

## RL78/G1F

Application Note

R01AN5630EJ0100 Rev.1.00 20.10.2020

# Sensorless 120-degree conducting control for permanent magnetic synchronous motor (high-speed rotation)

## Summary

The purpose of this application note is to describe how to use the RL78/G1F microcontroller to drive a permanent magnet synchronous motor using high-speed rotation control by sensorless 120-degree conducting. We demonstrate the implementation using a sample program and Renesas Motor Workbench (RMW), a motor control development support tool.

These sample programs are to be used as references only, and Renesas Electronics Corporation does not guarantee their operations. Please use after carrying out a thorough evaluation in a suitable environment.

## **Evaluation Device**

Operations of the sample programs have been checked using the following device:

RL78/G1F(R5F11BGEAFB)

## Target sample programs

The target sample programs of this application note are as follows.

- RL78G1F\_MRSSK\_120HS\_CSP\_CC\_V100 (IDE: CS+ for CC)
- RL78G1F\_MRSSK\_120HS\_E2S\_CC\_V100 (IDE: e<sup>2</sup>studio)

Sample program for high-speed rotation control by sensorless 120-degree conducting on RL78/G1F demo board

#### Reference

- RL78/G1F Group User's Manual: Hardware (R01UH0516EJ0110)
- Application note: '120-degree conducting control of permanent magnet synchronous motor: algorithm' (R01AN2657EJ0120)
- Renesas Motor Workbench 2.0 User's Manual (R21UZ0004EJ0202 : Renesas-Motor-Workbench-V2-0d)
- RL78/G1F Motor Driver Board GB01 User's Manual (R12UT0012EJ0100)



## **Table of Contents**

| 1. | Overview                              |
|----|---------------------------------------|
| 2. | System overview4                      |
| 3. | Descriptions of the control program13 |
| 4. | How to Run the Demo System40          |



### 1. Overview

This application note describes how to implement the 120-degree conduction control sample program for a permanent magnet synchronous motor (PMSM) using a RL78/G1F microcontroller and how to use the Renesas Motor Workbench (RMW), a motor control development support tool. Note that these sample programs use the algorithm described in the application note '120degree conducting control of permanent magnet synchronous motor: algorithm'.

## **1.1** Development environment

Table 1-1 and Table 1-2 show the development environment of the sample programs explained in this application note.

| Table 1-1 – Develo | pment Environmen | t of the Samp | le Programs (H/W)             |
|--------------------|------------------|---------------|-------------------------------|
|                    |                  | cor and damp  | io i iogianio (i <i>m</i> 11) |

| Microcontroller           | Evaluation board                                                 | motor                      |
|---------------------------|------------------------------------------------------------------|----------------------------|
| RL78/G1F<br>(R5F11BGEAFB) | RL78/G1F Motor Driver Board GB01<br>(P13130-D1-003) <sup>1</sup> | TF037C-2000-F <sup>3</sup> |
|                           | Communication board (RTK0EMX6B0Z00000BJ) <sup>1,2</sup>          |                            |

#### Table 1-2 – Development Environment of the Sample Programs (S/W)

| CS+ version                   | Build tool version |
|-------------------------------|--------------------|
| V8.03.00                      | CC-RL V1.09.00     |
| e <sup>2</sup> studio version | Build tool version |
| v7.8.0                        | CC-RL V1.09.00     |

For purchase and technical support, please contact sales representatives and dealers of Renesas Electronics Corporation.

#### Notes:

- The RL78/G1F demo board (P13130-D1-003) and the communication board (RTK0EMX6B0Z00000BJ) are for testing only and are not for sale. For technical support, equipment loans, etc., contact a Renesas sales representative or dealer.
- 2. For the communication board used for debugging, ICS++ (In Circuit Scope plus) made by Desk Top Laboratories Inc. is also available.

Desk Top Laboratories Inc. (http://desktoplab.co.jp/)

3. TF037C-2000-F is a product of Nidec Copal Electronics Co., Ltd.

Nidec Copal Electronics Co., Ltd. (https://www.nidec-copal-electronics.com/)



## 2. System overview

An overview of this system is provided below.

## 2.1 Hardware specifications

## Table 2.1 – RL78/G1F demo board specifications

| Item                     | Specification                                                                      |  |
|--------------------------|------------------------------------------------------------------------------------|--|
| Operating input voltage  | 12V - 50V                                                                          |  |
| Maximum output current   | 30 A (peak current for each phase)                                                 |  |
| Motor to be driven       | 3-phase permanent magnet synchronous motor                                         |  |
| Current detection method | 3-phase current detection and current detection using DC link shunt resistor       |  |
| DC bus voltage detection | Detection by resistive divider                                                     |  |
| Three-phase output       | Detection by resistive divider                                                     |  |
| voltage detection        |                                                                                    |  |
| PWM logic                | Positive logic in both upper and lower arms                                        |  |
| Overcurrent detection    | Implemented by RL78/G1F MCU setting (PWMOPA); detection circuit not yet            |  |
|                          | implemented                                                                        |  |
| Dead time                | 1 µs or more                                                                       |  |
| Switch                   | 3 tact switches (one of which is a CPU reset)                                      |  |
| LED                      | 2                                                                                  |  |
| connectors               | Connector for emulator connection (using conversion cable): CN3                    |  |
| connectors               | <ul> <li>I2C communication connector: CN6</li> </ul>                               |  |
|                          | <ul> <li>2 serial communication connectors: CN4, CN8</li> </ul>                    |  |
|                          | <ul> <li>ABZ encoder signal input connector: CN2</li> </ul>                        |  |
|                          | <ul> <li>Hall sensor signal input connector: CN5</li> </ul>                        |  |
|                          | <ul> <li>2 analog signal inputs: CN1, CN7</li> </ul>                               |  |
|                          |                                                                                    |  |
| Heat dissipation         | Natural air cooling by heat sink                                                   |  |
| Names of parts           | RESET SW<br>W1<br>LED2<br>K1<br>K1<br>K1<br>K1<br>K1<br>K1<br>K1<br>K1<br>K1<br>K1 |  |



## 2.2 Hardware configuration

The hardware configuration is shown below.



Figure 2-1 – Hardware Configuration Diagram



## 2.3 Hardware specifications

#### 2.3.1 User interface

Table 2.2 is a list of user interfaces of this system.

#### Table 2.2 – User Interfaces

| Item  | Interface component  | Function                        |
|-------|----------------------|---------------------------------|
| SW1   | Tact switch          | Motor drive                     |
| SW2   | Tact switch          | Motor stop / error cancellation |
| RESET | Tact switch (RESET1) | System reset                    |
| LED1  | Yellow green LED     | Indicate the running status     |
| LED2  | Yellow green LED     | Error status display            |

The system's connector interfaces are listed in Table 2.3.

#### Table 2.3 – Connector Interfaces

| ltem | Number of ports | Function                                               |
|------|-----------------|--------------------------------------------------------|
| CN1  | 2               | Analog input (not used in this system)                 |
| CN2  | 5               | ABZ encoder signal input (not used in this system)     |
| CN3  | 5               | Emulator connection (using conversion board)           |
| CN4  | 4               | Serial communication (SCI1) (not used in this system)  |
| CN5  | 5               | Hall sensor signal input (not used in this system)     |
| CN6  | 4               | I2C communication (not used in this system)            |
| CN7  | 2               | Analog input (not used in this system)                 |
| CN8  | 4               | Serial communication (SCI0) communication with Renesas |
|      |                 | Motor Workbench                                        |



Table 2.4 is a list of port interfaces of the RL78/G1F microcontroller of this system.

#### Table 2.4 – Port Interfaces

| R5F11BGEAFB port name | Function                                                                     |
|-----------------------|------------------------------------------------------------------------------|
| P27 / ANI7            | Inverter bus voltage measurement                                             |
| P24 / ANI4            | U-phase current measurement (not used in this system)                        |
| P25 / ANI5            | V-phase current measurement (not used in this system)                        |
| P26 / ANI6            | W-phase current measurement (not used in this system)                        |
| P147 / ANI18          | Analog input (not used in this system)                                       |
| P120 / ANI19          | Analog input (not used in this system)                                       |
| P22 / PGAI / IVCMP0   | DC link current detection (A/D, PGA, CMP)                                    |
| P23 / PGAGND          | DC link current detection GND                                                |
| P00 / IVCMP10         | 3-phase midpoint voltage measurement (CMP1) (shared port)                    |
| P01 / IVCMP11         | Uphase voltage measurement (CMP1) (shared port)                              |
| P20 / IVCMP12         | Vphase voltage measurement (CMP1)                                            |
| P21 / IVCMP13         | Wphase voltage measurement (CMP1)                                            |
| P123                  | Tact switch (SW2)                                                            |
| P124                  | Tact switch (SW1)                                                            |
| P63                   | LED1 ON / OFF control                                                        |
| P74                   | LED2 ON / OFF control                                                        |
| P60                   | U-phase voltage detection filter change switch (not used in this system)     |
| P61                   | V-phase voltage detection filter change switch (not used in this system)     |
| P62                   | W-phase voltage detection filter change switch (not used in this system)     |
| P15 / TRDIOB0         | PORT output / PWM output (U <sub>p</sub> )                                   |
| P13 / TRDIOA1         | PORT output / PWM output (V <sub>p</sub> )                                   |
| P12 / TRDIOB1         | PORT output / PWM output (Wp)                                                |
| P14 / TRDIOD0         | PORT output / PWM output (Un)                                                |
| P11 / TRDIOC1         | PORT output / PWM output (Vn)                                                |
| P10 / TRDIOD1         | PORT output / PWM output (Wn)                                                |
| P30 / INTP3           | Hall sensor input (HU) (not used in this system)                             |
| P75 / INTP9           | Hall sensor input (HV) (not used in this system)                             |
| P31 / INTP4           | Hall sensor input (HW) (not used in this system)                             |
| P50 / INTP1           | Encoder Z-phase input (not used in this system)                              |
| P71 / SDA21           | I2C communication (not used in this system)                                  |
| P70 / SCL21           | I2C communication (not used in this system)                                  |
| P17 / TXD0            | Serial communication (SCI0)                                                  |
| P16 / RXD0            | Serial communication (SCI0)                                                  |
| P72 / TXD1            | Serial communication (SCI1) (not used in this system)                        |
| P73 / RXD1            | Serial communication (SCI1) (not used in this system)                        |
| P00 / TRDCLKA         | Encoder A-phase input (shared port) (not used in this system)                |
| P01 / TRDCLKB         | Encoder B-phase input (shared port) (not used in this system)                |
| P40 / TOOL0           | Data I/O for debugger                                                        |
| P125 / RESET          | System reset input                                                           |
| VSS                   | Ground potential of the port                                                 |
| VDD                   | Positive power supply of the port                                            |
| REGC                  | Regulator output stabilization capacitance connection for internal operation |



## 2.3.2 About Shared Ports

The RL78/G1F demo board switches the terminal function by means of a  $0\Omega$  resistor on the board circuitry.

| Port number | Circuit short | Port function used | Function                   |
|-------------|---------------|--------------------|----------------------------|
| P00         | R9            | ANI17 / IVCMP10    | Midpoint voltage detection |
|             | R12           | TRGCLKA            | Encoder A phase            |
| P01         | R14           | ANI16 / IVCMP11    | U-phase voltage detection  |
|             | R13           | TRGCLKB            | Encoder B phase            |

### Table 2.5 – Switching shared ports



Figure 2-2 – Arrangement on the board - switching shared ports



### 2.3.3 Peripheral functions

Table 2.6 is a list of peripheral functions used in this system.

| Peripheral functions              | Purpose                                                 |  |
|-----------------------------------|---------------------------------------------------------|--|
|                                   | <ul> <li>Inverter bus voltage measurement</li> </ul>    |  |
| 10-bit A/D converter              | Temperature sensor signal                               |  |
|                                   | DC link current detection                               |  |
| 8-bit D/A converter               | CMP0 comparison value                                   |  |
| 12-bit interval timer             | 200 ms cycle counter (LED, for rotation stop control)   |  |
| Timer Arrow Lipit (TALI)          | TAU02: Free-run counter for rotation speed measurement  |  |
| Timer Array Unit (TAU)            | TAU00: Delay timer for reversal                         |  |
| Timer RD (TRD)                    | Complementary PWM output                                |  |
| PWM option unit A (PWMOPA)        | Forced cut-off of PWM output depending on CMP0 output   |  |
| Programmable gain amplifier (PGA) | DC link current detection amplification                 |  |
| Comparator (CMP0)                 | Overcurrent detection                                   |  |
| Comparator (CMP1)                 | Induced voltage zero-crossing detection                 |  |
| Serial array unit (SCIO)          |                                                         |  |
| Data transfer controller (DTC)    | Communicates with Renesas Motor Workbench               |  |
| Standby function                  | MCU transitions to STOP mode when there is no operation |  |
| Standby function                  | for a certain period of time                            |  |

#### (1) 10 bit A/D converter

The inverter bus voltage is rated using the 10-bit A/D converter. The operation mode is set as below. - The channel selection mode: the select-mode - The conversion operation mode: the one-shot conversion mode - Trigger: Software trigger

#### (2) 8 bit A/D converter

Used as CMP0 comparison value. Current limit setting.

#### (3) 12-bit interval timer

Periodic control for LED flashing, spinning down, and STANDBY mode transition

#### (4) Timer Array Unit (TAU)

- a. Free-running timer for rotational speed measurement This channel 1 of TAU is used as a free-running counter for rotational speed calculation.
- b. Delay timer for reversal
   The channel 3 of TAU is used as a delay timer for changing the conducting pattern with π/6 phase from the zero-crossing point.

#### (5) Timer RD (TRD)

Three-phase PWM output of upper arm chopping is performed using the Complementary PWM Mode.

#### (6) PWM option unit A (PWMOPA)

Force the PWM output to be cut off from the overcurrent signal detected in CMP0. After detecting the cause of the cut-off release (CMP0 falling edge), the forced cut-off of the output is released from the TRDIOC0 edge timing.



### (7) Comparator (CMP0)

Detect overcurrent by comparing to the internal reference value.

#### (8) Comparator (CMP1)

Detect the zero-crossing of the induced voltage by comparing the phase voltage with the midpoint voltage.

#### (9) Serial array unit (SCI0)

Used to communicate with Renesas Motor Workbench.

#### (10) Data transfer controller (DTC)

To avoid overloading the CPU when communicating with Renesas Motor Workbench, a data copy is made to the send/receive memory region.



### 2.4 Software structure

### 2.4.1 Software file structure

The folder and file configurations of the sample programs Table 2.7 are given below.

| Folder                 |      | File                                                   | Description                                      |  |
|------------------------|------|--------------------------------------------------------|--------------------------------------------------|--|
| config                 |      | r_mtr_config.h                                         | Common definition for software configuration     |  |
|                        |      | r_mtr_motor_parameter.h                                | Configuration definition for motor parameters    |  |
|                        |      | r_mtr_control_parameter.h                              | Configuration definition for control parameters  |  |
|                        |      | r_mtr_inverter_parameter.h                             | Configuration definition for inverter parameters |  |
| application            | main | main.h<br>main.c                                       | Main function                                    |  |
|                        | ics  | r_mtr_ics.h                                            | RMW-related function definitions                 |  |
|                        |      | ics_RL78G1F.h                                          | CPU definition for RMW                           |  |
|                        |      | RL78G1F_vector.c<br>RL78G1F_vector.h                   | Interrupt vector function definition for RMW     |  |
|                        |      | ics_RL78G1F.obj                                        | Communication library for RMW                    |  |
| driver auto_generation |      | cstart.asm<br>hdwinit.asm<br>iodefine.h<br>stkinit.asm | Auto generation files                            |  |
|                        |      | r_mtr_ctrl_rl78g1f.h,<br>r_mtr_ctrl_rl78g1f.c          | Function definition for MCU control              |  |
| middle                 |      | r_mtr_common.h                                         | Common definition                                |  |
|                        |      | r_mtr_temp_table.h                                     | NTC Thermistor Table                             |  |

Note 1: Regarding the specification of the Analyzer function in the motor control development support tool 'Renesas Motor Workbench(RMW)', please refer to Chapter 4.

The identifier 'ics/ICS (ICS is the previous motor control development support tool, 'In Circuit Scope') is attached to the names of folders, files, functions, and variables related to 'Renesas Motor Workbench'.



## 2.5 Software specifications

Table 2.9 shows the basic specifications of the software discussed in this application note. For details on 120-degree conducting control, refer to the application note '120-degree conducting control of permanent magnet synchronous motor: algorithm'

| ltem                                      | Description                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Control method                            | 120-degree conducting method (chopping upper arm)                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Motor rotation start/stop                 | <ul> <li>Determined by analog switch level</li> <li>Operated by Renesas Motor Workbench motor control development support<br/>tool</li> </ul>                                                                                                                                                                                                                                                                       |  |  |
| Position detection of rotor magnetic pole | <ul><li>Position detection using induced voltage by comparator (every 60 degrees)</li><li>When the position of the rotor is detected, PWM duty and conducting pattern are set at same time.</li></ul>                                                                                                                                                                                                               |  |  |
| Input voltage                             | DC 24 [V]                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Main clock frequency                      | CPU clock: f <sub>CLK</sub> 32[MHz]<br>TRD clock: f <sub>HOCO</sub> 64[MHz]                                                                                                                                                                                                                                                                                                                                         |  |  |
| Carrier frequency (PWM)                   | 20 [kHz]                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Dead time                                 | 1.2 [µs] (during complementary PWM output)                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Control cycle                             | Dependent on rotation speed in main loop                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Rotation speed control range              | 20,000 [rpm]                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Forced cut-off of PWM output              | Forced cut-off reference value:<br>Uses PGA and CMP0 for forced cut-off of the PWM output.<br>If it falls below the reference value, the cut-off is released.                                                                                                                                                                                                                                                       |  |  |
| Compiler optimization settings            | Default settings                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Protective stop<br>processing             | <ul> <li>When one of the following conditions occurs, an error is generated and the motor control signal outputs (6 outputs) are deactivated</li> <li>1. Inverter bus voltage exceeds 25.2 [V]</li> <li>2. Inverter bus voltage falls below 19.8[V]</li> <li>3. Zero-crossing detection has not occurred for a certain period of time</li> <li>4. High temperature is detected by the temperature sensor</li> </ul> |  |  |

#### Table 2.8 – Basic Specifications of Software

## 2.6 User option bytes

The settings of the user option byte area of the RL78/G1F flash memory are shown below.

| Setting | Address       | value     | Description                                                                |
|---------|---------------|-----------|----------------------------------------------------------------------------|
|         | 000C0H/010C0H | 01101110B | Disable watchdog timer counter operation (stop count after reset)          |
| 6E7BF8H | 000C1H/010C1H | 01110010B | LVD: interrupt & reset mode<br>Rising edge: 2.92 V<br>Falling edge: 2.86 V |
|         | 000C2H/010C2H | 11111000B | HS mode, fHOCO: 64 MHz<br>CPU clock fCLK: 32 MHz                           |



## 3. Descriptions of the control program

The target sample programs of this application note are explained here.

## 3.1 Control overview

The purpose of the sample programs covered by this application note is to use the comparator integrated into the RL78/G1F for high-speed rotation control of the permanent magnet synchronous motor.

For fast rotation, it rotates the motor using a 120-degree conducting method with low computational processing that switches among six conducting patterns every 60 degrees. In addition, because the switching interval between these six patterns is tighter during high-speed rotation, the zero-crossing detection of the induced voltage is carried out by a built-in comparator, rather than by A/D, which would require conversion time.

Two built-in comparators are implemented. The first is connected to PGA output so it can be used for current limiting and forced cut-off. The second allows you to switch between 4 inputs for comparison. It can be used for motor phase detection by entering a 3-phase voltage and a 3-phase neutral voltage as a comparison value.



Figure 3-1 – Control system configuration



## 3.2 Peripheral function behavior

### 3.2.1 Motor start/stop

Motor start-up and shutdown are controlled by inputs from the motor control development support tool or external analog switches.

### 3.2.2 A/D Converter

(1) Inverter bus voltage

The inverter bus voltage is measured as shown below. It is used for modulation factor calculation and over/low voltage detection. (When an abnormality is detected, PWM is stopped).

#### Table 3.1 – Inverter Bus Voltage Conversion Ratio

| ltem                 | Conversion ratio (Inverter bus voltage: A/D conversion value) | Channel |
|----------------------|---------------------------------------------------------------|---------|
| Inverter bus voltage | 0 [V] to111[V] : 0000H to 03FFH                               | ANI7    |

[Note] For more information about A/D conversion, see "RL78/G1F User's Manual – Hardware".

#### (2) NTC thermistor temperature detection

Temperature detection is performed using the NTC thermistor.

#### Table 3.2 Temperature conversion ratio

| Item        | Conversion ratio (temperature: A/D conversion value) | Channel |
|-------------|------------------------------------------------------|---------|
| temperature | -19[°C] to 100[°C]: 00H to 7FH                       | ANI19   |

#### Table 3.3 NTC thermistor temperature table

|    | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  | -19 | -19 | -19 | -19 | -19 | -19 | -19 | -19 | -19 | -19 |
| 1  | -19 | -19 | -18 | -17 | -15 | -14 | -12 | -11 | -10 | -9  |
| 2  | -8  | -7  | -6  | -5  | -4  | -3  | -2  | -1  | -1  | 0   |
| 3  | 1   | 2   | 3   | 4   | 5   | 6   | 6   | 7   | 8   | 9   |
| 4  | 9   | 10  | 10  | 11  | 11  | 12  | 13  | 13  | 14  | 15  |
| 5  | 16  | 16  | 17  | 18  | 18  | 19  | 20  | 20  | 21  | 22  |
| 6  | 22  | 23  | 24  | 24  | 25  | 26  | 27  | 27  | 28  | 29  |
| 7  | 30  | 30  | 31  | 32  | 32  | 33  | 34  | 35  | 36  | 37  |
| 8  | 37  | 38  | 39  | 40  | 41  | 41  | 42  | 43  | 44  | 45  |
| 9  | 46  | 47  | 48  | 49  | 50  | 51  | 52  | 54  | 55  | 56  |
| 10 | 58  | 59  | 60  | 61  | 63  | 65  | 66  | 68  | 70  | 72  |
| 11 | 74  | 76  | 79  | 81  | 83  | 85  | 88  | 93  | 97  | 100 |
| 12 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |     |     |

The A/D of the RL78/G1F is 10-bit resolution, and we can calculate the temperature by using the first 7 bits of data of the A/D value. Which means:

For example, when ADCR>>9 is 112, we can get the Temp value from row 11 and column 2. From the table above, we can see that the temperature that can be tested is between -20 and 100°C.



### 3.2.3 PGA (Programmable gain amplifier)

(1) DC link current detection

The PGA is used to detect the DC link current in the inverter circuit.

#### Table 3.4 – DC link current detection

| ltem               | Description | Remarks                |  |
|--------------------|-------------|------------------------|--|
| PGA gain selection | 4x          | Choose from 4/8/16/32x |  |
| GND selection      | PGAGND      | Vss or PGAGND          |  |



Figure 3-2 – Connecting the PGA to the inverter circuit

#### 3.2.4 Comparator

(1) Overcurrent detection (CMP0)

The output of the PGA is compared with the reference value of the internal D/A converter to detect overcurrent.



Figure 3-3 – Overcurrent detection by CMP0



(2) Induced voltage zero-crossing detection (CMP1)

Select neutral voltage Vn if CMP1 is '-' or the 3-phase induced voltage according to the conduction pattern if CMP1 is '+'.



#### Figure 3-4 – Induced voltage zero-crossing detection by CMP1

| Selector selection pattern | Conduction pattern | CMP1 '+' input |
|----------------------------|--------------------|----------------|
| 0                          | High: W Low: V     | Vu             |
| 1                          | High: W Low: U     | Vv             |
| 2                          | High: V Low: U     | Vw             |
| 3                          | High: V Low: W     | Vu             |
| 4                          | High: U Low: W     | Vv             |
| 5                          | High: U Low: V     | Vw             |

#### Table 3.5 – Conducting patterns and selector selection patterns



## 3.3 Voltage control by PWM

PWM control is used to control output voltage. The PWM control is a control method that continuously adjusts the average voltage by varying the pulse duty cycle, as shown in Figure 3-5.





Here, modulation factor "m" is defined as follows.

$$m = \frac{V}{E}$$

m: Modulation factor V: Command value voltage E: Inverter bus voltage

This modulation factor is set to resisters for PWM duty in TRD.

In the software discussed in this application note, upper arm chopping is used to control the output voltage and speed. Figure 3-6 and エラー! 参照元が見つかりません。 show an example of output waveforms at upper arm chopping.



Figure 3-6 – Upper Arm Chopping (Non-complementary PWM)



## 3.4 State transitions

The state transition diagram of the system is shown below.



Figure 3-7 – State transition diagram

### (1) SYSTEM MODE

"SYSTEM MODE" indicates the operating states of the system. State transitions are caused by input from RMW or SW, or the occurrence of an error.

#### (2) RUN MODE

"RUN MODE" indicates the condition of the motor control. It transitions depending on the running status of the motor.

In case of an error, it transitions to the STOP state.



## 3.5 Start-up method

Under BEMF-based control, the induced voltage due to the change in the magnetic flux of the permanent magnet (rotor) is used to detect the position of the magnetic pole every 60 degrees. However, because the magnitude of the induced voltage depends on the speed of rotation, the position of the magnetic pole cannot be detected if the speed of rotation is small.

Therefore, as the start-up method, we use the technique of generating and forcibly synchronizing the rotating magnetic field by forcibly changing the conduction pattern regardless of the position of the permanent magnet.

In an open loop, we accelerate the motor while holding the voltage constant and forcibly changing the conduction pattern for two cycles. Rotating continues until an induced voltage is generated that can be detected by the comparator. After that, it transitions to BEMF mode, where the comparator detects the position and changes the pattern. The conduction pattern on the RMW display is stuck at zero, but this is due to an problem updating the display variable. In fact, the six conduction patterns change according to the speed.



Figure 3-8 – Startup sequence



### 3.6 BEMF mode processing

When switching from open loop drive to BEMF drive, while the processing of each of the six patterns is changed in sequence, the conduction pattern is updated by zero-crossing detection by the comparator.





Immediately after changing the conduction pattern (commutation), a delay process is added for masking to avoid false detection of zero crossing due to noise. During this time, processes such as speed control are distributed. Thereafter, it waits for zero-crossing detection in an infinite loop.

After zero-crossing detection, delay processing is performed to wait for the phase to advance by 30 degrees, and then the conduction pattern is changed.



Figure 3-10 – Flowchart of common processing of conduction patterns excluding distributed processing



## 3.7 Speed control

This system uses a free-running timer for rotational speed measurement. After the run mode transitions to BEMF mode, the speed calculation is performed in step 2 of the six PWM patterns.

The counter values obtained in steps 0 and 1 give a counter value of  $2\pi/3$  minutes, from which the speed is calculated in units of 100 rpm. After calculating the speed, LPF processing is done. In order to reduce the processing time, the LPF gain is not held at a fixed point, and shift processing is used instead.



### Figure 3-11 – Method of Calculation for Rotational Speed

Speed control uses hysteresis control. The control cycle is performed in step 4 for each cycle of the conduction pattern. It is not a fixed cycle.

To update the PWM Duty, the value obtained by dividing the control gain Ka by the LPF rotation speed Speed\_lpf is added to Duty as the operation amount. Ka is a tuning parameter.

 $Duty(n) = \begin{cases} Duty(n-1) + Ka/Speed_lpf (Speed_error_i > Error_band) \\ Duty(n-1) - Ka/Speed_lpf (Speed_error_i < -Error_band) \end{cases}$ 

In hysteresis control, the integral value speed\_error\_i of the speed deviation is calculated, and if it exceeds a certain range, it is added to Duty. If the deviation becomes large on the + side of the speed deviation band Error-band, the manipulated variable is added to Duty. If the deviation becomes large on the - side of Error-band, the manipulated variable is subtracted from Duty. Error-band is also a tuning parameter.





Figure 3-12 – Speed control processing



## 3.8 High speed stop

Shifting from high-speed rotation to stop mode takes time due to inertia, etc. This means it may take some time before the next start. To decelerate the motor in a short time, after shifting to stop mode, all the low-arms of the inverter are turned on to short the 3 phases of the motor, and then the stop processing is implemented.



Figure 3-13 – Stop sequence



Figure 3-14 – Stop process flowchart



### 3.9 **PWM** output forced cut-off (upper and lower arm low-level output)

In this system, the DC link current is amplified from both ends of the shunt by the built-in PGA. When the built-in comparator exceeds the D/A converter reference value, the PWMOPA function forcibly cuts off the timer RD output.

This suppresses the flow of excessive current in an instant. When the current flowing through the shunt falls below the reference value,

the cutoff is released at the timing of the next peak-valley after the carrier signal set by the timer RD. The state at the time of cut-off is configurable, and both the upper and lower arms are set to low level output.

[Note] The PWMOPA cutoff release is done by TRDIOC0 edge detection.

TRDIOC0 output setting is done by the TRDIOC1 register, so the corresponding P16 can be used for input setting. However, note that if output is set, the peak-valley toggle signal will be output at the carrier cycle of timer RD.

### 3.10 System protection stop function

This system has the following types of error status and emergency stop functions in case any of the listed errors occur. Refer to Table 3.7 for settings related to the system protection function .

#### - Overvoltage error

The inverter bus voltage is monitored at the overvoltage monitoring cycle. When the inverter bus voltage exceeds the overvoltage limit, voltage output is stopped. The threshold value of the overvoltage is set in consideration of the error of resistance value of the detection circuit.

#### - Low voltage error

The inverter bus voltage is monitored at the low voltage monitoring cycle. When the inverter bus voltage lowers the undervoltage limit, voltage output is stopped. The low voltage threshold value is set in consideration of the error of resistance value of the detection circuit.

#### - Timeout error

The timeout counter is monitored at the timeout monitoring cycle, and if the induced voltage zero crossing does not occur for a certain period of time, the voltage output is stopped.

- Temperature error

The temperature is monitored, and if it exceeds the temperature limit value, voltage output is stopped.

#### Table 3.6 – Setting Value of Each System Protection Function

| Error              | Threshold                    |    |  |
|--------------------|------------------------------|----|--|
| Overvoltage error  | Overvoltage limit [V]        | 28 |  |
| Undervoltage error | Low voltage limit [V]        | 15 |  |
| Timeout error      | Zero crossing not detected   | —  |  |
| Temperature error  | Temperature limit value [°C] | 65 |  |



## 3.11 LED display (external switchboard)

This section describes the LED display specifications.

#### Table 3.7 – LED display status and conditions

| LED status                       |                        | Condition |
|----------------------------------|------------------------|-----------|
| Steady green                     | System is in STOP mode |           |
| Flashing green: every 1 second   | Low battery voltage    |           |
| Flashing green: every 0.4 second | Motor running          |           |
| Flashing red                     | Error occurred         |           |

When an error occurs, the red LED flashes every 0.4 seconds (ON/OFF = 0.2 seconds). The number of times the LED flashes red indicates the error number.



#### Figure 3-15 – Stop sequence

#### Table 3.8 – Number of flashes for each error

| Error              | Number of flashes |
|--------------------|-------------------|
| Overvoltage error  | 1                 |
| Undervoltage error | 2                 |
| Timeout error      | 4                 |
| Temperature error  | 8                 |



## 3.12 Control flows (flow charts)

#### 3.12.1 Main process



Figure 3-16 – Main Process Flowchart



Figure 3-17 – Flow chart of processing for each conduction pattern



## 3.13 Function specifications of 120-degree conducting control software

Lists of functions used in this control program are shown below. Functions not used in this system are not described.

| File name | Function name                                                                                                      | Processing overview                                                                                                                                                                                                       |
|-----------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| main.c    | main<br>argument: none<br>return: none                                                                             | Initialization and main loop<br>• initialization<br>⇒initialization of hardware<br>⇒initialization of variables<br>⇒initialization of ICS communication<br>⇒PWM output prohibited<br>• main loop<br>⇒motor system control |
|           | mtr_display_led1<br>argument: uint16_t u2_system_mode / system mode<br>return: none                                | LED1 control                                                                                                                                                                                                              |
|           | mtr_display_led2<br>argument: uint16_t u2_err_flag / error status<br>return: none                                  | LED2 control                                                                                                                                                                                                              |
|           | mtr_temp_error<br>argument: int16_t s2_temp / temperature (temperature<br>table value)<br>return: uint16_t u2_flag | Temperature error processing                                                                                                                                                                                              |
|           | mtr_time_increase_bemf<br>argument: none<br>return: none                                                           | Counter processing for LED control (during motor control)                                                                                                                                                                 |
|           | mtr_time_increase<br>argument: none<br>return: none                                                                | Counter processing for LED control (during stop)                                                                                                                                                                          |
|           | mtr_timeouterror_step1<br>argument: none<br>return: none                                                           | Timeout error processing 1 (obtain count value)                                                                                                                                                                           |
|           | mtr_timeouterror_step2<br>argument: none<br>return: none                                                           | Timeout error processing 2 (error detection)                                                                                                                                                                              |
|           | mtr_error_stop<br>argument: none<br>return: none                                                                   | Error processing <ul> <li>Transition to STOP mode</li> </ul>                                                                                                                                                              |



| Table 3.10 – List of Functions | s in "main.c" (2/2) |  |
|--------------------------------|---------------------|--|
|--------------------------------|---------------------|--|

| File name | Function name                                                                                                              | Processing overview                                |
|-----------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| main.c    | mtr_tau00_delay<br>argument: uint16_t u2_delayValue / delay count<br>value<br>return: none                                 | Delay processing                                   |
|           | mtr_cmp1_change<br>argument: int16_t s2_ch / conduction pattern<br>return: none                                            | Switch CMP1 input setting                          |
|           | mtr_inv_output_120<br>argument: int16_t s2_ch / conduction pattern<br>int16_t s2_duty / duty setting value<br>return: none | Conduction pattern and duty setting and PWM output |
|           | mtr_stop_init<br>argument: none<br>return: none                                                                            | Initialization when stopped                        |
|           | mtr_software_init<br>argument: none<br>return: none                                                                        | Initialization                                     |

| File name | Function name                                                                                                                                                                                                                                                           | Processing overview                                                        |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| main.c    | ics2_init<br>argument: unsigned int addr / DTC vector table start address<br>char pin / Pins used by SCI<br>char level / Interrupt level<br>char num / Top address of DTC structure<br>char brr / communication speed<br>char mode / Communication mode<br>return: none | Communication initialization                                               |
|           | ics2_watchpoint<br>argument: none<br>return: none                                                                                                                                                                                                                       | Call transfer function<br>Must be called at intervals of 250us or<br>more. |



| File                 | function                                                                                                                              | Processing overview                                 |  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|
| r_mtr_ctrl_rl78g1f.c | R_MTR_InitHardware<br>argument: none<br>return: none                                                                                  | Initialization of peripheral functions              |  |
|                      | mtr_init_ui<br>argument: none<br>return: none                                                                                         | Initialization of ports to be used by UI            |  |
|                      | mtr_init_clock<br>argument: none<br>return: none                                                                                      | Initialization of clock                             |  |
|                      | mtr_init_12intt<br>argument: none<br>return: none                                                                                     | Initialization of 12-bit interval timer             |  |
|                      | mtr_init_tau<br>argument: none<br>return: none                                                                                        | Initialization of timer array unit (TAU)            |  |
|                      | mtr_init_trd<br>argument: none<br>return: none                                                                                        | Initialization of timer RD (TRD)                    |  |
|                      | mtr_init_pwmopa<br>argument: none<br>return: none                                                                                     | Initialization of PWMOPA                            |  |
|                      | mtr_init_pga<br>argument: none<br>return: none                                                                                        | Initialization of programmable gain amplifier (PGA) |  |
|                      | mtr_init_cmp<br>argument: none<br>return: none                                                                                        | Initialization of comparators (CMP0, CMP1)          |  |
|                      | mtr_init_ad_converter<br>argument: none<br>return: none                                                                               | Initialization of A/D converter                     |  |
|                      | R_MTR_get_adc<br>argument: (uint8_t) u1_ad_ch / channel of A/D conversion<br>return: (int16_t) s2_ad_value / result of A/D conversion | Get the result of A/D conversion                    |  |
|                      | R_MTR_SelCmp1Ch<br>argument: int16_t u1_cmp1_ch / select comparatorch<br>return: none                                                 | Select CMP1 input channel                           |  |
|                      | R_MTR_InvOutLow<br>argument: none<br>return: none                                                                                     | Output with all low-arms turned ON                  |  |
|                      | R_MTR_InvOutDisable<br>argument: none<br>return: none                                                                                 | Stop PWM output                                     |  |
|                      | R_MTR_InvOutUV<br>argument: uint16_t u2_pwm_duty / duty setting value<br>return: none                                                 | UV phase conduction                                 |  |
|                      | R_MTR_InvOutUW<br>argument: uint16_t u2_pwm_duty / duty setting value<br>return: none                                                 | UW phase conduction                                 |  |

### Table 3.12 – List of functions in "r\_mtr\_ctrl\_rl78g1f.c" (1/2)



| File                 | function                                                                              | Processing overview |
|----------------------|---------------------------------------------------------------------------------------|---------------------|
| r_mtr_ctrl_rl78g1f.c | R_MTR_InvOutVW<br>argument: uint16_t u2_pwm_duty / duty setting value<br>return: none | VW phase conduction |
|                      | R_MTR_InvOutVU<br>argument: uint16_t u2_pwm_duty / duty setting value<br>return: none | VU phase conduction |
|                      | R_MTR_InvOutWU<br>argument: uint16_t u2_pwm_duty / duty setting value<br>return: none | WU phase conduction |
|                      | R_MTR_InvOutWV<br>argument: uint16_t u2_pwm_duty / duty setting value<br>return: none | WV phase conduction |



| File                 | function                                          | Processing overview        |
|----------------------|---------------------------------------------------|----------------------------|
| r_mtr_ctrl_rl78g1f.h | R_MTR_StartTRD<br>argument: none return: none     | Start count of timer RD    |
|                      | R_MTR_StartTRD<br>argument: none return: none     | Stop count of timer RD     |
|                      | R_MTR_StartTAU02<br>argument: none return: none   | Start count of TAU02       |
|                      | R_MTR_StopTAU02<br>argument: none return: none    | Stop count of TAU02        |
|                      | R_MTR_StartTAU00<br>argument: none return: none   | Start count of TAU00       |
|                      | R_MTR_StopTAU00<br>argument: none return: none    | Stop count of TAU00        |
|                      | R_MTR_ClearlFTAU00<br>argument: none return: none | Clear TAU00 interrupt flag |

## Table 3.14 – List of functions in "r\_mtr\_ctrl\_rl78g1f.h"



## 3.14 Lists of variables of sensorless 120-degree conducting control software

Lists of the variables used in this control program are provided below. However, note that the local variables are not mentioned.

| variable                | type     | content                                                        | Remarks                                                                                                     |
|-------------------------|----------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| g_u2_system_mode        | uint16_t | Variable for system mode management                            | 0: SYSTEM_STOP<br>1: SYSTEM_RUN                                                                             |
| g_u2_run_mode           | uint16_t | Variable for run mode management                               | 0: RUN_OPENLOOP<br>1: RUN_BEMF<br>2: RUN_STOP                                                               |
| g_u2_input_mode         | uint16_t | Variable for input mode management                             | 0: INPUT_MODE_STOP<br>1: INPUT_MODE_RUN                                                                     |
| g_u2_system_status      | uint16_t | System status                                                  | 0: SYSTEM_STOP<br>1: SYSTEM_RUN                                                                             |
| g_u2_err_status         | uint16_t | Error status                                                   | 0x00: ERROR_NONE<br>0x01: ERROR_VDC_LOW<br>0x02: ERROR_VDC_HIGH<br>0x04: ERROR_STEP_OUT<br>0x08: ERROR_TEMP |
| g_u2_current_limit      | uint16_t | Current limit value                                            | [A]                                                                                                         |
| g_u2_tau02_cnt          | uint16_t | PWM output time counter                                        | -                                                                                                           |
| g_u2_pre_tau02_cnt      | uint16_t | PWM output time counter previous value                         | -                                                                                                           |
| g_u2_cnt_err            | uint16_t | PWM output time counter deviation                              | -                                                                                                           |
| g_u2_cnt_err_buf [6]    | uint16_t | PWM output time counter deviation buffer                       | -                                                                                                           |
| g_u2_pwm_pattern        | uint16_t | PWM output conduction phase                                    | -                                                                                                           |
| g_u2_ref_pwm_duty       | uint16_t | PWM output reference value                                     | -                                                                                                           |
| g_u2_start_duty         | uint16_t | Startup duty                                                   | -                                                                                                           |
| g_u2_cmp1_status        | uint16_t | CMP1 detection status                                          | -                                                                                                           |
| g_u2_vu_flag            | uint16_t | U-phase voltage status flag                                    | -                                                                                                           |
| g_u2_vv_flag            | uint16_t | V-phase voltage status flag                                    | -                                                                                                           |
| g_u2_vw_flag            | uint16_t | W-phase voltage status flag                                    | -                                                                                                           |
| g_u2_delay_cnt_buf1     | uint16_t | Temporary storage variable for calculating Delay               | -                                                                                                           |
| g_u2_delay_cnt_buf2     | uint16_t | Temporary storage variable for calculating Delay               | -                                                                                                           |
| g_u2_delay30_cnt        | uint16_t | Stores the 30-degree delay                                     | -                                                                                                           |
| g_u2_delay_noise_cnt    | uint16_t | Stores the delay for pattern change noise rejection            | -                                                                                                           |
| g_s2_lead_cnt           | uint16_t | Sets the Delay offset                                          | _                                                                                                           |
| g_s2_delay_temp         | uint16_t | Delay temporary variable                                       | -                                                                                                           |
| g_u2_cmp1_skip_cnt      | uint16_t | CMP1 zero-crossing detection filter value                      | -                                                                                                           |
| g_u2_ol_loop_cnt        | uint16_t | Loop count during open-loop drive                              | -                                                                                                           |
| g_u2_ol_speed_cnt       | uint16_t | Speed management count during open-loop drive                  | -                                                                                                           |
| g_u2_ol_start_speed_cnt | uint16_t | Initial value of speed management count during open-loop drive | -                                                                                                           |

#### Table 3.15 – List of variables in "main.c"



| variable                | type     | content                                                                                       | Remarks                      |
|-------------------------|----------|-----------------------------------------------------------------------------------------------|------------------------------|
| g_u2_ol2bemf_speed_cnt  | uint16_t | Change speed count value from open loop                                                       | _                            |
| g_u2_ol2bemf_loop_cnt   | uint16_t | Change loop count value from open loop                                                        | -                            |
| g_u2_ol_speed_rate_cnt  | uint16_t | Rate of change in speed count value                                                           | -                            |
| g_s2_speed_rpm          | uint16_t | Speed                                                                                         | (Electric angle) [100 rpm]   |
| g_s2_speed_lpf_rpm      | uint16_t | Low pass filter speed                                                                         | (Electric angle) [100 rpm]   |
| g_s2_ref_speed_rpm      | uint16_t | Reference rotational speed                                                                    | (Electric angle) [100 rpm]   |
| g_s2_std_speed_rpm      | uint16_t | Standard mode speed                                                                           | (Mechanical angle) [100 rpm] |
| g_u2_st_timeout_cnt     | uint16_t | Stores the count for timeout detection<br>For storing the value at the start of<br>processing | -                            |
| g_u2_ed_timeout_cnt     | uint16_t | Stores the count for timeout detection<br>For waiting for zero-crossing detection             | -                            |
| g_u2_timeout_err_flag   | uint16_t | Timeout error flag                                                                            | _                            |
| g_u2_vdc_ad             | uint16_t | Power supply voltage A/D conversion value                                                     | _                            |
| g_s2_sensor0_temp       | int16_t  | Temperature detected by temperature sensor                                                    | [°C]                         |
| g_s2_spd_err_i          | int16_t  | Integral value for speed control                                                              | -                            |
| g_s2_spd_err_limit_band | int16_t  | Duty update bandwidth for speed control                                                       | -                            |
| g_u2_spd_out            | uint16_t | Output for speed control                                                                      | _                            |
| g_u2_spd_out_max        | uint16_t | Maximum output for speed control                                                              | -                            |
| g_u2_spd_out_min        | uint16_t | Minimum output for speed control                                                              | -                            |
| g_u2_spd_ka             | uint16_t | Speed control gain                                                                            | -                            |
| g_u2_fast_stop_cnt      | uint16_t | Counter for stop processing                                                                   | _                            |
| g_u2_wait_stop_cnt      | uint16_t | Counter for stop processing                                                                   | _                            |
| g_u2_cnt                | uint16_t | Counter for stop processing                                                                   | _                            |
| g_s2_led1_disp_cnt      | int16_t  | Counter for LED1 display                                                                      | _                            |
| g_s2_led2_disp_cnt      | int16_t  | Counter for LED2 display                                                                      | _                            |
| g_s2_pre_led2_disp_cnt  | int16_t  | Previous value of counter for LED2 display                                                    | -                            |

### Table 3.16 – List of variables in "main.c"



## 3.15 Macro definitions of sensorless 120-degree conducting control software

Lists of the macro definitions used in this control program are provided below.

| Macro               | Definition value | content                   | Remarks |
|---------------------|------------------|---------------------------|---------|
| RL78_G1F_GB         | -                | Select CPU board          | -       |
| IP_GB               | -                | Select inverter board     | -       |
| MP_Nidec_11F108P131 | -                | Select motor parameters   | -       |
| CP_Nidec_11F108P131 | -                | Select control parameters | _       |

#### Table 3.17 – List of macro definitions in "r\_mtr\_config.h"

#### Table 3.18 – List of macro definitions in "r\_mtr\_motor\_parameter.h"

| Macro                  | Definition value | content                  | Remarks   |
|------------------------|------------------|--------------------------|-----------|
| MP_POLE_PAIRS          | 4                | Number of pole pairs     | -         |
| MP_RESISTANCE          | 0.4f             | Resistance               | [Ω]       |
| MP_D_INDUCTANCE        | 0.000023f        | d-axis inductance        | [H]       |
| MP_Q_INDUCTANCE        | 0.000023f        | q-axis inductance        | [H]       |
| MP_MAGNETIC_FLUX       | 0.0026f          | Induced voltage constant | [V s/rad] |
| MP_NOMINAL_CURRENT_RMS | 1.2f             | Rated current            | [A]       |

#### Table 3.19 – List of Macro definitions "r\_mtr\_inverter\_parameter.h"

| Масго                 | Definition value | content                   | Remarks            |
|-----------------------|------------------|---------------------------|--------------------|
| IP_DEADTIME           | 1.2f             | Dead time                 | [s]                |
| IP_VDC_RANGE          | 111.0f           | Range of bus voltage      | [V]                |
| IP_CURRENT_LIMIT      | 5.0f             | Current limit             | [A]                |
| IP_OVERVOLTAGE_LIMIT  | 50.0f            | Maximum limit for voltage | [V]                |
| IP_UNDERVOLTAGE_LIMIT | 12.0f            | Minimum limit for voltage | [V]                |
| IP_SHUNT_RESISTANCE   | 0.1f             | Shunt resistor value      | [Ω]                |
| IP_AMP_GAIN           | 4                | PGA gain                  | Multiplying factor |



| Масго                    | Definition value | content                   | Remarks                      |
|--------------------------|------------------|---------------------------|------------------------------|
| CP_SPEED_STANDARD        | 200              | Standard mode speed       | (Mechanical angle) [100 rpm] |
| CP_OL_START_SPEED_CNT    | 40000            | Start speed count value   | -                            |
| CP_OL_CHANGE_SPEED_CNT   | 20000            | Change speed count value  | _                            |
| CP_OL_CHANGE_PATTERN_CNT | 4                | Change loop count value   | -                            |
| CP_OL_PWM_DUTY           | 300              | Open loop Duty            | -                            |
| CP_DELAY_CNT_MIN         | 2                | Delay count minimum value | _                            |
| CP_LEAD_CNT              | -10              | Delay count offset value  | _                            |
| CP_CMP1_SKIP_CNT         | 7                | CMP1 signal filter value  | -                            |
| CP_GAIN_KA               | 200              | Control gain              | -                            |
| CP_GAIN_OUT_MAX          | 120              | Maximum output            | _                            |
| CP_GAIN_OUT_MIN          | 1                | Minimum output            | -                            |
| CP_ERR_LIMIT_BAND        | 2000             | Duty update control band  | -                            |

## Table 3.20 – List of Macro definitions "r\_mtr\_control\_parameter.h"

## Table 3.21 – List of macro definitions in "r\_mtr\_ics.h"

| Macro         | Definition value | content                        | Remarks |
|---------------|------------------|--------------------------------|---------|
| ICS_ADDR      | 0xFE00           | DTC vector table start address | -       |
| ICS_INT_LEVEL | 2                | Interrupt level                | -       |
| ICS_NUM       | 0x40             | Top address of DTC structure   | -       |
| ICS_BRR       | 15               | Communication speed            | -       |
| ICS_INT_MODE  | 0                | Communication mode             | -       |



| Macro             | Definition value                          | content                                      | Remarks  |
|-------------------|-------------------------------------------|----------------------------------------------|----------|
| SYSTEM_STOP       | 0                                         | System mode: stop                            | -        |
| SYSTEM_RUN        | 1                                         | System mode: drive                           | -        |
| SYSTEM_ERROR      | 2                                         | System mode: error                           | -        |
| RUN_OPENLOOP      | 0                                         | Run mode: open loop                          | -        |
| RUN_BEMF          | 1                                         | Run mode: BEMF                               | -        |
| RUN_STOP          | 2                                         | Run mode: stop                               | -        |
| INPUT_MODE_STOP   | 0                                         | Input mode: stop                             | -        |
| INPUT_MODE_RUN    | 1                                         | Input mode: standard drive                   | -        |
| ERROR_NONE        | 0x00                                      | Error mode: no error                         | -        |
| ERROR_VDC_LOW     | 0x01                                      | Error mode: voltage drop                     | -        |
| ERROR_VDC_HIGH    | 0x02                                      | Error mode: voltage elevation                | -        |
| ERROR_STEP_OUT    | 0x04                                      | Error mode: no location information detected | -        |
| ERROR_TEMP        | 0x0                                       | Error mode: temperature                      | -        |
| VDC_HIGH          | (uint16_t) ((25.2/IP_VDC_RANGE)<br>*1024) | Over voltage                                 | -        |
| VDC_LOW           | (uint16_t) ((19.8/IP_VDC_RANGE)<br>*1024) | Under voltage                                | -        |
| LED1_TIME_SETTING | 10                                        | LED off time in the event of an error        | *0.2 sec |
| TIME_FAST_STOP    | 10                                        | Lower arm ON time                            | *0.2 sec |
| TIME_WAIT_STOP    | 5                                         | All OFF time                                 | *0.2 sec |
| TEMP_ERROR        | 65                                        | Temperature error value                      | -        |
| LED0_TIME_MED     | 2                                         | LED0 flashing time                           | *0.2 sec |

### Table 3.22 – List of macro definitions in "main.h"

#### Table 3.23 – List of macro definitions in "r\_mtr\_ics.h"

| Macro         | Definition value | content             | Remarks |
|---------------|------------------|---------------------|---------|
| ICS_ADDR      | 0xFE00           | System mode: stop   | -       |
| ICS_INT_LEVEL | 2                | System mode: drive  | -       |
| ICS_NUM       | 0x40             | System mode: error  | -       |
| ICS_BRR       | 15               | Run mode: open loop | -       |
| ICS_INT_MODE  | 0                | Run mode: BEMF      | -       |



| Macro                  | Definition value                                                   | content                               |  |  |  |
|------------------------|--------------------------------------------------------------------|---------------------------------------|--|--|--|
| MTR_INTVAL_TIMER_FREQ  | 32.0f                                                              | 32 [MHz] system clock                 |  |  |  |
| MTR_PWM_TIMER_FREQ     | 64.0f                                                              | 64 [Mhz] PWM timer frequency          |  |  |  |
| MTR_TAU0_SETTING       | 50000                                                              | TAU0 period count value               |  |  |  |
| MTR_TAU0_SETTING_M1000 | 48999                                                              | 49000 count                           |  |  |  |
| MTR_TAU0_SETTING_P1000 | 1000                                                               | 1000 count                            |  |  |  |
| MTR_CARRIER_FREQ       | 20.0f                                                              | 20 [kHz] carrier frequency            |  |  |  |
| MTR_CARRIER_CNT        | (uint16_t)(MTR_PWM_TIMER_FREQ<br>* 1000 / MTR_CARRIER_FREQ * 0.5f) | Timer RD peak count value             |  |  |  |
| MTR_HALF_CARRIER_CNT   | (uint16_t)(MTR_CARRIER_CNT * 0.5f)                                 | Timer RD half count value             |  |  |  |
| MTR_PORT_UP            | P1_bit.no5                                                         | U phase (positive phase) output port  |  |  |  |
| MTR_PORT_UN            | P1_bit.no4                                                         | U phase (negative phase) output port  |  |  |  |
| MTR_PORT_VP            | P1_bit.no3                                                         | V phase (positive phase) output port  |  |  |  |
| MTR_PORT_VN            | P1_bit.no1                                                         | V phase (negative phase) output port  |  |  |  |
| MTR_PORT_WP            | P1_bit.no2                                                         | W phase (positive phase) output port  |  |  |  |
| MTR_PORT_WN            | P1_bit.no0                                                         | W phase (negative phase) output port  |  |  |  |
| MTR_POTR_ENC_A         | P0_bit.no0                                                         | Encoder A phase                       |  |  |  |
| MTR_POTR_ENC_B         | P0_bit.no1                                                         | Encoder B phase                       |  |  |  |
| MTR_PORT_ENC_Z         | P5_bit.no0                                                         | Encoder Z phase                       |  |  |  |
| MTR_PORT_HALL_U        | P5_bit.no2                                                         | U phase Hall effect sensor input port |  |  |  |
| MTR_PORT_HALL_V        | P5_bit.no3                                                         | V phase Hall effect sensor input port |  |  |  |
| MTR_PORT_HALL_W        | P5_bit.no4                                                         | W phase Hall effect sensor input port |  |  |  |
| MTR_PORT_LED1          | P6_bit.no3                                                         | LED1 output port                      |  |  |  |
| MTR_PORT_LED2          | P7_bit.no4                                                         | LED2 output port                      |  |  |  |
| MTR_PORT_SW1           | P12_bit.no3                                                        | SW1 input port                        |  |  |  |
| MTR_PORT_SW2           | P12_bit.no4                                                        | SW2 input port                        |  |  |  |
| MTR_ADCCH_IU           | 4                                                                  | lu                                    |  |  |  |
| MTR_ADCCH_IV           | 5                                                                  | lv                                    |  |  |  |
| MTR_ADCCH_IW           | 6                                                                  | lw                                    |  |  |  |
| MTR_ADCCH_VDC          | 7                                                                  | Vdc                                   |  |  |  |
| MTR_ADCCH_VN           | 17                                                                 | Vn                                    |  |  |  |
| MTR_ADCCH_VU           | 16                                                                 | Vu                                    |  |  |  |
| MTR_ADCCH_VV           | 0                                                                  | Vv                                    |  |  |  |
| MTR_ADCCH_VW           | 1                                                                  | Vw                                    |  |  |  |
| MTR_ADCCH_AIN0         | 18                                                                 | Analog IN0                            |  |  |  |
| MTR_ADCCH_AIN1         | 19                                                                 | Analog IN1                            |  |  |  |
| MTR_ADCCH_IDC          | 25                                                                 | ldc (PGA)                             |  |  |  |
| MTR_ADC_DATA_SHIFT     | 6                                                                  | A/D conversion data shift amount      |  |  |  |
| MTR_CMP0_CALC_BASE     | 255/5                                                              | For CMP0 conversion 8-bit/5 V         |  |  |  |
| MTR_SPEED_CALC_BASE    | 200000                                                             | Base amount for speed calculation     |  |  |  |

## Table 3. 24 – List of macros in "r\_mtr\_ctrl\_rl78g1f.h" (1/2)



## Table 3.25 – List of macros in "r\_mtr\_ctrl\_rl78g1f.h" (2/2)

| Масго                           | Definition value | content                            |
|---------------------------------|------------------|------------------------------------|
| CMP1_SEL_VU                     | 1                | CMP1 comparison value selection Vu |
| CMP1_SEL_VV                     | 2                | CMP1 comparison value selection Vv |
| CMP1_SEL_VW                     | 3                | CMP1 comparison value selection Vw |
| CMP1_READ                       | C1MON            | CMP1 monitor flag                  |
| TAU02_COUNT                     | TCR02            | TAU02 count value                  |
| COMP_INT_REF                    | CORVM            | CMP1 comparison value setting      |
| INREVAL_TIMER_INTRRUPT_REQ_FLAG | ITIF             | Interval timer interrupt flag      |
| TAU00_TIMER_INTRRUPT_REQ_FLAG   | TMIF00           | TAU00 interrupt flag               |
| TAU00_TIMER_DATA                | TDR00            | TAU00 timer data register setting  |



## 4. How to Run the Demo System

## 4.1 Connection Configuration



Figure 4-1 – Connection configuration diagram



## 4.2 How to use the Renesas Motor Workbench motor control development support tool

The target sample programs described in this application note use the user interfaces (rotating/stop command, rotation speed command, etc.) in the Renesas Motor Workbench, a motor control development support tool. To learn more about how it is used, refer to the Renesas Motor Workbench 2.0 User's Manual. You can find 'Renesas Motor Workbench' on Renesas Electronics Corporation website.

| Bereven Meter Werkensch     - (Met Files : CHAes Workshoft Desception III: 10; SWW/70; WerkenderPenaierCen     File Option Help                                               | na Maran Mill and M. Miller, SPM, SMCD (FOC, CSP, | (C.XONoples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 0 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                 |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                               |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Connection<br>COM COM4 · Clock<br>Status Connect ~ LSS 가기가 키시기ス                                                                                                               |                                                   | File Information           G1F_MRSSK_SPM_ENCD_FOC_CSP_VRXXX         2019/U           G1F_MRSSK_SPM_ENCD_FOC_CSP_VRXXX         2019/U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                 |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                               |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |
| Configuration CPU RSF118LE Motor Type Bruthless DC Motor                                                                                                                      |                                                   | Select Tool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                 |                                                      | An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | alyze                                                                                         | er W                                                                               | /indo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |
| Control Sensories vector control (Speed control) Inverter RSSK for Motor Project File Path CAUsersia5089612(Desktop)/RL78_SVNv178g1ff Term Term Term Term Term Term Term Term | Analyzer                                          | Open and any analysis         Description         Description <thdescription< <="" td=""><td>Image: 1         Mail         Mail</td><td>Anne<br/>Srige Window<br/>Mare I Zeanal<br/>Source Load (and in the<br/>Text Off 20 2000 - Text</td><td>toporov<br/>Ingle Deside<br/>Bare - Care Tree - Careet</td><td></td><td></td><td></td><td>ouring Date<br/>Active (hassed #1</td><td></td></thdescription<> | Image: 1         Mail         Mail | Anne<br>Srige Window<br>Mare I Zeanal<br>Source Load (and in the<br>Text Off 20 2000 - Text                                                                                                                                                                                                                                     | toporov<br>Ingle Deside<br>Bare - Care Tree - Careet |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                               |                                                                                    | ouring Date<br>Active (hassed #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                               |
|                                                                                                                                                                               |                                                   | ber Backen Control - W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                 | a hape of the late of many                           | 2 Int 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Aston 100 min                                                                                 | <u>A</u>                                                                           | ActiveChannel as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Acquisition<br>Length<br>Sample<br>1.25m b<br>RUN             |
|                                                                                                                                                                               |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Microsoft         Microsoft           Microsoft         Watte           Officer 420         Officer           NA         Microsoft           NA         Microsoft           Werdd1         Watte           Werdd1         Watte           Hein A         Hein A           Hein A         Hein A           Hein A         Hein A | Adam<br>Adam                                         | Matthe 1920 the           Via(The 1920 the           Offset 1-5           Max           Max | Vocifie Moordee<br>Officer -1.5<br>Mai<br>Mai<br>Mu A<br>Nu A<br>Nu A<br>Nu A<br>Nu A<br>Nu A | 2000 000 000<br>00541-15<br>04541-15<br>Maji<br>wu A<br>1994 1<br>1995 1<br>1995 1 | Victor 100<br>Quarter 100<br>Quarter 10<br>Refer | Cranh Station     Smoothing     Channel Setting     Set Color |

Main Window

Figure 4-2 – Screenshots of Renesas Motor Workbench

How to use Renesas Motor Workbench, the motor control development support tool



- (1) Start 'Renesas Motor Workbench' by clicking this icon
- (2) Drop down menu [File] -> [Open RMT File(O)]. And select RMT file in '[Project Folder]/application/ics/'.
- (3) Use the 'Connection' COM select menu to choose the COM port.
- (4) Click the 'Analyzer' icon in right side of Main Window.
  - (Then, "Analyzer Window" will be displayed.)
- (5) Please refer to '4.3 Analyzer Operation Example' for motor driving operation.

Note that if the board goes into STANDBY mode, it will not be operable. If STANDBYMODE\_USE of "r\_mtr\_config.h" is set to NON\_USE, it will not transition to STANDBY mode.



### 4.3 Analyzer Operation Example

An example of debugging using Analyzer is shown below. Operation is performed in the Control Window shown in Figure 4-2, and the waveform observation is performed in the Scope Window. For details on the Control Window and Scope Window, refer to the Renesas Motor Workbench 2.0 User's Manual.

- Waveform observation:
  - (1) Press the RUN button in the Scope Window.
  - (2) Press S1 or S2 on the switchboard to rotate the motor.

It will display a startup waveform like the one below.



Figure 4-3 – Observation of the startup waveform in the Scope Window

- Operations in the Control Window

The Control Window can be used to directly rewrite variables.

(1) The motor can be driven/stopped without the operation of the switch by rewriting "g\_u2\_input\_mode".(0: stop, 1: standard mode, 2: power mode)

| Control Window         |              |        |    |      |     |      |                      |        | 52 |
|------------------------|--------------|--------|----|------|-----|------|----------------------|--------|----|
|                        | Com          | mander | -  | User | But | ton  | Status Indicator     |        |    |
| Variable Data Variable | List Alias N | lame   |    |      |     | ①Ch  | eck                  |        |    |
| Variable Name          | Data Type    | Scale  | R? | Read | W?  | rite | Note                 | Select |    |
| g_u2_input_mode        | UINT16       | Q0     |    | 0    | ✓   | 0    | 0:Stop, 1:Std, 2:Pow |        | ^  |
| g_u2_system_mode       | UINT16       | Q0     |    | 0    |     | 0    |                      |        |    |
| g_u2_run_mode          | UINT16       | Q0     |    | 0    |     | 0    | 2Write "1"           |        |    |
| g_u2_system_status     | UINT16       | Q0     |    | 0    |     | 0    |                      |        |    |
| g_u2_err_status        | UINT16       | Q0     |    | 0    |     | 0    |                      |        |    |

Figure 4-4 – Procedure - Driving the motor



## (2) Adjust the responsiveness

For hysteresis control, you can adjust the response with g\_u2\_spd\_ka and g\_s2\_spd\_err\_band. If you increase g\_u2\_spd\_ka, you get a faster rise.



Figure 4-5 – Comparison of response by changing g\_u2\_spd\_ka (left: 200, right 800)

The smaller the value of g\_s2\_spd\_err\_band, the faster the rise.



Figure 4-6 – Comparison of response by changing g\_s2\_spd\_err\_band (left : 2000, right 1000)





## **Revision History**

|      |            | Description  |                      |  |  |  |  |
|------|------------|--------------|----------------------|--|--|--|--|
| Rev. | Date       | Page Summary |                      |  |  |  |  |
| 1.00 | 20.10.2020 | -            | First edition issued |  |  |  |  |



## General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products. 1. Precaution against Electrostatic Discharge (ESD)

- A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
- 2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between  $V_{IL}$  (Max.) and  $V_{IH}$  (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between  $V_{IL}$  (Max.) and  $V_{H}$  (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a systemevaluation test for the given product.

#### Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
   "Standard". Computers office activity and the product's quality grade, as indicated below.
  - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
  - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

## **Corporate Headquarters**

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

### Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

## **Contact information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <u>www.renesas.com/contact/</u>.