicts in

the system.

ii. External interrupt

Set the interrupt number to CTSU_CFG_SMS_ELC_INTP. For example, when using INTP1, set

CTSU_CFG_SMS_ELC_INTP to 1. Also, set the external interrupt to be used to enable interrupt before

starting measurement.

1.1.12 Multiple Electrode Connection (MEC) Function (CTSUb, CTSU2La)

The CTSUb and CTSU2La peripheral have MEC function that connects multiple electrodes and measures

them as a single electrode. This feature is only available in self-capacitance mode.

This is an example when using three electrodes. In normal times, normal measurement is performed, and 3

channels are measured to get each measured value. In power saving, MEC measurement is performed, and

one channel is measured by combining three channels to acquire one measured value.

Figure 7 shows a compare of normal measurement time and MEC measurement. Since multi channels are

measured at the same time, the measurement time is shortened.

Figure 7 Compare of time between normal measurement and MEC measurement

Figure 6 Module flow used for SMS measurement with RL78/G22

Normal measurement

MEC measurement

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 10 of 47

Jul.31.25

To enable the code for the MEC feature, set CTSU_CFG_MULTIPLE_ELECTRODE_CONNECTION_

ENABLE to 1.

When using MEC, create a touch interface configuration different from the normal touch interface

configuration for the same TS. The following settings are required for the touch interface configuration for

MEC measurement.

To enable MEC for touch interface configurations by setting tsod in ctsu_cfg_t to 1.

Set mec_ts of ctsu_cfg_t to one of the TS numbers to be measured.

If you want to use the shield function at the same time, set the TS number of the shield pin in mec_shield_ts

of ctsu_cfg_t. In this case, only one TS can be used as a shield pin.

Set num_rx of ctsu_cfg_t to 1.

For example, in the case of the electrode configuration shown in Figure 8, set the members of ctsu_cfg_t as

shown below. Other members are omitted here.

.tsod = 1,

.mec_ts = 0,

.mec_shield_ts = 3,

.num_rx = 1,

Figure 8 Example of MEC and shield electrode configuration

1.1.13 Automatic CCO Correction (CTSU2SLa)

CTSU2SLa peripheral has an automatic correction that correct the sensor CCO by hardware. Refer to

Section 1.1.3 for more information on sensor CCO correction.

CTSU2SLa peripheral processes the correction calculation. CCO correction data can be calculated without

using the correction calculation processing of the software. The processing time of the main processor is not

consumed.

Set CTSU_CFG_AUTO_CORRECTION_ENABLE to 1 to enable this feature.

1.1.14 Automatic Frequency Correction (CTSU2SLa)

CTSU2SLa peripheral has an automatic frequency correction that correct the calculation by hardware.

CTSU2SLa peripheral processes the correction calculation. Frequency correction data can be calculated

without using the correction calculation processing of the software. The processing time of the main

processor is not consumed.

Set CTSU_CFG_AUTO_MULTI_CLOCK_CORRECTION_ENABLE to 1 to enable this feature.

1.1.15 Automatic Judgement (CTSU2SLa)

CTSU2SLa peripheral has an automatic judgement that judges the touch of a button by hardware.

CTSU2SLa peripheral processes the touch judgment of the button. The processing time of the main

processor is not consumed.

Measurements and Judgements can be initiated either by software triggers or external event trigger

(generated e.g. by the Event Link Controller). Please use the API function R_CTSU_ScanStart ().

This module processes INTCTSUWR and INTCTSURD generated during measurement. Since DTC is used

for these processes, DTC is required.

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 11 of 47

Jul.31.25

A callback function notifies the application when the processing of INTCTSUFN is completed. Get the

judgment result before the next measurement. Please use the API function R_CTSU_AutoJudgeDataGet ().

Select either JMM or VMM as the majority voting method. Below is an example of the ctsu_cfg_t member

settings for JMM. For VMM, set “jc” to 0 and “majirimd” to 1.

 .tlot = 2, // Non-touch judgment continuous count : 3 times

 .thot = 2, // Touch judgment continuous count : 3 times

 .jc = 1, // Judgement by two frequency

 .ajmmat = 2, // Moving average : 22times

 .ajbmat = 7, // Baseline average count : 27+1times

 .majirimd = 0, // JMM

 .mtucfen = 1, // Mutual-capacitance

 .ajfen = 1, // Enable automatic judgement

Set “CTSU_CFG_AUTO_JUDGE_ENABLE = 1” to enable the automatic judgement. In this case, set

“CTSU_CFG_AUTO_CORRECTION_ENABLE = 1” to enable the automatic CCO correction function as well.

For VMM, set “CTSU_CFG_AUTO_MULTI_CLOCK_CORRECTION_ENABLE = 1” to enable the automatic

frequency correction function as well.

The following (a) to (e) describe the automatic judgment and its setting. In the case of JMM, (a) ~ (e) settings

are set for each multi-clock measurement.

(a) Measurement mode

Select self-capacitance or mutual capacitance with “mtucfen” of ctsu_auto_button_cfg_t. Set the self-

capacitance to 0. Set the mutual capacitance to 1.

(b) Baseline

Set the baseline from the measurement result in the non-touch state. After completing the initial offset

adjustment with R_CTSU_OffsetTuning (), the baseline is initially set (set BLINI bit) when

R_CTSU_ScanStart () is called for the first time. After that, when R_CTSU_AutoJudgementDataGet () is

called, the baseline initialization is canceled (clear BLINI bit) and the baseline update process is started.

The baseline is updated every set number of measurements to follow changes in the surrounding

environment. If “non-touch” state continues for the set number of measurements, the baseline is updated to

the average value. When judgement result is “touch”, the number of counts is cleared.

Set the number of measurements (baseline update interval) with “ajbmat” of ctsu_cfg_t. Common to all

buttons in the touch interface configuration. Adjusts the ability to follow changes in the surrounding

environment.

(c) Touch threshold

Judgment is made using a threshold with an arbitrary offset from the baseline.

The threshold is set by adding hysteresis. Chattering is prevented by giving hysteresis to the transition from

“touch” to “non-touch”. Increasing the hysteresis value is more effective in preventing chattering, but be

aware that it will be more difficult to transition from “touch” to “non-touch”.

Set the threshold and hysteresis for each button with threshold and hysteresis of ctsu_auto_button_cfg_t.

This module calculates the upper threshold and the lower threshold from these and sets them in the

CTSUAJTHR register.

Figure 9 shows the self-capacitance judgement. Since the electrode capacitance of the self-capacitance

button increases when touched, it is judged “touch” when the upper threshold is exceeded.

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 12 of 47

Jul.31.25

Figure 9 Self-capacitance judgement

Figure 10 shows the mutual-capacitance judgement. Since the mutual capacitance button reduces the

capacitance between electrodes when touched, it is judged as "touch" when the lower threshold is exceeded.

Figure 10 Mutual-capacitance judgement

(d) The number of consecutive “non-touch” and “touch” detections

This is a filter function to judge "touch" or "non-touch" when "touch" or "non-touch" state continues for a

certain number of times.

Set the number of times with “tlot” and “thot” of ctsu_cfg_t. Common to all buttons in the touch interface

configuration. Increasing the number of consecutive times will be more effective against chattering, but be

aware that the reaction speed will decrease.

(e) Moving average

With the automatic judgment function, Set the number of moving averages with “ajmmat” of ctsu_cfg_t.

Common to all buttons in the touch interface configuration.

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 13 of 47

Jul.31.25

Figure 11 shows the button judgment operation described above.

Figure 11 Button judgement

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 14 of 47

Jul.31.25

1.2 Measurement Mode

This module supports self-capacitance and mutual capacitance offered by CTSU peripheral, and current

measurement modes which are additionally offered by CTSU2L peripheral. The temperature correction mode

is also offered by CTSU2L as a mode for updating the correction coefficient.

1.2.1 Self-capacitance Mode

The self-capacitance mode is used to measure the capacitance of each pin (TS).

The CTSU peripheral measures the pins in ascending order according to the TS numbers, then stores the

data. For example, even if you want to use TS5, TS8, TS2, TS3 and TS6 in your application in that order,

they will still be measured and stored in the order of TS2, TS3, TS5, TS6, and TS8. Therefore, you will need

to reference buffer indexes [2], [4], [0], [1], and [3].

[CTSU1]

In default settings, the measurement period for each TS is wait-time plus approximately 526us.

Figure 12 Self-capacitance Measurement Period (CTSU1)

[CTSU2L]

In default settings, the measurement period for each TS is approximately 576us.

Figure 13 Self-capacitance Measurement Period

1.2.2 Mutual Capacitance Mode

The mutual capacitance mode is used to measure the capacitance generated between the receive TS (Rx)

and transmit TS (Tx), and therefore requires at least two pins.

The CTSU peripheral measures all specified combinations of Rx and Tx. For example, when Rx is TS10 and

TS3, and Tx is TS2, TS7 and TS4, the combinations are measured in the following order and the data is

stored.

TS3-TS2, TS3-TS4, TS3-TS7, TS10-TS2, TS10-TS4, TS10-TS7

To measure the mutual capacitance generated between electrodes, the CTSU peripheral performs the

measurement process on the same electrode twice. Therefore, when the first electrode’s measurement time

is set to default, the total measurement time will be about 1152us.

The mutual capacitance is obtained by inverting the phase relationship of the pulse output and switched

capacitor in the primary and secondary measurements, and calculating the difference between the two

measurements. This module does not calculate the difference, but outputs the secondary measured result.

CTSUSST : 16

CTSUPRMODE : 2

CTSUPRRATIO : 3

68us 34us 17us 8.5us

576us approx.

Measurement Period = (1/STCLK) * 8 * (SNUM+1) * 3 = 384us
Wait time = (1/STCLK) * (SST+1) * 3 = 192us

STCLK : 0.5

SNUM : 7

SST : 31

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 15 of 47

Jul.31.25

[CTSU1]

In default settings, the measurement period for each TS is twice of wait-time plus approximately 526us.

[CTSU2L]

In default settings, the measurement period for each TS is approximately 1152us.

Figure 14 Mutual Capacitance Measurement Period

1.2.3 Current Measurement Mode (CTSU2L)

The current measurement mode is used to measure the minute current input to the TS pin.

The order of measurement and data storage is the same as that of the self-capacitance mode.

As this does not involve the switched capacitor operation, the measurement is only performed once. The

measurement period for one TS under default settings is approximately 256us. The current measurement

mode requires a longer stable wait time than the other modes, so the SST is set to 63.

Figure 15 Current Measurement Period

1.2.4 Temperature Correction Mode (CTSU2L)

The temperature correction mode offered by CTSU2L is used to periodically update the correction coefficient

using an external resistor connected to a TS pin. This involves three processes as described below. Also

refers to the timing chart in Figure 16.

A total of 13 measurements (12 correction measurements from Corr1 to Corr12 and external resistance

measurements (ex_R)) are one set of temperature compensation. In order not to interfere with normal

measurements, temperature correction is performed separately for each normal measurement.

Set the number of sets in which the sensor CCO correction factor is updated (average number of times) in

the macro definition CTSU_CFG_TEMP_CORRECTION_TIME.

At that time, the RTRIM register is also adjusted by passing an offset current through an external resistor and

measuring the voltage with the ADC.

1152us approx.

Measurement Period = (1/STCLK) * 8 * (SNUM+1) * 3 * 2 = 768us
Wait time = (1/STCLK) * (SST+1) * 3 * 2 = 384us

STCLK : 0.5

SNUM : 7

SST : 31

256us approx.

Measurement Period = (1/STCLK) * 8 * (SNUM+1) = 128us
Wait time = (1/STCLK) * (SST+1) = 128us

STCLK : 0.5

SNUM : 7

SST : 63

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 16 of 47

Jul.31.25

Figure 16 Temperature Correction Measurement Timing Chart

1.2.5 Diagnosis Mode

The diagnosis mode is a mode in which various internal measurement values are scanned by using this

diagnosis function.

The details are described in 1.1.10.

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 17 of 47

Jul.31.25

1.3 Measurement Timing

As explained in section 1.1.2, measurements are initiated by a software trigger or an external event trigger

(generated e.g. by the Event Link Controller).

The most common method is using a timer to carry out periodic measurements. Make sure to set the timer

interval to allow the measurement and internal value update processes to complete before the next

measurement period. The measurement period differs according to touch interface configuration and

measurement mode. See section 1.2 for details.

The execution timing of software triggers and external triggers differ slightly.

Since a software trigger sets the start flag after setting the touch interface configuration with

R_CTSU_ScanStart (), there is a slight delay after the timer event occurrence. However, as the delay is

much smaller than the measurement period, a software trigger is recommended for most instances as it is

easy to set.

An external trigger is recommended for applications in which this slight delay is not acceptable or that require

low-power consumption operations. When using an external trigger with multiple touch interface

configurations, use R_CTSU_ScanStart() to set another touch interface configuration after one measurement

is completed.

1.4 API Overview

This module has the following API functions.

The first argument of all API functions must be a pointer to a control structure. If you pass pointers for other

arguments, make sure that they are not NULL and that you have reserved the required size for each API.

However, R_CTSU_CallBackSet() is an exception, so please refer to the detailed description of API

functions section 3.4.

Function Description

R_CTSU_Open() Initializes the specified touch interface configuration.

R_CTSU_StartScan() Starts measurement of specified touch interface configuration.

R_CTSU_DataGet() Gets measured values of specified touch interface configuration.

R_CTSU_CallbackSet() Set callback function of specified touch interface configuration.

R_CTSU_SmsSet() Makes settings for automatic judgment measurement using SMS of

the specified touch interface configuration.

R_CTSU_Close() Closes specified touch interface configuration.

R_CTSU_Diagnosis() Executes diagnosis.

R_CTSU_StartStop() Stops measurement of the specified touch interface configuration.

R_CTSU_SpecificDataGet() Read the measurements for the specified data type for the specified

touch interface.

R_CTSU_DataInsert() Inserts the specified data in buffer of touch measurement results for

the specified touch interface configuration.

R_CTSU_OffsetTuning Adjusts the offset register (SO) for the specified touch interface

configuration.

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 18 of 47

Jul.31.25

2. API Information

Operations of this module have been confirmed under the following conditions.

2.1 Hardware Requirements

The MCU used in the development must support the following function.

⚫ CTSUb

⚫ CTSU2L

⚫ CTSU2La

⚫ CTSU2SLa

2.2 Software Requirements

This driver depends on the following module:

⚫ Board Support Package (r_bsp) v1.70 or newer.

(RL78F22: v1.80 or later, RL78/L23: v1.90 or later)

According to the configuration settings, the driver may also depend on the following modules:

⚫ Code generator DTC v1.00 or newer

This driver assumes use of the capacitive touch sensor development support tool:

⚫ QE for Capacitive Touch V4.2.0 or newer

2.3 Supported Toolchains

Module operations have been confirmed on the following toolchains.

⚫ Renesas CC-RL Toolchain v1.15.00

⚫ IAR Embedded Workbench for Renesas RL78 v5.20.1

⚫ LLVM for Renesas RL78 v17.0.1.202506

2.4 Restrictions

The module code is non-reentrant and protects simultaneous calls for multiple function.

When using the LLVM compiler in the RL78/G16 group, it is necessary to check the following CPU Options

when creating a project. After the project is created, it can be set from the project properties.

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 19 of 47

Jul.31.25

2.5 Header File

All interface definitions to be called and used in the API are defined in ”r_ctsu_api.h”.

Select “r_ctsu_config.h” as the configuration option in each build.

2.6 Integer Type

This driver uses ANSI C99. The types are defined in “stdint.h”.

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 20 of 47

Jul.31.25

2.7 Compilation Settings

The following table provides the names and setting values for the configuration option settings used the

CTSU module.

r_ctsu_config.h Configuration Options

CTSU_CFG_PARAM_CHECKING_ENABLE

*Default value:“BSP_CFG_PARAM_CHECKING_ENABLE”

Selects whether to include the parameter check

process in the code.

Selecting “0” allows the user to omit the parameter

check process from the code to shorten the code size.

“0”: Omit parameter check process from code.

“1”: Include parameter check process in code.

“BSP_CFG_PARAM_CHECKING_ENABLE”: Selection

depends on BSP setting.

CTSU_CFG_ DTC_SUPPORT_ENABLE

*Default value: “0”

Select “1” to use the DTC, rather than the main

processor, to run the CTSU2L’s CTSUWR interrupt and

CTSURD interrupt processes.

Note:

If the DTC is used elsewhere in the application, it may

compete with the use of this driver.

CTSU_CFG_DTC_USE_SC

*Default value: “0”

When using DTC, select whether to use the DTC

settings of Smart Configurator.

“0”: DTC setting inside the CTSU module is used.

“1”: DTC setting in Smart Configurator.

When using the DTC setting in the RL78/G23 group,

assign CTSUWR to No.22 and CTSURD to No.23, and

set normal mode and 16-bit transfer.

When using the DTC setting in the RL78/G22 group,

assign CTSUWR to 21 and CTSURD to 22, set normal

mode, 16-bit transfer, and DTC base address to

0xFFB00.

Note:

When the automatic judgment measurement function

using SMS is enable, please set “0”.

CTSU_CFG_SMS_SUPPORT_ENABLE

*Default value: “0”

Select whether to enable the automatic judgment

measurement function using SMS.

When this function is enabled, SMS cannot be used for

other processes in the system.

CTSU_CFG_SMS_TRANSFER_ADDRESS

*Default value: “0xFF500”

This is the address setting of the repeat area used for

DTC repeat transfer for SMS. See Section 1.1.11.

CTSU_CFG_SMS_CTSUWR_ADDRESS

*Default value: “0xFF800”

This is the address setting of the repeat area used for

DTC repeat transfer for SMS. See Section 1.1.11.

CTSU_CFG_AUTO_JUDGE_ENABLE

*Default value: “0”

Set to “1” to enable the automatic judgment code.

CTSU_CFG_INTCTSUWR_PRIORITY_LEVEL

*Default value: “2”

Sets the CTSUWR interrupt priority level (also

necessary when using the DTC). The priority level

range is from 0 (high) to 3 (low).

CTSU_CFG_INTCTSURD_PRIORITY_LEVEL

*Default value: “2”

Sets the CTSURD interrupt priority level (also

necessary when using the DTC). The priority level

range is from 0 (high) to 3 (low).

CTSU_CFG_INTCTSUFN_PRIORITY_LEVEL

*Default value: 2

Sets the CTSUFN interrupt priority level. The priority

level range is from 0 (high) to 3 (low).

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 21 of 47

Jul.31.25

CTSU_CFG_SMS_EXTRIGGER_PORT

*Default value: “P14”

Set the output port for calling SMS. The setting value is

the group number of the port. The range is P0 ~ P7,

P12 ~ P14 that can be set as an output port.

CTSU_CFG_SMS_EXTRIGGER_BIT

*Default value: “1”

Sets the output port bitmap for calling SMS.

CTSU_CFG_SMS_ELC_INTP

*Default value: “1”

Set the number of the interrupt input function (INTP) to

call SMS. The range is 0 to 7.

The following configurations depend on the touch interface configuration and cannot be set using Smart Configurator.

These configurations are set when using QE for Capacitive Touch. In this case, QE_TOUCH_CONFIGURATION is

defined in the project. Although r_ctsu_config.h becomes invalid, qe_touch_define.h is defined instead.

QE_TOUCH_VERSION QE version

CTSU_CFG_NUM_SELF_ELEMENTS Sets the total number of TS for self-capacitance,

current measurement, and temperature correction.

CTSU_CFG_NUM_MUTUAL_ELEMENTS Sets the total number of matrixes for mutual

capacitance

CTSU_CFG_NUM_AUTOJUDGE_SELF_ELEMENTS Sets the total number of TS for self-capacitance with

automatic judgement.

CTSU_CFG_NUM_AUTOJUDGE_MUTUAL_ELEMENTS Sets the total number of matrixes for mutual

capacitance with automatic judgement.

CTSU_CFG_LOW_VOLTAGE_MODE Enables/disables the low voltage mode. This value is

set in the CTSUCRAL register’s ATUNE0 bit.

Note:

This software does not support Low Voltage Mode on

CTSU1, please set 0 using CTSU1.

CTSU_CFG_PCLK_DIVISION Sets the fCLK frequency division rate. This value is set in

the CTSUCRAL register’s CLK bit.

CTSU_CFG_TSCAP_PORT Sets the TSCAP port.

For example, P30 : “0x0300”.

CTSU_CFG_VCC_MV Sets the VDD voltage.

For example, 5.00V : “5000”.

CTSU_CFG_NUM_SUMULTI Sets the number of multi-clock measurements.

CTSU_CFG_SUMULTI0 Sets the multiplication factor for the first frequency in a

multi-clock measurement.

Recommended: 0x2F (RL78/F25 and RL78/F22 : 0x3F)

CTSU_CFG_SUMULTI1 Sets the multiplication factor for the second frequency

in a multi-clock measurement.

Recommended: 0x28 (RL78/F25 and RL78/F22 : 0x36)

CTSU_CFG_SUMULTI2 Sets the multiplication factor for the third frequency in a

multi-clock measurement.

Recommended: 0x36 (RL78/F25 and RL78/F22 : 0x48)

CTSU_CFG_TEMP_CORRECTION_SUPPORT Enables/disables temperature correction.

CTSU_CFG_TEMP_CORRECTION_TS Sets the temperature correction pin number.

CTSU_CFG_TEMP_CORRECTION_TIME Sets the update interval for the correction coefficient of

the temperature correction. Assuming 13 measurements

per set in the temperature correction mode, indicate the

number of sets per update.

CTSU_CFG_CALIB_RTRIM_SUPPORT Enables/disables RTRIM correction for temperature

correction.

The ADC must be selected to operate with RTRIM

correction enabled.

CTSU_CFG_DIAG_SUPPORT_ENABLE Enables/disables diagnosis function.

CTSU_CFG_SMS_ELEMENT_NUM Set the total number of elements to be measured by

SMS.

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 22 of 47

Jul.31.25

CTSU_CFG_AUTO_CORRECTION_ENABLE Select whether to enable or disable the automatic CCO

correction process.

CTSU_CFG_AUTO_MULTI_CLOCK_CORRECTION_ENABLE Select whether to enable or disable the automatic

frequency correction process.

CTSU_CFG_MULTIPLE_ELECTRODE_CONNECTION_ENABLE Select to enable or disable the MEC feature.

CTSU_CFG_MAJORITY_MODE Bitmap of majority judgement mode processing. The

first bit is VMM, and the second bit is JMM. Set

according to the touch interface configuration.

“1” : VMM

“2” : JMM

“3” : VMM and JMM

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 23 of 47

Jul.31.25

2.8 Code Size

ROM (code and constants) and RAM (global data) size are determined according to the configuration options

as described in “section 2.7 Compilation Setting” during a build. The values shown are reference values

when the compile option is the default for the CC-RL C compiler listed in “section 2.3 Supported Toolchains”.

The code size varies according to the C compile version and compile options.

Depending on the application and the number of elements, your program may exceed the RAM size. Please

note that the RL78/G16 group has 2KB of RAM.

Using Renesas CC-RL Toolchain v1.15.00, the following is the size at compilation settings.

Only settings related to size are shown.

⚫ CTSU_CFG_PARAM_CHECKING_ENABLE 0

⚫ CTSU_CFG_DTC_SUPPORT_ENABLE 0

⚫ CTSU_CFG_LOW_VOLTAGE_MODE 0

⚫ CTSU_CFG_TEMP_CORRECTION_SUPPORT 0

⚫ CTSU_CFG_CALIB_RTRIM_SUPPORT 0

⚫ CTSU_CFG_MULTIPLE_ELECTRODE_CONNECTION_ENABLE 0

The size of the self-capacitance and the mutual capacitance are shown in one element, and the size is

increased by adding one element. It also includes qe_touch_config.c output by QE.

[CTSU1]

⚫ CTSU_CFG_NUM_SUMULTI 1

Mode and

element num

Self-capacitance 1

element

+ 1 element Mutual capacitance

1 element

+1 element

ROM 3942 bytes +34 bytes 4220 bytes +34 bytes

RAM 156 bytes +22 bytes 174 bytes +34 bytes

[CTSU2L] VMM

⚫ CTSU_CFG_NUM_SUMULTI 3

⚫ CTSU_CFG_MAJORITY_MODE 1

Mode and

element num

Self-capacitance 1

element

+ 1 element Mutual capacitance

1 element

+1 element

ROM 6735 bytes +30 bytes 7245 bytes +27 bytes

RAM 376 bytes +40 bytes 410 bytes +62 bytes

[CTSU2L] JMM

⚫ CTSU_CFG_NUM_SUMULTI 3

⚫ CTSU_CFG_MAJORITY_MODE 2

Mode and

element num

Self-capacitance 1

element

+ 1 element Mutual capacitance

1 element

+1 element

ROM 6966bytes +30 bytes 7452 bytes +27 bytes

RAM 384 bytes +48 bytes 426 bytes +78 bytes

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 24 of 47

Jul.31.25

2.9 Arguments

The following are the structures and enums used as arguments of the API functions. Many of the parameters

used in the API functions are defined by the enums, which provides a way to check types and reduce errors.

These structures and enums are defined in r_ctsu_api.h along with the prototype declaration.

Table 1 shows ctsu_ctrl_t structure (control structure) for the touch interface configuration. Please refer to

r_ctsu_qe.h to see more about the data type used in this structure. This structure manages measurement

settings and results of each touch interface configuration. Using QE for Capacitive Touch allows the variables

corresponding to the touch interface configuration to be output by qe_touch_config.c. Make sure to set

qe_touch_config.c in the module’s first API argument.

Table 1 ctsu_ctrl_t Structure

Data Type Member Description

uint32_t open Open flag

volatile ctsu_state_t state Measurement state

ctsu_cap_t cap Measurement trigger

ctsu_md_t md Measurement mode

ctsu_tuning_t tuning Initial offset tuning flag

uint16_t num_elements Number of elements

uint16_t wr_index Index of the CTSUWR interrupt

uint16_t rd_index Index of the CTSURD interrupt

uint8_t * p_element_complete_flag
Pointer to the flag indicating the completion of offset

tuning for the element

int32_t * p_tuning_diff Pointer to the difference from the target value

uint16_t average Number of moving average operations

uint16_t num_moving_average
Number of samples used for moving average

operation

uint8_t ctsucr1 CTSUCR1 setting

ctsu_ctsuwr_t * p_ctsuwr CTSUWR setting

ctsu_self_buf_t * p_self_raw Pointer to the self-capacitance raw value buffer

uint16_t * p_self_corr Pointer to the self-capacitance corrected value buffer

uint16_t * p_self_mfc
Pointer to the self-capacitance multi-clock corrected

value buffer

ctsu_data_t * p_self_data
Pointer to the self-capacitance measurement value

buffer

ctsu_mutual_buf_t * p_mutual_raw Pointer to the mutual-capacitance raw value buffer

uint16_t * p_mutual_pri_corr
Pointer to the mutual-capacitance primary corrected

value buffer

uint16_t * p_mutual_snd_corr
Pointer to the mutual-capacitance secondary

corrected value buffer

uint16_t * p_mutual_pri_mfc
Pointer to the mutual-capacitance primary multi-clock

corrected value buffer

uint16_t * p_mutual_snd_mfc
Pointer to the mutual-capacitance secondary multi-

clock corrected value buffer

ctsu_data_t * p_mutual_pri_data
Pointer to the mutual-capacitance primary

measurement value buffer

ctsu_data_t * p_mutual_snd_data
Pointer to the mutual-capacitance secondary

measurement value buffer

ctsu_correction_info_t * p_correction_info Pointer to the correction information

ctsu_txvsel_t txvsel TXVSEL setting

ctsu_txvsel2_t txvsel2 TXVSEL2 setting

uint8_t ctsuchac0 CHAC0 setting

uint8_t ctsuchac1 CHAC1 setting

uint8_t ctsuchac2 CHAC2 setting

uint8_t ctsuchac3 CHAC3 setting

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 25 of 47

Jul.31.25

Data Type Member Description

uint8_t ctsuchac4 CHAC4 setting

uint8_t ctsuchtrc0 CHTRC0 setting

uint8_t ctsuchtrc1 CHTRC1 setting

uint8_t ctsuchtrc2 CHTRC2 setting

uint8_t ctsuchtrc3 CHTRC3 setting

uint8_t ctsuchtrc4 CHTRC4 setting

uint16_t self_elem_index Index of the self-capacitance element

uint16_t mutual_elem_index Index of the mutual-capacitance element

uint16_t ctsu_elem_index Element index

ctsu_cfg_t const * p_ctsu_cfg Pointer to the configuration structure

void
(* p_callback)

(ctsu_callback_args_t *)
Pointer to the callback function

uint8_t interrupt_reverse_flag Flag for indicating reversal of the order of interrupts

ctsu_event_t error_status Error state

ctsu_callback_args_t * p_callback_memory Callback function stored (for TrustZone)

void const * p_context Context pointer

bool serial_tuning_enable Flag for enabling serial tuning

uint16_t serial_tuning_mutual_cnt Serial tuning

uint16_t tuning_self_target_value Target value for self-capacitance offset tuning

uint16_t tuning_mutual_target_value Target value for mutual-capacitance offset tuning

uint8_t tsod TSOD setting

uint8_t mec_ts TS pin number to be used for MEC

uint8_t mec_shield_ts TS pin number to be used for MEC shield

CTSU_CFG_DIAG_SUPPORT_ENABLE == 1

ctsu_diag_info_t * p_diag_info Pointer to the diagnostic information

BSP_FEATURE_CTSU_VERSION == 2

uint8_t * p_frequency_complete_flag
Pointer to the flag for indicating the completion of

offset tuning for a multi-clock scan

uint8_t * p_selected_freq_self
Pointer to the selected frequency number (self-

capacitance)

uint8_t * p_selected_freq_mutual
Pointer to the selected frequency number (mutual-

capacitance)

ctsu_range_t range Current range

uint8_t ctsucr2 CTSUCR2 setting

(BSP_FEATURE_CTSU_VERSION == 2 && CTSU_CFG_AUTO_JUDGE_ENABLE == 1)

ctsu_auto_judge_t * p_auto_judge Pointer to the auto judgement information

uint32_t adress_auto_judge Address of p_auto_judge

uint32_t adress_ctsuwr Address of p_ctsuwr

uint32_t adress_self_raw Address of p_self_raw

uint32_t adress_mutual_raw Address of p_mutual_raw

uint32_t count_auto_judge Number of DTC transfers in auto judgement

uint32_t count_ctsuwr_self_mutual Number of CTSUWR interrupts in auto judgement

uint8_t blini_flag BLINI setting flag

uint8_t ajmmat AJMMAT setting

uint8_t ajbmat AJBMAT setting

(BSP_FEATURE_CTSU_VERSION == 2 && CTSU_CFG_AUTO_MULTI_CLOCK_CORRECTION_EN

ABLE == 1)

uint32_t p_mcact1 Pointer to MCACT1 settings

uint32_t p_mcact2 Pointer to MCACT2 settings

uint8_t mcact_flag Automatic Frequency Correction Setting Flag

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 26 of 47

Jul.31.25

Table 2 shows the ctsu_cfg_t structure (configuration setting structure).

Using QE for Capacitive Touch allows the variables and initialization values corresponding to the touch

interface configuration to be output by qe_touch_config.c. Make sure to set qe_touch_config.c in the second

argument of R_CTSU_Open(). The configuration value is assumed to be set by "Smart Configurator" or "QE

for Capacitive Touch", and this software does not check for errors to improve processing efficiency. Be careful

if you want to modify the configs manually.

Table 2 ctsu_cfg_t Structure

Data Type Member Name Description Range of the Value

ctsu_cap_t cap Selects the CTSU scan start

trigger.

CTSU_CAP_SOFTWARE: software trigger.

CTSU_CAP_EXTERNAL: external trigger.

ctsu_txvsel_t txvsel Selects the transmission

power.

CTSU_TXVSEL_VCC: VCC is selected.

CTSU_TXVSEL_INTERNAL_POWER: VDD is selected.

ctsu_txvsel2_t txvsel2 Selects the transmission

power 2. (only for CTSU2)

CTSU_TXVSEL_MODE: Power is selected by the TXVSEL setting.

CTSU_TXVSEL_VCC_PRIVATE: Dedicated VCC is selected.

ctsu_atune1_t atune1 Adjusts the power capability.

(only for CTSU)

CTSU_ATUNE1_NORMAL: Normal output

CTSU_ATUNE1_HIGH: Large-current output

ctsu_atune12

_t

atune12 Adjusts the power capability.

(only for CTSU2)

CTSU_ATUNE12_80UA：80uA mode

CTSU_ATUNE12_40UA：40uA mode

CTSU_ATUNE12_20UA：20uA mode

CTSU_ATUNE12_160UA：160uA mode

ctsu_md_t md Selects the CTSU

measurement mode.

CTSU_MODE_SELF_MULTI_SCAN: Self multi-scan mode

CTSU_MODE_MUTUAL_FULL_SCAN: Mutual full-scan mode

CTSU_MODE_MUTUAL_CFC_SCAN: Mutual simultaneous scan

mode (only for CTSU2)

CTSU_MODE_CURRENT_SCAN: Current-scan mode (only for

CTSU2)

CTSU_MODE_CORRECTION_SCAN: Correction scan mode (only

for CTSU2)

CTSU_MODE_DIAGNOSIS_SCAN: Diagnosis scan mode

ctsu_posel_t posel Selects the output from non-

measurement pins.

CTSU_POSEL_LOW_GPIO: Low level is output (GPIO).

CTSU_POSEL_HI_Z: Hi-Z state

CTSU_POSEL_LOW: Low level is output (TXVSEL or TXVSEL2

setting)

CTSU_POSEL_SAME_PULSE: In-phase (transmission) pulses are

output (TXVSEL or TXVSEL2 setting)

uint8_t tsod Selects measurement or

fixed output from the TS

pins.

0: Electrostatic capacitance measurement mode

1: A fixed level (high or low) is output from the TS pins.

uint8_t mec_ts TS pin number to be used

for the MEC function

0 to 35

uint8_t mec_shield_ts TS pin number of the active

shield to be used for the

MEC function

0 to 35

uint8_t tlot Number of consecutive

judgements of a value

exceeding the low threshold

in auto judgement

0 to 255

uint8_t thot Number of consecutive

judgements of a value

exceeding the high threshold

in auto judgement

0 to 255

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 27 of 47

Jul.31.25

Data Type Member Name Description Range of the Value

uint8_t jc Criteria for auto judgement 0: Touch-ON is detected when the result of judgement is that the

high threshold has been exceeded once.

1: Touch-ON is detected when the result of judgement is that the

high threshold has been exceeded twice.

2: Touch-ON is detected when the result of judgement is that the

high threshold has been exceeded three times.

3: Touch-ON is detected when the result of judgement is that the

high threshold has been exceeded four times.

uint8_t ajmmat Number of moving average

operations for the

measurement values in auto

judgement

0 to 11 (2^ set value)

uint8_t ajbmat Number of average

calculations for the baseline

values in auto judgement

0 to 15

(2^ (set value + 1). 0 indicates that updating of the baseline value is

stopped.)

uint8_t mtucfen Calculation of mutual

capacitance in auto

judgement

0: No subtraction

1: The first measurement value is subtracted from the second

measurement value.

uint8_t ajfen Enables or disables auto

judgement.

0: Auto judgement is disabled.

1: Auto judgement is enabled.

uint8_t autojudge_moni

tor_num

QE monitoring configuration

number for auto judgement

0 to 7

uint8_t ctsuchac0 Mask for enabling TS00 to

TS07

0x00 to 0xFF

uint8_t ctsuchac1 Mask for enabling TS08 to

TS15

0x00 to 0xFF

uint8_t ctsuchac2 Mask for enabling TS16 to

TS23

0x00 to 0xFF

uint8_t ctsuchac3 Mask for enabling TS24 to

TS31

0x00 to 0xFF

uint8_t ctsuchac4 Mask for enabling TS32 to

TS35

0x00 to 0xFF

uint8_t ctsuchtrc0 Mask for mutual-capacitance

transmission TS00 to TS07

0x00 to 0xFF

uint8_t ctsuchtrc1 Mask for mutual-capacitance

transmission TS08 to TS15

0x00 to 0xFF

uint8_t ctsuchtrc2 Mask for mutual-capacitance

transmission TS16 to TS23

0x00 to 0xFF

uint8_t ctsuchtrc3 Mask for mutual-capacitance

transmission TS24 to TS31

0x00 to 0xFF

uint8_t ctsuchtrc4 Mask for mutual-capacitance

transmission TS32 to TS35

0x00 to 0xFF

ctsu_element

_cfg_t *

p_elements Element configuration

pointer

⎯

uint8_t num_rx Number of receiving pins 0 to 36

uint8_t num_tx Number of transmitting pins 0 to 36

uint16_t num_moving_a

verage

Number of moving average

operations for measured

data

0 to 65535

bool tunning_enable Initial offset tuning flag true: Enable

false: Disable

void * p_callback CTSUFN interrupt callback ⎯

void * p_context Context pointer ⎯

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 28 of 47

Jul.31.25

Data Type Member Name Description Range of the Value

void * p_extend Extended configuration

pointer

⎯

uint16_t tuning_self_targ

et_value

Target value of self-

capacitance initial offset

0 to 65535

uint16_t tuning_mutual_t

arget_value

Target value of mutual-

capacitance initial offset

0 to 65535

ctsu_auto_but

ton_cfg_t *

p_ctsu_auto_bu

ttons

Pointer to the array of button

settings for use in auto

judgement

⎯

The following are the enums used for the above listed structures.

/** CTSU Events for callback function */

typedef enum e_ctsu_event

{

 CTSU_EVENT_SCAN_COMPLETE = 0x00, ///< Normal end

 CTSU_EVENT_OVERFLOW = 0x01, ///< Sensor counter overflow (CTSUST.CTSUSOVF set)

 CTSU_EVENT_ICOMP = 0x02, ///< Abnormal TSCAP voltage (CTSUERRS.CTSUICOMP set)

 CTSU_EVENT_ICOMP1 = 0x04 ///< Abnormal sensor current (CTSUSR.ICOMP1 set)

} ctsu_event_t;

/** CTSU Scan Start Trigger Select */

typedef enum e_ctsu_cap

{

 CTSU_CAP_SOFTWARE, ///< Scan start by software trigger

 CTSU_CAP_EXTERNAL ///< Scan start by external trigger

} ctsu_cap_t;

/** CTSU Transmission Power Supply Select */

typedef enum e_ctsu_txvsel

{

 CTSU_TXVSEL_VCC, ///< VCC selected

 CTSU_TXVSEL_INTERNAL_POWER ///< Internal logic power supply selected

} ctsu_txvsel_t;

/** CTSU Transmission Power Supply Select 2 (CTSU2 Only) */

typedef enum e_ctsu_txvsel2

{

 CTSU_TXVSEL_MODE, ///< Follow TXVSEL setting

 CTSU_TXVSEL_VCC_PRIVATE, ///< VCC private selected

} ctsu_txvsel2_t;

/** CTSU Power Supply Capacity Adjustment (CTSU Only) */

typedef enum e_ctsu_atune1

{

 CTSU_ATUNE1_NORMAL, ///< Normal output (40uA)

 CTSU_ATUNE1_HIGH ///< High-current output (80uA)

} ctsu_atune1_t;

/** CTSU Power Supply Capacity Adjustment (CTSU2 Only) */

typedef enum e_ctsu_atune12

{

 CTSU_ATUNE12_80UA, ///< High-current output(80uA)

 CTSU_ATUNE12_40UA, ///< Normal output(40uA)

 CTSU_ATUNE12_20UA, ///< Low-current output(20uA)

 CTSU_ATUNE12_160UA ///< Very high-current output(160uA)

} ctsu_atune12_t;

/** CTSU Measurement Mode Select */

typedef enum e_ctsu_mode

{

 CTSU_MODE_SELF_MULTI_SCAN = 1, ///< Self-capacitance multi scan mode

 CTSU_MODE_MUTUAL_FULL_SCAN = 3, ///< Mutual capacitance full scan mode

 CTSU_MODE_MUTUAL_CFC_SCAN = 7, ///< Mutual capacitance cfc scan mode (CTSU2 Only)

 CTSU_MODE_CURRENT_SCAN = 9, ///< Current scan mode (CTSU2 Only)

 CTSU_MODE_CORRECTION_SCAN = 17, ///< Correction scan mode (CTSU2 Only)

 CTSU_MODE_DIAGNOSIS_SCAN = 33 ///< Diagnosis scan mode

} ctsu_md_t;

/** CTSU Non-Measured Channel Output Select (CTSU2 Only) */

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 29 of 47

Jul.31.25

typedef enum e_ctsu_posel

{

 CTSU_POSEL_LOW_GPIO, ///< Output low through GPIO

 CTSU_POSEL_HI_Z, ///< Hi-Z

 CTSU_POSEL_LOW, ///< Output low through the power setting by the TXVSEL[1:0] bits

 CTSU_POSEL_SAME_PULSE ///< Same phase pulse output as transmission channel through the

power setting by the TXVSEL[1:0] bits

} ctsu_posel_t;

/** CTSU Spectrum Diffusion Frequency Division Setting (CTSU Only) */

typedef enum e_ctsu_ssdiv

{

 CTSU_SSDIV_4000, ///< 4.00 <= Base clock frequency (MHz)

 CTSU_SSDIV_2000, ///< 2.00 <= Base clock frequency (MHz) < 4.00

 CTSU_SSDIV_1330, ///< 1.33 <= Base clock frequency (MHz) < 2.00

 CTSU_SSDIV_1000, ///< 1.00 <= Base clock frequency (MHz) < 1.33

 CTSU_SSDIV_0800, ///< 0.80 <= Base clock frequency (MHz) < 1.00

 CTSU_SSDIV_0670, ///< 0.67 <= Base clock frequency (MHz) < 0.80

 CTSU_SSDIV_0570, ///< 0.57 <= Base clock frequency (MHz) < 0.67

 CTSU_SSDIV_0500, ///< 0.50 <= Base clock frequency (MHz) < 0.57

 CTSU_SSDIV_0440, ///< 0.44 <= Base clock frequency (MHz) < 0.50

 CTSU_SSDIV_0400, ///< 0.40 <= Base clock frequency (MHz) < 0.44

 CTSU_SSDIV_0360, ///< 0.36 <= Base clock frequency (MHz) < 0.40

 CTSU_SSDIV_0330, ///< 0.33 <= Base clock frequency (MHz) < 0.36

 CTSU_SSDIV_0310, ///< 0.31 <= Base clock frequency (MHz) < 0.33

 CTSU_SSDIV_0290, ///< 0.29 <= Base clock frequency (MHz) < 0.31

 CTSU_SSDIV_0270, ///< 0.27 <= Base clock frequency (MHz) < 0.29

 CTSU_SSDIV_0000 ///< 0.00 <= Base clock frequency (MHz) < 0.27

} ctsu_ssdiv_t;

/** Callback function parameter data */

typedef struct st_ctsu_callback_args

{

 ctsu_event_t event; ///< The event can be used to identify what caused the callback.

 void const * p_context; ///< Placeholder for user data. Set in CTSU_api_t::open function

in ::ctsu_cfg_t.

} ctsu_callback_args_t;

/** Element Configuration */

typedef struct st_ctsu_element

{

 ctsu_ssdiv_t ssdiv; ///< CTSU Spectrum Diffusion Frequency Division Setting

(CTSU Only)

 uint16_t so; ///< CTSU Sensor Offset Adjustment

 uint8_t snum; ///< CTSU Measurement Count Setting

 uint8_t sdpa; ///< CTSU Base Clock Setting

} ctsu_element_cfg_t;

/** Configration of each automatic judgement button */

typedef struct st_ctsu_auto_button_cfg

{

 uint8_t elem_index; ///< Element number used by this button fo automatic judgement.

 uint16_t threshold; ///< Touch/non-touch judgement threshold for automatic judgement.

 uint16_t hysteresis; ///< Threshold hysteresis for chattering prevention for

automatic judgement.

} ctsu_auto_button_cfg_t;

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 30 of 47

Jul.31.25

2.10 Return Values

The following provides return values for the API functions. The enum is defined in fsp_common_api.h, along

with the API function prototype declaration.

/** Common error codes */

typedef enum e_fsp_err

{

 FSP_SUCCESS = 0,

 FSP_ERR_ASSERTION = 1, ///< A critical assertion has failed

 FSP_ERR_INVALID_POINTER = 2, ///< Pointer points to invalid memory location

 FSP_ERR_INVALID_ARGUMENT = 3, ///< Invalid input parameter

 FSP_ERR_INVALID_CHANNEL = 4, ///< Selected channel does not exist

 FSP_ERR_INVALID_MODE = 5, ///< Unsupported or incorrect mode

 FSP_ERR_UNSUPPORTED = 6, ///< Selected mode not supported by this API

 FSP_ERR_NOT_OPEN = 7, ///< Requested channel is not configured or API

not open

 FSP_ERR_ABORTED = 18, ///< An operation was aborted

 /* Start of CTSU Driver specific */

 FSP_ERR_CTSU_SCANNING = 6000, ///< Scanning.

 FSP_ERR_CTSU_NOT_GET_DATA = 6001, ///< Not processed previous scan data.

 FSP_ERR_CTSU_INCOMPLETE_TUNING = 6002, ///< Incomplete initial offset tuning.

 FSP_ERR_CTSU_DIAG_NOT_YET = 6003, ///< Diagnosis of data collected no yet.

 FSP_ERR_CTSU_DIAG_LDO_OVER_VOLTAGE = 6004, ///< Diagnosis of LDO over voltage failed.

 FSP_ERR_CTSU_DIAG_CCO_HIGH = 6005, ///< Diagnosis of CCO into 19.2uA failed.

 FSP_ERR_CTSU_DIAG_CCO_LOW = 6006, ///< Diagnosis of CCO into 2.4uA failed.

 FSP_ERR_CTSU_DIAG_SSCG = 6007, ///< Diagnosis of SSCG frequency failed.

 FSP_ERR_CTSU_DIAG_DAC = 6008, ///< Diagnosis of non-touch count value failed.

 FSP_ERR_CTSU_DIAG_OUTPUT_VOLTAGE = 6009, ///< Diagnosis of LDO output voltage failed.

 FSP_ERR_CTSU_DIAG_OVER_VOLTAGE = 6010, ///< Diagnosis of over voltage detection

circuit failed.

 FSP_ERR_CTSU_DIAG_OVER_CURRENT = 6011, ///< Diagnosis of over current detection

circuit failed.

 FSP_ERR_CTSU_DIAG_LOAD_RESISTANCE = 6012, ///< Diagnosis of LDO internal resistance value

failed.

 FSP_ERR_CTSU_DIAG_CURRENT_SOURCE = 6013, ///< Diagnosis of Current source value failed.

 FSP_ERR_CTSU_DIAG_SENSCLK_GAIN = 6014, ///< Diagnosis of SENSCLK frequency gain

failed.

 FSP_ERR_CTSU_DIAG_SUCLK_GAIN = 6015, ///< Diagnosis of SUCLK frequency gain failed.

 FSP_ERR_CTSU_DIAG_CLOCK_RECOVERY = 6016, ///< Diagnosis of SUCLK clock recovery function

failed.

 FSP_ERR_CTSU_DIAG_CFC_GAIN = 6017, ///< Diagnosis of CFC oscillator gain failed.

} fsp_err_t;

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 31 of 47

Jul.31.25

2.11 Callback function

This FIT module calls the registered callback function when the processing of the measurement completion

interrupt is completed. Set it to the member p_callback of the config structure. It has already been set in the

output code of QE. It can also be set with R_CTSU_CallbackSet (). Please refer to 3.4.

The callback function should be provided by the application. When the tuning result is output using QE, the

sample code of the callback function below is also output. The output function changes depending on the

software judgment and the automatic judgment. If both configurations are present, both are output.

Software Judgement

void qe_touch_callback(touch_callback_args_t * p_args)

{

 g_qe_touch_flag = 1;

 g_qe_ctsu_event = p_args -> event;

}

Automatic Judgement

void qe_ctsu_auto_callback(ctsu_callback_args_t * p_args)

{

 g_qe_touch_flag = 1;

 g_qe_ctsu_event = p_args -> event;

}

As shown below, it is assumed that g_qe_touch_flag is polled between R_CTSU_ScanStart() and

R_CTSU_DataGet().

R_CTSU_ScanStart(g_qe_ctsu_instance.p_ctrl);

while (0 == g_qe_touch_flag) {}

g_qe_touch_flag = 0;

R_CTSU_DataGet(g_qe_ctsu_instance.p_ctrl, &data);

For information about the arguments of the callback function, see the ctsu_callback_arg_t in Chapter2.9.
touch_call_back_arg_t is a typedef of ctsu_callback_arg_t in the Touch module. As explained in Chapter
1.1.8, you can check whether there is an error in the measurement by using the structure member event.

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 32 of 47

Jul.31.25

3. API Functions

3.1 R_CTSU_Open

This function initializes the module and must be executed before using any of the other API functions. Please

execute this function for each touch interface configuration.

Format

fsp_err_t R_CTSU_Open (ctsu_ctrl_t * const p_ctrl,

ctsu_cfg_t const * const p_cfg)

Parameters

p_ctrl [in] Pointer to the control structure

p_cfg [in] Pointer to the config structure

Return Values

FSP_SUCCESS /* Successfully completed */

FSP_ERR_ASSERTION /* Argument pointer not specified */

FSP_ERR_ALREADY_OPEN /* Open() is called without calling Close() */

FSP_ERR_INVALID_ARGUMENT /* Configuration parameters are invalid */

Properties

Prototype is declared in r_ctsu_api.h

Description
This function enables control structure initialization, register initialization, and interrupt setting according to

the argument p_cfg.

Also, the correction coefficient generation process is executed while processing the first touch interface

structure. The process takes approximately 120ms.

The DTC is initialized if CTSU_CFG_USE_DTC is enabled when the first touch interface configuration is

processed.

Example
fsp_err_t err;

/* Initialize pins (function created by Smart Configurator) */

R_CTSU_PinSetInit();

/* Initialize the API. */

err = R_CTSU_Open(&g_ctsu_ctrl, &g_ctsu_cfg);

/* Check for errors. */

if (err != FSP_SUCCESS)

{

 . . .

}

Special Notes:
The port must be initialized before calling this function. We recommend using the R_CTSU_PinSetInit()

function generated by SmartConfigurator as the port initialization function. When the touch interface

configuration is in diagnosis mode, execute the R_CTSU_Open () of the other touch interface configuration

first.

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 33 of 47

Jul.31.25

3.2 R_CTSU_ScanStart

This function starts measurement of the specified touch interface configuration.

Format
fsp_err_t R_CTSU_ScanStart (ctsu_ctrl_t * const p_ctrl)

Parameters

p_ctrl [in] Pointer to the control structure

Return Values

FSP_SUCCESS /* Successfully completed */

FSP_ERR_ASSERTION /* Argument pointer not specified */

FSP_ERR_NOT_OPEN /* Called without calling Open() */

FSP_ERR_CTSU_SCANNING /* Now scanning */

FSP_ERR_CTSU_NOT_GET_DATA /* Did not obtain previous results */

Properties

Prototype is declared in r_ctsu_api.h.

Description

When a software trigger occurs, this function sets and starts the measurement based on the touch interface

configuration. With an external trigger, the function sets the measurement and goes to the trigger wait state.

If CTSU_CFG_USE_DTC is enabled, the function also sets the DTC.

The resulting value is notified in the callback generated from the INTCTSUFN interrupt handler.

Example
fsp_err_t err;

/* Initiate a sensor scan by software trigger */

err = R_CTSU_ScanStart(&g_ctsu_ctrl);

/* Check for errors. */

if (err != FSP_SUCCESS)

{

 . . .

}

Special Notes:

None

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 34 of 47

Jul.31.25

3.3 R_CTSU_DataGet

This function reads all the values previously measured in the specified touch interface configuration.

Format
fsp_err_t R_CTSU_DataGet (ctsu_ctrl_t * const p_ctrl, uint16_t * p_data)

Parameters

p_ctrl [in] Pointer to the control structure

p_data [out] Pointer to the buffer that stores the measured value.

Return Values

FSP_SUCCESS /* CTSU initialization successfully completed */

FSP_ERR_ASSERTION /* Argument pointer not specified */

FSP_ERR_NOT_OPEN /* Called without calling Open() */

FSP_ERR_CTSU_SCANNING /* scanning */

FSP_ERR_CTSU_INCOMPLETE_TUNING /* Tuning initial offset */

Properties

Prototype is declared in r_ctsu_api.h.

Description

This function reads all previously measured values into the specified buffer by p_data.

CTSU1: The value passed through sensor CCO correction and moving average.

CTSU2L JMM: The value passed through sensor CCO correction and moving average.

CTSU2L VMM: Sensor passed through sensor CCO correction, frequency correction and moving average.

The required buffer size varies depending on the measurement mode. Prepare twice the number of TS for

the self-capacitance and current measurement modes, and twice the number of matrixes for the mutual-

capacitance mode. In the case of CTSU2L JMM, data of 3 frequencies is stored, so prepare 3 times more.

The value measured in the temperature correction mode is not stored. When RTRIM adjustment is

performed, the RTRIM value is stored. At this time, the ADC settings have been changed in this function, so

perform the process to return to the ADC settings you are using. Otherwise, store 0xFFFF.

When initial offset adjustment is on, FSP_ERR_INCOMPLETE_TUNING is returned several times until the

adjustment is complete. Measured values are not stored in the buffer at this time. For more details on initial

offset adjustment, refer to section 1.1.6.

Example:
fsp_err_t err;

uint16_t buf[CTSU_CFG_NUM_SELF_ELEMENTS];

/* Get all sensor values */

err = R_CTSU_DataGet(&g_ctsu_ctrl, buf);

Special Notes:

None

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 35 of 47

Jul.31.25

3.4 R_CTSU_CallbackSet

This function sets the function specified for the measurement completion callback function.

Format
fsp_err_t R_CTSU_CallbackSet (ctsu_ctrl_t * const p_api_ctrl,

 void (* p_callback)(ctsu_callback_args_t *),

 void const * const p_context,

 ctsu_callback_args_t * const p_callback_memory)

Parameters

p_api_ctrl [in] Pointer to the control structure

p_callback [in] Pointer to callback function

p_context [in] Pointer to send to callback function

p_callback_memory [in] Set to NULL

Return Values

FSP_SUCCESS /* Successfully completed */

FSP_ERR_ASSERTION /* Argument pointer not specified */

FSP_ERR_NOT_OPEN /* Called without calling Open() */

Properties

Prototype is declared in r_ctsu_api.h.

Description

This function sets the function specified for the measurement completion callback function. By default, the

callback function is set to the function of member p_callback of ctsu_cfg_t, so use it when you want to

change to another function during operation.

You can also set the context pointer. If not used, set p_context to NULL. Set p_callback_memory to NULL.

Example:
fsp_err_t err;

/* Set callback function */

err = R_CTSU_CallbackSet(&g_ctsu_ctrl, ctsu_callback, NULL, NULL);

Special Notes:

None

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 36 of 47

Jul.31.25

3.5 R_CTSU_SmsSet

This function makes settings for automatic judgment measurement using SMS of the specified touch

interface configuration.

Format
fsp_err_t R_CTSU_SmsSet (ctsu_ctrl_t * const p_ctrl,

 uint16_t * p_threshold,

 uint16_t * p_hysteresis,

 uint16_t count_filter)

Parameters

p_ctrl [in] Pointer to the control structure

p_threshold [in] Pointer to the touch judgment threshold

p_hysteresis [in] Pointer to the touch judgment hysteresis

count_filter [in] Touch count match filter value (upper 8 bits are for OFF, lower 8 bits are for ON)

Return Values

FSP_SUCCESS /* Successfully completed */

FSP_ERR_ASSERTION /* Argument pointer not specified */

FSP_ERR_NOT_OPEN /* Called without calling Open() */

Properties

Prototype is declared in r_ctsu_api.h.

Description

This function sets the following: Use the argument setting for touch judgment processing.

- Disable CTSUFN interrupts

- Enable SMS module

- SMS settings

- ELCL setting (when using RL78/G23 group and RL78/L23 group)

- ELC settings (when using the RL78/G22 group)

- Start SMS

To start automatic judgment measurement, call R_CTSU_ScanStart () for the same touch interface after

calling this function. When touch ON is determined, INTSMSE occurs, and the following settings are made in

the interrupt handler of the CTSU module.

- Set the measurement status as an argument of the callback function

- Set the measured value as a variable

- Callback function call

- Allow CTSUFN interrupts

- Disable SMS module

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 37 of 47

Jul.31.25

Example:
fsp_err_t err;

uint16_t threshold[3] = {1000, 1500, 2000};

uint16_t hysteresis[3] = {50, 75, 100};

uint16_t buf[3];

 /* Start SMS measurement */

 err = R_CTSU_SmsSet(&g_ctsu_ctrl, threshold, hysteresis[3], 0x0303);

err = R_CTSU_ScanStart(&g_ctsu_ctrl);

 __stop();

err = R_CTSU_DataGet(&g_ctsu_ctrl, buf);

Special Notes:

Please call this function after confirming touch OFF. If this function is called with touch ON, the baseline will

be set with touch ON, and touch detection will not be possible until it is updated with the baseline drift

function.

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 38 of 47

Jul.31.25

3.6 R_CTSU_Close

This function closes the specified touch interface configuration.

Format
fsp_err_t R_CTSU_Close (ctsu_ctrl_t * const p_ctrl)

Parameters

p_ctrl [in] Pointer to the control structure

Return Values

FSP_SUCCESS /* Successfully completed */

FSP_ERR_ASSERTION /* Argument pointer not specified */

FSP_ERR_NOT_OPEN /* Called without calling Open() */

Properties

Prototype is declared in r_ctsu_api.h.

Description

This function closes the specified touch interface configuration.

Example:
fsp_err_t err;

/* Shut down peripheral and close driver */

err = R_CTSU_Close(&g_ctsu_ctrl);

Special Notes:

None

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 39 of 47

Jul.31.25

3.7 R_CTSU_Diagnosis

This is the API function providing the function for diagnosis of the CTSU inner circuit.

Format
fsp_err_t R_CTSU_Diagnosis (ctsu_ctrl_t * const p_ctrl)

Parameters

p_ctrl [in] Pointer to the control structure

Return Values
FSP_SUCCESS /* All diagnoses are normal */
FSP_ERR_ASSERTION /* Missing argument pointer */
FSP_ERR_NOT_OPEN /* Called without calling Open() */
FSP_ERR_CTSU_NOT_GET_DATA /* Not processed previous scan data. */
FSP_ERR_CTSU_DIAG_LDO_OVER_VOLTAGE /* Diagnosis of LDO over voltage failed. */
FSP_ERR_CTSU_DIAG_CCO_HIGH /* Diagnosis of CCO into 19.2uA failed. */
FSP_ERR_CTSU_DIAG_CCO_LOW /* Diagnosis of CCO into 2.4uA failed. */
FSP_ERR_CTSU_DIAG_SSCG /* Diagnosis of SSCG frequency failed. */
FSP_ERR_CTSU_DIAG_DAC /* Diagnosis of non-touch count value failed. */
FSP_ERR_CTSU_DIAG_OUTPUT_VOLTAGE /* Diagnosis of LDO output voltage failed. */
FSP_ERR_CTSU_DIAG_OVER_VOLTAGE /* Diagnosis of over voltage detection circuit failed.*/
FSP_ERR_CTSU_DIAG_OVER_CURRENT /* Diagnosis of over current detection circuit failed. */
FSP_ERR_CTSU_DIAG_LOAD_RESISTANCE /* Diagnosis of LDO internal resistance value failed.*/
FSP_ERR_CTSU_DIAG_CURRENT_SOURCE /* Diagnosis of Current source value failed.*/
FSP_ERR_CTSU_DIAG_SENSCLK_GAIN /* Diagnosis of SENSCLK frequency gain failed.*/
FSP_ERR_CTSU_DIAG_SUCLK_GAIN /* Diagnosis of SUCLK frequency gain failed.
FSP_ERR_CTSU_DIAG_CLOCK_RECOVERY /* Diagnosis of SUCLK clock recovery function failed.*/

Properties

Prototype is declared in r_ctsu_api.h.

Description

This is the API function providing the function for diagnosis of the CTSU inner circuit.

Call when the return value of the function R_CTSU_DataGet is FSP_SUCCESS.

Example:
fsp_err_t err;

uint16_t dummy;

/* Open Diagnosis function */

R_CTSU_Open(g_qe_ctsu_instance_diagnosis.p_ctrl, g_qe_ctsu_instance_diagnosis.p_cfg);

/* Scan Diagnosis function */

R_CTSU_ScanStart(g_qe_ctsu_instance_diagnosis.p_ctrl);

while (0 == g_qe_touch_flag) {}

g_qe_touch_flag = 0;

err = R_CTSU_DataGet(g_qe_ctsu_instance_diagnosis.p_ctrl,&dummy);

if (FSP_SUCCESS == err)

{

 err = R_CTSU_Diagnosis(g_qe_ctsu_instance_diagnosis.p_ctrl);

 if (FSP_SUCCESS == err)

 {

 /* Diagnosis was succssed. */

 }

}

Special Notes:
None

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 40 of 47

Jul.31.25

3.8 R_CTSU_ScanStop

This function stops measuring the specified touch interface configuration.

Format
fsp_err_t R_CTSU_ScanStop (ctsu_ctrl_t * const p_ctrl)

Parameters

p_ctrl [in] Pointer to the control structure

Return Values

FSP_SUCCESS /* Successfully completed */

FSP_ERR_ASSERTION /* Argument pointer not specified */

FSP_ERR_NOT_OPEN /* Called without calling Open() */

Properties

Prototype is declared in r_ctsu_api.h.

Description

This function stops measuring the specified touch interface configuration.

Example:
fsp_err_t err;

/* Stop CTSU module */

err = R_CTSU_ScanStop(&g_ctsu_ctrl);

Special Notes:

None

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 41 of 47

Jul.31.25

3.9 R_CTSU_SpecificDataGet

This function reads the measurements for the specified data type for the specified touch interface

configuration.

Format
fsp_err_t R_CTSU_SpecificDataGet (ctsu_ctrl_t * const p_ctrl,

 uint16_t * p_specific_data,

 ctsu_specific_data_type_t specific_data_type)

Parameters
p_ctrl [in] Pointer to the control structure

p_specific_data [out] Pointer to specific data array.

specific_data_type [in] Specific data type to get

Return Values
FSP_SUCCESS /* CTSU initialization successfully completed */

FSP_ERR_ASSERTION /* Argument pointer not specified */

FSP_ERR_NOT_OPEN /* Called without calling Open() */

FSP_ERR_CTSU_SCANNING /* Scanning */

FSP_ERR_CTSU_INCOMPLETE_TUNING /* Tuning initial offset */

FSP_ERR_NOT_ENABLED /* Specify unsupported types */

Properties
Prototype is declared in r_ctsu_api.h.

Description
When CTSU_SPECIFIC_RAW_DATA is set to specific_data_type, the RAW data is stored in

p_specific_data. Prepare a buffer that is the number of elements multiplied by the number of elements in

CTSU1 and the number of elements multiplied by the number of frequencies in CTSU2.

When CTSU_SPECIFIC_CCO_CORRECTION_DATA is set to specific_data_type, the sensor CCO

correction data is stored in p_specific_data. Prepare a buffer that is the number of elements multiplied by the

number of elements in CTSU1 and the number of elements multiplied by the number of fequencies in

CTSU2.

When CTSU_SPECIFIC_CORRECTION_DATA is set to specific_data_type, the p_specific_data stores

multi-clock correction data. Only the VMM of CTSU2 is valid. Prepare a buffer for the number of elements.

When CTSU_SPECIFIC_SELECTED _DATA is set specific_data_type, p_specific_data contains a bitmap of

the frequencies used in the majority vote. The first frequency corresponds to bit 0, the second frequency

corresponds to bit 1, and the third frequency corresponds to bit 2. For example, if the first and third

frequencies were used, store the 0x05. Only the VMM of CTSU2 is valid.

Example:
fsp_err_t err;

uint16_t specific_data[CTSU_CFG_NUM_SELF_ELEMENTS * CTSU_CFG_NUM_SUMULTI]

/* Get Specific Data */

err = R_CTSU_SpecificDataGet(&g_ctsu_ctrl, &specific_data[0],

CTSU_SPECIFIC_CORRECTION_DATA);

Special Notes:

When the specific_data_type is set to something other than CTSU_SPECIFIC_RAW_DATA, execute this

API after calling R_CTSU_DataGet().

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 42 of 47

Jul.31.25

3.10 R_CTSU_DataInsert

This function inserts the specified data in buffer of touch measurement results for the specified touch

interface configuration.

Format
fsp_err_t R_CTSU_DataInsert (ctsu_ctrl_t * const p_ctrl,

uint16_t * p_insert_data)

Parameters

p_ctrl [in] Pointer to the control structure

p_insert_data [in] Pointer to insert data array.

Return Values

FSP_SUCCESS /* CTSU initialization successfully completed */

FSP_ERR_ASSERTION /* Argument pointer not specified */

FSP_ERR_NOT_OPEN /* Called without calling Open() */

FSP_ERR_CTSU_SCANNING /* Scanning */

FSP_ERR_CTSU_INCOMPLETE_TUNING /* Tuning initial offset */

Properties

Prototype is declared in r_ctsu_api.h.

Description

This function is supposed to process the data acquired by R_CTSU_SpecificDataGet () in the user

application, such as noise suppression, and store the data in this function. Set the start address of the data

array to be stored in p_insert_data. For self-capacity mode, store in p_ctrl-> p_self_data. For mutual

capacity, store in p_ctrl-> p_mutual_pri_data and p_crtl-> p_mutual_snd_data.

Example:
fsp_err_t err;

uint16_t specific_data[CTSU_CFG_NUM_SELF_ELEMENTS * CTSU_CFG_NUM_SUMULTI]

/* Get Specific Data */

err = R_CTSU_DataGet(&g_ctsu_ctrl, &specific_data[0],

CTSU_SPECIFIC_CORRECTION_DATA);

/* Noise filter process */

/* Insert data */

err = R_CTSU_DataInsert(&g_ctsu_ctrl, &specific_data[0]);

Special Notes:

None

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 43 of 47

Jul.31.25

3.11 R_CTSU_OffsetTuning

This function adjusts the offset register (SO) for the specified touch interface configuration.

Format
fsp_err_t R_CTSU_OffsetTuning (ctsu_ctrl_t * const p_ctrl);

Parameters

p_ctrl [in] Pointer to the control structure

Return Values

FSP_SUCCESS /* CTSU successfully configured */

FSP_ERR_ASSERTION /* Argument pointer not specified */

FSP_ERR_NOT_OPEN /* Called without calling Open() */

FSP_ERR_CTSU_SCANNING /* Scanning */

FSP_ERR_CTSU_INCOMPLETE_TUNING /* Tuning initial offset */

Properties

Prototype is declared in r_ctsu_api.h.

Description

This function adjusts the offset using all the previously measured values. Call this function after the

measurement is complete. Execute this function once, it returns FSP_ERR_CTSU_INCOMPLETE_TUNING

until the offset adjustment is completed. Return FSP_SUCCESS when the offset adjustment is complete.

Repeat the measurement and this function call until the offset adjustment is completed. See Chapter 1.1.4

for offset adjustment.

Example:
fsp_err_t err;

err = R_CTSU_ScanStart (g_qe_ctsu_instance_config01.p_ctrl);

while (0 == g_qe_touch_flag) {}

g_qe_touch_flag = 0;

err = R_CTSU_OffsetTuning (g_qe_ctsu_instance_config01.p_ctrl);

Special Notes:

None

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 44 of 47

Jul.31.25

3.12 R_CTSU_AutoJudgementDataGet

This function gets the result of the automatic judgement button for the specified touch interface configuration.

Format
fsp_err_t R_CTSU_AutoJudgementDataGet (ctsu_ctrl_t * const p_ctrl,

uint64_t * p_button_status)

Parameters
p_ctrl [in] Pointer to the control structure

p_button_status [out] Pointer to a buffer that stores the button status

Return Values
FSP_SUCCESS /* CTSU successfully configured */

FSP_ERR_ASSERTION /* Null pointer passed as a parameter */

FSP_ERR_NOT_OPEN /* Called without calling Open() */

FSP_ERR_CTSU_SCANNING /* Scanning this instance */

FSP_ERR_INVALID_MODE /* The mode of automatic judgement off is invalid */

Properties
Prototype is declared in r_ctsu_api.h.

Description
This function gets the result of the automatic judgement button. Call this function after the measurement is

completed. The result is a 64-bit bitmap, stored in the order of TS numbers for the specified touch interface

configuration.

When this function is called for the first time after offset tuning is completed, it is set to start the baseline

means calculation.

Example:
fsp_err_t err;

uint64_t button_status;

/* Open CTSU Driver */

err = R_CTSU_Open (&g_ctsu_ctrl, &g_ctsu_cfg);

/* Initial Offset Tuning */

while (true)

{

 err = R_CTSU_ScanStart (&g_ctsu_ctrl);

 while (0 == g_qe_touch_flag) {}

 g_qe_touch_flag = 0;

 err = R_CTSU_OffsetTuning (&g_ctsu_ctrl);

}

/* Main loop */

while (true)

 {

 /* for [CONFIG01] configuration */

 err = R_CTSU_ScanStart (&g_ctsu_ctrl);

 while (0 == g_qe_touch_flag) {}

 g_qe_touch_flag = 0;

/* Get all sensor values */

err = R_CTSU_AutoJudgementDataGet(&g_ctsu_ctrl, &button_status);

}

Special Notes:
This function is only supported by CTSU2SLa.

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 45 of 47

Jul.31.25

Revision History

Rev. Date

Description

Page Summary

1.00 Apr.13.21 - First edition issued

1.10 Aug.31.21 5 Added 1.1.9 Diagnosis Function

 5 Added 1.1.10 Automatic judgment measurement using SMS

 8 Added 1.2.5 Diagnosis Mode

 9 Updated 1.4 API overview

 11 Updated 2.7 Compilation settings

 13 Updated 2.8 Code size

 13 Updated 2.9 Arguments

 16 Updated 2.10 Return Values

 - Deleted R_CTSU_VersionGet

 24 Added 3.5 R_CTSU_SmsSet

 27 Added 3.7 R_CTSU_Diagnosis

 29 Added 3.8 R_CTSU_ScanStop

1.11 Jan.18.22 3,4 Added 1.1.4 Initial offset adjustment

 5 Added 1.1.6 multi-measurement frequency (CTSU2L)

 9 Updated 1.4 API overview

 10 Updated 2.2 Software Requirements

Updated 2.3 Supported Toolchains

 13 Updated 2.8 Code size

 13-14 Updated 2.9 Arguments

 30-31 Added 3.8 R_CTSU_SpecificDataGet

 31-32 Added 3.9 R_CTSU_DataInsert

1.20 Apr.20.22 6 Added 1.1.10 Automatic judgment measurement using SMS

 4,5 Fixed PCLKB to fCLK

 9 Updated 1.4 API overview

 10 Update 2.2 Software Requirement

Update 2.3 Supported Toolchain

 33 Added 3.11 R_CTSU_OffsetTuning

 24 Fixed Example: in 3.5 R_CTSU_SmsSet

1.30 Feb.14.23 1 Added RL78/G22 to Target Device

 6 Updated 1.1.11 Automatic judgment measurement using

SNOOZE Mode Sequencer (SMS

 7 Added 1.1.12 Multiple Electrode Connection (MEC) Function

(CTSUb, CTSU2La)

 12 Updated 2.2 Software Requirements

 12 Updated 2.3 Supported Toolchains

 13,14 Updated 2.7 Compilation Settings

 13 Updated 2.8 Code Size

 15,16 Updated 2.9 Arguments

 18 Updated 2.10 Return Values

 24 Updated 3.5 R_CTSU_SmsSet

1.40 Jun.14.23 1 Added RL78/G16 group to Target Device

 3 Added CTSU description to 1 Overview

 3 Updated 1.1.2 Measurements and Obtaining Data

 4 Added CTSU1 function description to 1.1.4 Initial Offset

Adustment

 4 Added 1.1.5 Random Pulse Frequency Measurement

(CTSU1)

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 46 of 47

Jul.31.25

 7 Added CTSU1 function description to 1.1.10 Diagnosis

Function

 10,11 Added CTSU1 function description to 1.2 Measurement Mode

 14 Updated 2.1 Hardware Requirements

 14 Updated 2.2 Software Requirements

 14 Updated 2.4 Restrictions

 18 Updated 2.8 Code Size

 18 Updated 2.9 Arguments

 31 Updated 3.7 R_CTSU_Diagnosis

1.50 May.31.24 4 Updated 1.1.4 Initial offset adjustment

 6 Updated 1.1.6 multi-measurement frequency (CTSU2L)

 8 Updated 1.1.11 Automatic judgment measurement using

SNOOZE Mode Sequencer (SMS

 14 Updated 2.2 Software Requirements

 14 Updated 2.3 Supported Toolchains

 18 Updated 2.7 Compilation Settings

 18 Updated 2.8 Code Size

 29 Updated 3.5 R_CTSU_SmsSet

2.00 Oct.15.24 3 Changed “ICO” to “CCO” at 1.1.3 (applied to all documents)

 5 Added majority measurement (JMM/VMM) to 1.1.6

 18 Updated 2.2 Software Requirements

 18 Updated 2.3 Supported Toolchains

 20 Updated 2.7 Compilation Settings

 23 Updated 2.8 Code Size

 24 Updated 2.9 Arguments

 34 Updated description of 3.3 R_CTSU_DataGet

 41 Updated description of 3.9 R_CTSU_SpecificDataGet

2.10 Feb.19.25 5 Updated 1.1.5 Random Pulse Frequency Measurement

(CTSU1)

 8 Updated 1.1.11 Automatic judgment measurement using

SNOOZE Mode Sequencer (SMS) (RL78/G22, RL78/G23,

RL78/L23)Automatic judgment measurement using SNOOZE

Mode Sequencer (SMS) (RL78/G22, RL78/G23, RL78/L23)

 18 Updated 2.2 Software Requirements

 18 Updated 2.3 Supported Toolchains

 20 Updated 2.7 Compilation Settings

 23 Updated 2.8 Code Size

 24 Updated 2.9 Arguments

2.20 Jul.31.25 1 Added RL78/F25, RL78/F22, RL78/L23 to Target Device

 3 Added description to 1 OverviewOverview

 10 Added 1.1.13 Automatic CCO Correction

(CTSU2SLa)Automatic CCO Correction (CTSU2SLa)

 10 Added 1.1.14 Automatic Frequency Correction

(CTSU2SLa)Automatic Frequency Correction (CTSU2SLa)

 10 Added 1.1.15 Automatic Judgement (CTSU2SLa)Automatic

Judgement (CTSU2SLa)

 17 Added description to 1.4 API Overview

 18 Updated 2.2 Software Requirements

 18 Updated 2.3 Supported Toolchains

 20 Updated 2.7 Compilation Settings

 23 Updated 2.8 Code Size

 24 Updated 2.9 Arguments

 31 Added 2.11 Callback function

RL78 Family CTSU Module Software Integration System

R11AN0484EJ0220 Rev.2.20 Page 47 of 47

Jul.31.25

 32-43 Added input and output information to API function

arguments.

 44 Added 3.12 R_CTSU_AutoJudgementDataGet

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the

products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2025 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your

product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,

manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics

disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product

that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics

hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but

not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS

ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING

RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,

HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND

ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT

PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH

RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO

THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas

Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are

responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Functions
	1.1.1 QE for Capacitive Touch Usage
	1.1.2 Measurements and Obtaining Data
	1.1.3 Sensor CCO Correction function
	1.1.4 Initial Offset Adjustment
	1.1.5 Random Pulse Frequency Measurement (CTSU1)
	1.1.6 Multi-Clock Measurements (CTSU2L)
	1.1.7 Shield Function (CTSU2L)
	1.1.8 Measurement Error Message
	1.1.9 Moving Average
	1.1.10 Diagnosis Function
	1.1.11 Automatic judgment measurement using SNOOZE Mode Sequencer (SMS) (RL78/G22, RL78/G23, RL78/L23)
	1.1.12 Multiple Electrode Connection (MEC) Function (CTSUb, CTSU2La)
	1.1.13 Automatic CCO Correction (CTSU2SLa)
	1.1.14 Automatic Frequency Correction (CTSU2SLa)
	1.1.15 Automatic Judgement (CTSU2SLa)

	1.2 Measurement Mode
	1.2.1 Self-capacitance Mode
	1.2.2 Mutual Capacitance Mode
	1.2.3 Current Measurement Mode (CTSU2L)
	1.2.4 Temperature Correction Mode (CTSU2L)
	1.2.5 Diagnosis Mode

	1.3 Measurement Timing
	1.4 API Overview

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Toolchains
	2.4 Restrictions
	2.5 Header File
	2.6 Integer Type
	2.7 Compilation Settings
	2.8 Code Size
	2.9 Arguments
	2.10 Return Values
	2.11 Callback function

	3. API Functions
	3.1 R_CTSU_Open
	3.2 R_CTSU_ScanStart
	3.3 R_CTSU_DataGet
	3.4 R_CTSU_CallbackSet
	3.5 R_CTSU_SmsSet
	3.6 R_CTSU_Close
	3.7 R_CTSU_Diagnosis
	3.8 R_CTSU_ScanStop
	3.9 R_CTSU_SpecificDataGet
	3.10 R_CTSU_DataInsert
	3.11 R_CTSU_OffsetTuning
	3.12 R_CTSU_AutoJudgementDataGet

	Revision History

