
 Application Note

R01AN6951EJ0120 Rev.1.20 Page 1 of 65
Feb.09.24

RL78/G22
LTE MQTT Communication
Introduction
This application note explains how to perform LTE communication using RL78/G22 and RYZ024A. RYZ024A
is a cellular module capable of LTE Cat M1/NB1/NB2 communication. RYZ024A is a module capable of LTE
Cat M1/NB1/NB2 communication, connected with host MCU via UART communication and controlled by AT
commands. RL78/G22 works as host MCU of RYZ024A. The provided sample application utilizes RL78/G22
as a host MCU and provides a program for controlling RYZ024A to perform MQTT communication and
implement power-saving features of the cellular network (eDRX, PSM). And, this sample application uses the
AT command management framework to implement a program that sends AT commands from the
RL78/G22 to the RYZ024A. By using the AT command management framework, it is possible to implement
applications that use various communication protocols supported by the RYZ024A's LTE Cat M1
communication function. This document describes the MQTT communication application and AT command
management framework implemented in this sample application.

SIM card activation is required when using the Truphone SIM card included in the PMOD Expansion Board
for RYZ024A (hereafter PMOD-RYZ024A) (RTKYZ024A0B00000BE). Refer to "RA6M5 Group RYZ024A
PMOD LTE Connectivity with RA6M5 MCU Quick Start Guide" (R21QS0007) to activate the SIM card.

Target Device
RL78/G22

RYZ024A

Related Documents
 RL78/G22 User's Manual: Hardware (R01UH0978)

 RL78/G22 Fast Prototyping Board User's Manual (R20UT5121)

 RL78/G22 Fast Prototyping Board Quick Start Guide (R20UT5123)

 RYZ024 Use Case for AT Commands(R19AN103)

 RYZ024 Modules AT Command User's Manual(R11UZ0110)

 RYZ024 Module System Integration Guide (R19AN0101)

 RA6M5 Group RYZ024A PMOD LTE Connectivity with RA6M5 MCU Quick Start Guide (R21QS0007)

PmodTM is registered to Digilent Inc.

https://www.renesas.com/RTKYZ024A0B00000BE

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 2 of 65
Feb.09.24

Contents

1. Overview .. 4
1.1 Operation overview ... 4
1.2 Description of the Software ... 5
1.2.1 Sample program Configuration ... 5
1.2.2 Hierarchy of sample programs .. 5
1.2.3 Used peripheral function ... 6
1.2.4 List of Option Byte Settings ... 6
1.2.5 Folder/File structure .. 7
1.2.6 Code size ... 7

2. MQTT Communication Application .. 8
2.1 Application environment .. 8
2.2 Application operation ... 16
2.2.1 Operation in 1 set .. 16
2.2.2 Operation in 2 sets .. 18

3. AT Command Management Framework ... 21
3.1 Framework Overview .. 21
3.2 API functions ... 23
3.2.1 Management API ... 23
3.2.1.1 R_LTE_Init .. 24
3.2.1.2 R_LTE_Execute .. 24
3.2.2 AT command API .. 25
3.2.2.1 R_LTE_OM_Config ... 26
3.2.2.2 R_LTE_NWK_Connect ... 27
3.2.2.3 R_LTE_NWK_Disconnect ... 27
3.2.2.4 R_LTE_MQTT_Connect.. 28
3.2.2.5 R_LTE_MQTT_Subscribe ... 28
3.2.2.6 R_LTE_MQTT_Publish ... 29
3.2.2.7 R_LTE_MQTT_RcvMessage .. 30
3.2.2.8 R_LTE_MQTT_Disconnect ... 30
3.2.2.9 R_LTE_SEC_CertificateAdd ... 31
3.2.2.10 R_LTE_SEC_CertificateRemove .. 31
3.2.2.11 R_LTE_SEC_PrivateKeyAdd .. 32
3.2.2.12 R_LTE_SEC_PrivateKeyRemove ... 32
3.2.2.13 R_LTE_NWK_ConnectionConfig .. 33
3.2.2.14 R_LTE_eDRX_Config ... 34
3.2.2.15 R_LTE_PSM_Config ... 36
3.3 Callback function ... 38
3.4 User Specific Configuration ... 44

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 3 of 65
Feb.09.24

3.5 Smart Configurator module used in the framework... 47
3.5.1 UARTA module ... 47
3.5.2 TAU module... 48
3.5.3 Interrupt function ... 48
3.5.4 UART0 module .. 48
3.6 Low Power Operation .. 49
3.6.1 Low power operation control of RL78/G22 .. 49
3.6.2 Low power operation control of RYZ024A .. 50

4. Application development using AT Command Management Framework 52
4.1 Overview of application development ... 52
4.2 Adding an AT command API ... 54
4.2.1 AT command API with Data receive operation ... 58
4.3 Guideline of error handling .. 59
4.4 PMOD-RYZ024A specific processing ... 62
4.5 Initializing PMOD-RYZ024A .. 64

Revision History .. 65

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 4 of 65
Feb.09.24

1. Overview
1.1 Operation overview
The RYZ024A is a cellular module with Cat M1 technology support. This function can be controlled by AT
commands via the UART from RL78/G22.

Figure 1-1 RYZ024A

In this sample application, AT command framework software, which controls LTE Cat M1 communication of
RYZ024A using the RL78/G22 as the host MCU. The RL78/G22 sends AT command as string data to
RYZ024A via UART communication. The response string data for the AT command is also received by
UART communication. Through these exchanges, the RL78/G22 utilizes the LTE Cat M1 communication
function of the RYZ024A.

Figure 1-2 Communication between RL78/G22 and RYZ024A

RYZ024A RL78/G22

AT command

Response

UART
Communication

Note: Regarding the use of PMOD-RYZ024A :

 When the RYZ024A shifts to deep sleep, the CTS pin becomes Hi-Z. However, in the PMOD-
RYZ024A, the CTS signal from the level shifter to the host microcomputer remains at low level due to
the characteristics of the level shifter used. (The RXD pin also remains Low.) Therefore, be careful
when waking up the RYZ024A from deep sleep and transmitting from the microcomputer to the UART.

In this sample application, dedicated processing is added to operate with PMOD-RYZ024A. For details,
refer to [4.4 PMOD-RYZ024A specific processing].

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 5 of 65
Feb.09.24

1.2 Description of the Software
This sample application provides a sample program for checking the operation of Publish/Subscribe. This
sample program can check the Publish/Subscribe operation with only 1 set (2.2.1 Operation in 1 set), or you
can use two sets (2.2.2 Operation in 2 sets) and check the Publish/Subscribe operation with each other.

1.2.1 Sample program Configuration
[Table 1-1 Contents of this Application Note] shows the configuration of this sample program.

Table 1-1 Contents of this Application Note

File Name Description
r01an6951xxrrrr--lte-sample.pdf

xx: Language classification, Creation country
rrrr: Revision number

This Document

sample_rl78g22_ryz024a Publish/Subscribe sample application program

1.2.2 Hierarchy of sample programs
Software configuration of this sample framework is shown below.

Figure 1-3 Software Configuration

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 6 of 65
Feb.09.24

The sample application is a program that performs MQTT communication using the RYZ024A module’s
TCP/IP stack. The application is implemented on the host MCU side. This program consists of two features,
the MQTT communication application, which calls APIs for the MQTT communication and the AT command
framework, which sends the AT command to the RYZ024A.

The MQTT application program connects to the MQTT server and sends data after user switch button on the
RL78/G22 FPB is pressed. MQTT communication application is implemented using APIs from AT Command
Management Framework. For a detailed description about the MQTT communication application, refer to [2
MQTT Communication Application].

The AT Command Management Framework is a framework for implementing the transmission of AT
commands to the RYZ024A and the processing of responses received from the RYZ024A. By calling the API
function implemented on the AT Command Management Framework, multiple AT command are sent to the
RYZ024A, and application is notified by a callback function.

In this sample application, a framework-based program is implemented using a framework so that the
RL78/G22 can perform MQTT communication through the RYZ024A. The AT Command Management
Framework is intended to be used as a base for application development when using functions of the
RYZ024A other than MQTT communication. For a detailed description about AT Command Management
Framework, refer to [3 AT Command Management Framework].

1.2.3 Used peripheral function
[Table 1-2 Peripheral Functions to be used and their purpose] shows the peripheral functions used in this
sample program.

Table 1-2 Peripheral Functions to be used and their purpose

Peripheral Function Purpose
TAU00 AT command communication timeout
UARTA(P72/TxDA0) UART TX
UARTA(P71/RxDA0) UART RX
PORT(P70) RTS signal for UART
PORT(P50) CTS signal for UART
PORT(P17) RYZ024A RESET control
SW(P137/INTP0） User switch external pin interrupt
INTP(P51/INTP2) RYZ024A RING signal external pin interrupt
UART(P12/TxD0) UART TX for monitor log output

1.2.4 List of Option Byte Settings
[Table 1-3 Option Byte Settings] shows the option byte settings.

Table 1-3 Option Byte Settings

Address Setting Value Contents
000C0H/020C0H 11101111B Watchdog time counter operation disable

(Counting stopped after reset)
000C1H/020C1H 11111100B LVD0 detection voltage: Reset mode

At rising edge TYP. 2.67 V (2.59 V to 2.75 V)
At falling edge TYP. 2.62 V (2.54 V to 2.70 V)

000C2H/020C2H 11101000B HS mode,
High-speed on-chip oscillator clock (fIH): 32 MHz

000C3H/020C3H 10000100B Enables on-chip debugging

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 7 of 65
Feb.09.24

1.2.5 Folder/File structure
[Table 1-4 Sample Program file structure] shows the file structure of the sample program provided in this
application note.

Table 1-4 Sample Program file structure

Folder name, File name Description
r01an6951_rl78g22_ltemqtt Program storage folder
┣ src Source files
┃ ┣ ryz RYZ024A related source files
┃ ┣ smc_gen Smart configurator generation
┃ ┃ ┣ Config_INTC
┃ ┃ ┣ Config_PORT
┃ ┃ ┣ Config_TAU0_1
┃ ┃ ┣ Config_UART0
┃ ┃ ┣ Config_UARTA0
┃ ┃ ┣ general
┃ ┃ ┣ r_bsp
┃ ┃ ┣ r_config
┃ ┃ ┣ r_pincfg
┃ ┣ lte_entry.c Main program of the sample application
┃ ┣ lte_entry.h
┃ ┣ main.c
┃ ┣ main.h

1.2.6 Code size
[Table 1-4 ROM/RAM Sizes] shows ROM/RAM Sizes of the sample program provided in this application
note.

Table 1-5 ROM/RAM Sizes

Resource Size
ROM 23,700 Byte
RAM 2,394 Byte

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 8 of 65
Feb.09.24

2. MQTT Communication Application
2.1 Application environment
This section describes the environment to operate the MQTT communication application.
This application operates in the following hardware environment.

Table 2-1 Hardware environment

Hardware Description
RL78/G22 Fast Prototyping
Board (RL78/G22 FPB)

Evaluation board with RL78/G22
(RTK7RLG220C00000BJ)

PMOD Expansion Board for
RYZ024A (PMOD-RYZ024A)

PMOD board with RYZ024A module
(RTKYZ024A0B00000BE)

Windows PC RL78/G22’s application development environment and debug console
for operation conformation

This sample application has been developed and checked with the following software environment.

Table 2-2 Software environment of sample application

Item Description
Integrated development
environment (e2 studio)

Made by Renesas Electronics Corporation
e2 studio V2024-01 (24.1.0)

C compiler (e2 studio) Made by Renesas Electronics Corporation
CC-RL V1.13.00

Integrated development
environment (CS+)

Made by Renesas Electronics Corporation
CS+ for CC V8.11

C compiler (CS+) Made by Renesas Electronics Corporation
CC-RL V1.13.00

Smart Configurator Made by Renesas Electronics Corporation
V1.9.0

Board support package (BSP) Made by Renesas Electronics Corporation
V1.62

Renesas Flash Programmer (RFP) Made by Renesas Electronics Corporation
V3.14.00

Note: Regarding the use of PMOD-RYZ024A:

 When the RYZ024A shifts to deep sleep, the CTS pin becomes Hi-Z. However, in the PMOD-
RYZ024A, the CTS signal from the level shifter to the host microcomputer remains at low level due to
the characteristics of the level shifter used. (The RXD pin also remains Low.) Therefore, be careful
when waking up the RYZ024A from deep sleep and transmitting from the microcomputer to the UART.

In this sample application, dedicated processing is added to operate with PMOD-RYZ024A. For details,
refer to [4.4 PMOD-RYZ024A specific processing].

https://www.renesas.com/RTK7RLG220C00000BJ/
https://www.renesas.com/RTKYZ024A0B00000BE/

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 9 of 65
Feb.09.24

For application operation, follow these steps:

1. Connect RL78/G22 FPB and PMOD-RYZ024A with PMOD connector.
Please use PMOD2 connector for RL78/G22 FPB.

Figure 2-1 Connect RL78/G22 FPB and RYZ024A

2. Connect USB cables to RL78/G22 FPB and PMOD-RYZ024A.

Also connect the antenna to PMOD-RYZ024A.

Figure 2-2 Connect USB cable and antenna

Connect to
PMOD2 of RL78/G22

Connects USB cable for
power supply to RYZ024A

Connects antenna to
RYZ024A

Connects USB cable for debug
connection to RL78/G22 FPB

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 10 of 65
Feb.09.24

3. Import sample project

The sample program is provided in the project format of e2 studio. This chapter shows how to import the

project to e2 studio and CS+.

- Importing a Project into e2 studio

To use sample programs in e2 studio, follow the steps below to import them into e2 studio. In projects
managed by e2 studio, do not use space codes, multibyte characters, and symbols such as "$", "#", "%"
in folder names or paths to them.

(Note that depending on the version of e2 studio you are using, the interface may appear somewhat
different from the screenshots below.)

Figure 2-3 Importing a Project into e2 studio

Select menu [File] >>
[Import…].

Select [Existing Projects into Workspace].

Select [Select root directory:].

Select specify the directory which stored the project to import.
e.g.: r01an6951_rl78g22_ltemqtt
Each application note has its own project name.

Select [Copy project to workspace (C)] when copy the selected
project to the workspace.

Select [Add project to working
sets] when using the working sets.

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 11 of 65
Feb.09.24

- Importing a Project into CS+

To use sample programs in CS+, follow the steps below to import them into CS+. In projects managed
by CS +, do not use space codes, multibyte characters, and symbols such as "$", "#", "%" in folder
names or paths to them.

(Note that depending on the version of CS+ you are using, the interface may appear somewhat different
from the screenshots below.)

Figure 2-4 Importing a Project into CS+

Start the CS+, and select [Open Existing e2 studio / CubeSuite
/High-performance Embedded Workshop / PM+ Project]

Select a project (e.g. r01an6951_rl78g22_ltemqtt).
Each application note has its own project name.

Select a .rcpc file, and click the button [Open].

Confirm that it is a project file (*.rcpc) for
MCU Simulator Online/e2 studio

Select [Empty Application (CC-RL)] in [Kind of
project:], and specify [Project name:] and [Place:]

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 12 of 65
Feb.09.24

4. Change Access Point Name, Authentication protocol, Username, Password, and the LTE bands by
modifying the string data to match those of the user application.
The changes are needed in the below files:

- lte_entry.c

Access Point Name (APN), Authentication protocol, Username, Password
The character string data to be changed are basically dependent on the SIM used. Please contact the
SIM provider for APNs that can be used for user SIM. Username and password may be omitted. Please
refer to the manual document of each kit for information about the SIM included with the kit provided
from Renesas such as how to activate the SIM and available APNs.

LTE Bands
LTE bands differ depending on used region or operator. If you know the LTE bands to be used, specify
that bands. The following is an example of the LTE bands:

 “1,19”
 When user specifying DOCOMO bands.

 “2,4,12”
 When user specifying AT&T bands.

 “1,2,3,4,5,8,12,13,17,18,19,20,25,26,28,66”
 When user can't specify the bands

Note: The RYZ024A may take several minutes to connect when activating the SIM or connecting to the

network for the first time. Restricting the band to be used is effective in shortening the time to
connect.

In this application, operation is confirmed using the following APN and LTE bands.
 APN : ppsim.jp
 Authentication protocol : 0
 Username : -
 Password : -
 LTE bands : 1,19

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 13 of 65
Feb.09.24

Figure 2-5 Change APN, Authentication protocol, Username, Password and LTE bands

(lte_entry.c)

5. Disable low power operation of the RL78/G22 FPB. When using the dynamic printf that monitors the
operation of this sample program, comment out the API (ryz_lte_lowpower_devspe) that executes the
low power consumption mode because it is not recommended to use the low power consumption mode
of the RL78/G22 FPB.
Comment out the line calling ryz_lte_lowpower_devspe() in the function shown below.

File name/function name: r_lte_ryz.c / void R_LTE_Execute(void)

Figure 2-6 Disable low power operation

Change APN, protocol, username,
and password

Change LTE Bands

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 14 of 65
Feb.09.24

6. Set Motorola S-record file output.

(1): Right mouse click on the project.

(2): Select property.

(3): Select Settings → Converter Output, check "Output hex file",

confirm that Output Motorola S-record file is selected, click Apply and Close.

Figure 2-7 Motorola S-record file output setting

7. Build the sample project. When you build, Motorola S-record file (.mot) will be output.

(1)

(2)

(3)

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 15 of 65
Feb.09.24

8. Program the Motorola S-record file to the RL78/G22 FPB using the Renesas Flash Programmer.

(1): Select File → New Project…

(2): Select RL78/G2x from the pull-down menu.

(3): Specify an arbitrary name and arbitrary folder for the Project Name and Project folder.

(4): Select COM port and 2 wire UART from the pull-down menu.

(5): Click Tool Details…

(6): Specify COM port of RL78/G22 FPB

(7): Click OK

(8): Click Connect (If the connection is successful, proceed to (9). In case of error, please check the
settings before (6).

(9): Specify Motorola S-record file generated by build.

(10): Click Start to start programing.

Figure 2-8 Programing file

9. Prepare for monitoring.

The execution result of the sample program is output from USB of RL78/G22 FPB. Specify the COM
port of RL78/G22 FPB with terminal software such as TeraTerm.

Baud rate is 115200bps, data is 8bit, parity is none, stop bit is 1bit. The line feed code reception setting
is “LF”.

(1)

(2)

(3)
Arbitrary name
Arbitrary folder

(4)

(5)

(6)
Specify COM port of RL78/G22 FPB to program.

(7)

(8)

(9) Specify mot file to write.

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 16 of 65
Feb.09.24

2.2 Application operation
This sample program uses the public MQTT server "test.mosquitto.org" to send and receive messages.

This section describes the operation of the provided program. With this sample program, you can check the
Publish/Subscribe operation with only one set, or you can use two sets to check the Publish/Subscribe
operation with each other.

2.2.1 Operation in 1 set

Figure 2-9 sample application system configuration in 1 set

In this sample program, after resetting RYZ024A module, connects to the cellular network via LTE and then
connects to an MQTT server. After the connection to the MQTT server is completed and subscribe requests
are made, the string “SW READY” is displayed in console. In this state, the user can operate the push button
switches on the board.

Figure 2-10 Connects MQTT server

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 17 of 65
Feb.09.24

After “SW READY” is displayed, press the push button user switch on the board to send a message to the
MQTT server by publish request. RL78/G22 makes a Subscribe request to the MQTT server in advance.
When the MQTT server receives Publish, it sends the ID of the message to the Subscriber. The Application
sends message receive request using this subscribed message and displays the received message in
console. Transmitting string data changes depending on the number count of user switch press.

Figure 2-11 Press user switch

Press and hold (1 second or more) the user switch to disconnect both from MQTT server and network.

Figure 2-12 Press and hold (1 second or more)

If you are disconnected from the network or MQTT server due to the network conditions or the connection
signal strength, etc., this sample application will try to connect to the MQTT server again. Therefore, after the
connection to the network is reestablished, “SW READY” is displayed after reconnecting to the MQTT server
without pressing a button and makes a Subscribe request. After this, you can operate the switch again.

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 18 of 65
Feb.09.24

2.2.2 Operation in 2 sets
The same sample program is used when checking the operation with two sets.

However, change "s_str_mqtt_username" in lte_entry.c to a value other than renesas_device_001 (eg
renesas_device_002).

Figure 2-13 sample application system configuration in 2 sets

Code change location (lte_entry.c)

/* Application specific string data for MQTT Connection */
static uint8_t s_str_mqtt_serveraddress[] = "test.mosquitto.org";
static uint8_t s_str_mqtt_serverport[] = "1883";
static uint8_t s_str_mqtt_username[] = "renesas_device_001";
static uint8_t s_str_mqtt_topic[] = "renesas_test";

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 19 of 65
Feb.09.24

When the sample program is executed, RL78/G22 first resets the RYZ024A module. After resetting
RYZ024A module, connects to the cellular network via LTE and then connects to an MQTT server. Next,
after the connection to the MQTT server is completed and subscribe requests are made, the string “SW
READY” is displayed in USB output. In this state, the user can operate the push button switches on the
board.

Figure 2-14 Connect MQTT server (2sets)

After “SW READY” is displayed, press the push button user switch of RL78/G22 (A) to send a message to
the MQTT server by publish request. RL78/G22 (A) makes a Subscribe request to the MQTT server in
advance. When the MQTT server receives Publish, it will send the ID of the message to Subscriber. The
subscriber sends a request to receive a message and displays the received message on the console.
Similarly, RL78/G22 (B) also makes a Subscribe request to the MQTT server, so it displays the received
message on the console in the same way as RL78 (A). The character string data to be sent changes
according to the number of times the user switch is pressed.

Figure 2-15 Press user switch (2sets)

RL78/G22 (A) RL78/G22 (B)

RL78/G22 (A) RL78/G22 (B)

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 20 of 65
Feb.09.24

Each time the user switch of RL78/G22 (A) is pressed, a message is sent from RL78/G22 (A) to RL78/G22
(B).

Figure 2-16 Publish from RL78/G22 (A) to RL78/G22 (B) (2sets)

By pressing the user switch of RL78/G22 (B), you can send a message from RL78/G22 (B) to RL78/G22 (A).

Figure 2-17 Publish from RL78/G22 (B) to RL78/G22 (A) (2sets)

RL78/G22 (A) RL78/G22 (B)

RL78/G22 (A) RL78/G22 (B)

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 21 of 65
Feb.09.24

3. AT Command Management Framework
3.1 Framework Overview
The RYZ024A is operated from the RL78/G22 through the transmission of AT commands and reception of
responses using serial communication through the UART. The AT Command Management Framework is a
framework for efficiently implementing the transmission and reception of AT commands and responses. This
sample program implements a framework-based program for MQTT communication using the AT Command
Management Framework.

The API implemented in the framework-based program of this sample program is classified into two types:
management API and AT command API. The management API is an API for initializing framework-based
programs and sending a series of AT commands in response to a response message. The AT Command
API is an API for sending AT commands. The execution result of the AT command sent by the AT Command
API is notified to the application as a callback function.

AT Command Management Framework is created using TAU, UARTA, PORT and interrupt controller
generated by Smart Configurator.

 The UARTA is used to send AT commands to the RYZ024A and receive responses from the RYZ024A.

 The TAU is used to measure timeout condition after AT command is executed.

 The interrupt control is used for the RING signal interrupt that notifies that there is a Unsolicited Result
Code (URC) from the RYZ024A.

 The Low Power module is used when the RL78/G22 is in the IDLE state or when it is waiting for a
response after sending an AT command in the AT command API.

Figure 3-1 Overview of sample framework

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 22 of 65
Feb.09.24

The AT command framework implements an AT command API that sends AT commands to use the LTE
communication function of the RYZ024A. The series of AT commands required to perform the desired action
by calling the AT Command API in the application are added to the transmit waiting list. AT commands
added to the transmit waiting list are sent to RYZ024A in order.

Figure 3-2 AT command API call

The result of executing the AT command on RYZ024A is sent as a response. This response data is received
by the UART module's callback function and analyzed by the R_LTE_Execute function. If the execution
result is correct, the R_LTE_Execute function sends the next AT command that is added to the transmit
waiting list. This procedure is repeated until all AT commands added to the transmit waiting list have been
sent.

Figure 3-3 Receive response and AT command send

If all AT commands added to the send waiting list have been sent, the response from RYZ024A is an error,
or other data unrelated to the AT command is received, the R_LTE_Execute function notifies the application
as a callback function.

Figure 3-4 Notification in callback function

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 23 of 65
Feb.09.24

Executable API function provided from the framework-based program of this sample program is described in
[3.2 API function].

The result of the API execution is notified to application through callback function. Details about callback
function are described in [3.3 Callback function].

If user want to use the sample framework with other RL78 MCUs, the user only needs to change the
“r_lte_user_config.h” file. Configurable values are described in [3.4 User Specific Configuration].

3.2 API functions
The API functions implemented in the framework-based program of this sample program are classified into
two types: Management API and AT command API. The management API is an API for initializing the
framework-based program and sending a series of AT commands in response to the response message.
The AT command API is an API to send AT commands. The management API is described in [3.2.1
Management API] and AT command API is described in [3.2.2 AT command API].

3.2.1 Management API
The management API is an API for initializing the framework-based program and sending a series of AT
commands in response to the response message. It must be implemented in the main routine of the
application. Even when adding functions based on the AT Command Management Framework, basically
there is no need to change the management API program (r_lte_ryz.c, r_lte_ryz.h, r_lte_user_config.c).

Figure 3-5 Management API

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 24 of 65
Feb.09.24

3.2.1.1 R_LTE_Init
Function
name

R_LTE_Init

Functional
overview

Initialize framework-based program

Argument lte_cb_t * p_callback_fun (IN) Callback function to register

For information about type “lte_cb_t”, refer
[3.3 Callback function]

Return
value

LTE_SUCCESS (0x0000) API call success

LTE_ERR_POINTER_NULL (0x0001) Pointer of argument is NULL

Advanced
description

Initialize RYZ024A sample framework.

As part of initialization, following operation are performed:

• Initialization of Smart Configurator modules used in the framework.
• Execute hardware reset of RYZ024A.
• Registration of callback function to notify result of API to application.
After this function is executed, AT command to reset RYZ024A will be sent.
The result of the AT command sent by this API is notified by the callback function.
Following API_ID is used in callback function.

LTE_API_INIT (0xFF)

Please call this function before the main loop of your application.

3.2.1.2 R_LTE_Execute
Function
name

R_LTE_Execute

Functional
overview

Perform processing of the framework-based program.

Argument void None

Return
value

void None

Advanced
description

Execute various operations to be performed by the framework.

The following operation are performed:

• Send AT command specified by other API
• Parse string data received from RYZ024A
• Notifies the application of completion of API operation or receipt of errors or others

by calling callback function

Please call this function repeatedly in the main loop of your application.

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 25 of 65
Feb.09.24

3.2.2 AT command API
The AT command API is an API for sending AT commands. The AT commands are added to the transmit
waiting list by calling the AT command API from the application. AT commands added to the transmit waiting
lists are sent sequentially to RYZ024A in response. When all AT commands specified in the AT command
API have been sent, the AT command transmission result is notified to the application by callback function.

After calling the AT command API, the next AT command API cannot be called before the result is notified by
the callback function. Also, the AT command API cannot be called from an interrupt handler. Call the AT
command API only from main routine (including callback function of AT Command Management
Framework).

The framework-based program of this sample program implements the API necessary for MQTT
communication with the RYZ024A. If the user wants to implement a function that uses AT commands that
are not used in MQTT communication applications, it is assumed that users will add a new AT Command
API using this framework and develop an application.

Figure 3-6 AT command API

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 26 of 65
Feb.09.24

3.2.2.1 R_LTE_OM_Config
Function
Name

R_LTE_OM_Config

Functional
Overview

Configure operator mode

Argument uint8_t * p_pdp_type (IN) Type of PDP context

Example: “IPV4V6”

uint8_t * p_pdp_apn (IN) Access Point Name of PDP context

Example: “ppsim.jp”

uint8_t * p_pdp_protocol (IN) Authentication protocol of PDP context

Example: “0”

uint8_t * p_pdp_userid (IN) Username of PDP context

Example: “”

uint8_t * p_pdp_password (IN) Password of PDP context

Example: “”

uint8_t * p_bandlist (IN) List of authorized LTE bands

Example:
“1,2,3,4,5,8,12,13,17,18,19,20,25,26,28,66”

Return
value

LTE_SUCCESS (0x0000) API call success

LTE_ERR_POINTER_NULL (0x0001) Pointer of argument is NULL

LTE_ERR_IN_PROCESS (0x0002) Other API is in process

LTE_ERR_DATASIZE_OVERFLOW
(0x0003)

The data size of the argument exceeds the
size that can be registered in transmit
waiting list

Advanced
description

Sends the following AT commands in order:
1. “AT+CFUN=0"
2. “AT+CGDCONT=1,[p_pdp_type],[p_pdp_apn]”
3. “AT+CGAUTH=1,[p_pdp_protocol],[p_pdp_userid],[p_pdp_password]”

or “AT+CGAUTH=1,0” (Note
4. “AT+SQNCTM=“standard”
5. “AT+SQNBANDSEL=0," standard ",[p_bandlist]”
6. “AT^RESET”
7. “AT+CMEE=1”

The result of the AT command sent by this API is notified by the callback function.
Following API_ID is used in callback function.

LTE_API_OM_CONFIG (0x01)

Note: If "0" is specified for p_pdp_protocol, "AT+CGAUTH=1,0" is sent.

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 27 of 65
Feb.09.24

3.2.2.2 R_LTE_NWK_Connect
Function
Name

R_LTE_NWK_Connect

Functional
Overview

Connect to network

Argument uint8_t mode Select sending AT command

Return
value

LTE_SUCCESS (0x0000) API call success

LTE_ERR_IN_PROCESS (0x0002) Other API is in process

Advanced
description

Sends the following AT commands in order depending on value of “mode” (only 0 can
be used):

• Mode = 0
1. “AT+CEREG=5"
2. “AT+CFUN=1”

The result of the AT command sent by this API is notified by the callback function.
Following API_ID is used in callback function.

LTE_API_NWK_CONNECT (0x02)

3.2.2.3 R_LTE_NWK_Disconnect
Function
Name

R_LTE_NWK_Disconnect

Functional
Overview

Disconnect from network

Argument uint8_t mode Select sending AT command

Return
value

LTE_SUCCESS (0x0000) LTE_SUCCESS (0x0000)

LTE_ERR_IN_PROCESS (0x0002) LTE_FAIL_IN_PROCESS (0x0002)

Advanced
description

Sends the following AT commands in order depending on value of “mode” (only 0 can
be used):

• Mode = 0
1. “AT+CFUN=0”

The result of the AT command sent by this API is notified by the callback function.
Following API_ID is used in callback function.

LTE_API_NWK_DISCONNECT (0x03)

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 28 of 65
Feb.09.24

3.2.2.4 R_LTE_MQTT_Connect
Function
Name

R_LTE_MQTT_Connect

Functional
Overview

Configure MQTT communication setting and connect to MQTT server

Argument uint8_t * p_username (IN) Username used in MQTT communication

Example: “renesas_device_001”

uint8_t * p_host (IN) Address of MQTT server to connect

Example: “test.mosquitto.org”

uint8_t * p_port (IN) Port of MQTT server to connect

Example: ”1883”

Return
value

LTE_SUCCESS (0x0000) API call success

LTE_ERR_POINTER_NULL (0x0001) Pointer of argument is NULL

LTE_ERR_IN_PROCESS (0x0002) Other API is in process

LTE_ERR_DATASIZE_OVERFLOW
(0x0003)

The data size of the argument exceeds the
size that can be registered in transmit
waiting list

Advanced
description

Sends the following AT commands in order:
1. “AT+SQNSMQTTCFG=0,[p_username]”
2. “AT+SQNSMQTTCONNECT=0,[p_host] ,[p_port]”

The result of the AT command sent by this API is notified by the callback function.
Following API_ID is used in callback function.

LTE_API_MQTT_CONNECT (0x04)

3.2.2.5 R_LTE_MQTT_Subscribe
Function
Name

R_LTE_MQTT_Subscribe

Functional
Overview

Specify topic to subscribe in MQTT communication

Argument uint8_t * p_topic (IN) Topic to subscribe in MQTT
communication

Example: “renesas_test”

Return
value

LTE_SUCCESS (0x0000) API call success

LTE_ERR_POINTER_NULL (0x0001) Pointer of argument is NULL

LTE_ERR_IN_PROCESS (0x0002) Other API is in process

LTE_ERR_DATASIZE_OVERFLOW
(0x0003)

The data size of the argument exceeds the
size that can be registered in transmit
waiting list

Advanced
description

Sends the following AT command:
1. AT+SQNSMQTTSUBSCRIBE=0,[p_topic] ,1"

The result of the AT command sent by this API is notified by the callback function.
Following API_ID is used in callback function.

LTE_API_MQTT_SUBSCRIBE (0x05)

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 29 of 65
Feb.09.24

3.2.2.6 R_LTE_MQTT_Publish
Function
Name

R_LTE_MQTT_Publish

Functional
Overview

Publish message to MQTT server

Argument uint8_t * p_topic (IN) Topic of publishing message

Example: “renesas_test”

uint16_t length (IN) Publishing message size

uint8_t * p_message (IN) Publishing message

Return
value

LTE_SUCCESS (0x0000) API call success

LTE_ERR_POINTER_NULL (0x0001) Pointer of argument is NULL

LTE_ERR_IN_PROCESS (0x0002) Other API is in process

LTE_ERR_DATASIZE_OVERFLOW
(0x0003)

The data size of the argument exceeds the
size that can be registered in transmit
waiting list

Advanced
description

Sends the following AT command:
1. “AT+SQNSMQTTPUBLISH=0,[p_topic],1,[length]"

The result of the AT command sent by this API is notified by the callback function.
Following API_ID is used in callback function.

LTE_API_MQTT_PUBLISH (0x06)

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 30 of 65
Feb.09.24

3.2.2.7 R_LTE_MQTT_RcvMessage
Function
Name

R_LTE_MQTT_RcvMessage

Functional
Overview

Receive message from MQTT server

Argument uint8_t * p_topic (IN) Topic of receiving message

Example: “renesas_test”

uint8_t message_id (IN) Message ID of receiving message

uint16_t message_size (IN) Size of receiving message

Return
value

LTE_SUCCESS (0x0000) API call success

LTE_ERR_POINTER_NULL (0x0001) Pointer of argument is NULL

LTE_ERR_IN_PROCESS (0x0002) Other API is in process

LTE_ERR_DATASIZE_OVERFLOW
(0x0003)

The data size of the argument exceeds the
size that can be registered in transmit
waiting list

Advanced
description

Sends the following AT commands in order depending on value of “message_id”:
• message_id = 0

1. AT+SQNSMQTTRCVMESSAGE=0,[p_topic]”

• message_id = [other than 0]
1. AT+SQNSMQTTRCVMESSAGE=0,[p_topic],[message_id]”

The result of the AT command sent by this API is notified by the callback function.
Received message will also be notified by callback function.

Following API_ID is used in callback function.

LTE_API_MQTT_RCVMESSAGE (0x07)

This API is normally executed after receiving a URC of "+SQNSMQTTONMESSAGE".
If the MQTT message corresponding to the message_id specified in the argument has
not yet been received, the error "LTE_CME_ERR_OPERATION_NOT_SUPPORTED"
will be notified in the callback function.

3.2.2.8 R_LTE_MQTT_Disconnect
Function
Name

R_LTE_MQTT_Disconnect

Functional
Overview

Disconnect from MQTT server

Argument void None

Return
value

LTE_SUCCESS (0x0000) API call success

LTE_ERR_IN_PROCESS (0x0002) Other API is in process

Advanced
description

Sends the following AT command:
1. “AT+SQNSMQTTDISCONNECT=0"

The result of the AT command sent by this API is notified by the callback function.
Following API_ID is used in callback function.

LTE_API_MQTT_DISCONNECT (0x08)

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 31 of 65
Feb.09.24

3.2.2.9 R_LTE_SEC_CertificateAdd
Function
Name

R_LTE_SEC_CertificateAdd

Functional
Overview

Add certification information

Argument uint8_t cet_id Adding certification ID

uint16_t cet_len Data length of adding certification

uint8_t * p_cet_data String data of certification

Return
value

LTE_SUCCESS (0x0000) API call success

LTE_ERR_POINTER_NULL (0x0001) Pointer of argument is NULL

LTE_ERR_IN_PROCESS (0x0002) Other API is in process

LTE_ERR_DATASIZE_OVERFLOW
(0x0003)

The data size of the argument exceeds the
size that can be registered in transmit
waiting list

Advanced
description

Sends the following AT command:
1. “AT+SQNSNVW="certificate",[cet_id],[cet_len]"

The result of the AT command sent by this API is notified by the callback function.
Following API_ID is used in callback function.

LTE_API_SEC_CERTIFICATEADD (0x09)

3.2.2.10 R_LTE_SEC_CertificateRemove
Function
Name

R_LTE_SEC_CertificateRemove

Functional
Overview

Remove certification information

Argument uint8_t cet_id Removing certification ID

Return
value

LTE_SUCCESS (0x0000) API call success

LTE_ERR_IN_PROCESS (0x0002) Other API is in process

Advanced
description

Sends the following AT command:
1. “AT+SQNSNVW="certificate",[cet_id],0"

The result of the AT command sent by this API is notified by the callback function.
Following API_ID is used in callback function.

LTE_API_SEC_CERTIFICATEREMOVE (0x0A)

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 32 of 65
Feb.09.24

3.2.2.11 R_LTE_SEC_PrivateKeyAdd
Function
Name

R_LTE_SEC_PrivateKeyAdd

Functional
Overview

Add private key information

Argument uint8_t prk_id Adding private key ID

uint16_t prk_len Data length of adding private key

uint8_t * p_prk_data String data of private key

Return
value

LTE_SUCCESS (0x0000) API call success

LTE_ERR_POINTER_NULL (0x0001) Pointer of argument is NULL

LTE_ERR_IN_PROCESS (0x0002) Other API is in process

LTE_ERR_DATASIZE_OVERFLOW
(0x0003)

The data size of the argument exceeds the
size that can be registered in transmit
waiting list

Advanced
description

Sends the following AT command:
1. “AT+SQNSNVW="privatekey",[prk_id],[prk_len]"

The result of the AT command sent by this API is notified by the callback function.
Following API_ID is used in callback function.

LTE_API_SEC_PRIVATEKEYADD (0x0B)

3.2.2.12 R_LTE_SEC_PrivateKeyRemove
Function
Name

R_LTE_SEC_PrivateKeyRemove

Functional
Overview

Remove private key information

Argument uint8_t prk_id Remove private key ID

Return
value

LTE_SUCCESS (0x0000) API call success

LTE_ERR_IN_PROCESS (0x0002) Other API is in process

Advanced
description

Sends the following AT command:
1. “AT+SQNSNVW="privatekey",[prk_id],0"

The result of the AT command sent by this API is notified by the callback function.
Following API_ID is used in callback function.

LTE_API_SEC_PRIVATEKEYREMOVE (0x0C)

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 33 of 65
Feb.09.24

3.2.2.13 R_LTE_NWK_ConnectionConfig
Function
Name

R_LTE_NWK_ConnectionConfig

Functional
Overview

Configure connection and security

Argument uint8_t ca_cer_id CA certification ID

uint8_t client_cer_id Client certification ID

uint8_t prk_id Private key ID

Return
value

LTE_SUCCESS (0x0000) API call success

LTE_ERR_IN_PROCESS (0x0002) Other API is in process

Advanced
description

Sends the following AT commands in order:
1. “AT+SQNSCFG=1,1,1"
2. “AT+SQNSPCFG=1,2,,5,[ca_cer_id],[client_cer_id],[prk_id],"""

The result of the AT command sent by this API is notified by the callback function.
Following API_ID is used in callback function.

LTE_API_NWK_CONNECTIONCONFIG (0x0D)

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 34 of 65
Feb.09.24

3.2.2.14 R_LTE_eDRX_Config
Function
Name

R_LTE_eDRX_Config

Functional
Overview

Set operation and parameters of eDRX

Argument uint8_t mode (IN) eDRX mode

uint8_t edrx_time_value (IN) eDRX cycle

uint8_t ptw_time_value (IN) PTW(paging time window) time

Return
value

LTE_SUCCESS (0x0000) API call success

LTE_ERR_IN_PROCESS (0x0002) Other API is in process

LTE_ERR_DATASIZE_OVERFLOW
(0x003)

The data size of the argument exceeds the
size that can be registered in transmit
waiting list

Advanced
description

Generates and sends an AT command string from the specified arguments:
AT+SQNEDRX=2,4,"0001","0000"

The result of the AT command sent by this API is notified by the callback function.
Following API_ID is used in callback function.
LTE_API_EDRX_CONFIG (0x0E)

(1) mode parameter

typedef enum
{
 LTE_EDRX_MODE_DISABLE = 0,
 LTE_EDRX_MODE_ENABLE,
 LTE_EDRX_MODE_ENABLE_WITH_URC,
 LTE_EDRX_MODE_RESET_PARAM,
} e_lte_edrx_mode_t;

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 35 of 65
Feb.09.24

(2) edrx_time_value parameter

(3) ptw_time_value parameter

typedef enum
{
 LTE_EDRX_TIME_VAL_5_SEC = 0,
 LTE_EDRX_TIME_VAL_10_SEC,
 LTE_EDRX_TIME_VAL_20_SEC,
 LTE_EDRX_TIME_VAL_40_SEC,
 LTE_EDRX_TIME_VAL_61_SEC,
 LTE_EDRX_TIME_VAL_81_SEC,
 LTE_EDRX_TIME_VAL_102_SEC,
 LTE_EDRX_TIME_VAL_122_SEC,
 LTE_EDRX_TIME_VAL_143_SEC,
 LTE_EDRX_TIME_VAL_163_SEC,
 LTE_EDRX_TIME_VAL_327_SEC,
 LTE_EDRX_TIME_VAL_655_SEC,
 LTE_EDRX_TIME_VAL_1301_SEC,
 LTE_EDRX_TIME_VAL_2621_SEC,
} e_lte_edrx_time_value_t;

typedef enum
{
 LTE_EDRX_PTW_TIME_VAL_1_SEC = 0,
 LTE_EDRX_PTW_TIME_VAL_2_SEC,
 LTE_EDRX_PTW_TIME_VAL_3_SEC,
 LTE_EDRX_PTW_TIME_VAL_5_SEC,
 LTE_EDRX_PTW_TIME_VAL_6_SEC,
 LTE_EDRX_PTW_TIME_VAL_7_SEC,
 LTE_EDRX_PTW_TIME_VAL_8_SEC,
 LTE_EDRX_PTW_TIME_VAL_10_SEC,
 LTE_EDRX_PTW_TIME_VAL_11_SEC,
 LTE_EDRX_PTW_TIME_VAL_12_SEC,
 LTE_EDRX_PTW_TIME_VAL_14_SEC,
 LTE_EDRX_PTW_TIME_VAL_15_SEC,
 LTE_EDRX_PTW_TIME_VAL_16_SEC,
 LTE_EDRX_PTW_TIME_VAL_17_SEC,
 LTE_EDRX_PTW_TIME_VAL_19_SEC,
 LTE_EDRX_PTW_TIME_VAL_20_SEC,
} e_lte_edrx_ptw_time_value_t;

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 36 of 65
Feb.09.24

3.2.2.15 R_LTE_PSM_Config
Function
Name

R_LTE_PSM_Config

Functional
Overview

Set operation and parameters of PSM

Argument uint8_t mode (IN) PSM mode

uint8_t tau_time_value (IN) TAU time

uint8_t tau_multiplier (IN) Multiplier for TAU time

uint8_t active_time_value (IN) Active time

uint8_t active_multiplier (IN) Multiplier for Active time

Return
value

LTE_SUCCESS (0x0000) API call success

LTE_ERR_IN_PROCESS (0x0002) Other API is in process

LTE_ERR_DATASIZE_OVERFLOW
(0x003)

The data size of the argument exceeds the
size that can be registered in transmit
waiting list

Advanced
description

Generates and sends an AT command string from the specified arguments:
AT+CPSMS=1,,,"10000010","00001111"

The result of the AT command sent by this API is notified by the callback function.
Following API_ID is used in callback function.
LTE_API_PSM_CONFIG (0x0F)

(1) mode parameter

(2) tau_time_value

typedef enum
{
 LTE_PSM_MODE_DISABLE = 0,
 LTE_PSM_MODE_ENABLE,
 LTE_PSM_MODE_RESET_PARAM,
} e_lte_psm_mode_t;

typedef enum
{
 LTE_PSM_TAU_TIME_VAL_10_MIN = 0,
 LTE_PSM_TAU_TIME_VAL_1_HOUR,
 LTE_PSM_TAU_TIME_VAL_10_HOUR,
 LTE_PSM_TAU_TIME_VAL_2_SEC,
 LTE_PSM_TAU_TIME_VAL_30_SEC,
 LTE_PSM_TAU_TIME_VAL_1_MIN,
 LTE_PSM_TAU_TIME_VAL_320_HOUR,
} e_lte_psm_tau_time_value_t;

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 37 of 65
Feb.09.24

(3) active_time_value

(4) tau_multiplier, active_multiplier

typedef enum
{

LTE_PSM_ACTIVE_TIME_VAL_2_SEC = 0,
LTE_PSM_ACTIVE_TIME_VAL_1_MIN,
LTE_PSM_ACTIVE_TIME_VAL_6_MIN,
LTE_PSM_ACTIVE_TIME_VAL_NONE = 7,

} e_lte_psm_active_time_value_t;

typedef enum
{
 LTE_PSM_MULTIPLIER_0 = 0,
 LTE_PSM_MULTIPLIER_1,
 LTE_PSM_MULTIPLIER_2,
 LTE_PSM_MULTIPLIER_3,
 LTE_PSM_MULTIPLIER_4,
 LTE_PSM_MULTIPLIER_5,
 LTE_PSM_MULTIPLIER_6,
 LTE_PSM_MULTIPLIER_7,
 LTE_PSM_MULTIPLIER_8,
 LTE_PSM_MULTIPLIER_9,
 LTE_PSM_MULTIPLIER_10,
 LTE_PSM_MULTIPLIER_11,
 LTE_PSM_MULTIPLIER_12,
 LTE_PSM_MULTIPLIER_13,
 LTE_PSM_MULTIPLIER_14,
 LTE_PSM_MULTIPLIER_15,
 LTE_PSM_MULTIPLIER_16,
 LTE_PSM_MULTIPLIER_17,
 LTE_PSM_MULTIPLIER_18,
 LTE_PSM_MULTIPLIER_19,
 LTE_PSM_MULTIPLIER_20,
 LTE_PSM_MULTIPLIER_21,
 LTE_PSM_MULTIPLIER_22,
 LTE_PSM_MULTIPLIER_23,
 LTE_PSM_MULTIPLIER_24,
 LTE_PSM_MULTIPLIER_25,
 LTE_PSM_MULTIPLIER_26,
 LTE_PSM_MULTIPLIER_27,
 LTE_PSM_MULTIPLIER_28,
 LTE_PSM_MULTIPLIER_29,
 LTE_PSM_MULTIPLIER_30,
 LTE_PSM_MULTIPLIER_31,
} e_lte_psm_tau_multiplier_t;

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 38 of 65
Feb.09.24

3.3 Callback function
When an AT command is sent to the RYZ024A, string data is received as a response. Also, RYZ024A sends
an Unsolicited Response Code (URC) that is not a result of an AT command. The framework-based program
of this sample program receives string data from RYZ024A, and then parses the string data within the
function R_LTE_Execute. If information is needed to be notified to the user application, the function
R_LTE_Execute calls a callback function to notify the user application. This allows the application to check
the execution result of the AT Command API and to check the URC of the RYZ024A. This section describes
the structure of the callback function and the events and data that are signaled by the callback function.

The callback function has the following structure.

Type name void * lte_cb_t

Argument uint16_t event_type (In) Notified event ID

Refer IDs in Table 3-1.

uint16_t api_id (In) ID identifying API which framework-based program is
processing.

Refer IDs in Table 3-2.

uint16_t data_len (in) Data size of “p_data”

void * p_data (out) Notified event data.

Value changes depending on notified event type

The event_type and api_id values use values defined in macro formats within framework-based programs.
The values for each are shown below.

Table 3-1 Event Type IDs (event_type) and value

Macro Value Description

LTE_EVENT_API_COMPLETE 0x0000 An event that notifies application that the operation
specified in the API function has completed
successfully.

”p_data” is set according to the called API.

LTE_EVENT_ERROR 0x0001 An event that notifies application that an error has
occurred in the behavior specified in the API function.

Numeric data of error is set to “p_data”.

LTE_EVENT_RCVURC 0x0002 An event that notifies application that a URC has
been received.

String data of URC is set to “p_data”.

LTE_EVENT_TIMEOUT_ERROR 0x0003 An event that notifies application that timeout error
has occurred for sending AT command and receiving
a response.

Timeout occurs when 60s has passed after sending
an AT command.

LTE_EVENT_FATAL_ERROR 0x0004 An event that is notified when a fatal error occurs.
Call the callback function when URC "+SYSSTART"
is received at an unintended timing.

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 39 of 65
Feb.09.24

Table 3-2 API IDs (api_id) and value

Macro Value Corresponding API

LTE_API_NO_CURRENT_API 0x0000 None

LTE_API_OM_CONFIG 0x0001 R_LTE_OM_Config

LTE_API_NWK_CONNECT 0x0002 R_LTE_NWK_Connect

LTE_API_NWK_DISCONNECT 0x0003 R_LTE_NWK_Disconnect

LTE_API_MQTT_CONNECT 0x0004 R_LTE_MQTT_Connect

LTE_API_MQTT_DISCONNECT 0x0005 R_LTE_MQTT_Disconnect

LTE_API_MQTT_SUBSCRIBE 0x0006 R_LTE_MQTT_Subscribe

LTE_API_MQTT_PUBLISH 0x0007 R_LTE_MQTT_Publish

LTE_API_MQTT_RCVMESSAGE 0x0008 R_LTE_MQTT_RcvMessage

LTE_API_SEC_CERTIFICATEADD 0x0009 R_LTE_SEC_CertificateAdd

LTE_API_SEC_CERTIFICATEREMOVE 0x000A R_LTE_SEC_CertificateRemove

LTE_API_SEC_PRIVATEKEYADD 0x000B R_LTE_SEC_PrivateKeyAdd

LTE_API_SEC_PRIVATEKEYREMOVE 0x000C R_LTE_SEC_PrivateKeyRemove

LTE_API_NWK_CONNECTIONCONFIG 0x000D R_LTE_NWK_ConnectionConfig

LTE_API_EDRX_CONFIG 0x000E R_LTE_eDRX_Config

LTE_API_PSM_CONFIG 0x000F R_LTE_PSM_Config

LTE_API_INIT 0x00FF R_LTE_Init

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 40 of 65
Feb.09.24

The callback function is called from R_LTE_Execute function in certain situations. The following is a list of
when the callback function is called and the data to be set.

The source code containing the callback function is shown below.

Program: lte_entry.c

• When all AT commands specified by the AT Command API are sent and responses are received
without error:

 Value “LTE_EVENT_API_COMPLETE” is set to “event_type”.

 In “p_data”, the data is set according to the AT command to be executed.

 When URC is received as a response to AT command, string data of received URC is
registered. The size of the string data to be notified is set to "data_len"

 When calling the AT command API that starts data receive operation such as
R_LTE_MQTT_RcvMessage, the received string data is registered. If the received data
size exceeds "LTE_DATA_STR_SIZE", the excess data is discarded and the data of the
first half is registered. The size of the string data to be notified is set to "data_len".

 Otherwise, no data is set in “p_data”. "data_len" is set to 0.

Figure 3-7 LTE_EVENT_API_COMPLETE event notification

void lte_user_cb(uint16_t event_type, uint16_t api_id, uint16_t data_len, uint8_t *
p_data)
{
 if(LTE_EVENT_API_COMPLETE == event_type)
 {
 switch (api_id)
 {
 case LTE_API_OM_CONFIG:
 {
 /* Connect to network after configuration of operation mode complete
*/

sprintf(sbuf,"OM COMFIG COMP\n");
debug_printf(sbuf);
R_LTE_NWK_Connect(1);

 } break;

/* Omission */

 case LTE_API_MQTT_RCVMESSAGE:
 {
 /* Display received message */

sprintf(sbuf,"MQTT RCVMESSAGE COMP: ");
for(uint8_t i = 0; i < data_len; i++)
{

sbuf[21+i] = p_data[i] ;
}
sbuf[21+data_len+0]='\n';
sbuf[21+data_len+1]='\0';

 } break;

LTE_EVENT_API_COMPLETE event notification

Define which AT command API
result with api_id

Received data is registered in p_data

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 41 of 65
Feb.09.24

• When the response to the AT command sent to the RYZ024A has an error in the expected response:

 Value “LTE_EVENT_ERROR” is set to “event_type”.

 Value indicating an error is registered in “p_data”. To check this value, use function
“LTE_ERROR_DECODE” to check the value in 16-bit value.

Figure 3-8 LTE_EVENT_ERROR event notification

• When the AT command sent to the RYZ024A times out:

 Value “LTE_EVENT_TIMEOUT_ERROR” is set to “event_type”.

 No data is set to “p_data”.

 When a timeout occurs, it is often assumed that the behavior of the RYZ024A is abnormal.
Therefore, it is recommended to perform initialization.

Figure 3-9 LTE_EVENT_TIMEOUT_ERROR event notification

void lte_user_cb(uint16_t event_type, uint16_t api_id, uint16_t data_len, uint8_t *
p_data)
{

/* Omission */

 if(LTE_EVENT_ERROR == event_type)
 {
 /* Display API ID and Error code when error response received */
 uint16_t err_code;
 LTE_ERROR_DECODE(&err_code, p_data);

sprintf(sbuf,"ERROR RESPONSE\n");
debug_printf(sbuf);
sprintf(sbuf,"API ID: %d, ERROR CODE: %d\n", api_id, err_code);
debug_printf(sbuf);

 }

void lte_user_cb(uint16_t event_type, uint16_t api_id, uint16_t data_len, uint8_t *
p_data)
{
/* Omission */
 if(LTE_EVENT_TIMEOUT_ERROR == event_type)
 {
 /* Set flag to initialize in main loop */
 gs_reinitialize_flag = 1;
 }
}
/* Omission */

void hal_entry(void)
{
/* Omission */
 if(1 == gs_reinitialize_flag)
 {
 /* Initialize when timeout occur */
 R_LTE_Init(lte_user_cb);
 gs_reinitialize_flag = 0;
 }

LTE_EVENT_ERROR event notification

Analyze error code with
LTE_ERROR_DECODE

LTE_EVENT_TIMEOUT_ERROR event notification

Initialization of framework base program

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 42 of 65
Feb.09.24

• When URC "+SYSSTART" is received from RYZ024A at an unintended timing:

 Value “LTE_EVENT_FATAL_ERROR” is set to “event_type”.

 No data is set to “p_data”.

 When this event occurs, it is often assumed that the RYZ024A has restarted its operation.
Therefore, it is recommended to perform initialization.

Note: In the normal operation of the RYZ024A, URC "+SYSSTART" will only be received if the modem
reboots. This case is implemented for fail-safe purposes in case of occurrence.

Figure 3-10 LTE_EVENT_FATAL_ERROR event notification

void lte_user_cb(uint16_t event_type, uint16_t api_id, uint16_t data_len, uint8_t *
p_data)
{
/* Omission */
 if(LTE_EVENT_FATAL_ERROR == event_type)
 {
 /* Set flag to initialize in main loop */
 gs_reinitialize_flag = 1;
 }
}
/* Omission */

void hal_entry(void)
{
/* Omission */
 if(1 == gs_reinitialize_flag)
 {
 /* Initialize to restart user application */
 R_LTE_Init(lte_user_cb);
 gs_reinitialize_flag = 0;
 }

LTE_EVENT_FATAL_ERROR event notification

Initialization of framework base program

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 43 of 65
Feb.09.24

• When URC is sent from RYZ024A:

 Value “LTE_EVENT_RCVURC” is set to “event_type”.

 Received URC string data is registered to “p_data”. Execute user process according to the
URC. Please execute the process according to the URC. If the data size of the received URC
exceeds "LTE_DATA_STR_SIZE", the excess data is discarded and the data of the first half is
registered. The size of the string data to be notified is set to "data_len"

Figure 3-11 LTE_EVENT_RCVURC event notification

void lte_user_cb(uint16_t event_type, uint16_t api_id, uint16_t data_len, uint8_t *
p_data)
{

/* Omission */

 if(LTE_EVENT_RCVURC == event_type)
 {
 /* Receive message from MQTT server when RYZ024A received subscribe
notification */
 const uint8_t str_onmessage[] = "+SQNSMQTTONMESSAGE";

 /* Display received URC */
 sprintf(sbuf,"URC: %s",p_data);

debug_printf(sbuf);

 if(0 == memcmp(p_data, str_onmessage, (sizeof(str_onmessage) - 1)))
 {
 uint8_t rcv_id = 0;
 char * ptr;
 uint8_t msg_count = 0;

 /* Display subscribed notification */

sprintf(sbuf,"MQTT MESSAGE NOTIFY\n");
debug_printf(sbuf);

 /* Get message ID from received URC string data */
 ptr = strtok((char *)p_data,",");
 while(ptr != NULL)
 {
 ptr = strtok(NULL,",");
 if(ptr != NULL)
 {
 msg_count++;
 if(2 == msg_count)
 {
 mqtt_rcvdata_len = (uint8_t)atoi(ptr);
 }
 if(4 == msg_count)
 {
 rcv_id = (uint8_t)atoi(ptr);
 }
 }
 }
 /* request message receive */
 R_LTE_MQTT_RcvMessage(str_MQTT_topic, rcv_id);
 }

LTE_EVENT_RCVURC event notification

Check received URC
Execute process if received data is
+SQNSMQTTONMESSAGE”

Analyze parameter of URC

Call AT command API with
analyzed parameter

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 44 of 65
Feb.09.24

3.4 User Specific Configuration
When users are developing applications based on this sample application, they need to change some
settings depending on the RL78 MCU used. In the AT Command Management Framework, a program for
setting these user-specific setting values is defined in "r_lte_ryz.c". Users can modify this file to use the AT
Command Management Framework in the configuration that suits their environment. This section describes
the values that can be set.

[Table 3-3 Pin function setting for RYZ024A] shows the setting items for the RL78/G22 pins connected to
each pin of the RYZ024A. Please confirm when changing the board to be used as the host MCU.

Table 3-3 Pin function setting for RYZ024A

Function name Description Used pin

void ryz_lte_rts_low_devspe(void) The RTS pin of RYZ024A to low P70

void ryz_lte_rts_high_devspe(void) The RTS pin of RYZ024A to high P70

void ryz_lte_reset_low_devspe(void) The RESET pin of RYZ024A to low P17

void ryz_lte_reset_high_devspe(void) The RESET pin of RYZ024A to high P17

uint8_t ryz_lte_cts_read_devspe(void) The CTS pin of RYZ024A to read P50

uint8_t ryz_lte_ring_read_devspe(void) The RING pin of RYZ024A to read P51

[Table 3-4 Smart Configurator of RL78/G22] shows the setting items for using the Smart Configurator within
the AT command management framework. Please check if you want to edit the Smart Configurator, change
the RL78 MCU to use, etc.

Table 3-4 Smart Configurator of RL78/G22

Tag name Component Description

Clock - Operation mode: High-speed main mode 1.8 (V) to 5.5 (V)
High-speed on-chip oscillator: 32MHz
fOCO start setting: Normal
fIHP: 32MHz
fMAIN: 32MHz
fCLK: 32000kHz

System - On-chip debug operation setting: Use emulator
Emulator setting：E2 Lite
Pseudo-RRM/DMM function setting: Used
Start/Stop function setting: Unused
Security ID setting: Use security ID
Security ID: 0x00000000000000000000
Security ID authentication failure setting: Erase flash memory data

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 45 of 65
Feb.09.24

Tag name Component Description

Component r_bsp Start up select: Enable (use BSP startup)
Control of invalid memory access detection: Disable
RAM guard space (GRAM0-1): Disabled
Guard of control registers of port function (GPORT): Disabled
Guard of registers of interrupt function (GINT): Disabled
Guard of control registers of clock control function, voltage detector,
and RAM parity error detection function (GCSC): Disabled
Data flash access control (DFLEN): Disables
Initialization of peripheral functions by Code Generator/Smart
Configurator: Enable
API functions disable: Enable
Parameter check enable: Enable
Setting for starting the high-speed on-chip oscillator at the times of
release from STOP mode and of transitions to SNOOZE mode:
High-speed
Enable user warm start callback (PRE): Unused
Enable user warm start callback (POST): Unused
Watchdog Timer refresh enable: Unused

Config_TAU0_1 Component: Interval timer
Operation mode: 16 bit count mode
Resource: TAU0_1
Operation clock: CK00
Clock source: fCLK/2
Interval value: 1ms
Interval setting: Used
Priority: Level 3 (low)

Config_UART0 Component: UART Communication
Operation: Transmission/reception
Resource：UART0
Operation clock:CK00
Clock source: fCLK/2
Transfer mode setting: Single transfer mode
Data length setting: 8 bits
Transfer direction setting: LSB
Parity setting: None
Stop bit length setting: 1bit
Transfer data level setting: Non-reverse
Transfer rate setting:115200bps
Transmit end interrupt priority (INTST0): Level 3(low)
Callback function setting: Transmission end

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 46 of 65
Feb.09.24

Tag name Component Description

Component Config_UARTA0 Component: UART Communication
Operation: Transmission/reception
Resource: UARTA0
Operation clock: fSEL
Clock source: fSEL clock select fIHP
Data length setting: 8 bits
Transfer direction setting: LSB
Parity setting: None
Stop bit length setting: 1bit
Transfer data level setting: Non-reverse
Transmit mode setting: Continuous transmit by polling
Receive error occurs setting: INTUR interrupt occurs
Transfer rate setting:115200bps
Reception end interrupt priority (INTUR0): Level3(low)
Callback function: Reception end, Reception error

Config_INTC INTP0 Valid edge: Falling edge, Priority: Level3(low)
INTP2 Valid edge: Falling edge, Priority: Level3(low)

Config_PORT Port selection: PORT1, PORT5, PORT7
Port mode setting: Read Pmn register values
P17: Out
P50: In
P70: Out

[Table 3-5 Size setting of AT command transmission waiting list] shows the size setting items for various
data used within the AT command management framework. AT command management framework defines
these setting values in "r_lte_user_config.h". Please change it according to the data size of the AT command
and string used in the application and the stack size of the MCU to be used.

Table 3-5 Size setting of AT command transmission waiting list

Name Default value Description

LTE_ATC_STR_SIZE 100 Maximum length of the AT command string.

LTE_DATA_STR_SIZE 100 The maximum length of data to receive
from the RYZ024A.

If the data to be received exceeds this size,
the excess data is discarded.

LTE_ATC_LIST_SIZE 8 The number of AT commands that can be
added to the send waiting list.

Define "maximum number of AT commands
to be registered + 1".

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 47 of 65
Feb.09.24

3.5 Smart Configurator module used in the framework
The AT Command Management Framework uses Smart Configurator modules to implement its functionality.
The Smart Configurator module is configured not only in code but also in the Smart Configurator. This
section describes how to use and configure the Smart Configurator module used in the AT Command
Management Framework.

3.5.1 UARTA module
The AT Command Management Framework uses the UARTA module to implement UART communication
between the RL78/G22 and the RYZ024A.

When sending AT commands from the RL78/G22 to the RYZ024A, the write function
(R_Config_UARTA0_Send) of the UARTA module is used. After calling the AT Command API from your
application, a series of AT commands are registered in the Transmit waiting list in the framework.
Transmission of AT commands from the waiting list are sequentially processed from the beginning of the list
using the write function.

When sending a response from the RYZ024A to the RL78/G22, the data is received using the callback
function of the UARTA module. This callback function receives a character data one by one and stores it in a
ring buffer in the framework. Character data stored in the ring buffer is processed one character at a time
R_LTE_Execute each function call.

Figure 3-12 Using UARTA module

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 48 of 65
Feb.09.24

3.5.2 TAU module
The AT Command Management Framework uses the TAU module to implement the timeout function. After
sending an AT command, a timeout occurs when 60 seconds elapse before receiving a response. [Table 3-6
AT command timeout setting (r_lte_ryz.c)] shows the definition that sets the timeout period.

Table 3-6 AT command timeout setting (r_lte_ryz.c)

Name Default value Description

AT_COMMAND_TIMETOUT 30 Timeout count of AT command.
unit: 2sec
e.g.) 2sec * 30 = 60sec

Framework starts the timer at the timing of sending the AT command. This timer stops when the response
specified in the comp_msg is received or when an error response is received. If a response is not received
for a certain period after sending an AT command, the timer callback function is called in the framework to
signal a timeout has occured. After the callback function is called, framework calls the user's callback
function in the R_LTE_Execute function to notify the application that a timeout has occurred.

 The timer count time is set in the Smart Configurator. To change the timeout period, use the Smart
Configurator to change the timer count time and [Table 3-6 AT command timeout setting (r_lte_ryz.c)].

Figure 3-13 TAU module setting

3.5.3 Interrupt function
Use the interrupt function to generate an interrupt with a RING signal from the RYZ024A to notify that there
is a URC. RL78/G22 uses INTP2 to detect this RING interrupt.

Also, INTP0 is used to detect that SW is pressed.

3.5.4 UART0 module
The UART0 module is used to output the execution results of the sample program. The execution results of
the sample program are output via the RL78/G22 FPB's USB (COM port).

Timer count setting

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 49 of 65
Feb.09.24

3.6 Low Power Operation
This sample application supports operation using the low power consumption function of the RL78/G22 and
RYZ024A.

3.6.1 Low power operation control of RL78/G22
The RL78/G22 is in SNOOZE mode when the RL78/G22 is in the IDLE state, and in the HALT mode when it
is waiting for a response after sending an AT command in the AT command API. The files and functions
performing low power operation are listed below.

Application program: r_lte_ryz.c、R_LTE_Execute()

Figure 3-14 RL78/G22 low power consumption operation flow chart

(1) If character strings or data are stored in the UART receive buffer, analysis processing is performed
using the R_LTE_Execute() function without transitioning to low power consumption mode.

(2) When the AT command API is executed, when the response of the transmitted AT command is
received, it shifts to sleep mode so that it can return to normal mode with a UART reception interrupt.

(3) While the RING signal is asserted, shift to HALT mode so that the URC from the RYZ024A can be
received.

(4) From STOP mode, SW is pressed, or an external pin interrupt is generated by asserting the RING
signal to return to normal mode.

(5) Returns to normal mode when a UART reception interrupt is generated by receiving a response to the
transmitted AT command.

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 50 of 65
Feb.09.24

3.6.2 Low power operation control of RYZ024A
When the RYZ024A enables eDRX or PSM, you can operate the RYZ024A with low power consumption by
controlling the RTS signal.

RTS=L: Disable low power consumption operation

RTS=H: Enable low power consumption operation

See also "RYZ024 Power Consumption Measurements on RYZ024-Based Modules" (R19AN0167) for low
power operation of RYZ024A.

When sending an AT command from the RL78/G22, the RTS signal is controlled within the AT command
management framework to wake up the RYZ024A in low power consumption mode. Specifically, RTS is set
to Low in the AT command API and set to High after processing is completed. Also, when a RING interrupt
occurs, RTS is set to Low so that the RYZ024A can transmit URC, and after the necessary processing is
completed, it is set to High.

(1) When the AT command API is called

Figure 3-15 RTS signal control sequence (When the AT command API is called)

(2) When a RING interrupt occurs

Figure 3-16 RTS signal control sequence (When a RING interrupt occurs)

lte_user_cb() AT command API SCI_UART_Write()

AT command API call
Send AT command

Receive AT
command response

All AT command
processing of the AT

command API is
completed

RTS=L

RTS=H

R_LTE_Execute()
(This function is called

repeatedly from the loop
processing in hal_entry().)

lte_user_cb() AT command API SCI_UART_Write()
R_LTE_Execute()
(This function is called

repeatedly from the loop
processing in hal_entry().)

Executes processing
corresponding to URC

or data.
(Here, call the AT
command API)

Send AT command

Receive URC or data

All AT command
processing of the AT

command API is
completed.

RTS=L

RTS=H

ryz_lte_ring_signal_callback()

Notif ication of URC or
data from RYZ024A

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 51 of 65
Feb.09.24

Operation settings for eDRX and PSM are performed using the R_LTE_EDRX_Config function and
R_LTE_PSM_Config function. In this sample application, it is executed within the callback function. Its
source code is shown in Figure 3-20.

Program: lte_entry.c

eDRX and PSM operations are disabled by default. To enable it, refer to [3.2.2.14 R_LTE_eDRX_Config]
and [3.2.2.15 R_LTE_PSM_Config] and change the first argument of each API.

Figure 3-17 eDRX and PSM setting

void lte_user_cb(uint16_t event_type, uint16_t api_id, uint16_t data_len, uint8_t *
p_data)
{
/* Omission */
 case LTE_API_OM_CONFIG:
 {
 /* Connect to network after configuration of operation mode complete */
 sprintf(sbuf,"OM COMFIG COMP\n");

debug_printf(sbuf);
 R_LTE_EDRX_Config(LTE_EDRX_MODE_DISABLE, LTE_EDRX_TIME_VAL_81_SEC,

LTE_EDRX_PTW_TIME_VAL_10_SEC);
 } break;

 case LTE_API_EDRX_CONFIG:
 {
 /* Configure PSM after configuration of eDRX complete */
 sprintf(sbuf,"eDRX COMFIG COMP\n");

debug_printf(sbuf);
 R_LTE_PSM_Config(LTE_PSM_MODE_DISABLE, LTE_PSM_TAU_TIME_VAL_30_SEC,

LTE_PSM_MULTIPLIER_6, LTE_PSM_ACTIVE_TIME_VAL_2_SEC, LTE_PSM_MULTIPLIER_8);
 } break;

eDRX setting

PSM setting

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 52 of 65
Feb.09.24

4. Application development using AT Command Management Framework
The AT Command Management Framework is intended to be used as a base for user application
development. By using the AT Command Management Framework, communication between the RL78/G22
and the RYZ024A can be efficiently implemented. In this section, we will describe how to develop user
applications using this sample application as an example.

4.1 Overview of application development
The AT Command Management Framework is a specification that allows you to efficiently implement
additional APIs within the framework. The API implemented in the framework is called in the application
program to realize the operation desired by the user. In this sample application, operation is realized with the
following file.

• Framework base program:

 r_lte_ryz.c

 r_lte_ryz.h

 r_lte_user_config.h

• Bare metal Application program:

 lte_entry.c

The APIs implemented in framework-based programs are classified into two types: management API and AT
command API.

Management API
The Management API is the API for managing interactions with the RYZ024A. It must be implemented in the
proper place in the application program. In addition, users do not need to change it during application
development.

The following two APIs are implemented in the management API:

• R_LTE_Init
This is a function for initializing framework-based programs. This function performs initialization of the
Smart Configurator and hardware reset of the RYZ024A. The RYZ024A sends a URC of "+SYSSTART"
when initialization completes, and it is possible to accept AT commands. After "+SYSSTART", this
function sends the AT command "AT+CMEE=1" to receive a detailed error response. After all, AT
commands have finished executing, the callback function specified in the argument API_ID =
"LTE_API_INIT" event is notified. This function should be executed first in all API implemented in the
framework.

• R_LTE_Execute
This is a function that holds and parses the data received from RYZ024A, calls the callback function
according to the data, and sends AT commands. Since this function processes each character stored in
the ring buffer each time it is called, it is necessary to call it repeatedly in the main loop.

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 53 of 65
Feb.09.24

Figure 4-1 Implement management API (lte_entry.c)

AT command API
A set of AT commands necessary for the operation you want to perform is added to the transmit waiting list
by calling the AT command API. The registered AT commands are sent sequentially in response to the
response from the RYZ024A. The execution result of a series of AT commands is notified to the application
by a callback function. Users develop applications by calling the AT command API in the order they want and
implementing processing corresponding to callback functions. In addition, users can add a new AT command
API by themselves and use AT commands not used in this sample application.

Figure 4-2 Implement AT command API (lte_entry.c)

void lte_entry(void)
{

sprintf(sbuf,"PROGRAM START\n");
debug_printf(sbuf);

 /* SW interrupt driver open */
 R_ICU_ExternalIrqOpen(g_external_irq10.p_ctrl, g_external_irq10.p_cfg);
 R_ICU_ExternalIrqOpen(g_external_irq9.p_ctrl, g_external_irq9.p_cfg);

 /* Initialize framework-based program and register callback function */
 R_LTE_Init(lte_user_cb);

 while(1)
 {
 /* Execute variable process in framework-based program */
 R_LTE_Execute();

/* Omission */
 }
}

void lte_user_cb(uint16_t event_type, uint16_t api_id, uint16_t data_len, uint8_t *
p_data)
{
 if(LTE_EVENT_API_COMPLETE == event_type)
 {
 switch (api_id)
 {
 case LTE_API_INIT:
 {
 /* Configure operation mode after initiation complete */
 sprintf(sbuf,"INIT COMP\n");

debug_printf(sbuf);
 R_LTE_OM_Config(str_PDP_type, str_PDP_APN, str_LTE_bandlist);
 } break;

 case LTE_API_OM_CONFIG:
 {
 /* Connect to network after configuration of operation mode
complete */
 sprintf(sbuf,"OM COMFIG COMP\n");

debug_printf(sbuf);
R_LTE_NWK_Connect(1);

 } break;

Call R_LTE_Init before calling any
other APIs in framework

Call R_LTE_Execute repeatedly in
the main loop.

1. Call AT command API

2. Receive result with callback
function

3. Call next AT command API

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 54 of 65
Feb.09.24

4.2 Adding an AT command API
This framework assumes that the AT command API is added according to the user's application. This section
explains how the AT command API implemented in this sample application and explains how to implement
the new AT command API.

To add the AT command API, follow these steps:

1. Adding API IDs and Function Prototype Declarations

Add the API ID so that the added AT command API can be identified in the callback function. User also
adds prototype declarations to the header file (r_lte_ryz.h) so that the AT Command API can be
executed from the application program.

Figure 4-3 API IDs of this sample application (r_lte_ryz.h)

typedef enum
{
 LTE_API_NO_CURRENT_API = 0,
 LTE_API_OM_CONFIG,
 LTE_API_NWK_CONNECT,
 LTE_API_NWK_DISCONNECT,
 LTE_API_MQTT_CONNECT,
 LTE_API_MQTT_DISCONNECT,
 LTE_API_MQTT_SUBSCRIBE,
 LTE_API_MQTT_PUBLISH,
 LTE_API_MQTT_RCVMESSAGE,
 LTE_API_SEC_CERTIFICATEADD,
 LTE_API_SEC_CERTIFICATEREMOVE,
 LTE_API_SEC_PRIVATEKEYADD,
 LTE_API_SEC_PRIVATEKEYREMOVE,
 LTE_API_NWK_CONNECTIONCONFIG,
 LTE_API_EDRX_CONFIG,
 LTE_API_PSM_CONFIG,
 LTE_API_INIT = 0xff,
} e_lte_api_id_t;

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 55 of 65
Feb.09.24

2. Implementing the AT command API

Implement the actual state of the AT command API in the source file (r_lte_ryz.c). The AT command API
of this sample application is implemented with the following configuration.

Checking arguments and checking the running AT command API
If the argument has a pointer, make sure you do not specify NULL. Also check "gs_process_api" to make
sure that no other AT command API is running. If it is running, the AT command API cannot operate
properly if you change the AT command transmit waiting list, so the error "LTE_ERR_IN_PROCESS" will
be returned without executing any process. After that, to indicate that this AT command API is executing,
register the API_ID in "gs_process_api".

Figure 4-4 Checking the arguments and running AT Command API of R_LTE_OM_Config (r_lte_ryz.c)

e_lte_err_t R_LTE_OM_Config(uint8_t* p_pdp_type, uint8_t* p_pdp_apn, uint8_t*
p_bandlist)
{
 /* Check Argument and current state */
 if((NULL == p_pdp_type) || (NULL == p_pdp_apn) || (NULL == p_bandlist))
 {
 return LTE_ERR_POINTER_NULL;
 }

 if(LTE_API_NO_CURRENT_API != gs_process_api)
 {
 return LTE_ERR_IN_PROCESS;
 }

 /* Clear ATC list and set processing API ID */
 ryz_lte_clear_atc_list();
 gs_process_api = LTE_API_OM_CONFIG;

/* Omission */

Check argument

Check running AT command API

Register running AT command API

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 56 of 65
Feb.09.24

Registering AT commands in the Transmission Waiting List
Register the AT command as string data in the transmit waiting list "gs_atc_list". The following must be
registered in the transmission waiting list "gs_atc_list" for one AT command.

 atcommand:
This is the string data of the AT command you want to execute. The length of the string should be
registered in "atcommand_size". The maximum length of a string data that can be registered is
256 characters. If you want to use a larger AT command string data, change the
"LTE_ATC_STR_SIZE" in the user configuration file (r_lte_user_config.h).

 data:
This is a pointer to register the address of the data string to be processed by the AT command. It
is necessary for AT commands that send data. The data string registered here will be sent
corresponding to the response of "> ". The length of the string must be registered in "data_size".
It is assumed that the actual character string to be registered in this pointer is implemented in the
application.

 comp_msg:
This is a response message that can be considered as the completion of the AT command you
want to execute. Specify "OK" or URC. The length of the string should be registered in
"comp_msg_size". The following AT command is sent immediately after receiving the string
specified in the comp_msg. If "OK" and URC are sent consecutively, register the response to be
sent last. In addition, the last comp_msg of a series of AT commands to be added to the send
waiting list changes the data notified in the callback function. For details, see [3.3 Callback
function].

 data_exist_flag:
This flag indicates that the AT command to be sent is set. R_LTE_Execute function checks this
value to confirm that the AT command is registered. If you want to register the AT command, set
it to "1".

The transmit waiting list "gs_atc_list" holds string data by fixed-length arrays. Therefore, if the string data to
be registered exceeds the maximum length that can be registered in the transmit waiting list, an error due to
a buffer overflow may occur. If the user expects the data size of string data that is being registered can
exceed the maximum length, add processing to check the data size.

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 57 of 65
Feb.09.24

Figure 4-5 Register AT command of R_LTE_MQTT_Publish (r_lte_ryz.c)

Sending the first AT command
Send the AT command from the beginning of the registered transmit waiting list. Subsequent transmission
of AT commands is done in R_LTE_Execute function corresponding to the response.

Figure 4-6 Sending the first AT command of R_LTE_OM_Config (r_lte_ryz.c)

e_lte_err_t R_LTE_MQTT_Publish(uint8_t* p_topic, uint16_t length, uint8_t* p_message)
{
/* Omission */

 /* Set AT command to ATC list */
 gs_atc_list[0].atcommand_size = (uint16_t)snprintf((char*)gs_atc_list[0].atcommand,
LTE_ATC_STR_SIZE, "AT+SQNSMQTTPUBLISH=%s,\"%s\",%s,%d\r", "0",p_topic,"0",length);
 gs_atc_list[0].comp_msg_size = (uint16_t)snprintf((char*)gs_atc_list[0].comp_msg,
LTE_ATC_STR_SIZE, "%s", "OK");
 gs_atc_list[0].data_exist_flag = 1;

 gs_atc_list[0].data = p_message;
 gs_atc_list[0].data_size = length;

 if(gs_atc_list[0].atcommand_size > LTE_ATC_STR_SIZE)
 {
 ryz_lte_clear_atc_list();
 return LTE_ERR_DATASIZE_OVERFLOW;
 }

e_lte_err_t R_LTE_OM_Config(uint8_t* p_pdp_type, uint8_t* p_pdp_apn, uint8_t*
p_bandlist)
{

/* Omission */

 /* Send first AT command from ATC list */
 ryz_lte_transmit_atc_list(LTE_TRANSMIT_ATCOMMAND);

 return LTE_SUCCESS;

Add following to first of Transmit waiting list:
atcommand =
“AT+SQNSMQTTPUBLISH=0,"[p_topic]“,0,[length]
comp_msg = “OK”
data exist flag = 1

Set the address of the data you want to send in data

Send first AT command registered in transmit waiting list

Check the Data Size to register the
argument in the transmit waiting list

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 58 of 65
Feb.09.24

4.2.1 AT command API with Data receive operation
To implement the AT command API that arbitrarily receives data after sending an AT command like the
R_LTE_MQTT_RcvMessage function implemented in this sample application, it is necessary to rewrite the
global variables in the framework.

When receiving data, it is necessary to change the global variables "gs_ryz_lte_receive_size" and
"gs_ryz_lte_receive_flag". Set the size of the data you want to receive to "gs_ryz_lte_receive_size" and the
macro "LTE_RCV_DATA_FLAG_ON" for "gs_ryz_lte_receive_flag".

Figure 4-7 Global value setting of R_LTE_MQTT_RcvMessage (r_lte_ryz.c)

The data received with this AT command send notifies the application by callback function. The callback
function is called when the "OK" response sent from RYZ024A is received after the data.

Note: "\r" or "\n" in the received data is converted to "\r\n" in RYZ024A and then transmitted to host MCU. As
a result, some of the content and size of the received data may change.

e_lte_err_t R_LTE_MQTT_RcvMessage(uint8_t* p_topic, uint8_t message_id, uint16_t
message_size)
{

/* Omission */

 /* Set receive flag and size for data receive operation */
 gs_ryz_lte_receive_size = message_size;
 gs_ryz_lte_receive_flag = LTE_RCV_DATA_FLAG_ON;

/* Ommission */

Set receive size and flag

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 59 of 65
Feb.09.24

4.3 Guideline of error handling
In a communication control system, it is necessary to develop an application assuming that various errors
occur in the control of the communication controller and network operation. The following is a guideline for
application development using this AT command Management Framework for detection and processing. In
practice, the processing will vary depending on the requirements for the application product, so please
handle it as reference information.

See also the "Connection Manager" description in the "RYZ024 Module System Integration Guide"
(R19AN0101).

UART communication and RYZ024A behavior error

Defect status Framework behavior Application response

RYZ024A is restarted
unintentionally

Receives URC "+SYSSTART".
Since an unintended
"+SYSSTART" is received, call
callback function to notify
application.

The callback function is called in
event
"LTE_EVENT_FATAL_ERROR".
It is recommended to initialize
using R_LTE_Init function for this
event.

UART communication from the
RYZ024A to the host MCU
results in bit errors or character
reception errors

If the character string does not
match the string specified in the
comp_msg, or if the string does
not end with "\n", a timeout
occurs and calls callback function
to notify application.

The callback function is called in
event
"LTE_EVENT_TIMEOUT_ERRO
R". It is recommended to initialize
using R_LTE_Init function for this
event.

If the received string matches the
URC specified in the comp_msg
in front, the application is notified
by the callback function.

The callback function is called in
event "LTE_EVENT_RCVURC ".
check the data registered in
p_data because received string
data is registered.

UART communication from the
host MCU to the RYZ024A
results in bit errors or character
reception errors

If there is no response to the sent
string, a timeout occurs and calls
callback function to notify
application.

The callback function is called in
event
"LTE_EVENT_TIMEOUT_ERRO
R". It is recommended to initialize
using R_LTE_Init function for this
event.

If some of the AT commands sent
are incorrect, an error response
is received. After receiving the
error response, notify the
application with a callback
function.

The callback function is called in
event "LTE_EVENT_ERROR".
Since the error code
"LTE_CME_ERR_OPERATION_
NOT_SUPPORTED" (0x04) is
notified in the p_data, the
corresponding processing needs
to be added.

The MCU transmission and the
transmission timing of the
RYZ024A overlap, and the
RYZ024A does not perform the
expected operation

A timeout occurs when the
operation stops. Framework calls
callback function to notify
application.

The callback function is called in
event
"LTE_EVENT_TIMEOUT_ERRO
R". It is recommended to initialize
using R_LTE_Init function for this
event.

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 60 of 65
Feb.09.24

CTS from RYZ024A does not
enable for a long time

The response cannot be received
from the RYZ024A for a long
time, and a timeout occurs.
Framework calls callback function
to notify application.

The callback function is called in
event
"LTE_EVENT_TIMEOUT_ERRO
R". It is recommended to initialize
using R_LTE_Init function for this
event.

Network communication error

Defect status Framework behavior Application response

The network is disconnected due
to deterioration of radio wave
conditions, signal strength, etc.

Receive a "+CEREG" URC.

The application is notified by a
callback function.

The callback function is called in
event "LTE_EVENT_RCVURC".
Check the parameters of the
URC and execute the
corresponding processing. Check
the AT command manual for
URC parameters.

RYZ024A tried to connect to the
network but could not connect
due to an error such as incorrect
Access Point Name.

Receive a "+CEREG" URC.

The application is notified by a
callback function.

The callback function is called in
event "LTE_EVENT_RCVURC".
Check the parameters of the
URC and execute the
corresponding processing. Check
the AT command manual for
URC parameters.

Otherwise, the connection is
severed for some reason.

Receive a "+SQNSH" URC.

The application is notified by a
callback function.

The callback function is called in
event "LTE_EVENT_RCVURC".
Check the parameters of the
URC and execute the
corresponding processing. Check
the AT command manual for
URC parameters.

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 61 of 65
Feb.09.24

The communication status is notified by URC "+CEREG" etc. An example of URC of communication status
notified from RYZ024A is explained below.

See also the description of "Connection Manager" in the "RYZ024 Module System Integration Guide"
(R19AN0101).

 Received URC “+CEREG: 80” or “+CEREG: 4”:

 A URC that is notified when you are temporarily disconnected from the network. Since RYZ024A is
trying to connect to the network again, if the radio wave condition improves, RYZ024A can
reconnect to the network without executing the AT command API. At this time, MQTT
communication is maintained in the RYZ024A, so MQTT communication can be resumed without
executing R_LTE_MQTT_Connect function when reconnecting to the network.

 Received URC “+CEREG: 0”:

 A URC to be notified when disconnected from the network. If the radio wave conditions improve,
the connection will be automatically reconnected. In the upper layer, for example, when the TCP
socket is disconnected, a URC such as +SQNSH is notified, so processing such as TCP
connection is required as necessary.

 Received URC “+SQNSMQTTONCONNECT: 0,-7”:

 This is a URC that is notified when MQTT communication is also disconnected after a certain
period after being disconnected from the network. Reconnecting to the network does not preserve
MQTT communication, so you must execute the R_LTE_MQTT_Connect function again.

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 62 of 65
Feb.09.24

4.4 PMOD-RYZ024A specific processing
When the RYZ024A enters the deep sleep state, the UART CTS signal becomes Hi-Z. In a normal circuit, by
pulling up the CTS signal and making it high level, when the RYZ024A is in the deep sleep state, it can be
controlled by HW flow control so that AT commands cannot be sent from the RL78/G22.

However, in the PMOD-RYZ024A, due to the characteristics of the level shifter used, the CTS signal from the
level shifter to the RL78/G22 remains low even when the RYZ024A enters deep sleep, making HW flow
control impossible.

Therefore, in this sample application, when the RL78/G22 sends an AT command while the RYZ024A is in
deep sleep, first send "AT+CFUN?" command to confirm that RYZ024A has woken up. When the response
of "AT+CFUN?" command is not returned, it retries several times. Send the desired AT command (e.g.
AT+SQNSMQTTPUBLISH) after receiving "OK". [Figure 4-8 Registration of "AT+CFUN?" command
(r_lte_ryz.c)] shows how to add the "AT+CFUN?" command to the transmission waiting list.

[Figure 4-8 Registration of "AT+CFUN?" command (r_lte_ryz.c)] shows how to add the "AT+CFUN?"
command to the transmission waiting list.

Figure 4-8 Registration of "AT+CFUN?" command (r_lte_ryz.c)

e_lte_err_t R_LTE_MQTT_Publish(uint8_t* p_topic, uint16_t length, uint8_t* p_message)
{
/* Omission */

 /* Set AT command to ATC list */
 gs_atc_list[0].atcommand_size = (uint16_t)snprintf((char*)gs_atc_list[0].atcommand,
LTE_ATC_STR_SIZE, "AT+CFUN?\r");
 gs_atc_list[0].comp_msg_size = (uint16_t)snprintf((char *)gs_atc_list[0].comp_msg,
LTE_ATC_STR_SIZE, "OK");
 gs_atc_list[0].data_exist_flag = 1;
 gs_atc_list[0].at_polling_flag = 1;

 gs_atc_list[1].atcommand_size = (uint16_t)snprintf((char*)gs_atc_list[1].atcommand,
LTE_ATC_STR_SIZE, "AT+SQNSMQTTPUBLISH=%s,\"%s\",%s,%d\r", "0",p_topic,"0",length);
 gs_atc_list[1].comp_msg_size = (uint16_t)snprintf((char*)gs_atc_list[1].comp_msg,
LTE_ATC_STR_SIZE, "%s", "OK");
 gs_atc_list[1].data_exist_flag = 1;
 gs_atc_list[1].data = p_message;
 gs_atc_list[1].data_size = length;

 if(gs_atc_list[1].atcommand_size > LTE_ATC_STR_SIZE)
 {
 ryz_lte_clear_atc_list();
 return LTE_ERR_DATASIZE_OVERFLOW;
 }

/* Omission */

Add following to first of Transmit waiting list.

atcommand = “AT+CFUN?”
comp_msg = “OK”
data_exist_flag = 1
at_polling_flag=1

Add “AT+SQNSMQTTPUBLISH” to
2nd of Transmit waiting list.

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 63 of 65
Feb.09.24

By using an appropriate level shifter, even if the RYZ024A enters a deep sleep state, this processing is not
necessary for boards that can perform HW flow control with the CTS signal.

Definitions for enabling or disabling PMOD-RYZ024A specific processing are shown in [Table 4.1 Definition
of PMOD-RYZ024A specific processing (r_lte_ryz.c)].

Table 4-1 Definition of PMOD-RYZ024A specific processing (r_lte_ryz.c)

Name Default value Description

PMOD_RYZ024A 1 1: Enable PMOD-RYZ024A specific processing to
send AT+CFUN? command.

0: Disable PMOD-RYZ024A specific processing.

Definitions for setting the operation of the "AT+CFUN?" command are shown in [Table 4-2 Operation setting
of AT+CFUN? command (r_lte_ryz.c)].

Table 4-2 Operation setting of AT+CFUN? command (r_lte_ryz.c)

Name Default value Description

AT_POLLING_TIMETOUT 2 Timeout count for "AT+CFUN?" command.

Unit: 2sec

e.g.) 2sec * 2 = 4sec

AT_POLLING_RETRY_COUNT 2 Number of retries for "AT+CFUN?" command.

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 64 of 65
Feb.09.24

4.5 Initializing PMOD-RYZ024A
If you have been using the PMOD-RYZ024A before running the sample application in this application note,
your settings may be saved in the RYZ024A's non-volatile memory. It can be initialized by executing the
following AT command.

Figure 4-9 Initializing PMOD-RYZ024A

AT+CGDCONT=1,"IP","ppsim.jp"
OK
AT+CGDCONT?
+CGDCONT: 1,"IP","ppsim.jp",,,,0,0,0,0,0,0,0,,0

OK
AT+SQNSFACTORYRESET
ERROR
AT^RESET
OK

+SHUTDOWN

+SYSSTART

OK
AT+CGDCONT?
+CGDCONT: 1,"IPV4V6","",,,,0,0,0,0,0,0,1,,0

OK

Set later to ensure that it has been initialized.

The response may not be ERROR.

Make sure the settings are initialized and show the default values.

RL78/G22 LTE MQTT Communication

R01AN6951EJ0120 Rev.1.20 Page 65 of 65
Feb.09.24

Revision History

Rev. Date
Description
Page Summary

1.00 Aug. 30.23 - 1st edition
1.10 Oct. 30.23 13 Changed API name for executing low power consumption

mode (5 of 2.1 Application environment)
1.20 Feb. 09.24

7
8

45

Changed port settings and RTS setting conditions
Updated 1.2.6 Code Size
Updated 2.1 Application environment,
Table 2-2 Software environment of sample application
Changed 3.4 User Specific Configuration
Table 3-4 Smart Configurator of RL78/G22
Changed of Config_INTC, Config_PORT
(Changed Sample program(ryz_lte_rts_high_devspe)

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2024 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Operation overview
	1.2 Description of the Software
	1.2.1 Sample program Configuration
	1.2.2 Hierarchy of sample programs
	1.2.3 Used peripheral function
	1.2.4 List of Option Byte Settings
	1.2.5 Folder/File structure
	1.2.6 Code size

	2. MQTT Communication Application
	2.1 Application environment
	2.2 Application operation
	2.2.1 Operation in 1 set
	2.2.2 Operation in 2 sets

	3. AT Command Management Framework
	3.1 Framework Overview
	3.2 API functions
	3.2.1 Management API
	3.2.1.1 R_LTE_Init
	3.2.1.2 R_LTE_Execute

	3.2.2 AT command API
	3.2.2.1 R_LTE_OM_Config
	3.2.2.2 R_LTE_NWK_Connect
	3.2.2.3 R_LTE_NWK_Disconnect
	3.2.2.4 R_LTE_MQTT_Connect
	3.2.2.5 R_LTE_MQTT_Subscribe
	3.2.2.6 R_LTE_MQTT_Publish
	3.2.2.7 R_LTE_MQTT_RcvMessage
	3.2.2.8 R_LTE_MQTT_Disconnect
	3.2.2.9 R_LTE_SEC_CertificateAdd
	3.2.2.10 R_LTE_SEC_CertificateRemove
	3.2.2.11 R_LTE_SEC_PrivateKeyAdd
	3.2.2.12 R_LTE_SEC_PrivateKeyRemove
	3.2.2.13 R_LTE_NWK_ConnectionConfig
	3.2.2.14 R_LTE_eDRX_Config
	3.2.2.15 R_LTE_PSM_Config

	3.3 Callback function
	3.4 User Specific Configuration
	3.5 Smart Configurator module used in the framework
	3.5.1 UARTA module
	3.5.2 TAU module
	3.5.3 Interrupt function
	3.5.4 UART0 module

	3.6 Low Power Operation
	3.6.1 Low power operation control of RL78/G22
	3.6.2 Low power operation control of RYZ024A

	4. Application development using AT Command Management Framework
	4.1 Overview of application development
	4.2 Adding an AT command API
	4.2.1 AT command API with Data receive operation

	4.3 Guideline of error handling
	4.4 PMOD-RYZ024A specific processing
	4.5 Initializing PMOD-RYZ024A

	Revision History

