
 APPLICATION NOTE

R01AN3022EJ0110 Rev. 1.10 Page 1 of 53

June 01, 2016

RL78/G12
Self-Programming (Received Data via UART) CC-RL

Introduction

This application note gives the outline of flash memory reprogramming using a self-programming technique. In this
application note, flash memory is reprogrammed using the flash memory self-programming library Type01.

The sample program described in this application note limits the target of reprogramming to a part of the code flash
memory (addresses 0x3BFC to 0x3BFF) and uses the other part of the code flash memory as a data area. For details on
the procedures for performing self-programming and for reprogramming the entire area of code flash memory, refer to
RL78/G13 Microcontroller Flash Memory Self-Programming Execution (R01AN0718E) Application Note.

Target Device

RL78/G12

When applying the sample program covered in this application note to another microcomputer, modify the program
according to the specifications for the target microcomputer and conduct an extensive evaluation of the modified
program.

R01AN3022EJ0110
Rev. 1.10

June 01, 2016

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 2 of 53

June 01, 2016

Contents

1. Specifications .. 4
1.1 Outline of the Flash Memory Self-Programming Library ... 4
1.2 Code Flash Memory ... 5
1.3 Flash Memory Self-Programming ... 6
1.3.1 Flash Memory Reprogramming .. 7

1.4 How to Get the Flash Memory Self-Programming Library... 8

2. Operation Check Conditions ... 8

3. Related Application Notes .. 9

4. Description of the Hardware ... 10
4.1 Hardware Configuration Example ... 10
4.2 List of Pins to be Used ... 11

5. Description of the Software .. 12
5.1 Communication Specifications .. 12
5.1.1 START Command ... 12
5.1.2 WRITE Command ... 12
5.1.3 END Command ... 12
5.1.4 Communication Sequence .. 13

5.2 Operation Outline .. 14
5.3 File Configuration .. 16
5.4 List of Option Byte Settings .. 17
5.5 Link Option ... 18
5.6 List of Constants .. 19
5.7 List of Variables .. 19
5.8 List of Functions .. 20
5.9 Function Specifications .. 21
5.10 Flowcharts .. 26
5.10.1 Initialization Function .. 27
5.10.2 System Initialization Function... 28
5.10.3 I/O Port Setup ... 29
5.10.4 CPU Clock Setup ... 30
5.10.5 SAU0 Setup .. 31
5.10.6 UART0 Setup .. 32
5.10.7 TAU0 Setup .. 35
5.10.8 Main Processing .. 36
5.10.9 Main initializes settings .. 38
5.10.10 Starting the UART0 ... 39
5.10.11 UART0 Receive End Interrupt .. 40
5.10.12 UART0 Receive Error Interrupt .. 40
5.10.13 Starting to Flash the LED ... 41
5.10.14 Starting the TAU0 Channel 0 .. 41
5.10.15 TAU0 Channel 0 Interrupt .. 42
5.10.16 Data Reception via UART0 .. 43
5.10.17 Clearing the UART0 Receive Interrupt Flag ... 45
5.10.18 Stopping the TAU0 Channel 0 .. 45
5.10.19 Receive Packet Analysis ... 46

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 3 of 53

June 01, 2016

5.10.20 Flash Memory Self-Programming Execution .. 47
5.10.21 Flash Memory Self-Programming Initialization .. 48
5.10.22 Flash Memory Reprogramming Execution ... 49
5.10.23 Data Transmission via UART0 ... 52

6. Sample Code ... 53

7. Documents for Reference ... 53

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 4 of 53

June 01, 2016

1. Specifications

This application note explains a sample program that performs flash memory reprogramming using a self-programming
library.

The sample program reads values from the code flash memory area ranging from addresses 0x3BFC to 0x3BFF and
sets the flashing period of the LEDs. Subsequently, the sample program receives data (4 bytes) from the sending side
and carries out self-programming to rewrite the values stored in the code flash memory addresses 0x3BFC to 0x3BFF
with the received data. When the rewrite is completed, the sample program reads values from the code flash memory
addresses 0x3BFC to 0x3BFF again and resets the flashing period of the LEDs with the read value.

Table 1.1 lists the peripheral functions to be used and their uses.

Table 1.1 Peripheral Functions to be Used and their Uses

Peripheral Function Use

Channel 0 of serial array unit 0 Receives data via UART.

Channel 1 of serial array unit 0 Sends data via UART.

Port I/O Turns on and off the LEDs.

1.1 Outline of the Flash Memory Self-Programming Library
The flash memory self-programming library is a software product that is used to reprogram the data in the code flash
memory using the firmware installed on the RL78 microcontroller.

The contents of the code flash memory can be reprogrammed by calling the flash memory self-programming library
from a user program.

To do flash memory self-programming, it is necessary for the user program to perform initialization for flash memory
self -programming and to execute the C or assembler functions that correspond to the library functions to be used.

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 5 of 53

June 01, 2016

1.2 Code Flash Memory
The configuration of the RL78/G12 (R5F1026A) code flash memory is shown below.

Figure 1.1 Code Flash Memory Configuration

Vector table area
128 bytes

CALLT table area
64 bytes

Option byte area
4 bytes

On-chip debug security ID area
10 bytes

Program area

00000H

0007FH

00080H

000BFH
000C0H

000C3H

000C4H

000CDH

000CEH

03FFFH

Boot
cluster 0

00FFFH

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 6 of 53

June 01, 2016

The features of the RL78/G12 code flash memory are summarized below.

Table 1.2 Features of the Code Flash Memory

Item Description

Minimum unit of erasure and
verification

1 block (1024 bytes)

Minimum programming unit 1 word (4 bytes)

Security functions

Block erasure, programming, and boot area reprogramming protection are
supported.

(They are enabled at shipment)

Security settings programmable using the flash memory self-programming library

Note: The boot area reprogramming protection setting and the security settings are disabled during flash memory
self-programming.

1.3 Flash Memory Self-Programming
The RL78/G12 is provided with a library for flash memory self-programming. Flash memory self-programming is
accomplished by calling functions of the flash memory self-programming library from the reprogramming program.

The flash memory self-programming library for the RL78/G12 controls flash memory reprogramming using a
sequencer (a dedicated circuit for controlling flash memory). The code flash memory cannot be referenced while
control by the sequencer is in progress. When the user program needs to be run while the sequencer control is in
progress, therefore, it is necessary to relocate part of the segments for the flash memory self-programming library and
the reprogramming program in RAM when erasing or reprogramming the code flash memory or making settings for the
security flags. If there is no need to run the user program while the sequencer control is in progress, it is possible to
keep the flash memory self-programming library and reprogramming program on ROM (code flash memory) for
execution.

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 7 of 53

June 01, 2016

1.3.1 Flash Memory Reprogramming
The RL78/G12 does not have the boot swap function. When reprogramming, using the flash memory self-programming
function, of the area where vector table data, the basic functions of the program, and flash memory self-programming
library are allocated fails due to a temporary power blackout or a reset caused by an external factor, the data that is
being reprogrammed will be corrupted, as the result of which the restarting of the user program or reprogramming
cannot be accomplished when a reset is subsequently performed.

This subsection describes the outline image of reprogramming using the flash memory self-programming technique.
The program that performs flash memory self-programming is placed in boot cluster 0.

The sample program described in this application note limits the target of reprogramming to a part of the code flash
memory (addresses 0x3BFC to 0x3BFF) and uses the other part of the code flash memory as a data area. For details on
the procedures for perform self-programming and for reprogramming the entire area of code flash memory, refer to
RL78/G13 Microcontroller Flash Memory Self-Programming Execution (R01AN0718E) Application Note.

Figure 1.2 Outline of Flash Memory Reprogramming

Boot program Boot cluster 0

User program

(1) Erasing the block to be reprogrammed

00000H

00FFFH
01000H

03FFFH

Erase

Boot program Boot cluster 0

User program

(2) Writing and verifying the block to be reprogrammed

00000H

00FFFH

03FFFH

Write

(3) Repeat the cycle of erasing, writing, and verifying the block up to the last block.

Boot program Boot cluster 0

New user program

00000H

00FFFH

01000H

03FFFH

01000H

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 8 of 53

June 01, 2016

1.4 How to Get the Flash Memory Self-Programming Library
Before compiling the sample program, please download the latest flash self-programming library and copy the library
files to the following folder below “r01an3022_flash”.

 incrl78 folder : fsl.h, fsl.inc, fsl_types.h

 librl78 folder : fsl.lib

The flash memory self-programming library is available on the Renesas Electronics Website.

Please contact your local Renesas Electronics sales office or distributor for more information.

2. Operation Check Conditions

The sample code contained in this application note has been checked under the conditions listed in the table below.

Table 2.1 Operation Check Conditions

Item Description

Microcontroller used RL78/G12 (R5F1026A)

Operating frequency  High-speed on-chip oscillator (HOCO) clock: 24 MHz

 CPU/peripheral hardware clock: 24 MHz

Operating voltage 5.0 V (Operation is possible over a voltage range of 2.9 V to 5.5 V.)

LVD operation (VLVD): Reset mode which uses 2.81 V (2.76 V to 2.87
V)

Integrated development environment(CS+) CS+ for CC V3.03.00 from Renesas Electronics Corp.

C compiler(CS+) CC-RL V1.02.00 from Renesas Electronics Corp.

Integrated development environment(e2studio) e2studio V4.0.2.008 from Renesas Electronics Corp.

C compiler(e2studio) CC-RL V1.02.00 from Renesas Electronics Corp.

Board to be used RL78/G12 target board (QB-R5F1026A-TB)

Flash memory self-programming library for
CC-RL compiler(Type, Ver)

FSLRL78 Type01, Ver2.21 Note

Note: Use and evaluate the latest version.

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 9 of 53

June 01, 2016

3. Related Application Notes

The application notes that are related to this application note are listed below for reference.

 RL78/G12 Initialization (R01AN2582E) Application Note


RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 10 of 53

June 01, 2016

4. Description of the Hardware

4.1 Hardware Configuration Example
Figure 4.1 shows an example of the hardware configuration used for this application note.

RL78/G12

VDD

VDD

VSS

P40/TOOL0For on-chip debugger

P13

VDD

P14

VDD

LED1 LED2

P12/TxD0

P11/RxD0 Sending side
(sending reprogramming

data)

QB-R5F1026A-TB

Figure 4.1 Hardware Configuration

Cautions: 1. The purpose of this circuit is only to provide the connection outline and the circuit is simplified
accordingly. When designing and implementing an actual circuit, provide proper pin treatment and
make sure that the hardware's electrical specifications are met (connect the input-only ports separately
to VDD or VSS via a resistor).

 2. VDD must be held at not lower than the reset release voltage (VLVD) that is specified as LVD.

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 11 of 53

June 01, 2016

4.2 List of Pins to be Used
Table 4.1 lists pins to be used and their functions.

Table 4.1 Pins to be Used and their Functions

Pin Name I/O Description

P11/ANI17/SI00/RxD0/SDA00/TOOLRxD Input UART serial data receive pin

P12/ANI18/SO00/TxD0/TOOLTxD Output UART serial data transmit pin

P13 Output LED1 on/off control

P14 Output LED2 on/off control

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 12 of 53

June 01, 2016

5. Description of the Software

5.1 Communication Specifications
The sample program covered in this application note receives reprogramming data via the UART bus for flash memory
self-programming. The sending side sends three commands, i.e., the START, WRITE, and END commands. The
sample program takes actions according to the command it received, and, if the command terminates normally, returns
a normal response (0x01). If the command terminates abnormally, the sample program returns no response, turns on
LED1 and LED2, and suppresses the execution of the subsequent operations. This section describes the necessary
UART communication settings and the specifications for the commands.

Table 5.1 UART Communication Settings

Data length [bits] 8

Data transfer direction LSB first

Parity setting No parity

Transfer rate [bps] 115200

5.1.1 START Command
When the sample program receives the START command, it performs initialization for flash memory
self-programming. When the command terminates normally, the program returns a normal response (0x01) to the
sending side. In the case of an abnormal termination, the sample program returns no response, turns on LED1 and
LED2, and suppresses the execution of the subsequent operations.

5.1.2 WRITE Command
When the sample program receives the WRITE command, it writes the data it received into flash memory. The sample
program returns a normal response (0x01) on normal termination of the command. In the case of an abnormal
termination, the sample program returns no response, turns on LED1 and LED2, and suppresses the execution of the
subsequent operations.

5.1.3 END Command
When the sample program receives the END command, it performs verify processing on the block that is currently
being written. If the verification terminates abnormally, the program turns on LED1 and LED2 and suppresses the
execution of the subsequent operations. When the sample program receives the END command, it returns no response
to the sending side regardless of whether the command terminates normally or abnormally.

* The checksum is the sum of the command and data fields in units of bytes.

START code
(0x01)

Data length
(0x0002)

Command
(0x02)

Data
(None)

Checksum
(1 byte)

START code
(0x01)

Data length
(0x0006)

Command
(0x03)

Data
(4 bytes)

Checksum
(1 byte)

START code
(0x01)

Data length
(0x0002)

Command
(0x04)

Data
(None)

Checksum
(1 byte)

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 13 of 53

June 01, 2016

5.1.4 Communication Sequence
This sample program takes actions according to the sequence described below upon receipt of a command from the
sending side.

(1) Sending side:
Sends a START command.

(2) Sample program:

Turns on LED2 to indicate that flash memory is being accessed. The program then performs initialization for flash
memory self-programming. The program returns a response (0x01) on normal termination of the initialization
processing.

(3) Sending side:

Sends a WRITE command and data (4 bytes).

(4) Sample program:

Writes the received data (4 bytes) into program flash memory addresses 0x3BFC to 0x3BFF and returns a response
(0x01) on normal termination of the initialization processing.

(5) Sending side:

Sends an END command.

(6) Sample program:

Performs verify processing on the block that is currently subjected to reprogramming and turns off LED2 to indicate
that flash memory is not being accessed.

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 14 of 53

June 01, 2016

5.2 Operation Outline
This application note explains a sample program that performs flash memory reprogramming using a self-programming
library.

The sample program reads values from the code flash memory addresses 0x3BFC to 0x3BFF and sets the flashing
interval of LED1 with the read value. Subsequently, the program receives data (4 bytes) from the sending side and
carries out self-programming to rewrite the values that are stored in code flash memory addresses 0x3BFC to 0x3BFF
with the received data. When reprogramming is completed, the sample program reads again the values that are stored in
code flash memory addresses 0x3BFC to 0x3BFF and sets the flashing interval of LED1 with the read value.

LED1 flashes at the interval that is equal to the average value of the data (4 bytes) received from the sending side (sum
of byte values stored in code flash memory addresses 0x3BFC to 0x3BFF divided by 4)  10 [ms]. For example, if
address 0x3BFC contains a value of "15," address 0x3BFD contains "150," address 0x3BFE contains "100," and
address 0x3BFF contains "200," according to the calculation (15 + 150 + 100 + 200) / 4 * 10 = 1162.5, LED1 flashes at
intervals of 1162.5 [ms].

LED2 indicates that flash memory is being accessed when it is on.

(1) Sets up the I/O port.

<Setting conditions>
 LED on/off control ports (LED1 and LED2): Sets P13 and P14 for output.

(2) Initializes the SAU0 channels 0 and 1.

<Setting conditions>
 Uses the SAU0 channels 0 and 1 as UART.
 Uses the P12/TxD0 pin for data output and the P11/RxD0 pin for data input.
 Sets the data length to 8 bits.
 Sets the order of data transfer mode to LSB first.
 Sets the parity setting to “No parity”.
 Sets the receive data level to standard.
 Sets the transfer rate to 115200 bps.

(3) Initializes the TAU0 channel 0.

<Setting conditions>
 Sets operation clock 0 (CK00) of the TAU0 to 23.44 [KHz], operation clock 1 (CK01) to 24 [MHz], operation

clock 2 (CK02) to 12 [MHz], and operation clock 3 (CK03) to 93.75 [KHz].
 Sets the operation clock to operation clock 0 (CK00).
 Enables only software trigger start as the start trigger.
 Sets the operation mode to the interval timer mode in which no timer interrupt occurs at the beginning of counting.

(4) Starts the UART0 and disables transmit end interrupts.

(5) Enables interrupts.

(6) Reads values from code flash memory addresses 0x3BFC to 0x3BFF, calculates an average of the values in

addresses 0x3BFC to 0x3BFF, and turns on LED1.

(7) If the read values are greater than 0, sets the interval time of the TAU0 channel 0 to the average value of

values in addresses 0x3BFC to 0x3BFF  10 [ms] and starts the TAU0 channel 0.

(8) Enters the HALT mode and waits for data from the sending side.

 Switches into the normal operation mode from the HALT mode upon a UART receive end interrupt request or a
TAU0 channel 0 interrupt request. The program enters the HALT mode again if it returns from the HALT mode
upon a TAU0 channel 0 interrupt request.

(9) Disables interrupts.

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 15 of 53

June 01, 2016

(10) Stops the TAU0 channel 0 if the read values are greater than 0.

(11) Performs initialization processing for self-programming upon receipt of a START command (0x02) from

the sending side.

 Sets P14 to the low level to turn on LED2, indicating that flash memory is being accessed.
 Calls the FSL_Init function to initialize the flash memory self-programming environment and makes the following

settings:
Voltage mode : Full-speed mode
CPU operating frequency : 24 [MHz]
Status check mode : Status check internal mode

 Calls the FSL_Open function to start flash memory self-programming (starting the flash memory environment).
 Calls the FSL_PrepareFunctions function to make available the flash memory functions (standard reprogramming

functions) that are necessary for the RAM executive.

(12) Sends a normal response (0x01) to the sending side.

(13) Receives the WRITE command (0x03) and reprogramming data (4 bytes).

(14) Computes the reprogramming target block from the write destination address.

(15) Calls the FSL_BlankCheck function to check whether the reprogramming target block has already been

reprogrammed.

(16) If the reprogramming target block is reprogrammed, calls the FSL_Erase function to erase the

reprogramming target block.

(17) Calls the FSL_Write function to write the received data at the write destination address.

(18) Sends a normal response (0x01) to the sending side.

(19) Receives an END command (0x04).

(20) Calls the FSL_IVerify function to verify the reprogramming target block.

(21) Sets P14 to the high level to turn off LED2, indicating that flash memory is not being accessed.

(22) Returns to step (5).

Caution: When flash memory self-programming could not be terminated normally (error occurring during

processing), the sample program turns on LED1 and LED2 and suppresses the execution of the subsequent
operations.

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 16 of 53

June 01, 2016

5.3 File Configuration
Table 5.2 lists the additional functions for files that are automatically generated in the integrated development
environment and other additional files.

Table 5.2 List of Additional Functions and Files

File Name Outline Remarks

r_main.c Main module Additional functions:

r_main_led_blink

r_main_clear_uart_flag

r_main_packet_analyze

r_main_self_execute

r_main_self_initialize

r_main_write_execute

r_cg_serial_user.c SAU module Additional functions:

r_uart0_receive_start

r_uart0_send_start

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 17 of 53

June 01, 2016

5.4 List of Option Byte Settings
Table 5.3 summarizes the settings of the option bytes.

Table 5.3 Option Byte Settings

Address Setting Description

000C0H/010C0H 11101111B Disables the watchdog timer.

(Stops counting after the release from the reset status.)

000C1H/010C1H 01111111B LVD reset mode 2.81 V (2.76 V to 2.87 V)

000C2H/010C2H 11100000B HS mode, HOCO: 24 MHz

000C3H/010C3H 10000100B Enables the on-chip debugger

Erases the data in the flash memory when on-chip debug security ID
authentication fails.

The option bytes of the RL78/G12 comprise the user option bytes (000C0H to 000C2H) and on-chip debug option byte
(000C3H).

The option bytes are automatically referenced and the specified settings are configured at power-on time or the reset is
released.

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 18 of 53

June 01, 2016

5.5 Link Option
The –start option, which is one of the link options, is provided for allocating the Flash Self-Programming Library
Type01 to a ROM area.

Use the –start option to specify all sections for which settings are required by the Flash Self-Programming Library
Type01.

Caution: For details on the link option procedures, refer to RL78 Compiler CC-RL User’s Manual (R20UT3123E).

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 19 of 53

June 01, 2016

5.6 List of Constants
Table 5.4 lists constants for the sample program.

Table 5.4 Constants for the Sample Program

Constant Setting Description

LED1 P1_bit.no3 LED1 control port

LED2 P1_bit.no4 LED2 control port

LED_ON 0 LED is on.

LED_OFF 1 LED is off.

NORMAL_END 0x00 Normal termination

ERROR 0xFF Abnormal termination

NO_RECIEVE 0x00 Command reception state: Not received

START_CODE 0x01 Command reception state: START code received

PACKET_SIZE 0x02 Command reception state: Data length received

START 0x02 START command

WRITE 0x03 WRITE command

END 0x04 END command

FULL_SPEED_MODE 0x00 Argument to flash memory self-programming library initialization
function: Set operation mode to full-speed mode.

FREQUENCY_24M 0x18 Argument to flash memory self-programming library initialization
function:

RL78/G12's operating frequency = 24 MHz

INTERNAL_MODE 0x01 Argument to flash memory self-programming library initialization
function: Turn on status check internal mode.

BLOCK_SIZE 0x400 One block size of code flash memory (1024 bytes)

TXSIZE 0x01 Size of response data to be sent to sending side

RXSIZE 0x06 Size of receive buffer

WRITESIZE 0x01 Write data size (words)

WRITEADDR 0x3BFC Write start address

READADDR 0x3BFC Read start address

5.7 List of Variables
Table 5.5 lists the global variables that are used in this sample program.

Table 5.5 Global Variables for the Sample Program

Type Variable Name Contents Function Used

uint8_t g_intsr_flag UART receive end interrupt flag main

r_main_clear_uart_flag

r_uart0_interrupt_receive

uint8_t g_intsre_flag UART receive error interrupt flag Main

r_main_clear_uart_flag

r_uart0_interrupt_error

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 20 of 53

June 01, 2016

5.8 List of Functions
Table 5.6 lists the functions that are used in this sample program.

Table 5.6 List of Functions

Function Name Outline

R_UART0_Start Starts UART0.

r_uart0_interrupt_receive UART0 receive end interrupt

r_uart0_interrupt_error UART0 receive error interrupt

r_main_led_blink Sets LED1 flashing interval according to read values and starts LED1
flashing.

R_TAU0_Channel0_Start Starts TAU0 channel 0.

r_tau0_channel0_interrupt TAU0 channel 0 interrupt

r_uart0_receive_start Receives data via UART0.

r_main_clear_uart_flag Clears UART0 receive end interrupt flag and UART0 receive error
interrupt flag.

R_TAU0_Channel0_Stop Stops TAU0 channel 0.

r_main_packet_analyze Analyzes receive data.

r_main_self_execute Executes flash memory self-programming.

r_main_self_initialize Executes initialization for flash memory self-programming.

r_main_write_execute Executes flash memory reprogramming.

r_uart0_send_start Sends data via UART0.

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 21 of 53

June 01, 2016

5.9 Function Specifications
This section describes the specifications for the functions that are used in the sample program.

[Function Name] R_ UART0_Start

Synopsis Start UART0.

Header r_cg_macrodriver.h
r_cg_serial.h
r_cg_userdefine.h

Declaration void R_ UART0_Start(void)

Explanation This function starts channels 0 of the serial array unit 0 and places them in communication
wait state.

Arguments None

Return value None

Remarks None

[Function Name] r_uart_interrupt_receive

Synopsis UART0 receive end interrupt

Header r_cg_macrodriver.h
r_cg_serial.h
r_cg_userdefine.h

Declaration __interrupt void r_uart_interrupt_receive(void)

Explanation This function sets the UART0 receive end interrupt flag (flag g_intsr_flag) to 1.

Arguments None

Return value None

Remarks None

[Function Name] r_uart_interrupt_error

Synopsis UART0 receive error interrupt

Header r_cg_macrodriver.h
r_cg_serial.h
r_cg_userdefine.h

Declaration __interrupt void r_uart_interrupt_error(void)

Explanation This function sets the UART0 receive error flag (flag g_intsre_flag) to 1.

Arguments None

Return value None

Remarks None

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 22 of 53

June 01, 2016

[Function Name] r_main_led_blink

Synopsis Set LED1 flashing interval according to read values and start LED1 flashing.

Header r_cg_macrodriver.h

r_cg_cgc.h

r_cg_port.h
r_cg_serial.h

r_cg_timer.h
r_cg_userdefine.h

Declaration void r_main_led_blink(float average)

Explanation This function sets the LED1 flashing interval to the value of argument average  10 [ms] and
starts flashing LED1.

Arguments average Average of values in code flash memory
addresses 0x3BFC to 0x3BFF

Return value None

Remarks None

[Function Name] R_TAU0_Channel0_Start

Synopsis Start TAU0 channel 0.

Header r_cg_macrodriver.h
r_cg_timer.h
r_cg_userdefine.h

Declaration void R_TAU0_Channel0_Start(void)

Explanation This function starts the TAU0 channel 0.

Arguments None

Return value None

Remarks None

[Function Name] r_tau0_channel0_interrupt

Synopsis TAU0 channel 0 interrupt

Header r_cg_macrodriver.h
r_cg_timer.h
r_cg_userdefine.h

Declaration __interrupt void r_tau0_channel0_interrupt(void)

Explanation This function inverts the state (ON/OFF) of LED1.

Arguments None

Return value None

Remarks None

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 23 of 53

June 01, 2016

[Function Name] r_uart0_receive_start

Synopsis Receive data via UART0.

Header r_cg_macrodriver.h
r_cg_serial.h
r_cg_userdefine.h

Declaration uint8_t r_uart0_receive_start(uint16_t *rx_length, uint8_t *rx_buf)

Explanation This function stores the receive data in the receive buffer (rx_buf) and the receive data length
[bytes] in rx_length.

Arguments rx_length Address of area for storing receive data length
[bytes]

 rx_buf Address of receive data buffer

Return value Normal termination: NORMAL_END

Abnormal termination: ERROR

Remarks None

[Function Name] r_main_clear_uart_flag

Synopsis Clear UART0 receive end interrupt flag and UART0 receive error interrupt flag.

Header r_cg_macrodriver.h

r_cg_cgc.h

r_cg_port.h
r_cg_serial.h

r_cg_timer.h
r_cg_userdefine.h

Declaration void r_main_clear_uart_flag(void)

Explanation This function clears the UART0 receive end interrupt flag (g_intsr_flag) and the UART0
receive error interrupt flag (g_intsre_flag).

Arguments None

Return value None

Remarks None

[Function Name] R_TAU0_Channel0_Stop

Synopsis Stop TAU0 channel 0.

Header r_cg_macrodriver.h
r_cg_timer.h
r_cg_userdefine.h

Declaration void R_TAU0_Channel0_Stop(void)

Explanation This function stops the TAU0 channel 0.

Arguments None

Return value None

Remarks None

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 24 of 53

June 01, 2016

[Function Name] r_main_packet_analyze

Synopsis Analyze receive data.

Header r_cg_macrodriver.h

r_cg_cgc.h

r_cg_port.h
r_cg_serial.h

r_cg_timer.h
r_cg_userdefine.h

Declaration uint8_t r_main_packet_analyze(uint16_t rx_length, uint8_t *rx_buf)

Explanation This function checks the parameters of the command received, and computes and compares
the checksum to check whether the received data is correct.

Arguments rx_length Receive data length [bytes]

 rx_buf Address of receive data buffer

Return value START command received: START

WRITE command received: WRITE

END command received: END

Command parameter error or checksum error: ERROR

Remarks None

[Function Name] r_main_self_execute

Synopsis Execute flash memory self-programming.

Header r_cg_macrodriver.h

r_cg_cgc.h

r_cg_port.h
r_cg_serial.h
r_cg_userdefine.h

fsl.h

fsl_types.h

Declaration void r_main_self_execute(void)

Explanation This function executes flash memory self-programming.

Arguments None

Return value None

Remarks None

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 25 of 53

June 01, 2016

[Function Name] r_main_self_initialize

Synopsis Execute initialization for flash memory self-programming.

Header r_cg_macrodriver.h

r_cg_cgc.h

r_cg_port.h
r_cg_serial.h
r_cg_userdefine.h

fsl.h

fsl_types.h

Declaration uint8_t r_main_self_initialize(void)

Explanation This function executes initialization prior to flash memory self-programming.

Arguments None

Return value Normal termination: FSL_OK

Parameter error: FSL_ERR_PARAMETER

Erase error: FSL_ERR_ERASE

Internal verify error: FSL_ERR_IVERIFY

Write error: FSL_ERR_WRITE
Flow error: FSL_ERR_FLOW

Remarks None

[Function Name] r_main_write_execute

Synopsis Execute flash memory reprogramming.

Header r_cg_macrodriver.h

r_cg_cgc.h

r_cg_port.h
r_cg_serial.h
r_cg_userdefine.h

fsl.h

fsl_types.h

Declaration uint8_t r_main_write_execute(uint32_t write_addr)

Explanation This function executes flash memory reprogramming.

Arguments Write_addr Write start address

Return value Normal termination: FSL_OK

Abnormal termination: ERROR

Remarks None

[Function Name] r_uart0_send_start

Synopsis Send data via UART0.

Header r_cg_macrodriver.h
r_cg_serial.h
r_cg_userdefine.h

Declaration uint8_t r_uart0_send_start(uint16_t tx_length, uint8_t *tx_buf)

Explanation This function transmits the number of data bytes specified in tx_length [bytes] from tx_buf.

Arguments tx_length Transmit data length [bytes]

 tx_buf Address of transmit data buffer

Return value Normal termination: NORMAL_END

Parameter error (txlength smaller than 0): ERROR

Remarks None

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 26 of 53

June 01, 2016

5.10 Flowcharts
Figure 5.1 shows the overall flow of the sample program described in this application note.

Figure 5.1 Overall Flow

Note: Startup routine is executed before and after the initialization function.

Start

Initialization function
hdwinit()

The option bytes are referenced before the
initialization function is called.

End

Main processing
main()

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 27 of 53

June 01, 2016

5.10.1 Initialization Function
Figure 5.2 shows the flowchart for the initialization function.

Figure 5.2 Initialization Function

hdwinit()

System initialization function
R_Systeminit()

Disable interrupts IE  0

return

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 28 of 53

June 01, 2016

5.10.2 System Initialization Function
Figure 5.3 shows the flowchart for the system initialization function.

Figure 5.3 System Initialization Function

R_Systeminit()

Set up I/O ports
R_PORT_Create()

Set up CPU clock
R_CGC_Create()

Set up peripheral I/O redirection
function

PIOR register  00H

return

Set up SAU0
R_SAU0_Create()

Set up TAU0
R_TAU0_Create()

Disabled the invalid memory
access detection

IAWCTL register  00H

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 29 of 53

June 01, 2016

5.10.3 I/O Port Setup
Figure 5.4 shows the flowchart for I/O port setup.

Figure 5.4 I/O Port Setup

Note: Refer to the section entitled "Flowcharts" in RL78/G12 Initialization (R01AN2582E) Application Note for
the configuration of the unused ports.

Caution: Provide proper treatment for unused pins so that their electrical specifications are observed. Connect each of
any unused input-only ports to VDD or VSS via a separate resistor.

R_PORT_Create()

return

Set up unused port Note

Set up P13 for output
Set up P14 for output

P13 bit  1
PM13 bit  0
P14 bit  1
PM14 bit  0

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 30 of 53

June 01, 2016

5.10.4 CPU Clock Setup
Figure 5.5 shows the flowchart for CPU clock setup.

Figure 5.5 CPU Clock Setup

Caution: For details on the procedure for setting up the CPU clock (R_CGC_Create ()), refer to the section entitled
"Flowcharts" in RL78/G12 Initialization (R01AN2582E) Application Note.

R_CGC_Create()

return

Select CPU/peripheral hardware clock
(fCLK)

Set up high-speed system clock
CMC register  00H:

High-speed system clock: Input port mode
Sub-system clock: Input port mode

MSTOP bit  1: Stop X1 oscillator circuit.

WUTMMCK0 bit  0: Stop interval timer clock.

MCM0 bit  0: Select high-speed OCO clock (fIH) as
main system clock (fMAIN).

HIOSTOP bit  0: Start high-speed on-chip oscillator.

Set up high-speed system clock

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 31 of 53

June 01, 2016

5.10.5 SAU0 Setup
Figure 5.6 shows the flowchart for SAU0 setup.

Figure 5.6 SAU0 Setup

R_SAU0_Create()

return

Supply clock signal to SAU0 SAU0EN bit  1

Set up operation of SAU0
Operation clock 0 (CK00): 24 MHz

SPS0 register  0000H

Set up UART0
R_UART0_Create()

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 32 of 53

June 01, 2016

5.10.6 UART0 Setup
Figure 5.7 shows the flowchart for UART0 setup (1/3). Figure 5.8 shows the flowchart for UART0 setup (2/3). Figure
5.9 shows the flowchart for UART0 setup (3/3).

Figure 5.7 UART0 Setup (1/3)

R_UART0_Create()

Stop channels 0 and 1 ST0 register  0003H

Disable INTST0 interrupt and clear
interrupt request flag

STMK0 bit  1
STIF0 bit  0

Disable INTSR0 interrupt and clear
interrupt request flag

SRMK0 bit  1
SRIF0 bit ← 0

Disable INTSRE0 interrupt and clear
interrupt request flag

SREMK0 bit  1
SREIF0 bit  0

Set INTST0 interrupt priority level to 3
(lowest)

STPR10 bit  1
STPR00 bit  1

Set INTSR0 interrupt priority level to 3
(lowest)

SRPR10 bit  1
SRPR00 bit  1

Set INTSRE0 interrupt priority level to 3
(lowest)

SREPR10 bit  1
SREPR00 bit  1

Set up operation mode for
SAU channel 0

 Operation clock of channel 0:

CK00

 Transfer clock of channel 0:
Divided clock of CK00

 Detection of falling edge as a start bit

 Operation mode of channel 0:
UART mode

 Interrupt source of channel 0:
Transfer end interrupt

SMR00 register  0022H

A

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 33 of 53

June 01, 2016

Figure 5.8 Setup UART0 (2/3)

A

Set up communication behavior for
SAU channel 0

 Only transmission

 Clock/data phase: Type 1

 Error interrupt (INTSREx): Masked

 No parity bit

 Transfer order: LSB first

 Stop bit length: 1 bit

 Data length: 8 bits

SCR01 register  8097H

Transfer clock of channel 0:
Divided clock of operation clock by 208

SDR02 register  CE00H

Noise filter of RxD0 pin: On NFEN0 register  01H

SIR01 register  0007H Clear error flag

Set up operation mode for
SAU channel 1

 Operation clock of channel 1:

CK00
 Transfer clock of channel 1:

Divided clock of CK00

 Start trigger:
Valid edge of RxD pin

 Detection of falling edge as a start bit

 Operation mode of channel 1:
UART mode

 Interrupt source of channel 1:
Transfer end interrupt

SMR01 register  0122H

B

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 34 of 53

June 01, 2016

Figure 5.9 Setup UART0 (3/3)

return

B

Set up communication behavior for
SAU channel 1

 Only reception

 Clock/data phase: Type 1

 Error interrupt (INTSREx): Masked

 No parity bit

 Transfer order: LSB first

 Stop bit length: 1 bit

 Data length: 8 bits

SCR01 register  4497H

Transfer clock of channel 1:
Divided clock of operation clock by 208

SDR01 register  CE00H

SO00 bit  1
SOL00 bit  0
SOE00 bit  1

Make channel 0 ready for use

PMC11 bit  0
PM11 bit  1 Set up RxD0 pin (input mode)

PMC12 bit  0
P12 bit  1
PM12 bit  0

Set up TxD0 pin (output mode)

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 35 of 53

June 01, 2016

5.10.7 TAU0 Setup
Figure 5.10 shows the flowchart for TAU0 setup.

Figure 5.10 TAU0 Setup

R_TAU0_Create()

return

Supply clock signal to TAU TAU0EN bit  1

Operation clock of TAU0
Operation clock 0 (CK00): 23.44 KHz
Operation clock 1 (CK01): 24 MHz
Operation clock 2 (CK02): 12 MHz
Operation clock 3 (CK03): 93.75 KHz

TPS0 register  000AH

Stop all TAU0 channels
TT0 register  0A0FH

Disable interrupts in all TAU0 channels

TMMK0n bit  1
TMMK01H bit  1
TMMK03H bit  1
n: 0 to 3

Clear interrupt request flags of all TAU0
channels

TMIF0n bit  1
TMIF01H bit  1
TMIF03H bit  1
n: 0 to 3

Set TAU0 channel 0 interrupt priority
level to 3 (lowest)

TMPR100 bit  1
TMPR000 bit  1

Set up operation mode for
TAU0 channel 0

 Operation clock: CK00
 Trigger: Software trigger
 Operation mode: Interval timer
 Generates no interrupt at start of

counting.

TMR00 register  0000H
TO0 register
 TO00 bit  0
TOE0 register
 TOE00 bit  0

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 36 of 53

June 01, 2016

5.10.8 Main Processing
Figure 5.11 shows the flowchart for main processing (1/2). Figure 5.12 shows the flowchart for main processing (2/2).

Figure 5.11 Main Processing (1/2)

No (Branch if g_intsr_flag is 0 and
g_intsre_flag is 0)

Yes

Start flashing LED
r_main_led_blink()

TDR00  read_data * 234.4
Start TAU0 channel 0.

Yes

No (Branch if average is 0)

LED1  LED_ON Turn on LED1

average  Average of values in addresses 0x3BFC to 0x3BFFCompute average of read values

read_data  Read values Read data from code flash memory
(addresses 0x3BFC to 0x3BFF)

IE  1 Enable interrupts

DDisable UART0 transmit end interrupt STMK0 bit  0

Start UART0
R_UART0_Start()

Main initializes setting
R_MAIN_UserInit()

IE  0

Read value greater than or equal to 1?

UART receive interrupt present?

Disable interrupts

C

Return from HALT mode on a UART
receive interrupt request or TAU0 channel
0 interrupt request.
g_intsr_flag is set to 1 on a UART receive
end interrupt and g_intsre_flag is set to 1
on a UART receive error interrupt.

main()

IE  0 Switch into HALT mode

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 37 of 53

June 01, 2016

Figure 5.12 Main Processing (2/2)

START command received?

Data reception terminated
normally?

Flash memory self-programming
successful?

Read value greater than or equal
to 1?

LED1  LED_ON
LED2  LED_ON

Yes

rx_buf  Receive data
rx_length  Receive data length
ret  NORMAL_END / ERROR

g_intsr_flag  0
g_intsre_flag  0

No (Branch if average is 0)

Yes

Yes

ret  NORMAL_END / ERROR

No (Branch if ret is not START)

ret  START / WRITE / END /
ERROR

No (Branch if ret is not START)

No (Branch if ret is not NORMAL_END)

Yes

C

Execute flash memory
self-programming

r_main_self_execute()

D

Receive data via UART0
r_uart0_receive_start()

Analyze received packet
r_main_packet_analyze()

Clear UART0 receive
interrupt flag

r_main_clear_uart_flag()

Stop TAU0 channel 0
R_TAU0_Channel0_Stop()

Turn on LED1
Turn on LED2

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 38 of 53

June 01, 2016

5.10.9 Main initializes settings
Figure 5.13 shows the flowchart for the main initializes settings.

Figure 5.13 Main initializes settings

return

IE ← 0 Disable interrupts

R_MAIN_UserInit()

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 39 of 53

June 01, 2016

5.10.10 Starting the UART0
Figure 5.14 shows the flowchart for starting the UART0.

Figure 5.14 Starting the UART0

R_UART0_Start()

return

Clear the reception interrupt
request flag

SRIF0 bit  0
SREIF0 bit  0

SO00 bit  1
SOE00 bit  1 Make channel 0 ready for use

SS0 register  0003H Start UART0

Enable transmission interrupt STIF0 bit  0

Clear the transmission interrupt
request flag

STIF0 bit  0

Enable reception interrupt
SRMK0 bit  0
SREMK0 bit  0

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 40 of 53

June 01, 2016

5.10.11 UART0 Receive End Interrupt
Figure 5.15 shows the flowchart for UART0 receive end interrupt.

Figure 5.15 UART0 Receive End Interrupt

5.10.12 UART0 Receive Error Interrupt
Figure 5.16 shows the flowchart for UART0 receive error interrupt.

Figure 5.16 UART0 Receive Error Interrupt

r_uart0_interrupt_error()

return

Set receive error interrupt flag
g_intsre_flag  1

r_uart0_interrupt_receive()

return

Set receive end interrupt flag g_intsr_flag  1

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 41 of 53

June 01, 2016

5.10.13 Starting to Flash the LED
Figure 5.17 shows the flowchart for starting to flash the LED.

Figure 5.17 Starting to Flash the LED

5.10.14 Starting the TAU0 Channel 0
Figure 5.18 shows the flowchart for starting the TAU0 channel 0.

Figure 5.18 Starting the TAU0 Channel 0

R_TAU0_Channel0_Start()

return

Clear TAU0 channel 0
interrupt request flag

TMIF00 bit  0

Enable TAU0 channel 0
interrupt

TMMK00 bit  0

Start TAU0 channel 0
TS0 register
 TS00 bit  1

r_main_led_blink()

return

Set up interval time for TAU0 channel 0
TDR00 register  Argument: read_data * 234.4

Start TAU0 channel 0
R_TAU0_Channel0_Start()

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 42 of 53

June 01, 2016

5.10.15 TAU0 Channel 0 Interrupt
Figure 5.19 shows the flowchart for TAU0 channel 0 interrupt.

Figure 5.19 TAU0 Channel 0 Interrupt

r_tau0_channel0_interrupt()

return

LED1  LED1 ^ 1
Invert LED1 state

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 43 of 53

June 01, 2016

5.10.16 Data Reception via UART0
Figure 5.20 shows the flowchart for data reception via the UART0 (1/2). Figure 5.21 shows the flowchart for data
reception via the UART0 (2/2).

Figure 5.20 Data Reception via UART0 (1/2)

R_UART0_ReceiveStart()

Read receive data rx_data  RXD0 register

Receive data present?

Yes

No (Branch if the BFF01 bit in the
SSR01 register is set to 0)

Initialize receive status rx_status  NO_RECEIVE

Receive status?

No (Branch if rx_data is not
START_CODE)

Start code received?

Yes

Change receive status

rx_status  START_CODE

E F

Set return value to normal termination ret  NORMAL_END

Branch according to value of rxstatus.

NO_RECEIVE

Initialize data length receive counter
Initialize data receive counter

len_count  0
data_count  0

Initialize receive data length Argument: *rx_length  0xFFFF G

Set return value to abnormal
termination

ret  ERROR

No error?

Yes

No (Branch if (SSR01 & 0x27) is not 0x20)

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 44 of 53

June 01, 2016

Figure 5.21 Data Reception via UART0 (2/2)

START_CODE

E

Change receive status

rx_status  PACKET_SIZE

Store receive data

len[len_count]  rx_data

PACKET_SIZE

Update pointer and counter

rx_buf++
data_count++

Store receive data

Argument: *rx_buf ← rx_data

F

default

All data bytes received?

Yes

No (Branch if data_count is not *rx_length
and ret is NORMAL_END)

G

return (ret)

Update counter

len_count++

Data length reception complete?

Yes

No (Branch if len_count is 2)

Store data length

Argument: *rx_length 
 len[0] << 8 | len[1]

Clear the reception interrupt
request flag

SRIF0 ← 0

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 45 of 53

June 01, 2016

5.10.17 Clearing the UART0 Receive Interrupt Flag
Figure 5.22 shows the flowchart for clearing the UART0 receive interrupt flag.

Figure 5.22 Clearing the UART0 Receive Interrupt Flag

5.10.18 Stopping the TAU0 Channel 0
Figure 5.23 shows the flowchart for stopping the TAU0 channel 0.

Figure 5.23 Stopping the TAU0 Channel 0

R_TAU0_Channel0_Stop()

return

Clear TAU0 channel 0 interrupt request
flag

TMIF00 bit  0

Disable TAU0 channel 0 interrupts
TMMK00 bit  1

Stop TAU0 channel 0
TT0 register
 TT00 bit  1

r_main_clear_uart_flag()

return

g_intsr_flag  0 Clear UART0 receive end interrupt flag

g_intsre_flag  0 Clear UART0 receive error interrupt flag

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 46 of 53

June 01, 2016

5.10.19 Receive Packet Analysis
Figure 5.24 shows the flowchart for receive packet analysis.

Figure 5.24 Receive Packet Analysis

R_MAIN_PacketAnalyze()

return (ret)

Initialize loop counter count  0

Initialize checksum checksum  0

Checksum computation complete?
No (Branch if argument: (rx_length – 1) != count)

Add to checksum

checksum 
checksum + rxbuf[count]

Update loop count

count++

Checksum match?

Yes

No (Branch if rx_buf[rx_length] != checksum)

Set return value to received command

ret  rx_data[0]

Yes

Received command normal?

Yes

Set return value to abnormal termination

ret  ERROR

No (Branch if rx_buf[0] is not START,
not WRITE, or not END)

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 47 of 53

June 01, 2016

5.10.20 Flash Memory Self-Programming Execution
Figure 5.25 shows the flowchart for flash memory self-programming execution.

Figure 5.25 Flash Memory Self-Programming Execution

R_MAIN_SelfExecute()

LED2  LED_ON

Flash memory
self-programming initialization

r_main_self_initialize()

ret  FSL_OK /
FSL_ERR_PARAMETER /

 FSL_ERR_ERASE /
FSL_ERR_IVERIFY /

 FSL_ERR_WRITE /
FSL_ERR_FLOW

Initialization terminated normally?
No (Branch if ret is not FSL_OK)

Execute flash memory
reprogramming

r_main_write_execute()

ret  NORMAL_END / ERROR

Turn on LED2

LED2  LED_OFF
Turn off LED2

return (ret)

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 48 of 53

June 01, 2016

5.10.21 Flash Memory Self-Programming Initialization
Figure 5.26 shows the flowchart for flash memory self-programming initialization.

Figure 5.26 Flash Memory Self-Programming Initialization

Flash memory
self-programming

environment initialization
FSL_Init()

Initialization terminated normally?

Yes

No (Branch if ret is not FSL_OK)

r_main_self_initialize()

Voltage mode: Full-speed mode
CPU operating frequency: 24 [MHz]
Status check mode:
Status check internal mode
ret  FSL_OK / FSL_ERR_PARAMETER

return (ret)

Declare start of flash memory
self-programming

FSL_Open()

Make flash memory functions
(standard reprogramming
functions) ready for use
FSL_PrepareFunctions()

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 49 of 53

June 01, 2016

5.10.22 Flash Memory Reprogramming Execution
Figure 5.27 shows the flowchart for flash memory reprogramming execution (1/3). Figure 5.28 shows the flowchart for
flash memory reprogramming execution (2/3). Figure 5.29 shows the flowchart for flash memory reprogramming
execution (3/3).

Figure 5.27 Flash Memory Reprogramming Execution (1/3)

r_main_write_execute()

J L

Receive data via UART0
r_uart0_receive_start()

Send data via UART0
r_uart0_send_start()

Send normal response (0x01).
ret  NORMAL_END / ERROR

Data transmission successful?

Yes
rx_buf  Receive data
rx_length  Receive data length
ret  NORMAL_END / ERROR

No (Branch if ret is not NORMAL_END)

Data reception successful?

Yes

No (Branch if ret is not NORMAL_END)

Compute reprogramming target block Write_block  write_addr / 0x400

Blank check on specified
block

FSL_BlankCheck()

ret  FSL_OK / FSL_ERR_PARAMETER /
 FSL_ERR_BLANKCHECK / FSL_ERR_FLOW

Blank check error OK?

Yes

No (Branch if ret is FSL_ERR_BLANKCHECK.)

Erase specified block
FSL_Erase()

ret  FSL_OK /
FSL_ERR_PARAMETER /
FSL_ERR_PROTECTION /
FSL_ERR_ERASE /
FSL_ERR_FLOW

Normal termination?

Yes

No (Branch if ret is not FLS_OK)

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 50 of 53

June 01, 2016

Figure 5.28 Flash Memory Reprogramming Execution (2/3)

J

Receive packet analysis
r_main_packet_analyze()

com  START / WRITE / END / ERROR

Write to specified address
FSL_Write()

ret  FSL_OK /
FSL_ERR_PARAMTER /
FSL_ERR_PROTECTION /
FSL_ERR_WRITE /
FSL_ERR_FLOW

Write to specified address
successful?

Yes

No (Branch if ret is not FLS_OK)

WRITE command received?

Yes

No (Branch if com is not WRITE)

K M

Send data via UART0
r_uart0_send_start()

Send normal response (0x01).
ret  NORMAL_END / ERROR

Receive data via UART0
r_uart0_receive_start()

Data transmission successful?

Yes
rx_buf  Receive data
rx_length  Receive data length
ret  NORMAL_END / ERROR

No (Branch if ret is not NORMAL_END)

Data reception successful?

Yes

No (Branch if ret is not NORMAL_END)

END command received?

Yes

No (Branch if com is not END)

Receive packet analysis
r_main_packet_analyze()

com  START / WRITE / END / ERROR

L

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 51 of 53

June 01, 2016

Figure 5.29 Flash Memory Reprogramming Execution (3/3)

K

Verify specified block
FSL_IVerify()

ret  FSL_OK / FSL_ERR_PARAMETER /
FSL_ERR_IVERIFY / FSL_ERR_FLOW

Verification successful?

Yes

No (Branch if ret is not FLS_OK)

Set return value to normal termination

ret  NORMAL_END

Set return value to abnormal termination

ret  ERROR

M

return (ret)

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 52 of 53

June 01, 2016

5.10.23 Data Transmission via UART0
Figure 5.30 shows the flowchart for data transmission via the UART0.

Figure 5.30 Data Transmission via UART0

r_uart0_send_start()

return (ret)

Data not stored in DSDR01
register?

Yes

No (Branch if the BFF01 bit in the
SSR00 register is set to 1)

Transmit data TXD0 register  Argument: *tx_buf

Update pointer and number of
transmitted data bytes

tx_buf++
Argument: tx_length--

All data bytes transmitted?

Yes

No (Branch if tx_length is not 0)

Transmitted data bytes greater
than or equal to 1?

Yes

No (Branch if argument: tx_length is not 0)

Set return value to normal termination

ret  NORMAL_END

Set return value to abnormal termination

ret  ERROR

RL78/G12 Self-Programming (Received Data via UART) CC-RL

R01AN3022EJ0110 Rev. 1.10 Page 53 of 53

June 01, 2016

6. Sample Code

The sample code is available on the Renesas Electronics Website.

7. Documents for Reference

RL78/G12 User's Manual: Hardware (R01UH0200E)

RL78 Family User's Manual: Software (R01US0015E)

RL78 family’s Flash Self Programming Library Type01 User’s Manual (R01US0050E)

 (The latest versions of the documents are available on the Renesas Electronics Website.)

Technical Updates/Technical Brochures

 (The latest versions of the documents are available on the Renesas Electronics Website.)

Website and Support

Renesas Electronics Website
 http://www.renesas.com/index.jsp

Inquiries
 http://www.renesas.com/contact/

A-1

Revision Record RL78/G12 Self-Programming (Received Data via UART) CC-RL

Rev. Date
Description

Page Summary

1.00 Oct. 20, 2015 — First edition issued

1.10 June 01, 2016 7 Modification of 1.4 How to Get the Flash Memory Self-Programming Library.

 53 Addition of Documents for Reference.

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.

⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an
unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and
pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.

⎯ When the clock signal is generated with an external resonator (or from an external oscillator)
during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.

⎯ The characteristics of an MPU or MCU in the same group but having a different part number may
differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

 Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2016 Renesas Electronics Corporation. All rights reserved.
Colophon 5.0

