
 Application Note

R01AN7511EJ0100 Rev.1.00 Page 1 of 51
25.Aug.2025

RL78 Family
IEC60730/60335 Self Test Library for RL78 MCU CC-RL

Introduction
Today, as automated electronic control systems continue to expand into many diverse applications, the
requirement of reliability and safety are becoming an ever-increasing factor in system design.

For example, the introduction of the IEC60730 safety standard for household appliances requires
manufactures to design automatic electronic controls that ensure safe and reliable operation of their products.
The IEC60730 standard covers all aspects of product design but Annex H is of key importance for design of
Microcontroller based control systems. This provides three software classifications for automatic electronic
controls:

1. Class A: Control functions, which are not intended to be relied upon for the safety of the equipment.

Examples: Room thermostats, humidity controls, lighting controls, timers, and switches.

2. Class B: Control functions, which are intended to prevent unsafe operation of the controlled equipment.

Examples: Thermal cut-offs and door locks for laundry equipment

3. Class C: Control functions, which are intended to prevent special hazards

Examples: Automatic burner controls and thermal cut-outs for closed.

This application note provides guidelines on how to assist in compliance with the IEC60730 Class B safety
standard through the use of flexible sample software routines. These routines have been certified by VDE
Test and Certification Institute GmbH and a copy of the test certificate is available in the download package
for this Application Note.

The software routines provided are to be used after reset and during program execution. This document and
the accompanying sample code provide examples of how to do this.

Target Devices
RL78/G23, F24 Microcontrollers

R01AN7511EJ0100
Rev.1.00

25.Aug.2025

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 2 of 51
25.Aug.2025

Contents

1. Self Test Libraries Introduction .. 4

2. Self Test Library Functions .. 5
2.1 CPU Register Tests ... 5
2.1.1 CPU Register Tests - Software API .. 7
2.2 Invariable Memory Test – Flash ROM ... 13
2.2.1 CRC16-CCITT Algorithm ... 13
2.2.2 Hardware CRC - Software API .. 14
2.3 Variable memory – SRAM ... 16
2.3.1 Algorithms .. 16
2.3.2 Variable Memory Test – Software API .. 18
2.4 System Clock Test... 26
2.4.1 Hardware Measurement .. 26
2.5 A/D Converter .. 30
2.5.1 A/D Converter Test .. 30
2.6 Digital Output ... 31
2.7 Watchdog .. 32

3. Example Usage ... 34
3.1 CPU Verification .. 35
3.1.1 Power-on Tests ... 35
3.1.2 Periodic Tests .. 35
3.2 Flash ROM .. 35
3.2.1 Power-on Tests ... 35
3.2.2 Periodic Tests .. 35
3.3 RAM Verification .. 35
3.3.1 Power-on Tests ... 35
3.3.2 Periodic Tests .. 36
3.4 System Clock Verification .. 36
3.4.1 Power-on Tests ... 36
3.4.2 Periodic Tests .. 36
3.5 A/D Converter .. 36
3.5.1 Power-on Tests ... 36
3.5.2 Periodic Tests .. 36
3.6 Digital Output ... 36
3.6.1 Power-on Tests ... 36
3.6.2 Periodic Tests .. 36
3.7 Watchdog .. 37

4. Development Environment ... 38

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 3 of 51
25.Aug.2025

4.1 CS+ Settings ... 38
4.1.1 General Options .. 38
4.1.2 Compiler settings ... 40
4.1.3 Debug tool configuration download file ... 41
4.2 Setting up e2studio .. 41
4.2.1 Compiler Options ... 41
4.2.2 Assembler Options .. 42
4.2.3 Linker options .. 42
4.2.4 Converter options ... 43
4.2.5 Debugging Configuration ... 43

5. Benchmark Test results ... 44

6. Additional Hardware Resources... 45
6.1 Additional Safety Functions ... 45
6.1.1 RAM Parity Generator Checker ... 45
6.1.2 RAM Guard Protection .. 46
6.1.3 Invalid Memory Access Protection .. 46
6.1.4 I/O Port SFR Protection ... 47
6.1.5 Interrupt SFR Protection .. 47
6.1.6 Control Register Protection ... 48

7. Related Application Note ... 49

8. VDE certification status .. 50

Revision History .. 51

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 4 of 51
25.Aug.2025

1. Self Test Libraries Introduction
The Self-Test Library (STL) consists of self-test functions for the CPU registers, internal memory, and the
system clock. As described below, the test harness provides an application program interface (API) for
each module that performs a self-test. Use each function according to its purpose.

The self-test library functions are divided into modules according to VDE certification.

The CS+ test harness allows each of the test functions to be selected in turn and run as a stand-alone
function.

A hardware requirement of the system is the availability of two or more independent clock sources (such as
a crystal/ceramic oscillator and an independent oscillator or an external input source). This is necessary to
set up another clock reference to monitor the system clock. The RL78 meets this requirement by using fast
and slow internal oscillators that operate independently of each other.

The application can provide a more accurate external reference clock or use it as the main system clock.

It is also possible to use an external crystal/resonator.

The following CPU self test functions are included in the RL78 self test library.

• CPU Registers

The following CPU registers are tested:
All CPU general-purpose registers in all four register banks, Stack Pointer (SP), Program Status Word
(PSW), Extended Registers (ES and CS), and Program Counter (PC). The internal data paths are verified
as part of the correct operation test of the above registers.
IEC Reference-IEC 60730-1:2013+A1:2015+A2:2020 Annex H - Table H2.16.5.

• Invariable Memory

This tests the MCU internal Flash memory.
IEC Reference-IEC 60730-1:2013+A1:2015+A2:2020 Annex H – H2.19.4.1 CRC – Single Word.

• Variable Memory

This tests the Internal SRAM memory.
IEC Reference-IEC 60730-1:2013+A1:2015+A2:2020 Annex H – H2.19.6.2 marching memory test.

• System Clock

Verifies the system clock operation and correct frequency against a reference clock source (Note this test
requires the use of an internal or external independent reference clock)
IEC Reference-IEC 60730-1:2013+A1:2015+A2:2020 Annex H – H2.18.10.1 frequency monitoring.

• CPU/Program Counter
To check that the program is executing the sequence within the specified time, a built-in watchdog timer
that runs on a clock independent of the CPU is used. The test harness is equipped with a process to
monitor whether the sequence is being executed in the expected order.
IEC Reference-IEC 60730-1:2013+A1:2015+A2:2020 Annex H – H2.18.10.3 time-slot and logical
monitoring.

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 5 of 51
25.Aug.2025

2. Self Test Library Functions

2.1 CPU Register Tests
This section describes CPU register tests routines. The test harness control file ‘main.c’ provides examples
of the API for each of the CPU register tests using “C” language.

These modules test the fundamental aspects of the CPU operation. Each of the API functions has a return
value in order to indicate the result of a test.

Each of the test modules saves the original contents of the register(s) under test and restores the contents
on completion.

The target CPU registers are as follows:

• General-Purpose Register: AX, HL, DE, BC of Register Banks 0 - 3

Figure 2-1 General-Purpose Registers Configuration

• Stack Pointer (SP)

Figure 2-2 Stack Pointer Configuration

• Program Status Word (PSW)

Figure 2-3 PSW Register Configuration

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 6 of 51
25.Aug.2025

• Code Address Extension Register (CS)

Figure 2-4 CS Register Configuration

• Data Address Extension Register (ES)

Figure 2-5 ES Register Configuration

• Program Counter (PC)

Figure 2-6 Program Counter Configuration

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 7 of 51
25.Aug.2025

2.1.1 CPU Register Tests - Software API

Table 2-1 Source files: CPU Working Registers Tests

STL File name Header Files

stl_RL78_RegisterTest.asm stl.h

Test Harness File Names Header Files

main.c NONE

Syntax

char stl_RL78_RegisterTest(void)
Description

This module tests the RL78 general-purpose registers.

Registers AX, HL, DE, BC in all three register banks (Banks 0, 1, 2, 3)

These registers are tested as16bit registers.

1. Write h'5555 to the register being tested.

2. Read the register and verify that it is equal to the value written.

3. Write h'AAAA to the register being tested.

4. Read the register and verify that it is equal to the value written.

The calling function must not allow interrupts to occur during this test and must begin this test with register
bank 0 selected.

The register contents before the test are restored after the test is completed.

The function RegisterTest_Failure is called by the test harness control file (main.c) when an error is
detected.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

char

Test result

0 = Test passed.

1 = The test or parameter check failed.

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 8 of 51
25.Aug.2025

Table 2-2 Source files: CPU Registers Tests – PSW

STL File name Header Files

stl_RL78_RegisterTest_psw.asm stl.h

Test Harness File Names Header Files

main.c NONE

Syntax

char stl_RL78_RegisterTest_psw(void)
Description

Test the 8bit Program Status Word (PSW) register

The following tests are performed:

1. Write h'55 to the register being tested.

2. Read the register and verify that it is equal to the value written.

3. Write h'AA to the register being tested.

4. Read the register and verify that it is equal to the value written.

The calling function must not allow interrupts to occur during this test.

The register contents before the test are restored after the test is completed.

The function RegisterTest_Failure is called by the test harness control file (main.c) when an error is
detected.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

char

Test result

0 = Test passed.

1 = The test or parameter check failed.

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 9 of 51
25.Aug.2025

Table 2-3 Source files: CPU Registers Tests - SP

STL File name Header Files

stl_RL78_RegisterTest_stack.asm stl.h

Test Harness File Names Header Files

main.c NONE

Syntax

char stl_RL78_RegisterTest_stack(void)
Syntax

Test the 16bit Stack Pointer (SP) register

The following tests are performed:

1. Write h'5555 to the register being tested.

2. Read the register and verify that it is equal to h'5554.

3. Write h'AAAA to the register being tested.

4. Read the register and verify that it is equal to the value written.

The calling function must not allow interrupts to occur during this test.

The register contents before the test are restored after the test is completed.

The function RegisterTest_Failure is called by the test harness control file (main.c) when an error is
detected.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

char

Test result

0 = Test passed.

1 = The test or parameter check failed.

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 10 of 51
25.Aug.2025

Table 2-4 Source files: CPU Registers Tests - CS

STL File name Header Files

stl_RL78_RegisterTest_cs.asm stl.h

Test Harness File Names Header Files

main.c NONE

Syntax

char stl_RL78_RegisterTest_cs(void)
Description

Test the 8bit code extension (CS) register

The following tests are performed:

1. Write h'05 to the register being tested.

2. Read the register and verify that it is equal to the value written.

3. Write h'0A to the register being tested.

4. Read the register and verify that it is equal to the value written.

Please note that the top 4 bit are fixed to “0”

The calling function must not allow interrupts to occur during this test.

The register contents before the test are restored after the test is completed.

The function RegisterTest_Failure is called by the test harness control file (main.c) when an error is
detected.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

char

Test result

0 = Test passed.

1 = The test or parameter check failed.

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 11 of 51
25.Aug.2025

Table 2-5 Source files: CPU Registers Tests - ES

STL File name Header Files

stl_RL78_RegisterTest_es.asm stl.h

Test Harness File Names Header Files

main.c NONE

Syntax

char stl_RL78_RegisterTest_es(void)
Description

Test the 8bit data extension (ES) register

The following tests are performed:

1. Write h'05 to the register being tested.

2. Read the register and verify that it is equal to the value written.

3. Write h'0A to the register being tested.

4. Read the register and verify that it is equal to the value written.

Please note that the top 4 bit are fixed to “0”

The calling function must not allow interrupts to occur during this test.

The register contents before the test are restored after the test is completed.

The function RegisterTest_Failure is called by the test harness control file (main.c) when an error is
detected.
Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

char

Test result

0 = Test passed.

1 = The test or parameter check failed.

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 12 of 51
25.Aug.2025

Table 2-6 Source files: CPU Registers Tests - PC

STL File name Header Files

stl_RL78_RegisterTest_pc.asm stl.h

Test Harness File Names Header Files

main.c NONE

Syntax

char stl_RL78_RegisterTest_pc(void)
Description

Test the program counter (PC) register

The following tests are performed:

1. Call the program counter (PC) test function using call instruction

2. The test function sets the return value to the result of reversing the arguments and returns

3. After calling the test function with the call instruction, verify that the return value matches the expected
value.

The calling function must not allow interrupts to occur during this test.

The register contents before the test are restored after the test is completed.

The function RegisterTest_Failure is called by the test harness control file (main.c) when an error is
detected.
Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

char

Test result

0 = Test passed.

1 = The test or parameter check failed.

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 13 of 51
25.Aug.2025

2.2 Invariable Memory Test – Flash ROM
This section describes the Flash memory test using CRC routines. CRC is a fault / error control technique
which generates a single word or checksum to represent the contents of memory. A CRC checksum is the
remainder of a binary division with no bit carry (XOR used instead of subtraction), of the message bit stream,
by a predefined (short) bit stream of length n + 1, which represents the coefficients of a polynomial with
degree n. Before the division ‘n’ zeros are appended to the message stream. CRCs are popular because
they are simple to implement in binary hardware and are easy to analyse mathematically.

The Flash ROM test can be verified by generating a reference CRC value for the contents of the ROM and
storing this in memory. During the memory self test the same CRC algorithm is used to generate a CRC
value, which is compared with the reference CRC value. The technique recognises all one-bit errors and a
high percentage of multi-bit errors.

The complication with using CRC is that the CRC value must be pre-generated and compared with other
CRC values generated by different CRC generators. This is not an easy task since there are many factors
that affect the resulting CRC value even if the basic CRC algorithm is the same. In practice, the order in
which the data is presented to the algorithm, the expected bit order in any lookup table used, and the
required bit order in the actual CRC value are all interrelated. The hardware self-test functions can be
repeated, allowing the full CRC value to be calculated or partial CRC values to be calculated depending on
the desired application behaviour.

The full CRC calculation (or the first of multiple calculations) uses h'0000 as the initial value. Multiple
calculations use the previous result as the initial value for the next calculation.

The hardware module is a generic CRC function built into the RL78. The hardware module essentially uses
the same CRC algorithm to calculate the CRC value with a different data format (LSB first).

2.2.1 CRC16-CCITT Algorithm
The RL78 CRC module supports CRC16-CCITT. When the CRC module is driven by this software, the
following 16-bit CRC16-CCITT is generated.

Hardware Algorithm

• CCITT 16 Polynomial = 0x1021 (x16 + x12 + x5 + 1)

• LSB first (The bit order is inverted when input and the operation is performed, and the bit order of the
operation result is also inverted when outputting)

• Input data width = 8 Bits

• Initial value = 0x0000 or the 16-bit result of the previous partial CRC calculation

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 14 of 51
25.Aug.2025

2.2.2 Hardware CRC - Software API

Table 2-7 Source files: Hardware CRC Calculation

STL FILE NAME Header Files

stl_RL78_peripheral_crc.asm stl.h

Test Harness File Names Header Files

main.c NONE

Syntax

unsigned short stl_RL78_peripheral crc(unsigned short gcrc, CHECKSUM_CRC_TEST_AREA *p)

Description

Uses the hardware CRC peripheral (general-purpose CRC) to calculate the CRC value for the specified
address range.

The starting address and calculation range (length) are passed from the calling function in the structure
shown in the table below.

The returned results are partial or full values depending on the specified parameters.

The test harness control file (main.c) calculates the CRC of the entire inspection area and then checks the
CRC value obtained at build time.

If they do not match, the function “ROM_Test_Failure” is called to process the test result.

Input Parameters

unsigned short gcrc
Initial value for CRC calculation (0 is specified only for the first
block, otherwise it is the previous result)

CHECKSUM_CRC_TEST_AREA *p
A pointer to a structure that stores the start address and
calculation range.

Output Parameters

NONE N/A

Return Values

unsigned short
16-bit calculated CRC value (Full or partial result)

CPU register AX

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 15 of 51
25.Aug.2025

Source files: Hardware CRC Parameter Structure

Syntax

static CHECKSUM_CRC_TEST_AREA checksum_crc;
Description

A structure declaration and instance providing parameters passed to the hardware CRC module
(stl_RL78_peripheral_crc.asm) from the calling function in main.c

Input Parameters

Unsigned long m_length The memory range to test (length = number of bytes)

unsigned long m_start_address Start address of CRC calculation

Output Parameters

NONE N/A

Return Values

NONE N/A

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 16 of 51
25.Aug.2025

2.3 Variable memory – SRAM
The March test is a test regime that is widely recognized as an effective method for testing RAMs.

A March test consists of a finite set of March elements, which in turn consist of a finite set of operations
performed on each cell of the memory array. In general, adding more elements to an algorithm increases its
fault coverage but slows down its execution time.

The algorithm itself is destructive and does not save the current RAM values. Therefore, if you want to test
after the application system is initialized or running, you must save the RAM contents. The March C- and
March X test modules test only a portion of the RAM, so you do not need to have a large temporary area to
store the data during testing. The added test modules ("stl_RL78_march_c_initial" and
"stl_RL78_march_x_initiarl") before the system is initialized, allowing you to test the entire memory area
before starting the main application.

The RAM area being tested cannot be used for any other purpose during the test, which makes testing RAM
used as a stack particularly difficult: this area can only be tested before the application’s C stack is initialized
or after the application has finished processing.

The following chapters describe each of the March tests.

2.3.1 Algorithms
(1) March C-

March C- algorithm (van de Goor 1991) is a set of six March elements that perform a total of 10 operations.

Stuck-at Fault (SAF)

• The logic value of a cell or a line is always 0 or 1.

Transition Fault (TF)

• A cell or a line that fails to undergo a 0→1 or a 1→0 transition.

Coupling Fault (CF)

• A write operation to one cell changes the content of a second cell.

Address Decoder Fault (AF)

• Any fault that affects address decoding.

• With a certain address, no cells can be accessed.

• A certain cell is never accessed.

• With a certain address, multiple cells are accessed simultaneously.

• A certain cell can be accessed by multiple addresses.

The usual March C- algorithm employs 6 March elements

1. ⇔(w0) : Write all zeros to array

2. ↑(r0,w1) : Starting at lowest address, read zeros, write ones, increment up array bit by bit.

3. ↑(r1,w0) : Starting at lowest address, read ones, write zeros increment up array bit by bit.

4. ↓(r0,w1) : Starting at highest address, read zeros, write ones, decrement down array bit by bit.

5. ↓(r1,w0) : Starting at highest address, read ones, write zeros, decrement down array bit by bit.

6. ⇔(r0) : Read all zeros from array.

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 17 of 51
25.Aug.2025

Note: The symbols in the march element represent the following processes:

⇔ ：Perform the operation in ascending or descending order of addresses.

↑ ：Perform the operation in ascending address order.

↓ ：Perform the operation in descending order of addresses.

w0: write 0 to cell

w1: write 1 to cell

r0: Read the cell and check if the value is 0

r1: Read the cell and check if the value is 1

(2) March X

The March X algorithm has a simple structure and is fast, but it is not suitable for detailed testing because it
has only four March elements and four types of overall processing.

• Stuck-at Faults (SAF)

• Transition Faults (TF)

• Reverse Coupling Faults (Cfin)

• Address Decoder Faults (AF)

It uses four march elements:

1. ⇔(w0) : Write all zeros to array.

2. ↑(r0,w1): Starting at lowest address, read zeros, write ones, increment up array bit by bit.

3. ↓(r1,w0): Starting at highest address, read ones, write zeros, decrement down array bit by bit.

4. ⇔(r0) : Read all zeros from array.

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 18 of 51
25.Aug.2025

2.3.2 Variable Memory Test – Software API
2.3.2.1 System March C-
The system March C test is designed to run after the application system has been initialised and is executed
using normal function call from the test harness, thus using some C stack resources. The module can be
used to test part or all of the Ram area, but as the test is destructive, care should be taken to buffer the area
being tested Therefore it is not advised to use this module to test the whole RAM memory area in a single
operation. In addition, make sure not to destroy the RAM area used by this test itself as the stack area.

This test is configured to use 8-bit RAM accesses and can allow perform byte-by-byte testing. However, for
all fault types to be detected it is important to test a data range bigger than tow bytes.

Table 2-8 Source files: System March C-

STL FILE NAME Header Files

stl_RL78_march_c.asm stl.h

Test Harness File Names Header Files

main.c NONE

Syntax

char stl_RL78_march_c(unsigned char *addr, unsigned short num)

Description

Use the March C- algorithm to test the RAM address range specified by the calling function and returns
the result (pass/fail). This module runs after the application system is initialized.

The function RAM_Test_Failure is called by the test harness control file (main.c) when an error is
detected.

Input Parameters

unsigned char *addr Pointer to the start address of the RAM to be tested.

unsigned short num The range (Number of bytes) of the RAM to be tested.

Output Parameters

NONE N/A

Return Values

char

Test result

0 = Test passed.

1 = The test or parameter check failed.

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 19 of 51
25.Aug.2025

2.3.2.2 System March X
The system March X self test function is the essentially the same as the system March C module except that
it only implements the reduced March X algorithm. The module is designed to run after the application
system has been initialised and so should not be used to test the whole memory area in a single operation.
In addition, make sure not to destroy the RAM area used by this test itself as the stack area.

This test is configured to use 8-bit RAM accesses and can allow perform byte-by-byte testing. However, for
all fault types to be detected it is important to test a data range bigger than tow bytes.

Table 2-9 Source files: System March X

STL FILE NAME Header Files

stl_RL78_march_x.asm stl.h

Test Harness File Names Header Files

main.c NONE

Syntax

char stl_RL78_march_x(unsigned char *addr, unsigned short num)

Description

Use the March X algorithm to test the RAM address range specified by the calling function and returns the
result (pass/fail). This module runs after the application system is initialized.

The function RAM_Test_Failure is called by the test harness control file (main.c) when an error is
detected.

Input Parameters

unsigned char *addr Pointer to the start address of the RAM to be tested.

unsigned short num The range (Number of bytes) of the RAM to be tested.

Output Parameters

NONE N/A

Return Values

char

Test result

0 = Test passed.

1 = The test or parameter check failed.

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 20 of 51
25.Aug.2025

2.3.2.3 Initial March C-
The initial March C- test is designed to run before the application system has been initialized and is executed
without using function calls from the test harness. The test is launched via a “jump” from the modified
“cstart.asm” module and return to “cstart.asm” module is also performed via a “jump”. The test status result is
contained in the 8bit accumulator (A). This module is designed to provide a complete RAM test before the
system is started up, and the “C” environment is initialized.

This test function is configured to use 8-bit RAM access.

Table 2-10 Source File: Initial March C-

STL FILE NAME Header Files

stl_RL78_march_c_initial.asm NONE

Test Harness File Names Header Files

cstart.asm NONE

Syntax

stl_RL78_march_c_initial

Description

Uses the March C-algorithm to test the RAM address range specified by the calling function and this
module runs before the application system is initialized and returns the result (pass/fail).

No function calls are used.

The function “stl_RL78_InitialRamTestResult” is called to notify the test result.

Note: The function “stl_RL78_InitialRamTestResult” has an example in the test harness control file
(main.c).

Input Parameters

CPU Register AX 16bit Register holding the start address of the RAM to be tested.

CPU Register BC 16bit Register holding the range (Number of bytes) of the RAM to be tested.

Output Parameters

NONE N/A

Return Values

CPU Register A

Test result

0 = Test passed.

1 = The test or parameter check failed.

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 21 of 51
25.Aug.2025

2.3.2.4 Initial March X
The initial March X test is designed to run before the application system has been initialized and is executed
without using function calls from the test harness. The test is launched via a “jump” from the modified
“cstart.asm” module and return to “cstart.asm” module is also performed via a “jump”. The test status result is
contained in the 8bit accumulator (A). This module is designed to provide a complete RAM test before the
system is started up, and the “C” environment is initialized

This test function is configured to use 8bit RAM accesses.

Table 2-11 Source File: Initial March X

STL FILE NAME Header Files

stl_RL78_march_x_initial.asm NONE

Test Harness File Names Header Files

cstart.asm NONE

Syntax

stl_RL78_march_x_initial

Description

Uses the March X algorithm to test the RAM address range specified by the calling function and this
module runs before the application system is initialized and returns the result (pass/fail).

No function calls are used.

The function “stl_RL78_InitialRamTestResult” is called to notify the test result.

Note: The function “stl_RL78_InitialRamTestResult” has an example in the test harness control file
(main.c).

Input Parameters

CPU Register AX 16bit Register holding the start address of the RAM to be tested.

CPU Register BC 16bit Register holding the range (Number of bytes) of the RAM to be tested.

Output Parameters

NONE N/A

Return Values

CPU Register A

Test result

0 = Test passed.

1 = The test or parameter check failed.

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 22 of 51
25.Aug.2025

2.3.2.5 Stack Area Test (March C-)
Uses C stack resources to run normal function calls from the test harness. It is possible to test the entire
STACK area. Since the test is destructive, the current state is saved to a buffer before testing. By changing
the offset of the STACK_TEST_AREA parameter for each test, it is possible to test only a part of it.

RAM testing is performed using System March C-.

Table 2-12 Stack Area Test (March C-)

STL FILE NAME Header Files

stl_RL78_RamTest_Stacks_c.asm stl.h

Test Harness File Names Header Files

main.c NONE

Syntax

char stl_RL78_RamTest_Stacks_c(STACK_TEST_AREA *p)

Description

It switches the stack pointer (SP) to the specified area, tests the address range of the specified buffer
RAM using the March C-algorithm, and if the result (pass/fail) is pass, copies the contents of the stack
area to the buffer RAM. It then tests the stack area using the March C-algorithm, restores the contents
saved in the buffer RAM and the stack pointer (SP). It then returns the test result (pass/fail). This module
runs after the application system is initialized.

The function RAM_Test_Failure is called by the test harness control file (main.c) when an error is
detected.

Input Parameters

STACK_TEST_AREA *p
A pointer to a structure that stores the buffer RAM, its size, and the new stack
area.

Output Parameters

NONE N/A

Return Values

char

Test result

0 = Test passed.

1 = The test or parameter check failed.

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 23 of 51
25.Aug.2025

Source file: Stack area test parameter structure

Syntax

static STACK_TEST_AREA stack_test;
Description

A structure declaration and instance that provides the parameters passed to the stack area test module
(stl_RL78_RamTest_Stacks_c.asm) from the calling function in main.c.

Note: This is the same structure as the stl_RL78_RamTest_Stacks_x function.

Input Parameters

char *pWork; The top address of the area where the stack contents are saved.

unsigned short length Test target size

unsigned short offset The stack area to be tested (offset from the stack TOP)

char *pNewSp A stack pointer used temporarily during testing

Output Parameters

NONE N/A

Return Values

NONE N/A

STACK
AREA length

*pWork

offset
STACK Top

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 24 of 51
25.Aug.2025

2.3.2.6 Stack Area Test (March X)
Uses C stack resources to run normal function calls from the test harness.

It is possible to test the entire STACK area. Since the test is destructive, the current state is saved to a buffer
before testing.

By changing the offset of the STACK_TEST_AREA parameter for each test, it is possible to test only a part
of it.

RAM testing is performed using System March X.

Table 2-13 Stack Area Test (March X)

STL FILE NAME Header Files

stl_RL78_RamTest_Stacks_x.asm stl.h

Test Harness File Names Header Files

main.c NONE

Syntax

char stl_RL78_RamTest_Stacks_x(STACK_TEST_AREA *p)

Description

It switches the stack pointer (SP) to the specified area, tests the address range of the specified buffer
RAM using the March X algorithm, and if the result (pass/fail) is pass, copies the contents of the stack
area to the buffer RAM. It then tests the stack area using the March X algorithm, restores the contents
saved in the buffer RAM and the stack pointer (SP). It then returns the test result (pass/fail). This module
runs after the application system is initialized.

The function RAM_Test_Failure is called by the test harness control file (main.c) when an error is
detected.

Input Parameters

STACK_TEST_AREA *p
A pointer to a structure that stores the buffer RAM, its size, and the new stack
area.

Output Parameters

NONE N/A

Return Values

char

Test result

0 = Test passed.

1 = The test or parameter check failed.

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 25 of 51
25.Aug.2025

Source file: Stack area test parameter structure

Syntax

static STACK_TEST_AREA stack_test;
Description

A structure declaration and instance that provides the parameters passed to the stack area test module
(stl_RL78_RamTest_Stacks_x.asm) from the calling function in main.c.

Note: This is the same structure as the stl_RL78_RamTest_Stacks_c function.

Input Parameters

char *pWork; The top address of the area where the stack contents are saved.

unsigned short length Test target size

unsigned short offset The stack area to be tested (offset from the stack TOP)

char *pNewSp A stack pointer used temporarily during testing

Output Parameters

NONE N/A

Return Values

NONE N/A

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 26 of 51
25.Aug.2025

2.4 System Clock Test
The RL78 self-test library provides self-test modules for testing the internal system clocks (CPU clock and
peripheral clock). These modules are used by applications to detect normal and abnormal operation of the
main system clocks while the application is running. However, please note that when measuring with the
internal low-speed oscillator, the measurement accuracy of the system clock is reduced due to the large
error. Therefore, although only the relative operation of the system clock can be seen, it is not a problem to
confirm that the system clock is operating normally and that its value is within the allowable limits.

The basic operation of these measurement methods is to detect when the main clock is running at a
frequency outside a certain range in the system. The measurement accuracy depends on the accuracy of the
reference clock source. For example, an external signal input or a 32 KHz crystal will provide a better
measurement accuracy of the system clock than the internal slow oscillator, but this requires additional
components.

The test result is returned as “pass/fail”. It also has a built-in means to detect “no reference clock”. If an
abnormality is detected, a different test result will be returned than the normal test result.

The module checks whether the measured (captured) time value is within a reference window (between
upper and lower limits) based on the reference values defined by the user in the header file
“stl_RL78_hw_clocktest.inc”. This header file defines the hardware measurement reference values and the
capture interrupt port.

2.4.1 Hardware Measurement
All current RL78 devices include an option in the Timer Array Unit (TAU) channel 5 that provides additional
input capture sources that are designed to be able to test the system clock operation. This capture input is
selected in the "Safety" register (TIS0). The options are:

The channels that can be selected as input sources for clock testing vary depending on the microcontroller,
so please change according to the microcontroller you are using.

• The internal Low-speed oscillator (fiL)

• External 32KHz Oscillator (Sub Clock) (fsub)

• External signal input (TIO5)

Figure 2-7 Timer Array Unit Channel 5 Configuration

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 27 of 51
25.Aug.2025

The basic process of hardware measurement is based on the input capture measurement of the reference
clock of TAU channel 5. Since it is a hardware capture measurement, the captured time value is a "period"
based on the reference clock of the system clock, which is more accurate than software measurement.

The measurement sequence is

• Synchronise to the reference clock (Wait for first capture event)

• Wait for the next capture event

• Compare the value in the capture register against the high and lower limit reference values

The test harness provides an example based on the following settings

System clock = 32MHz

Reference Clock = 32.768KHz

The calculation is simply 32000000 / 32768 = 976 (h’3D0)

An allowance should be made for capture value variances in the upper and lower reference values

Note: RL78/F24 uses timer array unit channel 1.
 The reference clock (low-speed on-chip oscillator) of the RL78/F24 is 15KHz.

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 28 of 51
25.Aug.2025

Table 2-14 Source files: Hardware Clock test

STL FILE NAME Header Files

stl_RL78_hw_clocktest.asm stl_RL78_hw_clocktest.inc

stl.h

Test Harness File Names Header Files

main.c NONE

Syntax

char stl_RL78_Init_hw_clocktest (unsigned char Select)

Description

Initialize hardware measurement (TAU channel 5) for system clock test.

Note: RL78/F24 uses TAU channel 1.

Input Parameters

Select

0: TI05

5: fSUB

Other: Low-speed on-chip oscillator clock (fIL)

Output Parameters

NONE N/A

Return Values

NONE N/A

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 29 of 51
25.Aug.2025

Syntax

char stl_RL78_hw_clocktest(void)

Description

It tests the system clock using hardware measurement (TAU channel 5), compares the measurement
result (captured value) with the upper and lower limit values defined in the clock test header file
(stl_RL78_hw_clocktest.inc), and returns the result (pass/fail/no reference clock) to the calling function.

The function Clock_Test_Failure is called by the test harness control file (main.c) when an error is
detected.

Note: RL78/F24 uses TAU channel 1.

Input Parameters

hwMAXTIME Upper time limit compare value (defined by stl_RL78_hw_clocktest.inc)

hwMINTIME Lower time limit compare value (defined by stl_RL78_hw_clocktest.inc)

CAPTURE_interrupt_FLAG
Timer channel Capture Interrupt Flag

(defined by stl_RL78_hw_clocktest.inc)

Output Parameters

NONE N/A

Return Values

Char

Test result

0 = Test passed.

1 = The measurement test failed (outside the limits).

2 = The measurement test failed (no reference clock detected).

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 30 of 51
25.Aug.2025

2.5 A/D Converter
2.5.1 A/D Converter Test
The RL78/G23 has a function to perform A/D conversion of the positive reference voltage, negative
reference voltage, and internal reference voltage. This function can be used to check whether the A/D
converter is operating normally. The sample assumes 12-bit resolution.

For detailed A/D conversion settings, please use the Smart Configurator.

Table 2-15 Source files: A/D converter test

STL FILE NAME Header Files

stl_adc.c stl_adc.h

Test Harness File Names Header Files

main.c NONE

Syntax

char stl_ADC_Check_TestVoltage (void)

Description

The self-diagnosis voltage is defined as the positive reference voltage, negative reference voltage, and
internal reference voltage in the header file (stl_adc.h). It compares it against the upper and lower limits
specified and returns the result (pass/fail) to the calling function.

The function Ad_Test_Failure is called by the test harness control file (main.c) when an error is detected.

The calling function must not allow interrupts to occur during this test.

Note: A/D conversion is started within the test function. Do not call this function during A/D conversion.

Note: The conversion of the internal reference voltage is affected by the voltage of Vref(+). If it is other
than 3.3V, please modify the header file (stl_adc.h).

Note: In the RL78/F24, the conversion target is not the internal reference voltage but the positive
reference voltage/2.

Input Parameters

VSS_RANGE_MAX Upper VSS limit compare value (defined in stl_adc.h)

VDD_RANGE_MIN Lower VDD limit compare value (defined in stl_adc.h)

AD_RESOLUTION_HEX Upper VDD limit compare value (defined in stl_adc.h)

VDD VDD voltage (Vref(+))

VBGR_MIN Lower internal reference voltage compare value (defined in stl_adc.h)

VBGR_MAX Upper internal reference voltage compare value (defined in stl_adc.h)

Output Parameters

NONE N/A

Return Values

Char

Test result

0 = Test passed.

1 = The measurement test failed (outside the limits).

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 31 of 51
25.Aug.2025

2.6 Digital Output
The RL78/G23 and F24 have a function that allows you to read the digital output level of a pin when the pin
is in output mode. The function can be used to check whether digital output is operating normally.

The ports to be tested are defined in stl_RL78_GpioTest.inc.

Table 2-16 Source files: Digital output test

STL FILE NAME Header Files

stl_RL78_GpioTest.asm stl_RL78_GpioTest.inc

stl.h

Test Harness File Names Header Files

main.c NONE

Syntax

char stl_RL78_GpioTest (void)

Description

This function outputs 0 or 1 based on the static variable (TEST_DATA). The output value and pin level are
compared, and the result is returned to the original calling function.

The function Gpio_Test_Failure is called by the test harness control file (main.c) when an error is
detected.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

Char

Test result

0 = Test passed.

1 = The test or parameter check failed.

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 32 of 51
25.Aug.2025

2.7 Watchdog
The Watchdog is used to detect abnormal program execution. If the program is not running as expected, an
error is detected because the watchdog is not refreshed by software when needed.

The RL78/G23, F24 watchdog timer (WDT) module is used for this purpose. Rather than refreshing just
before the specified period, the WDT has a "window" function that always carries out a refresh within the
specified "window". The user can set the program so that when an error is detected, an internal reset is
generated. A function is provided for use after a reset to determine if a reset was caused by the WDT.

Watchdog values are set in Option Bytes (000C0H/040C0H).

Address：000C0/040C0H

 <7> <6> <5> <4> <3> <2> <1> <0>

 WDTINT WINDOW1 WINDOW0 WDTON WDCS2 WDCS1 WDCS0 WDSTBYON

 WDTINT Use of interval interrupt of watchdog timer

 0 Interval interrupt is not used.
 1 Interval interrupt is generated when 75% + 1/2 fIL of the overflow time is reached.

 WINDOW1 WINDOW0 Watchdog timer window open period

 0 0 Setting prohibited

 0 1 50%

 1 0 75% Setting is prohibited in RL78/G23.

 1 1 100%

 WDTON Operation control of watchdog timer counter

 0 Counter operation disabled (counting stopped after reset)

 1 Counter operation enabled (counting started after reset)

 WDCS2 WDCS1 WDCS0 Watchdog timer overflow time

(fIL = 37.683 kHz (max.))

 0 0 0 27/fIL (3.39 ms)

 0 0 1 28/fIL (6.79 ms)

 0 1 0 29/fIL (13.58 ms)

 0 1 1 210/fIL (27.17 ms)

 1 0 0 212/fIL (108.69 ms)

 1 0 1 214/fIL (434.78 ms)

 1 1 0 215/fIL (869.56 ms)

 1 1 1 217/fIL (3478.26 ms)

 WDSTBYON Operation control of watchdog timer counter (HALT/STOP mode)

 0 Counter operation stopped in HALT/STOP mode

 1 Counter operation enabled in HALT/STOP mode

Note: The maximum value L of fI for the RL78/F24 is 17.25 kHz, but when WDCS2/WDCS1/WDCS0=100b,
it is 211/fIL(118.72ms).

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 33 of 51
25.Aug.2025

Table 2-17 Source files: Watchdog timer test

STL FILE NAME Header Files

Config_WDT.c Config_WDT.h

Test Harness File Names Header Files

main.c NONE

Syntax

void R_Config_WDT_Restart (void)

Description

Refresh the watchdog count

Note: This function was automatically generated by the Smart Configurator.

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

NONE N/A

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 34 of 51
25.Aug.2025

3. Example Usage
In addition to the actual test software source files, the CS+ test harness workspace is provided which
includes application examples demonstrating how the tests can be run. This code should be examined in
conjunction with this document to see how the various test functions are used.

The testing can be split into two parts:

(1) Power-on Tests.

These tests can be run following a power on or reset. They should be run as soon as possible to ensure that
the system is working correctly. These tests are

• All Ram using Initial March C- (or initial March X)

• All register tests

• Flash Memory CRC Test

The clock tests can also be run later if the initial clock speed values are set to measure the maximum clock
speed.

(2) Periodic Tests.

These are tests that are run regularly throughout normal program operation. This document does not provide
a judgment of how often a particular test should be ran. How the scheduling of the periodic tests is performed
is up to the user depending upon how their application is structured.

• Ram tests

These tests should use the “system” Ram test modules as these are designed to test the memory in
small once the system is initialised. They can be used in small in order to minimise the size of the buffer
area needed to save the application data.

• Register Tests.

These are dependent upon the application timing.

• Flash memory test.

These modules are designed to be able to accumulate a CRC result over a few passes. In this way they
can be used to suit the system operation.

The clock test modules can be run at any time to suit the application timing.

The following sections provide an example of how each test can be used.

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 35 of 51
25.Aug.2025

3.1 CPU Verification
Any CPU test fault is very serious. Therefore, this function’s aim is to move as quickly as possible to a safe
position where execution reliability is not relevant.

3.1.1 Power-on Tests
All the CPU tests should be run as soon as possible following a reset.

3.1.2 Periodic Tests
If testing the CPU registers periodically the function is designed to be run independently and so can be
operated at any time to suit the application. Each function restores the original register data on completion of
test so as not to corrupt the operation of the application system. It is important that interrupts are disabled
during these tests.

3.2 Flash ROM
The ROM test calculates the CRC value of the contents of an area of Flash memory and checks whether a It
is compared with a pre-stored reference CRC value.

The CS+ tool chain can calculate and accumulate CRC values and store them in a location specified by the
user. In this case, specify "general-purpose CRC" in CS+. See “Figure 4-5 CS+ Object Conversion
Options”.

3.2.1 Power-on Tests
All ROMs used should be tested at power-on. The hardware CRC module It is possible to calculate the CRC
value for the entire range of the memory.

3.2.2 Periodic Tests
It is recommended that periodic tests of flash memory be performed in multiple batches while the application
is free. When using a hardware peripheral unit, the results of the partial CRC calculations can be left in the
hardware CRC peripheral unit result registers, but it is recommended that they be stored separately and
compared before performing the next calculation.

This method allows testing of all Flash memory using time slots convenient for the application.

3.3 RAM Verification
When verifying the RAM, it is important to remember the following points:

• RAM being tested cannot be used for anything else including the current stack.

• Any test requires a RAM buffer where memory contents can be safely copied to and restored from.

• Copy / test / restore the stack area by specifying the backup area and the stack area to be used during
the test period. However, interrupt processing cannot be performed during this operation.

3.3.1 Power-on Tests
It is recommended that an initial RAM test module (March C- or March X) be used. These modules are
designed specifically for testing all RAM areas at power-up or reset. They are also suitable for execution
before initializing the system and the C stack, since they do not require function calls but destroy the
contents of the RAM. In this library, the initial RAM test call is implemented in the assembler file ‘cstart.asm’.

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 36 of 51
25.Aug.2025

3.3.2 Periodic Tests
It is recommended that periodic testing of RAM be performed multiple times, usually using free time in the
application. In addition, an area is required to temporarily store the contents of the RAM during the test. Each
test will inform you of the pass/fail results for the specified range. This allows all RAM to be verified using a
time slot convenient to the application.

3.4 System Clock Verification
It is very serious if a fault is detected with the system clock. The aim of this test should be to get to a safe
operating point, where system can be controlled using a different known clock.

3.4.1 Power-on Tests
The system clock should be tested at power-up or reset. The clock should also be tested when the system is
initialized and when the system clock frequency is fully set and operation is stable.

3.4.2 Periodic Tests
Periodic testing of the system clock can be made at any time where the application has the time available.
This is because the reference clock is typically much slower that the system clock to increase the accuracy
of the clock measurement.

(System Clock = 32 MHz, Reference Clock = 32.768 KHz)

3.5 A/D Converter
3.5.1 Power-on Tests
The ADC module can be tested using the “stl_ADC_Check_TestVoltage” function at power-up in the same
manner as the periodic test. This function carries out A/D conversion on either the positive reference voltage,
negative reference voltage, or internal reference voltage.

3.5.2 Periodic Tests
The “stl_ADC_Check_TestVoltage” function must be called up regularly to perform periodic tests. The
reference voltage switched between the negative, positive and internal reference voltages.

Note: In the RL78/F24, the conversion target is not the internal reference voltage but the positive reference
voltage/2.

3.6 Digital Output
3.6.1 Power-on Tests
The digital output can be tested using the “stl_RL78_GpioTest” function at power-up in the same manner as
the periodic test. This function checks whether the output value is 0 or 1.

3.6.2 Periodic Tests
The “stl_RL78_GpioTest” function must be called up regularly to perform periodic tests. Output switches
between 0 and 1.

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 37 of 51
25.Aug.2025

3.7 Watchdog
The watchdog timer function is set in Option Bytes (000C0H/040C0H). Following reset release, the watchdog
timer starts the count operation. After this, the watchdog needs to be refreshed on a regular basis to prevent
time out and reset. Note that, when using the window function, not only does the watchdog need to be
regularly refreshed, but it must also be conducted within a time period that matches the specified window.
Watchdog refresh is executed by calling the following function.
/* Periodic refresh of watchdog to prevent reset from occurring*/

R_Config_WDT_Restart ();

If the watchdog is configured to generate a reset when an error is detected, the user program needs to
process the interrupt generated by the reset. The sample program is configured to call the
Watchdog_Test_Failure function when an error is detected.

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 38 of 51
25.Aug.2025

4. Development Environment
• E2-Lite On-chip debugging emulator

• RL78/G23 Fast Prototyping Board RL78/G23 (128pin LFQFP)

• Tool chain CS+ Version 8.11.0.00 CC-RL Version 1.13.0

e2Studio 2024-01.1 CC-RL Version 1.13.0

• MCU R7F100GSN2DFB

• Internal Clock 32 MHz High-speed On-Chip Oscillator

• System clock 32 MHz

• Low speed clock 32.768kHz Low-speed On-Chip Oscillator

4.1 CS+ Settings
The following show the specific options and setting set for the test project. The graphics only show those
options and settings that have been changed. All others are the default project settings set by the CS+.

4.1.1 General Options

Figure 4-1 CS+ common Options - Target Device

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 39 of 51
25.Aug.2025

Figure 4-2 CS+ Link Options

Figure 4-3 CS+ common options

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 40 of 51
25.Aug.2025

4.1.2 Compiler settings

Figure 4-4 CS+ Compiler Options

Figure 4-5 CS+ Object Conversion Options

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 41 of 51
25.Aug.2025

4.1.3 Debug tool configuration download file

Figure 4-6 Download file for CS+ debug tool settings

4.2 Setting up e2studio
4.2.1 Compiler Options

Figure 4-7 C source include path

Figure 4-8 Optimization

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 42 of 51
25.Aug.2025

4.2.2 Assembler Options

Figure 4-9 asm source include path

4.2.3 Linker options

Figure 4-10 Device Settings

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 43 of 51
25.Aug.2025

4.2.4 Converter options

Figure 4-11 CRC calculation settings

4.2.5 Debugging Configuration

Figure 4-12 Download file for e2studio debug tool configuration

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 44 of 51
25.Aug.2025

5. Benchmark Test results

Library functions Number of bytes tested Processing time

CPU general-purpose register test

stl_RL78_RegisterTest

- 10.281µs

CPU register test - PSW

stl_RL78_RegisterTest_psw

- 1.343µs

CPU register test - SP
stl_RL78_RegisterTest_stack

- 1.125µs

CPU register test - CS
stl_RL78_RegisterTest_cs

- 1.031µs

CPU register test - ES
stl_RL78_RegisterTest_es

- 1.031µs

CPU register test - PC
stl_RL78_RegisterTest_pc

- 0.875µs

Hardware CRC
stl_RL78_peripheral_crc

1024 bytes 700µs

System March C-

stl_RL78_march_c

48 bytes 500µs

System March X

stl_RL78_march_x

48 bytes 300µs

Initial March C-

stl_RL78_march_c_initial

1020 bytes 11.3ms

Initial March X

stl_RL78_march_x_initial

1020 bytes 6.3ms

Hardware Clock test

stl_RL78_hw_clocktest

- 52.281µs

Stack area test (March C-)

stl_RL78_RamTest_Stacks_c

64 bytes+64 bytes 1.4ms

Stack area test (March X)

stl_RL78_RamTest_Stacks_x

64 bytes+64 bytes 800us

GPIO test

stl_RL78_GpioTest

- 1.093µs

A/D test

stl_ADC_Check_TestVoltage

- 9.218µs

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 45 of 51
25.Aug.2025

6. Additional Hardware Resources
The following additional safety and self test features have been included in the RL78 series to provide
support for the user. While these additional functions have not been certified by VDE, they provide a valuable
extra resource to the user and are included here for reference.

6.1 Additional Safety Functions
The following additional safety functions have been included in the RL78 series MCU devices.

6.1.1 RAM Parity Generator Checker
When enabled the function includes a parity check for each byte written to any location of the RAM memory
area. The Parity is generated when data is written to the Ram memory and checked when a location is read
from memory. Note that this function is available only for data access and does not apply to code executed
from Ram. If a Ram parity error is detected, then an internal Reset is generated. The Reset source can be
determined by examining the “RESF” register. The “IAWRF” bit will be set if the invalid memory access was
the source of the Reset.

Format of RAM Parity Error Control Register (RPECTL)

Address: F00F5H Reset: 00H R/W

Symbol <7> 6 5 4 3 2 1 <0>

RPECTL RPERDIS 0 0 0 0 0 0 RPEF

 RPERDIS Parity error reset mask flag

 0 Enables parity error resets.

 1 Disables parity error resets.

 RPEF Parity error status flag

 0 No parity error has occurred.

 1 A parity error has occurred.

Figure 6-1 Checking RAM parity errors

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 46 of 51
25.Aug.2025

6.1.2 RAM Guard Protection
This is a write protection feature that when enabled allows data to be read from the selected Ram area, but
prohibits a write to these locations. No error is generated if a write occurs to this area The Ram area
available for this feature is limited and can be selected by the “GRAM0, GRAM1”bits as shown in Figure 6-2
below:

Format of Invalid Memory Access Detection Control Register (IAWCTL)

Address: F0078H Reset: 00H R/W

Symbol 7 6 5 4 3 2 1 0

IAWCTL IAWEN 0 GRAM1 GRAM0 0 GPORT GINT GCSC

 GRAM1 GRAM0 Protected area in the RAM

 0 0 Disabled. Writing to the RAM is allowed.

 0 1 128 bytes from the base address of the RAM

 1 0 256 bytes from the base address of the RAM

 1 1 512 bytes from the base address of the RAM

Figure 6-2 RAM Guard Protection

6.1.3 Invalid Memory Access Protection
This is a feature that provides additional protection for detection of an invalid memory access. Please note
that once the “IAWEN” bit is set in the “IAWCTL” register, it cannot be disabled except for a Reset. Also, if
the Watchdog is enabled in the Flash memory Option Bytes registers, then the invalid memory protection
automatically enabled.

If an invalid memory access is detected, then an internal Reset is generated. The Reset source can be
determined by examining the “RESF” register. The “IAWRF” bit will be set if the invalid memory access was
the source of the Reset.

Format of Invalid Memory Access Detection Control Register (IAWCTL)

Address: F0078H Reset: 00H R/W

Symbol 7 6 5 4 3 2 1 0

IAWCTL IAWEN 0 GRAM1 GRAM0 0 GPORT GINT GCSC

 IAWEN Control of illicit memory access detection

 0 Disables the detection of illicit memory accesses.

 1 Enables the detection of illicit memory accesses.

Figure 6-3 Invalid Memory Access Protection

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 47 of 51
25.Aug.2025

6.1.4 I/O Port SFR Protection
This is a write protection feature that prohibits a write to the SFR registers. No error is generated if a write
occurs, but the write operation does not change the state of the registers involved. Please note that the data
port register (Pxx) cannot be protected.

The protection can be turned off, if a change is required for the SFR registers or for safety reasons the SFR
settings are refreshed by the application.

The following I/O port SFR registers can be protected with this function

PMxx, PUxx, PIMxx, POMxx, PMCAxx, PMCTxx, PMCExx, PFOEx,

PDIDISxx, CCDE, CCSm, PTDC, PFSEGx and ISCLCD

Pxx cannot be guarded.

The Port I/O SFR registers can be guarded by the “GPORT” bit as shown in Figure 6-4 below

Format of Invalid Memory Access Detection Control Register (IAWCTL)

Address: F0078H Reset: 00H R/W

Symbol 7 6 5 4 3 2 1 0

IAWCTL IAWEN 0 GRAM1 GRAM0 0 GPORT GINT GCSC

 GPORT Protection of the port control registers

 0 Disabled. Reading from and writing to the port control registers are allowed.

 1 Enabled. Writing to the port control registers is not allowed. Reading from them is allowed.

Figure 6-4 I/O Port SFR Guard Protection

6.1.5 Interrupt SFR Protection
This is a write protection feature that prohibits a write to the Interrupt SFR registers. No error is generated if a
write occurs to this area, but the write operation does not change the state of the registers involved. The
protection can be turned off, if a change is required for the SFR registers or for safety reasons the SFR
settings are refreshed by the application.

The following interrupt registers can be protected with this function

IFxx, MKxx, PRxx, EGPx and EGNx

The interrupt SFR registers can be guarded by the “GINT” bit as shown in Figure 6-5 below

Format of Invalid Memory Access Detection Control Register (IAWCTL)

Address: F0078H Reset: 00H R/W

Symbol 7 6 5 4 3 2 1 0

IAWCTL IAWEN 0 GRAM1 GRAM0 0 GPORT GINT GCSC

 GINT Protection of the interrupt control registers

 0 Disabled. Reading from and writing to the interrupt control registers are allowed.

 1 Enabled. Writing to the interrupt control registers is not allowed. Reading from them is allowed.

Figure 6-5 Guarding of Interrupt SFRs

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 48 of 51
25.Aug.2025

6.1.6 Control Register Protection
This is a write protection feature that prohibits a write to the control registers. No error is generated if a write
occurs to this area, but the write operation does not change the state of the registers involved. The protection
can be turned off, if a change is required for the SFR registers or for safety reasons the SFR settings are
refreshed by the application.

The following control registers can be protected with this function

CMC, CSC, OSTS, CKC, PERx, OSMC, LVIM, LVIS, RPECTL, CKSEL,

PRRx, MOCODIV, WKUPMD, PSMCR, MODRV and SOMRG

The interrupt SFR registers can be guarded by the “GCSC” bit as shown in Figure 6-6 below

Format of Invalid Memory Access Detection Control Register (IAWCTL)

Address: F0078H Reset: 00H R/W

Symbol 7 6 5 4 3 2 1 0

IAWCTL IAWEN 0 GRAM1 GRAM0 0 GPORT GINT GCSC

 GCSC Protection of the clock, voltage detector, and RAM parity error detection control registers

 0 Disabled. Reading from and writing to the clock, voltage detector, and RAM parity error

detection control registers are allowed.

 1 Enabled. Writing to the clock, voltage detector, and RAM parity error detection control registers

is not allowed. Reading from them is allowed.

Figure 6-6 Invalid Memory Access Protection

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 49 of 51
25.Aug.2025

7. Related Application Note
The application note related to this application note is listed below for reference.

• RL78 Family VDE Certified IEC60730/60335 Self Test Library APPLICATION NOTE（R01AN0749E）

Home page and Support Contact
Renesas Electronics Home Page
• https://www.renesas.com/

Contact for inquiries
• https://www.renesas.com/contact/

https://www.renesas.com/
https://www.renesas.com/contact/

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 50 of 51
25.Aug.2025

8. VDE certification status
Table 8-1 show the VDE certification status of each module (assembler file) constituting a library.

Table 8-1 VDE certification status of each module

Module Ver. VDE certification status
stl_RL78_RegisterTest.asm 3.00 Valid (code part is the same as VDE certified module)

stl_RL78_RegisterTest_psw.asm 3.00

stl_RL78_RegisterTest_stack.asm 3.00

stl_RL78_RegisterTest_cs.asm 3.00

stl_RL78_RegisterTest_es.asm 3.00

stl_RL78_RegisterTest_pc.asm 3.01
stl_RL78_peripheral_crc.asm 3.00

stl_RL78_march_c.asm 3.00

stl_RL78_march_x.asm 3.01

stl_RL78_march_c_initial.asm 3.01
stl_RL78_march_x_initial.asm 3.01

stl_RL78_hw_clocktest.asm 3.01

stl_adc.c 3.01

stl_RL78_GpioTest.asm 3.00

stl_RL78_RamTest_Stacks_c.asm 3.03
stl_RL78_RamTest_Stacks_x.asm 3.03

RL78 Family IEC60730/60335 Self Test Library for RL78 MCU CC-RL

R01AN7511EJ0100 Rev.1.00 Page 51 of 51
25.Aug.2025

Revision History

Rev. Date
Description
Page Summary

1.00 25.Aug.2025 - First edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2025 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of
your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the
use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas
Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas
Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc.
Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products
outside of such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you
are responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Self Test Libraries Introduction
	2. Self Test Library Functions
	2.1 CPU Register Tests
	2.1.1 CPU Register Tests - Software API

	2.2 Invariable Memory Test – Flash ROM
	2.2.1 CRC16-CCITT Algorithm
	2.2.2 Hardware CRC - Software API

	2.3 Variable memory – SRAM
	2.3.1 Algorithms
	2.3.2 Variable Memory Test – Software API
	2.3.2.1 System March C-
	2.3.2.2 System March X
	2.3.2.3 Initial March C-
	2.3.2.4 Initial March X
	2.3.2.5 Stack Area Test (March C-)
	2.3.2.6 Stack Area Test (March X)

	2.4 System Clock Test
	2.4.1 Hardware Measurement

	2.5 A/D Converter
	2.5.1 A/D Converter Test

	2.6 Digital Output
	2.7 Watchdog

	3. Example Usage
	3.1 CPU Verification
	3.1.1 Power-on Tests
	3.1.2 Periodic Tests

	3.2 Flash ROM
	3.2.1 Power-on Tests
	3.2.2 Periodic Tests

	3.3 RAM Verification
	3.3.1 Power-on Tests
	3.3.2 Periodic Tests

	3.4 System Clock Verification
	3.4.1 Power-on Tests
	3.4.2 Periodic Tests

	3.5 A/D Converter
	3.5.1 Power-on Tests
	3.5.2 Periodic Tests

	3.6 Digital Output
	3.6.1 Power-on Tests
	3.6.2 Periodic Tests

	3.7 Watchdog

	4. Development Environment
	4.1 CS+ Settings
	4.1.1 General Options
	4.1.2 Compiler settings
	4.1.3 Debug tool configuration download file

	4.2 Setting up e2studio
	4.2.1 Compiler Options
	4.2.2 Assembler Options
	4.2.3 Linker options
	4.2.4 Converter options
	4.2.5 Debugging Configuration

	5. Benchmark Test results
	6. Additional Hardware Resources
	6.1 Additional Safety Functions
	6.1.1 RAM Parity Generator Checker
	6.1.2 RAM Guard Protection
	6.1.3 Invalid Memory Access Protection
	6.1.4 I/O Port SFR Protection
	6.1.5 Interrupt SFR Protection
	6.1.6 Control Register Protection

	7. Related Application Note
	8. VDE certification status
	Revision History

