
 APPLICATION NOTE 

R01AN3313EJ0111  Rev.1.11  Page 1 of 88 
Mar. 30, 2018  

RL78/G1D Beacon Stack 
Connecting and Updating Beacon Data Sample Program 
Introduction 
This Sample Program runs on Bluetooth® Low Energy microcontroller RL78/G1D device, and executes Advertising for 
providing information and executes connecting to smart phone in order to update configuration and data.  

The Sample Program switches Beacon Application and Connect Application alternately. Beacon Application executes 
low power consumption Advertising. Connect Application works as GAP peripheral role, and executes pairing for 
establishing secure connection as well as communication with custom profile. As an example, the custom profile is 
implemented for updating configuration and data of beacon. It is not limited to this updating beacon but also possible to 
extend various usage.  

 

Target Device 
RL78/G1D Evaluation Board (RTK0EN0001D01001BZ) 

 

Related documents 

Document Name Document No. 

RL78/G1D  

 User's Manual: Hardware R01UH0515E 

RL78/G1D Evaluation Board  

 User's Manual R30UZ0048E 

E1 Emulator  

 User’s Manual R20UT0398E 

Additional Document for User’s Manual (Notes on Connection of RL78) R20UT1994E 

Renesas Flash Programmer V3.02 Flash memory programming software  

 User's Manual R20UT3841E 

CC-RL Compiler  

 User's Manual R20UT3123E 

Bluetooth Low Energy Protocol Stack  

 User's Manual R01UW0095E 

API Reference Manual: Basics R01UW0088E 

RL78/G1D Beacon Stack  

 User's Manual R01UW0171E 

RL78 Family Flash Self-Programing Library Type01  

 User's Manual R01US0050E 

RL78 Family EEPROM Emulation Library Pack02  

 User's Manual R01US0068E 

  

R01AN3313EJ0111 
Rev.1.11 

Mar. 30, 2018 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 2 of 88 
Mar. 30, 2018  

Contents 

1. Overview ......................................................................................................................... 5 
1.1 Beacon Operation ....................................................................................................................... 6 
1.2 RF Evaluation Operation ............................................................................................................ 6 

2. Environment ................................................................................................................... 7 

3. File Composition ............................................................................................................ 8 

4. Evaluation Procedure ................................................................................................... 10 
4.1 Getting Libraries ....................................................................................................................... 11 
4.2 Building Firmware ..................................................................................................................... 12 

4.2.1 Using CS+ for CC ................................................................................................................ 12 
4.2.2 Using Renesas e2 studio .................................................................................................... 12 

4.3 Writing Firmware ....................................................................................................................... 13 
4.4 Evaluating with smart phone ................................................................................................... 15 

4.4.1 Confirming the transmission of advertising packet ........................................................ 16 
4.4.2 Updating the advertising packet ....................................................................................... 17 
4.4.3 Confirming the updated advertising packet ..................................................................... 21 

4.5 Evaluating RF characteristic .................................................................................................... 22 
4.6 Current Consumption Measurement ....................................................................................... 23 

4.6.1 Measurement Environment ................................................................................................ 23 
4.6.2 Evaluation Board Setting ................................................................................................... 24 
4.6.3 Measurement Procedure .................................................................................................... 24 

5. Specification ................................................................................................................. 25 
5.1 Beacon Application ................................................................................................................... 25 

5.1.1 Non-connectable Advertising ............................................................................................ 25 
5.2 Connect Application ................................................................................................................. 27 

5.2.1 Connectable Advertising .................................................................................................... 27 
5.2.2 Pairing / Start Encryption ................................................................................................... 28 
5.2.3 Profile Communication ....................................................................................................... 29 

5.3 DTM Application ........................................................................................................................ 31 
5.3.1 Direct Test Mode ................................................................................................................. 31 

5.4 Accessing to Flash memory .................................................................................................... 32 
5.4.1 Accessing to Code Flash memory .................................................................................... 32 
5.4.2 Accessing to Data Flash memory ..................................................................................... 33 

5.5 Supporting Status of Protocol Stack Functions .................................................................... 34 
5.6 Hardware Resources used ....................................................................................................... 35 
5.7 Compiler ..................................................................................................................................... 36 
5.8 Memory Model ........................................................................................................................... 36 
5.9 Program Size ............................................................................................................................. 36 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 3 of 88 
Mar. 30, 2018  

5.10 Address Map .............................................................................................................................. 37 

6. Configuration ................................................................................................................ 40 
6.1 Hardware configuration ............................................................................................................ 40 

6.1.1 MCU main system clock frequency .................................................................................. 41 
6.1.2 RF Operation ....................................................................................................................... 42 
6.1.3 RF on-chip DC-DC converter ............................................................................................. 42 
6.1.4 RF slow clock source ......................................................................................................... 42 
6.1.5 RF on-chip oscillator calibration ....................................................................................... 42 
6.1.6 RF base clock oscillation stabilization time ..................................................................... 43 
6.1.7 Maximum number of Simultaneous connection .............................................................. 43 
6.1.8 HCI Monitoring .................................................................................................................... 43 
6.1.9 System Configuration Address ......................................................................................... 44 
6.1.10 Switches on RL78/G1D Evaluation Board ........................................................................ 44 

6.2 Application Configuration ........................................................................................................ 46 
6.2.1 System Configuration ......................................................................................................... 46 
6.2.2 Kernel Heap Memory Configuration.................................................................................. 47 
6.2.3 Advertising Configuration .................................................................................................. 48 
6.2.4 No Connection Timeout Time Configuration ................................................................... 51 
6.2.5 Paring Configuration .......................................................................................................... 52 
6.2.6 Custom Profile..................................................................................................................... 53 
6.2.7 RF Operation ....................................................................................................................... 58 

7. Functions ...................................................................................................................... 59 
7.1 Function List .............................................................................................................................. 59 

7.1.1 Switching Application ........................................................................................................ 59 
7.1.2 Beacon Application ............................................................................................................ 59 
7.1.3 Connect Application ........................................................................................................... 59 
7.1.4 DTM Application .................................................................................................................. 59 

7.2 Function Calling ........................................................................................................................ 60 
7.2.1 Function Calling of Beacon Operation ............................................................................. 60 
7.2.2 Function Calling of RF Evaluation Operation .................................................................. 61 

8. Operation ...................................................................................................................... 62 
8.1 State Transition ......................................................................................................................... 62 

8.1.1 Beacon Application ............................................................................................................ 62 
8.1.2 Connect Application ........................................................................................................... 63 
8.1.3 DTM Application .................................................................................................................. 64 

8.2 Sequence ................................................................................................................................... 65 
8.2.1 Beacon Application ............................................................................................................ 65 
8.2.2 Connect Application ........................................................................................................... 68 
8.2.3 DTM Application .................................................................................................................. 81 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 4 of 88 
Mar. 30, 2018  

9. Appendix ....................................................................................................................... 83 
9.1 Device Address ......................................................................................................................... 83 
9.2 Advertising Packet Format ....................................................................................................... 84 
9.3 Attribute Packet Format ........................................................................................................... 85 
9.4 Specification Changes .............................................................................................................. 87 
 

  



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 5 of 88 
Mar. 30, 2018  

1. Overview 
The Sample Program executes either Beacon Operation or RF Evaluation Operation. In the Beacon Operation, it is 
possible to transmit Advertising packets and update Advertising data with Custom Profile by using smart phone or other 
Bluetooth Low Energy device. In the RF Evaluation Operation, it is possible to evaluate RL78/G1D device RF 
characteristic by using RF Tester.  

 

Figure 1-1 shows the architecture of the Sample Program. The Sample Program consists of Beacon Application, 
Connect Application, Direct Test Mode (DTM) Application, Beacon Stack, Bluetooth Low Energy (BLE) Protocol 
Stack, Code Flash Library, and Data Flash Library. The sample program works on RL78/G1D Evaluation Board. 

Beacon Application executes transmitting Advertising packets by using Beacon Stack. 

Connect Application executes connecting to peer device by using BLE Protocol Stack and writing data by using Code 
Flash Library and Data Flash Library. Beacon configuration is written to Code Flash memory and pairing information is 
written to Data Flash memory, so that the configuration and information data are stored after power off. 

DTM Application executes Direct Test Mode for evaluating RF characteristic by using BLE Protocol Stack. 

Beacon Stack provides the APIs for application to execute Advertising Function. 

BLE Protocol Stack provides the APIs for applications to execute Bluetooth Low Energy Functions. 

 

Figure 1-1  Architecture of Sample Program 
 

Regarding to the specification of Beacon Application, Connect Application, and DTM Application, refer to chapter 5 
"Specification" in this document. 

Regarding to the specification of Beacon Stack, refer to RL78/G1D Beacon Stack User's Manual (R01UW0171). 

Regarding to the specification of BLE Protocol Stack, refer to Bluetooth Low Energy Protocol Stack User's Manual 
(R01UW0095) and Bluetooth Low Energy Protocol Stack API Reference Manual: Basics (R01UW0088). 

The Sample Program runs on RL78/G1D Evaluation Board. Regarding to the details about the evaluation board, refer to 
RL78/G1D Evaluation Board User's Manual (R30UZ0048). 

 

  

    Beacon Stack API     Flash Library API     rBLE API     rBLE API

HW access RF interrupt     HW access HW access RF interrupt
RL78/G1D

(Bluetooth® low energy Microcontroller - equips MCU unit and RF unit)

Beacon Stack
(provides Advertising Function)

Connect Application
(creates connection, communites with Custom Profile,

and updates Advertising data for Beacon)

Code / Data Flash Libray
(provides Flash Access)

BLE Protocol Stack
(provides Bluetooth low energy Functions)

DTM Application
(executes Direct Test Mode)

Beacon Application
(uses Advertising Function)



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 6 of 88 
Mar. 30, 2018  

1.1 Beacon Operation 
Figure 1-2 shows the overview of Beacon Operation. 

When set DIP switch SW6 position-1 to ON and then power up the evaluation board, Beacon Application starts 
running. Beacon Application uses Beacon Stack and it transmits Non-connectable undirected Advertising packet. When 
switch SW2 is pushed, Beacon Application stops and Connect Application starts running. Connect Application uses 
BLE Protocol Stack and it transmits Connectable Undirected Advertising packet for establishing connection with peer 
device. When switch SW2 is pushed again or connection is not established within 30seconds, Connect Application 
stops and Beacon Application starts running again.  

 

Figure 1-2  Overview of Beacon Operation 
 

1.2 RF Evaluation Operation 
Figure 1-3 shows the overview of RF Evaluation Operation. 

When set DIP switch SW6 position-1 to ON and then power up the evaluation board, the Sample Program starts DTM 
Application. DTM Application executes Direct Test Mode corresponds to RF Test Commands, which are transferred by 
RF Tester through 2-wire UART. The application sends the Direct Test Mode results as RF Test Events to the RF 
Tester.  

 

Figure 1-3  Overview of RF Evaluation Operation 
  

Switch application by pushing SW2

 Bluetooth Low Energy
non-connected, unidirectional broadcast

Switch application by pushing SW2 or
not establishing connection within 30sec

Bluetooth Low Energy
connected, bi-directional communication

    Power up the evaluation board

Beacon Application：
・Transmitting Advertising packets by
using Beacon Stack

Connect Application：
・Establishing a encrypted connection by
using GAP and SM of BLE Protocol Stack

・Receiving a data for Advertising of Beacon 
Mode by using GATT of BLE Protocol Stack

Beacon Application
(using Beacon Stack)

Connect Application
(using BLE Protocol Stack)

 RF(2.4GHz)
RF Test packets

RF Tester

Power up the evaluation board
UART

RF Test commands / events

DTM Application：
・Executing Direct Test Mode via 2-wire UART for evaluating RF characteristics.

DTM Application
(using Protocol Stack)



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 7 of 88 
Mar. 30, 2018  

2. Environment 
For compiling and evaluating the Sample Program, following are the necessary environment. 

- Hardware Environment 

- Host 

• PC/ATTM compatible computer 

• Processor  : at least 1.6GHz 

• Main memory : at least 1Gbyte 

• Interface  : USB2.0 (for connecting E1 Emulator and RL78/G1D Evaluation Board) 

 

- Device 

• RL78/G1D Evaluation Board (RTK0EN0001D01001BZ) 

• USB cable (A type male / mini-B type male) 

• iOS device or Android device 

 

- Tool 

• Renesas On-chip Debugging Emulator E1 (R0E000010KCE00) 

 

- Software Environment 

• Windows®7 Service Pack1 

• Renesas CS+ for CC V5.00.00 / Renesas CC-RL V1.04.00 

or Renesas e2 studio Version 5.3.0.023 / Renesas CC-RL V1.04.00 

• Renesas Flash Programmer v3.02.01 

• Tera Term Pro (or Terminal software which can connect to serial port) 

• UART-USB conversion device driver 

 

Note: It may be that device driver of UART-USB conversion IC "FT232RL" is requested is in the first 
connection with host. In this case, you can get the device driver from below website.  

- FTDI (Future Technology Devices International) - Drivers 
http://www.ftdichip.com/Drivers/D2XX.htm 

 

- Software Library 

• BLE Protocol Stack : Bluetooth Low Energy Protocol Stack V1.20 

• Beacon Stack  : RL78/G1D Beacon Stack V2.10 

• Code Flash Library : Flash Self Programming Library Type01 Ver2.21 

• Data Flash Library : EEPROM Emulation Library Pack02 for CC-RL Compiler Ver1.01 

 

It is possible to download above software libraries from Renesas Website. Regarding to the details about 
downloading the libraries, refer to section 4.1 "Getting Libraries" in this document.   

http://www.ftdichip.com/Drivers/D2XX.htm


RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 8 of 88 
Mar. 30, 2018  

3. File Composition 
The Sample Program includes Beacon Stack library and the source code of Beacon Application, Connect Application 
and DTM Application. However, the following libraries are not included. So, it is necessary to download the libraries 
and put in suitable folders for building firmware.  

- BLE Protocol Stack library 
- Code Flash Library 
- Data Flash Library  

 

File and folder composition of the release package of the Sample Program is as shown below.  

RL78G1D_BeaconCombination  
  ├ROM_File  
  │      R5F11AGJ_BcnCmb.hex Sample Program - firmware file (R5F11AGJ) 
  │      R5F11AGJ_BcnCmb_no_sw.hex Sample Program - firmware file (R5F11AGJ) (EVABOARD_SWITCH_EN=0) 
  ├RUC_File  
  │      r5f11agg_syscfg.ruc System Configuration - unique code file (R5F11AGG) 
  │      r5f11agh_syscfg.ruc System Configuration - unique code file (R5F11AGH) 
  │      r5f11agj_syscfg.ruc System Configuration - unique code file (R5F11AGJ) 
  └Project_Source  
      ├library  
      │  │  r_arch.h architecture - header file 
      │  │  r_compiler.h compiler dependent part - header file 
      │  │  r_iodefine.h SFR definition - header file for CC-RL 
      │  │  r_ll.h low level built-in function - header file 
      │  │  r_port.h port access - header file 
      │  ├beacon  
      │  │  BLE_BEACON_CC.lib Beacon Stack - library for CC-RL 
      │  │  r_bcn_api.h Beacon Stack API - header file 
      │  ├protocol  
      │  │  │  (empty) (it is necessary to put BLE Protocol Stack Library files here) 
      │  │  └dummy  
      │  │            types.h dummy header file 
      │  ├codeflash  
      │  │       (empty) (it is necessary to put Code Flash Library files here) 
      │  └dataflash  
      │             (empty) (it is necessary to put Data Flash Library files here) 
      └application  
          ├src  
          │  │  cstart.asm start-up - assembly file for CC-RL 
          │  │  r_config.h configuration - header file 
          │  │  r_main.c entry point - header file 
          │  ├beacon  
          │  │  r_beacon_main.c Beacon Application main loop - code file 
          │  │  r_beacon_isr.c Beacon Application interrupt - code file 
          │  │  r_beacon.h Beacon Application - header file 
          │  │  r_beacon.c Beacon Application - code file 
          │  ├connect  
          │  │  │  r_connect_main.c Connect Application main loop - code file 
          │  │  │  r_connect.h Connect Application - header file 
          │  │  │  r_connect.c Connect Application - code file 
          │  │  │  r_profile.h Custom Profile - header file 
          │  │  │  r_profile.c Custom Profile - code file 
          │  │  │  r_dtm_main.c DTM Application main loop - code file 
          │  │  │  r_dtm.h DTM Application - header file 
          │  │  │  r_dtm.c DTM Application - code file 
          │  │  ├resource  
          │  │  │      r_rble_core.h BLE Protocol Stack rBLE Core Layer resource - header file 
          │  │  │      r_rble_core.c BLE Protocol Stack rBLE Core Layer resource - code file 
          │  │  │      r_gatt.h BLE Protocol Stack GATT Layer resource - header file 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 9 of 88 
Mar. 30, 2018  

          │  │  │      r_gatt.c BLE Protocol Stack GATT Layer resource - code file 
          │  │  │      r_host.h BLE Protocol Stack Host Layer resource - header file 
          │  │  │      r_host.c BLE Protocol Stack Host Layer resource - code file 
          │  │  │      r_controller.c BLE Protocol Stack Controller Layer resource - code file 
          │  │  │      r_kernel.h BLE Protocol Stack Kernel resource - header file 
          │  │  │      r_kernel.c BLE Protocol Stack Kernel resource - code file 
          │  │  │      r_stack.h BLE Protocol Stack - header file 
          │  │  └optional  
          │  │           r_optional.c BLE Protocol Stack optional functions - code file 
          │  │           r_reserved.c BLE Protocol Stack reserved functions - code file 
          │  └driver  
          │      ├codeflash  
          │      │       r_codeflash.h code flash driver - header file 
          │      │       r_codeflash.c code flash driver - code file 
          │      ├dataflash  
          │      │       r_dataflash.h data flash driver - header file 
          │      │       r_dataflash.c data flash driver - code file 
          │      │       r_eel_descriptor_t02.h data flash library EEPROM Emulation descriptor - header file 
          │      │       r_eel_descriptor_t02.c data flash library EEPROM Emulation descriptor - code file 
          │      │       r_fdl_descriptor_t02.h data flash library descriptor - header file 
          │      │       r_fdl_descriptor_t02.c data flash library descriptor - code file 
          │      ├input  
          │      │       r_input.h external interrupt input driver - header file 
          │      │       r_input.c external interrupt input driver - code file 
          │      ├plf  
          │      │       r_plf.h platform driver - header file 
          │      │       r_plf.c platform driver - code file 
          │      └uart  
          │                r_uart.h UART driver - header file 
          │                r_uart.c UART driver - code file 
          └project  
              ├cs_cc  
              │  └BLE_Software  
              │      │  BLE_Software.mtpj project file for CS+ for CC 
              │      ├R5F11AGG_BcnCmb  
              │      │       R5F11AGG_BcnCmb.mtsp subproject file for CS+ for CC (R5F11AGG) 
              │      ├R5F11AGH_BcnCmb  
              │      │       R5F11AGH_BcnCmb.mtsp subproject file for CS+ for CC (R5F11AGH) 
              │      └R5F11AGJ_BcnCmb  
              │                 R5F11AGJ_BcnCmb.mtsp subproject file for CS+ for CC (R5F11AGJ) 
              └e2_cc  
                  └BLE_Software  
                      ├R5F11AGG_BcnCmb  
                      │        .project project composition file for e2 studio (R5F11AGG) 
                      │        .cproject project configuration file for e2 studio (R5F11AGG) 
                      │        .info IDE information file for e2 studio (R5F11AGG) 
                      │        .DefaultBuildlinker linker configuration file for e2 studio (R5F11AGG) 
                      ├R5F11AGH_BcnCmb  
                      │        .project project composition file for e2 studio (R5F11AGH) 
                      │        .cproject project configuration file for e2 studio (R5F11AGH) 
                      │        .info IDE information file for e2 studio (R5F11AGH) 
                      │        .DefaultBuildlinker linker configuration file for e2 studio (R5F11AGH) 
                      └R5F11AGJ_BcnCmb  
                                  .project project composition file for e2 studio (R5F11AGJ) 
                                  .cproject project configuration file for e2 studio (R5F11AGJ) 
                                  .info IDE information file for e2 studio (R5F11AGJ) 

                              .DefaultBuildlinker linker configuration file for e2 studio (R5F11AGJ) 

 
  



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 10 of 88 
Mar. 30, 2018  

4. Evaluation Procedure 
This chapter describes evaluation procedure of the Sample Program. The evaluation procedure consists of six steps: 
Getting Libraries, Building Firmware, Writing Firmware, Evaluating with smart phone, Evaluating RF characteristic, 
and Current Consumption Measurement.  

 
  

Section 4.2 "Building Firmware" 

Section 4.3 "Writing Firmware" 

Section 4.4 "Evaluating with smart phone" 

Subsection 4.2.1 "Using CS+ for CC" 

Subsection 4.2.2 "Using Renesas e2 studio" 

Subsection 4.4.1 "Confirming the transmission of advertising packet" 

Subsection 4.4.2 "Updating the advertising packet" 

or 

Section 4.1 "Getting Libraries" 

Section 4.5 "Evaluating RF characteristic" 

Subsection 4.4.3 "Confirming the updated advertising packet" 

Subsection 4.4.2(1) "Using iOS device" 

Subsection 4.4.2(2) "Using Android device" 

or 

Section 4.6 "Current Consumption Measurement" 

Subsection 4.6.1 "Measurement Environment" 

Subsection 4.6.2 "Evaluation Board Setting" 

Subsection 4.6.3 "Measurement Procedure" 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 11 of 88 
Mar. 30, 2018  

4.1 Getting Libraries 
Before building the Sample Program firmware, it is necessary to download below libraries from Renesas Website. 

• BLE Protocol Stack: 
- Bluetooth Low Energy Protocol Stack V1.20 

https://www.renesas.com/software-tool/bluetooth-low-energy-protocol-stack-rl78-family 
• Code Flash Library: 

- Flash Self Programming Library Type01 Package Ver.3.00 for the RL78 Family [for the CA78K0R/CC-RL 
Compiler] 

https://www.renesas.com/software-tool/code-flash-libraries-flash-self-programming-libraries 

• Data Flash Library: 
- EEPROM Emulation Library Pack02 Package Ver.2.00(for CA78K0R/CC-RL Compiler) for RL78 Family 

https://www.renesas.com/software-tool/data-flash-libraries 

 
After downloading the libraries, copy respective released library files into specified folders of the Sample Program. 
Respective downloaded library paths are as shown below. 

• Protocol Stack: 
- BLE_Software_Ver_x_xx\RL78_G1D\Project_Source\renesas\lib\BLE_rBLE_lib_CCRL.lib 
- BLE_Software_Ver_x_xx\RL78_G1D\Project_Source\renesas\lib\BLE_HOST_lib_CCRL.lib 
- BLE_Software_Ver_x_xx\RL78_G1D\Project_Source\renesas\lib\BLE_CONTROLLER_LIB_CCRL.lib 
- BLE_Software_Ver_x_xx\RL78_G1D\Project_Source\rBLE\src\include\rble_api.h 
- BLE_Software_Ver_x_xx\RL78_G1D\Project_Source\rBLE\src\include\rble.h 

• Code Flash Library: 
- FSLRL78 Type01\V2.21B\CCRL_V2.21\CCRL\V2.21\librl78\fsl.lib 
- FSLRL78 Type01\V2.21B\CCRL_V2.21\CCRL\V2.21\incrl78\fsl.h 
- FSLRL78 Type01\V2.21B\CCRL_V2.21\CCRL\V2.21\incrl78\fsl_types.h 

• Data Flash Library: 
- EELRL78 Pack02\V1.01\librl78\eel.lib 
- EELRL78 Pack02\V1.01\librl78\fdl.lib 
- EELRL78 Pack02\V1.01\incrl78\eel.h 
- EELRL78 Pack02\V1.01\incrl78\eel_types.h 
- EELRL78 Pack02\V1.01\incrl78\fdl.h 
- EELRL78 Pack02\V1.01\incrl78\fdl_types.h 

 
The above files that needed to copy into folders of the Sample Program are as shown below. 

RL78G1D_BeaconCombination  
  └Project_Source  
      └library  
          ├protocol  
          │ BLE_rBLE_lib_CCRL.lib Protocol Stack rBLE Layer - library file  
          │ BLE_HOST_lib_CCRL.lib Protocol Stack Host Layer - library file  
          │ BLE_CONTROLLER_LIB_CCRL.lib Protocol Stack Controller Layer - library file  
          │ rble_api.h Protocol Stack rBLE API - header file  
          │ rble.h Protocol Stack rBLE definitions - header file  
          ├codeflash  
          │ fsl.lib Code Flash Library - library file  
          │ fsl.h Code Flash Library - header file  
          │ fsl_types.h Code Flash Library type definition - header file  
          └dataflash  
 eel.lib Data Flash Library EEPROM Emulation - library file  
 eel.h Data Flash Library EEPROM Emulation - header file  
 eel_types.h Data Flash Library EEPROM Emulation type definition - header file  
 fdl.lib Data Flash Library - library file  
 fdl.h Data Flash Library - header file  
 fdl_types.h Data Flash Library type definition - header file  

https://www.renesas.com/software-tool/bluetooth-low-energy-protocol-stack-rl78-family
https://www.renesas.com/software-tool/code-flash-libraries-flash-self-programming-libraries
https://www.renesas.com/software-tool/data-flash-libraries


RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 12 of 88 
Mar. 30, 2018  

4.2 Building Firmware 
After adding the necessary libraries from aforementioned section 4.1, the project for the Sample Program is ready to 
build firmware. Building Sample Program firmware can be used either CS+ for CC or e2 studio as IDE (Integrated 
Development Environment).  

By building the Sample Program with default settings, the firmware R5F11AGJ_BcnCmp.hex file that is the same HEX 
file included in release package is generated. 

If using HEX file included in release package for evaluation, you can skip below building procedures. 

 

4.2.1 Using CS+ for CC 
1. Start CS+ for CC and open the project "BLE_Software.mtpj" from menu bar [File][Open File] 

- Project_Source\application\project\cs_cc\BLE_Software\ 

2. Select [Build][Rebuild project] and confirm that compiling is successful. 

3. Confirm that the firmware R5F11AGJ_BcnCmb.hex is generated in the place of below path. 

- Project_Source\application\project\cs_cc\BLE_Software\R5G11AGJ_BcnCmb\DefaultBuild\ 

 

4.2.2 Using Renesas e2 studio 
1. Start Renesas e2 studio and select below path as a workspace. 

- Project_Source\ 

2. Select [File][Import] in order to open Import dialog. 

3. Select [General][Existing Project into Workspace] and click [Next].  

4. Select below path as a root folder and confirm R5F11AGJ_BcnCmb is selected in [Projects]. 

- Project_Source\ 

5. Click [Finish] in order to close Import dialog. 

6. Close [Welcome]. 

7. Select R5F11AGJ_BcnCmb in the Project Explorer. 

8. Select [Project][Build Project] and confirm that compiling is success. 

9. Confirm that the firmware R5F11AGJ_BcnCmb.hex is generated in the place of below path. 

- Project_Source\application\project\e2_cc\BLE_Software\R5F11AGJ_BcnCmb\DefaultBuild\ 

 

Note: By default, debugger setting of e2 studio erases Flash memory before writing firmware.  

When developing by using e2 studio, change the debugger setting before starting debugging, to avoid erasing Shipping 
Checking Flag and Device Address which already been written in RL78/G1D Module. Disconnect E1 Emulator from 
RL78/G1D Module when changing the debugger setting. 

- Select [Debugger] tab in [Edit launch configuration properties] dialog, and set [No] in [Erase Flash ROM 
When Starting].  

 
  



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 13 of 88 
Mar. 30, 2018  

4.3 Writing Firmware 
When writing the firmware of the Sample Program, Host machine and E1 Emulator is used. It is connected by USB 
cable between Host machine and E1 Emulator, between Host machine and the evaluation board. It is connected by User 
I/F cable between E1 Emulator and the evaluation board. 

Regarding to the details of E1 Emulator, refer to E1 Emulator User's Manual (R20UT0398) and E1 Emulator Additional 
Document for User’s Manual (Notes on Connection of RL78) (R20UT1994). 

 

Figure 4-1  Evaluation Board Operation 
 

Table 4-1 shows the slide switch settings for evaluating the Sample Program. 
Table 4-1  Slide Switch Settings for evaluating the Sample Program 

Switch Setting Description 
SW7 2-3 connected (right) (default setting) Power is supplied from the AC Power Supply Adapter through 

Power jack (J1) or USB interface (CN3) via a Regulator. 
SW8 2-3 connected (right) Power is supplied from USB. 

If it is necessary to supply from AC Power Supply Adapter, set 1-
2 connected (left). 

SW9 1-2 connected (left) Connect to external extension interface. 
SW10 1-2 connected (left) (default setting) Power is supplied to the module. 
SW11 2-3 connected (right) (default setting) Power is supplied from a source other than the E1 Emulator 
SW12 2-3 connected (right) (default setting) (Fixed) 
SW13 2-3 connected (right) USB interface is disconnected. 
 

  

     E1 Emulator
User I/F cable

RL78/G1D Evaluation Board

USB cable (for connecting E1)

USB cable (for supplying power)
Host machine



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 14 of 88 
Mar. 30, 2018  

For writing Sample Program firmware, Renesas Flash Programmer (RFP) is used.  

There is a Unique Code Embedding Function in RFP, so that it is possible to write same firmware with each different 
system configuration to each individual device. Regarding to the Unique Code Embedding Function, refer to subsection 
2.3.6 "[Unique Code] Tabbed Page" in Renesas Flash Programmer V3.02 Flash memory programming software User's 
Manual (R20UT3841). 

 

Procedure of writing the Sample Program firmware into RL78/G1D Evaluation Board is shown below. 

1. Set the switches of Evaluation Board according to Table 4-1. 

2. Connect E1 Emulator to Evaluation Board, and connect E1 Emulator to PC. 

3. Connect Evaluation Board to PC or AC-USB Power Supply Adaptor, and start to supply power. 

4. Start RFP, and create project in accordance with below procedures. 

Note that after creating project once, below procedures can be skipped for next time. 

4-1.  Select [File][Create a new project]. 

4-2.  Select [RL78] as a Microcontroller, and input a project name, and click [Connect] in [Create New Project] 
dialog. 

4-3.  Confirm [Operation completed] message in Log output panel. 

5. Select the firmware R5F11AGJ_BcnCmb.hex at [Program File]. 

6. Prevent erasing Block 254, 255 in Code Flash memory in accordance with below procedure. 

Note that Shipping Check Flag is written in Block 254 and Device Address is written in Block 255 in the case of 
RL78/G1D Module. 

6-1.  Select [Operation Setting] tab, and select [Erase Selected Blocks] at [Erase Option].  

6-2.  Select [Block Setting] tab, and uncheck each [Erase], [P.V] of Block 254, 255. 

 
7. (Optional) If it is necessary to change System Configuration, set unique code in accordance with below 

procedure. 

7-1.  Select [Unique Code] tab. 

7-2.  Check [Enable]. 

7-3.  Select the below unique code file at [Unique Code File]. 

- RUC_File\r5f11agj_syscfg.ruc 

7-4.  Go back to [Operation] tab. 

8. Click [Start] button to start writing the firmware, and confirm [Operation completed] message. 

9. Disconnect E1 Emulator and Power Supply from the Evaluation Board. 

 
  



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 15 of 88 
Mar. 30, 2018  

4.4 Evaluating with smart phone 
To evaluate the Sample Program with smart phone, there is three steps: Confirming the transmission of advertising 
packet, Updating the advertising packet, and Confirming the updated advertising packet.  

The Sample Program uses some Switches (SW) and LED indicators on the evaluation board for user interface. Figure 
4-2 shows the switches SW and the LED indicators used by Sample Program. The status of DIP switch SW6 position-1 
is read when initialize the Sample Program, and SW2 is used external interrupt input for triggering user action Beacon 
Operation.  

 

Figure 4-2  Evaluation Board Operation 
  

DIP SW6-1 : USB cable (for supplying power)
  if SW6-1 is off, Beacon System is enabled
  if SW6-1 is on, RF Evaluation System is enabled

LED2 : (when Connect Application is executed only)
  LED2 is turned off when executing Advertising
  LED2 is turned on when establishing Connection

LED1 : (when Connect Application is executed only)
  LED1 is turned off when data is not encrypted

LED4 : turned on when supplying power   LED1 is turned on when data is encrypted

LED3 : (when Beacon System is enabled only) SW2 : (when Beacon System is enabled only)
  LED3 is turned off when Beacon Application   By pusing SW2,
  LED3 is turned on when Connect Application   Beacon Application and Connect Application is switched altenately



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 16 of 88 
Mar. 30, 2018  

4.4.1 Confirming the transmission of advertising packet 
This subsection describes procedure for enabling Beacon Application and confirming transmitted Advertising packet 
from the evaluation board to Smart Phone. 

 

 

First, supply +5 DC power via Power jack (J1) or USB interface (CN3) to the evaluation board, which is programmed 
with the Sample Program firmware. Just after power on with setting OFF to DIP switch SW6 position-1, the Sample 
Program executes Beacon Application and turn on the LED4. The Beacon Application transmits Eddystone-URL packet 
by default. Using smart phone application, you can receive the advertising packet. The smart phone application 
procedure is very much similar for both iOS device and Android device.  

 

1. In order to receive Eddystone-URL packet, install below application to smart phone. 

- for Android device, Physical Web - Google Play 
https://play.google.com/store/apps/details?id=physical_web.org.physicalweb 

- for iOS device, Physical Web - App Store 
https://itunes.apple.com/app/physical-web/id927653608 

2. Run the smart phone application and search the Eddystone beacons by pulling down the display. 

3. When receive the Eddystone-URL packet from the Sample Program, below URL is displayed to link the web page. 

- Renesas Electronics 
https://www.renesas.com/ 

 

 
 

  

Non-connectable Advertising

Smart Phone
Beacon Application

  RL78/G1D

2. Pull down 

3. Tap the link 

https://play.google.com/store/apps/details?id=physical_web.org.physicalweb
https://itunes.apple.com/app/physical-web/id927653608
https://www.renesas.com/


RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 17 of 88 
Mar. 30, 2018  

4.4.2 Updating the advertising packet 
This subsection describes procedure for enabling Connect Application and updating Advertising packet by using Smart 
Phone. 

 

 

Pushing SW2 on the evaluation board can change Beacon Application and Connect Application alternately when the 
Sample Program is running in Beacon Operation. When Connect Application works, not only LED4 but also LED3 are 
turned on. Connect Application transmits connectable advertising packet in order to connect peer device. By connecting 
Smart Phone to RL78/G1D device and accessing GATT, it is possible to update Advertising data Beacon Application 
transmits.  

 

(1) Using iOS device 

1. iOS device needs GATT Client application to access Custom Profile of Connect Application. As an example of 
GATT Client application, install and use below application. 

- GATTBrowser - App Store 
https://itunes.apple.com/app/gattbrowser/id1163057977 

2. Push SW2 on the evaluation board and confirm LED3 is on. 

3. Run the smart phone application and start scanning devices. 

4. Select the "RL78/G1D Beacon Updater" to establish connection.  

5. Select the Advertising Data characteristic of the Renesas Beacon Updater service. 

6. Tap "Read" button. 

7. Tap the value displayed below "Read" button. 

8. In Advertising Data dialog, key in below value as new Advertising data. 

- Advertising Data value, Eddystone-URL including shortened URL to https://www.bluetooth.com/ 
1B0201060303AAFE1316AAFE10EE02676F6F2E676C2F3764694C547800000000 

9. Tap "OK" button in Advertising Data dialog. 

10. Tap "Write" button. 

11. Tap "Pair" button in pairing request dialog. 

12. Confirm LED1 on the evaluation board is on. 

13. Return to scanning view to disconnect.  

14. Confirm LED1 and LED2 on the evaluation board are off. 

 

  

Establishing Connection

Pairing or Start Encryption

GATT Access

RL78/G1D
Connect Application

    Smart Phone

https://itunes.apple.com/app/gattbrowser/id1163057977
https://www.bluetooth.com/


RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 18 of 88 
Mar. 30, 2018  

  

4. Tap the device to pair 

5. Tap the Characteristic 

6. Tap Read 

7. Tap the value 

9. Tap OK 

8. Input new value 
11.戻る 

10. Tap Write 

11. Select Pair 

13. Tap to return 14. Tap to disconnect 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 19 of 88 
Mar. 30, 2018  

(2) Using Android device 

1. Android device needs GATT Client application to access Custom Profile of Connect Application. As an example 
of GATT Client application, install and use below application. 

- GATTBrowser - Google Play 
https://play.google.com/store/apps/details?id=com.renesas.ble.gattbrowser 

2. Push SW2 on the evaluation board and confirm LED3 is on. 

3. Run the smart phone application and start scanning devices.  

4. Select the "RL78/G1D Beacon Updater" to establish connection.  

5. Select the Advertising Data characteristic of the Renesas Beacon Updater service. 

6. Tap "Read" button. 

7. Tap the value displayed below "Read" button. 

8. In Advertising Data dialog, key in below value as new Advertising data. 

- Advertising Data value, Eddystone-URL including shortened URL to https://www.bluetooth.com/ 
0x1B0201060303AAFE1316AAFE10EE02676F6F2E676C2F3764694C5478 

9. Tap "OK" button in Advertising Data dialog. 

10. Tap "Write" button. 

11. Confirm BONDED by pairing. 

12. Confirm LED1 is on. 

13. Tap "Write" button again. 

14. Confirm writing succeeded. 

15. Tap the DISCONNECT 

16. Confirm LED1 and LED2 on the evaluation board is off.  

  

https://play.google.com/store/apps/details?id=com.renesas.ble.gattbrowser
https://www.bluetooth.com/


RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 20 of 88 
Mar. 30, 2018  

  

4.Select the device 

5.Select Advertising Data 

6.Tap Read 

7.Tap the value 

9.Tap OK 

10.Tap Write 

15.Disconnect 

8.Input new value 

13.Tap Write 

14.Confirm 

11.Confirm BONDED 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 21 of 88 
Mar. 30, 2018  

4.4.3 Confirming the updated advertising packet 
This subsection describes procedure for enabling Beacon Application again and confirming that Advertising packet is 
updated. 

 

 

Advertising data for Beacon Application is stored into Code Flash memory after updating the characteristic value of 
Custom Profile and disconnection. Again, you can confirm the updated advertising data with using Beacon Application 
and smart phone. Here, the procedure for both iOS device and Android device are very similar.  

 

1. Restart Beacon Application, by pushing SW2 on the evaluation board, or reset the MCU, or power-cycling to 
evaluation board. 

2. Run the smart phone application installed in subsection 4.4.1 and search the advertising packet by pulling down 
the display. 

3. When receive new Eddystone-URL packet from the Sample Program, link to below new URL is displayed to link 
the web page. 

- Bluetooth Technology Website 
https://www.bluetooth.com/ 

 

 
 

  

Non-connectable Advertising

Smart Phone
Beacon Application

  RL78/G1D

2. Pull down 

3. Tap the link 

https://www.bluetooth.com/


RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 22 of 88 
Mar. 30, 2018  

4.5 Evaluating RF characteristic 
This subsection describes procedure for enabling DTM Application and evaluating RF characteristic of RL78/G1D 
device. 

 

 

Before supplying power to the evaluation board, turn on the DIP switch SW6 position-1. Then by supplying the power 
to the board, the Sample Program executes the DTM Application. Now, you can test RF characteristic of RL78/G1D 
device by using RF Tester. Below is the procedure for testing RF characteristic of RL78/G1D device. 

 

1. Turn on the DIP switch SW6 position-1, which is on the evaluation board. 

2. Connect UART TxD0 pin, RxD0 pin, and GND pin on the evaluation board to pins of RF Tester. If logic level of 
the signals is different between RL78/G1D device and RF Tester, connect through logic level converter. 

3. Refer to respective manuals of RF Tester and set UART settings according to Table 4-2. 

4. Refer to respective manuals of RF Tester and start Direct Test Mode. 

 

Table 4-2  UART Settings 
Setting  Value 

Baud rate 9600bps 
Data bit length 8bit 
Parity None 
Stop bit length 1bit 
Flow control None 

 

  

RF Test commands / events

RF Test packets

DTM Application
RF Tester  RL78/G1D



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 23 of 88 
Mar. 30, 2018  

4.6 Current Consumption Measurement 
This section describes current consumption measurement for using RL78/G1D Evaluation Board. Regarding to the 
details of RL78/G1D Evaluation Board (RTK0EN0001D01001BZ), refer to RL78/G1D Evaluation Board User's 
Manual (R30UZ0048). 

 
4.6.1 Measurement Environment 
Table 4-3 shows the necessary equipment for current consumption measurement. Regarding to the details on how to 
use each equipment, refer to respective manuals of each equipment. 

Table 4-3  Necessary Equipment for Current Consumption Measurement 
Equipment Role Example Equipment 

Power Source Supplying power to RL78/G1D Stabilized power supply or Battery 
Note that supply voltage shall be in the range of the RL78/G1D 
operation voltage 

Measurement 
Equipment 

Indicating and logging the 
result of measurement 

Oscilloscope 

Voltage 
Detector 

Detecting the operation voltage 
of RL78/G1D 

Voltage Probe 

Current 
Detector 

Detecting the current 
consumption of RL78/G1D 

Current Probe with clamp, or 
combination of Shunt Resistor and Voltage Probe 
Note that recommended resistor is 10 ohm. 

 
Figure 4-3 shows the measurement environment which uses current probe as current detector. In this environment, the 
current consumption of RL78/G1D is the result of measuring between terminal TP7 and TP8 of the evaluation board by 
current probe. 

 

Figure 4-3  Measurement Environment which uses Current Probe 
 
Figure 4-4 shows the measurement environment which uses the combination of shunt resistor and voltage probe as a 
current detector. In this environment, the resistor is inserted between terminal TP7 and TP8 of the evaluation board, and 
voltage drop at the resistor is measured by using two voltage probes. 

Voltage drop dV by the resistor is difference of two voltages measured by individual voltage probe. The current 
consumption of RL78/G1D is the result of calculating with formula I=dV / R, where I is current; dV is voltage drop by 
the resistor; and R is resistance value. 

 

Figure 4-4  Measurement Environment which uses the combination of Shunt Resistor and Voltage Probe  

Plus pin

GND pin

Voltage Probe (for operation voltage)
Oscilloscope

Power Supply
  TP1(VCC) TP5(GND) GND

TP8(VCC side)TP7(RL78/G1D side)

Current Probe with clamp

Plus pin

GND GND pin

Voltage Probe (for consumption current)

Voltage Probe (for operation voltage)

Power Supply

Oscilloscope
   TP7(RL78/G1D side)

Shunt Resister

  TP1(VCC) TP5(GND) GND

TP8(VCC side)



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 24 of 88 
Mar. 30, 2018  

4.6.2 Evaluation Board Setting 
Table 4-4 shows the slide switch settings of the evaluation board for current consumption measurement. 

Table 4-4  Slide Switch Settings for current consumption measurement 
Switch Setting Description 

SW7 1-2 connected (left) Power is directly supplied from external power source (not via 
a regulator). 
If it is necessary to supply from USB, set 2-3 connected 
(right). 

SW8 1-2 connected (left) Power is supplied from TP1, TP5 pin or AC Power Supply 
Adapter. 
If it is necessary to supply from USB, set 2-3 connected 
(right). 

SW9 1-2 connected (left) Connect to an external extension interface. 
SW10 2-3 connected (right) The power supply line is left open. 
SW11 2-3 connected (right) (default setting) Power is supplied from a source other than the E1 debugger. 
SW12 2-3 connected (right) (default setting) (Fixed). 
SW13 2-3 connected (right) USB interface is disconnected. 

 

4.6.3 Measurement Procedure 
Current consumption measurement procedures are described in below steps. Note that the procedure is reference for 
only measuring current consumption of Beacon Application with default setting. 

Regarding to the details of how to set each equipment settings, refer to the respective manuals. 

 

(1) Measuring Current Consumption in Periodic Packet Transmission 

1. Start supplying power and start Beacon Application.  

2. Set below settings to Oscilloscope by referring to Figure 4-5. 

- Capture Trigger  : about 0.5mA in current consumption 

- Current Measurement Range : about 10mA 

- Measurement Period  : about 10msec from capture trigger 

3. Start measuring by Oscilloscope by detecting the current of periodic transmitting. 

 

Figure 4-5  Measuring Current Consumption in Periodic Packet Transmission 

  

Capture Trigger (about 0.5mA) 

Current Consumption 

Measurement Period (about 10msec) 
Current Measurement Range (about 10mA) 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 25 of 88 
Mar. 30, 2018  

5. Specification 
5.1 Beacon Application 
5.1.1 Non-connectable Advertising  
Beacon Application loads the Advertising Information and the Advertising Data from system configuration, which 
stored in Code Flash memory. Then starts transmitting Non-connectable Undirected Advertising packet for 
broadcasting information. Peer device, like a Smart Phone, receives Advertising packet and provides each service 
related to the Advertising data. When request to exit the application, it stops Advertising and stops supplying power to 
RF unit.  

 

Figure 5-1  Non-connectable Advertising 
Regarding to the state transition of Beacon Application and the sequence of Non-connectable Advertising, refer to 
subsection 8.1.1 "Beacon Application" and subsection 8.2.1(1) "Initializing & Advertising & RF Powerdown Sequence" 
in this document respectively.  

Regarding to the details about system configuration, refer to subsection 5.4.1 "Accessing to Code Flash memory" in this 
document.  

 

When only Tx is enabled as a RF Operation of Beacon Stack, Beacon Application transmits Non-connectable 
Undirected Advertising packet. 

Table 5-1 shows the default Advertising configuration of Beacon Application. 

Table 5-1  the Advertising configuration of Beacon Application when only Tx is enabled 
Advertiser Address Public Device Address 12:34:56:78:9A:B0 
Advertising Type Non-connectable Undirected Advertising (ADV_NONCONN_IND) 
Advertising Interval 100msec 
Advertising Interval Delay add random delay to Advertising interval 
Advertising Channel Map All channels (37,38,39ch) 
Advertising Loop Count transmitting indefinitely 
Advertising Transmit Power 0dBm at ANT pin of RL78/G1D 
Advertising Data Count the number of Advertising Data is 1 
Advertising Data [0]～[9] Advertising Data[0] (ADV_NONCONN_IND payload data) 

  Length 2byte 
AD Type <<Flags>> (0x01) 
AD Data LE General Discoverable Mode (bit1) 

BR/EDR Not Supported (bit2) 
 Length 3byte 

AD Type <<Complete List of 16-bit Service Class UUIDs>> (0x03) 
AD Data Eddystone (0xFEAA) 

 Length 19byte 
AD Type <<Service Data>> (0x16) 
AD Data Eddystone-URL: https://goo.gl/5wKkRK 

Advertising Data[1] to [9] are empty 
Advertising Event Permission notify All Advertising Event 
Use White List - 

 

  

Non-connectable Advertising

smart phone
(Scanner)

  RL78/G1D
(Advertiser)

https://goo.gl/5wKkRK


RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 26 of 88 
Mar. 30, 2018  

When both Tx and Rx are enabled as a RF Operation of Beacon Stack, Beacon Application transmits Scannable 
Undirected Advertising packet. And If receive Scan Request packet, Beacon Application transmits Scan Response 
packet. 

Regarding to the setting of RF Operation, refer to subsection 6.1.2 "RF Operation". 
Table 5-2 shows Advertising configuration of Beacon Application when both Tx and Rx are enabled. 

Table 5-2  the Advertising configuration of Beacon Application when both Tx and Rx are enabled 
Advertiser Address Public Device Address 12:34:56:78:9A:B0 
Advertising Type Scannable Undirected Advertising (ADV_SCAN_IND) 
Advertising Interval 100msec 
Advertising Interval Delay add random delay to Advertising interval 
Advertising Channel Map All channels (37,38,39ch) 
Advertising Loop Count transmitting indefinitely 
Advertising Transmit Power 0dBm at ANT pin of RL78/G1D 
Advertising Data Count the number of Advertising Data is 2 
Advertising Data [0]～[9] Advertising Data[0] (ADV_SCAN_IND payload data) 

  Length 2byte 
AD Type <<Flags>> (0x01) 
AD Data LE General Discoverable Mode (bit1) 

BR/EDR Not Supported (bit2) 
 Length 3byte 

AD Type <<Complete List of 16-bit Service Class UUIDs>> (0x03) 
AD Data Eddystone (0xFEAA) 

 Length 19byte 
AD Type <<Service Data>> (0x16) 
AD Data Eddystone-URL: https://goo.gl/5wKkRK 

Advertising Data[1] (SCAN_RSP payload data) 
  Length 24byte 

AD Type <<Complete Local Name>> (0x09) 
AD Data "Renesas RL78/G1D Beacon" 

Advertising Data[2] to [9] are empty 
Advertising Event Permission notify All Advertising event 
Use White List not use White List 

 
Regarding to the specification of Eddystone and Eddystone-URL, refer to below website. 

- Specification for Eddystone, an open beacon format from Google 
https://github.com/google/eddystone 

- Specification for Eddystone, an open beacon format from Google - Eddystone-URL 
https://github.com/google/eddystone/tree/master/eddystone-url 

 
  

https://goo.gl/5wKkRK
https://github.com/google/eddystone
https://github.com/google/eddystone/tree/master/eddystone-url


RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 27 of 88 
Mar. 30, 2018  

5.2 Connect Application 
5.2.1 Connectable Advertising 
First, Connect Application starts transmitting Connectable undirected advertising packet for establishing connection. 
Then peer device, like a smart phone, receives Advertising packet and establishes a connection with RL78/G1D device 
by transmitting Connection Request packet.  

 

Figure 5-2  Connectable Advertising 
Regarding to the state transition of Connect Application and the sequence of Connectable Advertising, refer to 
subsection 8.1.2 "Connect Application" and subsection 8.2.2(1) "Initializing & Advertising & Slave Connection 
(Configurations) Sequence" in this document respectively.  

 

Table 5-3 shows the default advertising configuration of Connect Application. 

Table 5-3  the default advertising configuration of Connect Application 
Advertiser Address Public Device Address 12:34:56:78:9A:B0 
Advertising Type Connectable undirected Advertising(ADV_IND) 
Advertising Interval Min 30msec 
Advertising Interval Max 30msec 
Advertising Channel Map All channels (37,38,39ch) 
Advertising Data    Length 2byte 

AD Type <<Flags>> (0x01) 
AD Data LE General Discoverable Mode (bit1) 

BR/EDR Not Supported (bit2) 
 Length 24byte 

AD Type <<Complete Local Name>> (0x09) 
AD Data "RL78/G1D Beacon Updater" 

Scan Response Data  Empty 
 

  

Connectable Advertising

Connection Request

smart phone
(Scanner & Initiator)

  RL78/G1D
(Advertiser)



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 28 of 88 
Mar. 30, 2018  

5.2.2 Pairing / Start Encryption 
After establishing connection, Connect Application executes paring sequence or starts encryption sequence by Master's 
request. When the pairing sequence is completed, the subsequent transmitted data packets are encrypted. 

The pairing sequence is executed in first connection to the peer device.  Device exchanges the pairing information and 
generates the encryption key. For encrypting data in subsequent connection, need the generated encryption key. Thus, 
the application stores the encryption key into the Data Flash memory, by using Data Flash Library.  

The start encryption sequence is executed in the connection to the peer device, which has been already executed the 
pairing sequence before connection. The application loads encryption key from Data Flash memory after that start to 
encrypt data packets.  

 

Figure 5-3  Pairing / Start Encryption 
Regarding to the state transition of Connect Application and the sequence of the pairing / the start encryption, refer to 
subsection 8.1.2 "Connect Application", subsection 8.2.2(2) "Slave Connection (Pairing) Sequence", and subsection 
8.2.2(3) "Slave Connection (Start Encryption) Sequence" in this document respectively.  

 

Table 5-4 shows the default pairing configuration of Connect Application. 

Table 5-4  the default pairing configuration of Connect Application 
Bonding Bondable Mode 
Security Mode Unauthenticated pairing with encryption 
Pairing Method Just Works 
IO Capabilities No Input No Output 
OOB Flag OOB Data not present 
Authentication Requirements No MITM Bonding 
Encryption Key Size 128bit 
Initiator Key Distribution None 
Responder Key Distribution Encryption key 

  

Pairing Sequence or
Start Encryption Sequence

smart phone
(Master)

  RL78/G1D
(Slave)



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 29 of 88 
Mar. 30, 2018  

5.2.3 Profile Communication 
In the connection, Connect Application communicates data according to the Custom Profile. First, GATT Client device 
gets the service composition and the characteristic composition of GATT Server device by Primary Service Discovery, 
Characteristic Discovery and Characteristic Descriptor Discovery.  

 

Figure 5-4  GATT Discovery 
Then, GATT Client device reads and writes the characteristic value of GATT Server device by Characteristic Value 
Read and Characteristic Value Write respectively.  

 

Figure 5-5  GATT Read / Write 
Regarding to the state transition of Connect Application and the sequence of GATT Access, refer to subsection 8.1.2 
"Connect Application" and subsection 8.2.2(4) "Slave Connection (GATT Access) Sequence" in this document 
respectively.  

Regarding to implementing and changing Custom Profile, refer to subsection 6.2.6 "Custom Profile" in this document.  
 
The specification of Custom Profile implemented in the Sample Program is as shown below. 
 Custom Profile Role 

- Role of Beacon device is GATT Server. 
- Role of device which connects to beacon device is GATT Client. 
- GATT Server has Custom Service. 
- GATT Client gets Characteristic Value of Custom Service by Characteristic Value Read, and updates 

Characteristic Value of Custom Service by Characteristic Value Write. 
- GATT Server does not inform data by Notification and Indication. 

 Custom Profile Scenarios 
- GATT Client device updates Advertising Information and Advertising Data for Beacon Stack in beacon 

device by writing Characteristic Value of Custom Profile. 
- Advertising information and Advertising data is stored by Code Flash memory of beacon device. 
- GATT Client device gets the number of updating Code Flash memory and Data Flash memory in beacon 

device by reading Characteristic Value of Custom Profile.  
 
Figure 5-6 shows the default Custom Profile Role of Connect Application. 

 

Figure 5-6  Custom Profile Role  

Primary Service Discovery

Characteristic Discovery

Characteristic Descriptor Discovery

smart phone
(Client)

  RL78/G1D
(Server)

Characteristic Value Read

Characteristic Value Write

smart phone
(Client)

  RL78/G1D
(Server)

Custom Profile Server

Service Characteristic Value Read
Characteristic

: Characteristic Value Write
Characteristic

Custom Profile Client



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 30 of 88 
Mar. 30, 2018  

Table 5-5 shows the default Custom Service specification of Connect Application. 
Table 5-5  the default Custom Service specification of Connect Application 

 Attribute 
Handle 

Attribute Type Attribute Value 

<<Custom Service>> 
 0x000C Primary Service Declaration (0x2800) UUID: A7660001-4B1E-4D6E-91C4-997BA9B6FC07 
<<Characteristic : Advertising Information>> 
 0x000D Characteristic Declaration (0x2803) Properties: Read, Write (0x0A) 

Value Handle: 0x000E 
UUID: A7660002-4B1E-4D6E-91C4-997BA9B6FC07 

0x000E Advertising Information Advertising Information structure defined by Beacon Stack 
API(18byte) 

<<Characteristic : Advertising Data>> 
 0x000F Characteristic Declaration (0x2803) Properties: Read, Write (0x0A) 

Value Handle: 0x0010 
UUID: A7660003-4B1E-4D6E-91C4-997BA9B6FC07 

0x0010 Advertising Data Advertising Data structure defined by Beacon Stack API (32byte) 
<<Characteristic : Scan Response Data>> 
 0x0011 Characteristic Declaration (0x2803) Properties: Read, Write (0x0A) 

Value Handle: 0x0012 
UUID: A7660006-4B1E-4D6E-91C4-997BA9B6FC07 

0x0012 Scan Response Data Advertising Data structure defined by Beacon Stack API (32byte) 
<<Characteristic : Code Flash Memory Updated Count>> 
 0x0013 Characteristic Declaration (0x2803) Properties: Read (0x02) 

Value Handle: 0x0014 
UUID: A7660004-4B1E-4D6E-91C4-997BA9B6FC07 

0x0014 Code Flash Memory Updated Count Code Flash Memory Updated Count (2byte) 
Byte Order : Least Significant Byte First 

<<Characteristic : Data Flash Memory Updated Count>> 
 0x0015 Characteristic Declaration (0x2803) Properties: Read (0x02) 

Value Handle: 0x0016 
UUID: A7660005-4B1E-4d6e-91C4-997BA9B6FC07 

0x0016 Data Flash Memory Updated Count Data Flash Memory Updated Count (2byte) 
Byte Order : Least Significant Byte First 

 

Regarding to the specification of Advertising Information structure and Advertising Data structure, refer to chapter 4 
"API" in RL78/G1D Beacon Stack User's Manual (R01UW0171). 

 

  



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 31 of 88 
Mar. 30, 2018  

5.3 DTM Application 
5.3.1 Direct Test Mode 
DTM Application enables UART for communicating for RF Test commands and events. By receiving RF Test 
command from Tester, the application executes RF Transmitter Test and RF Receiver Test, then after the application 
transmits RF Test events back to Tester. 

 

Figure 5-7  Direct Test Mode 
Regarding to the state transition of DTM Application and the sequence of Direct Test Mode, refer to subsection 8.1.3 
"DTM Application" and subsection 8.2.3(1) "Initializing & Transmitter Test & Receiver Test Sequence" in this 
document respectively. 

 

Table 5-6 shows RF Test Commands for executing Direct Test mode.  

Table 5-6  RF Test Commands 
RF Test Command Parameters 

 LE_RESET Control (ignored) 
LE_RECEIVER_TEST Frequency, Length, Packet Type 
LE_TRANSMITTER_TEST Frequency, Length, Packet Type 
LE_TEST_END None 

 

Table 5-7 shows RF Test Events for returning the result of Direct Test Mode. 

Table 5-7  RF Test Events 
RF Test Event Parameters 

 LE_TEST_STATUS Status(Success / Error) 
LE_TEST_PACKET_REPORT Packet Count 

 

Regarding to the specification of Direct Test Mode, refer to [Vol. 6, Part F] Section 3.3, Bluetooth Core Specification 
v4.2. 

 

  

RF Test commands / events

RF Test packets

RF Tester
(DUT)

  RL78/G1D



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 32 of 88 
Mar. 30, 2018  

5.4 Accessing to Flash memory 
5.4.1 Accessing to Code Flash memory 
Both Beacon Application and Connect Application uses a part of Code Flash memory, which is located outside of 
firmware, to store parameters as system configuration. System configuration is used to store parameters, which need to 
be different from each individual device. 

Beacon Application only loads Device Address, Type, Advertising Information and Advertising Data from system 
configuration. Then start Advertising. 

Connect Application loads Device Address, Type and Device Name from system configuration, and configures them to 
Protocol Stack. When Connect Application receives new Advertising Information or new Advertising Data from peer 
connected device, the application updates system configuration in Code Flash memory. 

 

Table 5-8 shows the specification of system configuration in Code Flash memory. Regarding to the location of system 
configuration, refer to section 5.10 "Address Map" in this document.  

Table 5-8  System Configuration in Code Flash memory 
offset data size read (YES:read, 

NO:not read) 
write (YES:write, 

NO:not write) 
0x00 Device Address 

(RBLE_BD_ADDR structure) 
6 byte YES NO 

0x06 Device Address Type 
0x00: public, 0x01: random 
(uint8_t type) 

1 byte YES NO 

0x07 (reserved) 1 byte NO NO 
0x08 Device Name 

(device_name structure) 
66 byte   

 namelen  1 byte YES NO 
name 65 byte YES NO 

0x4A Advertising Information 
(RBLE_ADV_INFO structure) 

18 byte   

 interval  2 byte YES YES 
delay 1 byte YES YES 
ch_map 1 byte YES YES 
loop_cnt 1 byte YES YES 
tx_pwr 1 byte YES YES 
own_addr 6 byte NO NO 
own_addr_type 1 byte NO NO 
data_cnt 1 byte NO NO 
data 2 byte NO NO 
evt_permit 1 byte NO NO 
use_wl 1 byte NO NO 

0x5C Non-connectable Undirected  
Advertising packet data 
(RBLE_ADV_DATA structure) 

32 byte   

 len  1 byte YES YES 
data 31 byte YES YES 

0x7C Scannable Undirected  
Advertising packet data 
(RBLE_ADV_DATA structure) 

32 byte   

 len  1 byte YES YES 
data 31 byte YES YES 

0x9C Scan Response packet data 
(RBLE_ADV_DATA structure) 

32 byte   

 len  1 byte YES YES 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 33 of 88 
Mar. 30, 2018  

data 31 byte YES YES 
0xAC - - - 

 

Connect Application uses Code Flash Library for updating the Code Flash memory. Regarding to the details about Code 
Flash Library, refer to RL78 Family Flash Self-Programing Library Type01 User's Manual (R01US0050).  

 

5.4.2 Accessing to Data Flash memory 
Connect Application uses Data Flash memory to save parameters, which needs to be stored when power shutdown. 
Thus, by using Data Flash Library, Connect Application reads and writes data in Data Flash memory. 

Table 5-9 shows the stored data in Data Flash memory. 

Table 5-9  Stored Data in Data Flash memory 
Data ID data size reading writing 
0x02 Paring Information 

(con_pairing_t structure) 
In starting Connect 
Application, 
copy to the variable in RAM. 

When disconnection in 
Connect Application,  
if pairing information is 
updated by connecting, 
write to Data Flash memory. 

 peer device address 6 byte 
peer device address type 1 byte 
security status 1 byte 
encryption key information 
 EDIV (Encrypted Diversifier) 2 byte 

Random Number 8 byte 
LTK (Long Term Key) 16 byte 

0x03 
 

Flash memory updating count 
(con_flashcnt_t structure) 

When disconnection in 
Connect Application, 
if either Pairing information, 
Advertising information, or 
Advertising Data is updated, 
write flash memory. 

 Code Flash memory updating count 
 

2 byte 

Data Flash memory updating count 2 byte 

 

Connect Application uses Data Flash Library for reading and writing Data Flash memory. Regarding to the details 
about Data Flash Library, refer to RL78 Family EEPROM Emulation Library Pack02 User's Manual (R01US0068).  

 

Note: Specification of Stored Data in Flash memory is changed from the specification of Rev1.00. When evaluate this 
Sample Program Rev.1.10 by using RL78/G1D Evaluation Board which was used for evaluating the Sample Program 
Rev.1.00, it is necessary to erase Data Flash memory by using Renesas Flash Programmer (RFP), etc. 

Regarding to erasing by using RFP, refer to subsection 2.3.2 "[Operation Setting] Tabbed Page" in Renesas Flash 
Programmer V3.02 Flash memory programming software User's Manual (R20UT3841). 

  



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 34 of 88 
Mar. 30, 2018  

5.5 Supporting Status of Protocol Stack Functions 
This subsection shows supporting status of functions implemented in Protocol Stack for the Sample Program. The 
supported functions are listed in below tables. 

Table 5-10  Software Configuration 
Software Configuration Status Description 

Embedded configuration supported - 
Modem configuration not supported application for RSCIP is not implemented 

 

Table 5-11  GAP Role 
GAP Role Status Description 

Broadcaster supported - 
Observer not supported application for Observer is not implemented 
Central not supported application for Central is not implemented 
Peripheral supported - 

 

Table 5-12  Protocol Stack Layer 
Protocol Stack Layer Status Description 

LL supported - 
GAP supported - 
SM supported - 
GATT supported - 
VS supported - 
Adopted Profile (Note1) not supported application for Adopted Profile is not implemented 
Custom Profile (Note2) supported - 

Note1: Adopted Profile 
It is a GATT-based profile adopted by Bluetooth SIG. 

Note2: Custom Profile 
It is a profile defined uniquely by user. 

Regarding to the details, refer to below website.  
https://www.bluetooth.com/specifications/gatt 

 

Table 5-13  Optional Function 
Optional Function Status Description 

RWKE supported - 
SLEEP supported - 
RSCIP not supported application for RSCIP is not implemented 
DTM 2Wire-UART supported - 
Adaptable not supported application for Adaptable is not implemented 
Peak current notification not supported application for peak current notification is not implemented 
FW update not supported application for FW update is not implemented 
HCI packet monitor supported - 
DataFlash read / write supported - 
CodeFlash write supported - 

 

Table 5-14  Hardware Configuration 
HW Configuration Status Description 

RF high-speed clock output not supported application for RF clock output is not implemented 
external clock MCU operation not supported not supported by Beacon Stack 
RF External Power Amplifier not supported not supported by Beacon Stack 

https://www.bluetooth.com/specifications/gatt


RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 35 of 88 
Mar. 30, 2018  

5.6 Hardware Resources used 
Table 5-15 shows the hardware resources used by the Sample Program with default settings. 

Table 5-15  Hardware Resource used 
RL78/G1D MCU Unit 
 Clock generator Common 

• use 8MHz from High-speed On-chip Oscillator as MCU main system clock 
Common 
• not use XT1 oscillator (use RF on-chip oscillator for generating RF slow 

clock) 
Clock output/buzzer output Common 

• not output clock generated XT1 oscillation from PCLBUZ0 pin 
Timer Array Unit Beacon Stack 

• use TM00, and set operation clock CK00 to 1MHz 
Serial array unit Beacon Stack and BLE Protocol Stack 

• use CSI21 
DTM Application 
• use UART0 

DMA controller Beacon Stack and BLE Protocol Stack 
• use DMA2 and DMA3 
DTM Application 
• use DMA0 and DMA1 

Interrupt Beacon Stack 
• use INTRF, INTDMA2, INTDMA3, and INTTM00 
Beacon Application and Connect Application 
• use INTP5 
DTM Application 
• use INTDMA0, INTDMA1, INTSR0, INTSRE0, and INTST0 

Port Common 
• use P10, for DIP switch SW6 position-1 input on the evaluation board 
• use P16, for switch SW2 input on the evaluation board 
• use P60, for controlling LED4 on the evaluation board 
• use P120, P147, P03, and P60, for controlling LED1, 2, 3, and 4 on the 

evaluation board 
RL78/G1D RF Unit 

 DC-DC Converter use RF on-chip DC-DC converter 
Oscillator for RF slow clock use RF on-chip oscillator  
GPIO0 Input mode (unchangeable) 
GPIO1 Input mode (unchangeable) 
GPIO2 Input mode, RF high-speed clock output is disabled (unchangeable) 
GPIO3 When use Oscillator for RF slow clock: Output-low mode 

  When no use Oscillator for RF slow clock: Input mode for RF slow clock input 
RL78/G1D Evaluation Board 

 Input functions Common 
• use DIP switch SW6 position-1, for selecting application 
Beacon Application and Connect Application 
• use push switch SW2, for switching application 

Display Beacon Application and DTM Application 
• use LED4, for indicating that the Sample Program is started 
Connect Application 
• use LED1, for indicating that data is encrypted 
• use LED2, for indicating that connection is established 
• use LED3, for indicating that Connect Application is started 
• use LED4, for indicating that the Sample Program is started 

 

  



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 36 of 88 
Mar. 30, 2018  

5.7 Compiler 
The library of Beacon Stack is generated by below compiler. It is necessary to use CC-RL compiler for developing 
application which uses Beacon Stack.  

Compiler  ：Renesas CC-RL V1.04.00 
 

5.8 Memory Model 
The memory model of Beacon Stack is medium model. It is necessary to set below option in the compile option of 
application which uses Beacon Stack.  

Memory Model  ：-memory_model=medium 
 

5.9 Program Size 
Table 5-16 shows the total memory usage in the Sample Program.  

Target Device  ：R5F11AGJ 
Compiler  ：Renesas CC-RL V1.04.00 
Compile Configuration ：default configuration of Sample Program released 

 

Table 5-16  Sample Program Total Program Size 
ROM SIZE 119,998 byte 

PROGRAM SECTION + ROMDATA SECTION 
RAM SIZE 010,439 byte 

RAMDATA SECTION 
(not included stack memory which program consumes for calling 
functions and allocating auto variables) 

 

Regarding to the section specification, refer to chapter 6 "SECTION SPECIFICATIONS" in CC-RL Compiler User's 
Manual (R20UT3123). 

 

  



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 37 of 88 
Mar. 30, 2018  

5.10 Address Map 
Figure 5-8 shows the address map of the Sample Program for RL78/G1D (R5F11AGG) device.  

Under-lined values are different for R5F11AGH and R5F11AGJ.  

 
Address Area Size  Section Section Name   

 131,072byte   Code Flash memory  
0x00000 128byte   Vector table area .vect   
0x00080 64byte  CALLT table area .callt0  
0x000C0 4byte  Option byte area .option_byte  
0x000C4 10byte  Security ID setting area .security_id  
0x000CE 129,842byte  Program area (below sections are described in no particular order)  
    OCD monitor .monitor1, .monitor2  
   Startup BOOT0_TEXT  
   Runtime library .RLIB  
   Standard library .SLIB  
   CodeFlash library FSL_FCD, FSL_RCD, FSL_BCD, FSL_BECD  
   DataFlash library EEL_CODE, FDL_CODE  
   Beacon Stack BCN_CONST, BCN_TEXT  
   Protocol Stack RBL_CNST_n, RBL_CODE_n, RBL_CODE_f, 

HST_CNST_n, HST_CODE_n, HST_CODE_f, 
CNT_CNST_n, CNT_CODE_n, CNT_CODE_f 

 

   Applications .const, .constf, .data, .text, .textf  
   Unused area -  
0x1FC00 156byte  System Configuration area  
0x1FC9C   Unused area  
0x20000   Reserved  
0xF0000 2048byte  Special function register(2nd SFR)  
0xF0800   Reserved  
0xF1000 8192byte  DataFlash memory  
0xF3000 40,704byte  Mirror area  
0xFCF00 12,064byte  RAM area  
    Program Resource area (below sections are described in no particular order)   
    Applications .bss, .dataR  
   Protocol Stack RBL_DATA_n, HST_DATA_n , CNT_DATA_n  
   Beacon Stack BCN_BSS  
   DataFlash library EEL_SDAT , FDL_SDAT  
   Unused area -  
   Stack area -  
0xFFEE0 32byte  General-purpose register 
0xFFF00 256byte  Special function register(SFR)  
0xFFFFF       

Figure 5-8  Address Map (R5F11AGG) 
  



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 38 of 88 
Mar. 30, 2018  

Figure 5-9 shows the address map of the Sample Program for RL78/G1D (R5F11AGH) device.  

Under-lined values are different for R5F11AGG and R5F11AGJ.  

 
Address Area Size  Section Section Name   

 196,608byte   Code Flash memory  
0x00000 128byte   Vector table area .vect   
0x00080 64byte  CALLT table area .callt0  
0x000C0 4byte  Option byte area .option_byte  
0x000C4 10byte  Security ID setting area .security_id  
0x000CE 195,378byte  Program area (below sections are described in no particular order)  
    OCD monitor .monitor1, .monitor2  
   Startup BOOT0_TEXT  
   Runtime library .RLIB  
   Standard library .SLIB  
   CodeFlash library FSL_FCD, FSL_RCD, FSL_BCD, FSL_BECD  
   DataFlash library EEL_CODE, FDL_CODE  
   Beacon Stack BCN_CONST, BCN_TEXT  
   Protocol Stack RBL_CNST_n, RBL_CODE_n, RBL_CODE_f, 

HST_CNST_n, HST_CODE_n, HST_CODE_f, 
CNT_CNST_n, CNT_CODE_n, CNT_CODE_f 

 

   Applications .const, .constf, .data, .text, .textf  
   Unused area -  
0x3F400 156byte  System Configuration area  
0x3F49C   Unused area  
0x40000   Reserved  
0xF0000 2048byte  Special function register(2nd SFR)  
0xF0800   Reserved  
0xF1000 8192byte  DataFlash memory  
0xF3000 36,608byte  Mirror area  
0xFBF00 16,160byte  RAM area  
    Program Resource area (below sections are described in no particular order)   
    Applications .bss, .dataR  
   Protocol Stack RBL_DATA_n, HST_DATA_n , CNT_DATA_n  
   Beacon Stack BCN_BSS  
   DataFlash library EEL_SDAT , FDL_SDAT  
   Unused area -  
   Stack area -  
0xFFEE0 32byte  General-purpose register 
0xFFF00 256byte  Special function register(SFR)  
0xFFFFF       

Figure 5-9  Address Map (R5F11AGH) 
  



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 39 of 88 
Mar. 30, 2018  

Figure 5-10 shows the address map of the Sample Program for RL78/G1D (R5F11AGJ) device.  

Under-lined values are different for R5F11AGG and R5F11AGH.  

 
Address Area Size  Section Section Name   

 262,144byte   Code Flash memory  
0x00000 128byte   Vector table area .vect   
0x00080 64byte  CALLT table area .callt0  
0x000C0 4byte  Option byte area .option_byte  
0x000C4 10byte  Security ID setting area .security_id  
0x000CE 258,866byte  Program area (below sections are described in no particular order)  
    OCD monitor .monitor1, .monitor2  
   Startup BOOT0_TEXT  
   Runtime library .RLIB  
   Standard library .SLIB  
   CodeFlash library FSL_FCD, FSL_RCD, FSL_BCD, FSL_BECD  
   DataFlash library EEL_CODE, FDL_CODE  
   Beacon Stack BCN_CONST, BCN_TEXT  
   Protocol Stack RBL_CNST_n, RBL_CODE_n, RBL_CODE_f, 

HST_CNST_n, HST_CODE_n, HST_CODE_f, 
CNT_CNST_n, CNT_CODE_n, CNT_CODE_f 

 

   Applications .const, .constf, .data, .text, .textf  
   Unused area -  
0x3F400 156byte  System Configuration area  
0x3F49C   Unused area  
0x3F800 512byte  Reserved area (RL78/G1D Module only)  
0x3FC00 6byte  User Information area  
0x3FC06   Unused area  
0x40000   Reserved  
0xF0000 2048byte  Special function register(2nd SFR)  
0xF0800   Reserved  
0xF1000 8192byte  DataFlash memory  
0xF3000 32,512byte  Mirror area  
0xFAF00 1024byte  Self RAM area (R5F11AGJ only)  
0xFB300 20,447byte  RAM area  
    Program Resource area (below sections are described in no particular order)   
    Applications .bss, .dataR  
   Protocol Stack RBL_DATA_n, HST_DATA_n , CNT_DATA_n  
   Beacon Stack BCN_BSS  
   DataFlash library EEL_SDAT , FDL_SDAT  
   Unused area -  
   Stack area -  
0xFFEE0 32byte  General-purpose register 
0xFFF00 256byte  Special function register(SFR)  
0xFFFFF       

Figure 5-10  Address Map (R5F11AGJ) 
  



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 40 of 88 
Mar. 30, 2018  

6. Configuration 
This chapter describes the configurations for hardware and application of the Sample Program.  

6.1 Hardware configuration 
For using Protocol Stack and Beacon Stack, major hardware configurations are arranged to macro definitions in 
r_config.h. Regarding to the details about macro definitions, refer to following subsections. 

Project_Source\application\src\r_config.h, line 34-86 

 
 

  

34:    /* 
35:     * CONFIGURATIONS (NEED TO CHANGE BELOW DEFINES AS NECESSARY) 
36:     **************************************************************************************** 
37:     */ 
38:    /* MCU Main System Clock (either clock frequency of 4MHz,8MHz,16MHz,32MHz)              */ 
39:    /*  Note: It is necessary to set Option Bytes Value at Device Setting of Linker Option  */ 
40:    #define MCU_HOCO_CLK            (8) 
41:     
42:    /* RF Operation (0:enable both Tx and Rx, 1:enable Tx only) */ 
43:    /*   Note: This configuration is only for Beacon Stack      */ 
44:    #define RF_TX_ONLY              (0) 
45:     
46:    /* RF DC-DC Converter (0:disable DC-DC, 1:enable DC-DC) */ 
47:    #define RF_DCDC_EN              (1) 
48:     
49:    /* RF Slow Clock Source (0:RF On-Chip Oscillator, 1:MCU XT1 Oscillator) */ 
50:    #define RF_SLK_XT1              (0) 
51:     
52:    /* RF Slow Clock Calibration (0:not execute, 1:execute)                    */ 
53:    /*   Note: This configuration is only for Beacon Stack                     */ 
54:    /*       : RF Slow Clock Calibration is only for RF-On_Chip_Oscillator     */ 
55:    /*       : Protocol Stack always execute RF on chip oscillator calibration */ 
56:    #define RF_SLK_CAL              (1) 
57:     
58:    /* RF 32MHz Oscillation Stabilization Time (usec, at least 550usec)     */ 
59:    /*   Note: This configuration is only for Beacon Stack                  */ 
60:    /*       : Stabilization Time needs to be optimized for 32MHz resonator */ 
61:    #define RF_32MHZ_WAIT           (1000) 
62:     
63:    /* Maximum number of Simultaneous Connections (fixed 1)               */ 
64:    /*   Note: This configuration is only for BLE Protocol Stack          */ 
65:    /*       : fixed 1, Connect Application behaves as peripheral device  */ 
66:    #define MAX_CONNECTION          (1) 
67:     
68:    /* Packet Monitoring (0:disable Packet Monitor, 1:enable Packet Monitor) */ 
69:    /*   Note: This configuration is only for BLE Protocol Stack             */ 
70:    /*       : Packet Monitoring uses UART1 for using output HCI log         */ 
71:    #define PKTMON_EN               (0) 
72:     
73:    /* System Configuration Address in CodeFlash memory */ 
74:    #if   defined(_USE_R5F11AGG) 
75:        /* System Configuration is located the last block */ 
76:        #define SYSCFG_ADDR         (0x1FC00) 
77:    #elif defined(_USE_R5F11AGH) 
78:        /* System Configuration is located the last block */ 
79:        #define SYSCFG_ADDR         (0x2FC00) 
80:    #elif defined(_USE_R5F11AGJ) 
81:        /* System Configuration is located the third last block            */ 
82:        /* by taking into account the location of RL78/G1D module (RY7011) */ 
83:        #define SYSCFG_ADDR         (0x3F400) 
84:        /* In the case of RL78/G1D Module (RY7011), Device Address is located the last block */ 
85:        #define MODCFG_ADDR         (0x3FC00) 
86:    #endif 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 41 of 88 
Mar. 30, 2018  

6.1.1 MCU main system clock frequency 
Clock generated by Hi-speed On-chip Oscillator is used as MCU main system clock, and selectable frequency of MCU 
main system clock is 4, 8, 16 and 32MHz. In the Sample Program, frequency of MCU main system clock is defined by 
the macro MCU_HOCO_CLK and Option Bytes. The default setting of clock frequency is 8 (MHz). 

If changing the frequency of MCU main system clock, change the macro value to one of the values: 4 (MHz), 8 (MHz), 
16 (MHz), 32 (MHz).  

Project_Source\application\src\r_config.h, line 38-40 

 
 

Option Bytes is set to the linker option "-user_opt_byte". Regarding to the value of Option Bytes, refer to Table 6-1.  

Table 6-1  Option Bytes value setting 
Option Bytes setting Clock frequency Flash Operation Mode 

000C0 000C1 000C2 

(any) (any) 

2B 4MHz low-voltage main mode 
AA 8MHz low-speed main mode 
E9 16MHz 

high-speed main mode 
E8 32MHz 

 

Regarding to the details about Option Bytes, refer to chapter 25 "OPTION BYTE" in RL78/G1D User's Manual: 
Hardware (R01UH0515). CPU operation voltage varies with respect to CPU clock frequency. Regarding to the 
operation voltage, refer to section 30.2 "Operating Voltage" in RL78/G1D User's Manual: Hardware (R01UH0515). 

 

(1) Using CS+ for CC 

In the case of CS+ for CC about how to set Option Bytes, follow the below steps. 

1 Right-click to [CC-RL] of the subproject "R5F11AGJ_BcnCmb" in the project tree. 

2 Select [Property] in right click menu. 

3 Set the Option Bytes at the [Device][User option byte value] of [Link Options] tab. 

 
(2) Using e2 studio 

In the case of e2 studio about how to set Option Bytes, follow the below steps. 

1 Right-click to "R5F11AGJ_BcnCmb" project. 

2 Select [Renesas Tool Settings] in right click menu. 

3 Set the Option Bytes at the [Linker][Device][User option byte value] of [Tool Settings] tab.  

 
  

38:    /* MCU Main System Clock (either clock frequency of 4MHz,8MHz,16MHz,32MHz)              */ 
39:    /*  Note: It is necessary to set Option Bytes Value at Device Setting of Linker Option  */ 
40:    #define MCU_HOCO_CLK            (8) 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 42 of 88 
Mar. 30, 2018  

6.1.2 RF Operation 
It is possible to select whether to enable both Tx and Rx or only Tx when Beacon Stack works. When enabling only Tx 
is selected, RF initialization time is shortened. In the Sample Program, whether to enable both Tx and Rx or only Tx is 
defined by the macro RF_TX_ONLY. The default setting is 0, which means that RF operation is enabled both Tx and 
Rx. 

If need to enable only Tx, change the macro value to 1. 

Project_Source\application\src\r_config.h, line 42-44 

 
 

6.1.3 RF on-chip DC-DC converter 
In the Sample Program, whether to use RF on-chip DC-DC converter is defined by the macro RF_DCDC_EN.  Thus, it 
is possible to select whether to use RF on-chip DC-DC converter or not. The default setting is 1, which means that RF 
on-chip DC-DC converter is used. 

If not using RF on-chip DC-DC converter, change the macro value to 0.  

Project_Source\application\src\r_config.h, line 46-47 

 
 

6.1.4 RF slow clock source 
RF slow clock is needed to RF unit for counting the period, and it is possible to select as a source of RF clock from 
either RF on-chip oscillator or MCU unit XT1 oscillator. In the Sample Program, RF slow clock source is defined by 
the macro RF_SLK_XT1. The default setting is 0, which means that RF on-chip oscillator is selected as a source for RF 
slow clock.  

If changing RF slow clock source to MCU unit XT1 oscillator, change the macro value to 1. By changing the macro to 
1, clock generated by MCU unit XT1 oscillator is supplied to RF unit via EXSLK_RF pin.  

Project_Source\application\src\r_config.h, line 49-50 

 
 

6.1.5 RF on-chip oscillator calibration 
In the case of using RF on-chip oscillator as a source of RF slow clock, calibrating accuracy of clock generated by RF 
on-chip oscillator is always executed when Protocol Stack works. But it is possible to select whether to execute 
calibration or not when Beacon Stack works. In the Sample Program, whether to execute calibration is defined by the 
macro RF_SLK_CAL. The default setting is 1, which means that the calibration is executed. 

Beacon Stack executes calibration only once, just after the end of the transmitting first advertising packet followed by 
RF initialization. By executing calibration, the accuracy of advertising interval is improved. 

If not executing calibration, change the macro value to 0.  

Project_Source\application\src\r_config.h, line 52-56 

 
 

  

42:    /* RF Operation (0:enable both Tx and Rx, 1:enable Tx only) */ 
43:    /*   Note: This configuration is only for Beacon Stack      */ 
44:    #define RF_TX_ONLY              (0) 

46:    /* RF DC-DC Converter (0:disable DC-DC, 1:enable DC-DC) */ 
47:    #define RF_DCDC_EN              (1) 

49:    /* RF Slow Clock Source (0:RF On-Chip Oscillator, 1:MCU XT1 Oscillator) */ 
50:    #define RF_SLK_XT1              (0) 

52:    /* RF Slow Clock Calibration (0:not execute, 1:execute)                    */ 
53:    /*   Note: This configuration is only for Beacon Stack                     */ 
54:    /*       : RF Slow Clock Calibration is only for RF-On_Chip_Oscillator     */ 
55:    /*       : Protocol Stack always execute RF on chip oscillator calibration */ 
56:    #define RF_SLK_CAL              (1) 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 43 of 88 
Mar. 30, 2018  

6.1.6 RF base clock oscillation stabilization time 
In the Sample Program, the oscillation stabilization time is defined by the macro RF_32MHZ_WAIT. Thus, it is 
necessary to optimize the oscillation stabilization time of XTAL_RF oscillator for using RF base clock, which is 
depending on the 32MHz resonator connected to XTAL1_RF and XTAL2_RF pin. The default setting is 1000 (usec) 
which is suitable for the particular RL78/G1D Evaluation Board. 

If changing the oscillation stabilization time, change the macro value to the time, as a minimum 550 (usec).  

Project_Source\application\src\r_config.h, line 58-61 

 
 

Regarding to the details about RF base clock generator, refer to subsection 15.3.9 "RF clock generator circuit block" in 
RL78/G1D User's Manual: Hardware (R01UH0515).  

 

6.1.7 Maximum number of Simultaneous connection 
The Sample Program performs as Peripheral Role, so maximum number of simultaneous connection is fixed to 1. In the 
Sample Program, the maximum number is defined by the macro MAX_CONNECTION. The default setting is 1, which 
means that only one connection is established to peer Central Role device.  

Project_Source\application\src\r_config.h, line 63-66 

 
 

6.1.8 HCI Monitoring 
BLE Protocol Stack provides monitoring HCI sequence for debugging purpose.  By enabling this function, you can 
monitor HCI log packet through UART1, and understand how Protocol Stack works. In the Sample Program, whether 
to enable HCI monitoring or not is defined by the macro PKTMON_EN. The default setting is 0, which means that HCI 
monitoring is disabled.  

If enabling HCI monitoring, change the macro value to 1.  

Project_Source\application\src\r_config.h, line 68-71 

 
 

In order to confirm the contents of HCI log packets, PC and specific application software is needed. 

Regarding to the details about how to use the HCI monitoring, refer to chapter 12 "HCI Packet Monitoring Feature" in 
Bluetooth Low Energy Protocol Stack User's Manual (R01UW0095). 

 

  

58:    /* RF 32MHz Oscillation Stabilization Time (usec, at least 550usec)     */ 
59:    /*   Note: This configuration is only for Beacon Stack                  */ 
60:    /*       : Stabilization Time needs to be optimized for 32MHz resonator */ 
61:    #define RF_32MHZ_WAIT           (1000) 

63:    /* Maximum number of Simultaneous Connections (fixed 1)               */ 
64:    /*   Note: This configuration is only for BLE Protocol Stack          */ 
65:    /*       : fixed 1, Connect Application behaves as peripheral device  */ 
66:    #define MAX_CONNECTION          (1) 

68:    /* Packet Monitoring (0:disable Packet Monitor, 1:enable Packet Monitor) */ 
69:    /*   Note: This configuration is only for BLE Protocol Stack             */ 
70:    /*       : Packet Monitoring uses UART1 for using output HCI log         */ 
71:    #define PKTMON_EN               (0) 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 44 of 88 
Mar. 30, 2018  

6.1.9 System Configuration Address 
In the Code Flash memory, it is possible to store information as system configuration outside of the firmware. By 
setting each different system configuration for different devices, it is possible to configure the information without 
rebuilding firmware. For example, this information includes device address, advertising data, and etc. In the Sample 
Program, the address of system configuration is defined by the macro SYSCFG_ADDR.  

If needed to re-assign the address map, change the macro value to new address.  

Project_Source\application\src\r_config.h, line 73-86 

 
 

Regarding to the details about System Configuration, refer to subsection 5.4.1 "Accessing to Code Flash memory" in 
this document.  

 

6.1.10 Switches on RL78/G1D Evaluation Board 
For switching application, the Sample Program uses switches on the evaluation board. DIP switch SW6 position-1 
switches either Beacon Operation or RF Evaluation Operation. Switch SW2 switches either Beacon Application or 
Connect Application alternately. In the Sample Program, whether to use switches or not is defined by the macro 
EVB_SW. The default setting is 1, which means that switches are used. 

If need not to use switches on the evaluation board, change the macro value to 0. 

Project_Source\application\src\r_main.c, line 51-61 

 
 

  

73:    /* System Configuration Address in CodeFlash memory */ 
74:    #if   defined(_USE_R5F11AGG) 
75:        /* System Configuration is located the last block */ 
76:        #define SYSCFG_ADDR         (0x1FC00) 
77:    #elif defined(_USE_R5F11AGH) 
78:        /* System Configuration is located the last block */ 
79:        #define SYSCFG_ADDR         (0x2FC00) 
80:    #elif defined(_USE_R5F11AGJ) 
81:        /* System Configuration is located the third last block            */ 
82:        /* by taking into account the location of RL78/G1D module (RY7011) */ 
83:        #define SYSCFG_ADDR         (0x3F400) 
84:        /* In the case of RL78/G1D Module (RY7011), Device Address is located the last block */ 
85:        #define MODCFG_ADDR         (0x3FC00) 
86:    #endif 

51:    /* Switches on RL78/G1D Evaluation Board (0:not to use, 1:use)                             */ 
52:    /*   Operation:                                                                            */ 
53:    /*     When use Switches:                                                                  */ 
54:    /*       - After power up, Beacon Application starts running at first                      */ 
55:    /*       - It is possible to switch Beacon Application and Connect Application alternately */ 
56:    /*     When use no Switches:                                                               */ 
57:    /*       - After power up, Connect Application starts running at first                     */ 
58:    /*       - If connection is not established within 30sec, Connect Application stops and    */ 
59:    /*         Beacon Application starts running                                               */ 
60:    /*       - It is not possible to switch from Beacon Application to Connect Application     */ 
61:    #define EVABOARD_SWITCH_EN      (1) 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 45 of 88 
Mar. 30, 2018  

Figure 6-1 shows application switch operation when the Sample Program uses switches on the evaluation board. 

The Sample Program uses Switch SW2 and SW6 position-1 for switching application. When switch SW6 position-1 is 
ON, the Sample Program executes DTM Application. When switch SW6 position-1 is OFF, the Sample Program 
executes Beacon Application and Connect Application. After power on, Beacon Application runs at first. Pushing 
switch SW2 can switch Beacon Application and Connect Application alternately. 

 

Figure 6-1  Application Switch Operation when the Sample Program uses switches on the evaluation board 

 
Figure 6-2 shows application switch operation when the Sample Program uses no switch on the evaluation board.  

The Sample Program executes Beacon Application and Connect Application. After power on, Connect Application runs 
at first. If connection is not established within 30seconds, Beacon Application runs. To execute Connect Application 
again, it is necessary to reset the MCU.  

 

Figure 6-2  Application Switch Operation when the Sample Program uses no switch on the evaluation board 

  

off

 true

no connect within 30sec

on

false

 true

true

 false

false

START

Connect Application

Beacon Application

push SW2

DTM Application

SW6-1

push SW2

false

 true

no connect within 30sec

START

Connect Application

Beacon Application



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 46 of 88 
Mar. 30, 2018  

6.2 Application Configuration 
6.2.1 System Configuration 
System configuration is located outside of firmware in the Code Flash memory. Thus it is possible to write System 
configuration and firmware at the same time, by using Unique Code Embedding Function of Renesas Flash 
Programmer.  

 

As a sample, the release package includes unique code file for system configuration. Regarding to the details about 
system configuration defined by Sample Program, refer to subsection 5.4.1 "Accessing to Code Flash memory" in this 
document.  

RUC_File\r5f11agj_syscfg.ruc, line 1-10 

 
 

The sample unique code file for R5F11AGJ describes below. 

line 1-4 : The lines starting with // are comment line. 
line 5 : specifies the format as hexadecimal format 
line 6 : specifies the area as User area 
line 7 : specifies the address as 0x3F400 (block 253) 
line 8 : specifies the size 124 byte 
line 9 : declares the unique code data starts at the next line 
line10 : specifies the index and unique code 
   (a): index of unique code data 
   (b): device address (6byte) 
   (c): device address type (1byte), padding (1byte) 
   (d): device name (66byte) 
   (e): advertising information (18byte) 
   (f): advertising data (32byte) 
   (g): scan response data (32byte) 
 

  

 1:    // ---------------------------------------------------------------------------------------------- 
 2:    // -- System Configuration for RL78/G1D BLE Protocol / Beacon Stack Combination Sample Program -- 
 3:    // --   Device Part Number : R5F11AGJ           -- 
 4:    // ---------------------------------------------------------------------------------------------- 
 5:    format hex 
 6:    area user flash 
 7:    address 0x3f400 
 8:    size 156 
 9:    index data 

10:    000001 B19A78563412000012524C37382F47314420426561636F6E20303100000000000000000000000000000000000000 

00000000000000000000000000000000000000000000000000000000A00001070009B09A7856341200018EC703001B02010 

60303AAFE1316AAFE10EE02676F6F2E676C2F3764694C5478000000001B180952656E6573617320524C37382F4731442042 

6561636F6E303100000000 

(a) (b) (d) 

(d) (e) (f) 

(f) 

(c) 

(g) 

(g) 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 47 of 88 
Mar. 30, 2018  

6.2.2 Kernel Heap Memory Configuration 
BLE Protocol Stack includes a kernel called RWKE. The kernel provides below functions. 

- Event Management 
- Message Communication Management 
- Task State Management 
- Timer Management 
- Memory Management. 

When execute kernel functions, the kernel allocates a partial area dynamically from an area predefined as heap memory. 
If there are a lot of load for the kernel, heap memory may be exhausted. When run short of heap memory by enhancing 
Connect Application, change the macro APP_HEAP_SIZE value, which defines heap memory size. 

By the way, unused area of RAM is used as stack memory. If heap memory is too big, stack-overflow of stack memory 
may occur. 

Project_Source\application\src\connect\resource\r_kernel.c, line 56-65 

 
 

Regarding to the details of the kernel, refer to chapter 9 "RWKE" in Bluetooth Low Energy Protocol Stack API 
Reference Manual: Basics (R01UW0088). 

 

  

56:    #define APP_HEAP_SIZE           (0) 
57:    /* Note: When Kernel Heap size is not enough, it is necessary to incease APP_HEAP_SIZE */ 
58:     
59:    #define BLE_HEAP_SIZE           ((MAX_CONNECTION * 256) + 512           \ 
60:                                      + BLE_HEAP_CONT                       \ 
61:                                      + (BLE_HEAP_HOST * MAX_CONNECTION)    \ 
62:                                      + BLE_DB_SIZE                         \ 
63:                                      + RBLE_TABLE_SIZE                     \ 
64:                                      + APP_HEAP_SIZE                       \ 
65:                                    ) 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 48 of 88 
Mar. 30, 2018  

6.2.3 Advertising Configuration 
Default Advertising configuration for Beacon Application is defined in r_beacon.c file.  

If needed to change the default Advertising information or default Advertising data, modify the value of 
RBLE_ADV_INFO structure or RBLE_ADV_DATA structure. Regarding of these structure specification, refer to 
chapter 4 "API" in RL78/G1D Beacon Stack User's Manual (R01UW0171).  

Project_Source\application\src\beacon\r_beacon.c, line 42-92 

 
 

  

42:    /* Advertising Data Array */ 
43:    static RBLE_ADV_DATA adv_data[] = 
44:    { 
45:        /* Advertising Data[0] */ 
46:        /* Eddystone-URL: https://goo.gl/5wKkRK -> https://www.renesas.com/ */ 
47:        { 
48:            /* Advertising data length */ 
49:            27, 
50:            /* Advertising data <<Flags>> */ 
51:            0x02, 0x01, 0x06, 
52:            /* Advertising data <<Complete List of 16-bit Service Class UUIDs>> */ 
53:            0x03, 0x03, 0xAA, 0xFE, 
54:            /* Advertising data <<Service Data>> */ 
55:            0x13, 0x16, 0xAA, 0xFE, 0x10, 0xEE, 0x02, 
56:            'g', 'o', 'o', '.', 'g', 'l', '/', '5', 'w', 'K', 'k', 'R', 'K' 
57:        }, 
58:        #if !RF_TX_ONLY 
59:        /* Scan Response Data[0] */ 
60:        { 
61:            /* Scan Response data length */ 
62:            25, 
63:            /* Scan Response data <<Complete local name>> */ 
64:            0x18, 0x09,  
65:            'R','e','n','e','s','a','s',' ','R','L','7','8','/','G','1','D', 
66:            ' ','B','e','a','c','o','n' 
67:        }, 
68:        #endif 
69:    }; 
70:     
71:    /* Advertising packet type */ 
72:    #if RF_TX_ONLY 
73:    static const uint8_t adv_type = RBLE_PDU_ADV_NONCONN_IND; 
74:    #else 
75:    static const uint8_t adv_type = RBLE_PDU_ADV_SCAN_IND; 
76:    #endif 
77:     
78:    /* Advertising Information */ 
79:    static RBLE_ADV_INFO adv_info = 
80:    { 
81:        0x00A0,                                         /* Advertising Interval         */ 
82:        true,                                           /* Advertising Interval Delay   */ 
83:        RBLE_ADV_ALL_CHANNELS,                          /* Advertising Channel Map      */ 
84:        0x00,                                           /* Advertising Transfer Count   */ 
85:        RBLE_TXPW_LV9,                                  /* Advertising Transfer Power   */ 
86:        { 0xB0, 0x9A, 0x78, 0x56, 0x34, 0x12 },         /* Own Device Address           */ 
87:        RBLE_ADDR_PUBLIC,                               /* Own Device Address Type      */ 
88:        sizeof(adv_data) / sizeof(RBLE_ADV_DATA),       /* Advertising Data Count       */ 
89:        &adv_data[0],                                   /* Advertising Data             */ 
90:        RBLE_EVT_PERMIT_ADV_ALL,                        /* Advertising Event Permission */ 
91:        false                                           /* Use White List               */ 
92:    }; 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 49 of 88 
Mar. 30, 2018  

If transmitting multiple Advertising data repeatedly, increase the number of RBLE_ADV_DATA structure array.  

Example Code for transmitting multiple Advertising data 

  

    /* Advertising Data Array */ 
    static RBLE_ADV_DATA adv_data[] = 
    { 
        /* Advertising data No.1 */ 
        { 
            /* Advertising data length */ 
            … , 
            /* Advertising data */ 
            … 
        }, 
        /* Advertising data No.2 */ 
        { 
            /* Advertising data length */ 
            … , 
            /* Advertising data */ 
            … 
        } 
        : 
    }; 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 50 of 88 
Mar. 30, 2018  

Default Advertising configuration for Connect Application is defined in r_connect.c file.  

If needed to change the default Advertising information, default Advertising data and default Scan Response data, 
modify the value of RBLE_ADV_INFO structure. Regarding to the specification of its structure, refer to chapter 5 
"Generic Access Profile" in Bluetooth Low Energy Protocol Stack API Reference Manual: Basics (R01UW0088). 

Project_Source\application\src\connect\r_connect.c, line 148-181 

 
 

To specify peer device for establishing connection, set RBLE_ADV_ALLOW_SCAN_ANY_CON_WLST as the 
advertising filter policy of RBLE_ADV_INFO structure, in order to enable White List. Before starting Advertising, call 
RBLE_GAP_Add_To_White_List in order to add device address to the White List. 

If specifying multiple peer device, call RBLE_GAP_Add_To_White_List for adding each peer device address. 

Example Code for adding device address to White List 

 
 

148:    /* Advertising Information for connection as a slave role */ 
149:    /*  Note : it is necessary to change configuration corresponds to each use case */ 
150:    static RBLE_ADV_INFO  broadcast_info = 
151:    { 
152:        /* Advertising Parameter structure */ 
153:        { 
154:            0x0030,                                     /* Advertising Interval Min        */ 
155:            0x0030,                                     /* Advertising Interval Max        */ 
156:            RBLE_GAP_ADV_CONN_UNDIR,                    /* Advertising Type                */ 
157:            RBLE_ADDR_PUBLIC,                           /* Own Address Type                */ 
158:            0x00,                                       /* Direct Advertising Address Type */ 
159:            { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },     /* Direct Advertising Address      */ 
160:            RBLE_ADV_ALL_CHANNELS,                      /* Advertising Channel Map         */ 
161:            RBLE_ADV_ALLOW_SCAN_ANY_CON_ANY,            /* Advertising Filter Policy       */ 
162:            0x00,                                       /* (reserved)                      */ 
163:        }, 
164:        /* Advertising Data structure */ 
165:        { 
166:            /* Advertising data length (max 31byte)  */ 
167:            3+25, 
168:            /* Advertising data <<Flags>> */ 
169:            2,  0x01, 0x06, 
170:            /* Advertising data <<Complete Local Name>> */ 
171:            24, 0x09, 
172:            'R','L','7','8','/','G','1','D',' ','B','e','a','c','o','n',' ','U','p','d','a','t','e','r' 
173:        }, 
174:        /* Scan Response Data structure */ 
175:        { 
176:            /* Scan Response data length (max 31byte) */ 
177:            0, 
178:            /* Scan Response data */ 
179:            0x00 
180:        } 
181:    }; 

    uint9_t wl_cnt; 
 
    /* device address list for white list */ 
    static RBLE_DEV_ADDR_INFO wl_info[] = 
    { 
        {RBLE_ADDR_PUBLIC, { 0x01, 0x90, 0x78, 0x56, 0x34, 0x12 }}, 
        : 
    }; 
 
    /* set device address to white list */ 
    /* it is necessary to call repeatedly until all device address of list is added */ 
    if(wl_cnt < (sizeof(wl_info) / sizeof(RBLE_DEV_ADDR_INFO))) 
    { 
        RBLE_GAP_Add_To_White_List(&wl_info[wl_cnt++]); 
    } 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 51 of 88 
Mar. 30, 2018  

Note: White List should not be used for Resolvable Private address, so Resolvable Private address is changed regularly 
by generating with Identity Resolving Key.  

 

6.2.4 No Connection Timeout Time Configuration 
Connect Application finishes if connection is not established from either application start-up or previous disconnection 
within the no connection timeout time. The timeout time is defined by the macro CON_TIME_OUT. It is possible to set 
the timeout time in the range of 10 to 299,990 milli-seconds, and in increments of 10milli-seconds. The default setting 
is 30 seconds. 

If changing the timeout time, change the CON_TIME_OUT macro value in the range of 1 to 29,999. 

Project_Source\application\src\connect\r_connect.c, line 48-50 

 
 

To monitor the timeout time, the application uses the kernel timer of BLE Protocol Stack. Regarding to the specification 
of the kernel timer, refer to section 9.5 "Timer Management" in Bluetooth Low Energy Protocol Stack API Reference 
Manual: Basics (R01UW0088). 

 

  

48:    /* Connect Application Exit Timeout Time (unit: 10msec) */ 
49:    /* When connection is not established within this time, Connect Application exits. */ 
50:    #define CON_EXIT_TIME       (3000) 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 52 of 88 
Mar. 30, 2018  

6.2.5 Paring Configuration 
Default pairing configuration is defined in r_connect.c file. The Sample Program executes Just Works pairing method in 
pairing sequence.  

Project_Source\application\src\connect\r_connect.c, line 183-196 

 
 

When changing pairing method from Just Works to Passkey Entry, it is necessary to provide Passkey from the 
application. Thus set RBLE_IO_CAP_DISPLAY_ONLY as the IO capabilities and set 
RBLE_AUTH_REQ_MITM_BOND as the authentication requirements of RBLE_BOND_RESP_PARAM structure.  

When executing paring sequence with Passkey Entry, RBLE_SM_TK_REQ_IND event occurs. Therefore, the 
application is needed to call RBLE_SM_Tk_Req_Resp in order to respond Passkey as the Temporary Key. Below 
example code generates Passkey with rand function of standard library. After generating, it is necessary to display the 
passkey to user on the display like LCD screen.  

Example Code for responding Temporary Key 

 
  

183:    /* Pairing Information for secure connection */ 
184:    /*  Note : it is necessary to change configuration corresponds to each secure level requested */ 
185:    static RBLE_BOND_RESP_PARAM bond_info = 
186:    { 
187:        0x0000,                                         /* Connection handle           */ 
188:        RBLE_OK,                                        /* accept or reject bonding    */ 
189:        RBLE_IO_CAP_NO_INPUT_NO_OUTPUT,                 /* IO capabilities             */ 
190:        RBLE_OOB_AUTH_DATA_NOT_PRESENT,                 /* OOB flag                    */ 
191:        RBLE_AUTH_REQ_NO_MITM_BOND,                     /* Authentication Requirements */ 
192:        RBLE_SMP_MAX_ENC_SIZE_LEN,                      /* Encryption key size         */ 
193:        RBLE_KEY_DIST_NONE,                             /* Initiator key distribution  */ 
194:        RBLE_KEY_DIST_ENCKEY,                           /* Responder key distribution  */ 
195:        0x00                                            /* Reserved                    */ 
196:    }; 

    uint32_t passkey; 
    uint8_t* byteptr = (uint8_t*)&passkey; 
    uint8_t  idx; 
 
    /* TK(Temporary Key) buffer */ 
    RBLE_KEY_VALUE tk = 
    { 
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 
    }; 
 
    /* generate Passkey (range:000,000 - 999,999) */ 
    passkey  = (uint32_t)rand(); 
    passkey |= (uint32_t)rand() << 16; 
    passkey %= 1000000; 
 
    /* copy Passkey to TK(Temporary Key) buffer */ 
    for(idx = 0; idx < sizeof(uint32_t); idx++) 
    { 
        tk.key[RBLE_KEY_LEN - 1 - idx] = byteptr[idx]; 
    } 
    RBLE_SM_Tk_Req_Resp(con_idx, RBLE_OK, &tk); 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 53 of 88 
Mar. 30, 2018  

6.2.6 Custom Profile 
In order to implement or change Custom Profile, it is necessary to implement below definitions, resources and 
processing. Detail will be explained in the following. 

• definitions: 
- UUIDs of Custom Profile service and Characteristics, for identifying them.  
- Attribute indexes of Custom Profile Service and Characteristics, for operating by Protocol Stack.  
- Attribute handles of Custom Profile Service and Characteristics, for announcing to Client device  

 

• resources: 
- variables of Custom Profile Characteristics, for storing each Characteristic Value 
- descriptors of Custom Profile Service and characteristics, for setting features to Attribute database. 
- descriptors of Custom Profile Characteristics, for setting Characteristic variable to Attribute database.  
- Attribute database, which is accessed by Protocol Stack. 

 

• processing: 
- enabling GATT after stablishing connection, and registering event callback function. 
- updating Characteristic Value by Write Request from client device, and sending Write Response.  

 

Note1:  It is not necessary to implement the processing for responding Characteristic Value to the Read 
Request from Client device. The response is executed by Protocol Stack automatically. 

 
Note2:  If it is necessary to inform Characteristic Value in the timing that determined by server device, the 
processing of sending Notification or Indication is needed. In the Sample Program, processing for 
Notification or Indication is not implemented. If sending Notification or Indication, use 
RBLE_GATT_Notify_Request or RBLE_GATT_Indicate_Request of Protocol Stack API respectively. 

Regarding to the specification of those functions, refer to subsection 7.2.9 "RBLE_GATT_Notify_Request" 
and 7.2.10 "RBLE_GATT_Indicate_Request" in Bluetooth Low Energy Protocol Stack API Reference 
Manual: Basics (R01UW0088).  

 
(1) Definitions 

UUIDs are defined in r_profile.h file.  

It is possible to generate randomly numbers UUID by using UUIDGEN Linux command. It is necessary to set UUID 
value in LSB order and UUIDs value are set to each descriptor of Service and Characteristic. 

Project_Source\application\src\connect\r_profile.h, line 45-53 

 
 

  

45:    /* Custom Profile 128bit UUID: A766xxxx-4B1E-4d6e-91C4-997BA9B6FC07 */ 
46:    /*  Note: randomly numbers UUID can be generated by UUIDGEN linux command */ 
47:    /*        regarding the specification of UUID, refer to ITU-T X.667       */ 
48:    #define PRF_UUID_SERVICE        
    {0x07,0xFC,0xB6,0xA9,0x7B,0x99,0xC4,0x91,0x6e,0x4d,0x1E,0x4B,0x01,0x00,0x66,0xA7} 
49:    #define PRF_UUID_CHAR_BCNINFO   
    {0x07,0xFC,0xB6,0xA9,0x7B,0x99,0xC4,0x91,0x6e,0x4d,0x1E,0x4B,0x02,0x00,0x66,0xA7} 
50:    #define PRF_UUID_CHAR_BCNDATA   
    {0x07,0xFC,0xB6,0xA9,0x7B,0x99,0xC4,0x91,0x6e,0x4d,0x1E,0x4B,0x03,0x00,0x66,0xA7} 
51:    #define PRF_UUID_CHAR_CFLCNT    
    {0x07,0xFC,0xB6,0xA9,0x7B,0x99,0xC4,0x91,0x6e,0x4d,0x1E,0x4B,0x04,0x00,0x66,0xA7} 
52:    #define PRF_UUID_CHAR_DFLCNT    
    {0x07,0xFC,0xB6,0xA9,0x7B,0x99,0xC4,0x91,0x6e,0x4d,0x1E,0x4B,0x05,0x00,0x66,0xA7} 
53:    #define PRF_UUID_CHAR_RSPDATA    

{0x07,0xFC,0xB6,0xA9,0x7B,0x99,0xC4,0x91,0x6e,0x4d,0x1E,0x4B,0x06,0x00,0x66,0xA7} 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 54 of 88 
Mar. 30, 2018  

Attribute indexes and Attribute handles are defined in r_gatt.h file.  

It is possible to add or delete Service or Characteristic of Custom Profile.  

The Attribute index values are set directly to Attribute database, and Attribute handle values are set to each descriptor 
of Service and Characteristic.  

Project_Source\application\src\connect\resource\r_gatt.h, line 37-113 

 
 
(2) Resources 

Variables for storing Characteristic Value are defined in r_profile.c file. 

Initial Characteristic Value are set by application. After that, Characteristic Value which has the write permission is 
updated by Client device. Characteristic value variables are set to each descriptor of Characteristic.  

Project_Source\application\src\connect\r_profile.c, line 64-69 

 
 

  

 37:    /* Attribute index */ 
 38:    enum 
 39:    { 
 60:        /* offset index for Custom Profiles */ 
 61:        ATT_IDX_CUSTOM = 0x0200, 
 : 
 65:        /* Custom Profile Service */ 
 66:        PRF_IDX_SVC, 
 67:        PRF_IDX_BCNINFO_CHAR, 
 68:        PRF_IDX_BCNINFO_VAL, 
 69:        PRF_IDX_BCNDATA_CHAR, 
 70:        PRF_IDX_BCNDATA_VAL, 
 71:        PRF_IDX_RSPDATA_CHAR, 
 72:        PRF_IDX_RSPDATA_VAL, 
 73:        PRF_IDX_CFLCNT_CHAR, 
 74:        PRF_IDX_CFLCNT_VAL, 
 75:        PRF_IDX_DFLCNT_CHAR, 
 76:        PRF_IDX_DFLCNT_VAL, 
 79:    }; 
 80:     
 81:    /* Attribute handles */ 
 82:    enum 
 83:    { 
 99:        /* Custom Profile Service */ 
100:        PRF_HDL_SVC                   = 0x000C, 
101:        PRF_HDL_BCNINFO_CHAR          = 0x000D, 
102:        PRF_HDL_BCNINFO_VAL           = 0x000E, 
103:        PRF_HDL_BCNDATA_CHAR          = 0x000F, 
104:        PRF_HDL_BCNDATA_VAL           = 0x0010, 
105:        PRF_HDL_RSPDATA_CHAR          = 0x0011, 
106:        PRF_HDL_RSPDATA_VAL           = 0x0012, 
107:        PRF_HDL_CFLCNT_CHAR           = 0x0013, 
108:        PRF_HDL_CFLCNT_VAL            = 0x0014, 
109:        PRF_HDL_DFLCNT_CHAR           = 0x0015, 
110:        PRF_HDL_DFLCNT_VAL            = 0x0016, 
113:    }; 

64:    /* Custom Profile characteristic variables */ 
65:    PRF_ADV_INFO    prf_bcninfo_val;                        /* Advertising   Information */ 
66:    PRF_ADV_DATA    prf_bcndata_val;                        /* Advertising   Data        */ 
67:    PRF_ADV_DATA    prf_rspdata_val;                        /* Scan Response Data        */ 
68:    uint16_t        prf_cflcnt_val;                         /* Code Flash Updated Count  */ 
69:    uint16_t        prf_dflcnt_val;                         /* Data Flash Updated Count  */ 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 55 of 88 
Mar. 30, 2018  

Descriptors of Custom Profile Service and Characteristic are defined in r_gatt.c file. 

It is necessary to define descriptors in order to set the features like UUID, Attribute handle, Attribute permissions and 
the variables of Characteristic Values to the Attribute database.  

Project_Source\application\src\connect\resource\r_gatt.c, line 103-179 

 
  

103:    /* Custom Service */ 
104:    static const uint8_t custom_svc[RBLE_GATT_128BIT_UUID_OCTET] = PRF_UUID_SERVICE; 
105:     
106:    /* Advertising Information */ 
107:    static const struct atts_char128_desc prf_bcninfo_char = 
108:    { 
 :          … 
114:    }; 
115:     
116:    struct atts_elmt_128 prf_bcninfo_elmt = 
117:    { 
 :          … 
119:    }; 
120:     
121:    /* Advertising Data */ 
122:    static const struct atts_char128_desc prf_bcndata_char = 
123:    { 
 :          … 
129:    }; 
130:     
131:    struct atts_elmt_128 prf_bcndata_elmt = 
132:    { 
 :          … 
134:    }; 
135:     
136:    /* Scan Response Data */ 
137:    static const struct atts_char128_desc prf_rspdata_char = 
138:    { 
 :          … 
144:    }; 
145:     
146:    struct atts_elmt_128 prf_rspdata_elmt = 
147:    { 
 :          … 
149:    }; 
150:     
151:    /* Code Flash Updated Count */ 
152:    static const struct atts_char128_desc prf_cflcnt_char = 
153:    { 
 :          … 
159:    }; 
160:     
161:    struct atts_elmt_128 prf_cflcnt_elmt = 
162:    { 
 :          … 
164:    }; 
165:     
166:    /* Data Flash Updated Count */ 
167:    static const struct atts_char128_desc prf_dflcnt_char = 
168:    { 
 :          … 
174:    }; 
175:     
176:    struct atts_elmt_128 prf_dflcnt_elmt = 
177:    { 
 :          … 
179:    }; 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 56 of 88 
Mar. 30, 2018  

Attribute database is defined in r_gatt.c file.  

Attribute database is needed in order to set Service and Characteristics to Protocol Stack. Attribute database consists of 
Service descriptors and Characteristic descriptors.  

Project_Source\application\src\connect\resource\r_gatt.c, line 213-243 

 
 

  

213:    /* Attribute Database */ 
214:    const struct atts_desc atts_desc_list_prf[] = 
215:    { 
216:        /***********************/ 
217:        /* Custom Service      */ 
218:        /***********************/ 
219:        {RBLE_DECL_PRIMARY_SERVICE,  sizeof(custom_svc),       sizeof(custom_svc),  … }, 
220:        /* Advertising Information */ 
221:        { RBLE_DECL_CHARACTERISTIC,  sizeof(prf_bcninfo_char), sizeof(prf_bcninfo_char),  … }, 
222:        { DB_TYPE_128BIT_UUID,       sizeof(PRF_ADV_INFO),     sizeof(PRF_ADV_INFO),   … }, 
223:        /* Advertising Data */ 
224:        { RBLE_DECL_CHARACTERISTIC,  sizeof(prf_bcndata_char), sizeof(prf_bcndata_char),  … }, 
225:        { DB_TYPE_128BIT_UUID,       sizeof(PRF_ADV_DATA),     sizeof(PRF_ADV_DATA),   … }, 
226:        /* Scan Response Data */ 
227:        #if RF_TX_ONLY 
228:        { RBLE_DECL_CHARACTERISTIC,  sizeof(prf_rspdata_char), sizeof(prf_rspdata_char),  … }, 
229:        { DB_TYPE_128BIT_UUID,       sizeof(PRF_ADV_DATA),     sizeof(PRF_ADV_DATA),   … }, 
230:        #else 
231:        { RBLE_DECL_CHARACTERISTIC,  sizeof(prf_rspdata_char), sizeof(prf_rspdata_char),  … }, 
232:        { DB_TYPE_128BIT_UUID,       sizeof(PRF_ADV_DATA),     sizeof(PRF_ADV_DATA),   … }, 
233:        #endif 
234:        /* Code Flash Updated Count */ 
235:        { RBLE_DECL_CHARACTERISTIC,  sizeof(prf_cflcnt_char),  sizeof(prf_cflcnt_char),   … }, 
236:        { DB_TYPE_128BIT_UUID,       sizeof(uint16_t),         sizeof(uint16_t),   … }, 
237:        /* Data Flash Updated Count */ 
238:        { RBLE_DECL_CHARACTERISTIC,  sizeof(prf_dflcnt_char),  sizeof(prf_dflcnt_char),   … }, 
239:        { DB_TYPE_128BIT_UUID,       sizeof(uint16_t),         sizeof(uint16_t),   … }, 
240:     
241:        /* zero terminator */ 
242:        {0,0,0,0,0,0} 
243:    }; 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 57 of 88 
Mar. 30, 2018  

(3) Processing 

Processing for enabling GATT and updating Characteristic Values are implemented in r_profile.c file. 

RBLE_GATT_Enable function is called to enable GATT and register GATT event callback function. When updating 
Characteristic Values is requested by Write Request from Client device, RBLE_GATT_EVENT_WRITE_CMD_IND 
event occurs. After updating the Characteristic Value, the application calls RBLE_GATT_Write_Response in order to 
send Write Response.  

Project_Source\application\src\connect\r_profile.c, line 92-341 

 
  

92:    RBLE_STATUS PRF_Server_Enable(uint16_t conhdl, PRF_EVT_HANDLER callback) 
 93:    { 
101:            result = RBLE_GATT_Enable(prf_gatt_callback); 
113:    } 
 : 
215:    static void prf_gatt_callback(RBLE_GATT_EVENT* evt) 
216:    { 
224:        switch(evt->type) 
225:        { 
226:            case RBLE_GATT_EVENT_WRITE_CMD_IND: 
227:                /* reach here when client device requests to write characteristic */ 
235:                switch(att_hdl) 
236:                { 
237:                    /* Advertising information (18byte fixed) is written */ 
238:                    case PRF_HDL_BCNINFO_VAL: 
 : 
243:                                /* update characteristic value */ 
 : 
256:                        break; 
257: 
258:                    /* Advertising data (2byte - 32byte variable) is written */ 
259:                    /* Note: when requested size is over than the size of single write request, */ 
260:                    /*       characteristic value is transferred separately per 18byte          */ 
261:                    case PRF_HDL_BCNDATA_VAL: 
 : 
268:                                    /* update characteristic value */ 
 : 
277:                        break; 
304:                } 
305: 
306:                /* send the write response to client device */ 
307:                if(evt->param.write_cmd_ind.resp) 
308:                { 
309:                    prf_send_wr_resp(att_hdl, result); 
310:                } 
311:                break; 
315:        } 
316:    } 
317: 
 : 
325:    static void prf_send_wr_resp(uint16_t att_hdl, RBLE_STATUS result) 
326:    { 
340:        RBLE_GATT_Write_Response(&wr_resp); 
341:    } 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 58 of 88 
Mar. 30, 2018  

6.2.7 RF Operation 
If change RF Operation of Beacon Stack, the application is changed. Changes of Beacon Application and Connect 
Application are shown in Table 6-2. 

Regarding to the detail of RF Operation, refer to chapter 6.1.2 "RF Operation" in this document. 

Table 6-2  Software Configuration 
 Both Tx and Rx enabled (RF_TX_ONLY=0) Only Tx enabled (RF_TX_ONLY=1) 

Beacon Application 
 Advertising Type 

(r_beacon.c) 
Scannable Undirected Advertising Non-connectable Undirected Advertising 

Connect Application 
 Custom Profile 

(r_gatt.c) 
(r_profile.c) 
(r_connect.c) 

Characteristics  
- Advertising Information 
- Advertising Data 
- Scan Response Data 
- Code Flash Memory Updated Count 
- Data Flash Memory Updated Count 

Characteristics 
- Advertising Information 
- Advertising Data 
- Code Flash Memory Updated Count 
- Data Flash Memory Updated Count 
 
Note that it is impossible to access Scan 
Response Data Characteristic 

 

iOS device stores services and characteristics constitution of connected device. Changing RF operation causes a 
difference between constitution of Connect Application and the stored constitution. 

If change RF Operation, to clear the services and characteristics constitution stored by iOS device, disable and enable 
Bluetooth in iOS Settings. 

 

  



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 59 of 88 
Mar. 30, 2018  

7. Functions 
This chapter describes major functions implemented in the Sample Program.  

7.1 Function List 
7.1.1 Switching Application 
Table 7-1 shows the functions for switching application. 

Table 7-1  Application Switching Functions 
file function description 

r_main.c main initializes MCU and executes Applications 
input_callback calls application exit function 

r_input,c R_INPUT_Init initializes external interrupt input 
intp5_interrupt handler of external interrupt input 

r_plf.c R_PLF_Init initializes MCU (ports and clock) 
 

7.1.2 Beacon Application 
Table 7-2 shows the functions of Beacon Application. 

Table 7-2  Beacon Application Functions 
file function description 

r_beacon_main.c R_BEACON_Main main loop of Beacon Application 
r_beacon.c R_BEACON_Start starts Beacon Application 

R_BEACON_Exit exits Beacon Application 
R_BEACON_EventHandler event handler 

 

7.1.3 Connect Application 
Table 7-3 shows the function of Connect Application. 

Table 7-3  Connect Application Functions 
file function description 

r_connect_main.c R_CONNECT_Main main loop of Connect Application 
r_connect.c R_CONNECT_Start starts Connect Application 

R_CONNECT_Exit exits Connect Application 
con_rble_callback event callback function : RBLE 
con_gap_callback event callback function : Generic Access Profile 
con_sm_callback event callback function : Security Manager 
con_profile_callback event callback function : Custom Profile 
con_vs_callback event callback function : Vendor Specific 
con_exit_timer_task exits Connect Application when no connection within 30sec 

 
7.1.4 DTM Application 
Table 7-4 shows the functions of DTM Application. 

Table 7-4  DTM Application Functions 
module function description 

r_dtm_main.c R_DTM_Main main loop of DTM Application 
R_DTM_Start starts DTM Application 

r_dtm.c dtm_rble_callback event callback function : RBLE 
dtm_gap_callback event callback function : Generic Access Profile 
dtm_sm_callback event callback function : Security Manager 
dtm_vs_callback event callback function : Vendor Specific 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 60 of 88 
Mar. 30, 2018  

7.2 Function Calling  
7.2.1 Function Calling of Beacon Operation 
Figure 7-1 shows the function calling graph of Beacon Operation. If DIP switch SW6 position-1 on the evaluation 
board is OFF, main function calls R_BEACON_Main function or R_CONNECT_Main function alternately. 

R_BEACON_Main function starts Beacon Application by calling R_BEACON_Start function and executes main loop, 
then the main loop breaks by calling R_BEACON_Break function.  

R_CONNECT_Main function starts Connect Application by calling R_CONNECT_Start function and executes main 
loop, then main loop exits by calling R_CONNECT_Break function.  

 

Figure 7-1  Function Calling Graph of Beacon Operation 
  

executed alternately with R_CONNECT_Main

excutecuted repeatedly in main loop
exit from R_BEACON_Main

executed alternately with R_BEACON_Main

excutecuted repeatedly in main loop
callback by BLE Protocol Stack

exit from R_CONNECT_Main

executed when connection is not established within 30sec

executed by pushing SW2

main

R_INPUT_Init

R_BEACON_Main

R_CONNECT_Main

R_BEACON_EventHandler

con_gap_callback

con_sm_callback

con_profile_callback

con_vs_callback

R_CONNECT_Exit

intp5_interrupt

rwble_schedule

R_PLF_Init

R_BEACON_Start

input_callbackinput_callback
R_BEACON_Exit

R_BEACON_Break

con_rble_callback

R_CONNECT_Break

R_CONNECT_Start

con_exit_timer_task
R_CONNECT_Exit



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 61 of 88 
Mar. 30, 2018  

7.2.2 Function Calling of RF Evaluation Operation 
Figure 7-2 shows the function calling graph of RF Evaluation Operation. If DIP switch SW6 position-1 on the 
evaluation board is ON, main function calls R_DTM_Main function. R_DTM_Main function starts DTM Application 
by calling R_DTM_Start function and executes main loop. The main loop of DTM Application never break.  

 

Figure 7-2  Function Calling Graph of RF Evaluation Operation 
  

excutecuted repeatedly in main loop
callback by BLE Protocol Stack

main

R_INPUT_Init

R_DTM_Main
R_DTM_Start

dtm_gap_callback

dtm_sm_callback

dtm_vs_callback

rwble_schedule

R_PLF_Init

dtm_rble_callback

R_INPUT_Init



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 62 of 88 
Mar. 30, 2018  

8. Operation 
8.1 State Transition 
There are three applications in the Sample Program: Beacon Application, Connect Application, and DTM Application. 
This section describes the state transition of each application.  

 

8.1.1 Beacon Application 
Figure 8-1 shows the state transition of Beacon Application. 

It starts with Initializing state and then follow by Advertising state. In the Advertising state, the application executes 
Advertising. If receive exit request, next go to RF Powerdown state and finally exit from Beacon Application. 

 

Figure 8-1  State Transition of Beacon Application 
  

  Exitting Beacon Application is requested

Start Beacon Application

Exit Beacon Application

INITIALIZING

RF POWERDOWN

ADVERTISING
(non connectable)



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 63 of 88 
Mar. 30, 2018  

8.1.2 Connect Application 
Figure 8-2 shows the state transition of Connect Application. 

It starts with Initializing state and the follow by Advertising state. In the Advertising state, the application executes 
Advertising.  

If receive connection request from peer device, go to Slave Connection state. In the Slave Connection state, the 
application enables GATT and checks about security status. If receive either Pairing Request or Start Encryption 
Request from peer connected device, the application executes pairing or start encryption respectively. And in this state, 
the application executes GATT Access. If disconnect from peer connected device, go back to the Advertising state. 

In the Advertising state, if receive exit request or if not connect within 30seconds, the application stops Advertising and 
next go to RF Powerdown state and finally exit from Connect Application. 

In the Slave Connection state, if receive exit request, the application requests disconnection to peer device and next go 
to RF Powerdown state and finally exit from Connect Application.  

 

Figure 8-2  State Transition of Connect Application 
  

 Requested to Create Connection

Start Encryption is requested

 Exitting Connect Application is requested

Pairing is requested

Exit Connect Application

Expiring 30sec timeout or
Exitting Connect Appllication is requested

Start Connect Application

Not requested

INITIALIZING

SLAVE CONNECTION
(Configurations)

SLAVE CONNECTION
(Pairing)

SLAVE CONNECTION
(Start Encryption)

SLAVE CONNECTION
(GATT Access)

RF POWERDOWN

ADVERTISING
(Connectable)

DISCONNECTION



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 64 of 88 
Mar. 30, 2018  

8.1.3 DTM Application 
Figure 8-3 shows the state transition of DTM Application. 

It starts with Initializing state and the follow by Idling state. Then perform either RF Transmitter Test or RF Receiver 
Test. Respective test executes according the request from Tester and return to Idling state when complete the test.  

 

Figure 8-3  State Transition of DTM Application 
  

LE_RESET

LE_TRANSMITTER_TEST LE_RECEIVER_TEST
LE_TEST_END LE_TEST_END

Start DTM Application

INITIALIZING

IDLING

TRANSMITTER TEST RECEIVER TEST



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 65 of 88 
Mar. 30, 2018  

8.2 Sequence 
8.2.1 Beacon Application 
(1) Initializing & Advertising & RF Powerdown Sequence 

Figure 8-4 shows the sequence in Initializing state, Advertising state and RF Powerdown state of Beacon Application. 
Beacon Stack API is used in sequence between Beacon Application and Beacon Stack in the Sample Program.  

 

Figure 8-4  Initializing & Advertising & RF Powerdown Sequence of Beacon Application 
 

Regarding to the specification of Beacon Stack API, refer to chapter 4 "API" in RL78/G1D Beacon Stack User's 
Manual (R01UW0171).   

Peer Device

R_RF_PowerUp

RF_RF_Init

R_BLE_Init

R_BLE_StartAdvertising

ADV_NONCONN_IND

RBLE_EVT_ADV_TX_IND
ADV_NONCONN_IND

RBLE_EVT_ADV_TX_IND
R_BLE_StopAdvertising

ADV_NONCONN_IND

RBLE_EVT_ADV_STOP_CMP

R_RF_PowerDown

Beacon Application Beacon Stack

R_BLE_GetEvent

R_BLE_GetEvent

R_BLE_GetEvent

Renesas BLE Microcontroller - RL78/G1D

IN
ITIALIZIN

G
RF PO

W
ERDO

W
N

SCAN
N

IN
G

ADVERTISIN
G



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 66 of 88 
Mar. 30, 2018  

Beacon Application calls R_RF_PowerUp and R_RF_Init in order to enable RF unit. After that, the application calls 
R_BLE_Init in order to initialize Beacon Stack.  

Project_Source\application\src\beacon\r_beacon_main.c, line 63-129 

 

 63:    void R_BEACON_Main(void) 
 64:    { 
 72:        /* 
 73:         ************************************************************************************ 
 74:         * Beacon Stack Initialization 
 75:         ************************************************************************************ 
 76:        */ 
 77:        if (RBLE_OK != R_RF_PowerUp(BCN_RF_CFG, RF_32MHZ_WAIT)) 
 78:        { 
 81:            mcu_reset(); 
 82:        } 
 83: 
 84:        if (RBLE_OK != R_RF_Init()) 
 85:        { 
 88:            mcu_reset(); 
 89:        } 
 90: 
 91:        /* Initialize Beacon Stack */ 
 92:        interrupt_init(); 
 93:        R_BLE_Init(); 
129:    } 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 67 of 88 
Mar. 30, 2018  

The application calls R_BLE_StartAdvertising in order to start Advertising for providing information.  

RBLE_EVT_ADV_TX_IND event occurs after every transmitting of advertising packets. 

The application calls R_BLE_StopAdvertising in order to request stopping Advertising. After stopping Advertising 
RBLE_EVT_ADV_STOP_CMP event occurs.  

Project_Source\application\src\beacon\r_beacon.c, line 132-202 

 
  

132:    bool R_BEACON_Start(void) 
133:    { 
149:        if(RBLE_OK != R_BLE_StartAdvertising(adv_type, &adv_info)) 
150:        { 
151:            return false; 
152:        } 
155:    } 
 : 
163:    void R_BEACON_Exit(void) 
164:    { 
165:        R_BLE_StopAdvertising(); 
166:    } 
 : 
174:    void R_BEACON_EventHandler(void) 
175:    { 
176:        RBLE_EVT* evt = R_BLE_GetEvent(); 
177: 
178:        while (evt != NULL) 
179:        { 
180:            switch (evt->type) 
181:            { 
182:                case RBLE_EVT_ADV_TX_IND: 
183:                    /* reach here after transmitting Advertising packet */ 
184:                    bcn_adv_tx_eventhandler(evt); 
185:                    break; 
186: 
187:                case RBLE_EVT_SCANREQ_RX_IND: 
188:                    /* reach here after receiving scan request packet */ 
189:                    bcn_scanreq_rx_eventhandler(evt); 
190:                    break; 
191: 
192:                case RBLE_EVT_ADV_STOP_CMP: 
193:                    /* reach here when advertising is stopped */ 
194:                    bcn_adv_stop_eventhandler(evt); 
195:                    break; 
196: 
197:                default: 
198:                    break; 
199:            } 
200:            evt = R_BLE_GetEvent(); 
201:        } 
202:    } 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 68 of 88 
Mar. 30, 2018  

8.2.2 Connect Application 
(1) Initializing & Advertising & Slave Connection (Configurations) Sequence 

Figure 8-5 shows the sequence in Initialization state, Advertising state and Slave Connection (Configurations) state of 
Connect Application. rBLE API is used in sequence between Connect Application and BLE Protocol Stack in the 
Sample Program.  

 

Figure 8-5  Initializing & Advertising & Slave Connection (Configurations) Sequence of Connect Application 
 

Regarding to the specification of rBLE API, refer to Bluetooth Low Energy Protocol Stack API Reference Manual: 
Basics (R01UW0088).   

Peer Device

RBLE_Init

RBLE_MODE_ACTIVE

RBLE_GAP_Reset

RBLE_GAP_EVENT_RESET_RESULT

[When using Random Device Address]

RBLE_GAP_Set_Random_Address

RBLE_GAP_EVENT_SET_RANDOM_ADDRESS_COMP

RBLE_GAP_Set_Bonding_Mode

RBLE_GAP_EVENT_SET_BONDING_MODE

RBLE_GAP_Set_Security_Request

RBLE_GAP_EVENT_SET_SECURITY_REQUEST_COMP

RBLE_GAP_Broadcast_Enable

RBLE_GAP_EVENT_BROADCAST_ENABLE_COMP

ADV_IND

CONNECT_REQ

RBLE_GATT_Enable

[MASTER's device addres is not Resolvable Private Address]

RBLE_SM_CHK_BD_ADDR_REQ

RBLE_SM_Chk_Bd_Addr_Req_Resp

[MASTER's device address is Resolvable Private Address]

RBLE_SM_IRK_REQ_IND

RBLE_SM_Irk_Req_Resp

opt

alt

Renesas BLE Microcontroller - RL78/G1D

ADV_IND

Connect Application Protocol Stack

RBLE_GAP_EVENT_CONNECTION_COMP

IN
ITIALIZIN

G
ADVERTISIN

G
SLAVE CO

N
N

ECTIO
N

IN
ITIATIN

G
M

ASTER CO
N

N
ECTIO

N



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 69 of 88 
Mar. 30, 2018  

First of all, Connect Application calls RBLE_Init in order to activate the rBLE_Core of BLE Protocol Stack.  

The application calls RBLE_GAP_Reset in order to initialize GAP layer of Protocol Stack and GAP event callback 
function and SM event callback function.  

Project_Source\application\src\connect\r_connect.c, line 268-490 

 
 

  

268:    bool R_CONNECT_Start(void) 
269:    { 
270:        /* initialize rBLE */ 
271:        if(RBLE_OK != RBLE_Init(&con_rble_callback)) 
272:        { 
273:            return false; 
274:        } 
293:    } 
 : 
374:    static void con_rble_callback(RBLE_MODE mode) 
375:    { 
383:        switch(mode) 
384:        { 
385:            case RBLE_MODE_ACTIVE: 
386:                /* reach here when activating rBLE is completed after calling RBLE_Init */ 
387:                con_rble_active_eventhandler(); 
388:                break; 
391:        } 
392:    } 
 : 
400:    static void con_rble_active_eventhandler(void) 
401:    { 
402:        /* reach here when activating rBLE is completed after calling RBLE_Init */ 
405:        RBLE_GAP_Reset(&con_gap_callback, &con_sm_callback); 
406:    } 
 : 
414:    static void con_gap_callback(RBLE_GAP_EVENT* evt) 
415:    { 
440:        switch(evt->type) 
441:        { 
442:            case RBLE_GAP_EVENT_RESET_RESULT: 
443:                /* reach here after RBLE_GAP_Reset is called */ 
444:                con_gap_reset_eventandler(evt); 
445:                break; 
446:            case RBLE_GAP_EVENT_SET_RANDOM_ADDRESS_COMP: 
447:                /* reach here after RBLE_GAP_Set_Random_Address is called */ 
448:                con_gap_set_random_address_eventhandler(evt); 
449:                break; 
450:            case RBLE_GAP_EVENT_SET_BONDING_MODE_COMP: 
451:                /* reach here after RBLE_GAP_Set_Bonding_Mode is called */ 
452:                con_gap_set_bonding_mode_eventhandler(evt); 
453:                break; 
454:            case RBLE_GAP_EVENT_SET_SECURITY_REQUEST_COMP: 
455:                /* reach here after RBLE_GAP_Set_Security_Request is called */ 
456:                con_gap_set_security_request_eventhandler(evt); 
457:                break; 
458:            case RBLE_GAP_EVENT_BROADCAST_ENABLE_COMP: 
459:                /* reach here after RBLE_GAP_Broadcast_Enable is called */ 
460:                con_gap_broadcast_enable_eventhandler(evt); 
461:                break; 
466:            case RBLE_GAP_EVENT_CONNECTION_COMP: 
467:                /* reach here when connection occurred */ 
468:                con_gap_connection_eventhandler(evt); 
469:                break; 
489:        } 
490:    } 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 70 of 88 
Mar. 30, 2018  

If Random Device Address is used, the application calls RBLE_GAP_Set_Random_Address in order to set random 
address to Protocol Stack. 

To execute pairing sequence to the peer device, the application calls RBLE_GAP_Set_Bonding_Mode and 
RBLE_GAP_Set_Security_Request. 

After above initializing is completed, the application calls RBLE_GAP_Broadcast_Enable to start Advertising for 
establishing connection as Slave.  

Project_Source\application\src\connect\r_connect.c, line 498-609 

 
  

498:    static void con_gap_reset_eventandler(RBLE_GAP_EVENT* evt) 
499:    { 
500:        /* reach here after RBLE_GAP_Reset is called */ 
501: 
541:            if(own_type == RBLE_ADDR_RAND) 
542:            { 
546:                /* Set Random Device Address */ 
547:                RBLE_GAP_Set_Random_Address(&own_addr); 
551:            } 
552:            else 
553:            { 
554:                /* Set Bonding Mode */ 
555:                RBLE_GAP_Set_Bonding_Mode(RBLE_GAP_BONDABLE); 
556:            } 
558:    } 
 : 
566:    static void con_gap_set_random_address_eventhandler(RBLE_GAP_EVENT* evt) 
567:    { 
568:        /* reach here after RBLE_GAP_Set_Random_Address is called */ 
569: 
572:            /* Set Bonding Mode */ 
573:            RBLE_GAP_Set_Bonding_Mode(RBLE_GAP_BONDABLE); 
575:    } 
 : 
583:    static void con_gap_set_bonding_mode_eventhandler(RBLE_GAP_EVENT* evt) 
584:    { 
585:        /* reach here after RBLE_GAP_Set_Bonding_Mode is called */ 
586: 
589:            /* Set Security Request */ 
590:            RBLE_GAP_Set_Security_Request(RBLE_GAP_SEC1_NOAUTH_PAIR_ENC); 
592:    } 
 : 
600:    static void con_gap_set_security_request_eventhandler(RBLE_GAP_EVENT* evt) 
601:    { 
602:        /* reach here after RBLE_GAP_Set_Security_Request is called */ 
603: 
606:            /* Start Broadcast for the First Connection */ 
607:            RBLE_GAP_Broadcast_Enable(RBLE_GAP_GEN_DISCOVERABLE, RBLE_GAP_UND_CONNECTABLE, … ); 
609:    } 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 71 of 88 
Mar. 30, 2018  

After establishing connection, RBLE_GAP_EVENT_CONNECTION_COMP event occurs. 

If peer's Device Address Type is not Resolvable Private Address, RBLE_SM_CHK_BD_ADDR_REQ event occurs. 
The application should call RBLE_SM_Chk_Bd_Addr_Req_Resp to respond security status in previous connection 
with peer device. In order to execute Pairing again if peer device forgets Pairing information, the application always 
respond that there is no security status. 

If peer's Device Address Type is Resolvable Private Address, RBLE_SM_IRK_REQ_IND occurs. The application 
should call RBLE_SM_Irk_Req_Resp to respond security status and Identity Resolving Key (IRK) for resolving 
address. But in order to execute Pairing again if peer device forgets Pairing information, the application always respond 
that there are no security status and no IRK. 

Project_Source\application\src\connect\r_connect.c, line 815-906 

 
  

815:    static void con_sm_callback(RBLE_SM_EVENT* evt) 
816:    { 
824:        switch(evt->type) 
825:        { 
826:            case RBLE_SM_CHK_BD_ADDR_REQ: 
827:                /* reach here when connection is established to peer device that address is 
828:                   public address or random address except resolvable private address       */ 
829:                con_sm_bdaddr_check_request_eventhandler(evt); 
830:                break; 
831:            case RBLE_SM_IRK_REQ_IND: 
832:                /* reach here when connection is established to peer device that address is 
833:                   resolvable private address                                               */ 
834:                /* IRK is requested for resolving peer's resolvable private address         */ 
835:                con_sm_irk_request_eventhandler(evt); 
836:                break; 
858:        } 
859:    } 
 : 
867:    static void con_sm_bdaddr_check_request_eventhandler(RBLE_SM_EVENT* evt) 
868:    { 
869:        /* reach here when connection is established to peer device that address is 
870:           public address or random address except resolvable private address       */ 
871: 
876:        /* Reply BD Address Check Result */ 
877:        RBLE_SM_Chk_Bd_Addr_Req_Resp(evt->param.chk_bdaddr.idx, 
878:                                     0, 
879:                                     false, 
880:                                     RBLE_SMP_SEC_NONE, 
881:                                     NULL); 
882:    } 
 : 
890:    static void con_sm_irk_request_eventhandler(RBLE_SM_EVENT* evt) 
891:    { 
892:        /* reach here when connection is established to peer device that address is 
893:           resolvable private address                                               */ 
894:        /* IRK is requested for resolving peer's resolvable private address         */ 
895: 
900:        /* Reply IRK(Identity Resolving Key) */ 
901:        RBLE_SM_Irk_Req_Resp(evt->param.irk_req.idx, 
902:                             RBLE_ERR, 
903:                            &con_env.con_addr, 
904:                             NULL, 
905:                             RBLE_SMP_SEC_NONE); 
906:    } 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 72 of 88 
Mar. 30, 2018  

(2) Slave Connection (Pairing) Sequence 

Figure 8-6 shows the sequence in Slave Connection (Pairing) state of Connect Application. rBLE API is used in 
sequence between Connect Application and BLE Protocol Stack in the Sample Program.  

 

Figure 8-6  Slave Connection (Pairing) Sequence of Connect Application 
 

Regarding to the specification of rBLE API, refer to Bluetooth Low Energy Protocol Stack API Reference Manual: 
Basics (R01UW0088).   

Peer Device

[MASTER does not have pairing information]

Pairing Request

RBLE_GAP_Bonding_Response

Pairng Confirm(Mconfirm)

Pairng Confirm(Sconfirm)

Pairing Random(Mrand)

Pairing Random(Srand)

LL_ENC_REQ

LL_ENC_RSP

LL_START_ENC_REQ

LL_START_ENC_RSP

LL_START_ENC_RSP

RBLE_SM_Ltk_Req_Resp

Master Identification(EDIV,Rand)RBLE_GAP_EVENT_BONDING_COMP

Encryption Information(LTK)

Renesas BLE Microcontroller - RL78/G1D

RBLE_SM_LTK_REQ_IND

Connect Application Protocol Stack

opt

RBLE_GAP_EVENT_BONDING_REQ_IND

Pairing Response

SLAVECO
N

N
ECTIO

N

M
ASTER

CO
N

N
ECTIO

N



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 73 of 88 
Mar. 30, 2018  

When pairing request is sent after establishing connection to the unpaired device, RBLE_GAP_BONDING_REQ_IND 
event occurs. The application calls RBLE_GAP_Bonding_Response in order to respond the pairing features. Pairing 
method is determined by exchanging pairing feature. In the Sample Program, Just Works is executed as pairing method. 
In the case of Just Works, it is not necessary to set Temporary Key to Protocol Stack. Following pairing process is 
encrypted with Short Term Key, which is generated by BLE Protocol Stack.  

Project_Source\application\src\connect\r_connect.c, line 414-784 

 
 

  

414:    static void con_gap_callback(RBLE_GAP_EVENT* evt) 
415:    { 
440:        switch(evt->type) 
441:        { 
477:            case RBLE_GAP_EVENT_BONDING_REQ_IND: 
478:                /* reach here when bonding is requested */ 
479:                /* in the middle of PHASE1: PAIRING FEATURE EXCHANGE in pairing sequence */ 
480:                con_gap_bonding_request_eventhandler(evt); 
481:                break; 
482:            case RBLE_GAP_EVENT_BONDING_COMP: 
483:                /* reach here bonding is completed */ 
484:                /* at the end of PHASE3: TRANSPORT SPECIFIC KEY DISTRIBUTION in pairing sequence */ 
485:                con_gap_bonding_eventhandler(evt); 
486:                break; 
489:        } 
490:    } 
 : 
776:    static void con_gap_bonding_request_eventhandler(RBLE_GAP_EVENT* evt) 
777:    { 
778:        /* reach here when bonding is requested */ 
779:        /* in the middle of PHASE1: PAIRING FEATURE EXCHANGE in pairing sequence */ 
780: 
781:        /* Reply Bonding Response */ 
783:        RBLE_GAP_Bonding_Response(&bond_info); 
784:    } 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 74 of 88 
Mar. 30, 2018  

After starting encryption with Short Term Key, RBLE_SM_LTK_REQ_IND event occurs. The application generates 
Long Term Key (LTK) and calls RBLE_SM_Req_Resp in order to respond LTK. LTK is used as encryption key for 
encrypting following connection.  

After providing LTK to Master device, RBLE_SM_KEY_IND event occurs and encryption key is provided from 
Master device, which is specified by the bonding response. 

When pairing sequence is completed, RBLE_GAP_EVENT_BONDING_COMP event occurs.  

Project_Source\application\src\connect\r_connect.c, line 815-940 

 
  

815:    static void con_sm_callback(RBLE_SM_EVENT* evt) 
816:    { 
824:        switch(evt->type) 
825:        { 
837:            case RBLE_SM_LTK_REQ_IND: 
838:                /* reach here when LTK is requested */ 
839:                /* in the first of PHASE3: TRANSPORT SPECIFIC KEY DISTRIBUTION in pairing sequence */ 
840:                con_sm_ltk_request_eventhandler(evt); 
841:                break; 
842:            case RBLE_SM_KEY_IND: 
843:                /* reach here when peer device's encryption information are provided */ 
844:                /* in the middle of PHASE3: TRANSPORT SPECIFIC KEY DISTRIBUTION in pairing sequence */ 
845:                con_sm_key_eventhandler(evt); 
846:                break; 
858:        } 
859:    } 
 : 
914:    static void con_sm_ltk_request_eventhandler(RBLE_SM_EVENT* evt) 
915:    { 
916:        /* reach here when LTK is requested */ 
917:        /* in the first of PHASE3: TRANSPORT SPECIFIC KEY DISTRIBUTION in pairing sequence */ 
918: 
933:        /* Reply LTK(Long Term Key) */ 
934:        RBLE_SM_Ltk_Req_Resp(evt->param.ltk_req.idx, 
935:                             RBLE_OK, 
936:                             RBLE_SMP_KSEC_NONE, 
937:                             pair_info.enc_key.ediv, 
938:                            &pair_info.enc_key.nb  , 
939:                            &pair_info.enc_key.ltk ); 
940:    } 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 75 of 88 
Mar. 30, 2018  

(3) Slave Connection (Start Encryption) Sequence 

Figure 8-7 shows the sequence in Slave Connection (Start Encryption) state of Connect Application. rBLE API is used 
in sequence between Connect Application and BLE Protocol Stack in the Sample Program.  

 

Figure 8-7  Slave Connection (Start Encryption) Sequence of Connect Application 
 

Regarding to the specification of rBLE API, refer to Bluetooth Low Energy Protocol Stack API Reference Manual: 
Basics (R01UW0088).   

Peer Device

[MASTER has pairing information]

LL_ENC_REQ

RBLE_SM_Ltk_Req_Resp

LL_START_ENC_REQ

LL_START_ENC_RSP

LL_START_ENC_RSP

Protocol Stack

LL_ENC_RSP

Renesas BLE Microcontroller - RL78/G1D

RBLE_SM_LTK_REQ_FOR_ENC_IND

opt

RBLE_SM_ENC_START_IND

Connect Application

SLAVE CO
N

N
ECTIO

N

M
ASTER CO

N
N

ECTIO
N



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 76 of 88 
Mar. 30, 2018  

When the encryption request is sent after establishing connection to the paired device, 
RBLE_SM_LTK_REQ_FOR_ENC_IND event occurs.  The application calls RBLE_SM_Ltk_Req_Resp in order to 
respond Long Term Key (LTK). LTK is generated and exchanged already in before connection, and used as encryption 
key for encrypting this connection.  

When start encryption sequence is completed, RBLE_SM_ENC_START_IND event occurs. 

Project_Source\application\src\connect\r_connect.c, line815-984 

  

815:    static void con_sm_callback(RBLE_SM_EVENT* evt) 
816:    { 
824:        switch(evt->type) 
825:        { 
847:            case RBLE_SM_LTK_REQ_FOR_ENC_IND: 
848:                /* reach here when LTK is requested */ 
849:                /* in the first of start encryption sequence */ 
850:                con_sm_ltk_request_for_enc_eventhandler(evt); 
851:                break; 
852:            case RBLE_SM_ENC_START_IND: 
853:                /* reach here when start encryption sequence is executed */ 
854:                con_sm_enc_start_eventhandler(evt); 
855:                break; 
858:        } 
859:    } 
 : 
960:    static void con_sm_ltk_request_for_enc_eventhandler(RBLE_SM_EVENT* evt) 
961:    { 
962:        /* reach here when LTK is requested */ 
963:        /* in the first of Start Encryption sequence */ 
964: 
977:        /* Reply LTK(Long Term Key) */ 
978:        RBLE_SM_Ltk_Req_Resp(evt->param.ltk_req_for_enc.idx, 
979:                             status, 
980:                             pair_info.sec_prop, 
981:                             pair_info.enc_key.ediv, 
982:                            &pair_info.enc_key.nb  , 
983:                            &pair_info.enc_key.ltk ); 
984:    } 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 77 of 88 
Mar. 30, 2018  

(4) Slave Connection (GATT Access) Sequence 

Figure 8-8 shows the sequence in Slave Connection (GATT Access) state of Connect Application. rBLE API is used in 
sequence between Connect Application and BLE Protocol Stack in the Sample Program.  

 

Figure 8-8  Slave Connection (GATT Access) Sequence of Connect Application 
 

Regarding to the specification of rBLE API, refer to Bluetooth Low Energy Protocol Stack API Reference Manual: 
Basics (R01UW0088).   

Peer Device

[acquiring SERVER's characteristic by CLIENT]

[characteristic is equal or less than 21byte]
Read Request

Read Response

[characteristic is over than 21byte]
Read Request

Read Response

Read Blob Request

Read Blob Response

Read Blob Request

Read Blob Response

[changing SERVER's characteristic by CLIENT]

[characteristic is equal or less than 20byte]
Write Request

RBLE_GATT_Write_Response

[characteristic is over than 20byte]
Prepare Write Request

Prepare Write Request

Execute Write Request

RBLE_GATT_EVENT_WRITE_CMD_IND

Service Discovery

Characteristic Discovery

Characteristic Descriptor Discovery

Renesas BLE Microcontroller - RL78/G1D

Prepare Write Response

Prepare Write Response

RBLE_GATT_EVENT_WRITE_CMD_IND Execute Write Response

RBLE_GATT_EVENT_WRITE_CMD_IND

Write Response

opt

alt

opt

alt

Connect Application Protocol Stack

SLAVE CO
N

N
ECT IO

N

M
ASTER CO

N
N

ECT IO
N



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 78 of 88 
Mar. 30, 2018  

When Service Discovery, Characteristic Discovery and Characteristic Descriptor Discovery are requested from Client 
device, response are executed by Protocol Stack automatically.  

Similarly, when Read Request is sent from Client device, Read Response is sent by Protocol Stack automatically.  

When updating characteristic values is requested by Write Request from Client device, 
RBLE_GATT_EVENT_WRITE_CMD_IND event occurs. After updating characteristic value, the application calls 
RBLE_GATT_Write_Response in order to send Write Response. 

Project_Source\application\src\connect\r_profile.c, line 215-341 

 
 

  

215:    static void prf_gatt_callback(RBLE_GATT_EVENT* evt) 
216:    { 
224:        switch(evt->type) 
225:        { 
226:            case RBLE_GATT_EVENT_WRITE_CMD_IND: 
227:                /* reach here when client device requests to write characteristic */ 
228: 
235:                switch(att_hdl) 
236:                { 
237:                    /* Advertising information (18byte fixed) is written */ 
238:                    case PRF_HDL_BCNINFO_VAL: 
243:                                /* update characteristic value */ 
256:                        break; 
257: 
258:                    /* Advertising data (2byte - 32byte variable) is written */ 
259:                    /* Note: when requested size is over than the size of single write request, */ 
260:                    /*       characteristic value is transferred separately per 18byte          */ 
261:                    case PRF_HDL_BCNDATA_VAL: 
268:                                    /* update characteristic value */ 
277:                        break; 
278: 
279:                    /* Scan Response data (2byte - 32byte variable) is written */ 
280:                    /* Note: when requested size is over than the size of single write request, */ 
281:                    /*       characteristic value is transferred separately per 18byte          */ 
282:                    #if !RF_TX_ONLY 
283:                    case PRF_HDL_RSPDATA_VAL: 
290:                                    /* update characteristic value */ 
299:                        break; 
300:                    #endif 
304:                } 
305: 
306:                /* send the write response to client device */ 
307:                if(evt->param.write_cmd_ind.resp) 
308:                { 
309:                    prf_send_wr_resp(att_hdl, result); 
310:                } 
311:                break; 
315:        } 
316:    } 
 : 
325:    static void prf_send_wr_resp(uint16_t att_hdl, RBLE_STATUS result) 
326:    { 
340:        RBLE_GATT_Write_Response(&wr_resp); 
341:    } 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 79 of 88 
Mar. 30, 2018  

(5) Disconnection & RF Powerdown Sequence 

Figure 8-9 shows the sequence in Disconnection state and RF Powerdown state of Connect Application. rBLE API is 
used in sequence between Connect Application and BLE Protocol Stack in the Sample Program.  

 

Figure 8-9  Disconnection & RF Powerdown Sequence of Connect Application 
 

Regarding to the specification of rBLE API, refer to Bluetooth Low Energy Protocol Stack API Reference Manual: 
Basics (R01UW0088).   

Peer Device

[disconnection from MASTER]

LL_TERMINATE_IND

[disconnection from SLAVE]

RBLE_GAP_Disconnect

RBLE_VS_Enable

RBLE_VS_RF_Control

RBLE_VS_EVENT_RF_CONTROL_COMP

RBLE_GAP_EVENT_DISCONNECT_COMP

LL_TERMINATE_IND

RBLE_GAP_EVENT_DISCONNECT_COMP

Renesas BLE Microcontroller - RL78/G1D

alt

Connect Application Protocol Stack

RF PO
W

ERDO
W

N
DISCO

N
N

ECT

M
ASTER CO

N
N

ECT IO
N



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 80 of 88 
Mar. 30, 2018  

When exiting the application is requested in Advertising, the application calls RBLE_GAP_Broadcast_Disable in order 
to stop Advertising.  

When exiting the application is requested in establishing connection, the application calls RBLE_GAP_Disconnect in 
order to disconnect. 

When RBLE_GAP_EVENT_BROADCAST_DISABLE_COMP event or 
RBLE_GAP_EVENT_DISCONNECT_COMP event occurs, the application calls RBLE_VS_Enable and 
RBLE_VS_RF_Control in order to power down the RF unit.  

Project_Source\application\src\connect\r_connect.c, line 414-1085 

 
  

 414:    static void con_gap_callback(RBLE_GAP_EVENT* evt) 
 415:    { 
 440:        switch(evt->type) 
 441:        { 
 462:            case RBLE_GAP_EVENT_BROADCAST_DISABLE_COMP: 
 463:                /* reach here after RBLE_GAP_Broadcast_Disable is called */ 
 464:                con_gap_broadcast_disable_eventhandler(evt); 
 465:                break; 
 470:            case RBLE_GAP_EVENT_DISCONNECT_COMP: 
 471:                /* reach here when disconnection occurred */ 
 472:                con_gap_disconnection_eventhandler(evt); 
 473:                break; 
 489:        } 
 490:    } 
  : 
 641:    static void con_gap_broadcast_disable_eventhandler(RBLE_GAP_EVENT* evt) 
 642:    { 
 643:        /* reach here after RBLE_GAP_Broadcast_Disable is called */ 
 644: 
 647:            RBLE_VS_Enable(con_vs_callback); 
 648:            RBLE_VS_RF_Control(RBLE_VS_RFCNTL_CMD_POWDOWN); 
 650:    } 
  : 
 685:    static void con_gap_disconnection_eventhandler(RBLE_GAP_EVENT* evt) 
 686:    { 
 687:        /* reach here when disconnection occurred */ 
 688: 
 760:            RBLE_VS_Enable(con_vs_callback); 
 761:            RBLE_VS_RF_Control(RBLE_VS_RFCNTL_CMD_POWDOWN); 
 768:    } 
  : 
1053:    static void con_vs_callback(RBLE_VS_EVENT* evt) 
1054:    { 
1076:        switch(evt->type) 
1077:        { 
1078:            case RBLE_VS_EVENT_RF_CONTROL_COMP: 
1079:                /* reach here after RBLE_VS_RF_Control is called */ 
1080:                con_vs_rf_control_eventhandler(evt); 
1081:                break; 
1084:        } 
1085:    } 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 81 of 88 
Mar. 30, 2018  

8.2.3 DTM Application 
(1) Initializing & Transmitter Test & Receiver Test Sequence 

Figure 8-10 shows the sequence in Initializing state, Transmitter Test state and Receiver Test state of DTM 
Application. rBLE API is used in sequence between DTM Application and BLE Protocol Stack in the Sample Program.  

 

Figure 8-10  Initializing & Transmitter Test & Receiver Test Sequence of DTM Application 
 

Regarding to the specification of rBLE API, refer to Bluetooth Low Energy Protocol Stack API Reference Manual: 
Basics (R01UW0088).   

Upper Tester Lower Tester

RBLE_Init

RBLE_MODE_ACTIVE

RBLE_GAP_Reset

RBLE_GAP_EVENT_RESET_RESULT

RBLE_VS_Enable

LE_RESET

RBLE_GAP_EVENT_RESET_RESULT

RBLE_VS_Enable

LE_RECEIVER_TEST

RBLE_VS_EVENT_TEST_RX_START_COMP

RBLE_VS_EVENT_TEST_END_COMP

LE_TRANSMITTER_TEST

RBLE_VS_EVENT_TEST_TX_START_COMP

RBLE_VS_EVENT_TEST_END_COMPLE_PACKET_REPORT

RBLE_VS_Test_Rx_Start

LE_TEST_STATUS

LE Test Packet

LE Test PacketLE_TEST_END

LE_TEST_STATUS LE Test Packet

RBLE_VS_Test_End

RBLE_VS_Test_Tx_Start LE Test Packet

LE_PACKET_REPORT

Protocol Stack
Renesas BLE Microcontroller - RL78/G1D

DTM Application

RBLE_GAP_Reset

LE_TEST_STATUS

RBLE_VS_Test_End

LE Test Packet

LE Test Packet

LE Test PacketLE_TEST_END

IN
ITIALIZIN

G
TRAN

SM
ITTER TEST

RECEIVER TEST



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 82 of 88 
Mar. 30, 2018  

DTM Application executes RF Test by receiving RF test command through UART. The application reports the result by 
transmitting RF test event through UART. 

When LE_RECEIVER_TEST command is received, the application calls RBLE_VS_Test_Rx_Start in order to start 
receiving RF test packets from RF Tester. 

In the same way, when LE_TRANSMITTER_TEST command is received, the application calls 
RBLE_VS_Test_Tx_Start in order to start transmitting RF test packets to RF Tester. 

When LE_TEST_END command is received, the application calls RBLE_VS_Test_End in order to stop RF test. 

Project_Source\application\src\connect\r_dtm.c, line 193-384 

 
 

  

193:    static void dtm_cmdhandler(uint16_t cmd) 
194:    { 
201:        switch(val16 & DTM_CMD_MASK) 
202:        { 
203:            case DTM_CMD_RESET: 
204:                if(RBLE_OK != RBLE_GAP_Reset(&dtm_gap_callback, &dtm_sm_callback)) 
205:                { 
206:                    dtm_send_error(); 
207:                } 
208:                break; 
209:            case DTM_CMD_RX_START: 
210:                if(RBLE_OK != RBLE_VS_Test_Rx_Start(DTM_GET_FREQ(val16))) 
211:                { 
212:                    dtm_send_error(); 
213:                } 
214:                break; 
215:            case DTM_CMD_TX_START: 
216:                if(RBLE_OK != RBLE_VS_Test_Tx_Start(DTM_GET_FREQ(val16), DTM_GET_LENGTH(val16), … ) 
217:                { 
218:                    dtm_send_error(); 
219:                } 
220:                break; 
221:            case DTM_CMD_END: 
222:                if(RBLE_OK != RBLE_VS_Test_End()) 
223:                { 
224:                    dtm_send_error(); 
225:                } 
226:                break; 
227:        } 
228:    } 
 : 
329:    static void dtm_vs_callback(RBLE_VS_EVENT* evt) 
330:    { 
333:        switch(evt->type) 
334:        { 
335:            case RBLE_VS_EVENT_TEST_RX_START_COMP: 
336:                /* reach here when RBLE_VS_Test_Rx_Start is called */ 
348:                break; 
349: 
350:            case RBLE_VS_EVENT_TEST_TX_START_COMP: 
351:                /* reach here when RBLE_VS_Test_Tx_Start is called */ 
363:                break; 
364: 
365:            case RBLE_VS_EVENT_TEST_END_COMP: 
366:                /* reach here when RBLE_VS_Test_End is called */ 
379:                break; 
383:        } 
384:    } 



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 83 of 88 
Mar. 30, 2018  

9. Appendix 
9.1 Device Address 
Device Address is 48-bit value for identifying each device. Device Address Types defined by Bluetooth Core 
Specification are shown as below.  

- Public Device Address  
 Public device address shall be created in accordance with section "48-bit universal LAN MAC 

addresses" of the IEEE 802-2001 standard and using a valid Organizationally Unique Identifier 
(OUI) obtained from the IEEE Registration Authority. 

- Random Device Address  
- Static Device Address  

 Static Device Address is a 48-bit randomly generated. Device may choose to initialize its address 
to a new value after each power cycle. And device shall not change its address value once 
initialized until the device is power cycled. 

- Private Device Address  
- Non-resolvable Private Address 

 Non-resolvable Private Address is a 48-bit randomly generated. Its address should be changed 
over a period of time (recommended value of Bluetooth Core Specification is 15mins) for 
reducing the ability to track by other device. 

- Resolvable Private Address 
 Resolvable Private Address contains 24-bit randomly generated number and 24-bit hash generated 

with randomly generated number and Identity Resolving Key (IRK). Its address should be 
changed over a period of time (recommended value of Bluetooth Core Specification is 15mins) for 
reducing the ability to track by other device. 

 

 

Figure 9-1  Public Device Address format 

 

Figure 9-2  Static Device Address format 

 

Figure 9-3  Non-resolvable Private Address format 

 

Figure 9-4  Resolvable Private Address format 
 

Regarding to the specification of Device Address, refer to [Vol. 6, Part B] Section 1.3, Bluetooth Core Specification 
v4.2. 

  

LSB MSB
company assigned company id

(24bit) (24bit)

LSB MSB
1 1random part

(48bit)

LSB MSB
0 0random part

(48bit)

LSB MSB
1 0hash prand

(24bit) (24bit)



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 84 of 88 
Mar. 30, 2018  

9.2 Advertising Packet Format 
Beacon Application transmits non-connectable undirected advertising packet, and Connect Application transmits 
connectable undirected advertising packet in non-connected state. The packet format is common, and it is shown in 
Figure 9-5.  

 

Figure 9-5  Advertising packet format 
 

The specification of advertising packet is as shown below. 

- advertising channel packet 

- Preamble   : fixed 10101010b 

- Access Address  : fixed 0x8E89BED6 

- Advertising channel PDU : Header and Payload 

- CRC    : 24bits 

Below fields are set by application. 

- advertising channel PDU Payload 

- AdvA    : Advertiser's Address is placed in 

- AdvData (Advertising data) : multiple AD structures are placed in, and maximum size is 31 bytes 

- AD structure  : 1byte part of Length information and Length bytes part of Data 

- Data   : n bytes part of AD Type and (Length-n) bytes part of AD Data 

 

Regarding to the details, refer to below specifications respectively. 

- advertising packet format  : [Vol. 6, Part B] Section 2.1, Bluetooth Core Specification v4.2 

- advertising channel PDU format : [Vol. 6, Part B] Section 2.3, Bluetooth Core Specification v4.2 

- advertising data format  : [Vol. 3, Part C] Section 11, Bluetooth Core Specification v4.2 

- AD Type    : Part A, Supplement to the Bluetooth Core Specification v7. 

Regarding to the definitions of AD Type, refer to below website. 

- Bluetooth SIG Home > Specification > Assigned Numbers > Generic Access Profile 
https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile 

 

(1 byte) (4 byte) (3 byte)

Advertising channel Packet 

Advertising channel PDU 

(max 31 byte)

Advertising channel PDU Payload 

(max 31 byte)

Advertising Data ･･･

(1 byte)       (Length  byte)

AD Strcuture 

   (n byte)

AD Type AD Data

AD Structure 1 AD Structure  2 AD Structure N

(Length -n byte)

Length Data

Preamble Access Address PDU(Protocol Data Unit)

Header Payload

(6 byte)

AdvA AdvData

CRC

(2 byte) (max 37 byte)

(max 39byte)

https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile


RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 85 of 88 
Mar. 30, 2018  

9.3 Attribute Packet Format 
Connect Application transmits Attribute packet in connected state. Attribute packet format which is used in 
Characteristic Value Read and Characteristic Value Write is shown in Figure 9-6.  

 

Figure 9-6  Attribute packet format 
 

The specification of Attribute packet is as shown below. 

- Data channel packet 

- Preamble  : either 10101010b or 01010101b. 

- Access Address : determined by Master device when establishing connection 

- Data channel PDU : consists of Header, Payload and Message Integrity Check (MIC) 
     MIC is added if data is encrypted 

- CRC   : 24bits 

 

(1 byte) (4 byte)

Data channel Packet

(2 byte)

Data channel PDU 

(2 byte)

L2CAP PDU - Basic information frame CID

Attribute Protocol PDU

(3 byte)

(0 or 4 byte)

(max 33 byte)

Length

CRC

(2 byte)

Attibute
Handle

Preamble Access Address PDU(Protocol Data Unit)

Payload

Opcode

(max 27 byte)

Parameters

(max 22 byte)(1 byte)

MIC

Information payload

(max 23 byte)

(1 byte)

Attribute Protocol - Write Request
Opcode
(0x12)

(2 byte)

(2 byte)

Value
Offset

Header

(2 byte)

Attribute Protocol - Read Request

Attribute Protocol - Read Response
Opcode
(0x0B) Attibute Value

Opcode
(0x0A)

(1 byte)

(1 byte) (max 22 byte)

Attribute Protocol - Write Response

(1 byte) (2 byte)

(1 byte)

Opcode
(0x13)

Attibute
Handle Attribute Value

Attribute Protocol - Read Blob Request

(1 byte) (max 22 byte)

Opcode
(0x0D) Part Attribute Value

(max 20 byte)

Attribute Protocol - Read Blob Response

Value
Offset

Part Attribute
Value

(2 byte)

Opcode
(0x0C)

Attibute
Handle

(18 byte)

(1 byte) (2 byte) (2 byte) (18 byte)

Attribute Protocol - Prepare Write Request

(1 byte) (2 byte)

Opcode
(0x16)

Attibute
Handle

Opcode
(0x19)Attribute Protocol - Execute Write Response

Opcode
(0x17)

Attibute
Handle

Value
Offset

Part Attribute
Value

(1 byte) (1 byte)

Attribute Protocol - Execute Write Request

Attribute Protocol - Prepare Write Response

Opcode
(0x18)

(1 byte)

Flags



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 86 of 88 
Mar. 30, 2018  

- L2CAP PDU 

- consists of Length, Channel ID (CID) and Information payload. 

- CID is 0x0004 (Attribute Protocol) 

- Attribute Protocol PDU 

- consists of Attribute Opcode and Attribute Parameters 

- Attribute Opcode specifies Attribute operation 

- Attribute Parameters is different from each Attribute operation 

 

Regarding to the details, refer to below specification 

- Data channel PDU  : [Vol. 6, Part B] Section 2.4, Bluetooth Core Specification v4.2 

- L2CAP PDU   : [Vol. 3, Part A] Chapter 3, Bluetooth Core Specification v4.2 

- Attribute Protocol PDU : [Vol. 3, Part F] Section 3.4, Bluetooth Core Specification v4.2 

- GATT Features  : [Vol. 3, Part G] Chapter 4, Bluetooth Core Specification v4.2 

  



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 87 of 88 
Mar. 30, 2018  

9.4 Specification Changes 
Table 9-1 shows major specification changes. 

Table 9-1  Specification Changes between Rev.1.00 and Rev.1.10 
Item Rev.1.00 Rev1.10 Position 

Environment Version 
 CC-RL V1.02.00 V1.04.00 Chapter2 

CS+ for CC V3.03.00 V5.00.00 Chapter2 
e2 studio Version 4.3.0.008 Version 5.2.0.023 Chapter2 
BLE Protocol Stack V1.11 V1.20 Chapter2 
Beacon Stack V1.00 V2.10 Chapter2 

Beacon Application 
 RF Operation RF Transmission only RF Transmission only 

RF Transmission and Reception 
Subsection 
6.1.2 

Advertising Type Non-connectable Undirected 
Advertising 

Non-connectable Undirected 
Advertising 
Scannable Undirected Advertising 

Subsection 
5.1.1 

Connect Application 
 Pairing 

Initiator Key Distribution 
ID Resolving key None Subsection 

5.2.2 
Custom Service 

Characteristic 
Advertising Information 
Advertising Data 
Code Flash Memory Updated Count 
Data Flash Memory Updated Count 

Advertising Information 
Advertising Data 
Scan Response data 
Code Flash Memory Updated Count 
Data Flash Memory Updated Count 

Subsection 
5.2.3 

Application Sequence 
 Application Switching Beacon Application starts, and then 

either Beacon Application and 
Connect Application switches 
alternately when switch is pushed. 

Beacon Application starts, and then 
either Beacon Application and 
Connect Application switches 
alternately when switch is pushed. 
Connect Application starts, and then 
switch to Beacon Application after 
30seconds. 

Subsection 
6.1.10 

Stored Data in Flash memory 
 Code Flash Device Address 

Device Address Type 
Device Name 
Advertising Information 
Non-connectable Undirected 
Advertising Data 

Device Address 
Device Address Type 
Device Name 
Advertising Information 
Non-connectable Undirected 
Advertising Data 
Scanable Undirected Advertising 
Data 
Scan Response Data 

Subsection 
5.4.1 

Data Flash Pairing Information 
Peer Device Address 
Peer Device Address Type 
Security Status 
Local Encryption Keys 
Remote Encryption Keys 

Random Seed Value 
Data Flash Updated Count 
Code Flash Updated Count 

Pairing Information 
Peer Device Address 
Peer Device Address Type 
Security Status 
Local Encryption Keys 

Data Flash Updated Count 
Code Flash Updated Count 

Subsection 
5.4.2 

 

  



RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program 

R01AN3313EJ0111  Rev.1.11  Page 88 of 88 
Mar. 30, 2018  

Website and Support 
Renesas Electronics Website 

http://www.renesas.com/ 
 
Inquiries 

http://www.renesas.com/contact/ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
All trademarks and registered trademarks are the property of their respective owners. 

http://www.renesas.com/
http://www.renesas.com/contact/


 

 

Revision History of Preceding Editions 

Rev. Date Description 
1.00 Jul. 14, 2016 First edition issued 
1.10 Jun. 30, 2017 Chapter 1 Overview 

  P.5 figure of Beacon System and figure of RF Evaluation System are merged 
into Figure 1-1 

  P.6 Figure 1-2 and Figure 1-3 are changed 
  - content about the evaluation board operation is moved to Chapter 4 
  Chapter 2 Environment 
  P.7 Software Environment and Software Library versions are updated 
  Chapter 3 File Composition 
  P.8 R5F11AGJ_BcnCmb_no_sw.hex is added in file composition 
  Chapter 4 Evaluation Procedure 
  P.10 Current Consumption Measurement is added in evaluation procedure 
  P.11 Library download URLs are changed 
  P.13 content about the evaluation board operation and Figure 4-1 are added 
  P.15 content about the evaluation board operation and Figure 4-2 are added 
  P.15 flow chart using smart phone is merged into flow chart of P.10 
  P.16 figure of Confirming the transmission of advertising packet is added 
  P.17 figure of Updating the advertising packet is added 
  P.17 procedure is changed for evaluating with iOS GATTBrowser 
  P.19 procedure is changed for evaluating with Android GATTBrowser 
  P.21 figure of Confirming the updated advertising packet is added 
  P.22 figure of Evaluating RF characteristic is added 
  P.23 Section 4.6 is added 
  Chapter 5 Specification 
  P.25 Operation when both Tx and Rx are enabled is added 
  P.26 Table 5-2 is added 
  P.28 Initiator Key Distribution is changed to None in Table 5-4 
  P.30 Scan Response Data Characteristic is added in Table 5-5 
  P.30 Attribute Handle are changed in Table 5-5 
  P.31 RF Test Commands /Events Table is separated into Table 5-6 and Table 

5-7 
  P.31  Combinations of RF Test Commands / Events Table is removed 
  P.32 format of Table 5-8 is changed 
  P.32 Scannable Advertising Data and Scan Response Data are added in 

Table 5-8 
  P.33 Structure of Pairing Information and Flash memory count are changed in 

Table 5-9 
  P.33 Random Seed is removed in Table 5-9 
  P.35 Section5.6 is added 
  P.36 Compiler version is updated 
  P.37 size of System Configuration is changed in Figure 5-8, Figure 5-9, and 

Figure 5-10 
  Chapter 6 Configuration 
  P.44 Subsection 6.1.10 is added 
  P.46 Scan Response Data is added in unique code file 
  P.47 Subsection 6.2.2 is added 
  P.51 Subsection 6.2.4 is added 
  P.58 Subsection 6.2.7 is added 

 



 

 

  Chapter 9 Appendix 
  - content about building Android application is removed 
  P.87 Section 9.4 is added 
  Overall 
  - "Beacon System" is changed into "Beacon Operation" 
  - "RF Evaluation System" is changed into "RF Evaluation Operation" 
  - Related documents to be referred are added 
  - typos of term, symbol name, and other are modified 

1.11 2018.03.30 Chapter 5 Specification 
  P.34 Supplementation of Table 5-12 is changed. 
  Chapter 9 Appendix 
  P.84 Description in Section 9.2 is modified. 
  P.85 Description in Section 9.3 is modified. 

 



 

 

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products 
 
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. 
For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well 
as any technical updates that have been issued for the products. 
 

1.  Handling of Unused Pins 
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the 
manual. 
¾ The input pins of CMOS products are generally in the high-impedance state. In operation with an 

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an 
associated shoot-through current flows internally, and malfunctions occur due to the false 
recognition of the pin state as an input signal become possible. Unused pins should be handled as 
described under Handling of Unused Pins in the manual. 

2.  Processing at Power-on 
The state of the product is undefined at the moment when power is supplied. 
¾ The states of internal circuits in the LSI are indeterminate and the states of register settings and 

pins are undefined at the moment when power is supplied. 
In a finished product where the reset signal is applied to the external reset pin, the states of pins 
are not guaranteed from the moment when power is supplied until the reset process is completed. 
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function 
are not guaranteed from the moment when power is supplied until the power reaches the level at 
which resetting has been specified. 

3.  Prohibition of Access to Reserved Addresses 
Access to reserved addresses is prohibited. 
¾ The reserved addresses are provided for the possible future expansion of functions. Do not access 

these addresses; the correct operation of LSI is not guaranteed if they are accessed. 
4.  Clock Signals 

After applying a reset, only release the reset line after the operating clock signal has become stable. 
When switching the clock signal during program execution, wait until the target clock signal has 
stabilized. 
¾ When the clock signal is generated with an external resonator (or from an external oscillator) 

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. 
Moreover, when switching to a clock signal produced with an external resonator (or by an external 
oscillator) while program execution is in progress, wait until the target clock signal is stable. 

5.  Differences between Products 
Before changing from one product to another, i.e. to a product with a different part number, confirm 
that the change will not lead to problems. 
¾ The characteristics of Microprocessing unit or Microcontroller unit products in the same group but 

having a different part number may differ in terms of the internal memory capacity, layout pattern, 
and other factors, which can affect the ranges of electrical characteristics, such as characteristic 
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a 
product with a different part number, implement a system-evaluation test for the given product. 

 



http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel:  +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany   
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China 
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

SALES OFFICES

© 2018 Renesas Electronics Corporation. All rights reserved.
Colophon 7.1

(Rev.4.0-1  November 2017)

  
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for 

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by 

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or 

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application 

examples. 

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by 

you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the 

product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic 

equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are 

not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause 

serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all 

liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or 

other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the 

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation 

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified 

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a 

certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas 

Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury 

or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to 

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult 

and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and 

sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics 

products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable 

laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws 

or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or 

transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third 

party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1)  “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2)  “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.


	1. Overview
	1.1 Beacon Operation
	1.2 RF Evaluation Operation

	2. Environment
	3. File Composition
	4. Evaluation Procedure
	4.1 Getting Libraries
	4.2 Building Firmware
	4.2.1 Using CS+ for CC
	4.2.2 Using Renesas e2 studio

	4.3 Writing Firmware
	4.4 Evaluating with smart phone
	4.4.1 Confirming the transmission of advertising packet
	4.4.2 Updating the advertising packet
	(1) Using iOS device
	(2) Using Android device

	4.4.3 Confirming the updated advertising packet

	4.5 Evaluating RF characteristic
	4.6 Current Consumption Measurement
	4.6.1 Measurement Environment
	4.6.2 Evaluation Board Setting
	4.6.3 Measurement Procedure
	(1) Measuring Current Consumption in Periodic Packet Transmission



	5. Specification
	5.1 Beacon Application
	5.1.1 Non-connectable Advertising

	5.2 Connect Application
	5.2.1 Connectable Advertising
	5.2.2 Pairing / Start Encryption
	5.2.3 Profile Communication

	5.3 DTM Application
	5.3.1 Direct Test Mode

	5.4 Accessing to Flash memory
	5.4.1 Accessing to Code Flash memory
	5.4.2 Accessing to Data Flash memory

	5.5 Supporting Status of Protocol Stack Functions
	5.6 Hardware Resources used
	5.7 Compiler
	5.8 Memory Model
	5.9 Program Size
	5.10 Address Map

	6. Configuration
	6.1 Hardware configuration
	6.1.1 MCU main system clock frequency
	(1) Using CS+ for CC
	(2) Using e2 studio

	6.1.2 RF Operation
	6.1.3 RF on-chip DC-DC converter
	6.1.4 RF slow clock source
	6.1.5 RF on-chip oscillator calibration
	6.1.6 RF base clock oscillation stabilization time
	6.1.7 Maximum number of Simultaneous connection
	6.1.8 HCI Monitoring
	6.1.9 System Configuration Address
	6.1.10 Switches on RL78/G1D Evaluation Board

	6.2 Application Configuration
	6.2.1 System Configuration
	6.2.2 Kernel Heap Memory Configuration
	6.2.3 Advertising Configuration
	6.2.4 No Connection Timeout Time Configuration
	6.2.5 Paring Configuration
	6.2.6 Custom Profile
	(1) Definitions
	(2) Resources
	(3) Processing

	6.2.7 RF Operation


	7. Functions
	7.1 Function List
	7.1.1 Switching Application
	7.1.2 Beacon Application
	7.1.3 Connect Application
	7.1.4 DTM Application

	7.2  Function Calling
	7.2.1 Function Calling of Beacon Operation
	7.2.2 Function Calling of RF Evaluation Operation


	8. Operation
	8.1 State Transition
	8.1.1 Beacon Application
	8.1.2 Connect Application
	8.1.3 DTM Application

	8.2 Sequence
	8.2.1 Beacon Application
	(1) Initializing & Advertising & RF Powerdown Sequence

	8.2.2 Connect Application
	(1) Initializing & Advertising & Slave Connection (Configurations) Sequence
	(2) Slave Connection (Pairing) Sequence
	(3) Slave Connection (Start Encryption) Sequence
	(4) Slave Connection (GATT Access) Sequence
	(5) Disconnection & RF Powerdown Sequence

	8.2.3 DTM Application
	(1) Initializing & Transmitter Test & Receiver Test Sequence



	9. Appendix
	9.1 Device Address
	9.2 Advertising Packet Format
	9.3  Attribute Packet Format
	9.4 Specification Changes


