

# RL78/F24

Sensorless Trapezoidal Control of BLDC Motor by MCU

R01AN6308EJ0110 Rev.1.10 2023.06.30

# Introduction

This application note intends to describe a sample program for operating the 3-phase brushless DC motor with sensorless trapezoidal control method, by using the functions of RL78/F24 product.

The sample program is only for your reference and Renesas Electronics Corporation never guarantee the operations.

Please use this sample program after carrying out a thorough evaluation in a suitable environment.

# **Target Device**

Operations of the sample program are checked by using the following device.

• RL78/F24 (R7F124FGJ)



# RL78/F24

# Contents

| 1.         | Overview                                         | 4   |
|------------|--------------------------------------------------|-----|
| 1.1        | Usage of the System                              |     |
| 1.2        | Development Environment                          | 4   |
| 2.         | System Overview                                  | 5   |
| 2.1        | Hardware Configuration                           |     |
| 2.1        | Hardware Specifications                          |     |
| 2.2        |                                                  |     |
| 2.2.1      |                                                  |     |
| 2.2.2      | Software Configuration                           |     |
| 2.3.1      | -                                                |     |
| 2.3.1      |                                                  |     |
| 2.3.2      | Software Specifications                          |     |
| 2.4        |                                                  | 5   |
| 3.         | Motor Control Method                             | .10 |
| 3.1        | Sensorless trapezoidal Control of the BLDC Motor | 10  |
| 3.2        | Zero-crossing Detection Method                   | 13  |
| 3.3        | Start-up Method                                  | 15  |
| 3.4        | Position Estimate Operation                      | 16  |
| 3.5        | Rotation Speed Control                           | 17  |
| 3.6        | Expression of Degree Value                       | 19  |
| 4.         | Description of Peripheral Functions Used         | 20  |
| 4.1        | A/D Converter Function                           |     |
| 4.2        | Timer Array Unit (TAU) Function                  |     |
| 4.3        | Timer RDe Function                               |     |
| 4.3.1      |                                                  |     |
| 5.         | Description of the Control Software              | 26  |
| 5.1        |                                                  |     |
| 5.1<br>5.2 | Control Block Diagram                            |     |
|            |                                                  |     |
| 5.2.1      |                                                  |     |
| 5.2.1      | •                                                |     |
| 5.2.1      |                                                  |     |
| 5.2.2      | 5                                                |     |
| 5.2.3      |                                                  |     |
| 5.2.4      |                                                  |     |
| 5.2.5      |                                                  |     |
| 5.2.6      |                                                  |     |
| 5.2.7      | 0                                                |     |
| 5.2.8      | System Protection Functions                      | 31  |



| 5.3   | System Resources                              | 34 |
|-------|-----------------------------------------------|----|
| 5.3.1 | Interrupt Function                            | 34 |
| 5.3.2 | Port Function                                 | 35 |
| 5.3.3 | PWM Output Function                           | 35 |
| 5.4   | Function Specifications of the Sample Program | 36 |
| 5.5   | Variable Specifications of the Sample Program | 41 |
| 5.6   | Macro Definitions of the Sample Program       | 44 |
| 5.7   | Flowchart of the Sample Program               | 47 |
| 5.7.1 | Main Processing Function                      | 47 |
| 5.7.2 | 1 [ms] Interval Timer Interrupt Handler       | 48 |
| 5.7.3 | User Interface Processing Function            | 49 |
| 5.7.4 | Carrier Frequency Interrupt Handler           | 50 |
| 5.7.5 | Zero-crossing Detection Function              | 51 |
| 5.7.6 | A/D Conversion Completion Interrupt Handler   | 52 |
| Revis | sion History                                  | 53 |



### 1. Overview

This application note describes an example that RL78/F24 product executes a speed control of brushless DC motor (here in after referred to as BLDC motor) by using is driven sensorless trapezoidal control method.

# 1.1 Usage of the System

This system (sample program) enables trapezoidal control by using an RL78/F24 micro controller mounted CPU board, an inverter board for motor control "RTK7F124FGS00000BJ" and BLDC motor "TG-55N-KA".

#### Remark

• TG-55N-KA: BLDC motor (Product of Tsukasa Electric CO., LTD.) <<u>https://www.tsukasa-d.co.jp/</u>>

# **1.2 Development Environment**

Table 1-1 and Table 1-2 show the sample program development environment covered by this application note.

| Renesas CS+ |          |                                                                  |  |
|-------------|----------|------------------------------------------------------------------|--|
| IDE Version |          | CS+ for CC E8.07.00 [01 Dec 2021]                                |  |
|             | Compiler | CC-RL E1.11.00                                                   |  |
| IAR         |          |                                                                  |  |
|             |          | IAR Embedded Workbench IDE<br>8.5.2.7561 (8.5.2.7561)            |  |
|             |          | IAR C/C++ Compiler for Renesas RL78<br>4.21.3.2447 (4.21.3.2447) |  |

#### Table 1-1. Software Development Environment

#### Table 1-2. Hardware Development Environment

| On-chip Debugging Emulator | E2 emulator Lite     |
|----------------------------|----------------------|
|                            | E2 emulator          |
| MCU Part Name              | RL78/F24 (R7F124FGJ) |
| Inverter Board             | RTK7F124FGS00000BJ   |
| BLDC Motor                 | PMSM (TG-55N-KA)     |



### 2. System Overview

### 2.1 Hardware Configuration

The hardware configuration is shown in Figure 2-1.



Figure 2-1 Hardware Configuration Diagram



### 2.2 Hardware Specifications

### 2.2.1 Hardware Interface

Table 2-1 shows a list of hardware interfaces for this system.

| Table 2-1 H | lardware | Interface |
|-------------|----------|-----------|
|-------------|----------|-----------|

| RL78/F24 Pin Name | Function                                   |  |
|-------------------|--------------------------------------------|--|
| P86 / ANI8        | U-phase voltage measurement                |  |
| P87 / ANI9        | V-phase voltage measurement                |  |
| P90 / ANI10       | W-phase voltage measurement                |  |
| P85 / ANI5        | DC-bus voltage (Vdc) measurement           |  |
| P91 / ANI11       | Motor current (Idc) measurement            |  |
| P84 / ANI4        | Coil-end temperature measurement           |  |
| P125 / ANI24      | Inverter board temperature measurement     |  |
| P11 / TRDIOB0     | Complementary PWM (UP) or port output      |  |
| P12 / TRDIOD0     | Complementary PWM (UN) or port output      |  |
| P15 / TRDIOA1     | Complementary PWM (VP) or port output      |  |
| P17 / TRDIOB1     | Complementary PWM (WP) or port output      |  |
| P16 / TRDIOC1     | Complementary PWM (VN) or port output      |  |
| P30 / TRDIOD1     | Complementary PWM (WN) or port output      |  |
| P140              | Gate driver EN signal output               |  |
| P83 / IVCMP01     | Comparator input for overcurrent detection |  |
| P00 / TI05        | PWM input                                  |  |

#### 2.2.2 Peripheral Functions

Table 2-2 shows the peripheral functions of RL78/F24 product used in this system. For details, see "4. Description of Peripheral Functions Used".

Table 2-2 List of Peripheral Functions Used in This System

| Peripheral Function                  | Usage                                                       |  |
|--------------------------------------|-------------------------------------------------------------|--|
| A/D Converter                        | <ul> <li>U-, V-, and W-phase voltage measurement</li> </ul> |  |
|                                      | DC-bus voltage (Vdc) measurement                            |  |
|                                      | Motor current (Idc) measurement                             |  |
|                                      | Temperature measurement on the motor coil-end               |  |
|                                      | Temperature measurement on the PCB                          |  |
| Timer RDe                            | PWM output using extended complementary PWM mode            |  |
|                                      | (Normal phase: 3 ch, Counter phase: 3 ch)                   |  |
|                                      | PWM output forced cutoff (using PWMOPA)                     |  |
| Port                                 | Motor control signal output                                 |  |
|                                      | Gate driver EN signal output                                |  |
| Timer Array Unit (TAU)               | ray Unit (TAU) • 1 [ms] interval timer                      |  |
|                                      | PWM input                                                   |  |
| D/A Converter                        | Generating threshold voltage for internal comparator        |  |
| Comparator For overcurrent detection |                                                             |  |



# 2.3 Software Configuration

# 2.3.1 File Configuration

Folders and files configuration of the sample program is given below.

| RL78F24_120_ADC_V105 |                            |                                              |  |
|----------------------|----------------------------|----------------------------------------------|--|
| prj                  | RL78F24_120_ADC.mtpj       | CS+ Project File (for CS+)                   |  |
|                      | RL78F24_120_ADC.dep        | IAR workspace files (for IAR)                |  |
|                      | RL78F24_120_ADC.ewd        |                                              |  |
|                      | RL78F24_120_ADC.ewp        |                                              |  |
|                      | RL78F24_120_ADC.ewt        |                                              |  |
|                      | RL78F24_120_ADC.eww        |                                              |  |
| inc                  | iodefine.h                 | SFR definition file (for CC-RL)              |  |
|                      | mtr_cpu_setting.h          | CPU processing header                        |  |
|                      | mtr_fix_calc.h             | Fixed-point processing header                |  |
|                      | mtr_function.h             | Common processing header                     |  |
|                      | mtr_interrupt_bemf.h       | Motor control interruption header            |  |
|                      | mtr_inv_setting.h          | Inverter processing header                   |  |
|                      | r_compiler_common.h        | Compiler processing header                   |  |
|                      | r_mtr_sequence_api.h       | State control processing header              |  |
|                      | r_mtr_user_control_api.h   | User API header                              |  |
|                      | r_mtr_user_control_cfg.h   | User configuration header                    |  |
|                      | r_typedefs.h               | Type declaration header                      |  |
| src                  | mtr_main.c                 | Main function                                |  |
|                      | mtr_cpu_setting.c          | CPU processing                               |  |
|                      | mtr_fix_calc.c             | Fixed-point processing                       |  |
|                      | mtr_function.c             | Common processing                            |  |
|                      | mtr_interrupt_bemf.c       | Motor control interruption handler           |  |
|                      | mtr_inv_setting.c          | Inverter processing                          |  |
|                      | r_mtr_sequence_api.c       | State control processing                     |  |
|                      | r_mtr_user_control_api.c   | User processing                              |  |
|                      | mcu_debug_option_for_iar.c | Option byte setting (for IAR)                |  |
| asm                  | cstart.asm                 | Startup (for CC-RL)                          |  |
|                      | hwinit.asm                 | Hardware initialization (for CC-RL)          |  |
|                      | stkinit.asm                | Stack pointer initialization (for CC-RL)     |  |
|                      | f24opt.asm                 | Option byte setting (supplement) (for CC-RL) |  |



### 2.3.2 Module Configuration

Module configuration of the sample program is described below.



Figure 2-2 Module Configuration of Sample Program



# 2.4 Software Specifications

Table 2-4 shows a basic specifications of sample program.

Table 2-4 Basic Specifications of Sample Program

| Item                                      | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Control method                            | trapezoidal control method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Motor rotation start / stop               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Position detection of rotor magnetic pole |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| PWM carrier frequency                     | 20 [kHz]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Control cycle                             | <ul> <li>Executes zero-crossing detection from the induced voltage per carrier cycle</li> <li>Determination of PWM duty setting and conducting pattern.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Rotation speed control<br>range           | Both CW/CCW are supported from 500 [rpm] to 3000 [rpm].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Rotation speed operation                  | In conducting pattern change, calculates rotate speed from elapse time of previous one.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Speed control<br>(Speed PI control)       | Obtains the speed command value form rotation speed command value setting function, and performs speed control by PI control (10 [ms] cycle).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Processing stop for<br>protection         | <ul> <li>Deactivates the motor control signal output (six outputs) if any of the following conditions are met.</li> <li>When the motor drive (DC-bus) voltage exceeds 28.0 [V] or becomes less than 8.0 [V] (monitored for each carrier interruption handler).</li> <li>When the bus current (ldc) exceeds 10.0 [A] (monitored for each carrier interruption handler).</li> <li>Rotation speed exceeds 10000 [rpm] (monitored for each 1 [ms]).</li> <li>No zero-crossing detected for 200 [ms] in sensorless drive mode.</li> <li>When the inverter board temperature exceeds 125 [°C] (monitored for each 1 [ms]).</li> <li>When the coil-end temperature exceeds 180 [°C] (monitored for each 1 [ms]).</li> </ul> |  |  |



### 3. Motor Control Method

Sensorless trapezoidal control and speed control of the BLDC motor, used in the sample program are explained here.

### 3.1 Sensorless trapezoidal Control of the BLDC Motor

The sensorless control does not have a sensor for obtaining the permanent magnetic position, and hence the alternative to the sensor is required. The sensorless control of permanent magnetic synchronous motor, generally estimates the position by detecting the induced voltage (back-EMF).

The induced voltage in a closed circuit is proportion to the time rate of change of the magnetic flux through the circuit.

For example, considers the case where magnet gets close to the coil, as shown in Figure 3-1. In this case, since the interlinkage magnetic flux increase within the coil, coil generates the electromotive force that flows the current to prevent the increase of interlinkage magnetic flux in the direction of the figure. (The flux of opposite direction of the magnetic flux is occurred by the right-handed screw rule.)



Figure 3-1 Induced Voltage Depending on the Coil Magnet

This induced voltage Em is expressed by the magnetic flux  $\varphi m$  as the following formula.

$$E_m = \frac{d}{dt} \varphi_m \dots$$
 formula (1)

This event occurs event in the rotating permanent magnetic synchronous motor. When the permanent magnet is rotating, the induced voltage is generated by constantly changing interlinkage magnetic flux of each phase.



Figure 3-2 Induced Voltage in the Rotating Permanent Magnetic Synchronous Motor



Figure 3-3 shows the variation of interlinkage magnetic flux in the U-phase. Size of the interlinkage magnetic flux is shown on the vertical (Y) axis and phase of the permanent magnet is shown on the horizontal (X) axis. Also position for disposing the N pole of permanent magnet to coil is considered as ' $\theta$  = 0'.



Figure 3-3 Fluctuation of Interlinkage Magnetic Flux

The interlinkage magnetic flux of U-phase changes in the cosine wave format.

If considered similarly for V-phase and W-phase, V-phase and W-phase deviate respectively by  $2\pi/3$ ,  $4\pi/3$  phase from U-phase.

The interlinkage magnetic flux of the three phases is expressed by the following formula.

$$\varphi_u = \varphi_m \cos \theta$$
$$\varphi_v = \varphi_m \cos(\theta - \frac{2}{3}\pi)$$
$$\varphi_w = \varphi_m \cos(\theta - \frac{4}{3}\pi)$$

Also, the induced voltage of three phases is expressed by the following formula, by using formula (1), when the angle speed is considered as  $\omega$ .

$$E_{u} = \frac{d}{dt}\varphi_{u} = \frac{d}{dt}\varphi_{m}\cos\theta = -\omega\varphi_{m}\sin\theta = \omega\varphi_{m}\cos(\theta + \frac{\pi}{2})$$

$$E_{v} = \frac{d}{dt}\varphi_{v} = \frac{d}{dt}\varphi_{m}\cos(\theta - \frac{2}{3}\pi) = -\omega\varphi_{m}\sin(\theta - \frac{2}{3}\pi) = \omega\varphi_{m}\cos(\theta - \frac{\pi}{6})$$

$$E_{w} = \frac{d}{dt}\varphi_{w} = \frac{d}{dt}\varphi_{m}\cos(\theta - \frac{4}{3}\pi) = -\omega\varphi_{m}\sin(\theta - \frac{4}{3}\pi) = \omega\varphi_{m}\cos(\theta - \frac{5}{6}\pi)$$



From this formula, it is understood that the induced voltage lead of  $\pi/2$  phase from permanent magnetic flux. This mean that if the induced voltage can be detected, position the permanent magnet can be estimated.





However, the induced voltage of each phase is not always detected while the motor is rotating.

During the driving in 120-degree conduction, conduction is performed to the two phases among the three phases and hence only the remaining one phase, to which conduction is not performed, can detect the induced voltage. Actually, position information is obtained by detecting the point of change in the sign of induced voltage (zero-crossing) occurring in non-conducting phase, which can detect the induced voltage.

In the three phases motor, this zero-crossing occurs for total six times, i.e. twice in each phase, in one rotation (electrical angle) of the motor. This means that the position for every 60-degree can be detected by this process in the same way as resolution of hall sensor.



Figure 3-5 Relation between Conducting Pattern and Zero-crossing (Upper Arm Chopping)

RL78/F24

However, this zero-crossing detection signal cannot be used in the same way as the signal of the hall sensor. The zero-crossing detection signal occurs at the point where phase is shifted  $\pi/6$  from proper conducting pattern switching timing, as shown in Figure 3-5. Therefore, in the actual control, conducting pattern is switched at the point where phase is shifted  $\pi/6$  from detecting the zero-crossing.

# 3.2 Zero-crossing Detection Method

Various zero-crossing detection methods are used. The method of detecting the zero-crossing by comparing the value of induced voltage with the center point voltage by the software, using the A/D converter of microcomputer is introduced here. Since voltage is compared without the comparator, it is called as comparator less method.



Figure 3-6 Comparator Less Method

Actually detecting the induced voltage, commutation voltage occurring when switching the conducting patterns, and impact of the PWM of other phases must be considered. This impact is expressed in the format shown in Figure 3-7.



### Figure 3-7 Overview Diagram of Impact of the Commutation and Other Phase PWM

In this system, impact is removed by using the simple filter route and the software.



RL78/F24

The following software is specifically used to remove the commutation voltage.

The first excludes the effect of commutation voltage by disabling zero-crossing detection after the start of zerocrossing detection. At this time, the zero-crossing detection function for each carrier cycle is disabled for the number of times that zero-crossing detection is disabled.



Figure 3-8 Setting the Zero-crossing Detection Invalid Period

| Parameter Name            | Initial Value | Contents                                      |
|---------------------------|---------------|-----------------------------------------------|
| MTR_BEMF_DETECT_GUARD_CNT | 2             | Zero-crossing detection invalid count setting |

Next, sets the range of zero-crossing detection voltage. If an induced voltage exceeding the set range is detected, the zero-crossing detection will be invalid.



Figure 3-9 Zero-crossing Detection Voltage Range Setting

| <b>Table 3-2 Zero-crossing Detection</b> | N Voltage Range Parameter |
|------------------------------------------|---------------------------|
|------------------------------------------|---------------------------|

| Parameter Name              | Initial Value | Contents                                              |
|-----------------------------|---------------|-------------------------------------------------------|
| USER_CFG_BEMF_DETECT_END_TH | 30            | Zero-crossing detection voltage threshold [A/D value] |



### 3.3 Start-up Method

This sensorless trapezoidal control uses the induced voltage due to the change in the magnetic flux of the magnet (rotor) to estimate the position of the magnetic pole at every 60-degree of electrical angle.

Induced voltage does not occur unless the permanent magnet is rotating. This means that the position of magnet cannot be estimated by using the induced voltage, at the time of starting.

Therefore, start-up method in this system synchronizes speed of the permanent magnet by generating a routing magnetic field by forcibly switching the conducting pattern regardless of the position of permanent magnet.



Figure 3-10 Diagram of Start-up Operation



### 3.4 Position Estimate Operation

This system has estimated angle information inside the sample program. The estimated angle data is integrated by calculating the increment angle for each carrier cycle from the rotation speed. The conducting pattern is switched when the calculated estimated angle exceeds the pattern switching angle. Also, when zero-crossing is detected, the estimated angle is corrected to the zero-crossing detection angle.

The correction value of the estimated angle is the value obtained by adding the increase angle for two carrier cycles to the zero-crossing detection angle in consideration of the delay for two carrier cycles. The causes of the delay for two carrier cycles are shown below.

- To prevent false detections, zero-crossing detection is determined when zero-crossing is detected twice in a row. Therefore, there is a delay of one cycle in the carrier cycle from the time when the induced voltage reaches the zero-crossing detection voltage until the internal program determines that the detection is completed.
- The process of switching the conducting pattern is performed by the interrupt handler of the next carrier cycle after the estimated angle detects the pattern switching angle. Therefore, there will be a delay of one carrier cycle.



Figure 3-11 Virtual Hall Sensor Pattern (Upper Arm Chopping)



### 3.5 Rotation Speed Control

In this system, the number of interrupt occurrences is counted as a global pulse number in the PWM carrier cycle interrupt processing. Since PWM carrier interrupts occur every PWM cycle, use this global pulse number to measure the time for any period.

In the rotation speed control process of this system, the elapsed time for each pattern switching for 6 times is obtained from the global pulse number, and the rotation speed is calculated from this elapsed time. Furthermore, in this system, the calculation result is processed LPF.



Figure 3-12 Rotation Speed Calculation Method

| Item    | Variable / Macro Name         | Contents                                                      |  |
|---------|-------------------------------|---------------------------------------------------------------|--|
| Vrpm    | g_mtr_rpm_speed               | Rotation speed after LPF [rpm]                                |  |
| FREQPWM | TRDE_CARRIER_FREQUENCY_HZ     | PWM carrier frequency [Hz]                                    |  |
| N       | _                             | Number of PWM pulses when rotated 360-deg at electrical angle |  |
| PPMOTOR | USER_CFG_MOTOR_POLE_PAIRS     | Motor pole logarithm                                          |  |
| Nk      | g_mtr_global_pulse_number     | Current global pulse number                                   |  |
| Nk-6    | g_mtr_global_pulse_number_old | Global pulse number when calculating rotation speed           |  |

| <b>Table 3-3 Motor Rotation Speed</b> | <b>Calculation Parameters</b> |
|---------------------------------------|-------------------------------|
|---------------------------------------|-------------------------------|



This system is using PI control for motor rotation speed control. The speed PI control is performed every 10 [ms] by 1 [ms] interval timer interrupt processing. This speed PI control interval can be changed by a parameter (g\_mtr\_speed\_pi\_interval). The PWM command value is calculated by the motor rotation speed PI by the following formula.

| $Nerrk = N^* - Nrpm$                                               |
|--------------------------------------------------------------------|
| $d^{*}k = d^{*}k-1 + KP \times (Nerrk - Nerrk-1) + KI \times errk$ |

#### Table 3-4 Speed PI Control Parameters and Variables

| Item  | Item Variable / Macro Name |     | Contents                  |
|-------|----------------------------|-----|---------------------------|
| Nerrk | rrk –                      |     | Speed deviation [rpm]     |
| N*    | g_mtr_rpm_ref              | -   | Speed command value [rpm] |
| Nrpm  | g_mtr_rpm_speed            | -   | Current speed value [rpm] |
| d*k   | g_mtr_next_duty            | Q14 | PWM command value         |
| Kp    | g_mtr_speed_kp_factor      | Q14 | Proportional coefficient  |
| Kı    | g_mtr_speed_ki_factor      | Q14 | Integral coefficient      |

This system uses PWM control to control the output voltage. PWM control is a control method that adjusts the average voltage by changing the duty of the PWM waveform (see Figure 3-13).



Figure 3-13 PWM Control

In this system, complementary PWM chopping (120-degree) is adopted and thus output voltage and speed are controlled. An example of motor control signal output waveforms at the time of complementary PWM is given in Figure 3-14.



Figure 3-14 Waveform of Complementary PWM Chopping (120-degree)



# 3.6 Expression of Degree Value

In this system, the degree value is represented by a normalized 14-bit fixed-point value.

#### Table 3-5 List of Normalized Degree Values

| Degree Measures | Circular Measures | Normalized Degree Values (Q14) |
|-----------------|-------------------|--------------------------------|
| 0 (360)         | 0                 | 0                              |
| 60              | 1.047197551       | 2731                           |
| 120             | 2.094395102       | 5462                           |
| 180             | 3.141592654       | 8192                           |
| 240             | 4.188790205       | 10923                          |
| 300             | 5.235987756       | 13654                          |
| 359             | 6.265732015       | 16338                          |



### 4. Description of Peripheral Functions Used

Peripheral functions used in this system are explained.

Following peripheral functions are explained in this chapter.

- A/D Converter
- Timer Array Unit (TAU)
- Timer RDe

# 4.1 A/D Converter Function

The A/D converter converts the analog input voltage to digital value. The target microcontroller (RL78/F24) incorporates one circuit of 12-bit A/D converter. Analog input of 19 channels can be converted to digital values by controlling the conversion channel.

In this system, the A/D converter is set as given in Table 4-1 and Table 4-2.

#### Table 4-1 Usage of A/D Converter (Obtained by Interrupt of INTTM01)

| Channel                                      | Item | Physical quantity per bit of A/D converted value |  |
|----------------------------------------------|------|--------------------------------------------------|--|
| ANI4 Coil-end temperature measurement        |      | Refer to Table 4-4.                              |  |
| ANI24 Inverter board temperature measurement |      | Refer to Table 4-5.                              |  |

**Remark** INTTM01: Timer array unit 0 channel.1 interrupt

#### Table 4-2 Usage of A/D Converter (Obtained by Interrupt of INTTRD\_ADTRG)

| Channel | Item                             | Physical quantity per bit of A/D converted value |
|---------|----------------------------------|--------------------------------------------------|
| ANI5    | DC-bus voltage (Vdc) measurement | 65.0 [V] / 4095 = 0.0159 [V]                     |
| ANI8    | U-phase voltage measurement      | 25.0 [V] / 4095 = 0.0061 [V]                     |
| ANI9    | V-phase voltage measurement      | 25.0 [V] / 4095 = 0.0061 [V]                     |
| ANI10   | W-phase voltage measurement      | 25.0 [V] / 4095 = 0.0061 [V]                     |
| ANI11   | Motor current (Idc) measurement  | 50.0 [A] / 4095 = 0.0122 [A]                     |

**Remark** INTTRD\_ADTRG: Timer RDe A/D conversion trigger

### Table 4-3 List of A/D Conversion Target

| Obtained target                  | Variable Name       | Fixed-point<br>number format | A/D Input Pin     |
|----------------------------------|---------------------|------------------------------|-------------------|
| DC-bus voltage (Vdc)             | g_mtr_vdc_value     | Q8                           | ANI5              |
| U, V, W-phase voltage            | float_voltage       | Q8                           | ANI8, ANI9, ANI10 |
| Motor current (Idc)              | g_mtr_idc_value     | Q10                          | ANI11             |
| Coil-end temperature measurement | g_th_cur_temp_motor | _                            | ANI4              |
| Inverter board temperature       | g_th_cur_temp_board | _                            | ANI24             |





Figure 4-1 Coil-end Temperature Measurement Graph

| Voltage | Temp.   | Voltage | Temp.  | Voltage | Temp.  | Voltage | Temp.   |
|---------|---------|---------|--------|---------|--------|---------|---------|
| 0.000   | -59.393 | 1.328   | 19.469 | 2.657   | 45.264 | 3.985   | 79.031  |
| 0.078   | -33.636 | 1.407   | 21.111 | 2.735   | 46.818 | 4.063   | 82.049  |
| 0.156   | -23.353 | 1.485   | 22.716 | 2.813   | 48.396 | 4.142   | 85.326  |
| 0.234   | -16.808 | 1.563   | 24.289 | 2.891   | 50.002 | 4.220   | 88.917  |
| 0.313   | -11.870 | 1.641   | 25.836 | 2.969   | 51.641 | 4.298   | 92.896  |
| 0.391   | -7.838  | 1.719   | 27.362 | 3.048   | 53.317 | 4.376   | 97.367  |
| 0.469   | -4.391  | 1.797   | 28.870 | 3.126   | 55.035 | 4.454   | 102.478 |
| 0.547   | -1.354  | 1.875   | 30.364 | 3.204   | 56.801 | 4.532   | 108.450 |
| 0.625   | 1.381   | 1.954   | 31.849 | 3.282   | 58.620 | 4.611   | 115.640 |
| 0.703   | 3.884   | 2.032   | 33.326 | 3.360   | 60.501 | 4.689   | 124.664 |
| 0.781   | 6.205   | 2.110   | 34.799 | 3.438   | 62.450 | 4.767   | 136.738 |
| 0.860   | 8.378   | 2.188   | 36.272 | 3.516   | 64.477 | 4.845   | 154.778 |
| 0.938   | 10.430  | 2.266   | 37.748 | 3.595   | 66.592 | 4.923   | 189.159 |
| 1.016   | 12.382  | 2.344   | 39.228 | 3.673   | 68.808 | 5.000   | 431.619 |
| 1.094   | 14.250  | 2.422   | 40.717 | 3.751   | 71.141 |         |         |
| 1.172   | 16.047  | 2.501   | 42.217 | 3.829   | 73.607 |         |         |
| 1.250   | 17.783  | 2.579   | 43.732 | 3.907   | 76.228 |         |         |

### Table 4-4 Coil-end Temperature Measurement Table

Remarks

The units of the table are as follows.

Voltage: [V], Temperature: [°C]





Figure 4-2 Inverter Board Temperature Measurement Graph

| Voltage | Temp.   | Voltage | Temp.  | Voltage | Temp.   | Voltage | Temp.   |
|---------|---------|---------|--------|---------|---------|---------|---------|
| 0.000   | -46.154 | 1.328   | 41.174 | 2.657   | 77.864  | 3.985   | 128.909 |
| 0.078   | -28.744 | 1.407   | 43.453 | 2.735   | 80.135  | 4.063   | 133.649 |
| 0.156   | -15.757 | 1.485   | 45.688 | 2.813   | 82.45   | 4.142   | 138.83  |
| 0.234   | -7.357  | 1.563   | 47.887 | 2.891   | 84.814  | 4.220   | 144.548 |
| 0.313   | -0.95   | 1.641   | 50.055 | 2.969   | 87.233  | 4.298   | 151.285 |
| 0.391   | 4.326   | 1.719   | 52.2   | 3.048   | 89.716  | 4.376   | 161.566 |
| 0.469   | 8.869   | 1.797   | 54.326 | 3.126   | 92.27   | 4.454   | 171.848 |
| 0.547   | 12.898  | 1.875   | 56.44  | 3.204   | 94.905  | 4.532   | 182.129 |
| 0.625   | 16.546  | 1.954   | 58.545 | 3.282   | 97.629  | 4.611   | 192.41  |
| 0.703   | 19.903  | 2.032   | 60.647 | 3.360   | 100.456 | 4.689   | 202.691 |
| 0.781   | 23.029  | 2.110   | 62.75  | 3.438   | 103.397 | 4.767   | 212.973 |
| 0.860   | 25.969  | 2.188   | 64.858 | 3.516   | 106.468 | 4.845   | 223.254 |
| 0.938   | 28.758  | 2.266   | 66.975 | 3.595   | 109.688 | 4.923   | 233.535 |
| 1.016   | 31.42   | 2.344   | 69.107 | 3.673   | 113.076 | 5.000   | 243.656 |
| 1.094   | 33.978  | 2.422   | 71.257 | 3.751   | 116.659 |         |         |
| 1.172   | 36.447  | 2.501   | 73.43  | 3.829   | 120.465 |         |         |
| 1.250   | 38.842  | 2.579   | 75.631 | 3.907   | 124.533 |         |         |

### Table 4-5 Inverter Board Temperature Measurement Table

Remarks

The units of the table are as follows.

Voltage: [V], Temperature: [°C]



### 4.2 Timer Array Unit (TAU) Function

Timer Array Unit (TAU) consists of eight 16-bit timers. Each 16-bit timer called 'Channel' and can be used as an independent timer as well as an advanced timer function by combining multiple channels. The target microcontroller (RL78/F24) incorporates two units (16 channels in total).



Figure 4-3 Timer Array Unit (TAU)

In this system, the Timer Array Unit is set as given in Table 4-6.

| Table 4-6 Timer Array | Unit (TAU) Setting Details |
|-----------------------|----------------------------|
|-----------------------|----------------------------|

| Unit | СН                              | Item                                         | Contents                                  | Usage                     |
|------|---------------------------------|----------------------------------------------|-------------------------------------------|---------------------------|
| 0    | 1                               | Operation mode of timer                      | Interval timer mode                       | Interval timer for 1 [ms] |
|      |                                 | Source clock                                 | СК00                                      |                           |
|      |                                 | Count clock frequency                        | 40 [MHz]                                  |                           |
|      |                                 | Interruption cycle                           | 1 [ms]                                    |                           |
|      |                                 | Setting value of timer data register (TDR01) | 39999<br>((1 [ms] / (1/40 [MHz])) - 1)    |                           |
|      | 5                               | Operation mode of timer                      | Capture mode                              | For measuring the width   |
|      |                                 | Source clock                                 | CK01                                      | of the input PWM signal   |
|      | Count clock frequency 625 [kHz] |                                              |                                           |                           |
|      |                                 | Interruption cycle                           | Both edge detection                       |                           |
|      |                                 | Setting value of timer data register (TDR05) | _                                         |                           |
|      | 6                               | Operation mode of timer                      | One-count mode                            | For input PWM signal      |
|      |                                 | Source clock                                 | CK01                                      | timeout detection         |
|      | Count clock frequency 625 [kHz] |                                              | 625 [kHz]                                 |                           |
|      |                                 | Interruption cycle                           | 100 [ms]                                  |                           |
|      |                                 | Setting value of timer data register (TDR06) | 62499<br>((100 [ms] / (1/625 [kHz])) - 1) |                           |



### 4.3 Timer RDe Function

Timer RDe consists of two 16-bit timers (timer RD0 and timer RD1). In addition, the following 6 modes are provided for timer RDe function.

- Timer mode
- Reset synchronous PWM mode
- Complementary PWM mode
- PWM3 mode
- Extended PWM mode
- Extended complementary PWM mode

In this system, the timer RDe is set as given in Table 4-7.

| Item                       | Contents                                                                       | Usage              |
|----------------------------|--------------------------------------------------------------------------------|--------------------|
| Mode to use                | Extended complementary PWM mode<br>(Symmetric waveform output)                 | 3-phase PWM output |
| PWM cycle                  | 50 [µs]                                                                        |                    |
| Dead time                  | 1.0 [µs]                                                                       |                    |
| Count source frequency     | 80 [MHz]                                                                       |                    |
| Output level               | Initial output is 'Low', Active level is 'High'                                |                    |
| Buffer operation           | Valid                                                                          |                    |
| Pulse output forced cutoff | Valid (Use PWMOPA function: The output value at the time of cutoff is 'Hi-Z'.) |                    |
| Output pins                | Refer to Table 5-13                                                            |                    |
| A/D conversion trigger     | Valid (PEAK_COUNT – DEADTIME_COUNT)                                            |                    |

#### Table 4-7 Timer RDe Setting Details

**Remark** In extended complementary PWM mode, the timer RDe outputs a waveform by combining the counters and registers of timer RD0 and timer RD1.



TRDi register value TRDGRA0 TRDGRB0 TRDGRB1 0000H TRDIOB0 (UP) TRDIOD0 (UN) TRDIOD1 (Wn) TRDIOD1 (Wn)

An example of PWM output waveform in extended complementary PWM mode is shown in Figure 4-4.

Figure 4-4 Example of PWM Output Waveform in Extended Complementary PWM Mode

### 4.3.1 Calculation of PWM Duty Setting Using Modulation Factor

This part summarizes how to set duty in extended complementary PWM mode (symmetric output). Calculates the positive phase active level width from the normalized PWM duty command value and the PWM cycle count value. Set the calculated value in the buffer registers TRDGRD0, TRDGRC1 and TRDGRD1.

Positive phase active level width = PWM duty command value × PWM cycle count value TRDGRD0, TRDGRC1, TRDGRD1 = PWM cycle count value – Positive phase active level width



### 5. Description of the Control Software

This chapter describes the control software of this system.

### 5.1 Control Block Diagram

In the sample program, a motor is driven by open-loop control. After that, control is performed according to the following block diagram.



Figure 5-1 Control Block Diagram of Sample Program

| ltem            | Variable Name         | Fixed-point<br>number format | Meaning                                  |
|-----------------|-----------------------|------------------------------|------------------------------------------|
| N               | -                     | -                            | Rotation speed                           |
| Nlpf            | g_mtr_rpm_speed       | -                            | Rotation speed after LPF                 |
| N*              | g_mtr_rpm_ref_request | -                            | Rotation speed command value             |
| Nerr            | -                     | -                            | Rotation speed deviation                 |
| d               | g_mtr_next_duty       | -                            | PWM duty command value                   |
| PWM             | -                     | -                            | PWM output signal                        |
| θ               | g_mtr_current_angle   | Q14                          | Estimated rotor angle position           |
| $\Delta \theta$ | g_mtr_increase_angle  | Q14                          | Increased degree value per carrier pulse |
| Vdc             | _                     | _                            | DC-bus voltage                           |
| Vu, Vv, Vw      | _                     | _                            | Phase voltage                            |



The functions of this control program are as follows.

(1) Speed PI control

Speed PI control is performed from the deviation between the rotation speed command value and the current rotation speed, and the PWM duty command value is calculated.

(2) trapezoidal control pattern setting

It switches the conducting pattern every 60-degree using the current estimated angle value, and updates the PWM output value based on the PWM duty command value. The PWM duty command value to be used is rounded to the limit value using the upper limit parameter.

(3) Inverter control

The PWM signal output from the microcontroller converts direct current into three-phase alternating current and supplies it to the BLDC motor.

- BLDC motor control
   Converts the power supplied from the inverter into rotational torque.
- (5) Zero-crossing detection

It monitors the phase voltage (VU, VV, VW) of the BLDC motor and detects the zero-crossing timing of BEMF <sup>Note</sup>. It also corrects the estimated angle value when zero-crossing is detected and calculates the increased angle value for each carrier frequency.

(6) Estimated rotor angle position calculation

The current estimated angle value is updated by adding the increased angle value each time a PWM carrier frequency interrupt occurs.

(7) Rotation speed calculation

Calculate the current rotation speed by calculating the time elapsed in the 6 pattern switching processes from the global pulse number. The calculated current rotation speed value is used after being smoothed by the rotation speed calculation by LPF.

(8) Rotation speed calculation by LPF
 The rotation speed is calculated by the exponential moving average.

Note Back electromotive force



### 5.2 Contents of Control

### 5.2.1 Motor Start / Stop / Shifting

#### 5.2.1.1 Motor Start due to Elapsed Time after Reset

Start and stop control of the motor rotation uses elapsed time since the H/W reset is released. The motor control state and the rotational speed command value are switched by the speed control in the 1 [ms] interval timer interrupt processing.

In this sample software, the speed command value of 500 [rpm] is set after the reset release 3 [s] has elapsed, the operation mode is changed, and the motor rotation control is started.

After that, the value specified by USER\_CFG\_MOTOR\_DIFF\_SPEED (initial value: 500 [rpm]) is added to the rotation speed command value every 10 [s]. After the rotation speed command value reaches the value specified by USER\_CFG\_MOTOR\_MAX\_SPEED (initial value: 3000 [rpm]), the value specified by USER\_CFG\_MOTOR\_DIFF\_SPEED is subtracted from the rotation speed command value every 10 [s].

When the rotation speed command value becomes 0 [rpm], the operation mode is changed and the rotation control is stopped. After 3 [s] after stopping, repeat the above operation again.

#### 5.2.1.2 Motor Start by PWM Command Input

The start and stop of rotation of the motor is controlled by inputting a PWM signal to TI05 pin. The input frequency should be between 10 [Hz] and 1 [kHz], and the operation when a signal outside the range is input is not the expected operation. In this sample software, the rotation speed command value is updated according to the duty ratio of the signal input to TI05. The relationship between the input PWM duty ratio and the rotation speed command value is as follows.

Rotation speed command value = (PWM\_COM\_DUTY\_MAX – "Input signal duty ratio") × USER\_CFG\_MOTOR\_MAX\_SPEED PWM\_COM\_DUTY\_MAX : 4096 [rpm], USER\_CFG\_MOTOR\_MAX\_SPEED : 3000 [rpm]

#### 5.2.2 Inverter DC-bus Voltage

The inverter DC-bus voltage is measured as shown in Table 5-2. The measured voltage value is used to detect overvoltage. If an overvoltage is detected, the PWM output will stop.

#### Table 5-2 Inverter DC-bus Voltage Conversion Ratio

| Item                    | Conversion Ratio (DC-bus voltage : A/D value) | A/D Input Pin |
|-------------------------|-----------------------------------------------|---------------|
| Inverter DC-bus voltage | 0 [V] to 65 [V] : 000H to FFFH                | ANI5          |



Figure 5-2 Conceptional Diagram of Inverter DC-bus Voltage Measurement Circuit



#### 5.2.3 3-phase Voltage of Motor

Voltage of U-, V- and W-phase voltage is measured as shown in Table 5-3. The measured voltage value is used to zero-crossing detection.

| Item                  | Conversion Ratio (3-phase voltage : A/D value) | A/D Input Pin     |
|-----------------------|------------------------------------------------|-------------------|
| U, V, W phase voltage | 0 [V] to 25 [V] : 000H to FFFH                 | ANI8, ANI9, ANI10 |



#### Figure 5-3 Conceptional Diagram of U-, V-, W-Phase Voltage Measurement Circuit

### 5.2.4 Rotation Speed Operations

The rotation speed is calculated by using zero-crossing detection and global pulse number (add for each PWM carrier cycle). The global pulse number is acquired at the timing of pattern switching when zero-crossing is detected, and the following speed calculation processing is performed using that value.

Rotation speed (N) = (60 × 20 [kHz]) / (Global pulse number × Motor pole logarithm)

Remark 20 [kHz]: PWM carrier interruption frequency

In this system, LPF process is performed on the calculation result of the rotation speed.

### 5.2.5 Speed PI Control

In this sample program, speed PI control is executed every 10 [ms] cycle to prevent PI control from being executed multiple times before the next conducting pattern switch.

The voltage command value (V\*) is created as given below.

Proportional term (P):  $K_P \times$  (Current rotation speed deviation – Last rotation speed deviation) Integral term (I):  $K_I \times$  (Current rotation speed deviation) Voltage command value (V\*) = Previous voltage command value + (P) + (I)

 Remarks
 KP:
 Proportional gain (1.50)

 KI :
 Integral gain (0.30)

 Values of KP and KI depend on the used system.

For details of PI control, refer to specialized books.



#### 5.2.6 Motor Current

Motor current is measured as shown in Figure 5-4. The value calculated by the conversion ratio is used to detect the motor current error. If a motor current error is detected, the PWM output will stop.

| Item          | Conversion Ratio (Motor current (Idc): A/D value) | A/D Input Pin |
|---------------|---------------------------------------------------|---------------|
| Motor Current | 0 [A] to 50 [A]: 000H to FFFH                     | ANI11         |





Figure 5-4 Conceptional Diagram of Motor Current Measurement Circuit

### 5.2.7 Motor Starting Method

Figure 5-5 shows the state transition diagram of the sample program.



Figure 5-5 State Transition Diagram

#### 5.2.8 System Protection Functions

This control program has the following 6 types of error status and enables emergency stop functions in case of occurrence of respective error.

(1) Overcurrent error in hardware

The pulse output is forcibly cutoff by the emergency stop signal due to overcurrent detection. Overcurrent is detected by using the internal comparator on the microcontroller (RL78/F24).

(2) Motor rotation speed error

The rotation speed calculation value is monitored at 1 [ms] intervals, and when the rotation speed exceeds the error detection threshold, the motor is stopped by the control software.

#### Table 5-5 Rotation Speed Error Detection Parameter

| Parameter Name       | Initial Value | Contents                                       |
|----------------------|---------------|------------------------------------------------|
| g_err_over_speed_rpm | 10000         | Rotation speed error detection threshold [rpm] |

#### (3) Motor lock error

If conducting pattern switching due to zero-crossing detection does not occur for a certain period, the motor is stopped by the control software.



#### Figure 5-6 Motor Lock Error Detection

#### Table 5-6 Motor Lock Error Detection Parameter

| Parameter Name         | Initial Value | Contents                             |
|------------------------|---------------|--------------------------------------|
| g_err_lock_detect_time | 200           | Motor lock error detection time [ms] |



(4) DC-bus voltage error (Overvoltage and Undervoltage)

The A/D converter is used to monitor the DC-bus voltage and the motor is stopped by software when an overvoltage or undervoltage is detected.



Figure 5-7 DC-bus Voltage Error Detection

#### Table 5-7 DC-bus Voltage Error Detection Parameters

| Parameter Name        | Initial Value | Fixed-point<br>number format | Contents                             |
|-----------------------|---------------|------------------------------|--------------------------------------|
| g_err_over_vol_level  | 28.0          | Q8                           | Overvoltage detection threshold [V]  |
| g_err_under_vol_level | 8.0           | Q8                           | Undervoltage detection threshold [V] |

#### (5) Motor current error

The A/D converter is used to monitor the motor current (Idc) and the motor is stopped by software when an overcurrent is detected.



Figure 5-8 Motor Current Error Detection

| Table 5-8 Motor Current Error Detection | Parameters |
|-----------------------------------------|------------|
|-----------------------------------------|------------|

| Parameter Name             | Initial Value | Fixed-point<br>number format | Contents                                                |
|----------------------------|---------------|------------------------------|---------------------------------------------------------|
| g_err_over_cur_level       | 10.0          | Q10                          | Overcurrent detection threshold [A]                     |
| g_err_over_cur_detect_time | 3             | _                            | Overcurrent detection time<br>[Number of carrier cycle] |



#### (6) Overtemperature

The A/D converter is used to monitor motor coil-end temperature and inverter board temperature and the motor is stopped by software when an overtemperature is detected.



#### Figure 5-9 Overtemperature Detection

#### **Table 5-9 Overtemperature Detection Parameters**

| Parameter Name              | Initial Value | Contents                                                   |
|-----------------------------|---------------|------------------------------------------------------------|
| g_err_over_temp_level_board | 125           | Inverter board overtemperature detection<br>threshold [°C] |
| g_err_over_temp_level_motor | 180           | Motor coil-end overtemperature detection<br>threshold [°C] |

#### Error status number:

If an error is detected, the number indicating the error that occurred is stored in 'g\_err\_flag\_cur\_loop'. If multiple errors are detected, the corresponding bit will be 1.

#### Table 5-10 Error Status Number

| Variable Name       | Value           | Contents                             |
|---------------------|-----------------|--------------------------------------|
| g_err_flag_cur_loop | 0x0001 (bit 0)  | Overvoltage error                    |
|                     | 0x0002 (bit 1)  | Undervoltage error                   |
|                     | 0x0010 (bit 4)  | Motor current error                  |
|                     | 0x0020 (bit 5)  | Overcurrent error in hardware        |
|                     | 0x0100 (bit 8)  | Motor lock error                     |
|                     | 0x0200 (bit 9)  | Motor rotation speed error           |
|                     | 0x1000 (bit 12) | Inverter board overtemperature error |
|                     | 0x2000 (bit 13) | Coil-end overtemperature error       |



# 5.3 System Resources

### 5.3.1 Interrupt Function

Table 5-11 shows the interruption resources used by this control program.

### **Table 5-11 Interruption Resources**

| Interruption                                   | Interruption Handler                     | Occurrence<br>Conditions               | Main Functions                                                                                                                                                                                                                                                          |
|------------------------------------------------|------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Carrier Frequency<br>interruption<br>(INTTRD1) | static void carrier_isr(void)            | 50.0 [µs]<br>(20 [kHz])                | <ul> <li>Zero-crossing detection<br/>processing</li> <li>Conducting pattern switching</li> <li>Rotation speed operation</li> <li>Error monitoring</li> </ul>                                                                                                            |
| Interval timer<br>interruption<br>(INTTM01)    | static void<br>interval_timer_isr(void)  | 1 [ms]<br>(1 [kHz))                    | <ul> <li>User interface processing</li> <li>For timeout detection</li> <li>Open-loop control</li> <li>Minimum rotation control</li> <li>Speed PI control</li> <li>Get the temperature of<br/>inverter board and coil-end</li> <li>Overtemperature monitoring</li> </ul> |
| A/D conversion<br>interruption<br>(INTAD)      | static void<br>ad_completion_isr(void)   | End of A/D conversion                  | Get DC-bus voltage, BEMF voltage, and Motor current                                                                                                                                                                                                                     |
| Capture timer<br>interruption<br>(INTTM05)     | static void pwm_com_isr(void)            | TI05 Input<br>signal edge<br>detection | Control by PWM signal input                                                                                                                                                                                                                                             |
| One-count timer<br>interruption<br>(INTTM06)   | static void<br>pwm_com_timeout_isr(void) | 100 [ms]<br>(10 [Hz])                  | Control by PWM signal input                                                                                                                                                                                                                                             |



# 5.3.2 Port Function

Table 5-12 shows the port functions used in this control program.

#### Table 5-12 Port Function to Use

| I/O    | Port Number | Function                                                       | Remarks                 |
|--------|-------------|----------------------------------------------------------------|-------------------------|
| Output | P140        | Gate drivers enable/disable signal output                      | -                       |
|        | P11         | U-phase upper arm motor control signal port output (UP)        | Logic setting is 'High' |
|        | P12         | U-phase lower arm motor control signal port output (UN) active |                         |
|        | P15         | V-phase upper arm motor control signal port output (VP)        |                         |
|        | P16         | V-phase lower arm motor control signal port output (VN)        |                         |
|        | P17         | W-phase upper arm motor control signal port output (WP)        |                         |
|        | P30         | W-phase lower arm motor control signal port output (WN)        |                         |

### 5.3.3 PWM Output Function

Table 5-13 shows the PWM output function used in this control program.

#### Table 5-13 PWM Output Function to Use

| I/O    | Output Pin    | Function                                           | Remarks                 |
|--------|---------------|----------------------------------------------------|-------------------------|
| Output | TRDIOB0 / P11 | U-phase upper arm motor control signal output (UP) | Logic setting is 'High' |
|        | TRDIOD0 / P12 | U-phase lower arm motor control signal output (UN) | active                  |
|        | TRDIOA1 / P15 | V-phase upper arm motor control signal output (VP) |                         |
|        | TRDIOC1 / P16 | V-phase lower arm motor control signal output (VN) |                         |
|        | TRDIOB1 / P17 | W-phase upper arm motor control signal output (WP) |                         |
|        | TRDIOD1 / P30 | W-phase lower arm motor control signal output (WN) |                         |



### 5.4 Function Specifications of the Sample Program

Multiple control functions are used in this control program. Table 5-14 shows the control functions list used in this control program.

For detailed processing, refer to flowcharts or source files.

| Table 5-14 L | _ist of | Control | Functions | (1/5) |
|--------------|---------|---------|-----------|-------|
|              |         | ••••••  |           | ( /   |

| Function Name                                               | Processing Overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File Name: mtr_main.c                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Name: main ()<br>Input: None<br>Output: None                | <ul> <li>Call hardware initialization function         <ul> <li>Call the CPU initialization function</li> <li>Call the inverter dependency initialization function</li> <li>Call the motor dependency initialization function</li> <li>Call the user initialization function</li> <li>Call the user initialization function</li> </ul> </li> <li>Main processing         <ul> <li>Call the watchdog timer clear function</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| File Name: mtr_cpu_setting.c (1/2)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Name: cpu_init ()<br>Input: None<br>Output None             | <ul> <li>CPU initialization function</li> <li>Initialization function call of each peripheral function <ul> <li>Call the clock initialization function</li> <li>Call the I/O port initialization function</li> <li>Call the TAU01 initialization function</li> <li>Call the A/D converter initialization function</li> <li>Call the D/A converter initialization function</li> <li>Call the comparator initialization function</li> <li>Call the Taurator initialization function</li> <li>Call the Timer RDe initialization function</li> <li>Call the TAU05 initialization function</li> <li>Call the TAU05 initialization function</li> </ul> </li> <li>Call the TAU06 initialization function</li> </ul> |
| Name: cgc_init ()<br>Input: None<br>Output: None            | Clock initialization function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Name: port_init ()<br>Input: None<br>Output: None           | I/O port initialization function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Name: tau01_init ()<br>Input: uint16_t freq<br>Output: None | TAU01 initialization function<br>freq: TAU01 interrupt period value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Name: tau01_start ()<br>Input: None<br>Output: None         | TAU01 count start function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Name: trde_init ()<br>Input: None<br>Output: None           | Timer RDe initialization function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Name: trde_start ()<br>Input: None<br>Output: None          | Timer RDe count start function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |


# Table 5-14 List of Control Functions (2/5)

| Function Name                                                          | Processing Overview                                                                                                            |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| File Name: mtr_cpu_setting.c (2/2)                                     |                                                                                                                                |
| Name: trde_disable_inv_out ()<br>Input: None<br>Output: None           | Inverter output stop function                                                                                                  |
| Name: pwmopa_release_hz ()<br>Input: None<br>Output: None              | Forcibly cutoff release function for PWM output                                                                                |
| Name: adc_init ()<br>Input: None<br>Output: None                       | A/D converter initialization function                                                                                          |
| Name: adc_set_ad_ch_bemf ()<br>Input: uint16_t channel<br>Output: None | Function to get the A/D conversion result channel: A/D channel number                                                          |
| Name: dac_init ()<br>Input: None<br>Output: None                       | D/A converter initialization function                                                                                          |
| Name: cmp_init ()<br>Input: None<br>Output: None                       | Comparator initialization function                                                                                             |
| Name: port_change_pattern ()<br>Input: uint8_t pattern<br>Output: None | Conducting pattern update function<br>pattern: Conducting pattern                                                              |
| Neme: trde_calc_pwm_ref ()<br>Input: int16_t ref<br>Output: None       | Calculates the value to be set in the timer RDe PWM duty setting register from the set duty value. ref: PWM duty command value |
| Name: tau05_init ()<br>Input: None<br>Output: None                     | TAU05 initialization function                                                                                                  |
| Name: tau05_start ()<br>Input: None<br>Output: None                    | TAU05 count start function                                                                                                     |
| Name: tau06_init ()<br>Input: None<br>Output: None                     | TAU06 initialization function                                                                                                  |
| Name: tau06_start ()<br>Input: None<br>Output: None                    | TAU06 count start function                                                                                                     |
| Name: wdt_clear ()<br>Input: None<br>Output: None                      | Watchdog timer counter clear function                                                                                          |



# Table 5-14 List of Control Functions (3/5)

| Function Name                         | Processing Overview                                              |
|---------------------------------------|------------------------------------------------------------------|
|                                       | Fiblessing Overview                                              |
| File Name: mtr_fix_calc.c             |                                                                  |
| Name: fix8_mul_int16 ()               | Fixed-point calculation function: (16-bit × 16-bit) >> 8         |
| Input: int16_t fix_1, fix_2           | fix_1: Input data 1                                              |
| Output: int16_t tomp                  | fix_2: Input data 2<br>temp: Calculation result                  |
| Output: int16_t temp                  | •                                                                |
| Name: fix10_mul_int16 ()              | Fixed-point calculation function: (16 bit x 16 bit) >> 10        |
| Input: int16_t fix_1, fix_2           | fix_1: Input data 1<br>fix_2: Input data 2                       |
| Output: int16_t temp                  | temp: Calculation result                                         |
| Name: fix12 mul int16 ()              | Fixed-point calculation function: (16 bit x 16 bit) >> 12        |
| Input: int16_t fix_1, fix_2           | fix_1: Input data 1                                              |
|                                       | fix_2: Input data 2                                              |
| Output: int16_t temp                  | temp: Calculation result                                         |
| Name: fix14_mul_int16 ()              | Fixed-point calculation function: (16 bit x 16 bit) >> 14        |
| Input: int16_t fix_1, fix_2           | fix_1: Input data 1                                              |
|                                       | fix_2: Input data 2                                              |
| Output: int16_t temp                  | temp: Calculation result                                         |
| Name: fix16_mul_int16 ()              | Fixed-point calculation function: (16 bit × 16 bit) >> 16        |
| Input: int16_t fix_1, fix_2           | fix_1: Input data 1                                              |
|                                       | fix_2: Input data 2                                              |
| Output: int16_t temp                  | temp: Calculation result                                         |
| File Name: mtr_function.c             |                                                                  |
| Name: err_check_error_cur_loop ()     | Error checking function that occurred                            |
| Input: None                           | Overcurrent detection                                            |
| Output: None                          | <ul> <li>Overvoltage/undervoltage detection</li> </ul>           |
|                                       | <ul> <li>Call the motor lock error detection function</li> </ul> |
|                                       | Hardware overcurrent detection                                   |
|                                       | Motor rotation speed error detection                             |
| Name: err_check_over_temp ()          | Overtemperature error detection                                  |
| Input: None                           | Inverter board overtemperature detection                         |
| Output: None                          | Motor coil-end overtemperature detection                         |
| Name: err_error_stop ()               | Motor stop function due to error detection                       |
| Input: None                           | Call the inverter output stop function                           |
| Output: None                          |                                                                  |
| Name: mtr_detect_synchro_loss ()      | Motor lock error detection function                              |
| Input: None                           | latest Essence It                                                |
| Output: uint8_t detect                | detect: Error result                                             |
| File Name: mtr_interrupt_bemf.c (1/2) |                                                                  |
| Name: mtr_detect_zerocross ()         | Zero-crossing detection function                                 |
| Input: None                           |                                                                  |
| Output: None                          |                                                                  |
| Name: mtr_speed_calc ()               | Motor rotation speed calculation function                        |
| Input: None                           |                                                                  |
| Output: None                          |                                                                  |
| Name: pwm_com_get_duty ()             | Function to get the duty ratio of the input PWM signal           |
| Input: None                           | a num com dutu Duturatio of the innut DWM signal                 |
| Output: uint32_t s_pwm_com_duty       | s_pwm_com_duty: Duty ratio of the input PWM signal               |



| File Name: mtr_interrupt_bemf.c (2/2)Name: interval_timer_isr ()Input: NoneOutput: NoneOutput: NoneImput: NoneOutput: NoneImput: NoneImput: NoneImput: NoneImput: NoneImput: NoneImput: NoneOutput: NoneImput: NoneImput: NoneImput: NoneOutput: NoneOutput: NoneImput: NoneOutput: NoneImput: No | error detection timing<br>ontrol<br>g<br>ection<br>hronous interrupt processing<br>witching |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Name: interval_timer_isr ()1 [ms] interval timer inInput: NoneUser interface proceOutput: NoneGenerate motor lockOutput: NoneOpen-loop controlLow speed rotation of<br>Sequence processinName: carrier_isr ()Carrier frequency syndInput: NoneCarlier frequency syndOutput: NoneCarlier frequency syndOutput: NoneCall the motor rotationName: ad_completion_isr ()End of A/D conversionInput: NoneEnd of A/D conversionOutput: NoneGet the A/D value ofOutput: NoneGet the A/D value ofOutput: NoneFunction to measure the                                                                                                                                                                                                                                                                                                            | error detection timing<br>ontrol<br>g<br>ection<br>hronous interrupt processing<br>witching |
| Input: NoneUser interface procesOutput: NoneGenerate motor lockOutput: NoneOpen-loop controlName: carrier_isr ()Carrier frequency syndInput: NoneCarrier frequency syndOutput: NoneCarlier frequency syndOutput: NoneCall the motor rotationName: ad_completion_isr ()End of A/D conversionInput: NoneGet the A/D value ofOutput: NoneGet the A/D value ofOutput: NoneFunction to measure the                                                                                                                                                                                                                                                                | error detection timing<br>ontrol<br>g<br>ection<br>hronous interrupt processing<br>witching |
| Input: None• Conducting patternsOutput: None• Call the motor rotationOutput: None• Call the motor rotation• DC-bus voltage calco• Call the zero-crossin• Call the duty values• Call the duty values• Call the duty values• Call the error checkinName: ad_completion_isr ()End of A/D conversionInput: None• Get the A/D value ofOutput: None• Get the A/D value of• Get the A/D value of• Get the A/D value of• Name: pwm_com_isr ()Function to measure the                                                                                                                                                                                                                                                                                                                                                                           | witching                                                                                    |
| Input: None       • Get the A/D value of         Output: None       • Get the A/D value of         • Get the A/D value of       • Get the A/D value of         • Get the A/D value of       • Get the A/D value of         • Name: pwm_com_isr ()       • Function to measure the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e A/D conversion channel setting<br>ulation<br>g detection function<br>etting function      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DC-bus voltage<br>non-energizing phase voltage<br>motor current                             |
| Input: None<br>Output: None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e pulse width of the input PWM signal                                                       |
| Name: pwm_com_timeout_isr ()Time-out detection fun<br>the input PWM signalInput: Nonethe input PWM signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ction for pulse width measurement of                                                        |
| File Name: mtr_inv_setting.c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                             |
| Output: None  • Motor current physic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ical value conversion coefficient setting<br>al value conversion coefficient setting        |
| Name: th_get_temp_board ()Get the inverter boardInput: None0Output: float32_t temp1temp1: Inverter board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
| Name: th_get_temp_motor ()Get the coil-end tempeInput: NoneInput: float32_t temp1Output: float32_t temp1temp1: Coil-end tempe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                             |

# Table 5-14 List of Control Functions (4/5)



# Table 5-14 List of Control Functions (5/5)

| Function Name                                                           | Processing Overview                                                                                                                                                                                                         |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File Name: r_mtr_sequence_api.c                                         |                                                                                                                                                                                                                             |
| Name: R_SEQ_ExecEvent () Input: uint8_t event                           | <ul> <li>Status update</li> <li>Function call of the event that occurred<br/>event: Event that occurred</li> </ul>                                                                                                          |
| Output: None                                                            |                                                                                                                                                                                                                             |
| Name: seq_act_run ()<br>Input: uint8_t state<br>Output: uint8_t state   | Call the variable initialization function when driving the motor state: Sequence status data                                                                                                                                |
| Name: seq_act_stop ()<br>Input: uint8_t state<br>Output: uint8_t state  | <ul> <li>Call the inverter stop function</li> <li>Call the variable initialization function when driving the motor</li> <li>Call the PWM output forcibly cutoff release function<br/>state: Sequence status data</li> </ul> |
| Name: seq_act_none ()<br>Input: uint8_t state<br>Output: uint8_t state  | No operation<br>state: Sequence status data                                                                                                                                                                                 |
| Name: seq_act_reset ()<br>Input: uint8_t state<br>Output: uint8_t state | <ul> <li>Call the variable initialization function when driving the motor</li> <li>Call the PWM output forcibly cutoff release function<br/>state: Sequence status data</li> </ul>                                          |
| Name: seq_act_error ()<br>Input: uint8_t state<br>Output: uint8_t state | Call the inverter output stop function<br>state: Sequence status data                                                                                                                                                       |
| Name: seq_act_break ()<br>Input: uint8_t state<br>Output: uint8_t state | <ul> <li>Break count setting</li> <li>Call the conducting pattern switching function<br/>state: Sequence status data</li> </ul>                                                                                             |
| Name: seq_init_start ()<br>Input: None<br>Output: None                  | Variable initialization function when driving the motor                                                                                                                                                                     |
| File Name: r_mtr_user_control_api.c                                     |                                                                                                                                                                                                                             |
| Name: R_USER_InitMotor ()<br>Input: None<br>Output: None                | Motor dependency initialization function <ul> <li>Motor parameters initialization</li> </ul>                                                                                                                                |
| Name: R_USER_InitCtrl ()<br>Input: None<br>Output: None                 | User parameters initialization function <ul> <li>User setting parameters initialization</li> </ul>                                                                                                                          |
| Name: R_USER_MotorControl ()<br>Input: None<br>Output: None             | User interface processing <ul> <li>Update motor status (Start driving the motor)</li> <li>Rotation speed command value setting</li> </ul>                                                                                   |
| Name: user_change_ref_speed ()<br>Input: None<br>Output: None           | Update of rotation speed command value                                                                                                                                                                                      |



# 5.5 Variable Specifications of the Sample Program

Lists of variables used in this sample program are given below. Note that local variables are not described.

Caution: Do not change variables with (\*) in this sample program.

| Variables                            | Туре     | Content                                                                     |  |
|--------------------------------------|----------|-----------------------------------------------------------------------------|--|
| File Name: mtr_function.c            |          |                                                                             |  |
| g_err_over_vol_level                 | int16_t  | Overvoltage detection threshold                                             |  |
| g_err_under_vol_level                | int16_t  | Undervoltage detection threshold                                            |  |
| g_err_over_cur_level                 | int16_t  | Overcurrent detection threshold                                             |  |
| g_err_over_cur_detect_time           | uint16_t | Overcurrent detection time                                                  |  |
| g_err_over_cur_time_cnt              | uint16_t | Overcurrent detection time count value (*)                                  |  |
| g_err_lock_detect_time               | uint16_t | Motor lock error detection time                                             |  |
| g_err_flag_cur_loop                  | uint16_t | Error detection flag (*)                                                    |  |
| g_err_timeout_cnt                    | uint16_t | Motor lock error detection time count value (*)                             |  |
| g_err_over_speed_rpm                 | uint16_t | Motor rotation speed error detection threshold                              |  |
| g_err_over_temp_level_board          | uint16_t | Inverter board overtemperature detection threshold                          |  |
| g_err_over_temp_level_motor          | uint16_t | Coil-end overtemperature detection threshold                                |  |
| File Name: mtr_inv_setting.c         |          |                                                                             |  |
| g_inv_vdc_range                      | int16_t  | DC-bus voltage conversion coefficient (*)                                   |  |
| g_inv_cur_range                      | int16_t  | Motor current conversion coefficient (*)                                    |  |
| g_inv_bemf_range                     | int16_t  | BEMF voltage conversion coefficient (*)                                     |  |
| File Name: r_mtr_user_control_api.c  |          |                                                                             |  |
| g_user_TargetRotateDir               | uint8_t  | Rotation direction [0: CW, 1: CCW]                                          |  |
| g_user_MotorAccelDir                 | uint8_t  | Acceleration / deceleration state of motor (*)                              |  |
| File Name: mtr_interrupt_bemf.c (1/3 | 3)       |                                                                             |  |
| g_mtr_rotate_dir                     | uint8_t  | Current motor rotation direction (*) [0: CW, 1: CCW]                        |  |
| g_mtr_mode_system_request            | uint8_t  | User event input<br>[0: Stop, 1: Start, 2: Error, 3: Reset. 4: Break]       |  |
| g_mtr_mode_system                    | uint8_t  | Operating condition (*)<br>[0: Stopping, 1: Driving, 2: Error is occurring] |  |
| g_err_error_status                   | uint8_t  | Error identification number (*)                                             |  |
| g_mtr_run_mode                       | uint8_t  | Driving mode (*) [0: Open-loop, 1: BEMF]                                    |  |
| g_mtr_rpm_speed                      | int16_t  | Current rotation speed (*)                                                  |  |
| g_mtr_ref_limit                      | int16_t  | PWM duty limit                                                              |  |
| g_mtr_rpm_ref                        | int16_t  | Target rotation speed (*)                                                   |  |
| g_mtr_rpm_ref_request                | int16_t  | Target rotation speed command value                                         |  |
| g_mtr_rpm_ref_request_old            | int16_t  | Previous target rotation speed command value (*)                            |  |
| g_mtr_slope_time_count               | uint8_t  | Target rotation speed slope control counter (*)                             |  |
| g_mtr_setting_min_rpm                | uint16_t | Minimum rotation speed setting value                                        |  |
| g_mtr_speed_lpf_factor               | uint16_t | Rotation speed filter setting value                                         |  |
| g_mtr_speed_culc_counter             | uint8_t  | Number of segments for rotation speed calculation (*)                       |  |

# Table 5-15 Variables List (1/3)



# Table 5-15 Variables List (2/3)

| Variables                            | Туре        | Content                                                                                                                                   |
|--------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| File Name: mtr_interrupt_bemf.c (2/3 |             |                                                                                                                                           |
| g_ad_data_bemf                       | uint16_t    | A/D value of non-energizing phase voltage (*)                                                                                             |
| g_ad_data_vdc                        | uint16_t    | A/D value of DC-bus voltage (*)                                                                                                           |
| g_ad_data_idc                        | int16_t     | A/D value of motor current (*)                                                                                                            |
| g_ad_data_temp_board                 | uint16_t    | A/D value of inverter board temperature (*)                                                                                               |
| g_ad_data_temp_motor                 | uint16_t    | A/D value of coil-end temperature (*)                                                                                                     |
| g_mtr_time_setting_offset            | uint16_t    | Offset initialization time setting when driving the motor                                                                                 |
| g_mtr_time_cnt_offset                | uint16_t    | Offset initialization counter when driving the motor (*)                                                                                  |
| g_mtr_vdc_value                      | int16_t     | Physical value of DC-bus voltage                                                                                                          |
| g_mtr_idc_value                      | int16_t     | Physical value of motor current                                                                                                           |
| g_mtr_offset_idc                     | int16_t     | Motor current offset value                                                                                                                |
| g_mtr_offset_idc_lpf_factor          | int16_t     | Motor current offset filter value                                                                                                         |
| g_mtr_idc_lpf_factor                 | uint16_t    | Motor current filter value                                                                                                                |
| g_mtr_vdc_lpf_factor                 | uint16_t    | DC-bus voltage filter value                                                                                                               |
| g_th_cur_temp_board                  | float32_t   | Physical value of inverter board temperature                                                                                              |
| g_th_cur_temp_motor                  | float32_t   | Physical value of coil-end temperature                                                                                                    |
| g_mtr_current_angle                  | uint16_t    | Estimated angle value (*)                                                                                                                 |
| g_mtr_increase_angle                 | uint16_t    | Incremental angle value for each carrier frequency (*)                                                                                    |
| g_mtr_const_rpm_to_inc_angle         | int16_t     | Conversion coefficient from rotation speed (RPM) to                                                                                       |
| <u>9coc.</u> .p <u>_</u> <u>9</u> .c |             | angle value                                                                                                                               |
| g_mtr_speed_pi_cnt                   | uint8_t     | Speed PI control timing generation counter (*)                                                                                            |
| g_mtr_speed_kp_factor                | int16_t     | Term (P) coefficient for speed PI control                                                                                                 |
| g_mtr_speed_ki_factor                | int16_t     | Term (I) coefficient for speed PI control                                                                                                 |
| g_mtr_speed_ref                      | int16_t     | PWM duty command value for speed PI control (*)                                                                                           |
| g_mtr_speed_ref_p                    | int16_t     | Term (P) calculation value for speed PI control (*)                                                                                       |
| g_mtr_speed_ref_i                    | int16_t     | Term (I) calculation value for speed PI control (*)                                                                                       |
| g_mtr_speed_delta_pre                | int16_t     | Time-lag deviation of first order for speed PI control (*)                                                                                |
| g_mtr_speed_pi_err_limit             | int16_t     | Deviation limit value for speed PI control                                                                                                |
| g_mtr_speed_pi_interval              | uint8_t     | Speed PI control interval                                                                                                                 |
| g_mtr_pole_pairs                     | uint8_t     | Number of pole pairs for motor                                                                                                            |
| g_mtr_rpm_slope                      | int16_t     | Target rotation speed conversion rate (*)                                                                                                 |
| g_mtr_rpm_slope_request              | int16_t     | Target rotation speed conversion rate command value                                                                                       |
| g_mtr_rpm_slope_ol                   | int16_t     | Target rotation speed conversion rate during an open-                                                                                     |
|                                      |             | loop operation                                                                                                                            |
| g_mtr_arign_cnt_ol_1st               | uint16_t    | 1st position determination processing time counter (*)                                                                                    |
| g_mtr_setting_arign_time_ol_1st      | uint16_t    | 1st position determination processing setting time                                                                                        |
| g_mtr_arign_cnt_ol_2nd               | uint16_t    | 2nd position determination processing time counter (*)                                                                                    |
| g_mtr_setting_arign_time_ol_2nd      | uint16_t    | 2nd position determination processing setting time                                                                                        |
| g_mtr_open_loop_mode                 | uint16_t    | Operation mode during an open-loop operation<br>[1: 1st position determination, 2: 2nd position<br>determination, 3: Open-loop operation] |
| g_mtr_change_bemf_rpm_ol             | uint16_t    | Sensorless control switching speed                                                                                                        |
| g_mtr_initial_angle_ol_1st           | int16_t     | Angle data of 1st position determination processing                                                                                       |
| g_mtr_initial_angle_ol_2nd           | int16_t     | Angle data of 2nd position determination processing                                                                                       |
| g_mtr_current_pattern                | <br>uint8_t | Current conducting pattern number (*)                                                                                                     |
| g_mtr_next_pattern                   | <br>uint8_t | Conducting pattern number update reservation (*)                                                                                          |



# Table 5-15 Variables List (3/3)

| Variables                             | Туре               | Content                                                          |  |
|---------------------------------------|--------------------|------------------------------------------------------------------|--|
| File Name: mtr_interrupt_bemf.c (3/3) |                    |                                                                  |  |
| g_mtr_float_port                      | uint8_t            | Get the number of non-energizing phase port (*)                  |  |
| g_mtr_pattern_change_enable           | uint8_t            | Conducting pattern update permission flag (*)                    |  |
| g_mtr_pattern_table_120deg_cw         | st_pattern_table_t | trapezoidal control pattern table [CW] (*)                       |  |
| g_mtr_pattern_table_120deg_ccw        | st_pattern_table_t | trapezoidal control pattern table [CCW] (*)                      |  |
| * gp_pattern_table                    | st_pattern_table_t | Conducting pattern table pointer (*)                             |  |
| g_mtr_detect_mode                     | uint8_t            | BEMF detection mode<br>[0: BEMF no detection, 1: BEMF detection] |  |
| g_mtr_segment_pulse_number            | uint16_t           | Segment pulse number (*)                                         |  |
| g_mtr_global_pulse_number             | uint16_t           | Global pulse number (*)                                          |  |
| g_mtr_global_pulse_number_old         | uint16_t           | Global pulse number when the rotation speed is fixed (*)         |  |
| g_mtr_permit_bemf_mode                | uint8_t            | BEMF mode transition permission flag (*)                         |  |
| g_mtr_advance_angle                   | uint16_t           | Advance angle value (*)                                          |  |
| g_mtr_bemf_detect_end_threshold       | uint16_t           | Zero-crossing detection voltage                                  |  |
| g_mtr_correction_angle                | uint16_t           | Correction angle value (*)                                       |  |
| g_mtr_detect_slope                    | uint8_t            | BEMF detection slope value (*)                                   |  |
| g_mtr_initial_duty                    | int16_t            | Duty initial setting value                                       |  |
| g_mtr_next_duty                       | int16_t            | Duty update reservation value (*)                                |  |
| g_mtr_current_duty                    | int16_t            | Current duty value (*)                                           |  |
| g_mtr_auto_power_off_time             | uint16_t           | Time for the motor to stop automatically (*)                     |  |
| g_mtr_auto_power_off_tick_count       | uint16_t           | Counter for the time when the motor automatically stops (*)      |  |
| g_mtr_brake_count                     | uint16_t           | Break count (*)                                                  |  |
| g_mtr_brake_count_request             | uint16_t           | Break count command value (*)                                    |  |
| g_mtr_brake_tick_count                | uint16_t           | Counter for the break count detection (*)                        |  |



# 5.6 Macro Definitions of the Sample Program

Table 5-16 shows a list of macro definitions used in this control program.

# Table 5-16 Macro Definitions List (1/4)

| Macro Name                                                   | Value            | Content                                                             |
|--------------------------------------------------------------|------------------|---------------------------------------------------------------------|
| File Name: mtr_cpu_setting.h                                 | 1                |                                                                     |
| MCUIO_PLL_CLOCK_HZ                                           | 80000000         | PLL clock frequency [Hz]                                            |
| MCUIO_SYSTEM_CLOCK_HZ                                        | 4000000          | CPU clock frequency [Hz]                                            |
| MCUIO_PERIPHERAL_CLOCK_HZ                                    | 40000000         | Peripheral hardware clock frequency [Hz]                            |
| File Name: mtr_interrupt_bemf.h                              | 1000000          |                                                                     |
| MTR_MODE_RUN_OPENLOOP                                        | 1                | Operation mode: Open-loop mode                                      |
| MTR_MODE_RUN_BEMF                                            | 2                | Operation mode: BEMF mode                                           |
| MTR_MODE_OPENLOOP_ARIGN_1ST                                  | 1                | 1st position determination processing                               |
| MTR_MODE_OPENLOOP_ARIGN_2ND                                  | 2                | 2nd position determination processing                               |
| MTR_MODE_OPENLOOP_ROTATE                                     | 3                | Open-loop driving in open-loop mode                                 |
| ERROR_OVER_VOLTAGE                                           | 0x0001           | Overvoltage detection                                               |
| ERROR_UNDER_VOLTAGE                                          | 0x0001<br>0x0002 | Undervoltage detection                                              |
| ERROR_OVER_CURRENT                                           | 0x0002<br>0x0010 | Overcurrent detection                                               |
| ERROR_OVER_CURRENT_HW                                        | 0x0010           | H/W overcurrent detection                                           |
| ERROR STEP OUT                                               | 0x0020<br>0x0100 | Motor lock error detection                                          |
| ERROR OVER SPEED                                             | 0x0100           |                                                                     |
|                                                              | 0x0200<br>0x1000 | Motor rotation speed error detection                                |
| ERROR_OVER_TEMPERATURE_BOARD<br>ERROR_OVER_TEMPERATURE_MOTOR | 0x1000<br>0x2000 | Inverter board overtemperature detection                            |
|                                                              | 1                | Coil-end overtemperature detection                                  |
|                                                              | 0                | BEMF detection in up slope                                          |
|                                                              | 1                | BEMF detection in down slope                                        |
|                                                              | 0                | No pattern                                                          |
| MTR_U_PWM_V_LOW_W_OFF                                        | 1                | Conducting pattern: U-phase to V-phase                              |
| MTR_U_PWM_W_LOW_V_OFF                                        | 2                | Conducting pattern: U-phase to W-phase                              |
| MTR_V_PWM_W_LOW_U_OFF                                        | 3                | Conducting pattern: V-phase to W-phase                              |
| MTR_V_PWM_U_LOW_W_OFF                                        | 4                | Conducting pattern: V-phase to U-phase                              |
| MTR_W_PWM_U_LOW_V_OFF                                        | 5                | Conducting pattern: W-phase to U-phase                              |
| MTR_W_PWM_V_LOW_U_OFF                                        | 6                | Conducting pattern: W-phase to V-phase                              |
| MTR_PATTERN_NUM                                              | 6                | Total number of conducting patterns                                 |
| MTR_ALL_LOW_ON                                               | 7                | Output pattern: Break (stop conducting pattern)                     |
| MTR_BEMF_MODE_NONE                                           | 0                | No detection of BEMF                                                |
| MTR_BEMF_MODE_DETECT                                         | 1                | BEMF detection                                                      |
| MTR_BEMF_DETECT_GUARD_CNT                                    | 2                | Number of carrier cycles for zero-crossing detection invalid period |
| ANGLE_30_DEGREE                                              | 1366             | Normalized degree value: 30-degree                                  |
| ANGLE_60_DEGREE                                              | 2731             | Normalized degree value: 60-degree                                  |
| ANGLE_90_DEGREE                                              | 4096             | Normalized degree value: 90-degree                                  |
| ANGLE_150_DEGREE                                             | 6827             | Normalized degree value: 150-degree                                 |
| ANGLE_210_DEGREE                                             | 9558             | Normalized degree value: 210-degree                                 |
| ANGLE_270_DEGREE                                             | 12288            | Normalized degree value: 270-degree                                 |
| ANGLE_330_DEGREE                                             | 15019            | Normalized degree value: 330-degree                                 |
| ANGLE_360_DEGREE                                             | 16384            | Normalized degree value: 360-degree                                 |
| PWM_COM_DUTY_MAX                                             | 4096             | Maximum value of PWM input (duty = 100%)                            |
| PWM_COM_DUTY_MIN                                             | 0                | Minimum value of PWM input (duty = 0%)                              |



# Table 5-16 Macro Definitions List (2/4)

| Macro Name                                | Value | Content                                                               |
|-------------------------------------------|-------|-----------------------------------------------------------------------|
| File Name: mtr_inv_setting.h              |       |                                                                       |
| INV_VDC_VOL_DIV                           | 13    | DC-bus voltage resistance voltage divider coefficient                 |
| INV_IDC_CUR_RANGE                         | 50.0f | Input range of motor current                                          |
| INV_BEMF_VOL_DIV                          | 5     | BEMF voltage resistance voltage divider<br>coefficient                |
| File Name: r_mtr_sequence_api.h           |       |                                                                       |
| SEQ_CFG_MODE_STOP                         | 0x00  | Operation mode: Stop                                                  |
| SEQ_CFG_MODE_RUN                          | 0x01  | Operation mode: Driving                                               |
| SEQ_CFG_MODE_ERROR                        | 0x02  | Operation mode: Error                                                 |
| SEQ_CFG_MODE_BRAKE                        | 0x03  | Operation mode: Break                                                 |
| SEQ_CFG_SIZE_STATE                        | 4     | Total number of operation modes                                       |
| SEQ_CFG_EVENT_STOP                        | 0x00  | User event input: Stop                                                |
| SEQ_CFG_EVENT_RUN                         | 0x01  | User event input: Driving                                             |
| SEQ CFG EVENT ERROR                       | 0x02  | User event input: Error                                               |
| SEQ CFG EVENT RESET                       | 0x03  | User event input: Reset                                               |
| SEQ_CFG_EVENT_BRAKE                       | 0x04  | User event input: Break                                               |
| SEQ_CFG_SIZE_EVENT                        | 5     | Total number of user event input                                      |
| SEQ_CFG_UNKNOWN_ERROR                     | 0xFF  | User event input: No event                                            |
| File Name: r_mtr_user_control_cfg.h (1/2) |       |                                                                       |
| USER_CFG_MOTOR_POLE_PAIRS                 | 2     | Number of pole pairs for motor                                        |
| USER_CFG_MOTOR_MAX_SPEED                  | 3000  | Rotation speed upper limit (mechanical angle)<br>[rpm]                |
| USER_CFG_REF_SPEED_ACCEL                  | 0     | Acceleration command status                                           |
| USER_CFG_REF_SPEED_DECEL                  | 1     | Deceleration command status                                           |
| USER_CFG_MOTOR_INITIAL_DIR                | 0     | Rotation direction [0: CW, 1: CCW]                                    |
| USER_CFG_MOTOR_DIFF_SPEED                 | 500   | Acceleration / deceleration difference value (mechanical angle) [rpm] |
| USER_CFG_TIME_SETTING_OFFSET              | 30000 | Offset setting time at startup (number of carrier pulses)             |
| USER_CFG_TIME_CNT_OFFSET                  | 0     | Offset counter at startup                                             |
| USER_CFG_OFFSET_IDC                       | 0     | Offset initial value of motor current                                 |
| USER_CFG_OFFSET_IDC_LPF_FACTOR            | 0.1f  | Offset filter value of motor current                                  |
| USER_CFG_SPEED_PI_INTERVAL                | 10    | Speed PI control period [ms]                                          |
| USER_CFG_SPEED_PI_ERROR_LIMIT             | 9000  | Upper limit of rotation speed error by speed PI control               |
| USER_CFG_KP_FACTOR                        | 1.50f | Proportional gain coefficient of speed PI control (term: KP)          |
| USER_CFG_KI_FACTOR                        | 0.30f | Integral gain coefficient of speed PI control (term: Ki)              |
| USER_CFG_INITIAL_RPM_SLOPE                | 0     | Target speed update rate initial value                                |
| USER_CFG_RPM_SLOPE                        | 10    | Target speed update rate                                              |
| USER_CFG_INITIAL_RPM_REF                  | 0.0   | Initial value of target speed                                         |
| USER_CFG_RPM_CLOSE_TO_OPEN                | 500   | Open-loop rush speed (mechanical angle)<br>[rpm]                      |
| USER_CFG_RPM_SLOPE_OL                     | 1     | Target speed update rate in open-loop mode                            |
|                                           |       |                                                                       |



| Macro Name                                | Value | Content                                                                                                                    |  |
|-------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------|--|
| File Name: r_mtr_user_control_cfg.h (2/2) |       |                                                                                                                            |  |
| USER_CFG_RPM_OPEN_TO_CLOSE                | 600   | Closed-loop rush speed (mechanical angle)<br>[rpm]                                                                         |  |
| USER_CFG_ARIGN_TIME_OL_1ST                | 200   | 1st position determination processing time [ms]                                                                            |  |
| USER_CFG_ARIGN_TIME_OL_2ND                | 20    | 2nd position determination processing time [ms]                                                                            |  |
| USER_CFG_ARIGN_DEGREES_OL_1ST             | 5462  | 1st position determination processing angle value [degree]                                                                 |  |
| USER_CFG_ARIGN_DEGREES_OL_2ND             | 0     | 2nd position determination processing angle value [degree]                                                                 |  |
| USER_CFG_INITIAL_DUTY_OL                  | 0.20f | Normalized output duty in open-loop mode                                                                                   |  |
| USER_CFG_DUTY_LIMIT                       | 0.95f | Upper limit of duty                                                                                                        |  |
| USER_CFG_IDC_LPF_FACTOR                   | 0.10f | LPF value of Idc                                                                                                           |  |
| USER_CFG_VDC_LPF_FACTOR                   | 0.25f | LPF value of Vdc                                                                                                           |  |
| USER_CFG_SPEED_LPF_FACTOR                 | 0.40f | LPF value of rotation speed                                                                                                |  |
| USER_CFG_BEMF_DETECT_END_TH               | 30    | Zero-crossing detection voltage threshold [A/D value]                                                                      |  |
| USER_CFG_ADVANCE_ANGLE                    | 0     | Advance angle value                                                                                                        |  |
| USER_CFG_OVER_VOLTAGE_LEVEL               | 28.0f | Overvoltage detection threshold [V]                                                                                        |  |
| USER_CFG_UNDER_VOLTAGE_LEVEL              | 8.0f  | Undervoltage detection threshold [V]                                                                                       |  |
| USER_CFG_OVER_CUR_LEVEL_HW_CUR            | 20.0f | H/W overcurrent detection threshold [A]                                                                                    |  |
| USER_CFG_OVER_CUR_LEVEL_SW                | 10.0f | Overcurrent detection threshold [A]                                                                                        |  |
| USER_CFG_OVER_CUR_DETECT_TIME             | 3     | Overcurrent detection timer [Number of carrier pulses]                                                                     |  |
| USER_CFG_LOCK_DETECT_TIME                 | 200   | Motor lock error detection time [ms]                                                                                       |  |
| USER_CFG_OVER_SPEED_RPM                   | 10000 | Rotation speed error detection speed (mechanical angle) [rpm]                                                              |  |
| USER_CFG_OVER_CUR_LEVEL_HW                | 2.5f  | H/W motor current error detection threshold [V]                                                                            |  |
| USER_CFG_OVER_TEMP_BOARD                  | 125   | Inverter board overtemperature detection threshold [°C]                                                                    |  |
| USER_CFG_OVER_TEMP_MOTOR                  | 180   | Coil-end overtemperature detection threshold [°C]                                                                          |  |
| USER_CFG_AUTO_POWEROFF_TIME               | 0     | Time until the motor stops automatically [s]                                                                               |  |
| USER_CFG_BRAKE_TIME                       | 2     | Break time [s]                                                                                                             |  |
| USER_CFG_TIME_CONTROL                     | _     | If defined: Rotation speed is updated over time<br>If node defined: Rotation speed is updated with<br>the input PWM signal |  |

# Table 5-16 Macro Definitions List (3/4)

# Table 5-16 Macro Definitions List (4/4)

| Macro Name                | Value                                                        | Content                                                                   |
|---------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------|
| File Name: mtr_fix_calc.h |                                                              |                                                                           |
| FIX_C (x, b)              | ((int16_t) (((float32_t) (x)) * ((float32_t) (1UL << (b))))) | Shifts the variable of 16-bit to the left by the specified number of bits |
| LFIX_C (x, b)             | ((int32_t) (((float32_t) (x)) * ((float32_t) (1UL << (b))))) | Shifts the variable of 32-bit to the left by the specified number of bits |



# 5.7 Flowchart of the Sample Program

# 5.7.1 Main Processing Function



Figure 5-10 Main Processing Function







Figure 5-11 Interval Timer Interrupt Handler



# 5.7.3 User Interface Processing Function



Figure 5-12 User Interface Processing Function



# 5.7.4 Carrier Frequency Interrupt Handler



Figure 5-13 Carrier Frequency Interrupt Handler



# 5.7.5 Zero-crossing Detection Function



Figure 5-14 Zero-crossing Detection Function



# 5.7.6 A/D Conversion Completion Interrupt Handler



Figure 5-15 A/D Conversion Completion Interrupt Handler



# **Revision History**

|      |            | Description |                                                                                                                              |  |  |
|------|------------|-------------|------------------------------------------------------------------------------------------------------------------------------|--|--|
| Rev. | Date       | Page        | Summary                                                                                                                      |  |  |
| 1.00 | 2022. 9.30 | _           | 1st edition issued                                                                                                           |  |  |
| 1.10 | 2023. 6.30 | P.7         | Update software version from V.1.04 to V.1.05.                                                                               |  |  |
|      |            | P.9         | Corrected the following typos in item "Processing stop for protection" of Table 2-4.                                         |  |  |
|      |            |             | Rotation speed exceeds 9000 10000 [rpm]                                                                                      |  |  |
|      |            | P.9         | The check timing is described in Table 2-4 "Processing stop for protection" (inverter board and motor coil-end temperature). |  |  |
|      |            | P.34        | Added function description of overtemperature monitoring to interval timer interruption (INTTM01).                           |  |  |
|      |            | P.38        | Corrected the variable definition of the following functions from<br>"static variable (s_temp)" to "auto variable (temp)".   |  |  |
|      |            |             | • fix8_mul_int16 ()                                                                                                          |  |  |
|      |            |             | • fix10_mul_int16 ()                                                                                                         |  |  |
|      |            |             | • fix12_mul_int16 ()                                                                                                         |  |  |
|      |            |             | • fix14_mul_int16 ()                                                                                                         |  |  |
|      |            |             | • fix16_mul_int16 ()                                                                                                         |  |  |
|      |            | P.38        | Removed overtemperature detection from function<br>err_check_error_cur_loop ().                                              |  |  |
|      |            | P.38        | Added a new function err_check_over_temp ().                                                                                 |  |  |
|      |            | P.39        | Added function of overtemperature detection to                                                                               |  |  |
|      |            | F.39        | interval_timer_isr ().                                                                                                       |  |  |
|      |            | P.48        | Added a new function (Overtemperature error detection) for                                                                   |  |  |
|      |            | г.40        | flowchart of Interval Timer Interrupt Handler.                                                                               |  |  |
|      |            |             |                                                                                                                              |  |  |



# General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

#### 1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

#### 2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

#### 6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between  $V_{IL}$  (Max.) and  $V_{IH}$  (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between  $V_{IL}$  (Max.) and  $V_{IH}$  (Min.)

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a systemevaluation test for the given product.

#### Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
   Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
- Electronics products. (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

# **Corporate Headquarters**

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

## Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

# **Contact information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <a href="http://www.renesas.com/contact/">www.renesas.com/contact/</a>.