

RLIN3 Module
Software Integration System

Rev 1.00 R01AN6335EJ0100

All information contained in these materials, including products and product specifications,

represents information on the product at the time of publication and is subject to change by

Renesas Electronics Corp. without notice. Please review the latest information published by

Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.

website (http://www.renesas.com).

User’s Manual Rev 1.00

NOTES FOR CMOS DEVICES

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected

wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH

(MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the

device when the input level is fixed, and also in the transition period when the input level passes through the

area between VIL (MAX) and VIH (MIN).

(2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an

input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing

malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices

must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD

or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins

must be judged separately for each device and according to related specifications governing the device.

(3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction

of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static

electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be

adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily

build up static electricity. Semiconductor devices must be stored and transported in an anti-static container,

static shielding bag or conductive material. All test and measurement tools including work benches and floors

should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not

be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor

devices.

(4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device.

Immediately after the power source is turned ON, devices with reset functions have not yet been initialized.

Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not

initialized until the reset signal is received. A reset operation must be executed immediately after power-on for

devices with reset functions.

(5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal

operation and external interface, as a rule, switch on the external power supply after switching on the internal

power supply. When switching the power supply off, as a rule, switch off the external power supply and then

the internal power supply. Use of the reverse power on/off sequences may result in the application of an

overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements

due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for

each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while

the device is not powered. The current injection that results from input of such a signal or I/O pull-up power

supply may cause malfunction and the abnormal current that passes in the device at this time may cause

degradation of internal elements. Input of signals during the power off state must be judged separately for each

device and according to related specifications governing the device.

INTRODUCTION

Audience This manual is intended for engineers who wish to understand the functions of

the LIN 2.1 software driver and design and develop application systems and programs
for these devices.

Purpose This manual is intended to give users an understanding of the functions described in

the Organization below. Refer to “LIN Specification Package Revision2.1”(In this manual
called LIN 2.1 spec).

Organization This manual consists of the following items.

 Product overview
 Installation
 System build
 Configuration
 Driver functions

How to Read This Manual

 It is assumed that the readers of this manual have general knowledge of electrical
engineering, logic circuits, and microcontrollers.

To gain a general understanding of LIN 2.1 software driver functions, it is suggested to read
this manual in the order that the material is presented.

Conventions Data significance: Higher digits on the left and lower digits on the right

Active low representation: xxx (over score over pin and signal name)

Note: Footnote for item marked with Note in the text

Caution: Information requiring particular attention

Remark: Supplementary information

Numeric representation: Binary ... xxxx or xxxxB

Decimal ... xxxx
Hexadecimal ... xxxxH

Units for representing powers of 2 (address space or memory space):

K (kilo): 210 = 1,024
M (mega): 220 = 1,0242
G (giga): 230 = 1,0243

Data type: Word ... 32 bits

Halfword ... 16 bits
Byte ... 8 bits

CONTENTS

INTRODUCTION ... 3

CHAPTER 1 PRODUCT OVERVIEW.. 10

1. 1 General ... 10

1. 2 Features .. 10

1. 2. 1 High portability ... 10

1. 2. 2 Provision of Configuration tool ... 10

1. 3 Types of LIN Software Driver .. 10

1. 4 Execution Environment ... 11

1. 4. 1 Target CPU.. 11

1. 4. 2 Memory usage ... 12

1. 4. 3 Hardware resources .. 13

1. 5 Development Environment .. 14

1. 6 Restrictions ... 15

1. 6. 1 Clock and baud rate setting ... 15

1. 6. 2 Restrictions regarding interrupt .. 15

1. 6. 3 Other restrictions ... 16

CHAPTER 2 INSTALLATION .. 17

2. 1 General ... 17

2. 2 Installation Steps ... 17

2. 1. 1 Installation of LIN Configurator .. 17

CHAPTER 3 SYSTEM BUILD OVERVIEW ... 18

3. 1 Position of LIN 2.1 Software driver .. 18

3. 2 Creating the LIN System ... 19

3. 2. 1 File generation by LIN Configurator ... 20

3. 2. 2 User applications ... 21

3. 2. 3 Build .. 21

CHAPTER 4 Linkage to Smart Configurator .. 22

4. 1 Operating procedure ... 23

4. 2 Configuration value ... 24

4. 2. 1 Configuration for LIN Configurator ... 24

4. 2. 2 Configuration for LIN driver ... 25

CHAPTER 5 HOW TO BUILD LIN APPLICATION .. 27

5. 1 Build driver library ... 28

5. 1. 1 Compiler options for library .. 29

5. 1. 2 Edit of confmlin_opt.h (for Master) ... 30

5. 1. 3 Edit of confslin_opt.h (for Slave) .. 31

5. 1. 4 Specify the IAR I/O header file .. 32

5. 2 Create LIN application code .. 33

5. 2. 1 Creation of development environment project file.. 34

5. 2. 2 Craation of channel-only source code ... 34

5. 2. 3 Peripheral hardware processing implementation ... 35

5. 2. 4 Describe compiler options (conflin_x.h) ... 37

5. 2. 5 Edit public constants (conflin_x.c) ... 38

5. 2. 6 Scheduler implementation (only master) ... 39

5. 2. 7 User-defined callouts implementation .. 40

5. 2. 8 Use Section Setting ... 41

CHAPTER 6 LIN CONFIGURATOR .. 43

6. 1 General ... 43

6. 1. 1 Features .. 43

6. 1. 2 Execution Environment .. 43

6. 1. 3 Output Folder ... 43

6. 2 File Generation Steps .. 44

6. 2. 1 Start Up of LIN Configurator .. 45

6. 2. 2 Start a New Configuration .. 48

6. 2. 3 Device selection ... 49

6. 2. 4 Channel configuration .. 51

6. 2. 5 Baud rate configuration .. 53

6. 2. 6 Message management .. 54

6. 2. 7 Schedule management .. 61

6. 2. 8 Node configuration ... 63

6. 2. 9 Other configurations... 64

6. 2. 10 Save / Load setting file ... 65

6. 2. 11 Generate source code ... 66

6. 3 Error message list ... 67

6. 4 Warning message list .. 70

CHAPTER 7 LIN 2.1 SOFTWARE DRIVER OVERVIEW .. 71

7. 1 Signal Types (Master/Slave) ... 71

7. 2 Frame Format (Master/Slave) ... 72

7. 2. 1 Byte Field ... 73

7. 2. 2 Break Field ... 73

7. 2. 3 Frame Length .. 73

7. 3 Frame Transfer (Master/Slave) ... 74

7. 3. 1 Unconditional Frame Transfer ... 74

7. 3. 2 Event Trigger Frame Transfer .. 75

7. 3. 3 Sporadic Frame Transfer ... 78

7. 4 Response Error Notify Function (Master/Slave) .. 79

7. 5 Sleep and Wakeup Function (Master/Slave) ... 80

7. 5. 1 Sleep Function ... 80

7. 5. 2 Wake up Function .. 80

7. 6 Node Configuration Function (Master/Slave) ... 81

7. 6. 1 Node Information ... 81

7. 6. 2 Node Configuration .. 82

7. 7 Scheduling Function (Master) .. 84

7. 7. 1 Schedule Transition (l_sch_tick) .. 84

7. 7. 2 Schedule Switching (l_sch_set) ... 86

7. 8 Auto Baud Rate Detecting Function (Option) (Slave) .. 87

7. 9 Driver configuration ... 88

7. 9. 1 Slave driver configuration .. 88

7. 9. 2 Master driver configuration .. 92

CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE) .. 95

8. 1 LIN 2.1 Software Slave Driver Function List .. 95

8. 2 Data types (Slave) ... 96

8. 3 Description of LIN 2.1 Software Slave Driver Function .. 97

8. 3. 1 [Slave] LIN 2.1 Software Driver and Cluster Management ... 99

8. 3. 2 [Slave] Scalar Signal Read .. 101

8. 3. 3 [Slave] Scalar Signal Write .. 107

8. 3. 4 [Slave] Byte Array Read ... 112

8. 3. 5 [Slave] Byte Array Write ... 115

8. 3. 6 [Slave] Notification ... 118

8. 3. 7 [Slave] Interface Management ... 121

8. 3. 8 [Slave] User provided call-outs .. 126

CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER) ... 131

9. 1 LIN 2.1 Software Master Driver Function List .. 131

9. 2 Data types (Master)... 132

9. 3 Description of LIN 2.1 Software Master Driver Function ... 133

9. 3. 1 [Master] LIN 2.1 Software Driver and Cluster Management .. 135

9. 3. 2 [Master] Scalar Signal Read .. 137

9. 3. 3 [Master] Scalar Signal Write .. 143

9. 3. 4 [Master] Byte Array Read .. 148

9. 3. 5 [Master] Byte Array Write .. 151

9. 3. 6 [Master] Notification ... 154

9. 3. 7 [Master] Schedule Management .. 157

9. 3. 8 [Master] Interface Management ... 160

9. 3. 9 [Master] Node Configuration .. 166

9. 3. 10 [Master] User provided call-outs .. 173

CHAPTER 10 Example of LIN description file (LDF) description ... 178

APPENDIX REVISION HISTORY ... 182

LIST OF TABLES

Table 1-1. Description of LIN nodes ... 10

Table 1-2. Target CPU (slave) ... 11

Table 1-3. Target CPU (master)... 11

Table 1-4. Memory usage (slave) .. 12

Table 1-5. Memory usage (master) .. 12

Table 1-6. Hardware resources list (slave) .. 13

Table 1-7. Hardware resources list (master) .. 13

Table 1-8. List of development software .. 14

Table 1-9. Conditions List .. 15

Table 4-1. Defined value for LIN Configurator (r_rlin3_config.h) .. 24

Table 4-2. Defined value for LIN driver (r_rlin3_config.h) .. 25

Table 5-1. Compiler Option for Library Usage List ... 29

Table 5-2. LIN2.1 software driver use sections (CC-RL) .. 41

Table 5-3. LIN2.1 software driver use sections (IAR) ... 42

Table 6-1. Operation from tree contents, buttons and Tool menu (for Master channel) 47

Table 6-2. Operation from tree contents, buttons and Tool menu (for Slave channel) ... 47

Table 6-3. Error message list ... 67

Table 6-4. Warning message list .. 70

Table 7-1. Frame Component List ... 72

Table 7-2. Types of LIN Frames .. 74

Table 7-3. Response Error List .. 79

Table 7-4. Node Information List .. 81

Table 7-5. Master Request Frame Format ... 82

Table 7-6. Master Request Frame Format (Read by identifier) .. 82

Table 7-7. Slave Response Frame Format .. 83

Table 7-8. Negative Response Format .. 83

Table 7-9. Driver configuration of RL78/F23,F24 slave (1 of 2) ... 88

Table 7-10. Driver configuration of RL78/F23,F24 slave (2 of 2) ... 90

Table 7-11. Driver configuration of RL78/F23,F24 master (1 of 2) ... 92

Table 7-12. Driver configuration of RL78/F23,F24 master (2 of 2) ... 94

Table 8-1. LIN 2.1 Software Slave Driver Function .. 95

Table 8-2. LIN 2.1 Spec and LIN 2.1 Slave Driver Type Definition List .. 96

Table 8-3. LIN 2.1 Software Driver and Cluster Management (Slave) ... 99

Table 8-4. Scalar Signal Read (Slave) ... 101

Table 8-5. Scalar Signal Write (Slave) ... 107

Table 8-6. Byte Array Read (Slave) ... 112

Table 8-7. Byte Array Write (Slave) ... 115

Table 8-8. Notification (Slave) .. 118

Table 8-9. Interface Management (Slave) .. 121

Table 8-10. User provided call-outs (Slave) ... 126

Table 9-1. List of LIN 2.1 Software Master Driver Function ... 131

Table 9-2. LIN 2.1 Spec and LIN 2.1 Master Driver Type Definition List .. 132

Table 9-3. List of LIN 2.1 Software Driver and Cluster Management (Master) ... 135

Table 9-4. List of Scalar Signal Read (Master) .. 137

Table 9-5. Scalar Signal Write (Master) ... 143

Table 9-6. List of Byte Array Read (Master) ... 148

Table 9-7. List of Byte Array Write (Master) ... 151

Table 9-8. List of Notification (Master) ... 154

Table 9-9. List of Schedule Management (Master) .. 157

Table 9-10. List of Interface Management (Master) ... 160

Table 9-11. List of Node Configuration (Master) .. 166

Table 9-12. Error Code List ... 168

Table 9-13. PID list setting value ... 170

Table 9-14. List of User provided call-outs (Master) .. 173

LIST OF FIGURES

Figure 3-1. System Overview ... 18

Figure 3-2. LIN System Creation Process .. 19

Figure 3-3. Relationship between User Application Program and LIN 2.1 Software Driver 21

Figure 4-1. Image of linkage with smart configurator ... 22

Figure 5-1. Flow of building LIN application ... 27

Figure 5-2. How to describe the include in device.h... 32

Figure 5-3. How to build LIN application .. 33

Figure 5-4 Timing of interrupt and LIN frame in RL78 series. .. 36

Figure 5-5. Location of macro description in conflin_x.h .. 37

Figure 6-1. Main Screen .. 45

Figure 6-2. Main Screen (before selection) .. 46

Figure 6-3. Device Selection window (before device selection) ... 49

Figure 6-4. Device Selection window (device applying multi channels) ... 49

Figure 6-5. Main Screen (before channel configuration) .. 50

Figure 6-6. Channel Configuration window .. 51

Figure 6-7. Main Screen (before channel contents configuration).. 51

Figure 6-8. Setting Baud Rate window ... 53

Figure 6-9. Setting Frame window ... 54

Figure 6-10. Setting Frame window (for each frame) ... 56

Figure 6-11. Setting Signal window .. 57

Figure 6-12. Setting Signal window .. 58

Figure 6-13. Setting Event Triggered Frame Entry window ... 59

Figure 6-14. Setting Sporadic Frame Entry window ... 60

Figure 6-15. Setting Schedule window ... 61

Figure 6-16. Setting Schedule Entry window ... 62

Figure 6-17. Behavior of the schedule ... 62

Figure 6-18. Setting Node window ... 63

Figure 6-19. Setting Others window ... 64

Figure 6-20. Example of output folder .. 66

Figure 7-1. Example of Arranging Signal to Message Data ... 71

Figure 7-2. Frame Format .. 72

Figure 7-3. Byte Field Format .. 73

Figure 7-4. Break Format ... 73

Figure 7-5. Example of Data Transfer .. 74

Figure 7-6. Example of Transfer Data with Event Triggered Frame ... 75

Figure 7-7. Example of Transfer Data with Sporadic Frame .. 78

Figure 7-8. Relation between l_sch_tick Function and Frame Transfer ... 85

Figure 7-9. Switch of Schedule Table by l_sch_set Function ... 86

Figure 8-1. Description Format of LIN 2.1 Software Slave Driver Function .. 97

Figure 9-1. Description Format of LIN 2.1 Software Master Driver Function .. 133

RLIN3 Module Software Integration System CHAPTER 1 PRODUCT OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 10
R01AN6335EJ0100

CHAPTER 1 PRODUCT OVERVIEW

1. 1 General

LIN 2.1 software driver realize LIN communication on many microcomputers made by Renesas Electronics.

This driver provides Application Programing Interface based on LIN 2.1 specification.

LIN 2.1Spec is compatible with the following software driver for microcomputers

- 16 bit microcomputer RL78/F23 series

- 16 bit microcomputer RL78/F24 series

1. 2 Features

1. 2. 1 High portability

 Users can write LIN communication programs without having to know about the LIN’s hardware dependencies

or the CPU core. As a result, porting to another environment is easy.

1. 2. 2 Provision of Configuration tool

 GUI-driven commands make it easy to select environment-based initial settings for LIN hardware and other

devices to be used, as well as static generation of messages.

1. 3 Types of LIN Software Driver

 The following table shows the types of driver that are available in the LIN 2.1 software driver library.

Table 1-1. Description of LIN nodes

Type Description

Hardware dependency Different drivers are provided for each CPU core.

Master/slave function
2 types are available: one for master applications, one for slave
applications.

RLIN3 Module Software Integration System CHAPTER 1 PRODUCT OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 11
R01AN6335EJ0100

1. 4 Execution Environment

 LIN 2.1 software driver operate on target systems that are equipped with the following hardware.

1. 4. 1 Target CPU

(1) Slave

Table 1-2. Target CPU (slave)

(2) Master

Table 1-3. Target CPU (master)

RL78 Series RL78/F23, RL78/F24

RL78 Series RL78/F23, RL78/F24

RLIN3 Module Software Integration System CHAPTER 1 PRODUCT OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 12
R01AN6335EJ0100

1. 4. 2 Memory usage

 The amount of memory required to use the LIN 2.1 software driver varies depending on the number of functions

implemented by the user, the number of message buffers, peripheral I/O used, compiler, and compile options

used. The amount of required memory when all functions are used is as follows.

(1) Slave

Table 1-4. Memory usage (slave)

Component ROM Size RAM Size

LIN 2.1 Software driver 3.5 KB (RL78/F23,F24:CC-RL)
3.6 KB (RL78/F23,F24:IAR)

28 bytes (RL78/F23,F24:CC-RL)
25 bytes (RL78/F23,F24:IAR)

stack - 200 bytes

One unconditional frame 5 bytes 14 bytes (16 signals version)
18 bytes (32 signals version)

One signal 4 bytes (16 signals version)
5 bytes (32 signals version)

-

One event triggered frame
(per relation of
one unconditional frame)

2 bytes 1 byte

*: Separately, other memory capacity for transferring message is needed.

*: In RL78/F23,F24 series, these values are in case of auto baud rate mode and falling edge detection for

bus wakeup.

*: These values are not considered align of structure.

*: “16 signals version” means LIN driver not using compiler option __LIN_SIGNAL_32__, and “32 signals

version” means LIN driver using __LIN_SIGNAL_32__ .

(2) Master

Table 1-5. Memory usage (master)

Component ROM Size RAM Size

LIN 2.1 software driver 4.8 KB (RL78/F23,F24:CC-RL)
4.6 KB (RL78/F23,F24:IAR)

46 bytes (RL78/F23,F24:CC-RL)
45 bytes (RL78/F23,F24:IAR)

Stack - 150 bytes

One unconditional frame

12 bytes 11 bytes (16 signals version)
13 bytes (32 signals version)

One signal 5 bytes -

One event triggered frame 17 bytes -

One sporadic frame 16 bytes -

One schedule entry 4 bytes -

*: Separately, other memory capacity for transferring message is needed.

*: These values are not considered align of structure.

*: “16 signals version” means LIN driver not using compiler option __LIN_SIGNAL_32__, and “32 signals

version” means LIN driver using __LIN_SIGNAL_32__.

RLIN3 Module Software Integration System CHAPTER 1 PRODUCT OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 13
R01AN6335EJ0100

1. 4. 3 Hardware resources

 Each hardware resource utilized from the devices available for LIN use is shown in the tables below.

(1) Slave

Serial interface : RLIN3 channel 0 or 1

 Timer Array Unit : TAU00-07, TAU10-17

 External interrupt *: INTP11 (INTLIN0WUP), INTP12 (INTLIN1WUP)

* External interrupts are used only when the wake-up type is set to Falling edge detection type. Not

used when the method is Dominant width detection type.

Table 1-6. Hardware resources list (slave)

Microco
mputers

UART*1 TAU*3

Channel Interrupt request
Unit/

Channel
Interrupt
request

RL78/F23
RLIN3
(Channel 0)

Transmission completion interrupt : INTLIN0TRM
Reception completion interrupt : INTLIN0RVC
Error interrupt : INTLIN0STA
External interrupt : INTLIN0WUP*2

TAU00~07
TAU10~13

INTTM00～07

INTTM10～13

RL78/F24

RLIN3
(Channel 0)

Transmission completion interrupt : INTLIN0TRM
Reception completion interrupt : INTLIN0RVC
Error interrupt : INTLIN0STA
External interrupt : INTLIN0WUP*2 TAU00~07

TAU10~17

INTTM00～07

INTTM10～17
RLIN3
(Channel 1)

Transmission completion interrupt : INTLIN1TRM
Reception completion interrupt : INTLIN1RVC
Error interrupt : INTLIN1STA
External interrupt : INTLIN0WUP*2

*1 : Only one channel can be selected for the UART channel.

*2 : Only one unit or channel can be selected for the TAU unit or channel.

(2) Master

 Serial interface : RLIN3 channel 0, RLIN3 channel 1

 External interrupt *: INTP11 (INTLIN0WUP), INTP12(INTLIN1WUP)

* External interrupts are used only when the wake-up type is set to Falling edge detection type. Not

used when the method is Dominant width detection type.

Table 1-7. Hardware resources list (master)

Microcomputers
UART*1

Channel Interrupt request

RL78/F23
RLIN3
(Channel 0)

Transmission completion interrupt : INTLIN0TRM
Reception completion interrupt : INTLIN0RVC
Error interrupt : INTLIN0STA
External interrupt : INTLIN0WUP

RL78/F24

RLIN3
(Channel 0)

Transmission completion interrupt : INTLIN0TRM
Reception completion interrupt : INTLIN0RVC
Error interrupt : INTLIN0STA
External interrupt : INTLIN0WUP

RLIN3
(Channel 1)

Transmission completion interrupt : INTLIN1TRM
Reception completion interrupt : INTLIN1RVC
Error interrupt : INTLIN1STA
External interrupt : INTLIN0WUP

*1 : Only one channel can be selected for the UART channel.

RLIN3 Module Software Integration System CHAPTER 1 PRODUCT OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 14
R01AN6335EJ0100

1. 5 Development Environment

 The following environments are required for use of LIN 2.1 software driver for development of application

systems.

(1) Hardware

 - Host machine : IBM PC/ATTM Series

 - OS : Windows 10

 (Microsoft .NET Framework 3.5 is needed)

(2) Software

Table 1-8. List of development software

Microcomputer Development

environment

Compiler Debugger

RL78/F23,F24 CS+ CC-RL Included in CS+

IAR IAR compiler Included in IAR

RLIN3 Module Software Integration System CHAPTER 1 PRODUCT OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 15
R01AN6335EJ0100

1. 6 Restrictions

 The restriction matter this software is used is shown below.

1. 6. 1 Clock and baud rate setting

 When using CPU/peripheral hardware clock (fCLK) as the LIN communication clock source, use fCLK and the

baud rate on the following conditions.

Table 1-9. Conditions List

 When using CPU/peripheral hardware clock (fCLK) as the LIN communication clock source, use fMX and fCLK

on the following conditions. The baud rate range is the same as the table above.

4 MHz ≤ fMX ≤ 40 MHz and fCLK ≥ fMX x 1.2

(However, 4 MHz ≤ fMX < 8 MHz is not allowed when using slave auto baud rate.)

 The following LIN communication clock source frequencies can be specified by smart and LIN configurators:

If other frequencies are used, the output file must be edited separately.

8, 10, 12, 16, 20, 24, 32, 40 [MHz]

1. 6. 2 Restrictions regarding interrupt

When using the interrupt used by a driver and the interrupt which the same resource is shared, in the user

application at the same time, the driver is not executed normally. The interrupt used by the driver is refer to 1. 4.

3 Hardware resources. Please refer to the user's manual (interrupt factor list) of RL78/F23, F24 regarding the

specification of the interrupt vector table.

Type
Terms of use

Peripheral H/W clock (fCLK), Baud rate (BR)

Master driver 4 MHz ≤ fCLK ≤ 40 MHz 9600 bps, 19200 bps

Slave driver

(Auto baud rate)
8 MHz ≤ fCLK ≤ 40 MHz 2400 bps ≤ BR ≤ 20000 bps

Slave driver

(Fixed baud rate)
4 MHz ≤ fCLK ≤ 40 MHz 9600 bps, 19200 bps

RLIN3 Module Software Integration System CHAPTER 1 PRODUCT OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 16
R01AN6335EJ0100

1. 6. 3 Other restrictions

 - In RL78/F23, F24 series driver, LIN channel selection register LCHSEL is modified in API and interrupts.

However driver doesn’t set original value to LCHSEL.

 - Application must not to use timer channel same as used by slave driver. And application must not use

the timer clock selection same as LIN slave driver.

 - In examination of this driver, the values deviating LIN specification set in driver configuration were not

considered. If these values are used, examination should be done in your environment.

- In RL78/F23, F24 master driver, the error caused by own hardware is notified to application using

callback function l_sys_call_fatal_error.

- In RL78/F23, F24 master driver, wakeup baud rate can be changed by CONFLIN_u2sBAUDRATEWKUP

in conf/conflin_x.c . However, use 19200[bps] (default value) as wakeup baud rate usually because driver

may not be able to receive wakeup request correctly.

- In RL78/F23, F24 master driver, the source of LIN communication clock can be changed by

CONFMLIN_OPT_u1gLINMCK_CFG of driver configuration. Set appropriately value after code

generation by LIN configurator.

RLIN3 Module Software Integration System CHAPTER 2 INSTALLATION

RLIN3 Module Software Integration System Rev 1.00 17
R01AN6335EJ0100

CHAPTER 2 INSTALLATION

2. 1 General

 The LIN 2.1 software driver functions are provided in the LIN configurator.

2. 2 Installation Steps

2. 1. 1 Installation of LIN Configurator

 Double-click the LINConfigurator_RL78F23_F24_E_V100.msi file (attached to this document), and obey the

instructions of Wizard.

 In the Smart Configurator output, the installer above is stored in the r_lin3/tool folder.

Note: .NET Framework 3.5 is necessary for using the LIN configurator.

 .NET Framework 3.5 can be obtained from Microsoft’s web site.

RLIN3 Module Software Integration System CHAPTER 3 SYSTEM BUILD OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 18
R01AN6335EJ0100

CHAPTER 3 SYSTEM BUILD OVERVIEW

3. 1 Position of LIN 2.1 Software driver

 In the system, the LIN 2.1 software driver is positioned between the user application and the hardware (see

Figure 3-1). A user interface is provided for controlling the hardware.

 The user can simply call the LIN 2.1 software driver functions in the application without having to know about

controlling the hardware registers.

Figure 3-1. System Overview

User programs

LIN 2.1 software driver

Hardware

LIN-BUS

Node

Micro Controller

RLIN3 Module Software Integration System CHAPTER 3 SYSTEM BUILD OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 19
R01AN6335EJ0100

3. 2 Creating the LIN System

 This is a creating the LIN system by using the LIN configurator and the LIN 2.1 software driver.

 Users can also edit the configuration files (conflin.c conflin.h) directly.

Figure 3-2. LIN System Creation Process

Note: The library file of source files depended on the compiler options are included in the LIN 2.1 software

driver. For the compiler option of the library, see "5. 1. 1 Compiler options for library".

Input data using
configurator GUI

Load module file

Hex file

Configuration files

 User application

LIN 2.1 software driver configurator

C compiler & assembler

Linker

 Link directive file

 Object files

automatic generation

LIN 2.1 software driver

library file

C compiler & assembler

 LIN 2.1 software driver

sorce files

only compiler option
dependence part

project file
(CS+ or IAR)

conflin_x.c,
conflin_x.h
(‘x’ is channel
 number)

Per LIN channels

RLIN3 Module Software Integration System CHAPTER 3 SYSTEM BUILD OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 20
R01AN6335EJ0100

3. 2. 1 File generation by LIN Configurator

 The LIN Configurator accepts various operating parameters such as target device, peripheral hardware clock

frequency, LIN baud rate, frame sizes, schedule parameters, and node information, then generates the

appropriate function library and configuration files.

 For details of the configurator’s setting steps, see "CHAPTER 6 LIN CONFIGURATOR".

(1) Required LIN Configurator Settings

 The following list of parameters are the minimum requirements needed to be entered into the configurator in

order to generate the driver library and configuration files.

 - Target Device to be used (Series name and device name)

 - Device’s peripheral hardware clock frequency

 - Channel to be used

 - LIN baud rate

 - Setting of signal

 - Setting of frame

 - Setting of schedule

 - Node information

(2) LIN Configurator Output

 The following files are created by the LIN Configurator.

 - Configuration files

 - Integrated Development Environment project files

 - LIN 2.1 software driver source files (Compiler option dependence part)

(3) Generate library of compiler option dependence part

 Generate the library of the compiler option dependence part after generating the file from the configurator.

 Using CS+ or IAR project file, the library of the compiler option dependence part can be generated from the LIN

2.1 software driver source file with specifying an arbitrary compiler option.

 These library files of the compiler option dependence part are needed for creating the LIN system.

RLIN3 Module Software Integration System CHAPTER 3 SYSTEM BUILD OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 21
R01AN6335EJ0100

3. 2. 2 User applications

 LIN 2.1 software driver functions are used to create a complete LIN communication application. The user

application program is composed of the application source code, conflin_x.c, and conflin_x.h (‘x’ is channel

number).

 The header file that is created by the configurator must be included in any file that uses a driver function.

Figure 3-3. Relationship between User Application Program and LIN 2.1 Software Driver

 See "CHAPTER 5 HOW TO BUILD LIN APPLICATION" for more information.

3. 2. 3 Build

(1) Creation of Object Files

 Once all the source files are created (user application and support files created by the LIN configurator), they

are compiled and assembled to create re-locatable object files.

 Remark See the user’s manual of each development tool for details concerning the C

compiler/assembler startup options and execution method.

 (2) Creation of load module files

 The following files are linked to create load module files.

 - Object file with compiled/assembled user application

 - Library file which compiled the source files generated by LIN configurator.
 (The library file which reflected the compiler option)

 - Link directive file

 - Any other library files recommended by the C compiler package being used.

Application program

LIN 2.1 Software driver

Application source code

conflin_x.c, conflin_x.h

(Automatic generation is

possible by the configurator)

Peripherals (UART, Port, External interrupt, Timer*)
*: Timer is slave only.

Scheduler

(Master only)

Interface API

RLIN3 Module Software Integration System CHAPTER 4 Linkage to Smart Configurator

RLIN3 Module Software Integration System Rev 1.00 22
R01AN6335EJ0100

CHAPTER 4 Linkage to Smart Configurator

The Smart Configurator is a utility based on the concept of "free combination of software". It facilitates the

integration of Renesas drivers into customer systems by importing middleware and drivers, and pin settings.

For specific devices, the LIN configurator supports the ability to read a header file (r_rlin3_config.h) containing

LIN-related configuration information generated by the smart configurator.

By reading the relevant file, the LIN-related configuration information set in the smart configurator is

automatically reflected on the screen of the LIN configurator.

In addition, by incorporating the relevant file into the LIN 2.1 driver generated from the LIN Configurator, some of

the definition values in the conflin_x.h file will be replaced by the definition values set in the Smart Configurator.

Figure 4-1. Image of linkage with smart configurator

Smart configurator

LIN configurator

Generate

Automatically display configuration information on

the GUI screen by reading it out.

LIN driver PJ generation

Generated file

CS+ PJ

IAR PJ

･Target device

･Use LIN channel

･Master/Slave selection

･RLIN3 supply clock

･Wake-up mode

･Interrupt priority

･Timer array unit/channel number

･Timer operation clock

Can be used as a defined value

by including.

If not linked to the smart

configurator, the settings on the

LIN configurator and the output

definition file must be updated.

RLIN3 Module Software Integration System CHAPTER 4 Linkage to Smart Configurator

RLIN3 Module Software Integration System Rev 1.00 23
R01AN6335EJ0100

4. 1 Operating procedure

The following is a series of processing steps for the linkage.

For more information about operating with Smart Configurator, see the Smart Configurator User's Manual.

(1) Set LIN-related (RLIN3) parameters on the smart configurator and generate the code.

 The files that will be generated are as follows.

 - r_rlin3_config.h : File with LIN configuration value

 - r_rlin3_m_callout.c, r_rlin3_s_callout : User-defined callout functions

 - conflin_x.c , conflin_x.h : Empty file (File to replace with file generated

 by LIN Configurator)

 The r_rlin3_config.h file will be shown later.

(2) Read the r_rlin3_config.h file generated in (1) from the LIN configurator.

 Select "SMC Header File Open" from the File menu in the start-up screen of the LIN Configurator.

(3) If the file is read successfully, the information set in the Smart Configurator will be automatically reflected

in the 6. 2. 3 Device selection window and 6. 2. 4 Channel configuration window.

 The items to be reflected are as follows.

 [6. 2. 3 Device selection window]

 Series Information

 Device Name

 Channel

 [6. 2. 4 Channel configuration window]

 Master/Slave

 Peripheral Hardware Clock

(4) Configure the other items on the LIN configurator and generate the code.

(5) Replace the r_rlin3_config.h file contained in the generated folder with the file generated in 1).

This will cause some of the definition values in the confmlin_opt.h file and the confslin_opt.h file to refer

to the definition values in the r_rlin3_config.h file.

RLIN3 Module Software Integration System CHAPTER 4 Linkage to Smart Configurator

RLIN3 Module Software Integration System Rev 1.00 24
R01AN6335EJ0100

4. 2 Configuration value

The r_rlin3_config.h file consists of definitions for the LIN configurator to read and properly configure the GUI,

and definitions for the LIN driver to reference. The channels for RLIN3 and timers should be set from the Smart

Configurator within the range of the number of channels provided in the target device.

4. 2. 1 Configuration for LIN Configurator

The following information will be read by the LIN configurator and displayed in the GUI.

Table 4-1. Defined value for LIN Configurator (r_rlin3_config.h)

Defining type Description

RLIN3_CFG_DEVICENAME Target device

RLIN3_CFG_USE_LIN_CH0

RLIN3_CFG_USE_LIN_CH1

LIN pin setting to be used for each LIN channel 0 and 1

LIN channel 0.

0: unused

1: P13,P14

2: P42,P43

LIN channel 1

0: unused

1: P10, P11

2: P106,P107

3: P120,P125

RLIN3_CFG_CH0_OPERATION_MODE

RLIN3_CFG_CH1_OPERATION_MODE

Master/Slave selection for each LIN channel 0 and 1.

0: Master

1: Slave

RLIN3_CFG_CH0_INPUT_CLOCK

RLIN3_CFG_CH1_INPUT_CLOCK

Supply clock to LIN channels 0 and 1. (*1)

0: 40 MHz

1: 32 MHz

2: 24 MHz

3: 20 MHz

4: 16 MHz

5: 12 MHz

6: 10 MHz

7: 8 MHz

Remark

*1. Avoid settings that are inconsistent on the smart configurator.

RLIN3 Module Software Integration System CHAPTER 4 Linkage to Smart Configurator

RLIN3 Module Software Integration System Rev 1.00 25
R01AN6335EJ0100

4. 2. 2 Configuration for LIN driver

The following information is referenced by the LIN driver generated by the LIN configurator.

When building the LIN driver library, set r_rlin3_config.h to be included.

Table 4-2. Defined value for LIN driver (r_rlin3_config.h)

Defining type Description

RLIN3_CFG_CH0_BUSWAKEUP

RLIN3_CFG_CH1_BUSWAKEUP

LIN channel 0 and 1 wake-up type.

0x00: Falling edge detection type.

0x01: Dominant width detection type.

RLIN3_CFG_INTLIN0TRM_PRIORITY_LEVEL

RLIN3_CFG_INTLIN1TRM_PRIORITY_LEVEL

INTLIN0TRM、INTLIN1TRM interrupt priority

0: Level 0 *Highest priority

1: Level 1

2: Level 2

3: Level 3

RLIN3_CFG_INTLIN0RVC_PRIORITY_LEVEL

RLIN3_CFG_INTLIN1RVC_PRIORITY_LEVEL

INTLIN0RVC、INTLIN1RVC interrupt priority

0: Level 0 *Highest priority

1: Level 1

2: Level 2

3: Level 3

RLIN3_CFG_INTLIN0STA_PRIORITY_LEVEL

RLIN3_CFG_INTLIN1STA_PRIORITY_LEVEL

INTLIN0STA、INTLIN1STA interrupt priority

0: Level 0 *Highest priority

1: Level 1

2: Level 2

3: Level 3

RLIN3_CFG_INTLIN0WUP_PRIORITY_LEVEL

RLIN3_CFG_INTLIN1WUP_PRIORITY_LEVEL

INTLIN0WUP、INTLIN1WUP interrupt priority

0: Level 0 *Highest priority

1: Level 1

2: Level 2

3: Level 3

RLIN3_CFG_CH0_TAU_UNIT

RLIN3_CFG_CH1_TAU_UNIT

Timer array unit number used by the LIN Slave driver.

0x00: Unit 0

0x01: Unit 1

RLIN3_CFG_CH0_TAU_CH

RLIN3_CFG_CH1_TAU_CH

Channel number of the timer array unit used by the LIN Slave

driver.

0x00: channel 0

0x01: channel 1

0x02: channel 2

0x03: channel 3

0x04: channel 4

0x05: channel 5

0x06: channel 6

0x07: channel 7

RLIN3 Module Software Integration System CHAPTER 4 Linkage to Smart Configurator

RLIN3 Module Software Integration System Rev 1.00 26
R01AN6335EJ0100

RLIN3_CFG_CH0_TAU_CLKSEL

RLIN3_CFG_CH1_TAU_CLKSEL

The operating clock of the timer array unit used by the LIN

Slave driver.

0x0000: Operating clock (CKm0) set by the timer clock

selection register (TPSm).

0x8000: Operating clock (CKm1) set by the timer clock

selection register (TPSm).

RLIN3_CFG_CH0_TAU_INTTMmn_PRIORITY_LEVEL

RLIN3_CFG_CH1_TAU_INTTMmn_PRIORITY_LEVEL

INTTMmn interrupt priority of the timer array unit used by the

LIN Slave driver.

0: Level 0 *Highest priority

1: Level 1

2: Level 2

3: Level 3

RLIN3_CFG_USE_SMC_DEFINITION
Some of the definition values in the conflin_x.h file will be the
above definition values.

Remark

1. Make sure that the LIN-related settings on the Smart Configurator do not conflict with the settings of

other functions. The following modules need to be taken care of.

- Interrupt priority for INTLIN0TRM, INTLIN0RVC, INTLIN0STA, INTLIN0WUP, INTLIN1TRM,

INTLIN1RVC, INTLIN1STA, and INTLIN1WUP

- The used unit/channel number of the timer array unit and the interrupt priority

2. Set within the range of the number of units and channels that the product is equipped with.

RLIN3 Module Software Integration System CHAPTER 5 HOW TO BUILD LIN APPLICATION

RLIN3 Module Software Integration System Rev 1.00 27
R01AN6335EJ0100

CHAPTER 5 HOW TO BUILD LIN APPLICATION

In this section, how to build LIN application using this LIN software driver generated by LIN configurator is

described.

Figure 5-1. Flow of building LIN application

The flow of building LIN application is shown above.

See "CHAPTER 6 LIN CONFIGURATOR" for more information about “Generate driver code using LIN

configurator”.

Generate driver code using LIN configurator

Build driver library

Describe macro definition in conflin_x.h

Create LIN application code

Build LIN application

These are done for all

channels.

RLIN3 Module Software Integration System CHAPTER 5 HOW TO BUILD LIN APPLICATION

RLIN3 Module Software Integration System Rev 1.00 28
R01AN6335EJ0100

5. 1 Build driver library

LIN driver library is built by compiling and linking LIN driver source code generated by LIN configurator. LIN

driver library must be built for each channel.

The project file generated by LIN configurator is loaded by development environment and “Build” is started.

LIN driver library file is created after these operations.

CS+: (Master) liblin21m_CCRL_x.lib, (Slave) liblin21s_CCRL_x.lib

IAR: (Master) liblin21m_IAR_x.a, (Slave) liblin21s_IAR_x.a

x = 0, 1 (Channel number)

Before building the library, you must make the following edits as needed:

1) Compiler options

The behavior of LIN driver can be changed by specifying compiling option not specified by LIN configurator.

See readme.txt generated by LIN configurator and “5. 1. 1 Compiler options for library” for more information.

2) r_rlin3_config.h specification (when linking Smart Configurator)

The LIN configurator outputs an empty r_rlin3_config.h to the folder libsrc/conf/, assuming that it does not

work with the Smart Configurator. To link with Smart Configurator, overwrite the empty r_rlin3_config.h with the

Smart Configurator output file.

3) Driver configuration

The property of LIN driver can be changed by driver configuration. Change driver configuration

(libsrc/conf/confslin_opt.h in slave, libsrc/conf/conflmlin_opt.h in master) and build LIN driver if you need. See "5.

1. 2 Edit of confmlin_opt.h (for Master)" and "5. 1. 3 Edit of confslin_opt.h (for Slave)" for details.

4) I/O header file specification (only IAR)

The LIN driver accesses the SFR register and requires an I/O header file with the register address definition.

If the development environment used is CS+, it is automatically resolved at build time, but in the case of IAR,

editing is required separately. See "5. 1. 4 Specify the IAR I/O header file" for details.

RLIN3 Module Software Integration System CHAPTER 5 HOW TO BUILD LIN APPLICATION

RLIN3 Module Software Integration System Rev 1.00 29
R01AN6335EJ0100

5. 1. 1 Compiler options for library

Compiler options for building RL78/F23, F24 driver library are shown below.

"Mandatory setting" or "Normally setting" option are predefined in the development environment project file

generated by LIN configurator.

__LIN_CH0_P1__ or __LIN_CH1_P1_ is defined as the initial setting of compiler option for channel. If you

want to use port group other than port 1 when it does not work with Smart Configurator, edit the project file and

change the option. If you use Smart Configurator, no editing is required since the options are automatically

replaced according to the specified port.

If you need "Selectable" option or do not use "Normally setting" option, edit the project file. For the editing

method, refer to the user's manual of the integrated development environment used.

If you use macro __LIN_SIGNAL_32__, you need to add it to the conflin_x.h file separately. See "5. 2. 4

Describe compiler options (conflin_x.h)" for details.

Table 5-1. Compiler Option for Library Usage List

Compiler option Macro Name Master Slave

Series name
__LIN_RL78_F23_F24__

Channel *1

Memory copy routine by

assembler

__LIN_MEMCOPY_ASM__ *2 *2

Enable auto-baudrate-mode

by hardware

__LIN_HW_AUTO_BR__ Not applicable *3 *4

The number of the signals in

the frame : 32

__LIN_SIGNAL_32__

 : Mandatory setting. : Normally setting : Selectable

*1 __LIN_CH0_P1__, __LIN_CH0_P4__, __LIN_CH1_P1__, __LIN_CH1_P10__, or __LIN_CH1_P12__

Change the compiler option according to the port group you are using if not use Smart Configurator.

(1) If choice the channel 0

 P1 :__LIN_CH0_P1__ (Rx port is P14. Tx port is P13)

 P4 :__LIN_CH0_P4__ (Rx port is P43. Tx port is P42)

(2) If choice the channel 1

 P1 :__LIN_CH1_P1__ (Rx port is P11. Tx port is P10)

 P10 :__LIN_CH1_P10__ (Rx port is P107. Tx port is P106)

 P12 :__LIN_CH1_P12__ (Rx port is P125. Tx port is P120)

*2 In IAR compiler, this option is available when memory model is near model.

The CC-RL compiler can be used with either the small or medium model.

You should also set the define in the Assembler Options to the option “__LIN_CHn_Pn__” and

“__LIN_MEMCOPY_ASM__” .

*3 If __LIN_HW_AUTO_BR__ is used, set number of bit samplings to 4 or 8.

If __LIN_HW_AUTO_BR__ is not used, set number of bit samplings to 16,

See "5. 1. 3 Edit of confslin_opt.h (for Slave)" and "7. 9. 1 Slave driver configuration" for more information.

*4 It must be configured to match the baud rate setting by the LIN configurator.

See “6. 2. 5 Baud rate configuration” for details.

RLIN3 Module Software Integration System CHAPTER 5 HOW TO BUILD LIN APPLICATION

RLIN3 Module Software Integration System Rev 1.00 30
R01AN6335EJ0100

5. 1. 2 Edit of confmlin_opt.h (for Master)

Typical configuration items for the RL78/F23, F24 master drivers are listed below. These cannot be configured

in the LIN Configurator and Smart Configurator. Therefore, if you want to change from the default settings, the

confmlin_opt.h file (storage folder libsrc/conf) must be edited directly.

See "7. 9. 2 Master driver configuration" for configuration details and other configuration items.

- CONFMLIN_OPT_u1gLINMCK_CFG Source of LIN communication clock (fCLK, fMX)

 (Initial value: fCLK)

- CONFMLIN_OPT_u1gBDT_CFG Sending break delimiter length (Initial value: 2Tbit)

- CONFMLIN_OPT_u1gIBHS_CFG Width between sending synch field and id field, and width

of sending response space

(Initial value: 0Tbit)

- CONFMLIN_OPT_u1gIBS_CFG Width between each sending response

 (Initial value: 0Tbit)

When using Smart Configurator, the following items are set according to the definition in the output header

file r_rlin3_config.h. If not using, the items will be the initial value, so edit confmlin_opt.h directly if necessary.

- CONFMLIN_OPT_u1gBUSWKUP_CFG Bus wakeup method (Initial value: Down edge detection)

- CONFMLIN_OPT_u1gINTXXXPR_CFG

(INTXXX: 4 types of INTLINTRM, INTLINRVC, INTLINSTA, INTP) Priority of each interrupt

(Initial value: Level 3 (lowest))

RLIN3 Module Software Integration System CHAPTER 5 HOW TO BUILD LIN APPLICATION

RLIN3 Module Software Integration System Rev 1.00 31
R01AN6335EJ0100

5. 1. 3 Edit of confslin_opt.h (for Slave)

Typical configuration items for the RL78/F23, F24 slave drivers are listed below. These cannot be configured

in the LIN Configurator and Smart Configurator. Therefore, if you want to change from the default settings, the

confslin_opt.h file (storage folder libsrc/conf) must be edited directly.

If you use the fixed baud rate by removing the compilation option __LIN_HW_AUTO_BR__, change the

number of bit sampling CONFSLIN_OPT_u1gNSPB_NORM_CFG to 16.

See "7. 9. 1 Slave driver configuration" for configuration details and other configuration items.

- CONFSLIN_OPT_u1gLINMCK_CFG Source of LIN communication clock (fCLK, fMX)

 (Initial value: fCLK)

- CONFSLIN_OPT_u1gLPRS_NORM_CFG Prescaler division value for LIN macro

(Initial value: 1/1)

- CONFSLIN_OPT_u1gNSPB_NORM_CFG Number of bit samplings (Initial value: 4)

- CONFSLIN_OPT_ u1gRS_CFG Response space width at response Tx

(Initial value: 1Tbit)

- CONFSLIN_OPT_u1gIBS_CFG Inter byte space width at response Tx

 (Initial value: 0Tbit)

When using Smart Configurator, the following items are set according to the definition in the output header

file r_rlin3_config.h. If not using, the items will be the initial value, so edit confslin_opt.h directly if necessary.

- CONFSLIN_OPT_u1gBUSWKUP_CFG Bus wakeup method (Initial value: Down edge detection)

- CONFSLIN_OPT_u1gINTXXXPR_CFG

(INTXXX: 4 types of INTLINTRM, INTLINRVC, INTLINSTA, INTP) Priority of each interrupt

(Initial value: Level 0 (highest))

- CONFSLIN_OPT_u1gTMUNIT_CFG etc. 4 settings for interval timer to be used

(Initial value: TAU0, Channel 0, CK01 use,

Priority of timer interrupt is Level 0 (highest))

RLIN3 Module Software Integration System CHAPTER 5 HOW TO BUILD LIN APPLICATION

RLIN3 Module Software Integration System Rev 1.00 32
R01AN6335EJ0100

5. 1. 4 Specify the IAR I/O header file

LIN 2.1 software driver not only CC-RL compiler but also IAR compiler.

When using the project file for the IAR compiler output from the configurator, the header file with address

definitions and unique function declarations for the SFR registers, extended SFR registers, interrupt vectors,

etc. provided by IAR must be resolved to include.

In the case of the R7F124FPJ, the file is as follows.

･ ior7f124fpj.h

･ ior7f124fpj_ext.h

･ intrinsics.h

These files are included in the IAR environment installation folder. It is also possible to use Smart Configurator

r_bsp output files. See the r_bsp application note for details.

The same header file must be placed in the appropriate folder in the user application project folder in the user

application that incorporates the LIN 2.1 software driver.

Solve the include device.h (storage folder libsrc/dev) by doing one of the following:

a) Edit device.h and match the header file name specified by "#include" to the device.

At this time, it is described including the path "../../liblin2/”.

Copy the specified file to the liblin2 folder.

b) Edit device.h and match the header file name specified by "#include" to the device.

Delete the path ”../../liblin2".

Uncheck "Ignore standard include directories" in the project file.

Figure 5-2. How to describe the include in device.h

(Omitted)

/* -- */
/* Device file */
/* -- */
#ifdef __CCRL__
#include "../../liblin2/iodefine.h"
#endif /* __CCRL__ */

#ifdef __IAR_SYSTEMS_ICC__
#include "../../liblin2/ior7f124fpj.h"
#include "../../liblin2/ior7f124fpj_ext.h"
#include "../../liblin2/intrinsics.h"
#endif /* __IAR_SYSTEMS_ICC__ */

(Omitted)

The left is a) case,
and in the case of b), it is described as follows.

#include "ior7f124fpj.h"
#include "ior7f124fpj_ext.h"
#include "intrinsics.h"

RLIN3 Module Software Integration System CHAPTER 5 HOW TO BUILD LIN APPLICATION

RLIN3 Module Software Integration System Rev 1.00 33
R01AN6335EJ0100

5. 2 Create LIN application code

Create LIN application program using LIN 2.1 API provided by LIN 2.1 software driver.

How to build LIN application for using channel 0 and channel 1 is shown below.

Because one source code (*.c file) cannot include multiple conflin_x.h, the channel-only source code must be

isolated when using multiple channels. If the channel used is one channel, channel-only source code is not

required.

Figure 5-3. How to build LIN application

LIN Configurator

conflin_0.h conflin_0.c

LIN 2.1 Driver Library (CH0)

Source code for channel 0

(Using LIN 2.1 API)

Include

Source code for common part

(Including main() function)

Call functions

conflin_1.h conflin_1.c

LIN 2.1 Driver Library (CH1)

Source code for channel 1

(Using LIN 2.1 API)

Include

Call functions

Create Create

Hex file

Compile & Link

(Compiler option is not needed)

Add compiler option definition. Add compiler option definition.

LIN Application

RLIN3 Module Software Integration System CHAPTER 5 HOW TO BUILD LIN APPLICATION

RLIN3 Module Software Integration System Rev 1.00 34
R01AN6335EJ0100

5. 2. 1 Creation of development environment project file

When creating a development environment project file for a LIN application program, add the following files

for build to use the LIN driver.

- Configuration files generated by LIN Configurator: conflin_x.c , conflin_x.h

- Library files created by building LIN driver sources (See "5. 1 Build driver library")

liblin21m_CCRL_0.lib、liblin21m_IAR_0.a, etc.

- In case of IAR, link configuration file (extension .icf)

When linking with Smart Configurator, conflin_x.c , conflin_x.h are generated in an empty file, so overwrite it

with the LIN configurator output file.

Because LIN drivers use unique sections, in the IAR environment, it is necessary to add the project's own

link configuration file and write the section. In the CS+ environment, the user edits the properties of the project.

See "5. 2. 8 Use Section Setting" for more information on the specified section.

Note that when using the compiler option "__LIN_MEMCOPY_ASM__", do not place in the far area and huge

area.

5. 2. 2 Craation of channel-only source code

The function interface of the LIN2.1 software driver has a commonized function name between the master

and slave, and the function name is also commonized for the channel. On the other hand, the functions of the

driver libarary are implemented separately in master/slave and channel numbers.

For this reason, header file conflin_x.h must be included in order to link the commonized function interface to

the function name of the driver library.

ex. Function name l_u16_rd

Include conflin_0.h (for Master) -> Replace to ApMLin_u2gRead16bitsSig_0

Include conflin_1.h (for Slave) -> Replace to ApSLin_u2gRead16bitsSig_1

One source code (.c file) can include only one conflin_x.h.

Therefore, if LIN application for multi channels is created, source code must be created for each channel and

each source code must include conflin_x.h.

Use LIN 2.1 API for each channel in the channel source code.

RLIN3 Module Software Integration System CHAPTER 5 HOW TO BUILD LIN APPLICATION

RLIN3 Module Software Integration System Rev 1.00 35
R01AN6335EJ0100

5. 2. 3 Peripheral hardware processing implementation

The LIN driver operates on the peripheral hardware shown in "1. 4. 3 Hardware resources". Because no

other peripheral hardware is configured, user code must handle the peripheral hardware when creating LIN

applications.

The main peripheral hardware processing is as follows.

1) Configure clock oscillator circuit.

Clock oscillator function is not set by LIN 2.1 software driver. Application must configure this setting.

When linking to the output source of the Smart Configurator, no user code is required.

2) Configure LIN transceiver

LIN transceiver is not operated by LIN 2.1 software driver. Application must configure this setting.

When linking to the output source of Smart Configurator, the output pin can be initially set by using the

port function. A user code is required to switch pin levels.

3) Standby function.

The transition to microcomputer standby mode (HALT, STOP and SNOOZE) isn’t controlled by LIN 2.1

software driver. If it is needed, application must control it.

In RL78/F23,F24 series, microcomputer can transit to standby mode when the bus wakeup way is

“Falling edge detection” only (This is controlled by driver configuration.). In master, microcomputer can

transit to standby mode if the return value of l_ifc_read_status() after calling l_ifc_goto_sleep() is

“0x3C02” (bit3-7 are indeterminate values). In slave, microcomputer must can transit to standby mode

when l_sys_call_sleep() is called.

The notes about peripheral hardware when creating LIN applications are as follows.

- Note for using peripheral hardware.

Hardware resources used by LIN 2.1 software driver can not be used by application. These hardware

resources are described in 1. 4. 3 .

- Output latch of LIN port.

LIN 2.1 software driver operates output latch of LIN TXD pin on RL78. So, if other pins in same register

as TXD pin is input direction, these pin levels may be changed by LIN driver operation.

RLIN3 Module Software Integration System CHAPTER 5 HOW TO BUILD LIN APPLICATION

RLIN3 Module Software Integration System Rev 1.00 36
R01AN6335EJ0100

- Interrupt priority setting.

In the driver for RL78/F23 and F24, the interrupt priority is set by the driver configuration or Smart

Configurator. If application uses interrupt, interrupt collision with used by LIN 2.1 software driver should

be taken care.

Setting interrupt priority used by LIN slave driver to higher (used by application is set to lower) is

recommended.

The LIN master driver does not use interrupts except for the driver sleep or wake up. This eliminates

the need for higher priority settings.

 RL78/F23, and F24 masters do not use interrupts except for driver sleep and wake-up.

Figure 5-4 Timing of interrupt and LIN frame in RL78 series.

header response

Break Synch PID Data1-8 Check
sum

frame

response
space

LIN

Interrupt

flag

RLIN3 Module Software Integration System CHAPTER 5 HOW TO BUILD LIN APPLICATION

RLIN3 Module Software Integration System Rev 1.00 37
R01AN6335EJ0100

5. 2. 4 Describe compiler options (conflin_x.h)

Describe macro definition on top of conf/conflin_x.h (‘x’ is channel number) generated by LIN configurator.

This must be done for each channel.

The compiler options required for LIN applications are as follows. Of these, the LIN configurator automatically

specifies the target microcomputer and channel. If __LIN_SIGNAL_32__ is added when building the LIN driver

library, conflin_x.h must be edited directly. (See "5. 1. 1 Compiler options for library".)

表 5-1 Compiler options (conflin_x.h) list

Compiler options Macro name RL78/F23,F24 Master RL78/F23,F24 Slave

Series name __LIN_RL78_F23_F24__ LIN configurator automatically specifies

 (cannot be deleted)

Channel __LIN_CH0__ or

__LIN_CH1__

LIN configurator automatically specifies

 (cannot be deleted)

conflin_0.h: __LIN_CH0__

conflin_1.h: __LIN_CH1__

The number of the signals in the

frame : 32

__LIN_SIGNAL_32__ Need to be added if __LIN_SIGNAL_32__ is

specified to build LIN driver library.

The location to describe macro definition is shown below (bold part).

Figure 5-5. Location of macro description in conflin_x.h

Contents of macro definitions are different depending on each device. The “compile option” for application

building in readme.txt generated by LIN configuration is equal to these contents.

(omitted)

#ifndef H_CONFLIN
#define H_CONFLIN

/* ** */
/* [Add macro definitions for LIN application] (from here) */
/* */
/* [Example] */
/* #define __LIN_CH0__ */
/* */
/* [Note] */
/* Definition contents are different by each devices. */
/* For more detail, see "compile option" in readme.txt . */
/* ** */

#define __LIN_RL78_F23_F24__
#define __LIN_CH0__
#define __LIN_SIGNAL_32__ /* example */

/* ** */
/* [Add macro definitions for LIN application] (to here) */
/* ** */

(omitted)

RLIN3 Module Software Integration System CHAPTER 5 HOW TO BUILD LIN APPLICATION

RLIN3 Module Software Integration System Rev 1.00 38
R01AN6335EJ0100

5. 2. 5 Edit public constants (conflin_x.c)

The conf/conflin_x.c (“x” is channel number) generated by the LIN Configurator contains public constants with

const variables. Normally, the confiln_x.c file does not need to be edited, but it needs to be edited in the following

cases.

a) When using a LIN communication clock other than the frequency that can be specified by the LIN configurator

(using other than 8, 10, 12, 16, 20, 24, 32, 40 [MHz])

When using a LIN communication clock frequency that cannot be specified by the LIN configurator, specify

the frequency (resolution 10 kHz) as defined value of the CONFLIN_u2sPERICLOCK as follows.

ex. 4MHz for LIN communication clock

 [Before modification] LIN communication clock 40 MHz = 10 kHz x 4000

 #define CONFLIN_u2sPERICLOCK (4000)

 [After modification] LIN communication clock 4 MHz = 10 kHz x 400

 #define CONFLIN_u2sPERICLOCK (400)

b) If the following conditions are met:

- Use slave driver and

- Use fMX instead of fCLK as LIN supply clock and

- Defferent frequency for fCLK and fMX

The initial setting of the LIN slave driver assumes that the supply clocks for LIN and interval timer (TAU) are

both fCLK and the same frequency is input.

Therefore, When using fMX for LIN communication clock provides LIN with a different frequency than the TAU,

it is necessary to modify the constant ConfSLin_u2gTMPERICLOCK indicating the TAU supply clock frequency

(resolution 10 kHz) as follows after code generation with the LIN configurator.

ex. 8MHz for LIN communication clock, 40 MHz for TAU supply clock

 [Before modification] Both LIN communication clock and TAU supply clock 8 MHz = 10 kHz x 800

 #define CONFLIN_u2sPERICLOCK (800)

 const u2 ConfSLin_u2gPERICLOCK = (u2)CONFLIN_u2sPERICLOCK;

 const u2 ConfSLin_u2gTMPERICLOCK = (u2)CONFLIN_u2sPERICLOCK;

 [After modification] LIN communication clock 8 MHz, TAU supply clock 40 MHz = 10 kHz x 4000

 #define CONFLIN_u2sPERICLOCK (800)

 const u2 ConfSLin_u2gPERICLOCK = (u2)CONFLIN_u2sPERICLOCK;

 const u2 ConfSLin_u2gTMPERICLOCK = (u2)4000;

RLIN3 Module Software Integration System CHAPTER 5 HOW TO BUILD LIN APPLICATION

RLIN3 Module Software Integration System Rev 1.00 39
R01AN6335EJ0100

5. 2. 6 Scheduler implementation (only master)

When creating the LIN master application, it is necessary to implement a scheduler using a timer in the user

master application.

See “7. 7 Scheduling Function (Master)” for more details regarding the implementation of a schedule table.

 The program example of a scheduler setting using the timer function of the Smart Configurator is shown as

follows.

- Compornent: Interval timer

- Configuration name: Config_TAU0_1

- Operation mode: 16 bits counter mode

- Resource: TAU0_1

- Output files: Config_TAU0_1.c, Config_TAU0_1.h, Config_TAU0_1_user.c

[Config_TAU0_1_user.c] extract

- Add conflin_0.h as the include target

- Add l_sch_tick in interrupt routine

[CC-RL]

[IAR}

/***

* Function Name: r_Config_TAU0_1_interrupt

* Description : This function is INTTM01 interrupt service routine.

* Arguments : None

* Return Value : None

***/

static void __near r_Config_TAU0_1_interrupt(void)

{

 /* Start user code for r_Config_TAU0_1_interrupt. Do not edit comment generated here */

 (void)l_sch_tick(LIN_CHANNEL0);

 /* End user code. Do not edit comment generated here */

}

/***

Includes

***/

#include "r_cg_macrodriver.h"

#include "r_cg_userdefine.h"

#include "Config_TAU0_1.h"

/* Start user code for include. Do not edit comment generated here */

#include "conflin_0.h"

/* End user code. Do not edit comment generated here */

#pragma vector = INTTM01_vect

__interrupt static void r_Config_TAU0_1_interrupt(void)

{

 /* Start user code for r_Config_TAU0_1_interrupt. Do not edit comment generated here */

 (void)l_sch_tick(LIN_CHANNEL0);

 /* End user code. Do not edit comment generated here */

}

RLIN3 Module Software Integration System CHAPTER 5 HOW TO BUILD LIN APPLICATION

RLIN3 Module Software Integration System Rev 1.00 40
R01AN6335EJ0100

[main.c]

- Add timer function header file Config_TAU0_1.h as the include target Include

- Add conflin_0.h as the include target

- Call the timer start function R_Config_TAU0_1_Start after LIN initialize

- Set schedule table by the l_sch_set function

5. 2. 7 User-defined callouts implementation

The LIN2.1 software driver calls to call-out functions for interrupt disable, interrupt restore, and wakeup

notification, etc. Each callout function must be implemented in user code in order to link with the LIN driver

library.

If the code is output by using the Smart Configurator, the following source file will be output as the required

callout functions.

Source code for master driver: r_rlin3_m_callout.c

Source code for slave driver: r_rlin3_s_callout.c

See “8. 3. 8 [Slave] User provided call-outs” and “9. 3. 10 [Master] User provided call-outs” for details.

#include "platform.h"

#include "Config_TAU0_1.h"

/* defined in configuration file.

 - Channel name : LIN_CHANNEL0

 - Schedule name : SCH_MAINAPL

*/

#include "conflin_0.h"

/* main function */

void main(void)

{

 /* LIN initialize or more */

 BSP_ENABLE_INTERRUPT();

 R_Config_TAU0_1_Start(); /* Start timer */

 l_sch_set(LIN_CHANNEL0, SCH_MAINAPL, 0U); /* Set schedule of main app. */

 ApLst_vosMainApl(); /* Start main application */

}

RLIN3 Module Software Integration System CHAPTER 5 HOW TO BUILD LIN APPLICATION

RLIN3 Module Software Integration System Rev 1.00 41
R01AN6335EJ0100

5. 2. 8 Use Section Setting

The LIN2.1 software driver places the code area and data area to be used in the unique section. Therefore,

you need to define a section to link. Therefore, the sections must be defined in order to link.

In the case of CS+, define it in the project file. In the case of IAR, add the target section to the link

configuration file (extension .icf) and link the file. For details on how to edit, refer to the user's manual of the

integrated development environment to use.

 Use section for CC-RL

Define the following sections in the CS+ project file.

Master driver

- ROM area: LMCODE_n, LMCODE_f, LMCNST_n, LMCNST_f

- RAM area: LMDATA_n, LMDATA_f

Slave driver

- ROM area: LSCODE_n, LSCODE_f, LSCNST_n, LSCNST_f

- RAM area: LSDATA_n, LSDATA_f

Table 5-2. LIN2.1 software driver use sections (CC-RL)

Default

Section Name

Description LIN Driver Usage Section Name Supplement

Master Slave

.callt0 Section for the table to call the callt

function

(unuse) (unuse)

.text Section for code (allocated to the near

area)

LMCODE_n LSCODE_n Function, Interrupt

function

.textf Section for code (allocated to the far

area)

LMCODE_f LSCODE_f

.textf_unit64kp Section for code (section is allocated so

that the start address is an even address

and the section does not exceed the (64

Kbytes - 1) boundary)

(unuse) (unuse)

.const ROM data (allocated to the near area)

(within the mirror area)

LMCNST_n LSCNST_n Constarnt data

(Including global and

static) .constf ROM data (allocated to the far area) LMCNST_f LSCNST_f

.data Section for near initialized data (with

initial value)

(unuse) (unuse)

.dataf Section for far initialized data (with initial

value)

(unuse) (unuse)

.sdata Section for initialized data (with initial

value, variable allocated to saddr)

(unuse) (unuse)

.bss Section for data area (without initial

value, allocated to the near area)

LMDATA_n LSDATA_n Variable data without

initial value

(Including global and

static)

.bssf Section for data area (without initial

value, allocated to the far area)

LMDATA_f LSDATA_f

.sbss Section for data area (without initial

value, variable allocated to saddr)

(unuse) (unuse)

.option_byte Section specific for user option byte and

on-chip debugging specification

(unuse) (unuse)

.security_id Section specific for security ID

specification

(unuse) (unuse)

.vect<vector

table address>

Interrupt vector table - -

RLIN3 Module Software Integration System CHAPTER 5 HOW TO BUILD LIN APPLICATION

RLIN3 Module Software Integration System Rev 1.00 42
R01AN6335EJ0100

NOTE:

When using the compiler option "__LIN_MEMCOPY_ASM__", do not place it in the far area.

 User section for IAR

Define the following sections in the IAR link configuration file (extension .icf).

Master driver

- ROM area: LMCODE, LMCNST

- RAM area: LMDATA

Slave driver

- ROM area: LSCODE, LSCNST

- RAM area: LSDATA

Table 5-3. LIN2.1 software driver use sections (IAR)

Description Default Section

Name

LIN Driver Usage Section Name Supplement

Master Slave

Functions, interrupts and

__callt functions

.text LMCODE LSCODE for the near area

.textf LMCODE LSCODE for the far area

Constant data .const LMCNST LSCNST for the near area

.constf LMCNST LSCNST for the far area

.consth LMCNST LSCNST for the huge area

Interrupt vector table .intvec - - -

Static and global

initialized variables

.data (unuse) (unuse) for the near area

.dataf (unuse) (unuse) for the far area

.hdata (unuse) (unuse) for the huge area

Zero-initialized static

and global variables

.bss LMDATA LSDATA for the near area

.bssf LMDATA LSDATA for the far area

.hbss LMDATA LSDATA for the huge area

Initial values for .data

section

.data_init (unuse) (unuse) for the near area

.dataf_init (unuse) (unuse) for the far area

.hdata_init (unuse) (unuse) for the huge area

Call table vectors

generated by use of the

__callt

.callt0 (unuse) (unuse) -

OCD option bytes .option_byte (unuse) (unuse) -

Security ID .security_id (unuse) (unuse) -

NOTE:

When using the compiler option "__LIN_MEMCOPY_ASM__", do not place it in the far area and huge

area.

RLIN3 Module Software Integration System CHAPTER 6 LIN CONFIGURATOR

RLIN3 Module Software Integration System Rev 1.00 43
R01AN6335EJ0100

CHAPTER 6 LIN CONFIGURATOR

6. 1 General

 The LIN Configurator is a development tool that the user can use to select the LIN’s initial values when building

a system that includes LIN functions. Functions are provided to enable the user to set initial values for registers

in accordance with the device to be used, and to perform static generation of messages used in the system.

6. 1. 1 Features

 The initial values for registers corresponding to the target device can be set while selecting the device, such as

entering the peripheral hardware clock value, and setting the baud rate per channel. Necessary setting for LIN

communications between the setting of various frames such as unconditional frames and the event triggered

frames and schedules and the settings of node information, etc. can be done at a time.

In the LIN configurator software, any LIN system configuration information that is entered by the user is saved to

a project file. This enables the user to preserve any work done on a project and also recall it when

needed.

6. 1. 2 Execution Environment

 The environment needed for this tool is as follows.

 - Host machine : IBM PC/ATTM Series

 - OS : Windows 10

 (Microsoft .NET Framework 3.5 is needed)

6. 1. 3 Output Folder

 The folders generated from LIN configurator are as follows.

 /conf : Location where configuration files are saved.

 /liblin2 : Location where the project files of development environment are saved. It is used to generate

the library from the generated source files by LIN configurator.

 /libsrc : Location for the LIN 2.1 software driver source code.

RLIN3 Module Software Integration System CHAPTER 6 LIN CONFIGURATOR

RLIN3 Module Software Integration System Rev 1.00 44
R01AN6335EJ0100

6. 2 File Generation Steps

 If the target device setting on the display is completed, it is possible to set it in random order. In general, it is

recommended to set it in order of 4.2.1-4.2.13.

 However, when input the set value, note the following points.

 - Names (Frame name, Signal name, Schedule table name)

 These names must be unique; they can not be the same name. It is highly recommended to specify the

name according to the identifier pattern (naming convention) of the C language.

 - Numerical values

 All values should be defined by their decimal value.

 The Message ID/Initial ID, Initial data, NAD, Supplier ID, Functional ID, and Variant may be described by

their hexadecimal value.

 - XML files

Do not change the XML file of the configurator attachment. There is a possibility of not operating normally.

RLIN3 Module Software Integration System CHAPTER 6 LIN CONFIGURATOR

RLIN3 Module Software Integration System Rev 1.00 45
R01AN6335EJ0100

6. 2. 1 Start Up of LIN Configurator

Main Screen shown below is opened when “LIN Configurator” in start menu is selected. Main contents are

shown in left side and right side is value of contents. Contents not be set is not displayed.

 (Following all screens is on Windows 10.)

Figure 6-1. Main Screen

Contents of device and channels are hanged on “Configuration List”.

RLIN3 Module Software Integration System CHAPTER 6 LIN CONFIGURATOR

RLIN3 Module Software Integration System Rev 1.00 46
R01AN6335EJ0100

Main Screen transits to below when the ‘+’ left of “Configuration List” is clicked.

Figure 6-2. Main Screen (before selection)

Following contents are selectable in upper part of Main Screen.

- “File”

- “New” : Start new configuration after discarding current settings.

- “Open” : Load setting XML file.

- "SMC Header File Open"

: Reads the LIN-related definition file (header file) output from the smart

configurator. (It can also be executed with the button.)

- “Save” : Overwrite settings to XML file saved last time.

- “Save As” : Save settings to new XML file.

- “Exit” : Finish LIN Configurator.

- “Tool” : See table in next page for operations from “Tool” menu.

- “Help”

- “About Configurator” : Information of LIN Configurator is shown in dialog..

Remark

 By executing "SMC Header File Open", all the information that has been set up until then will be cleared.

Selectable of buttons on upper part depends on the channel type (Master or Slave) currently selected.

See table in next page.

RLIN3 Module Software Integration System CHAPTER 6 LIN CONFIGURATOR

RLIN3 Module Software Integration System Rev 1.00 47
R01AN6335EJ0100

Table 6-1. Operation from tree contents, buttons and Tool menu (for Master channel)

Operation Opened window

Tree contents

(double clicked)

Button Tool menu

selection

“Device Info” Device Setup Device Selection

“Channel*” Channel Setup*1 Channel Configuration

“Baud rate” Baud Rate Setup*1 Setting Baud Rate

“Unconditional frames” Message Setup*1 Setting Frame

A frame in

“Unconditional frames”

A signal in

“Unconditional frames”

Event triggered frames

A frame in

“Event triggered frames”

Sporadic frames

A frame in

“Sporadic frames”

“Schedules” Schedule Setup*1 Setting Schedule

A schedule in

“Schedules”

*1 Channel has to be selected to select this menu and button.

Table 6-2. Operation from tree contents, buttons and Tool menu (for Slave channel)

Operation Opened window

Tree contents

(double clicked)

Button Tool menu

selection

“Device Info” Device Setup Device Selection

“Channel*” Channel Setup*2 Channel Configuration

“Baud rate” Baud Rate Setup※2 Setting Baud Rate

“Unconditional frames” Message Setup※2 Setting Frame

A frame in

“Unconditional frames”

A signal in

“Unconditional frames”

“Event triggered frames”

A frame in

“Event triggered frames”

Node information Node Setup※2 Setting Node

Others Others Setup※2 Setting Others

*2 Channel has to be selected to select this menu and button.

RLIN3 Module Software Integration System CHAPTER 6 LIN CONFIGURATOR

RLIN3 Module Software Integration System Rev 1.00 48
R01AN6335EJ0100

6. 2. 2 Start a New Configuration

There are two ways to start a new configuration.

a) When starting with a configuration of Smart Configurator

If “SMC Header File Open” of File menu is selected, the file loading dialog is displayed.

Specify the LIN-related definition file r_rlin3_config.h generated by the Smart Configurator.

A new configuration is created with the information set in the file as the initial state.

It can also be executed with the button.

If the file is read successfully, the information set in the Smart Configurator will be automatically reflected

on the 6. 2. 3 Device selection window and the 6. 2. 4 Channel configuration window.

The items to be reflected are as follows.

[6. 2. 3 Device selection window]

Series Information

Device Name

Channel

[6. 2. 4 Channel configuration window]

Master/Slave

Peripheral Hardware Clock

b) When creating a new configuration by LIN Configurator

If “New” of File menu is selected, 6. 2. 3 Device selection window is displayed. When the device and

channel selection is complete, a new configuration will be created.

It can also be executed with the button.

RLIN3 Module Software Integration System CHAPTER 6 LIN CONFIGURATOR

RLIN3 Module Software Integration System Rev 1.00 49
R01AN6335EJ0100

6. 2. 3 Device selection

Figure 6-3. Device Selection window (before device selection)

Microcomputer series and device are selected by this window.

If multi channels can be used , message is displayed under channel list and multi channels can be selected in

channel list box.

Figure 6-4. Device Selection window (device applying multi channels)

RLIN3 Module Software Integration System CHAPTER 6 LIN CONFIGURATOR

RLIN3 Module Software Integration System Rev 1.00 50
R01AN6335EJ0100

Click “OK” button after selecting channels.

Then, all channels are hanged under “Configuration List” in Main Screen.

(The channel that is not configured is displayed in red letter.)

Remark

By reading the LIN-related definition file output from the smart configurator, the device and channel information

set on the smart configurator will be reflected on this screen.

Figure 6-5. Main Screen (before channel configuration)

RLIN3 Module Software Integration System CHAPTER 6 LIN CONFIGURATOR

RLIN3 Module Software Integration System Rev 1.00 51
R01AN6335EJ0100

6. 2. 4 Channel configuration

Figure 6-6. Channel Configuration window

Master or slave and clock frequency used by LIN driver are selected in channel configuration window.

Click “OK” button after configuration.

Remark Clock oscillator function isn’t configured in LIN driver. So, this setting should be configured

application side.

Setting contents are hanged under a channel in main screen after channel configuration completion. The

content that is not configured and that is required for generating source code is displayed in red letter.

Figure 6-7. Main Screen (before channel contents configuration)

RLIN3 Module Software Integration System CHAPTER 6 LIN CONFIGURATOR

RLIN3 Module Software Integration System Rev 1.00 52
R01AN6335EJ0100

Remark

By reading the LIN-related definition file output from the Smart Configurator, the Master/Slave and input clock

settings made on the Smart Configurator are reflected on this screen.

RLIN3 Module Software Integration System CHAPTER 6 LIN CONFIGURATOR

RLIN3 Module Software Integration System Rev 1.00 53
R01AN6335EJ0100

6. 2. 5 Baud rate configuration

Figure 6-8. Setting Baud Rate window

Baud rate and low level length of break field sent by this node is configured in this window.

(The low level length of break field is configured in master only.)

If channel is slave, “Auto” can be selected in baud rate configuration. Node sets baud rate automatically

according to LIN header sent by master node.

Remark Compile option (ex. “__LIN_HW_AUTO_BR__”) is required depending on the baud rate

detection way. See readme.txt generated by LIN Configurator for more detail.

RLIN3 Module Software Integration System CHAPTER 6 LIN CONFIGURATOR

RLIN3 Module Software Integration System Rev 1.00 54
R01AN6335EJ0100

6. 2. 6 Message management

Figure 6-9. Setting Frame window

A message (LIN frame) is managed by this window. It's possible to choose “Sporadic Frame" only at a master

channel. Frame ID number of LIN is set as “Valid/Invalid ID"(range: 0x00-0x3B). The parity is unnecessary. It's

possible to choose "Invalid" only in case of a slave channel, and "0xFF" is set as frame ID number in that case.

Initial data of a message is divided by a comma and it's set into “Initial Data". For example, set "0,0,0,0,0,0,0,0"

when you set zero to all of data area(8byte length).

Operation of message registration is as follows. A registered message is shown to a list of left side of window.

* Input the information of message to register to "new message registration pane".

* Select frame type by radio button at “Select Frame”, and press “Register” button.

Operation of message modification is as follows.

When a message in “Unconditional Frame" is double-clicked, “Setting Frame” window opens.

When a message in “Event Triggered Frame" is double-clicked, “Setting Event Triggered Frame Entry” window

opens.

When a message in “Sporadic Frame" is double-clicked, “Setting Sporadic Frame Entry” window opens.

Registered message list

New message registration pane

RLIN3 Module Software Integration System CHAPTER 6 LIN CONFIGURATOR

RLIN3 Module Software Integration System Rev 1.00 55
R01AN6335EJ0100

Remark: Length of “Frame Name” string must be up to 256. Alphabet, number and ‘_’ are available only.

However number can’t be used on top.

 Range of “ID” is from 0x00 to 0x3B.

 Number of “Initial Data” must be the value of “Size”.

RLIN3 Module Software Integration System CHAPTER 6 LIN CONFIGURATOR

RLIN3 Module Software Integration System Rev 1.00 56
R01AN6335EJ0100

(1) Unconditional frame configuration

Figure 6-10. Setting Frame window (for each frame)

When a message in “Unconditional Frame" is double-clicked, “Setting Frame” window opens. When "OK" is

clicked after setting, setting is reflected to selected message. When “Signal Edit” is clicked, “Setting Signal”

window opens.

RLIN3 Module Software Integration System CHAPTER 6 LIN CONFIGURATOR

RLIN3 Module Software Integration System Rev 1.00 57
R01AN6335EJ0100

(2) Signal management

Figure 6-11. Setting Signal window

A signal in the message is managed in this window.

When the item of "new signal registration pane" is set and "Register" button is clicked, a signal is added. When

you choose signal from "registered signal list" and click "Delete" button, it's possible to remove information of its

signal. When a message in “registered signal list” is double-clicked, “Setting Signal” window opens.

In case of a slave channel, 1 of "Response_Error_Signal" is needed about a channel. It's possible to assign

only a signal of 1 bit length in the send message to “Response_Error_Signal". "Response_Error_Signal" can be

selected by setting a signal of Signal Size 1 for an unconditional frame with Direction Publish.s

Remark: Length of “Signal Name” string must be up to 256. Alphabet, number and ‘_’ are available only.

However number can’t be used on top.

 Don’t over rap between the definition areas of any signals when multi signals are defined in

one frame.

 Don’t define a signal striding 3 bytes or more.

 Define as “Byte Array Signal “ if signal size is 16 bit or more.

Registered signal list

New signal registration pane

RLIN3 Module Software Integration System CHAPTER 6 LIN CONFIGURATOR

RLIN3 Module Software Integration System Rev 1.00 58
R01AN6335EJ0100

(3) Signal configuration

Figure 6-12. Setting Signal window

Already registered signal setting is configured in this window.

Click “OK” after configuration. Setting is reflected after clicking “OK” in “Setting Signal” window and “Setting

Frame” windows.

RLIN3 Module Software Integration System CHAPTER 6 LIN CONFIGURATOR

RLIN3 Module Software Integration System Rev 1.00 59
R01AN6335EJ0100

(4) Unconditional frame configuration

Figure 6-13. Setting Event Triggered Frame Entry window

When a message in “Event Triggered Frame"(refer Figure 6-9) is double-clicked, this window opens.

When an unconditional frame is chosen from list of "Registered Unconditional Frame" and "Register" button is

clicked, it's possible to relate to an event trigger frame. About " Valid/Invalid ID”, please refer to . When "OK"

button is clicked with this window and "Setting Frame" window, setting is reflected.

Remark: Length of “Frame Name” string must be up to 256. Alphabet, number and ‘_’ are available only.

However number can’t be used on top.

 Range of “ID” is from 0x00 to 0x3B.

 Same communication direction, data size and checksum type must be used by all

unconditional frames associated with one event triggered frame.

RLIN3 Module Software Integration System CHAPTER 6 LIN CONFIGURATOR

RLIN3 Module Software Integration System Rev 1.00 60
R01AN6335EJ0100

(5) Sporadic frame configuration

Figure 6-14. Setting Sporadic Frame Entry window

This window is opened when a message is double clicked in “Sporadic Frame” in registered message list.

Unconditional frame can be associated with sporadic frame by selecting unconditional frame in “Registered

UncondFrame” list and clicking “Register”.

Configuration is reflected after clicking “OK” and clicking “OK” in “Setting Frame” window.

Remark: Length of “Frame Name” string must be up to 256. Alphabet, number and ‘_’ are available only.

However number can’t be used on top.

The unconditional frames in the "Registered Unconditional Frames" list are only "Publish"

frames.

RLIN3 Module Software Integration System CHAPTER 6 LIN CONFIGURATOR

RLIN3 Module Software Integration System Rev 1.00 61
R01AN6335EJ0100

6. 2. 7 Schedule management

A table having communication timing of LIN frame is called Schedule Table.

(1) Schedule table management

Figure 6-15. Setting Schedule window

This window manages schedule table and this is used in master channel only.

Schedule table configuration window is opened when “New” or registered schedule is selected.

Configuration is reflected after clicking “OK”.

Remark: Number of schedule table is from 1 to 255.

 “OK” can be selected and LIN driver source code can be generated with no schedules.

RLIN3 Module Software Integration System CHAPTER 6 LIN CONFIGURATOR

RLIN3 Module Software Integration System Rev 1.00 62
R01AN6335EJ0100

(2) Schedule table configuration

Figure 6-16. Setting Schedule Entry window

LIN header transmission schedule is configured in this window. This window is used by master channel only.

Write schedule name in “Schedule Name”. Same schedule names must not be used in one channel.

Schedule entry is added when registered frame into schedule and Tick are selected and “Register” is clicked.

For example, behavior of the schedule when setting are Entry#1:Tick=3, Entry#2:Tick=5 and Entry#3:Tick=4

is indicated on below figure.

Figure 6-17. Behavior of the schedule

When the item in the schedule entry list is chosen and "Delete" button is clicked, selected information is

removed. When “OK” button clicked, setting is reflected.

Schedule entry configuration pane

Entry #1
Ticks = 3

Entry #2
Ticks = 5

Entry #3
Ticks = 4 ･･･

time_base[ms]

Entry #3
Frame slot [ms]

time

Entry #1
Ticks = 3

RLIN3 Module Software Integration System CHAPTER 6 LIN CONFIGURATOR

RLIN3 Module Software Integration System Rev 1.00 63
R01AN6335EJ0100

6. 2. 8 Node configuration

Figure 6-18. Setting Node window

Node information of LIN slave is set in this window.

Node address (1 to 127) is set in “NAD”.

IDs of product are set in “Supplier ID”, “Function ID” and “Variant”.

Signal name of “Response_Error Signal” set by “Setting Signal” window is displayed in “Response_Error

Signal”. This can’t be changed in this window.

Setting is reflected after clicking “OK”.

Remark: Range of NAD is from 1 to 255 (from 0x01 to 0xFF).

 Range of Supplier ID is from 0 to 65535 (from 0x0000 to 0xFFFF).

 Range of Function ID is from 0 to 65535 (from 0x0000 to 0xFFFF).

 Range of Variant is from 0 to 255 (from 0x00 to 0xFF).

RLIN3 Module Software Integration System CHAPTER 6 LIN CONFIGURATOR

RLIN3 Module Software Integration System Rev 1.00 64
R01AN6335EJ0100

6. 2. 9 Other configurations

Figure 6-19. Setting Others window

Sets the bus timeout for LIN slaves and the number of retries for wake-up pulse output.

If “Enable” is selected, the time of bus timeout is set. LIN slave goes to sleep mode when LIN bus is in-active

during this time.

If “Disable” is selected, LIN driver doesn’t go to sleep mode.

The number of wake-up retry pulse output can be controlled and the number of 3 retry pulses can be set in

the range of 0 to 80.

Setting is reflected after clicking “OK”.

Remark: Range of timeout is from 0.1 to 18.0[sec].

RLIN3 Module Software Integration System CHAPTER 6 LIN CONFIGURATOR

RLIN3 Module Software Integration System Rev 1.00 65
R01AN6335EJ0100

6. 2. 10 Save / Load setting file

"Save" button in the main window upper part or "Save" menu or "Save As" menu in ”File" menu are clicked,

it's possible to write the setting contents of LIN Configurator to file by the XML form.

"Open" button in the upper part or "Open" menu in "File" menu are clicked, it's possible to read the setting

contents from file.

RLIN3 Module Software Integration System CHAPTER 6 LIN CONFIGURATOR

RLIN3 Module Software Integration System Rev 1.00 66
R01AN6335EJ0100

6. 2. 11 Generate source code

"Go" button in the main window upper part or "Generate Source Code" menu in the "Tool" menu is clicked,

source code and development environment project of a LIN driver are generated.

An example of output destination of a file is shown in below.

(In case of channel 0 and channel 1 of R7F124FPJ3xNP.)

Figure 6-20. Example of output folder

[Note]

Configurator outputs project files for CC-RL and IAR compiler.

(Specified folder by user)/r_lin_drv
|
+-- /Channel0
| +-- /conf
| | +-- conflin_0.c
| | +-- conflin_0.h
| |
| +-- /liblin2
| | +-- (Development environment project file)
| |
| +-- /libsrc
| +-- (LIN driver source code)
|
+-- /Channel1
 +-- /conf
 | +-- conflin_1.c
 | +-- conflin_1.h

 |
+-- /liblin2

 | +-- (Development environment project file)
 |

+-- /libsrc
+-- (LIN driver source code)

RLIN3 Module Software Integration System CHAPTER 6 LIN CONFIGURATOR

RLIN3 Module Software Integration System Rev 1.00 67
R01AN6335EJ0100

6. 3 Error message list

Table 6-3. Error message list

Error Message Grounds

XXX is not specified (XXX is item name.) OK and Register were pushed down when the value not input to item
XXX.

XXX is not numerical number (XXX is item name.) OK and Register were pushed down when things except a numeric
character string had been input in the numeric input column.

XXX over the maximum limit (XXX is item name.) OK and Register were pushed down when the numerical value more
than the maximum value had been input in the numeric input column.

XXX is smaller than the minimum limit (XXX is item
name.)

OK and Register were pushed down while had input for the numerical
value that fell below minimum value in the numeric input column.

The input value of XXX is illegal (XXX is item name.) OK and Register were pushed down while had input for a numeric
character string that did not exist in the list in the combo box for
numeric specification. (When the character string input is possible from
the keyboard.)

OK and Register were pushed down while had input for a not
corresponding character string to the identifier character pattern of C
language in the name input column.

Can not open the device entry file It failed in reading the XML file of configurator.

Can not open the specified file Failed to read the configurator project file or the LIN-related header file
output by the smart configurator.

It failed in writing the project file of configurator.

Illegal file format of the device entry file The XML description was correct and it was not possible to interpret it
by reading the XML file of configurator.

Illegal file format The XML description was correct and it was not possible to interpret it
by reading the project file of configurator.

Can not make a configuration file It failed in the configuration file generation.

Can not make a library file It failed in the output of the library.

Baud rate is not specified The configuration file generation was executed with the setting on the
baud rate configuration screen not done.

One or more unconditional flames are needed The configuration file generation was executed when there is no
registered unconditional frame.

Signal is not specified The configuration file generation was executed when there is no
registered signal.

Schedule is not specified (Master Only) The configuration file generation had been executed before the setting
on the schedule configuration screen was done.

Node is not found (Slave Only) The configuration file generation had been executed before the setting
on the node configuration screen was done.

Response_Error Signal is not specified (Slave Only) The configuration file generation had been executed before
Response_Error Signal was set.

The extra information is not specified (Slave Only) The configuration file generation had been executed before the setting
on external configuration screen was done.

There is a frame that Valid ID is not specified (Master
Only)

The configuration file generation was executed when there is a frame
which had not registered Valid ID.

Frame Name is specified redundantly OK or Register was pushed down when the same name as another
data had been input to Frame Name.

The input value of Initial Data is illegal OK or Register was pushed down in the state that the numeric input
number of Initial Data is not corresponding to specification Size.

The input value of Direction is illegal OK was pushed down when the Size had been changed while
renewing the unconditional frame related to the event triggered frame.

RLIN3 Module Software Integration System CHAPTER 6 LIN CONFIGURATOR

RLIN3 Module Software Integration System Rev 1.00 68
R01AN6335EJ0100

Error Message Grounds

Can not register Unconditional Frame any more New or Register was pushed down when the registration entry reached
the maximum number.

Can not register Event Triggered Frame any more

Can not register Sporadic Frame any more

Can not register Signal any more

Can not register Event Triggered Frame entry any
more

Can not register Sporadic Frame entry any more

Can not register Schedule any more

Can not register Schedule Entry any more

Can not update the Frame Name OK was pushed down when Frame Name had been changed while
renewing the unconditional frame related to the event triggered frame
or the Sporadic frame, or OK was pressed with Frame Name had been
changed while renewing the unconditional frame included in the entry
of the schedule table.

OK was pushed down when Frame Name had been changed while
renewing the event triggered frame included in the entry of the
schedule table.

OK was pushed down when Frame Name had been changed while
renewing the Sporadic frame included in the entry of the schedule
table.

Can not update the Size OK was pushed down when Size had been changed while renewing
the unconditional frame related to the event triggered frame.

Can not update the Direction OK was pushed down when Direction had been changed while
renewing the frame that corresponded to either the following.

a) It is registered in the frame that relates the event triggered frame
and it is master.

b) Another has the unconditional frame that is registered in a related
frame of the event triggered frame and related to the same event
triggered frame and it is slave.

Can not update the Checksum Type OK was pushed down when Checksum Type had been changed while
renewing the unconditional frame related to the event triggered frame.

The input of Direction is illegal Direction was made Subscribe and OK was pushed down when the
signal that had been allocated in Response_Error.

The input of Event Triggered Frame Entry is illegal Register was pushed down while had selected for an unconditional
frame that the listed entry is not corresponding to Direction, Size, and
Checksum Type.

OK and Register were pushed down when there illegal data in the
listed entry.

The input of Sporadic Frame Entry is illegal OK was pushed down when there illegal data in the listed entry.

Significant digit of a Timeout is one place of decimals OK was pushed down when the following input in Timeout from the first
decimal place.

Schedule Name is specified redundantly OK was pushed down when the same name as another data had been
input to Schedule Name.

Data of Schedule Entry is not adjusted OK and Register were pushed down when there illegal data (The
mistake is found in Frame Type corresponding to Frame Name) in the
listed entry.

Normal Frame is not selected When the schedule entry of Normal Frame was registered, Register
was pushed down when the object frame had not been selected.

Signal Name is specified redundantly Register was pushed down when the same name as another data had
been input to Signal Name.

The input of Signal Offset is illegal Register was pushed down when things except the multiple of 8 had
been input to Signal Offset when Signal Size exceeded 16bit.

RLIN3 Module Software Integration System CHAPTER 6 LIN CONFIGURATOR

RLIN3 Module Software Integration System Rev 1.00 69
R01AN6335EJ0100

Error Message Grounds

The input of Signal range is illegal Register was pushed down in the following states.

a) The range of the signal is not included to a specified data size.

b) The range of the signal extends over 3 bytes.

c) The range of the signal comes in succession with other signals.

OK was pushed down when there a signal not included to a specified
data size.

Can not update the Signal Name OK was pushed down when Signal Name had been changed while
updating the signal registered as an error signal.

Can not update the Signal Size OK was pushed down when Signal Size had been changed excluding
1 while updating the signal registered as an error signal.

RLIN3 Module Software Integration System CHAPTER 6 LIN CONFIGURATOR

RLIN3 Module Software Integration System Rev 1.00 70
R01AN6335EJ0100

6. 4 Warning message list

Table 6-4. Warning message list

Warning Message Grounds

Do you want to create a new project without saving the
current project?

[File]-[New] (make project) was done while not save the change.

Do you want to save the project file? [File]-[Exit] or click close button in window was done while not save the
change.

Do you want to load the project without saving the
current project?

[File]-[Open] (Project read) was done while not save the change.

conflin.h already exists. Do you want to overwrite it? The configuration file is already exists in the specified folder.

RLIN3 Module Software Integration System CHAPTER 7 LIN 2.1 SOFTWARE DRIVER OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 71
R01AN6335EJ0100

CHAPTER 7 LIN 2.1 SOFTWARE DRIVER OVERVIEW

7. 1 Signal Types (Master/Slave)

 The LIN 2.1 software driver can treat two kinds of signals of the scalar signal from 1 to 16 bits and the byte array

signal from 1 to 8 bytes. The signal is defined by editing conflin_x.c.

 More than 2 signals can be defined in an arbitrary place in one frame. However, the scalar signal that exceeds

over 2 bytes boundaries cannot be defined.

 The access from the user application to the signal is possible with a call of the LIN 2.1 API.

 E.g. when contain 10 bit signal “S” in 4 bytes long frame. (Message buffer 0)

 Parameter:

 Frame size : 4 bytes

 Signal initial value: 0x03FF

 Offset : 16 bits

 Signal size : 10 bits

Figure 7-1. Example of Arranging Signal to Message Data

Byte0

Byte1

s s s s s s s s

Byte2

s s

Byte3

Offset: 0bit Offset: 16bits

Signal size: 10bits

RLIN3 Module Software Integration System CHAPTER 7 LIN 2.1 SOFTWARE DRIVER OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 72
R01AN6335EJ0100

7. 2 Frame Format (Master/Slave)

 The frame format in the LIN communication is as follows.

Figure 7-2. Frame Format

Table 7-1. Frame Component List

Term Designation

Frame slot
Transfer time allocated in frame forwarding once of management

by master.

Frame Unit of LIN communication.

Header Transmission data from master from Break to PID.

Response space
Time from header transmission completion to response

transmission beginning.

Response
Data sent from the slave or master according to PID included in

header.

Inter Frame space

It is time after it ends (forwarding completion of checksum) of one

transfer until the next transfer beginning (negative edge

generation of Break). It should be over 0.

Inter byte space It is time from stop bit to following start bit. It should be over 0.

Break
Over 13 bits low pulse. If it is over 11 bits in the slave, it is

considered Break.

Synch Data of 0x55. Slave use for baud rate detection.

PID
Frame ID with parity to identify frame. In 2 high order bits are

parity, and in 6 low order bits are frame ID.

Data1-8
Data from 1 to 8 bytes. The initial data value is specified with the

configuration file.

Checksum

Inverse value of 8 bit checksum with carry over. The classic

checksum calculates by using all data, and the enhanced

checksum calculates by using all PID and data.

In sporadic frame, the classic checksum must be used.

Header Response

Break Synch PID Data1-8 Chec
ksum

Frame

Inter
frame
space

Frame slot

Response
space

Dominant

Inter byte space
Inter byte space

Rｅｓｅｓｓｉｖｅ

RLIN3 Module Software Integration System CHAPTER 7 LIN 2.1 SOFTWARE DRIVER OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 73
R01AN6335EJ0100

7. 2. 1 Byte Field

 Byte field format excluding Break is as follows.

Figure 7-3. Byte Field Format

7. 2. 2 Break Field

 The Break field is composed of over 13 bits low pulse and over 1 bit high pulse (delimiter).

 For the LIN 2.1 slave, over 11 bits low pulse is recognized as Break.

Figure 7-4. Break Format

 Note:

 - It is possible to set it from 13 to 20 bits in LIN 2.1 master driver.

 - The maximum value of the low pulse depends on the maximum value of the header

 (1.4 times minimum value).

7. 2. 3 Frame Length

 A nominal value at the frame transfer time is corresponding to the forwarded number of bits (value that does not

contain response space and inter byte space).

 The calculation formula of frame length is shown as follows.

 BitalNoHeader TT  34min_

   BitDataalNosponse TNT  110min_Re

 alNosponsealNoHeaderalNoFrame TTT min_Remin_min_ 

 *: BitT 1 bit time, DataN number of data bytes

 In LIN 2.1 Spec, the error margin of 40% is permissible to usual transfer time.

 The calculation formula of maximum frame length is shown as follows.

 alNoHeaderMaxHeader TT min__ 4.1 

 alNosponseMaxsponse TT min_Re_Re 4.1 

 MaxsponseMaxHeaderMaxFrame TTT _Re__ 

over 13 bits

LSB

(bit0)
 MSB

(bit7)

Start

Bit

Stop

Bit

delimiter

RLIN3 Module Software Integration System CHAPTER 7 LIN 2.1 SOFTWARE DRIVER OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 74
R01AN6335EJ0100

7. 3 Frame Transfer (Master/Slave)

 The list of various LIN frame transfer types as defined by the LIN 2.1 Spec is shown below.

Table 7-2. Types of LIN Frames

Frame name Description

Unconditional frame The frame using normal transfer.

Event triggered frame The frames receive from slave that updated the signal.

Sporadic frame The frame that treats information outside schedule.

Diagnostic frame The frame to transfer specific information for node configuration.

There is master request frame and slave response frame.

 Examples of the different types of frame transfers are shown below.

7. 3. 1 Unconditional Frame Transfer

 The response is transmitted from the master or slave node of the object by transmitting the header from the

master. The master or slave node to be received receives the transmitted response.

Figure 7-5. Example of Data Transfer

Master

Header (ID=A)

Response (Data is contained)

Slave 2 Slave 1

Header (ID=A)

Header (ID=B) Header (ID=B)

Response (Data is contained)

Frame slot1

Frame slot 2

RLIN3 Module Software Integration System CHAPTER 7 LIN 2.1 SOFTWARE DRIVER OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 75
R01AN6335EJ0100

7. 3. 2 Event Trigger Frame Transfer

 The Master receives the response of the related unconditional frame by using the event triggered frame (the

transmission of the response is not supported). When the header of the event triggered frame is received, the

slave transmits a response only in the case of having a signal update.

 When any slave does not have a signal update, the response is empty. Also, when more than 2 nodes transmit

a response at the same time, then a collision has occurred. In this case, the master mode should avoid the collision.

 The event triggered frame is PID=A, and relating unconditional frame is PID=B, and PID=C. The following

communications are executed.

Figure 7-6. Example of Transfer Data with Event Triggered Frame

 Note:

1. When the error is detected by the event triggered frame reception, it is considered collision.

It does not become the receive completion and an error.

 2. Event triggered frame ID should be from 0x00 to 0x3b (does not conation parity).

3. Do not allocate the signal in first 1 byte of the response, because related unconditional

 frame’s PID is allocated here. The signal can be allocated in 7 bytes except 1 head byte.

 4. The unconditional frame related to the event triggered frame should be made the same

 checksum model.

5. The data length of the unconditional frame related to the event triggered frame should be

 made the same length.

6. The unconditional frame related to the event triggered frame must be sent from a different

node.

 7. The event triggered frame and the unconditional frame related it cannot exits in the same

 schedule table.

Master

Header (PID=A)

Slave 2 (PID=B) Slave 1 (PID=C)

Header (PID=A)

Response (Data is contained)

Response (Data is contained)

Response (Data is contained)

Header (PID=A) Header (PID=A)

Header (PID=A) Header (PID=A) The response transmission is
generated at same time
because both slave 1 and 2
have the signal update, and the
collision is occurred.

It transmits the response
 because there is signal
update in slave 1.

There is no response because
 there are no signal update in
 slave 1and 2.

Response (Data is contained)

Header (PID=B) Header (PID=B)
Because the collision was
detected, it individually transfer
 (The transfer for PID=B begins
 from master).

Response (Data is contained)

Header (PID=C) Header (PID=C)

The transfer for PID=C begins
 from master

Change

schedule

RLIN3 Module Software Integration System CHAPTER 7 LIN 2.1 SOFTWARE DRIVER OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 76
R01AN6335EJ0100

The LIN 2.1 software driver performs a collision avoidance adjustment on the master to resolve the collision.

 master

Response

Slave 2

Response

Slot A

Slot B

Slot C

Slave 1

Response

Slot D

Response

Response

Slot E

Ignore after checking for updates Ignore after checking for updates

Ignore after checking for updates

Ignore after ID determination

Ignore after ID determination

Ignored in timeout

Header (ID=A) Header (ID=A)

Header (ID=A) Header (ID=A)

Header (ID=A) Header (ID=A)

Header (ID=B) Header (ID=B)

Header (ID=C) Header (ID=C)

Response

Header (ID=A)

signal updating 3

signal updating 1

Slot F

signal updating 4

signal updating 2

Header (ID=A)

signal updating 5

signal updating 6

 Heaader (ID=A) Header (ID=A)

Response

Response

Collision Detection

Collision Detection Collision Detection

Header (ID=A)

Response

Slot G

Slot H

Schedule table switching

Schedule table switching

Slot A: Master asks both slaves (ID=A[0x00-0x3B], ID for event trigger), no response

Slot B: Master inquires both slaves (ID=A[0x00-0x3B], ID for event trigger), Slave 2 sends data to

master (update value 1)

Slot C: Master inquires both slaves (ID=A[0x00-0x3B], ID for event trigger), slave 2 sends data to

master (update value 2), when it coincides with update

Slot D: When the master makes a query to both slaves (ID=A[0x00-0x3B], ID for event trigger), both

slaves send data to the master, both slaves are in a collision state, and the master can detect

the collision.

Automatically switch to conflict resolution schedule.

Slot E: After collision detection, slave 1 sends data from slave 1 to master (ID=B[0x00-0x3B], for

RLIN3 Module Software Integration System CHAPTER 7 LIN 2.1 SOFTWARE DRIVER OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 77
R01AN6335EJ0100

unconditional frame) (update value 4)

Slot F: After collision detection, slave 2 sends data (update value 3) to the master (ID=C[0x00-0x3B],

for unconditional frame).

After all collisions are resolved, the schedule is automatically switched back to the original

schedule.

Slot G: The master sends a query to both slaves (ID=A[0x00-0x3B], ID for event trigger). Both slaves

send data to the master, but although an error is detected inside Slave 2, the updated value 5

is sent as it is on the LIN line, and the master interprets this as a normal data transmission from

Slave 1 rather than a collision detection. (*1: See frame example)

Slot H: Slave 2 sends data (update value 6) to the master (ID=C[0x00-0x3B], for unconditional frame).

Since no data was sent last time due to an error, the updated value 6 is sent.

Reference

Example of a frame when the master cannot detect a collision

Sum is a traditional checksum.

Remark:

1. If an error is detected in the transmission/reception of an event trigger frame, it is treated as a

collision and no error is generated. It also does not mean that the transmission was successful.

2. The event trigger frame ID must be 0x0 to 0x3B (not including parity).

3. Since the first data byte stores the PID of the associated unconditional frame, a maximum of 7 bytes,

excluding the first byte, can be allocated as the data area. Do not assign any signal to the first byte.

4. The checksum model of the unconditional frame associated with the event trigger should be the

same (i.e. LIN1.3). The checksum model of the unconditional frame associated with the event trigger

must be the same (i.e. LIN1.3 compliant slave nodes cannot be mixed with LIN 2.1 compliant slave

nodes).

5. The data length of the unconditional frame associated with the event trigger should be the same.

6. All unconditional frames associated with an event trigger must be issued from different slave nodes.

7. The LIN 2.1 master driver will switch to the collision resolution schedule table when it detects a

collision of event trigger frames.

8. In the LIN 2.1 master driver, collision resolution for event trigger frames is done using unconditional

frames.

9. If an error occurs in the unconditional frame during collision resolution, it is ignored.

ID Data

1
Sum

0xc1 0xbe 0x7F

ID Data

1
Sum

0x80 0x00 0x7F

& =
ID Data

1
Sum

0x80 0x00 0x7F

RLIN3 Module Software Integration System CHAPTER 7 LIN 2.1 SOFTWARE DRIVER OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 78
R01AN6335EJ0100

7. 3. 3 Sporadic Frame Transfer

 The Master node transfers the response of the related unconditional frame by using the sporadic frame.

 An unconditional frame is transmitted only when there is a signal update (the Master transmits the header of

an unconditional frame; the slave transfers it according to the header).

 When there is a signal update in over 2 relating unconditional frame, the highest priority unconditional frame is

transferred.

 The update of the signal in the sporadic frame is following processing.

 - The signal writing the unconditional frame of the direction of the transfer is transmits.

 - To receive the unconditional frame of the direction of the transfer is transmits related in the event

 triggered frame as an event triggered frame, the collision is detected.

The unconditional frame related in sporadic frame is PID=A (Transmit), and PID=B (reception). (The priority of A

is high). The following communications are executed.

Figure 7-7. Example of Transfer Data with Sporadic Frame

 Note:

 1. When there is no signal update in all relating unconditional frame, the bus becomes silent.

2. There is no limitation in the unconditional frame related to the sporadic frame. The different

checksum model, the different frame length, and the frame as which allotted node is the same

can be related to the same sporadic frame.

Master Slave 2 Slave 1

When there is no update, it is
empty slot.

Master detects the update in the
signal of PID=B, and an
unconditional frame of PID=B is
transfer.

Header (PID=B) Header (PID=B)

Response (Data is contained)

Header (PID=A)

Response (Data is contained)

Header (PID=A)

Master detects the update in the
 signal of PID=A and PID=B, an
 unconditional frame of PID=A
 that priority is high is transfer.

RLIN3 Module Software Integration System CHAPTER 7 LIN 2.1 SOFTWARE DRIVER OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 79
R01AN6335EJ0100

7. 4 Response Error Notify Function (Master/Slave)

 Error information in the slave node can be read by the master node by allocating a specific 1 bit signal for the

response error.

 In the slave node, when the error is detected in the response fields except the event triggered frame, “1” is set

in the response error signal.

 The signal is maintained as a “1” until it is sent to the master node. After the slave node has transmitted the

signal to master node, the response error signal is cleared to “0”.

 The master node can confirm error information on the slave node by the following information.

Table 7-3. Response Error List

Master Receive Value Designation

Response_Error = 0 (False) Normal performance

Response_Error = 1 (True) Temporary error

No response Fatal error

 Note:

 1. The response error signal should be 1 bit size. When it is not 1 bit signal, correct

 information cannot be read.

 2. Be allocating it when not using it by the user application.

 3. Do not allocate in the event triggered frame.

 4. The initial value of this signal should be defined as “0”.

RLIN3 Module Software Integration System CHAPTER 7 LIN 2.1 SOFTWARE DRIVER OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 80
R01AN6335EJ0100

7. 5 Sleep and Wakeup Function (Master/Slave)

7. 5. 1 Sleep Function

 The slave node transitions to a sleep mode when the LIN 2.1 slave driver receives a go-to-sleep command or

the bus is inactive for over 4 seconds.

 After it transitions to sleep mode, it becomes wake up pulse waiting state.

 When the LIN 2.1 master driver normally issues a go-to-sleep command, it transitions to a sleep mode. After it

transitions to a sleep mode, it becomes a wake up waiting state, and the frame is not transferred.

 A go-to-sleep command is transmitted as master request frame of the node configuration function. It is possible

to transmit by allocating master request frame in the schedule slot, and call the l_ifc_goto_sleep function.

 On RL78/F23,F24 driver, LIN macro(RLIN3) needs clock in sleep mode if the wake up method is dominant width.

Note: Set time with the configuration file. It is also possible to set the inactive bus detection to off.

And, timer interrupts are used in the process of determining bus off. This can extend the transition time to

sleep mode due to conflicts with interrupts used by user applications.

7. 5. 2 Wake up Function

 When a low edge is detected during sleep mode or the l_ifc_wake_up function is issued, the slave node will

wake up.

 - At the detection of a low edge

 - The slave node waiting Break and Synch fields.

 - As for master node, the restart of the schedule becomes possible by the l_sch_tick function.

 - When the l_ifc_wake_up function is issued

 - Transmits a 260 us wake-up pulse to the LIN bus.

 5 Tbit at 19200 bps .

 - If a break is not received within 150 ms after the wake-up pulse is sent, another wake-up pulse

is sent. 3 wake-up pulses are sent, and a fourth wake-up pulse is sent 1.5 sec later. 3 wake-up

pulses are considered a block, and the block transmission is repeated for a user-defined number

of times. After that, if the bus is inactive for more than 4 seconds, it will enter the sleep mode.

 The master node can resume the schedule by using the l_sch_tick function.

 Note:

 1. The LIN 2.1 software driver does not do the wait processing from the wake up to the frame transfer

provided with LIN 2.1 Spec restart. After issuing the l_ifc_wake_up or low edge detection, restart the

schedule waiting arbitrary time at the application level.

 2. If the wake up is done from sleep mode, it enters the state immediately before changing sleep mode.

Therefore, when the l_sch_tick function is called, the frame is not necessarily transferred. After wake

up, the LIN 2.1 software driver is recommended to be initialized.

RLIN3 Module Software Integration System CHAPTER 7 LIN 2.1 SOFTWARE DRIVER OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 81
R01AN6335EJ0100

7. 6 Node Configuration Function (Master/Slave)

 A slave node connected to a LIN cluster can be configured by using the LIN 2.1 software driver’s node

configuration function.

 The configuration command can be transmitted to the slave node by allocating the master request frame and

the slave response frame in the schedule table slot, and calling the ld_assign_frame_id_range function and the

ld_read_by_id function.

7. 6. 1 Node Information

 It is necessary to define node information on NAD, product ID, and response error signal in the slave node. It

is defined in the configuration file.

Table 7-4. Node Information List

Node Information Designation Size

Initial NAD Node unique number in LIN cluster. 1 byte

Supplier ID ID allocated from LIN Consortium. 2 bytes

Function ID Allocated ID of each function 2 bytes

Variant ID Allocated ID of each product version in function not changed. 1 byte

Response error signal Signal that treats error information in the slave node. 1 byte

RLIN3 Module Software Integration System CHAPTER 7 LIN 2.1 SOFTWARE DRIVER OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 82
R01AN6335EJ0100

7. 6. 2 Node Configuration

 For this software driver, it corresponds to a part of the node configuration function with the master node.

 The following requests can be transmitted from the LIN 2.1 master driver.

 - Assign frame identifier range

 - Read by identifier

 Assign Frame Identifier range

 Modifies or disables the PIDs of up to four message frames of nodes with matching NADs.

 However, frames with IDs of 60~63 (0x3C~0x3F) cannot be changed.

The start index specifies the first frame to which the PID is assigned. The order of the frames depends on

the slave node. The first index in the list starts at 0.

 The setting values for the PID list are as follows

 The communication format of the master request frame is as follows

Table 7-5. Master Request Frame Format

 The response from the slave is sent only if the NAD matches.

 If all the assignments are not executed, a negative response will be returned.

 Also, the slave node does not verify the specified PID, so the master node must set the correct PID.

Note: - It does not correspond to the slave response frame transfer at the normal termination.
 - Protected ID should specify ID with parity.

 Read By Identifier

The request is issued by the following formats by the issue of the ld_read_by_id function from the master

node. Afterwards, information according to ID (D1:identifier) can be obtained from the slave node by the

slave response frame.

The format of master request frame is as follows.

Table 7-6. Master Request Frame Format (Read by identifier)

Only when NAD, supplier ID, and message ID are corresponding, PID is allocated to message ID. However,

if wild card (0x7F) is specified for NAD, when supplier ID and message ID is corresponding, processing is

executed.

Moreover, when it is not agree, it does not correspond to the slave response request from the master node.

NAD

NAD

0x06

PCI

0xb7

SID D1

PID
(Index)

D2

PID
(Index +1)

D3

PID
(Index +2)

D4

PID
(Index +3)

D5

Start Index

NAD

NAD

0x06

PCI

0xb2

SID

Identifier

D1

Supplier
ID LSB

D2

Supplier
ID MSB

D3

Function
ID LSB

D4

Function
ID MSB

D5

RLIN3 Module Software Integration System CHAPTER 7 LIN 2.1 SOFTWARE DRIVER OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 83
R01AN6335EJ0100

 The format of slave response frame is as follows.

Table 7-7. Slave Response Frame Format

 When the slave is not supporting the request from master, the negative response is returned.

Table 7-8. Negative Response Format

 Note:

For the LIN 2.1 slave driver, only identifier=0 (product ID reading) corresponds. The negative response is

returned to other identifier.

NAD

NAD

0x06

PCI

0xf2

RSID

Supplier
ID LSB

D1

Supplier
ID MSB

D2

Function
ID LSB

D3

Function
ID MSB

D4

Variant

D5

NAD

NAD

0x03

PCI

0x7f

RSID

Requested
SID(=0xb2)

D1

Error code
(= 0x12)

D2

0xff

D3

0xff

D4

0xff

D5

0

ID

1 - 255

ID

RLIN3 Module Software Integration System CHAPTER 7 LIN 2.1 SOFTWARE DRIVER OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 84
R01AN6335EJ0100

7. 7 Scheduling Function (Master)

 It is possible to switch and transition of the schedule table defined with the configuration file by calling the

l_sch_tick function and the l_sch_set function prepared as a scheduling function.

 It is necessary to implement the scheduler by using a timer and the forementioned functions in the user

application of a master node. (Refer to "5. 2. 6 Scheduler implementation (only master)".)

 About timing parameters for slave diagnostics

LIN 2.1 Spec specifies the following parameters as timing requirements for slave diagnostics.

P2 : Time between when the slave node receives the last diagnostic request and then can provide data for

response

STmin : Minimum time required for the slave node to receive the next diagnostic request for a diagnostic

request or to prepare to send the next diagnostic response for a diagnostic response

P2* : Time between the slave node sending a negative response and being able to provide data for the next

response

Lin master/slave drivers do not implement these parameters.

The above time will be adjusted by the master driver's schedule.

7. 7. 1 Schedule Transition (l_sch_tick)

 The schedule can change by issuing the l_sch_tick function. When the l_sch_tick function is called and a current

frame slot is entries in the schedule table ends, the frame transfer of the following entry begins (When the ending

frame slot is the last entry of the schedule table, the frame transfer of the first entry of the schedule table begins).

When the frame slot does not end, the frame transfer does not begin.

 When transfer of the next entry begins (When a current frame slot ends) by issue of the l_sch_tick function, the

entry number is returned. When the frame transfer cannot begin by issue of l_sch_tick function, “0” is returned.

(Refer to Figure 7-8.)

 When schedule table A composed of 4 entries is set, the relation between the issue the l_sch_tick function and

frame transfer is shown below.

RLIN3 Module Software Integration System CHAPTER 7 LIN 2.1 SOFTWARE DRIVER OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 85
R01AN6335EJ0100

Figure 7-8. Relation between l_sch_tick Function and Frame Transfer

Issue of
l_sch_tick

Return value of
l_sch_tick

0 0 0 0 0 0 0 0 0 0 0 0 2 3 4

」

1

」

2

」

Entry #1

delay 30ms

Entry #2

delay 30ms

Entry #3

delay 30ms

Entry #4

delay 40ms

Entry #1

delay 30ms

Jitter Worst case frame transfer time Spare/unused

time_base = 10ms

(*): The l_sch_tick call transferring the frame has not allowed

LIN BUS

Return 0 because it cannot transfer the frame by the next
l_sch_tick.

Return entry number transfer with next l_sch_tick.

Return first entry

Frame 1 delay 30ms

Frame 2 delay 30ms

Frame 3 delay 30ms

Frame 4 delay 40ms

Schedule table A

Entry #1

Entry #2

Entry #3

Entry #4

time

Complement: - 4 frame slots are entered in schedule table A.

 -Time_base is the maximum permissible time of the frame transfer.
 - Set the scheduler that time_base is must become long time than frame
 transfer time.

The frame transfer should end from the issue of the first

l_sch_tick function of the frame slot to the next issue *.

RLIN3 Module Software Integration System CHAPTER 7 LIN 2.1 SOFTWARE DRIVER OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 86
R01AN6335EJ0100

7. 7. 2 Schedule Switching (l_sch_set)

 It is possible to switch to the schedule table specified that the l_sch_set function is issued from the schedule

table under the operation. Moreover, the entry of the switched schedule table can be specified.

 When the frame slot of the current schedule table entry ends, the schedule table is switched.

 The l_sch_set function is issued, and the processing switched from schedule table A to schedule table B is

shown below.

Figure 7-9. Switch of Schedule Table by l_sch_set Function

Issue of
l_sch_tic
k

Return value
of l_sch_tick

0 0 0 0 0 0 0 0 0 2 0 1 2 3 4

」

0

」

0

」

Table A
Entry #1
delay 30ms

time_base = 10ms

Table A
Entry #2
delay 30ms

Table A
Entry #3
delay 30ms

Table B
Entry #1
delay 50ms

Table B
Entry #2
delay 30ms

LIN BUS

l_sch_set (Ch0, Schedule Table B, Entry #1)

It switches to Entry #1 of schedule table B.

When current entry ends, the
schedule table is switched.

Frame 1 delay 30ms

Frame 2 delay 30ms

Frame 3 delay 30ms

Frame 4 delay 40ms

Schedule table A

Entry #1

Entry #2

Entry #3

Entry #4

Frame 1 delay 50ms

Frame 2 delay 30ms

Schedule table B

Entry #1

Entry #2

time

RLIN3 Module Software Integration System CHAPTER 7 LIN 2.1 SOFTWARE DRIVER OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 87
R01AN6335EJ0100

7. 8 Auto Baud Rate Detecting Function (Option) (Slave)

 For the LIN 2.1 slave driver, the automatic baud rate detection from 2400 to 20000 bps is done by measuring

the width of the Break and Synch fields.

RLIN3 Module Software Integration System CHAPTER 7 LIN 2.1 SOFTWARE DRIVER OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 88
R01AN6335EJ0100

7. 9 Driver configuration

7. 9. 1 Slave driver configuration

On RL78/F23,F24 slave driver, user can modify behavior of LIN driver using driver configuration.

Driver configuration is described in part “Driver configuration” in libsrc/conf/confslin_opt.h file.

Table 7-9. Driver configuration of RL78/F23,F24 slave (1 of 2)

Configuration points
(”CONFSLIN_OPT” is omitted)

Contents Setting values Meaning of setting
values

u1gLPRS_NORM_CFG Prescaler division value
for LIN macro.
*1,*4

u1gLPRS_NODIV 1/1

u1gLPRS_DIV2P1 1/2

u1gLPRS_DIV2P2 1/4

u1gLPRS_DIV2P3 1/8

u1gLPRS_DIV2P4 1/16

u1gLPRS_DIV2P5 1/32

u1gLPRS_DIV2P6 1/64

u1gLPRS_DIV2P7 1/128

u1gBUSWKUP_CFG *6 The wakeup method of
LIN driver.
If edge is selected, LIN
macro does not need
clock in sleep mode.

u1gBUSWKUP_EDGE The method of
wakeup is down edge
detection.

u1gBUSWKUP_WIDTH The method of
wakeup is dominant
width detection.

u1gNSPB_NORM_CFG Number of bit samplings.
*4

u1gNSPB_4SMPL 4(only for auto baud
rate mode)

u1gNSPB_8SMPL 8(only for auto baud
rate mode)

u1gNSPB_16SMPL 16(only for fixed baud
rate mode)

u1gLINMCK_CFG Source of LIN
communication clock. *5

u1gLINMCK_FCLK fCLK

u1gLINMCK_FMX fMX *2

u1gINTLINTRMPR_CFG *6 Priority of LIN
transmission completion
interrupt.

u1gINTPR_LV0 Level 0 (Highest)

u1gINTPR_LV1 Level 1

u1gINTPR_LV2 Level 2

u1gINTPR_LV3 Level 3 (Lowest)

u1gINTLINRVCPR_CFG *6 Priority of LIN reception
completion interrupt.

Same as
u1gINTLINTRMPR_CFG.

-

u1gINTLINSTAPR_CFG *6 Priority of LIN status
interrupt.

Same as
u1gINTLINTRMPR_CFG.

-

u1gTMUNIT_CFG *6 Unit of interval
timer(TAU). *3

u1gTMUNIT_UNIT0 Unit 0

u1gTMUNIT_UNIT1 Unit 1

u1gTMCH_CFG *6 Channel of interval
timer(TAU). *3

u1gTMCH_CH0 Channel 0

u1gTMCH_CH1 Channel 1

u1gTMCH_CH2 Channel 2

u1gTMCH_CH3 Channel 3

u1gTMCH_CH4 Channel 4

u1gTMCH_CH5 Channel 5

u1gTMCH_CH6 Channel 6

u1gTMCH_CH7 Channel 7

u1gINTTMPR_CFG *6 Priority of interval
timer(TAU) interrupt.

Same as
u1gINTLINTRMPR_CFG.

-

u1gINTPPR_CFG *6 Priority of external
interrupt.

Same as
u1gINTLINTRMPR_CFG.

-

*1 : In auto baud rate mode, this value is not used. LIN driver set automatically as prescaler clock is between

8[MHz] and 12[MHz].

RLIN3 Module Software Integration System CHAPTER 7 LIN 2.1 SOFTWARE DRIVER OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 89
R01AN6335EJ0100

*2 : The setting value in LIN configurator is fMX clock value. In this case, following modification is needed

because the source of interval timer(TAU) is constantly fCLK.

 (conflin.c)

 [Before modification]

 const u2 ConfSLin_u2gTMPERICLOCK = (u2)CONFLIN_u2sPERICLOCK;

 [After modification] (In case of fCLK is 8[MHz])

 const u2 ConfSLin_u2gTMPERICLOCK = (u2)800;

*3 : Please set the unit or a channel to be equipped with in the device of a used microcomputer.

Availability isn't checked in the driver.

*4 : Following calculation is done in LIN driver to obtain the Baud Rate pre-scaller register value (LBRP).

(LBRP value) = {(LIN communication clock frequency[Hz]) x (Pre-scaler division value)} /

 {(Number of bit samplings) x (LIN communication baud rate[bps])}

Calculation is done in integer value (decimal will be omitted). Above (LBRP value) must not be equal or less

than zero.

*5 : There is a notice regarding the LIN communication clock source in LIN/UART module (RLIN3) of RL78/F23,

F24. For details, please refer to the user's manual. The slave driver includes the following restriction for by

this case.

- When setting fMX (u1gLINMCK_FMX) as type of a LIN communication clock source

(u1gINTLINTRMPR_CFG) and setting "Not detect time out error" (u1gTER_DISABLE) as "Time out error

detection" (u1gTER_CFG), please set fCLK clock more than 1.2 times of LIN communication clock source.

*6 : Configurable by the smart configurator.

RLIN3 Module Software Integration System CHAPTER 7 LIN 2.1 SOFTWARE DRIVER OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 90
R01AN6335EJ0100

Table 7-10. Driver configuration of RL78/F23,F24 slave (2 of 2)

Configuration points

(”CONFSLIN_OPT” is

omitted)

Contents Setting values Meaning of setting

values

u1gLRDNFS_NORM_CFG Switch of noise

filter for LIN

communication Rx.

u1gLRDNFS_USE Use

u1gLRDNFS_NOUSE Not use

u1gLRDNFS_WKUP_CFG Switch of noise

filter for LIN

sleep Rx.

u1gLRDNFS_USE Use

u1gLRDNFS_NOUSE Not use

u1gBLT_CFG Minimum dominant

width of break

field detection.

u1gBLT_SHORT [Auto baud rate mode]

10[Tbit]

[Fixed baud rate

mode]

9.5[Tbit]

u1gBLT_LONG [Auto baud rate mode]

11[Tbit]

[Fixed baud rate

mode]

10.5[Tbit]

u1gRS_CFG Response space

width at response

Tx.

u1gRS_0BIT 0[Tbit]

u1gRS_1BIT 1[Tbit]

u1gRS_2BIT 2[Tbit]

u1gRS_3BIT 3[Tbit]

u1gRS_4BIT 4[Tbit]

u1gRS_5BIT 5[Tbit]

u1gRS_6BIT 6[Tbit]

u1gRS_7BIT 7[Tbit]

u1gIBS_CFG Inter byte space

width at response

Tx.

u1gIBS_0BIT 0[Tbit]

u1gIBS_1BIT 1[Tbit]

u1gIBS_2BIT 2[Tbit]

u1gIBS_3BIT 3[Tbit]

u1gWUTL_CFG Tx wakeup pulse

width.

u1gWUTL_1BIT 1[Tbit]

u1gWUTL_2BIT 2[Tbit]

u1gWUTL_3BIT 3[Tbit]

u1gWUTL_4BIT 4[Tbit]

u1gWUTL_5BIT 5[Tbit]

u1gWUTL_6BIT 6[Tbit]

u1gWUTL_7BIT 7[Tbit]

u1gWUTL_8BIT 8[Tbit]

u1gWUTL_9BIT 9[Tbit]

u1gWUTL_10BIT 10[Tbit]

u1gWUTL_11BIT 11[Tbit]

u1gWUTL_12BIT 12[Tbit]

u1gWUTL_13BIT 13[Tbit]

u1gWUTL_14BIT 14[Tbit]

u1gWUTL_15BIT 15[Tbit]

u1gWUTL_16BIT 16[Tbit]

u1gBERE_CFG Switch of bit error

detection.

u1gBERE_DISABLE Not detect

u1gBERE_ENABLE Detect

u1gTER_CFG Switch of timeout

error detection. *1

u1gTER_DISABLE Not detect

u1gTER_ENABLE Detect

(can’t be used in

auto baud rate mode)

u1gFERE_CFG Switch of framing

error detection.

u1gFERE_DISABLE Not detect

u1gFERE_ENABLE Detect

u1gSFERE_CFG Switch of synch u1gSFERE_DISABLE Not detect

RLIN3 Module Software Integration System CHAPTER 7 LIN 2.1 SOFTWARE DRIVER OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 91
R01AN6335EJ0100

field error

detection.

u1gSFERE_ENABLE Detect

u1gIPERE_CFG Switch of IP parity

error detection.

u1gIPERE_DISABLE Not detect

u1gIPERE_ENABLE Detect

u1gLTES_CFG Switch of the type

of timeout error

detection.

If timeout error

detection is not

used, this value is

ignored.

u1gLTES_FRAMETO Frame timeout

u1gLTES_RESPTO Response timeout

u4gTRWTCNTMAX_CFG Maximum count value

of waiting the

transition of

RLIN3.

If RLIN3 does not

transit next state

within this value,

LIN driver will

stop LIN

communication.

Greater than or equal to

1

-

u2gTMCLKSEL_CFG Clock selection of

interval

timer(TAU).

u2gTMCLKSEL_SEL0 Clock selection 0

u2gTMCLKSEL_SEL1 Clock selection 1

u2gTMCLKDIV_CFG Division value of

interval

timer(TAU).

u2gTMCLKDIV_NODIV 1/1

u2gTMCLKDIV_DIV2 1/2

u2gTMCLKDIV_DIV2P2 1/4

u2gTMCLKDIV_DIV2P3 1/8

u2gTMCLKDIV_DIV2P4 1/16

u2gTMCLKDIV_DIV2P5 1/32

u2gTMCLKDIV_DIV2P6 1/64

u2gTMCLKDIV_DIV2P7 1/128

u2gTMCLKDIV_DIV2P8 1/256

u2gTMCLKDIV_DIV2P9 1/512

u2gTMCLKDIV_DIV2P10 1/1024

u2gTMCLKDIV_DIV2P11 1/2048

u2gTMCLKDIV_DIV2P12 1/4096

u2gTMCLKDIV_DIV2P13 1/8192

u2gTMCLKDIV_DIV2P14 1/16384

u2gTMCLKDIV_DIV2P15 1/32768

*1 : Please refer to *5 of "Table 6-9. Driver configuration of RL78/F23,F24 slave (1 of 2)".

RLIN3 Module Software Integration System CHAPTER 7 LIN 2.1 SOFTWARE DRIVER OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 92
R01AN6335EJ0100

7. 9. 2 Master driver configuration

On RL78/F23,F24 master driver, user can modify behavior of LIN driver using driver configuration.

Driver configuration is described in part “Driver configuration” in libsrc/conf/confmlin_opt.h file.

Table 7-11. Driver configuration of RL78/F23,F24 master (1 of 2)

Configuration points

(”CONFMLIN_OPT” is

omitted)

Contents Setting values Meaning of setting

values

u1gBUSWKUP_CFG *3 The wakeup method of

LIN driver.

If edge is selected,

LIN macro does not need

clock in sleep mode.

u1gBUSWKUP_EDGE The method of wakeup is

down edge detection.

(Operation clock isn’t

supplied to LIN macros

when LIN driver is in

sleep mode.)

u1gBUSWKUP_WIDTH The method of wakeup is

dominant width

detection.

u1gLINMCK_CFG Source of LIN

communication clock.

*2

u1gLINMCK_FCLK fCLK

u1gLINMCK_FMX fMX

u1gBDT_CFG Sending break delimiter

length.

u1gBDT_1BIT 1 [bit]

u1gBDT_2BIT 2 [bit]

u1gBDT_3BIT 3 [bit]

u1gBDT_4BIT 4 [bit]

u1gIBHS_CFG Width between sending

synch field and id

field, and width of

sending response space.

*1

u1gIBHS_0BIT 0 [bit]

u1gIBHS_1BIT 1 [bit]

u1gIBHS_2BIT 2 [bit]

u1gIBHS_3BIT 3 [bit]

u1gIBHS_4BIT 4 [bit]

u1gIBHS_5BIT 5 [bit]

u1gIBHS_6BIT 6 [bit]

u1gIBHS_7BIT 7 [bit]

u1gIBS_CFG Width between each

sending response. *1

u1gIBS_0BIT 0 [bit]

u1gIBS_1BIT 1 [bit]

u1gIBS_2BIT 2 [bit]

u1gIBS_3BIT 3 [bit]

u1gINTLINTRMPR_CFG *3 Priority of LIN

transmission completion

interruption.

This is used at sending

go-to-sleep command and

wakeup request only.

u1gINTPR_LV0 Level 0 (Highest)

u1gINTPR_LV1 Level 1

u1gINTPR_LV2 Level 2

u1gINTPR_LV3 Level 3 (Lowest)

u1gINTLINRVCPR_CFG *3 Priority of LIN

reception completion

interruption.

This is used at only

receiving wakeup

request when bus wakeup

way is dominant width

detection on LIN bus.

Same as

u1gINTLINTRMPR_CFG.

-

u1gINTLINSTAPR_CFG *3 Priority of LIN status

interruption.

This is used at only

sending go-to-sleep or

wakeup request.

Same as

u1gINTLINTRMPR_CFG.

-

RLIN3 Module Software Integration System CHAPTER 7 LIN 2.1 SOFTWARE DRIVER OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 93
R01AN6335EJ0100

u1gINTPPR_CFG *3 Priority of external

interruption.

This is used at only

receiving wakeup

request when bus wakeup

way is dominant width

detection on LIN bus.

Same as

u1gINTLINTRMPR_CFG.

-

*1: Timeout error is detected when whole time of 1 frame exceeds following time and frame timeout error is

enabled. Set these values as not exceeding.

 [Frame is classic checksum] : 49 + (number of response bytes + 1) x 14 [bit]

 [Frame is enhanced checksum] : 48 + (number of response bytes + 1) x 14 [bit]

 Timeout error is detected when whole time of response exceeds following time and response timeout error

is enables. Set these values as not exceeding.

 (number of response bytes + 1) x 14 [bit]

*2 : There is a notice regarding the LIN communication clock source in LIN/UART module (RLIN3) of

RL78/F23,F24. For details refer to the user's manual for RL78/F23 and F24. The master driver includes the

following restriction for by this case.

- When setting fMX (u1gLINMCK_FMX) as type of a LIN communication clock source

(u1gINTLINTRMPR_CFG) and setting "Not detect time out error" (u1gTER_DISABLE) as "Time out error

detection" (u1gTER_CFG), please set fCLK clock more than 1.2 times of LIN communication clock source.

*3 : Configurable by the smart configurator.

RLIN3 Module Software Integration System CHAPTER 7 LIN 2.1 SOFTWARE DRIVER OVERVIEW

RLIN3 Module Software Integration System Rev 1.00 94
R01AN6335EJ0100

Table 7-12. Driver configuration of RL78/F23,F24 master (2 of 2)

Configuration points

(”CONFMLIN_OPT” is

omitted)

Contents Setting values Meaning of setting

values

u1gLRDNFS_NORM_CFG Selection of using LIN

rx noise filter.

u1gLRDNFS_USE Use

u1gLRDNFS_NOUSE Not use

u1gWUTL_CFG Width of sending wakeup

request. *1

u1gWUTL_1BIT 1 [bit]

u1gWUTL_2BIT 2 [bit]

u1gWUTL_3BIT 3 [bit]

u1gWUTL_4BIT 4 [bit]

u1gWUTL_5BIT 5 [bit]

u1gWUTL_6BIT 6 [bit]

u1gWUTL_7BIT 7 [bit]

u1gWUTL_8BIT 8 [bit]

u1gWUTL_9BIT 9 [bit]

u1gWUTL_10BIT 10 [bit]

u1gWUTL_11BIT 11 [bit]

u1gWUTL_12BIT 12 [bit]

u1gWUTL_13BIT 13 [bit]

u1gWUTL_14BIT 14 [bit]

u1gWUTL_15BIT 15 [bit]

u1gWUTL_16BIT 16 [bit]

u1gBERE_CFG Selection of using bit

error detection.

u1gBERE_DISABLE Not detect

u1gBERE_ENABLE Detect

u1gPBERE_CFG Selection of using

physical bus error

detection.

u1gBERE_DISABLE Not detect

u1gBERE_ENABLE Detect

u1gTER_CFG Selection of using

timeout error

detection.

u1gTER_DISABLE Not detect

u1gTER_ENABLE Detect

u1gFEER_CFG Selection of using

framing error

detection.

u1gFERE_DISABLE Not detect

u1gFERE_ENABLE Detect

u1gLTES_CFG Type of timeout error.

This is no influence if

timeout error is not

enabled. *2

u1gLTES_FRAMETO Frame timeout

u1gLTES_RESPTO Response timeout

u4gTRWTCNTMAX_CFG Waiting time (software

counter) of RLIN3

transition.

If RLIN3 doesn’t

complete transition

exceeding this value,

LIN driver notifies

error to application.

1 or more. -

u1gRXD_PU_CFG Selection of using

internal pull up of LIN

rx pin.

u1gRXD_PU_DISABLE Not use

u1gRXD_PU_ENABLE Use

u1gRXD_PITHL_CFG Input level of LIN rx

pin.

u1gRXD_PITHL_03VDD 0.3 EVDD

u1gRXD_PITHL_05VDD 0.5 EVDD

*1 : Don’t set 6 bit or less because wakeup request low width may not satisfy LIN 2.1 specification.

*2 : Please refer to *2 of "Table 6-11. Driver configuration of RL78/F23, F24 master (1 of 2)".

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 95
R01AN6335EJ0100

CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

8. 1 LIN 2.1 Software Slave Driver Function List

 LIN 2.1 Software driver function list is as follows.

Table 8-1. LIN 2.1 Software Slave Driver Function

Category Function Name Description

LIN 2.1 Software Driver and

Cluster Management

l_sys_init System initialization

Scalar Signal Read l_bool_rd Scalar signal read process of 1 bit

l_u8_rd Scalar signal read process of 8 bits

l_u16_rd Scalar signal read process of 16 bits

Scalar Signal Write l_bool_wr Scalar signal write process of 1 bit

l_u8_wr Scalar signal write process of 8 bits

l_u16_wr Scalar signal write process of 16 bits

Byte Array Read l_bytes_rd Byte array read process

Byte Array Write l_bytes_wr Byte array write process

Notification l_flg_tst Signal update flag confirmation

l_flg_clr Signal update flag clear

Interface Management l_ifc_init Interface initialization

l_ifc_wake_up Wake up issue

l_ifc_read_status Status reading

User provided call-outs l_sys_irq_disable Interrupt prohibition setting

l_sys_irq_restore Interrupt reintegration setting

l_sys_call_sleep Sleep state transition

l_sys_call_wake_up Wake up start

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 96
R01AN6335EJ0100

8. 2 Data types (Slave)

 The type defined by LIN 2.1 API and the type that the LIN 2.1 slave driver uses are the following definitions.

Table 8-2. LIN 2.1 Spec and LIN 2.1 Slave Driver Type Definition List

Type of LIN 2.1 Spec Type of LIN 2.1 Driver

l_bool unsigned char

l_u8 unsigned char

l_u16 unsigned short

l_signal_handle unsigned char

l_flag_handle unsigned char

l_irqmask unsigned char

l_ifc_handle unsigned char

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 97
R01AN6335EJ0100

8. 3 Description of LIN 2.1 Software Slave Driver Function

 It explains the LIN 2.1 software slave driver function according to the following forms.

Figure 8-1. Description Format of LIN 2.1 Software Slave Driver Function

[General]

 xxxxxxxxxxxxxxxxxxxxxxxxxxx

[C language code format]

 xxxxxxxxxxxxxxxxxxxxxxxxxxx

[Parameters]

I/O Parameters Description

[Description]

 xxxxxxxxxxxxxxxxxxxxxxxxxxx

[Return value]

Error code Value Designation

[Caution]

 xxxxxxxxxxxxxxxxxxxxxxxxxxx

[Use example]

 xxxxxxxxxxxxxxxxxxxxxxxxxxx

 xx

 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

XXXX 1

2

4

3

5

6

7

8

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 98
R01AN6335EJ0100

1. Name

 This indicates the name of the LIN 2.1 software driver function.

2. [General]

 This indicates each LIN 2.1 software driver function’s general functions.

3. [C language code format]

 This indicates the code format used to issue LIN 2.1 software driver function is C language.

4. [Parameters]

 LIN 2.1 software driver function parameters are indicated in the following format.

I/O Parameters Description

A B C

 A: Parameter I/O classification

 I ... Input parameter

 O ... Output parameter

 B: Parameter type and name

 C: Description of parameter

5. [Description]

 This describes the functions of each LIN 2.1 software driver function.

6. [Return value]

 This indicates return value of each LIN 2.1 software driver function. The format is as follows.

Error code Value Designation

A B C

 A: The name when return value is error code.

 B: Range of return value.

 C: Description of return value.

7. [Caution]

This indicates cautions concerning LIN 2.1 software driver function. In particular, device-dependent

cautions are explained.

8. [Use example]

 This provides use examples for specific LIN 2.1 software driver functions.

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 99
R01AN6335EJ0100

8. 3. 1 [Slave] LIN 2.1 Software Driver and Cluster Management

 The LIN 2.1 software driver function is described from next page.

Table 8-3. LIN 2.1 Software Driver and Cluster Management (Slave)

Function Name Description

l_sys_init System initialization

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 100
R01AN6335EJ0100

[General]

 The LIN 2.1 software driver is initialized.

[C language code format]

l_bool l_sys_init(void)

[Parameters]

 None

[Description]

 This function initializes the LIN 2.1 software driver system. It is necessary to call it before all function is

called.

[Return value]

Error code Value Designation

L_SUCCESS 0x00 Initialize is succeed

 * For LIN software driver, only L_SUCCESS is returned.

 Recommend the return value check for safety.

[Use example]

/* after start up finished */

if (l_sys_init()){

/* init error */

;

 }

 else{

/* after this, other function can be called. */

 }

l_sys_init

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 101
R01AN6335EJ0100

8. 3. 2 [Slave] Scalar Signal Read

The functions of scalar signal read are described from next page.

Table 8-4. Scalar Signal Read (Slave)

Function Name Description

l_bool_rd Scalar signal read process of 1 bit

l_u8_rd Scalar signal read process of 8 bits

l_u16_rd Scalar signal read process of 16 bits

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 102
R01AN6335EJ0100

[General]

 The 1 bit scalar signal is read.

[C language code format]

 l_bool l_bool_rd(l_signal_handle sss)

[Parameters]

I/O Parameter Description

I l_signal_handle sss Signal name (macro value)

[Description]

 This function reads the signal data in the message buffer that related to the specified signal name. It is

 possible to read it asynchronously with the LIN communication.

[Return value]

Error code Value Designation

- 0x00,0x01 Signal data

[Caution]

 - Do not read the signal defined by the sizes other than 1 bit.

 - Do not specify “sss” excluding the defied signal.

 - Do not specify the signal in the message buffer that setting as the transmission.

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Signal name : WINDOW_SWITCH

- Size : 1 bit

*/

if(l_bool_rd(WINDOW_SWITCH))

{

 “Processing for window switch ON”

}

else

{

 “Processing for window switch OFF”

 }

l_bool_rd

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 103
R01AN6335EJ0100

[General]

 The scalar signal from 1 to 8 bits is read.

[C language code format]

 l_u8 l_u8_rd(l_signal_handle sss)

[Parameters]

I/O Parameter Description

I l_signal_handle sss Signal name (macro value)

[Description]

 This function reads the signal data in the message buffer that related to the specified signal name. It is

 possible to read it asynchronously with the LIN communication.

 The current signal data is read regardless of the presence of new data.

[Return value]

Error code Value Designation

- 0-0xFF Signal data

[Caution]

- Do not read the signal defined by a size that is larger than 8 bits.

l_u8_rd

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 104
R01AN6335EJ0100

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Signal name : WINDOW_STATUS

- Size : 8 bits

*/

#define ST_BUSY (0x00)

#define ST_IDLE (0x01)

#define ST_NG (0x02)

switch_status = l_u8_rd(WINDOW_STATUS);

if(switch_status == ST_BUSY)

{

 “Processing for BUSY state”

}

else if(switch_status == ST_NG)

{

 “Processing for NG state”

 }

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 105
R01AN6335EJ0100

[General]

 The scalar signal from 1 to 16 bits is read.

[C language code format]

 l_u16 l_u16_rd(l_signal_handle sss)

[Parameters]

I/O Parameter Description

I l_signal_handle sss Signal name (macro value)

[Description]

 This function reads the signal data in the message buffer that related to the specified signal name. It is

 possible to read it asynchronously with the LIN communication.

 The current signal data is read regardless of the presence of new data.

[Return value]

Error code Value Designation

- 0-0xFFFF Signal data

[Caution]

 - Do not read the signal defined by the sizes larger than 16 bits.

 - Do not specify “sss” excluding the defied signal.

 - Do not specify the signal in the message buffer that setting as the transmission.

l_u16_rd

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 106
R01AN6335EJ0100

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Signal name : WINDOW_STATUS

- Size : 16 bits

*/

#define ST_BUSY 0x0000

#define ST_IDLE 0x0001

l_u16 switch_status;

switch_status = l_u16_rd(WINDOW_STATUS);

switch(switch_status)

{

case ST_BUSY:

 /* Processing for BUSY state */

 break;

case ST_IDLE:

 /* Processing for IDLE state */

 break;

 default:

 /* Processing for error state */

 break;

 }

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 107
R01AN6335EJ0100

8. 3. 3 [Slave] Scalar Signal Write

The functions of scalar signal write are described from next page.

Table 8-5. Scalar Signal Write (Slave)

Function Name Description

l_bool_wr Scalar signal write process of 1 bit

l_u8_wr Scalar signal write process of 8 bits

l_u16_wr Scalar signal write process of 16 bits

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 108
R01AN6335EJ0100

[General]

 The 1 bit scalar signal is written.

[C language code format]

 void l_bool_wr(l_signal_handle sss, l_bool v)

[Parameters]

I/O Parameter Description

I l_signal_handle sss Signal name (macro value)

I l_bool v Writing data

[Description]

This function writes the data specified by “v” in the message buffer that related to the specified signal name.

After writing, the update flag of the corresponding signal is set.

[Return value]

 None

[Caution]

 - Do not write the signal defined by the sizes larger than 1 bit.

 - Do not specify the signal in the message buffer that setting as the reception.

 - Do not specify “sss” excluding the defied signal.

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Signal name : WINDOW, WINDOW_SWITCH

- Size : 1 bit

*/

#define PUSH (0x01)

#define OPEN (0x00)

 /* Switch push is detected */

if(l_bool_rd(WINDOW_SWITCH) == PUSH)

{

 /* 1 bit signal OPEN is written */

l_bool_wr(WINDOW, OPEN);

 }

l_bool_wr

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 109
R01AN6335EJ0100

[General]

 The scalar signal from 1 to 8 bits is written.

[C language code format]

 void l_u8_wr(l_signal_handle sss, l_u8 v)

[Parameters]

I/O Parameter Description

I l_signal_handle sss Signal name (macro value)

I l_u8 v Writing data

[Description]

This function writes the data specified by “v” in the message buffer that related to the specified signal

name.

After writing, the update flag of the corresponding signal is set.

[Return value]

 None

[Caution]

 - Do not write the signal defined by the sizes larger than 8 bits.

 - Do not specify the signal in the message buffer that setting as the reception.

 - Do not specify “sss” excluding the defied signal.

l_u8_wr

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 110
R01AN6335EJ0100

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Signal name : WINDOW, WINDOW_SWITCH

- Size : 8 bits

*/

#define OPEN (0x00)

#define CLOSE (0x01)

#define SLEEP (0x02)

#define UP (0x00)

#define DOWN (0x01)

switch(l_u8_rd(WINDOW_SWITCH))

{

case UP:

l_u8_wr(WINDOW, OPEN);

break;

case DOWN:

l_u8_wr(WINDOW, CLOSE);

break;

default:

l_u8_wr(WINDOW, SLEEP);

break;

 }

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 111
R01AN6335EJ0100

[General]

 The scalar signal from 1 to 16 bits is written.

[C language code format]

 void l_u16_wr(l_signal_handle sss, l_u16 v)

[Parameters]

I/O Parameter Description

I l_signal_handle sss Signal name (macro value)

I l_u16 v Writing data

[Description]

This function writes the data specified by “v” in the message buffer that related to the specified signal name.

After writing, the update flag of the corresponding signal is set.

[Return value]

 None

[Caution]

 - Do not write the signal defined by the sizes larger than 16 bits.

 - Do not specify the signal in the message buffer that setting as the reception.

 - Do not specify “sss” excluding the defied signal.

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Signal name : VOLUME

- Size : 12 bits

*/

l_u16 vol;

/* The volume level is acquired */

vol =GetVolLevel();

/* Set in signal */

 l_u16_wr(VOLUME, vol);

l_u16_wr

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 112
R01AN6335EJ0100

8. 3. 4 [Slave] Byte Array Read

The functions of byte array read are described from next page.

Table 8-6. Byte Array Read (Slave)

Function Name Description

l_bytes_rd Byte array read process

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 113
R01AN6335EJ0100

[General]

 The byte array data is read.

[C language code format]

 void l_bytes_rd(l_signal_handle sss, l_u8 start, l_u8 count, l_u8* const data)

[Parameters]

I/O Parameter Description

I l_signal_handle sss Signal name (macro value)

I l_u8 start Reading beginning byte number

I l_u8 count Reading number of bytes

O l_u8* const data Stored location of reading data

[Description]

 This function reads byte data for a number of counts from the start byte in the message buffer related to the

specified signal name.

 For instance, for the message of 7 bytes longs (number is 0 to 6) in byte array, to read the data from 3rd to

4th, 3 is set in start and 2 is set in count. In this case, the 3rd value is written in data [0] and the 4th value is

written in data [1].

[Return value]

 None

[Caution]

 - Do not specification that the signal size becomes outside the range by combining start and count.

 A correct value cannot be read.

 - Only the signal defined as byte array can be reading (Signal that offset and size become multiple of 8).

 When specifying by other definitions, a correct value cannot be read.

 - Do not specify the signal in the message buffer that setting as the transmission.

 - Reading beginning byte number is not number from head of message buffer, but number from head of

signal name. Refer to the following example.

Message buffer 0

Ex. When you want to read it from the fourth byte of byte array

signal B

Reading beginning byte number : 3
(The fourth byte of the byte array signal)

Scalar signal A Byte array signal B

Scalar signal C

l_bytes_rd

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 114
R01AN6335EJ0100

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Signal name : WINDOW_TEST

- Size : 4 bytes

*/

l_u8 data[4];

/* the 4 bytes data stored in data array */

l_bytes_rd(WINDOW_TEST, 0, 4, data)

/* the 2 bytes data from 2nd to 3rd stored in data array*/

 l_bytes_rd(WINDOW_TEST, 2, 2, data);

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 115
R01AN6335EJ0100

8. 3. 5 [Slave] Byte Array Write

The functions of byte array write are described from next page.

Table 8-7. Byte Array Write (Slave)

Function Name Description

l_bytes_wr Byte array write process

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 116
R01AN6335EJ0100

[General]

 The byte array data is written.

[C language code format]

 void l_bytes_wr(l_signal_handle sss, l_u8 start, l_u8 count, const l_u8* const data)

[Parameters]

I/O Parameter Description

I l_signal_handle sss Signal name (macro value)

I l_u8 start Writing beginning byte number

I l_u8 count Writing number of bytes

I const l_u8* const data Stored location of writing data

[Description]

This function writes byte data for a number of counts from the start byte in the message buffer related to the

specified signal name.

 For instance, for the message of 7 bytes longs (number is 0 to 6) in byte array, to write the data from 3rd to

4th, 3 is set in start and 2 is set in count. In this case, the 3rd value is read from data [0] and the 4th value is

read from data [1].

After writing, the update flag of the corresponding signal is set.

[Return value]

 None

[Caution]

 - Do not specification that the signal size becomes outside the range by combining start and count.

A correct value cannot be read.

 - Only the signal defined as byte array can be reading (Signal that offset and size become multiple of 8).

 When specifying by other definitions, a correct value cannot be read.

 - Do not specify the signal in the message buffer that setting as the reception.

 - Writing beginning byte number is not number from head of message buffer, but number from head of signal

name. Refer to the following example.

Message buffer 0

Ex. When you want to write it from the fourth byte of byte array

signal B

Writing beginning byte number : 3
(The fourth byte of the byte array signal)

Scalar signal A Byte array signal B

Scalar signal C

l_bytes_wr

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 117
R01AN6335EJ0100

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Signal name : WINDOW_TEST

- Size : 4 bytes

*/

const l_u8 data[4] = {0x00, 0x01, 0x02, 0x03};

/* the 4 bytes data of data array is written */

l_bytes_wr(WINDOW_TEST, 0, 4, data);

/* the 2 bytes data is written in WINDOW_TEST signal */

l_bytes_wr(WINDOW_TEST, 2, 2, data);

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 118
R01AN6335EJ0100

8. 3. 6 [Slave] Notification

The functions of notification are described from next page.

Table 8-8. Notification (Slave)

Function Name Description

l_flg_tst Signal update flag confirmation

l_flg_clr Signal update flag clear

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 119
R01AN6335EJ0100

[General]

 The value of signal update flag is read.

[C language code format]

 l_bool l_flg_tst(l_flag_handle fff)

[Parameters]

I/O Parameter Description

I l_flag_handle fff Flag name (same as signal name)

[Description]

 This function reads the signal update flag related to the specified flag name.

 Timing that the flag updated is as follows.

 - When the reception successful completion.

 - When call the scalar signal writing function and byte array writing function.

[Return value]

Error code Value Designation

- 0x00 Not update

- 0x01 Update

 [Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Signal name : WINDOW_STATUS

- Size : 1 byte

*/

 l_bool status;

if(l_flg_tst(WINDOW_STATUS))

{

 /* processing when WINDOW_STATUS is updated is described */

 status = l_bool_rd(WINDOW_STATUS);

 }

l_flg_tst

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 120
R01AN6335EJ0100

[General]

 The signal update flag is cleared by 0.

[C language code format]

 void l_flg_clr(l_flag_handle fff)

[Parameters]

I/O Parameter Description

I l_flag_handle fff Flag name (same as macro value and signal name)

[Description]

 This function clear the signal update flag related to the specified flag name.

 Timing that the flag is cleared is as follows.

 - When issue this function

 - When the transmission is successful completed.

[Return value]

 None

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Signal name : WINDOW_TEST

- Size : 1 byte

*/

l_u8 status;

if(l_flg_tst(WINDOW_TEST))

{

 status = l_u8_rd(WINDOW_TEST);

 /* the update flag is cleared */

 l_flg_clr(WINDOW_TEST);

}

l_flg_clr

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 121
R01AN6335EJ0100

8. 3. 7 [Slave] Interface Management

The functions of interface management are described from next page.

Table 8-9. Interface Management (Slave)

Function Name Description

l_ifc_init Interface initialization

l_ifc_wake_up Wake up issue

l_ifc_read_status Status reading

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 122
R01AN6335EJ0100

[General]

 The LIN interface is initialized.

[C language code format]

 l_bool l_ifc_init (l_ifc_handle iii)

[Parameters]

I/O Parameter Description

I l_ifc_handle iii Interface name (channel number)

[Description]

This function executes the initialization that relates to the specified LIN interface and the LIN communication

in the specified interface is enabled.

 The permission processing of the LIN transfer is executed.

[Return value]

Error code Value Designation

L_FAIL 0xFF Failed

L_SUCCESS 0x00 Succeeded

[Caution]

 - Use this function after issuing the l_sys_init function.

 - Issue this function before using the LIN 2.1 software driver functions other than l_sys_init function.

 - Do not specify the interface name excluding “LIN_CHANNEL0” if don’t use multi-channel function.

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Channel name: LIN_CHANNEL0

*/

if(l_sys_init())

{

 /* error processing is described */

}

else

{

 /* interface initialization */

if(l_ifc_init(LIN_CHANNEL0))

{

 /* error processing is described */

}

 }

l_ifc_init

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 123
R01AN6335EJ0100

[General]

 Wake up is issued.

[C language code format]

 void l_ifc_wake_up(l_ifc_handle iii)

[Parameters]

I/O Parameter Description

I l_ifc_handle iii Interface name (channel number)

[Description]

This function transitions the specified LIN interface from sleep mode to wake-up and sends a 260μs wake-

up Low pulse to the LIN bus.

After three wake-up pulses, the fourth wake-up pulse is sent after 1.5 sec. Three wake-up pulses are a block,

and this is repeated a user-defined number of times. Three transmissions are a block, and this is repeated a

user-defined number of times. After that, if the bus is inactive for more than 4 seconds, it will enter the sleep

mode.

[Return value]

 None

[Caution]

 - It is possible to issue it only for sleep mode.

 - Do not specify the interface name excluding “LIN_CHANNEL0” if don’t use multi-channel function.

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Channel name: LIN_CHANNEL0

- Status mask bit: LD_MASK_SLEEP

*/

 /* when sleep mode is detected, wake up immediately */

 /*sleep detection */

if((l_ifc_read_status(LIN_CHANNEL0) & LD_MASK_SLEEP) == LD_MASK_SLEEP)

{

 l_ifc_wake_up();

 }

l_ifc_wake_up

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 124
R01AN6335EJ0100

[General]

 LIN software driver’s various statuses are read.

[C language code format]

 l_u16 l_ifc_read_status(l_ifc_handle iii)

[Parameters]

I/O Parameter Description

I l_ifc_handle iii Interface name (channel number)

[Description]

 This function reads status information in the specified LIN interface.

[Return value]

[Return value]

 Last frame PID : PID of the last communication frame is shown.

Save configuration : Not supported.

Event triggered frame collision: Not a relevant bit in the slave driver.

Bus activity : When a rising or falling edge of the bus is detected, it is set.

 Goto sleep : When go-to-sleep-command is normally transmitted, it is set.

 Overrun : When over 2 transfers are executed before l_ifc_read_status is called,

 it is set.

 Successful transfer : When the transfer I succeeded, it is set.

 Error in response : When an illegal transfer is detected while response, it is set.

[Caution]

 - Use this function after issuing the l_ifc_init function.

 - After this function or l_ifc_init function is issued, status cleared by 0.

 - Status is an accumulation flag. When two or more transfer is done from the call of previous this function,

 status is overwritten.

 - Do not specify the interface name excluding “LIN_CHANNEL0” if don’t use multi-channel function.

l_ifc_read_status

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit0

Last frame PID
Error in

response
Successful

transfer
Overrun

Goto
sleep

0
Save

configur
ation

Event
triggered

frame
collision

Bus
activity

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 125
R01AN6335EJ0100

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Channel name: LIN_CHANNEL0

- Status mask bit: LD_MASK_ERROR_IN_RESPONSE, LD_MASK_SUCCESSFUL_TRANSFER

*/

status = l_ifc_read_status(LIN_CHANNEL0);

mask = LD_MASK_ERROR_IN_RESPONSE | LD_MASK_SUCCESSFUL_TRANSFER;

if(status& mask) == mask)

 {

/* Detection error and succeeded, in this case, it is though that the transfer is intermittently done. */

}

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 126
R01AN6335EJ0100

8. 3. 8 [Slave] User provided call-outs

The functions of call-outs are described from next page.

Table 8-10. User provided call-outs (Slave)

Function Name Description

l_sys_irq_disable Interrupt prohibition setting

l_sys_irq_restore Interrupt reintegration setting

l_sys_call_sleep Sleep state transition

l_sys_call_wake_up Wake up start

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 127
R01AN6335EJ0100

[General]

 The interrupt is prohibited.

[C language code format]

 l_irqmask l_sys_irq_disable(void)

[Parameters]

 None

[Description]

 This function is a call-outs function to prohibit interrupt.

 DI is executed, and current interrupt is returned. The return value is the PSW value for the CC-RL edition,

and the value returned by the IAR intrinsic function __get_interrupt_state for the IAR edition.

[Return value]

I/O Value Designation

- [CC-RL]

Interrupt status bit of PSW

[IAR]

Global interrupt state

-

[Caution]

- Because of this is call-outs function, it is possible to change, but you don’t need to modify the Smart

Configurator code. (See "5. 2. 7 User-defined callouts implementation")

[Use example]

 - It is automatically called. It is not necessary to use it in the application.

l_sys_irq_disable

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 128
R01AN6335EJ0100

[General]

 It returns the state of the interrupt.

[C language code format]

 void l_sys_irq_restore(l_irqmask previous)

[Parameters]

I/O Parameter Description

I l_irqmask previous Return value of last l_sys_irq_disable().

([CC-RL] Interrupt status bit of PSW,

 [IAR] Global interrupt state)

[Description]

 This function is a call-outs function to return the interrupt state.

 In default, it set to EI when “previous” is interrupt enable (“0x80”), and besides, it set to DI for the CC-RL

edition. For the IAR edition, it restores the interrupt state specified by “previous”.

[Return value]

 None

[Caution]

- Because of this is call-outs function, it is possible to change, but you don’t need to modify the Smart

Configurator code. (See "5. 2. 7 User-defined callouts implementation")

[Use example]

 - It is automatically called. It is not necessary to use it in the application.

l_sys_irq_restore

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 129
R01AN6335EJ0100

[General]

 It is called when the state changed to sleep mode.

 It is original enhanced function of this driver.

[C language code format]

 void l_sys_call_sleep(l_ifc_handle iii)

[Parameters]

I/O Parameter Description

I l_ifc_handle iii Interface name (channel number)

[Description]

This function is call-out function when the sleep request is received or it change to sleep mode by the

timeout.

[Return value]

 None

[Caution]

 - There is not change to sleep mode immediately after the first byte of the data field of sleep command is

 received. It is not change to sleep mode without receive checksum.

 - This function need not necessarily be mounted. When not using it, make it empty. In the code provided by

the Smart Configurator, it is an empty function. (See "5. 2. 7 User-defined callouts implementation")

[Use example]

 - It is automatically called. It is not necessary to use it in the application.

l_sys_call_sleep

RLIN3 Module Software Integration System CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)

RLIN3 Module Software Integration System Rev 1.00 130
R01AN6335EJ0100

[General]

 It is called immediately after reception of wake up.

 It is original enhanced function of this driver.

[C language code format]

 void l_sys_call_wake_up(l_ifc_handle iii)

[Parameters]

I/O Parameter Description

I l_ifc_handle iii Interface name (channel number)

[Description]

 This function is call-out function when the LIN 2.1 software driver receives wake up.

[Return value]

 None

[Caution]

 - This function need not necessarily be mounted. When not using it, make it empty. In the code provided by

the smart configurator, it is an empty function. (See "5. 2. 7 User-defined callouts implementation")

[Use example]

 - It is automatically called. It is not necessary to use it in the application.

l_sys_call_wake_up

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 131
R01AN6335EJ0100

CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

9. 1 LIN 2.1 Software Master Driver Function List

 LIN 2.1 Software Driver Function List is as follows.

Table 9-1. List of LIN 2.1 Software Master Driver Function

Category Function Name Description

LIN 2.1 Software Driver and

Cluster Management

l_sys_init System initialization

Scalar Signal Read

l_bool_rd Scalar signal read process of 1 bit

l_u8_rd Scalar signal read process of 8 bits

l_u16_rd Scalar signal read process of 16 bits

Scalar Signal Write l_bool_wr Scalar signal write process of 1 bit

l_u8_wr Scalar signal write process of 8 bits

l_u16_wr Scalar signal write process of 16 bits

Byte Array Read l_bytes_rd Byte array read process

Byte Array Write l_bytes_wr Byte array write process

Notification l_flg_tst Signal update flag confirmation

l_flg_clr Signal update flag clear

Interface Management l_ifc_init Interface initialization

l_ifc_goto_sleep go-to-sleep-command issue

l_ifc_wake_up Wake up issue

l_ifc_read_status Status reading

Schedule Management l_sch_tick Schedule control

l_sch_set Schedule setting

Node Configuration ld_is_ready Node configuration ready

ld_check_response Node configuration check

ld_assign_frame_id_range PID allocation

ld_read_by_id ID reading

User provided call-outs l_sys_irq_disable Interrupt prohibition setting

l_sys_irq_restore Interrupt reintegration setting

l_sys_call_wake_up Wake up start

l_sys_call_fatal_error Resolve fatal error

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 132
R01AN6335EJ0100

9. 2 Data types (Master)

 The type defined by LIN 2.1 spec and the type that the LIN 2.1 master driver uses are the following definitions.

Table 9-2. LIN 2.1 Spec and LIN 2.1 Master Driver Type Definition List

Type of LIN 2.1 Spec Type of LIN 2.1 Driver

l_bool unsigned char

l_u8 unsigned char

l_u16 unsigned short

l_signal_handle unsigned char

l_flag_handle unsigned char

l_irqmask unsigned char

l_ifc_handle unsigned char

l_ioctl_op unsigned char

l_schedule_handle unsigned char

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 133
R01AN6335EJ0100

9. 3 Description of LIN 2.1 Software Master Driver Function

 It explains the LIN 2.1 software master driver function according to the following forms.

Figure 9-1. Description Format of LIN 2.1 Software Master Driver Function

[General]

 xxxxxxxxxxxxxxxxxxxxxxxxxxx

[C language code format]

 xxxxxxxxxxxxxxxxxxxxxxxxxxx

[Parameter]

I/O Parameters Description

[Description]

 xxxxxxxxxxxxxxxxxxxxxxxxxxx

[Return value]

Error code Value Designation

[Caution]

 xxxxxxxxxxxxxxxxxxxxxxxxxxx

[Use example]

 xxxxxxxxxxxxxxxxxxxxxxxxxxx

 xx

 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

XXXX 1

2

4

3

5

6

7

8

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 134
R01AN6335EJ0100

1. Name

 This indicates the name of the LIN 2.1 software driver function.

2. [General]

 This indicates each LIN 2.1 software driver function’s general functions.

3. [C language code format]

 This indicates the code format used to issue LIN 2.1 software driver function is C language.

4. [Parameter]

 LIN 2.1 software driver function parameters are indicated in the following format.

I/O Parameters Description

A B C

 A: Parameter I/O classification

 I ... Input parameter

 O ... Output parameter

 B: Parameter type and name

 C: Description of parameter

5. [Description]

 This describes the functions of each LIN 2.1 software driver function.

6. [Return value]

 This indicates return value of each LIN 2.1 software driver function. The format is as follows.

Error code Value Designation

A B C

 A: The name when return value is error code.

 B: Range of return value.

 C: Description of return value.

7. [Caution]

 This indicates cautions concerning LIN 2.1 software driver function. In particular, device-dependent cautions

are explained.

8. [Use example]

 This provides use examples for specific LIN 2.1 software driver functions.

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 135
R01AN6335EJ0100

9. 3. 1 [Master] LIN 2.1 Software Driver and Cluster Management

The function of LIN 2.1 Software Driver and Cluster Management is described from next page.

Table 9-3. List of LIN 2.1 Software Driver and Cluster Management (Master)

Function Name Description

l_sys_init System initialization

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 136
R01AN6335EJ0100

[General]

 The LIN 2.1 software driver is initialized.

[C language code format]

l_bool l_sys_init(void)

[Parameters]

 None

[Description]

 This function initializes the LIN 2.1 software driver system. It is necessary to call it before all function is

called.

[Return value]

Error code Value Designation

L_SUCCESS 0x00 Initialize is succeed

 *: For LIN software driver, only L_SUCCESS is returned.

 Recommend the return value checked for safety.

[Use example]

/* After start up finished */

if (l_sys_init()){

/* init error */

;

 }

 else{

/* After this, other function can be called. */

}

l_sys_init

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 137
R01AN6335EJ0100

9. 3. 2 [Master] Scalar Signal Read

The functions of scalar signal read are described from next page.

Table 9-4. List of Scalar Signal Read (Master)

Function Name Description

l_bool_rd Scalar signal read process of 1 bit

l_u8_rd Scalar signal read process of 8 bits

l_u16_rd Scalar signal read process of 16 bits

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 138
R01AN6335EJ0100

[General]

 The 1 bit scalar signal is read.

[C language code format]

 l_bool l_bool_rd(l_signal_handle sss)

[Parameters]

I/O Parameter Description

I l_signal_handle sss Signal name (macro value)

[Description]

 This function reads the signal data in the message buffer that related to the specified signal name. It is

 possible to read it asynchronously with the LIN communication.

[Return value]

Error code Value Designation

- 0x00,0x01 Signal data

[Caution]

 - Do not read the signal defined by the sizes other than 1 bit.

 - Do not specify “sss” excluding the defied signal.

 - Do not specify the signal in the message buffer that setting as the transmission.

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Signal name : WINDOW_SWITCH

- Size : 1 bit

*/

if(l_bool_rd(WINDOW_SWITCH))

{

 “Processing for window switch ON”

}

else

{

 “Processing for window switch OFF”

 }

l_bool_rd

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 139
R01AN6335EJ0100

[General]

 The scalar signal from 1 to 8 bits is read.

[C language code format]

 l_u8 l_u8_rd(l_signal_handle sss)

[Parameters]

I/O Parameter Description

I l_signal_handle sss Signal name (macro value)

[Description]

 This function reads the signal data in the message buffer that related to the specified signal name. It is

 possible to read it asynchronously with the LIN communication.

 The current signal data is read regardless of the presence of new data.

[Return value]

Error code Value Designation

- 0-0xFF Signal data

[Caution]

 - Do not read the signal defined by a size that is larger than 8 bits.

 - Do not specify “sss” excluding the defied signal.

 - Do not specify the signal in the message buffer that setting as the transmission.

l_u8_rd

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 140
R01AN6335EJ0100

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Signal name : WINDOW_STATUS

- Size : 8 bits

*/

#define ST_BUSY (0x00)

#define ST_IDLE (0x01)

#define ST_NG (0x02)

switch_status = l_u8_rd(WINDOW_STATUS);

if(switch_status == ST_BUSY)

{

 “Processing for BUSY state”

}

else if(switch_status == ST_NG)

{

 “Processing for NG state”

}

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 141
R01AN6335EJ0100

[General]

 The scalar signal from 1 to 16 bits is read.

[C language code format]

 l_u16 l_u16_rd(l_signal_handle sss)

[Parameters]

I/O Parameter Description

I l_signal_handle sss Signal name (macro value)

[Description]

 This function reads the signal data in the message buffer that related to the specified signal name. It is

 possible to read it asynchronously with the LIN communication.

 The current signal data is read regardless of the presence of new data.

[Return value]

Error code Value Designation

- 0-0xFFFF Signal data

[Caution]

 - Do not read the signal defined by the sizes larger than 16 bits.

 - Do not specify “sss” excluding the defied signal.

 - Do not specify the signal in the message buffer that setting as the transmission.

l_u16_rd

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 142
R01AN6335EJ0100

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Signal name : WINDOW_STATUS

- Size : 16 bits

*/

#define ST_BUSY (0x0000)

#define ST_IDLE (0x0001)

l_u16 switch_status;

switch_status = l_u16_rd(WINDOW_STATUS);

switch(switch_status)

{

case ST_BUSY:

 /* Processing for BUSY state */

 break;

case ST_IDLE:

 /* Processing for IDLE state */

 break;

 default:

 /* Processing for error state */

 break;

 }

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 143
R01AN6335EJ0100

9. 3. 3 [Master] Scalar Signal Write

The functions of scalar signal write are described from next page.

Table 9-5. Scalar Signal Write (Master)

Function Name Description

l_bool_wr Scalar signal write process of 1 bit

l_u8_wr Scalar signal write process of 8 bits

l_u16_wr Scalar signal write process of 16 bits

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 144
R01AN6335EJ0100

[General]

 The 1 bit scalar signal is written.

[C language code format]

 void l_bool_wr(l_signal_handle sss, l_bool v)

[Parameters]

I/O Parameter Description

I l_signal_handle sss Signal name (macro value)

I l_bool v Writing data

[Description]

This function writes the data specified by “v” in the message buffer that related to the specified signal name.

 After writing, the update flag of the corresponding signal is set.

[Return value]

 None

[Caution]

 - Do not write the signal defined by the sizes larger than 1 bit.

 - Do not specify “sss” excluding the defied signal.

 - Do not specify the signal in the message buffer that setting as the reception.

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Signal name : WINDOW, WINDOW_SWITCH

- Size : 1 bit

*/

 #define PUSH (1)

 #define OPEN (1)

 /* Switch push is detected */

if(l_bool_rd(WINDOW_SWITCH) == PUSH)

{

 /* 1 bit signal OPEN is written */

l_bool_wr(WINDOW, OPEN);

 }

l_bool_wr

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 145
R01AN6335EJ0100

[General]

 The scalar signal from 1 to 8 bits is written.

[C language code format]

 void l_u8_wr(l_signal_handle sss, l_u8 v)

[Parameters]

I/O Parameter Description

I l_signal_handle sss Signal name (macro value)

I l_u8 v Writing data

[Description]

This function writes the data specified by “v” in the message buffer that related to the specified signal name.

 After writing, the update flag of the corresponding signal is set.

[Return value]

 None

[Caution]

 - Do not write the signal defined by the sizes larger than 8 bits.

 - Do not specify “sss” excluding the defied signal.

 - Do not specify the signal in the message buffer that setting as the reception.

l_u8_wr

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 146
R01AN6335EJ0100

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Signal name : WINDOW, WINDOW_SWITCH

- Size : 8 bits

*/

#define OPEN (0x00)

#define CLOSE (0x01)

#define SLEEP (0x02)

#define UP (0x00)

#define DOWN (0x01)

switch(l_u8_rd(WINDOW_SWITCH))

{

case UP:

l_u8_wr(WINDOW, OPEN);

break;

case DOWN:

l_u8_wr(WINDOW, CLOSE);

break;

default:

l_u8_wr(WINDOW, SLEEP);

break;

}

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 147
R01AN6335EJ0100

[General]

 The scalar signal from 1 to 16 bits is written.

[C language code format]

 void l_u16_wr(l_signal_handle sss, l_u16 v)

[Parameters]

I/O Parameter Description

I l_signal_handle sss Signal name (macro value)

I l_u16 v Writing data

[Description]

This function writes the data specified by “v” in the message buffer that related to the specified signal name.

 After writing, the update flag of the corresponding signal is set.

[Return value]

 None

[Caution]

 - Do not write the signal defined by the sizes larger than 16 bits.

 - Do not specify “sss” excluding the defied signal.

 - Do not specify the signal in the message buffer that setting as the reception.

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Signal name : VOLUME

- Size : 12 bits

*/

l_u16 vol;

/* The volume level is acquired */

vol = GetVolLevel();

/* Set in signal */

 l_u16_wr(VOLUME, vol);

l_u16_wr

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 148
R01AN6335EJ0100

9. 3. 4 [Master] Byte Array Read

The functions of byte array read are described from next page.

Table 9-6. List of Byte Array Read (Master)

Function Name Description

l_bytes_rd Byte array read process

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 149
R01AN6335EJ0100

[General]

 The byte array data is read.

[C language code format]

 void l_bytes_rd(l_signal_handle sss, l_u8 start, l_u8 count, l_u8* const data)

[Parameters]

I/O Parameter Description

I l_signal_handle sss Signal name (macro value)

I l_u8 start Reading beginning byte number

I l_u8 count Reading number of bytes

O l_u8* const data Stored location of reading data

[Description]

This function reads byte data for a number of counts from the start byte in the message buffer related to

the specified signal name.

 For instance, for the message of 7 bytes longs (number is 0 to 6) in byte array, to read the data from 3rd

to 4th, 3 is set in start and 2 is set in count. In this case, the 3rd value is written in data [0] and the 4th value

is written in data [1].

 The current data in message buffer is read regardless of the presence of new data.

[Return value]

 None

[Caution]

- Do not specification that the signal size becomes outside the range by combining start and count.

A correct value cannot be read.

- Only the signal defined as byte array can be reading (Signal that offset and size become multiple of 8).

When specifying by other definitions, a correct value cannot be read.

- Do not specify the signal in the message buffer that setting as the transmission.

- Reading beginning byte number is not number from head of message buffer, but number from head of signal

name. Refer to the following example.

Message buffer 0

Ex. When you want to read it from the fourth byte of byte array

signal B

Reading beginning byte number : 3
(The fourth byte of the byte array signal)

Scalar signal A Byte array signal B

Scalar signal C

l_bytes_rd

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 150
R01AN6335EJ0100

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Signal name : WINDOW_TEST

- Size : 4 bytes

*/

l_u8 data[4];

/* the 4 bytes data stored in data array */

l_bytes_rd(WINDOW_TEST, 0, 4, data);

/* the 2 bytes data from 2nd to 3rd stored in data array*/

 l_bytes_rd(WINDOW_TEST, 2, 2, data);

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 151
R01AN6335EJ0100

9. 3. 5 [Master] Byte Array Write

The functions of scalar signal write are described from next page.

Table 9-7. List of Byte Array Write (Master)

Function Name Description

l_bytes_wr Byte array write process

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 152
R01AN6335EJ0100

[General]

 The byte array data is written.

[C language code format]

 void l_bytes_wr(l_signal_handle sss, l_u8 start, l_u8 count, const l_u8* const data)

[Parameters]

I/O Parameter Description

I l_signal_handle sss Signal name (macro value)

I l_u8 start Writing beginning byte number

I l_u8 count Writing number of bytes

I const l_u8* const data Stored location of writing data

[Description]

This function writes byte data for a number of counts from the start byte in the message buffer related to

the specified signal name.

For instance, for the message of 7 bytes longs (number is 0 to 6) in byte array, to write the data from 3rd

to 4th, 3 is set in start and 2 is set in count. In this case, the 3rd value is read from data [0] and the 4th

value is read from data [1].

 After writing, the update flag of the corresponding signal is set.

[Return value]

 None

[Caution]

 - Do not specification that the signal size becomes outside the range by combining start and count.

A correct value cannot be read.

 - Only the signal defined as byte array can be reading (Signal that offset and size become multiple of 8).

When specifying by other definitions, a correct value cannot be read.

 - Do not specify the signal in the message buffer that setting as the reception.

 - Writing beginning byte number is not number from head of message buffer, but number from head of signal

name. Refer to the following example.

Message buffer 0

Ex. When you want to write it from the fourth byte of byte array

signal B

Writing beginning byte number : 3
(The fourth byte of the byte array signal)

Scalar signal A Byte array signal B

Scalar signal C

l_bytes_wr

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 153
R01AN6335EJ0100

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Signal name : WINDOW_TEST

- Size : 4 bytes

*/

const l_u8 data[4] = {0x00, 0x01, 0x02, 0x03};

/* the 4 bytes data of data array is written */

l_bytes_wr(WINDOW_TEST, 0, 4, data);

/* the 2 bytes data is written in WINDOW_TEST signal */

l_bytes_wr(WINDOW_TEST, 2, 2, data);

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 154
R01AN6335EJ0100

9. 3. 6 [Master] Notification

The functions of notification are described from next page.

Table 9-8. List of Notification (Master)

Function Name Outline

l_flg_tst Signal update flag confirmation

l_flg_clr Signal update flag clear

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 155
R01AN6335EJ0100

[General]

 The value of signal update flag is read.

[C language code format]

 l_bool l_flg_tst(l_flag_handle fff)

[Parameters]

I/O Parameter Description

I l_flag_handle fff Flag name (same as signal name)

[Description]

 This function reads the signal update flag related to the specified flag name.

 Timing that the flag updated is as follows.

 - When the signal data is normally received from the LIN bus, and the l_sch_tick function is called.

- When the scalar signal writing function and byte array writing function are called, and data is written in

the signal.

[Return value]

Error code Value Designation

- 0x00 Not update

- 0x01 Update

 [Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Signal name : WINDOW_STATUS

- Size : 1 byte

*/

 l_bool status;

if(l_flg_tst(WINDOW_STATUS))

{

 /* processing when WINDOW_STATUS is updated is described */

 status = l_bool_rd(WINDOW_STATUS);

 }

l_flg_tst

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 156
R01AN6335EJ0100

[General]

 The signal update flag is cleared by 0.

[C language code format]

 void l_flg_clr(l_flag_handle fff)

[Parameters]

I/O Parameter Description

I l_flag_handle fff Flag name (same as macro value and signal name)

[Description]

 This function clear the signal update flag related to the specified flag name.

 Timing that the flag is cleared is as follows.

 - When issue this function

 - When the transmission for LIN bus is successful completed, and the l_sch_tick function is called.

[Return value]

 None

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Signal name : WINDOW_TEST

- Size : 1 byte

*/

l_u8 status;

if(l_flg_tst(WINDOW_TEST))

{

 status = l_u8_rd(WINDOW_TEST);

 /* the update flag is cleared */

l_flg_clr(WINDOW_TEST);

 }

l_flg_clr

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 157
R01AN6335EJ0100

9. 3. 7 [Master] Schedule Management

The functions of schedule management are described from next page.

Table 9-9. List of Schedule Management (Master)

Function Name Description

l_sch_tick Schedule control

l_sch_set Schedule setting

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 158
R01AN6335EJ0100

[General]

 The schedule management is done by calling this function at constant intervals.

[C language code format]

 l_u8 l_sch_tick(l_ifc_handle iii)

[Parameters]

I/O Parameter Description

I l_ifc_handle iii Interface name (channel number)

[Description]

It is checked whether transfer the next entry of the current schedule table that is specified LIN interface

can begin. And if it is possible, transfer the table entry begin.

When transfer the next entry of the schedule table can begin, the number is returned by next calling of this

function. If transfer of the next entry cannot begin, return 0.

[Return value]

Error code Value Designation

- 0x00 By next calling, transfer the next entry of the

schedule table does not begin.

- 0x01 to 0xFF (less than the

 number of maximum entry)

By next calling, transfer the next entry of the

schedule table is beginning. The value is that entry

number.

[Caution]

 - The signal update when go-to-sleep-command is transmitted has not synchronized with this function.

 When the transmission of go-to-sleep-command is completed, the signal is updated. (Even if this function

is not called, it shifts to sleep mode when the transmission of go-to-sleep-command is normally succeed)

After a frame transport, signals are updated at the time of first calling l_sch_tick.

 - Do not specify the interface name excluding “LIN_CHANNEL0” if you don’t use multi-channel function.

- Do not call this function when the LIN 2.1 software driver is sleep mode. If it is called, “1” is set in “Error in

none active” of a detailed status bit.

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Channel name: LIN_CHANNEL0

*/

/* Timer interrupt function (time_base = 20ms) */

void main_application_20ms(void)

{

 /* schedule update in each 20 ms */

 l_sch_tick(LIN_CHANNEL0);

 }

l_sch_tick

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 159
R01AN6335EJ0100

[General]

 The schedule table is set.

[C language code format]

 void l_sch_set(l_ifc_handle iii, l_schedule_handle schedule, l_u8 entry)

[Parameters]

I/O Parameter Description

I l_ifc_handle iii Interface name (channel number)

I l_schedule_handle schedule Schedule table name

I l_u8 entry Schedule entry number

[Description]

 The schedule table in the specified LIN interface is switched to the schedule table specified in “schedule”.

After calling this function, transfer of the entry specified with “entry” is begins on timing (when call l_sch_tick

function one or more times) that the next entry of the current schedule table is transfer.

 When 0 or 1 is set in “entry”, transfer the first entry of “schedule” begins.

[Return value]

 None

[Caution]

 - The entry number of schedule table is from 1 to n (n is number of entry in schedule tables).

 Note the different from schedule table structure array element number (it is from 0 to n-1).

 - Do not specify “schedule” and “entry” that does not exist in the schedule table or the entry number.

 - Do not specify the interface name excluding “LIN_CHANNEL0” if you don’t use multi-channel function.

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Channel name : LIN_CHANNEL0

- Schedule table name : SCH_TABLE0

*/

/* Timer interrupt function (time_base = 20ms)*/

void main_application_20ms(void)

{

 /* When the 3rd of the current schedule table entry is begun,

switch to the entry1 of schedule table “SCH_TABLE0”.

 */

if(l_sch_tick (LIN_CHANNEL0) == 3)

{

 l_sch_set(LIN_CHANNEL0, SCH_TABLE0, 1);

}

 }

l_sch_set

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 160
R01AN6335EJ0100

9. 3. 8 [Master] Interface Management

The functions of interface management are described from next page.

Table 9-10. List of Interface Management (Master)

Function Name Description

l_ifc_init Interface initialization

l_ifc_goto_sleep go-to-sleep-command issue

l_ifc_wake_up Wake up issue

l_ifc_read_status Status reading

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 161
R01AN6335EJ0100

[General]

 The LIN interface is initialized.

[C language code format]

 l_bool l_ifc_init (l_ifc_handle iii)

[Parameters]

I/O Parameter Description

I l_ifc_handle iii Interface name (channel number)

[Description]

This function performs the initialization process related to the specified LIN interface to enable LIN

communication.

 This function executes the permission process for LIN transmission/reception.

[Return value]

Error code Value Designation

L_FAIL 0xFF Failed

L_SUCCESS 0x00 Succeeded

[Caution]

 - Use this function after issuing the l_sys_init function.

 - Issue this function before using the LIN 2.1 software driver functions other than l_sys_init function.

 - Do not specify the interface name excluding “LIN_CHANNEL0” if you don’t use multi-channel function.

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Channel name: LIN_CHANNEL0

*/

if(l_sys_init())

{

 /* error processing is described */

}

else

{

/* interface initialization */

if(l_ifc_init(LIN_CHANNEL0))

{

 /* error processing is described */

}

 }

l_ifc_init

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 162
R01AN6335EJ0100

[General]

 Go-to-sleep-command is issued.

[C language code format]

 void l_ifc_goto_sleep(l_ifc_handle iii)

[Parameters]

I/O Parameter Description

I l_ifc_handle iii Interface name (channel number)

[Description]

 This function transmits go-to-sleep-command to the specified LIN bus. When go-to-sleep-command transmit

succeed, “Goto sleep” of the status bit (refer to l_ifc_read_status) is set, and it shifts to sleep mode. When

failing in the transmission of go-to-sleep-command, neither the set of “Goto sleep” nor the shift to sleep mode

are done.

 Transmit go-to-sleep-command by this function call, at least one entry of master request frame should exist

in the set schedule table.

[Return value]

 None

[Caution]

- Go-to-sleep-command is issued as one of the diagnostic commands. Therefore, before this function is

called, confirm the ld_is_ready function is called and LD_SERVICE_IDLE is returned. When

LD_SERVICE_BUSY is returned and this function called, the function call is neglected.

- When the entry of master request frame does not exist in the set schedule table, go-to-sleep-command

is not issued. In that case, call the l_sch_set function after calling this function, and switch to the schedule

table where the entry of master request frame exists.

 - Do not specify the interface name excluding “LIN_CHANNEL0” if don’t use multi-channel function.

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Channel name: LIN_CHANNEL0

*/

/* after it is confirmed that diagnostic command can be acceptance, go-to-sleep-command transmission */

if(ld_is_ready (LIN_CHANNEL0) == LD_SERVICE_IDLE)

{

l_ifc_goto_sleep(LIN_CHANNEL0);

}

l_ifc_goto_sleep

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 163
R01AN6335EJ0100

[General]

 Wake up is issued.

[C language code format]

 void l_ifc_wake_up(l_ifc_handle iii)

[Parameters]

I/O Parameter Description

I l_ifc_handle iii Interface name (channel number)

[Description]

 This function transition the specified LIN interface from sleep mode to wake up mode and transmits the

wake up low pulse from 250 us to 5 ms to the LIN bus.

[Return value]

 None

[Caution]

 - It is possible to issue it only for sleep mode.

 - After calling this function, wait processing is necessary till frame transfer beginning.

 - Do not specify the interface name excluding “LIN_CHANNEL0” if don’t use multi-channel function.

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Channel name: LIN_CHANNEL0

- Status mask bit: LD_MASK_SLEEP

*/

 /* when sleep mode is detected, wake up immediately */

 /*sleep detection */

if((l_ifc_read_status(LIN_CHANNEL0) & LD_MASK_SLEEP) == LD_MASK_SLEEP)

{

 l_ifc_wake_up();

 }

l_ifc_wake_up

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 164
R01AN6335EJ0100

[General]

 LIN software driver’s various statuses are read.

[C language code format]

 l_u16 l_ifc_read_status(l_ifc_handle iii)

[Parameters]

I/O Parameter Description

I l_ifc_handle iii Interface name (channel number)

[Description]

 This function reads status information in the specified LIN interface.

[Return value]

 Last frame ID : PID of the last communication frame is shown.

Save configuration : Not supported

Event triggered frame collision : Set during the execution of collision resolution of the event trigger frame

Bus activity : When a rising or falling edge of the bus is detected, it is set.

 Goto sleep : When go-to-sleep-command is normally transmitted, it is set.

 Overrun : When over 2 transfers are executed before l_ifc_read_status is called,

 it is set.

 Successful transfer : When the transfer I succeeded, it is set.

 Error in response : When an illegal transfer is detected while response, it is set.

[Caution]

 - Use this function after issuing the l_ifc_init function.

 - After this function or l_ifc_init function is issued, status cleared by 0.

 - Status is an accumulation flag. When two or more transfer is done from the call of previous this function,

 status is overwritten.

 - When this function is called continuously with no transfer in the bus, the 2nd call returns 0.

 - Do not specify the interface name excluding “LIN_CHANNEL0” if don’t use multi-channel function.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit0

Last frame PID
Error in

response
Successful

transfer
Overrun

Goto
sleep

0
Save

configur
ation

Event
triggered

frame
collision

Bus
activity

l_ifc_read_status

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 165
R01AN6335EJ0100

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Channel name: LIN_CHANNEL0

- Status mask bit: LD_MASK_ERROR_IN_RESPONSE, LD_MASK_SUCCESSFUL_TRANSFER

*/

status = l_ifc_read_status(LIN_CHANNEL0);

mask = LD_MASK_ERROR_IN_RESPONSE | LD_MASK_SUCCESSFUL_TRANSFER;

if(status& mask) == mask)

 {

/* Detection error and succeeded, in this case, it is though that the transfer is intermittently done. */

}

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 166
R01AN6335EJ0100

9. 3. 9 [Master] Node Configuration

The functions of node configuration are described from next page.

Table 9-11. List of Node Configuration (Master)

Function Name Description

ld_is_ready Node configuration ready

ld_check_response Node configuration check

ld_assign_frame_id_range PID allocation

ld_read_by_id ID reading

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 167
R01AN6335EJ0100

[General]

 The reception state of the diagnostic command is checked.

[C language code format]

 l_u8 ld_is_ready (l_ifc_handle iii) ;

[Parameters]

I/O Parameter Description

I l_ifc_handle iii Interface name (channel number)

[Description]

This function returns LD_SERVICE_IDLE when a diagnostic command (ld_assign_frame_id_range,

ld_read_by_id, l_ifc_goto_sleep) for the specified LIN interface is executable. Also, when this function

returns LD_SERVICE_IDLE, the result of the previous diagnostic command takes effect.

 No other node configuration function should be called until this function returns LD_SERVICE_IDLE.

[Return value]

Error code Value Designation

LD_SERVICE_IDLE 0 Diagnostic commands can be accepted.

LD_SERVICE_BUSY 1 From service start to completion of master request transmission.

LD_REQUEST_FINISHED 2 From master request transmission completion to slave response

reception completion.

LD_SERVICE_ERROR 3 An error occurs on the bus.

[Caution]

 - Use this function after issuing the l_sys_init function.

- To transmit go-to-sleep-command as master request frame, the l_ifc_goto_sleep function is included in

the diagnostic command.

 - Do not specify the interface name excluding “LIN_CHANNEL0” if don’t use multi-channel function.

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Channel name: LIN_CHANNEL0

*/

/* ld_assign_frame_id is transmission after it is confirmed that diagnostic command can be acceptance. */

if(ld_is_ready (LIN_CHANNEL0) == LD_SERVICE_IDLE)

{

 ld_assign_frame_id_range (LIN_CHANNEL0, u1tNad, u1tStartIndex, (u1*)&pids[0]);

}

ld_is_ready

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 168
R01AN6335EJ0100

[General]

 The result of diagnostic command is checked.

[C language code format]

 void ld_check_response(l_ifc_handle iii, l_u8* RSID, l_u8* error_code)

[Parameters]

I/O Parameter Description

I l_ifc_handle iii Interface name (channel number)

O l_u8* RSID RSID received at the last time

O l_u8* error_code Detailed information in error

[Description]

 This function returns the result of the last diagnostic command that supports the slave response frame

issued for the specified LIN interface with RSID and error_code. The error code list is as follows. The

error_code is effective when the return value of the function is LD_ERR_NEGRESPONSE.

Table 9-12. Error Code List

Macro Name Value Designation

LD_ERR_NOERROR 0x00 No error

LD_ERR_NEGRESPONSE 0x01 Slave response frame is negative response

LD_ERR_SRFERROR 0x02 PDU in the slave response frame is illegal

 Result of transmit the diagnostic command, even if this function is called when the slave node does not

respond (when you do not return the response) , the value is set in RSID and error_code. In this case, set

value is RSID and error_code set at the last time. Moreover, the return value is same with last issued one.

[Caution]

- Use this function after issuing the l_sys_init function.

- Do not specify the interface name excluding “LIN_CHANNEL0” if don’t use multi-channel function.

- In this version, the diagnostic commands that support slave response frames are ld_read_by_id and

ld_assign_frame_id_range. Refer to the RSID and error_code values only for diagnostic result commands

that do not support slave response frames (l_ifc_goto_sleep).

ld_check_response

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 169
R01AN6335EJ0100

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Channel name: LIN_CHANNEL0

*/

l_u8 RSID;

l_u8 error_code;

/* after confirmed that diagnostic command can be an acceptance, the result of diagnostic command is acquired.

*/

if(ld_is_ready(LIN_CHANNEL0) == LD_SERVICE_IDLE)

{

 ld_check_response(LIN_CHANNEL0, &RSID, &error_code);

 }

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 170
R01AN6335EJ0100

[General]

 PID is allocated in the message buffer of the slave node.

[C language code format]

 void ld_assign_frame_id_range (l_ifc_handle iii,l_u8 NAD,l_u8 start_index,const l_u8* const PIDs)

[Parameters]

I/O Parameter Description

I l_ifc_handle iii Interface name (channel number)

I l_u8 NAD NAD value

I l_u8 start_index Index value to start rewriting the frame list

I l_8* PIDs Pointer to PID list

[Description]

 Modifies or disables the PIDs of up to four message frames of nodes with matching NADs.

 However, frames with IDs of 60~63 (0x3C~0x3F) cannot be changed.

The start index specifies the first frame to which the PID is assigned. The order of the frames depends on

the slave node. The first index in the list starts from 0.

 The set values for the PID list are as follows

Table 9-13. PID list setting value

Value Operation

Valid ID value (0 to 59) Change to the specified PID

0x00 Unassign

0xFF Maintain previous value without change

[Return value]

 None

[Caution]

 - Before this function is called, confirm LD_SERVICE_IDLE is returned by calling ld_is_ready function.

If this function is called when something except LD_SERVICE_IDLE is returned, the function call will be

ignored.

 - Do not specify the interface name excluding “LIN_CHANNEL0” if don’t use multi-channel function.

ld_assign_frame_id_range

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 171
R01AN6335EJ0100

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Channel name: LIN_CHANNEL0

*/

/* after confirmed that diagnostic command can be an acceptance, ld_assign_frame_id_range is transmitted */

if(ld_is_ready (LIN_CHANNEL0) == LD_SERVICE_IDLE)

{

 ld_assign_frame_id_range (LIN_CHANNEL0, u1tNad, u1tStartIndex, (u1*)&pids[0]);

}

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 172
R01AN6335EJ0100

[General]

 Various ID is read from the slave node.

[C language code format]

void ld_read_by_id(l_ifc_handle iii, l_u8 NAD, l_u16 supplier_id, l_u16 function_id, l_u8 id, l_u8* const

data)

[Parameters]

I/O Parameter Description

I l_ifc_handle iii Interface name (channel number)

I l_u8 NAD NAD value

I l_u16 supplier_id Supplier ID value

I l_u16 function_id Function ID value

I l_u8 id ID value

O l_u8* const data Pointer of writing data

[Description]

 The property specified with “id” of slave node to which NAD, supplier_id, and function_id are corresponding

is set in RAM area specified with data. When slave node is not supported the specified “id”, the negative

response is set.

 The relation of "writing data", id and negative response is described in CHAPTER 5 .

[Return value]

 None

[Caution]

- Before this function is called, confirm LD_SERVICE_IDLE is returned by calling ld_is_ready function.

If this function is called when anything other than LD_SERVICE_IDLE is returned, the function call will be

ignored.

- Do not specify the interface name excluding “LIN_CHANNEL0” if don’t use multi-channel function.

[Use example]

/* beforehand, it changes to the following settings with the configuration file.

- Channel name: LIN_CHANNEL0

*/

/* after confirmed that diagnostic command can be an acceptance, ld_read_by_id is transmitted. */

if(ld_is_ready (LIN_CHANNEL0) == LD_SERVICE_IDLE)

{

 ld_assign_frame_id_range (LIN_CHANNEL0, 0, 0xA6, 0xE7, 0xA8, 0xE9);
}

ld_read_by_id

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 173
R01AN6335EJ0100

9. 3. 10 [Master] User provided call-outs

The functions of call-out are described from next page.

Table 9-14. List of User provided call-outs (Master)

Function Name Description

l_sys_irq_disable Interrupt prohibition setting

l_sys_irq_restore Interrupt reintegration setting

l_sys_call_wake_up Wake up start

l_sys_call_fatal_error Resolve fatal error

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 174
R01AN6335EJ0100

[General]

 The interrupt is prohibited.

[C language code format]

 l_irqmask l_sys_irq_disable(void)

[Parameters]

 None

[Description]

 This function is a call-outs function to prohibit interrupt.

 DI is executed, and current interrupt is returned. The return value is the PSW value for the CC-RL edition,

and the value returned by the IAR intrinsic function __get_interrupt_state for the IAR edition.

[Return value]

I/O Value Designation

- [CC-RL]

Interrupt status bit of PSW

[IAR]

Global interrupt state

-

[Caution]

- Because of this is call-outs function, it is possible to change, but you don’t need to modify the Smart

Configurator code. (See "5. 2. 7 User-defined callouts implementation")

[Use example]

 - It is automatically called. Don’t modify from the provided code in sample.

l_sys_irq_disable

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 175
R01AN6335EJ0100

[General]

 It returns the state of the interrupt.

[C language code format]

 void l_sys_irq_restore(l_irqmask previous)

[Parameters]

I/O Parameter Description

I l_irqmask previous Return value of last l_sys_irq_disable().

([CC-RL] Interrupt status bit of PSW,

 [IAR] Global interrupt state)

[Description]

 This function is a call-outs function to return the interrupt state.

 In default, it set to EI when “previous” is interrupt enable (“0x80”), and besides, it set to DI for the CC-RL

edition. For the IAR edition, it restores the interrupt state specified by “previous”.

[Return value]

 None

[Caution]

- Because of this is call-outs function, it is possible to change, but you don’t need to modify the Smart

Configurator code. (See "5. 2. 7 User-defined callouts implementation")

[Use example]

 - It is automatically called. Don’t modify the provided code in sample.

l_sys_irq_restore

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 176
R01AN6335EJ0100

[General]

 It is called immediately after reception of wake up.

 It is original enhanced function of this driver.

[C language code format]

 void l_sys_call_wake_up(l_ifc_handle iii)

[Parameters]

I/O Parameter Description

I l_ifc_handle iii Interface name (channel number)

[Description]

 This function is call-out function when the LIN 2.1 software driver receives wake up.

[Return value]

 None

[Caution]

 - This function need not necessarily be mounted. When not using it, make it empty. In the code provided by

the Smart Configurator, it is an empty function. (See "5. 2. 7 User-defined callouts implementation")

[Use example]

 - It is automatically called. It is not necessary to use it in the application.

l_sys_call_wake_up

RLIN3 Module Software Integration System CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)

RLIN3 Module Software Integration System Rev 1.00 177
R01AN6335EJ0100

[General]

 It is called by LIN driver when an error related for hardware of this node is detected.

 It is original enhanced function of this driver.

[C language code format]

 void l_sys_call_fatal_error(l_ifc_handle iii)

[Parameters]

I/O Parameter Description

I l_ifc_handle iii Interface name (channel number)

[Description]

This function is called out from the LIN 2.1 software driver to notify user when LIN driver detects an error

can’t be resolved by driver.

At this calling, LIN driver is disconnected from LIN bus and RAM is initialized.

Application should call l_ifc_init API in this function in order to re-connect to bus. If l_ifc_init is failed,

application should retry.

[Return value]

 None

[Caution]

 The code for this function provided by the Smart Configurator does not take any action if the l_ifc_init function

fails, so add a retry if necessary. (See "5. 2. 7 User-defined callouts implementation")

[Use example]

 - It is automatically called. It is not necessary to use it in the application.

l_sys_call_fatal_error

RLIN3 Module Software Integration System CHAPTER 10 Example of LIN description file (LDF) description

RLIN3 Module Software Integration System Rev 1.00 178
R01AN6335EJ0100

CHAPTER 10 Example of LIN description file (LDF) description

The LIN Description File (LDF) is a standard format for defining LIN networks.

LDF defines information necessary for LIN communication, such as global definitions, node definitions, signal

definitions, frame definitions, and schedule definitions.

An example of LDF description is shown below.

In this example, a description example is shown for each category, but in reality, they are all defined in a

single file.

Category Example description

Global information definition

(LIN protocol version, communication speed, etc.)

LIN_description_file;

LIN_protocol_version = "2.1";

LIN_language_version = "2.1";

LIN_speed = 9.6 kbps;

Node definition

(node name, time base, etc.)

Nodes {

 Master: LIN_Master, 10 ms, 0.2 ms ;

 Slaves: LIN_Slave ;

}

Signal definition

(signal name, size, initial value, sending/receiving

node, etc.)

Signals {

 Sample_PublishSig1: 10, 0, LIN_Master, LIN_Slave ;

 Sample_PublishSig2: 3, 0, LIN_Master, LIN_Slave ;

 Sample_PublishSig3: 3, 0, LIN_Master, LIN_Slave ;

 Sample_SubscribeSig1: 10, 0, LIN_Slave,

LIN_Master ;

 Sample_SubscribeSig2: 3, 0, LIN_Slave,

LIN_Master ;

 Sample_SubscribeSig3: 2, 0, LIN_Slave,

LIN_Master ;

 RsErr: 1, 0, LIN_Slave, LIN_Master ;

}

RLIN3 Module Software Integration System CHAPTER 10 Example of LIN description file (LDF) description

RLIN3 Module Software Integration System Rev 1.00 179
R01AN6335EJ0100

Category Example description

Diagnostic signal definition Diagnostic_signals {

 MasterReqB0: 8, 0 ;

 MasterReqB1: 8, 0 ;

 MasterReqB2: 8, 0 ;

 MasterReqB3: 8, 0 ;

 MasterReqB4: 8, 0 ;

 MasterReqB5: 8, 0 ;

 MasterReqB6: 8, 0 ;

 MasterReqB7: 8, 0 ;

 SlaveRespB0: 8, 0 ;

 SlaveRespB1: 8, 0 ;

 SlaveRespB2: 8, 0 ;

 SlaveRespB3: 8, 0 ;

 SlaveRespB4: 8, 0 ;

 SlaveRespB5: 8, 0 ;

 SlaveRespB6: 8, 0 ;

 SlaveRespB7: 8, 0 ;

}

Frame definition

(Frame name, ID, size, signal name, etc.)

Frames {

 Sample_Frame1: 10, LIN_Master, 8 {

 Sample_PublishSig1, 0 ;

 Sample_PublishSig2, 16 ;

 Sample_PublishSig3, 24 ;

 }

 Sample_Frame2: 20, LIN_Slave, 8 {

 Sample_SubscribeSig1, 0 ;

 Sample_SubscribeSig2, 10 ;

 Sample_SubscribeSig3, 16 ;

 RsErr, 63 ;

 }

}

RLIN3 Module Software Integration System CHAPTER 10 Example of LIN description file (LDF) description

RLIN3 Module Software Integration System Rev 1.00 180
R01AN6335EJ0100

Category Example description

Diagnostic Frame Definition Diagnostic_frames {

 MasterReq: 0x3c {

 MasterReqB0, 0 ;

 MasterReqB1, 8 ;

 MasterReqB2, 16 ;

 MasterReqB3, 24 ;

 MasterReqB4, 32 ;

 MasterReqB5, 40 ;

 MasterReqB6, 48 ;

 MasterReqB7, 56 ;

 }

 SlaveResp: 0x3d {

 SlaveRespB0, 0 ;

 SlaveRespB1, 8 ;

 SlaveRespB2, 16 ;

 SlaveRespB3, 24 ;

 SlaveRespB4, 32 ;

 SlaveRespB5, 40 ;

 SlaveRespB6, 48 ;

 SlaveRespB7, 56 ;

 }

}

Node attribute definition

(LIN protocol version, product identification

number, etc.)

Node_attributes {

 LIN_Slave{

 LIN_protocol = "2.1" ;

 configured_NAD = 0xA ;

 initial_NAD = 0xA ;

 product_id = 0x6E, 0x3039, 0 ;

 response_error = RsErr ;

 P2_min = 50 ms ;

 ST_min = 0 ms ;

 N_As_timeout = 1000 ms ;

 N_Cr_timeout = 1000 ms ;

 configurable_frames {

 Sample_Frame1 ;

 Sample_Frame2 ;

 }

 }

}

RLIN3 Module Software Integration System CHAPTER 10 Example of LIN description file (LDF) description

RLIN3 Module Software Integration System Rev 1.00 181
R01AN6335EJ0100

Category Example description

Schedule table definition

(schedule table name, frame name, transmission

interval, etc.)

Schedule_tables {

 Master_Req {

 MasterReq delay 20 ms ;

 }

 Slave_Resp {

 SlaveResp delay 20 ms ;

 }

 Normal_1 {

 Sample_Frame1 delay 20 ms ;

 }

}

RLIN3 Module Software Integration System APPENDIX REVISION HISTORY

RLIN3 Module Software Integration System Rev 1.00 182
R01AN6335EJ0100

APPENDIX REVISION HISTORY

Edition Description Chapter

Rev.1.00 Created based on LIN 2.0, 2.1 SOFTWARE DRIVER User’s Manual

Rev.4.80
All

 Preliminary User’s Manual

Publication Date: Aplil 20, 2022 Rev 1.00

Published by: Renesas Electronics Corporation

LIN 2.1 SOFTWARE DRIVER

 for RL78/F23, F24

	INTRODUCTION
	CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1 PRODUCT OVERVIEW
	1. 1 General
	1. 2 Features
	1. 2. 1 High portability
	1. 2. 2 Provision of Configuration tool

	1. 3 Types of LIN Software Driver
	1. 4 Execution Environment
	1. 4. 1 Target CPU
	1. 4. 2 Memory usage
	1. 4. 3 Hardware resources

	1. 5 Development Environment
	1. 6 Restrictions
	1. 6. 1 Clock and baud rate setting
	1. 6. 2 Restrictions regarding interrupt
	1. 6. 3 Other restrictions

	CHAPTER 2 INSTALLATION
	2. 1 General
	2. 2 Installation Steps
	2. 1. 1 Installation of LIN Configurator

	CHAPTER 3 SYSTEM BUILD OVERVIEW
	3. 1 Position of LIN 2.1 Software driver
	3. 2 Creating the LIN System
	3. 2. 1 File generation by LIN Configurator
	3. 2. 2 User applications
	3. 2. 3 Build

	CHAPTER 4 Linkage to Smart Configurator
	4. 1 Operating procedure
	4. 2 Configuration value
	4. 2. 1 Configuration for LIN Configurator
	4. 2. 2 Configuration for LIN driver

	CHAPTER 5 HOW TO BUILD LIN APPLICATION
	5. 1 Build driver library
	5. 1. 1 Compiler options for library
	5. 1. 2 Edit of confmlin_opt.h (for Master)
	5. 1. 3 Edit of confslin_opt.h (for Slave)
	5. 1. 4 Specify the IAR I/O header file

	5. 2 Create LIN application code
	5. 2. 1 Creation of development environment project file
	5. 2. 2 Craation of channel-only source code
	5. 2. 3 Peripheral hardware processing implementation
	5. 2. 4 Describe compiler options (conflin_x.h)
	5. 2. 5 Edit public constants (conflin_x.c)
	5. 2. 6 Scheduler implementation (only master)
	5. 2. 7 User-defined callouts implementation
	5. 2. 8 Use Section Setting
	(1) Use section for CC-RL
	(2) User section for IAR

	CHAPTER 6 LIN CONFIGURATOR
	6. 1 General
	6. 1. 1 Features
	6. 1. 2 Execution Environment
	6. 1. 3 Output Folder

	6. 2 File Generation Steps
	6. 2. 1 Start Up of LIN Configurator
	6. 2. 2 Start a New Configuration
	6. 2. 3 Device selection
	6. 2. 4 Channel configuration
	6. 2. 5 Baud rate configuration
	6. 2. 6 Message management
	6. 2. 7 Schedule management
	6. 2. 8 Node configuration
	6. 2. 9 Other configurations
	6. 2. 10 Save / Load setting file
	6. 2. 11 Generate source code

	6. 3 Error message list
	6. 4 Warning message list

	CHAPTER 7 LIN 2.1 SOFTWARE DRIVER OVERVIEW
	7. 1 Signal Types (Master/Slave)
	7. 2 Frame Format (Master/Slave)
	7. 2. 1 Byte Field
	7. 2. 2 Break Field
	7. 2. 3 Frame Length

	7. 3 Frame Transfer (Master/Slave)
	7. 3. 1 Unconditional Frame Transfer
	7. 3. 2 Event Trigger Frame Transfer
	7. 3. 3 Sporadic Frame Transfer

	7. 4 Response Error Notify Function (Master/Slave)
	7. 5 Sleep and Wakeup Function (Master/Slave)
	7. 5. 1 Sleep Function
	7. 5. 2 Wake up Function

	7. 6 Node Configuration Function (Master/Slave)
	7. 6. 1 Node Information
	7. 6. 2 Node Configuration

	7. 7 Scheduling Function (Master)
	7. 7. 1 Schedule Transition (l_sch_tick)
	7. 7. 2 Schedule Switching (l_sch_set)

	7. 8 Auto Baud Rate Detecting Function (Option) (Slave)
	7. 9 Driver configuration
	7. 9. 1 Slave driver configuration
	7. 9. 2 Master driver configuration

	CHAPTER 8 LIN 2.1 SOFTWARE DRIVER FUNCTION (SLAVE)
	8. 1 LIN 2.1 Software Slave Driver Function List
	8. 2 Data types (Slave)
	8. 3 Description of LIN 2.1 Software Slave Driver Function
	8. 3. 1 [Slave] LIN 2.1 Software Driver and Cluster Management
	8. 3. 2 [Slave] Scalar Signal Read
	8. 3. 3 [Slave] Scalar Signal Write
	8. 3. 4 [Slave] Byte Array Read
	8. 3. 5 [Slave] Byte Array Write
	8. 3. 6 [Slave] Notification
	8. 3. 7 [Slave] Interface Management
	8. 3. 8 [Slave] User provided call-outs

	CHAPTER 9 LIN 2.1 SOFTWARE DRIVER FUNCTION (MASTER)
	9. 1 LIN 2.1 Software Master Driver Function List
	9. 2 Data types (Master)
	9. 3 Description of LIN 2.1 Software Master Driver Function
	9. 3. 1 [Master] LIN 2.1 Software Driver and Cluster Management
	9. 3. 2 [Master] Scalar Signal Read
	9. 3. 3 [Master] Scalar Signal Write
	9. 3. 4 [Master] Byte Array Read
	9. 3. 5 [Master] Byte Array Write
	9. 3. 6 [Master] Notification
	9. 3. 7 [Master] Schedule Management
	9. 3. 8 [Master] Interface Management
	9. 3. 9 [Master] Node Configuration
	9. 3. 10 [Master] User provided call-outs

	CHAPTER 10 Example of LIN description file (LDF) description
	APPENDIX REVISION HISTORY

