
 Application Note

R01AN6896EJ0110 Rev.1.10 Page 1 of 46
Oct.20.23

RL78/G22
Modbus ASCII/RTU
Introduction

Modbus is a communication protocol developed by Modicon Inc. (AEG Schneider Automation
International SAS) for PLCs. It is used for the purpose of data transfer, not only for PLCs but also between
electronic devices. It is widely used in the field of factory automation and plant automation because the
specifications are open to the public, free to use, and relatively easy to implement. This makes it the most
common serial communication protocol for connecting industrial equipment.

For example, in a factory, Modbus is used to connect devices through various wired or wireless
communication gateways. The master device used by Modbus can be a gateway, HMI, SCADA (Supervisor
Control and Data Acquisition), PLC, or similar device. The slave devices can include I/O control devices,
temperature and humidity measuring machines, meters, frequency transformers, motor units, etc.

There are two Modbus transmission modes, both based on serial communication: Modbus ASCII
(American Standard Code for Information Interchange) and Modbus RTU (Remote Terminal Unit).

Modbus ASCII transmits data as ASCII strings by converting each byte of data into a two-character
ASCII code. Termination characters are appended to delimit the data, which increases the amount of data
and increases the transmission time compared to Modbus RTU. On the other hand, the transmitted data is
easier to parse. Modbus RTU, in contrast, transmits the data in binary format without conversion. To delimit
the data in Modbus RTU, a non-communication interval of at least 3.5 characters is required. The amount of
data and the transmission time are reduced compared to Modbus ASCII, but parsing the transmitted data
requires using a timer.

Modbus communication uses a single-master/multi-slave method in which the slave responds to
requests from the master. There is 1 master and 1 to 247 slaves in a Modbus network. Each slave must
have a unique address (1 to 247) in the network. Since it is not possible to communicate with different data
formats on the same network, either Modbus ASCII or Modbus RTU must be used exclusively on a single
network.

At the physical layer, Modbus ASCII/RTU often uses the RS-485 standard. Connecting the RL78
microcontroller with the Renesas RS-485 transceiver via UART makes it easy to implement communication
by slave devices over Modbus ASCII/RTU. The RL78 microcontroller is particularly ideal for simple functions
such as low-power operation, I/O control, and temperature and humidity measurement. Early-stage
development can be done using our sample programs.

Summary
This Application Note describes a sample program that combines an RL78 microcontroller with a

Renesas RS-485 transceiver to enable master/slave functionality over Modbus ASCII/RTU.

Modbus
Master

Slave 1 Slave 2 Slave n

Request

Response

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 2 of 46
Oct.20.23

Evaluation Device
RL78/G22, RAA788152 (RS-485 transceiver), PmodUSBUART

Before applying the sample program covered in this application note to another microcontroller, modify
the program according to the specifications for the target microcontroller and conduct an extensive
evaluation of the modified program.

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 3 of 46
Oct.20.23

Contents

1. Specifications .. 5

2. Confirmed System Requirements .. 6

3. Related Application Notes ... 6

4. Description of the Hardware .. 7
4.1 Hardware Configuration Example ... 7
4.1.1 RL78 – PC (GUI) Environment .. 7
4.1.2 RL78 – RL78 Environment .. 8
4.1.3 RL78 – User Modbus Device Environment ... 9
4.2 Table of Pins Connecting the RL78/G22 Fast Prototyping Board and the RTKA788152DE0000BU ... 10
4.3 RTKA788152DE0000BU Jumper Pin Settings ... 11
4.4 List of Pins Used ... 11

5. Description of the Software ... 12
5.1 Operation Overview ... 12
5.1.1 UART Communication Settings for Modbus Communication ... 12
5.1.2 UART Communication Settings for Modbus Log Output .. 12
5.1.3 Supported Function Codes .. 13
5.1.4 Modbus Register Assignments.. 14
5.2 Setting of Option Byte ... 15
5.3 File Organization ... 16
5.4 Slave Mode (ASCII) ... 17
5.4.1 Main Processing .. 18
5.4.2 Serial Receive Interrupt Handling ... 19
5.4.3 Interval Between Characters Error Interrupt ... 20
5.5 Slave Mode (RTU) ... 21
5.5.1 Main Processing .. 22
5.5.2 Serial Receive Interrupt Handling ... 23
5.5.3 Interval Between Characters Interrupt Handling ... 24
5.5.4 Modbus Received Interrupt Handling .. 24
5.6 Master Mode (ASCII) ... 25
5.6.1 Main Processing .. 26
5.6.2 Read Coil Send Interrupt Handling ... 27
5.6.3 Serial Receive Interrupt Handling ... 28
5.6.4 Interval Between Characters Error Interrupt Handling .. 29
5.7 Master Mode (RTU) ... 30
5.7.1 Main Processing .. 31
5.7.2 Read Coil Send Interrupt Handling ... 32
5.7.3 Serial Receive Interrupt Handling ... 33

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 4 of 46
Oct.20.23

5.7.4 Interval Between Characters Interrupt Handling ... 34
5.7.5 Modbus Received Interrupt Handling .. 34
5.8 List of Constants .. 35
5.8.1 Modbus Operation Configuration Constants ... 35
5.8.2 Modbus Status Constants ... 35
5.8.3 Modbus Receive Results Constants ... 36
5.9 List of Variables ... 36
5.10 List of Structures ... 37
5.11 List of Functions .. 37
5.11.1 API Functions .. 37
5.11.2 Supported Function Codes .. 37
5.12 Function Specifications ... 38
5.13 Log Specifications ... 42
5.14 ROM/RAM Size ... 42

6. Preparing to Run ... 43
6.1 RL78 – PC (GUI) Environment .. 43
6.1.1 Connection Example ... 43
6.1.2 Set Firmware Constants .. 43
6.1.3 GUI Parameter Settings .. 43
6.1.4 How to Run .. 44
6.2 RL78 – RL78 Environment .. 44
6.2.1 Connection Example ... 44
6.2.2 Set Firmware Constants .. 45
6.2.3 How to Run .. 45

Revision History .. 46

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 5 of 46
Oct.20.23

1. Specifications
This application note provides an example of implementing Modbus communication over UART

communication. GPIO is used to set the send/receive permissions on the RAA788152 and then Modbus
frames are sent and received from the UART1 pin. TAU0 is used for measuring the interval between
characters and interval between frames while sending and receiving.

Table 1-1 Peripheral Functions to be Used and their Purpose
Peripheral Function Purpose
PORT P74 Control send/receive permissions on the RAA788152
SAU0 UART1 Send/receive Modbus frames
SAU2 UARTA0 Output Modbus frame send/receive logs and error logs
TAU0 Channel 0 Measure the interval between characters in the Modbus frame

and the interval between frames
Channel 1 In master mode, used to time out when waiting for a response

from a slave

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 6 of 46
Oct.20.23

2. Confirmed System Requirements
The sample code in this application note has been confirmed to work under the following system

requirements.

Table 2-1 System Requirements
Item Specification
Microcontroller to be used RL78/G22(R7F102GGE2DFB)

Board used
• RL78/G22 Fast Prototyping Board (RTK7RLG220C00000BJ)
• RS-485 Transceivers Evaluation Board

(RTKA788152DE0000BU)

Operating frequency • High-speed on-chip oscillator (HOCO) clock: 32 MHz
• CPU/peripheral hardware clock: 32 MHz

Operating voltage 5 V

Integrated development
environment (CS+)

Made by Renesas Electronics Corporation
CS+ for CC V8.10.00

C compiler (CS+) Made by Renesas Electronics Corporation
CC-RL V1.12.01

Integrated development
environment (e2 studio)

Made by Renesas Electronics Corporation
e2 studio V23.7.0

C compiler (e2 studio) Made by Renesas Electronics Corporation
CC-RL V1.12.00

Example peripheral device
configuration For details, see 4. Description of the Hardware

 Note When using COM port debugging on the RL78/G22 Fast Prototyping Board, in the [Connection with

Target Board] of Debug hardware’s COM port (RL78) in the integrated development environment,
please select the COM port number for assignment to the RL78/G22 Fast Prototyping Board from the
pull-down list for COM port.

3. Related Application Notes
The application notes related to this application note are listed below. Please refer to them as well.

Application Note: RL78/G23 Timer Array Unit (Interval timer) (R01AN5870)

Application Note: RL78/G23 Serial Interface UARTA (R01AN5598)

Application Note: RL78/G23 Serial Array Unit (UART Communication) (R01AN6645)

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 7 of 46
Oct.20.23

4. Description of the Hardware
4.1 Hardware Configuration Example

This section describes an example hardware configuration that assumes that you are using the
RL78/G22 Fast Prototyping Board (RTK7RLG220C00000BJ) and the 5V Half-Duplex RS-485 Transceivers
Evaluation Board (RTKA788152DE0000BU) as the RS-485 transceiver. You can output the logs by using
PmodUSBUART separately. For the log specifications, see 5.12 Log Specifications

4.1.1 RL78 – PC (GUI) Environment
Figure 4-1 shows the Example Configuration for the RL78 – PC (GUI) Environment.

Figure 4-1 Example Configuration for the RL78 – PC (GUI) Environment

RTKA788152DE0000BU

Host PC

RS-485 USB conversion cable
(Modbus communication)

RL78/G22 Fast Prototyping Board

USB cable
(debugger)

USB cable (log output)

https://www.renesas.com/RTK7RLG220C00000BJ/
https://www.renesas.com/RTKA788152DE0000BU/

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 8 of 46
Oct.20.23

4.1.2 RL78 – RL78 Environment
Figure 4-2 shows the Example Configuration for the RL78 – RL78 Environment.

Figure 4-2 Example Configuration for the RL78 – RL78 Environment

RTKA788152DE0000BU

Host PC

RS-485 cable
(Modbus communication)

RL78/G22 Fast Prototyping Board

USB cable
(debugger)

USB cable (log output)

USB cable
(debugger)

RTKA788152DE0000BU

RL78/G22 Fast Prototyping Board

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 9 of 46
Oct.20.23

4.1.3 RL78 – User Modbus Device Environment
Figure 4-3 shows the Example Configuration for the RL78 – User Modbus Device Environment.

Figure 4-3 Example Configuration for the RL78 – User Modbus Device Environment

RTKA788152DE0000BU

Host PC

RS-485 cable
(Modbus communication)

RL78/G22 Fast Prototyping Board

USB cable
(debugger)

USB cable (log output)

Modbus device

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 10 of 46
Oct.20.23

4.2 Table of Pins Connecting the RL78/G22 Fast Prototyping Board and the
RTKA788152DE0000BU

Table 4-1 shows the Pins Connecting the RL78/G22 Fast Prototyping Board and the
RTKA788152DE0000BU..

Table 4-1 Pins Connecting the RL78/G22 Fast Prototyping Board and the RTKA788152DE0000BU
RL78/G22 Fast Prototyping Board RTKA788152DE0000BU
Connector Pin Number Pin Name Connector Pin Number Pin Name
PmodTM1 1 P31 IN 2, 3 RE#, DE
J7 1 P00/TxD1 4 DI

0 P01/RxD1 1 RO
PmodTM1 5 GND POWER 2 GND

6 TARGET_VCC 1 VCC

Figure 4-4 The photo of connection between RL78/G22 Fast Prototyping Board and

RTKA788152DE0000BU

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 11 of 46
Oct.20.23

4.3 RTKA788152DE0000BU Jumper Pin Settings
To receiver enable (RE#)/driver enable (DE) of the RTKA788152DE0000BU with a single GPIO, set the

5pin and 6pin of the RE# _J connector of the RTKA788152DE0000BU to short. Also, DE_J connector should
be set to short 3pin and 4pin. This setting shorts RE# and DE. Also, to meet the RS-485 termination
requirements, set JP1 short for the terminating resistor at the first or final end.

Figure 4-5 RTKA788152DE0000BU jumper pin connection picture

4.4 List of Pins Used
Table 4-2 shows the Pins Used and their Functions.

Table 4-2 Pins Used and their Functions
Pin Name Input or Output Purpose
P31 Output Control send/receive permissions on the RAA788152
P00/TxD1 Output Send Modbus frame
P01/RxD1 Input Receive Modbus frame
P72/TxDA0 Output Output Modbus frame send/receive logs and error logs

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 12 of 46
Oct.20.23

5. Description of the Software
5.1 Operation Overview

In this sample code, the UART sending and receiving functions are used for serial communication with a
connected device using the Modbus protocol. It has master/slave functions, and the communication method
supports ASCII and RTU. Note that the master/slave and ASCII/RTU settings can be changed by defining
constants.

Accessible registers are kept in RAM and executed according to the function code.

5.1.1 UART Communication Settings for Modbus Communication
Table 5-1 shows the UART Communication Settings for Modbus Communication. The UART

communication settings for Modbus communication can be changed by modifying r_modbus_serial.c and
r_modbus_time.c.

Table 5-1 UART Communication Settings for Modbus Communication

5.1.2 UART Communication Settings for Modbus Log Output

Table 5-2 shows the UART Communication Settings for Log Output. The communication settings of the
UART for Modbus log output can be changed from code generation.

Table 5-2 UART Communication Settings for Log Output

Baud Rate Data Length Parity Stop Bit Flow Control
19200 bps ASCII (7-bit), RTU (8-bit) Even 1 bit None

Baud Rate Data Length Parity Stop Bit Flow Control
19200 bps 8-bit Even 1 bit None

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 13 of 46
Oct.20.23

5.1.3 Supported Function Codes
Table 5-3 shows Supported Function Codes.

Table 5-3 Supported Function Codes

Code Name Function
01(0x01) READ COILS Read the discrete output ON/OFF state.
02(0x02) READ DISCRETE INPUTS Read the discrete input ON/OFF state.
03(0x03) READ HOLDING REGISTERS Read the contents of the holding register.
04(0x04) READ INPUT REGISTER Read the contents of the input register.
05(0x05) WRITE SINGLE COIL Write the ON/OFF state to the discrete output.
06(0x06) WRITE SINGLE REGISTER Write the contents to the holding register.
15(0x0F) WRITE MULTIPLE COILS Write the ON/OFF state to multiple consecutive discrete

output coils.
16(0x10) WRITE MULTIPLE REGISTERS Write the contents to multiple consecutive holding

registers.
23(0x17) READ/WRITE MULTIPLE

REGISTERS
Write the contents to multiple consecutive holding
registers and read the contents of multiple consecutive
holding registers.

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 14 of 46
Oct.20.23

5.1.4 Modbus Register Assignments
This section describes the Modbus register assignments in slave mode. Although the sample code does

not assign functions to each register. This sample code of the Modbus protocol is implemented so that the
following values can be Read/Write.

Table 5-4 shows the Modbus Register Assignments (1/2), and Table 5-5 shows the Modbus Register
Assignments (2/2).

Table 5-4 Modbus Register Assignments (1/2)

Discrete Input works as follows when "g_discrete_input [] = {0xCA, 0x35};".

- 0x0A with 4bit read

- 0xCA with 8-bit read

- 0xCA05 with 12-bit read

- 0xCA35 with 16-bit read

Register Name Access Unit Number of Registers Address Range Initial Value
Discrete Output 1 bit 16 0x0000 1

0x0001 1
0x0002 1
0x0003 1
0x0004 1
0x0005 1
0x0006 1
0x0007 1
0x0008 1
0x0009 1
0x000A 1
0x000B 1
0x000C 1
0x000D 1
0x000E 1
0x000F 1

Discrete Input 1 bit 16 0x0000 1
0x0001 1
0x0002 0
0x0003 0
0x0004 1
0x0005 0
0x0006 1
0x0007 0
0x0008 0
0x0009 0
0x000A 1
0x000B 1
0x000C 0
0x000D 1
0x000E 0
0x000F 1

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 15 of 46
Oct.20.23

Table 5-5 Modbus Register Assignments (2/2)

5.2 Setting of Option Byte
Table 5-6 Option Byte Settings shows the option byte settings.

Table 5-6 Option Byte Settings
Address Setting Value Contents

000C0H/020C0H 11111110B Watchdog time counter operation enabled
(Counting started after reset)
Stops watchdog timer operation during HALT/STOP mode

000C1H/020C1H 11111110B LVD0 detection voltage: Reset mode
At rising edge TYP. 1.90 V (1.84 V ～ 1.95 V)
At falling edge TYP. 1.86 V (1.80 V ～ 1.91 V)

000C2H/020C2H 11101000B HS mode,
High-speed on-chip oscillator clock (fIH): 32 MHz

000C3H/020C3H 10000100B Enables on-chip debugging

Register Name Access Unit Number of Registers Address Initial Value
Input Register 2 bytes 8 0x0000 0x01FF

0x0001 0x03FF
0x0002 0x07FF
0x0003 0x0FFF
0x0004 0x1FFF
0x0005 0x3FFF
0x0006 0x7FFF
0x0007 0xFFFF

Holding Register 2 bytes 8 0x0000 0x0000
0x0001 0x0000
0x0002 0x0000
0x0003 0x0000
0x0004 0x0000
0x0005 0x0000
0x0006 0x0000
0x0007 0x0000

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 16 of 46
Oct.20.23

5.3 File Organization
Figure 5-1 shows the File Organization.

r01an6896-rl78g22-modbus /src/
│ modbus.c
├─Modbus
│ r_modbus.c
│ r_modbus.h
│ r_modbus_serial.c
│ r_modbus_serial.h
│ r_modbus_timer.c
│ r_modbus_timer.h
│
└─smc_gen
 ├─Config_PORT
 │ Config_PORT.c
 │ Config_PORT.h
 │ Config_PORT_user.c
 │
 ├─Config_UARTA0
 │ Config_UARTA0.c
 │ Config_UARTA0.h
 │ Config_UARTA0_user.c
 │
 ├─Config_WDT
 │ Config_WDT.c
 │ Config_WDT.h
 │ Config_WDT_user.c
 │
 ├─general
 │ r_cg_macrodriver.h
 │ r_cg_port.h
 │ r_cg_systeminit.c
 │ r_cg_uarta.h
 │ r_cg_uarta_common.c
 │ r_cg_uarta_common.h
 │ r_cg_userdefine.h
 │ r_cg_wdt.h
 │ r_smc_entry.h
 │ ...

 │
 ├─r_bsp
 │ ...
 │
 └─r_config
 r_bsp_config.h
 r_bsp_config.inc

Figure 5-1 File Organization

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 17 of 46
Oct.20.23

5.4 Slave Mode (ASCII)
When the sample code runs in slave mode (ASCII), the main process initializes the peripheral functions

and waits for the Modbus receive flag to be set. The Modbus receive flag is set when a Modbus ASCII frame
is received from the UART1 interrupt handling. After the Modbus receive flag is set, the program checks the
values of the slave address, function code, and checksum, and calls the callback function if they are all in
compliance. The program checks TAU00 for a timeout of the interval between characters in the Modbus
frame. If the TAU00 interrupt occurs between the time of the UART1 receive interrupt and completion of the
Modbus packet, the program considers this an interval between characters error and clears the receive count
and receive buffer.

The timeout period for an interval between characters error in ASCII is not specified by the standard. For
some applications, an interval greater than 1 second means that an error has occurred, but other
applications may require a longer timeout period. In the sample code the period is set to 1 second.

Finally, the Modbus communication frame logs and error logs are output to UARTA0.

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 18 of 46
Oct.20.23

5.4.1 Main Processing
Figure 5-2 shows the Main Processing (Slave Mode (ASCII)) flow chart.

Figure 5-2 Main Processing (Slave Mode (ASCII))

Main

Initialize Modbus peripheral functions

Is slave address
addressed to me?

Parse Modbus receive buffer

Is Modbus receive
flag ON?

Is function code
valid?

Report error to master

Call callback function

Yes

Yes

No

No

Yes

No

Is checksum
valid?

Yes

No

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 19 of 46
Oct.20.23

5.4.2 Serial Receive Interrupt Handling
Figure 5-3 shows the Serial Receive Interrupt Handling (Slave Mode (ASCII)) flow chart.

Figure 5-3 Serial Receive Interrupt Handling (Slave Mode (ASCII))

UART1 receive interrupt

Store received value at
beginning of receive buffer

Is received
value "\n"?

Store the receive buffer Modbus
frame in the Modbus buffer

Turn Modbus receive flag ON

Restart TAU00

Store received value
in receive buffer

Is received
value ":"?

End

Yes Yes

No No

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 20 of 46
Oct.20.23

5.4.3 Interval Between Characters Error Interrupt
Figure 5-4 shows the Interval Between Characters Error Interrupt Handling (Slave Mode (ASCII)) flow

chart.

Figure 5-4 Interval Between Characters Error Interrupt Handling (Slave Mode (ASCII))

TAU00 interrupt

End

Clear receive count

Clear receive buffer

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 21 of 46
Oct.20.23

5.5 Slave Mode (RTU)
When the sample code runs in slave mode (RTU), the main process initializes the peripheral functions

and waits for the Modbus receive flag to be set. The program checks TAU00 for a timeout in the interval
between characters in the Modbus frame or the interval between frames. If the TAU00 interrupt occurs
between the time of the UART1 interrupt and completion of the Modbus packet, the program sets the interval
between characters error flag, changes TAU00 to the period of the interval between frames, and then starts.
If the UART1 receive interrupt handling occurs again with the interval between characters error flag set, the
program considers this an interval between characters error and clears the receive count and receive buffer.
If TAU00 interrupt handling occurs with this flag set but no UART1 receive interrupt is generated, it is
considered normal termination, the interval between characters error flag is cleared, and the Modbus receive
flag is set. After the Modbus receive flag is set, the program checks the values of the slave address, function
code, and checksum, and calls the callback function if they are all in compliance.

The timeout period for an interval between characters error in the RTU is 1.5 characters, and the interval
between frames is 3.5 characters. Depending on the communication settings in the sample code, the
respective periods are set as follows.

Each interval = number of characters × number of bits per character × communication time per bit ×
accuracy of HOCO (1%)

Interval between characters: 1.5 × 11 × 1/19200 × 1.01 ≈ 868 [us]

Interval between frames: 3.5 × 11 × 1/19200 × 1.01 ≈ 2026 [us]

In this sample code, a single timer (TAU00) is used to make two determinations: the interval between
characters and the interval between frames. After the timer interrupt occurs for the interval between
characters, TAU00 is changed to 1158 [us] (2026 − 868) and used to determine the interval between frames.

Finally, the Modbus communication frame logs and error logs are output to UARTA0.

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 22 of 46
Oct.20.23

5.5.1 Main Processing
Figure 5-5 shows the Main Processing (Slave Mode (RTU)).

Figure 5-5 Main Processing (Slave Mode (RTU))

Main

Initialize Modbus peripheral functions

Is slave address
addressed to me?

Parse Modbus receive buffer

Is Modbus
receive flag ON?

Is function code
valid?

Report error to master

Call callback function

Yes

Yes

No

No

Yes

No

Is checksum
valid?

Yes

No

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 23 of 46
Oct.20.23

5.5.2 Serial Receive Interrupt Handling
Figure 5-6 shows the Serial Receive Interrupt Handling (Slave Mode (RTU)) flow chart.

Figure 5-6 Serial Receive Interrupt Handling (Slave Mode (RTU))

UART1 receive interrupt

Store received value in
receive buffer

End

Interval between
characters flag ON?

Clear receive buffer

No

Yes

Restart TAU00

Set TAU00 to 868 us

Clear receive buffer count

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 24 of 46
Oct.20.23

5.5.3 Interval Between Characters Interrupt Handling
Figure 5-7 shows the Interval Between Characters Interrupt Handling (Slave Mode (RTU)) flow chart.

Figure 5-7 Interval Between Characters Interrupt Handling (Slave Mode (RTU))

5.5.4 Modbus Received Interrupt Handling
Figure 5-8 shows the Modbus Received Interrupt Handling (Slave Mode (RTU)) flow chart.

Figure 5-8 Modbus Received Interrupt Handling (Slave Mode (RTU))

TAU00 interrupt

End

Set TAU00 to 1158 us

Turn interval between
characters flag ON

Restart TAU00

TAU00 interrupt

Turn interval between
characters flag OFF

End

Turn Modbus receive flag ON

Copy receive buffer to Modbus
receive buffer

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 25 of 46
Oct.20.23

5.6 Master Mode (ASCII)
When the sample code runs in master mode (ASCII), it sends Read Coils to SLAVE ID = 0x01 every

second. When it receives the response from the slave, the program calls the callback function. The program
checks TAU00 for a timeout of the interval between characters in the Modbus frame. If the TAU00 interrupt
occurs between the time of the receive interrupt and completion of the Modbus packet, the program
considers this an interval between characters error and clears the receive count and receive buffer.

The timeout period for an interval between characters error in ASCII is not specified by the standard. For
some applications, an interval greater than 1 second means that an error has occurred, but other
applications may require a longer timeout period. In the sample code the period is set to 1 second. The Read
Coils transmission interval (1 second) uses TAU01.

Finally, the Modbus communication frame logs and error logs are output to UARTA0.

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 26 of 46
Oct.20.23

5.6.1 Main Processing
Figure 5-9 shows the Main Processing (Master Mode (ASCII)) flow chart.

Figure 5-9 Main Processing (Master Mode (ASCII))

Main

Initialize Modbus peripheral
functions

Parse Modbus receive buffer

Is Modbus
receive flag ON?

Is function code
valid?

Call callback function

Yes

No

Yes

No

Is checksum
valid?

Yes

No

Start TAU01

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 27 of 46
Oct.20.23

5.6.2 Read Coil Send Interrupt Handling
Figure 5-10 shows the Read Coil Send Interrupt Handling (Master Mode (ASCII)) flow chart.

Figure 5-10 Read Coil Send Interrupt Handling (Master Mode (ASCII))

TAU01 interrupt

Send Read Coil command
to SLAVE ID 0x01

End

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 28 of 46
Oct.20.23

5.6.3 Serial Receive Interrupt Handling
Figure 5-11 shows the Serial Receive Interrupt Handling (Master Mode (ASCII)) flow chart.

Figure 5-11 Serial Receive Interrupt Handling (Master Mode (ASCII))

UART1 receive interrupt

Store received value at
beginning of receive buffer

Is received
value "\n"?

Store the Modbus frame in the
receive buffer in the Modbus

b ff

Turn Modbus receive flag ON

Store received value in
receive buffer

Is received
value ":"?

End

Restart TAU00

Yes Yes
No No

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 29 of 46
Oct.20.23

5.6.4 Interval Between Characters Error Interrupt Handling
Figure 5-12 shows the Interval Between Characters Error Handling (Master Mode (ASCII)) flow chart.

Figure 5-12 Interval Between Characters Error Handling (Master Mode (ASCII))

TAU00 interrupt

End

Clear receive count

Clear receive buffer

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 30 of 46
Oct.20.23

5.7 Master Mode (RTU)
When the sample code runs in master mode (RTU), it sends Read Coils to SLAVE ID = 0x01 every

second. When it receives the command from the slave it calls the callback function. The program checks
TAU00 for a timeout in the interval between characters in the Modbus frame or the interval between frames.
If the TAU00 interrupt occurs between the time of the UART1 receive interrupt and completion of the Modbus
packet, the program sets the interval between characters error flag, changes TAU00 to the period of the
interval between frames, and then starts. If the UART1 receive interrupt occurs again with the interval
between characters error flag set, the program considers this an interval between characters error and clears
the receive count and receive buffer. If TAU00 interrupt handling occurs with this flag set but no UART1
receive interrupt is generated, it is considered normal termination, the interval between characters error flag
is cleared, and the Modbus receive flag is set. After the Modbus receive flag is set, the program checks the
values of the slave address, function code, and checksum, and calls the callback function if they are all in
compliance.

The timeout period for an interval between characters error in the RTU is 1.5 characters, and the interval
between frames is 3.5 characters. Depending on the communication settings in the sample code, the
respective periods are set as follows.

Each interval = number of characters × number of bits per character × communication time per bit ×
accuracy of HOCO (1%)

Interval between characters: 1.5 × 11 × 1/19200 × 1.01 ≈ 868 [us]

Interval between frames: 3.5 × 11 × 1/19200 × 1.01 ≈ 2026 [us]

In this sample code, a single timer (TAU00) is used to make two determinations: the interval between
characters and the interval between frames. After the timer interrupt occurs for the interval between
characters, TAU00 is changed to 1158 [us] (2026 − 868) and used to determine the interval between frames.
The Read Coils transmission interval (1 second) uses TAU01.

Finally, the Modbus communication frame logs and error logs are output to UARTA0.

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 31 of 46
Oct.20.23

5.7.1 Main Processing
Figure 5-13 shows the Main Processing (Master Mode (RTU)) flow chart.

Figure 5-13 Main Processing (Master Mode (RTU))

Main

Initialize Modbus peripheral
functions

Parse Modbus receive buffer

Is Modbus
receive flag ON?

Is function code
valid?

Call callback function

Yes

No

Yes

No

Is checksum
valid?

Yes

No

Start TAU01

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 32 of 46
Oct.20.23

5.7.2 Read Coil Send Interrupt Handling
Figure 5-14 shows the Read Coil Send Interrupt Handling (Master Mode (RTU)) flow chart.

Figure 5-14 Read Coil Send Interrupt Handling (Master Mode (RTU))

TAU01 interrupt

Send Read Coil command
to SLAVE ID 0x01

End

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 33 of 46
Oct.20.23

5.7.3 Serial Receive Interrupt Handling
Figure 5-15 shows the Serial Receive Interrupt Handling (Master Mode (RTU)) flow chart.

Figure 5-15 Serial Receive Interrupt Handling (Master Mode (RTU))

UART1 receive interrupt

Store received value in
receive buffer

End

Interval between
characters error flag

ON?

Clear receive buffer

No

Yes

Restart TAU00

Set TAU00 to 868 us

Clear receive buffer count

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 34 of 46
Oct.20.23

5.7.4 Interval Between Characters Interrupt Handling
Figure 5-16 shows the Interval Between Characters Interrupt Handling (Master Mode (RTU)) flow chart.

Figure 5-16 Interval Between Characters Interrupt Handling (Master Mode (RTU))

5.7.5 Modbus Received Interrupt Handling
Figure 5-17 shows the Modbus Received Interrupt Handling (Master Mode (RTU)) flow chart.

Figure 5-17 Modbus Received Interrupt Handling (Master Mode (RTU))

TAU00 interrupt

End

Set TAU00 to 1158 us

Turn interval between
characters flag ON

Restart TAU00

TAU00 interrupt

Turn interval between
characters flag OFF

End

Modbus receive flag ON

Copy receive buffer to Modbus
receive buffer

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 35 of 46
Oct.20.23

5.8 List of Constants
5.8.1 Modbus Operation Configuration Constants

Table 5-7 shows the Modbus Operation Configuration Constants.

Table 5-7 Modbus Operation Configuration Constants
Name of Constant Value Purpose
MODBUS_MODE 0x01 to 0x04 Specifies the operating mode of the sample

code.
0x01: Master Mode (RTU)
0x02: Slave Mode (RTU)
0x03: Master Mode (ASCII)
0x04: Slave Mode (ASCII)

MODBUS_RTU_MASTER_MODE 0x01 Used to specify Master Mode (RTU).
MODBUS_RTU_SLAVE_MODE 0x02 Used to specify Slave Mode (RTU).
MODBUS_ASCII_MASTER_MODE 0x03 Used to specify Master Mode (ASCII).
MODBUS_ASCII_SLAVE_MODE 0x04 Used to specify Slave Mode (ASCII).
MODBUS_SEND_BUFFER_SIZE 1 to 256 Specifies the maximum size of the Modbus send

buffer.
MODBUS_RECV_BUFFER_SIZE 1 to 253 Specifies the maximum size of the Modbus

receive buffer.

5.8.2 Modbus Status Constants
Table 5-8 shows the Modbus Status Constants.

Table 5-8 Modbus Status Constants
Name of Constant Value Purpose
MODBUS_STATUS_NONE 0x00 Modbus status before operation starts
MODBUS_STATUS_WAIT_RECEIVE 0x01 Waiting to receive Modbus frame
MODBUS_STATUS_RECEIVED 0x02 Modbus frame has been received
MODBUS_STATUS_WAIT_FRAME_
INTERVAL

0x03 Waiting for the interval between frames (used
only in RTU mode)

MODBUS_STATUS_ERROR_
CHARACTER_INTERVAL

0x04 An interval between characters error occurred
while receiving Modbus frames

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 36 of 46
Oct.20.23

5.8.3 Modbus Receive Results Constants
Table 5-9 shows the Modbus Receive Results Constants.

Table 5-9 Modbus Receive Results Constants
Name of Constant Value Purpose
MODBUS_RECEIVE_NONE 0x00 No Modbus frames received
MODBUS_ERROR_NONE 0x01 No error after Modbus frame received
MODBUS_ERROR_NULL_POINTER 0x02 NULL was specified for the destination

address of the structure for storing the
Modbus frame parse results

MODBUS_ERROR_NOT_MYSELF 0x03 The Modbus frame was parsed and it
was not addressed to me

MODBUS_ERROR_ILLEGAL_FUNCTION 0x04 The Modbus frame was parsed and the
resulting function code was abnormal

MODBUS_ERROR_MISMATCH_CHECKSUM 0x05 The Modbus frame was parsed and the
resulting checksum was abnormal

MODBUS_ERROR_CHARACTER_INTERVAL 0x06 An interval between characters error
occurred while receiving Modbus frames

MODBUS_ERROR_ILLEGAL_FRAME_
LENGTH

0x07 The received Modbus frame is shorter
than the expected frame length

MODBUS_ERROR_RECEIVE_ERROR_
RESPONSE

0x08 Error response received from slave when
in master mode

5.9 List of Variables
Table 5-10 shows the Global Variables.

Table 5-10 Global Variables
Type Name of Variable Purpose
unsigned char[] g_modbus_rx_buffer Modbus frame receive buffer
unsigned char g_modbus_status Modbus communication status
unsigned char g_modbus_frame_size Size of Modbus receive frame
unsigned short[] g_holding_register Holding register
unsigned short[] g_input_register Input register
unsigned char[] g_discrete_output DO
unsigned char[] g_discrete_input DI
unsigned char[] g_rx_buffer UART receive buffer

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 37 of 46
Oct.20.23

5.10 List of Structures
Table 5-11 shows the Structures.

Table 5-11 Structures
Type Field Purpose
st_modbus_receive_frame_t uint8_t slave_address

uint8_t function_code
uint16_t read_address
uint16_t read_data
uint16_t write_address
uint16_t write_data
uint8_t array_data_len
uint16_t array_data[]

Stores the results of parsing the Modbus
frame

5.11 List of Functions
5.11.1 API Functions

Table 5-12 shows the API Functions in the Sample Code.

Table 5-12 API Functions in the Sample Code
Name of Function Overview
R_MODBUS_Main Modbus communication main processing
R_MODBUS_Init Initialize peripheral functions used for Modbus communication
R_MODBUS_Close Close peripheral functions used for Modbus communication
R_MODBUS_Send Send Modbus frame
R_MODBUS_Receive Receive Modbus frame
R_MODBUS_Parse Parse Modbus frame
R_MODBUS_Send_Error Send Modbus error

5.11.2 Supported Function Codes
Table 5-13 shows the Callback Functions in the Sample Code.

Table 5-13 Callback Functions in the Sample Code
Name of Function Overview
r_modbus_callback_slave_receiveend Called after receiving the Modbus frame in slave mode
r_modbus_callback_master_receiveend Called after receiving the Modbus frame in master mode
r_modbus_callback_error Called if an error occurs in the Modbus

communication/frame parsing process

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 38 of 46
Oct.20.23

5.12 Function Specifications
This section describes the specifications for the functions that are used in this sample code.

[Function Name] R_MODBUS_Main

Synopsis Modbus communication main processing

Header r_modbus.h

Declaration void R_MODBUS_Main (void)

Description Detects when Modbus communication is received and calls the callback function.
In master mode, detects an incoming request and sends a Modbus frame to the
slave.

Arguments None

Return value None

Remarks None

[Function Name] R_MODBUS_Init

Synopsis Initialize peripheral functions used for Modbus communication

Header None

Declaration void R_MODBUS_Init (void)

Description Initializes peripheral functions used for Modbus communication.

Arguments None

Return value None

Remarks Be sure to do this before starting Modbus communication.

[Function Name] R_MODBUS_Close

Synopsis Close peripheral functions used for Modbus communication

Header None

Declaration void R_MODBUS_Close (void)

Description Closes the peripheral functions used for Modbus communication.

Arguments None

Return value None

Remarks Be sure to do this when terminating Modbus communication.

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 39 of 46
Oct.20.23

[Function Name] R_MODBUS_Send

Synopsis Send Modbus frame

Header None

Declaration void R_MODBUS_Send (uint8_t slave_address,

uint8_t function_code,

uint8_t *send_data,

uint8_t send_data_len)

Description Sends the data in send_data as a Modbus frame of length send_data_len.

Arguments Slave address, function code, send data address, send data length

Return value None

Remarks In ASCII mode, the data is converted within the function. Please pass RTU data as
the first argument. The checksum is automatically calculated internally.

[Function Name] R_MODBUS_Receive

Synopsis Receive Modbus frame

Header None

Declaration uint8_t R_MODBUS_Receive (st_modbus_receive_frame_t
 * modbus_receive_frame)

Description Checks the status of UART1, and if a Modbus frame has been received, parses
and stores the frame in the argument modbus_receive_frame. If the frame is
received normally, or if an error occurred while the frame was being received, the
callback function is called. This function is non-blocking.

Arguments Modbus frame structure address

Return value Modbus frame receive result

Remarks For details about the value specified in the return value, see 5.7.3 Modbus
Receive Results Constants.

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 40 of 46
Oct.20.23

[Function Name] R_MODBUS_Parse

Synopsis Parse Modbus frame

Header None

Declaration uint8_t R_MODBUS_Parse (uint8_t * modbus_rx_buffer,
uint8_t modbus_frame_size,
st_modbus_receive_frame_t * modbus_receive_frame)

Description Parses modbus_rx_buffer and stores it in the argument modbus_receive_frame.
Parses the Modbus frame to determine whether the slave address in the function is
addressed to itself, the checksum is correct, and the corresponding function code
exists, and then returns the parse result as the return value.

Arguments Modbus frame address, Modbus frame size,

Modbus frame structure address

Return value Modbus frame parse result

Remarks For details about the value specified in the return value, see 5.7.3 Modbus
Receive Results Constants.

[Function Name] R_MODBUS_Send_Error

Synopsis Send error response

Header None

Declaration void R_MODBUS_Send_Error (uint8_t slave_address,
uint8_t function, uint8_t error_code)

Description Send the error_code corresponding to the error in the function code specified in
function. If slave_address is 0x00 (broadcast), no data is sent.

Arguments Destination slave address of received frame,
function code in which error occurred, error code

Return value None

Remarks None

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 41 of 46
Oct.20.23

[Function Name] r_modbus_callback_slave_receiveend

Synopsis Called after receiving the Modbus frame in slave mode

Header None

Declaration void r_modbus_callback_slave_receiveend (st_modbus_receive_frame_t
 modbus_receive_frame)

Description The sample code implements the processing according to the function code.

Arguments Modbus receive frame

Return value None

Remarks None

[Function Name] r_modbus_callback_slave_receiveend

Synopsis Called after receiving the Modbus frame in master mode

Header None

Declaration void r_modbus_callback_master_receiveend (st_modbus_receive_frame_t
 modbus_receive_frame)

Description The sample code implements the processing according to the function code.

Arguments Modbus receive frame

Return value None

Remarks None

[Function Name] r_modbus_callback_error

Synopsis Called if an error occurs in Modbus communication

Header None

Declaration void r_modbus_callback_error (uint8_t error_type,
 st_modbus_receive_frame_t modbus_receive_frame)

Description The sample code implements the processing according to the error type.

Arguments Error type, Modbus receive frame

Return value None

Remarks None

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 42 of 46
Oct.20.23

5.13 Log Specifications
The specifications for the logs used in this sample program are described in Table 5-13.

Table 5-14 Log Specifications
Timing of Log Output Log Content (String to be Output)

Modbus frame is received [RX] + received Modbus frame

Modbus frame is sent [TX] + sent Modbus frame

Abnormality occurs after parsing Modbus
frame

Name of constant corresponding to Modbus receive result.
For details, see 5.7.3 Modbus Receive Result Constants.

Received callback function is called CALL_BACK_FUNCTION + name of function

5.14 ROM/RAM Size
The ROM/RAM sizes used in this sample code are shown in Table 5-14. The ROM/RAM sizes below

assume a configuration with a Modbus send buffer size of 256 bytes and a Modbus receive buffer size of 253
bytes. (These sizes are when the optimization level is set to some optimizations (-Olite). Size varies with
optimization level.)

Table 5-15 ROM/RAM Sizes
Operating Mode ROM Size RAM Size

Slave Mode (ASCII) 7,295Byte 1,331Byte

Slave Mode (RTU) 6,885Byte 1,843Byte

Master Mode (ASCII) 5,493Byte 1,345Byte

Master Mode (RTU) 5,344Byte 1,857Byte

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 43 of 46
Oct.20.23

6. Preparing to Run
6.1 RL78 – PC (GUI) Environment
6.1.1 Connection Example

Refer to 4.1.1 RL78 – PC (GUI) Environment.

6.1.2 Set Firmware Constants
Set the constant MODBUS_MODE defined in modbus.h to MODBUS_RTU_SLAVE_MODE, build the

project, and then download it to the debug tool.

For the file organization see 5.3 File Organization.

Note: In this example, the RL78 communicates in slave mode (RTU), but the communication method
can be changed by changing the MODBUS_MODE setting. For the settings see 5.7.1 Modbus Operation
Configuration Constants.

6.1.3 GUI Parameter Settings
The GUI parameter settings are shown in Figure 6-1.

Configure the COM port under "Serial setting" according to your environment.

Note: In this example, the GUI communicates in master mode (RTU), but you can change the
communication method by changing the settings under "Connection" and "Serial setting".

Figure 6-1 GUI Parameter Settings

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 44 of 46
Oct.20.23

6.1.4 How to Run
After executing the RL78 program, press the Connect button on the GUI to start the demo.

Operation example: Log output on the slave side

6.2 RL78 – RL78 Environment
6.2.1 Connection Example

Refer to 4.1.2 RL78 – RL78 Environment.

Figure 6-2 The photo of connection between the boards

[RX]01020000000879CC
CALL_BACK_FUNCTION_READ_DESCRETE_INPUTS
[TX]010201CA21DF
[RX]010F0000000801013F55
CALL_BACK_FUNCTION_WRITE_MULTIPLE_COILS
[TX]010F00000008540D
[RX]01020000000879CC010F0000000801027F54
CALL_BACK_FUNCTION_READ_DESCRETE_INPUTS
[TX]010201CA21DF

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 45 of 46
Oct.20.23

6.2.2 Set Firmware Constants
Set the constant MODBUS_MODE defined in modbus.h to MODBUS_RTU_SLAVE_MODE, build the

project, and then download it to the RL78 Fast Prototyping Board debug tool on the slave side.

Set the constant MODBUS_MODE defined in modbus.h to MODBUS_RTU_MASTER_MODE, build the
project, and then download it to the RL78 Fast Prototyping Board debug tool on the master side.

Note: In this example, the RL78 communicates in slave mode (RTU) and Master Mode (RTU), but you
can change the communication method by changing the MODBUS_MODE setting. For the settings see 5.7.1
Modbus Operation Configuration Constants.

6.2.3 How to Run
After executing the RL78 program on the slave side, start the demo by executing the RL78 program on

the master side.

Log output on the master side

Log output on the slave side

Website and Support
Renesas Electronics Website

http://www.renesas.com/
Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

[TX]010100000001FDCA

[RX]010101019048

CALL_BACK_FUNCTION_READ_COILS

[TX]010100000001FDCA

[RX]010101019048

CALL_BACK_FUNCTION_READ_COILS

[RX]010100000001FDCA

CALL_BACK_FUNCTION_READ_COILS

[TX]010101019048

[RX]010100000001FDCA

CALL_BACK_FUNCTION_READ_COILS

[TX]010101019048

http://www.renesas.com/
http://www.renesas.com/contact/

RL78/G22 Modbus ASCII/RTU

R01AN6896EJ0110 Rev.1.10 Page 46 of 46
Oct.20.23

Revision History

Rev. Date
Description
Page Summary

1.00 Jun. 05, 2023 — First Edition
1.10 Oct. 20, 2023 6

11
42
—

Updated 2.Confirmed System Requirements
Added 4.3 RTKA788152DE0000BU Jumper Pin Settings
Updated 5.14 ROM/RAM Size (Updated sample code)
Changed value of the interval betwween frames for RTU
(Sample code)

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2023 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Specifications
	2. Confirmed System Requirements
	3. Related Application Notes
	4. Description of the Hardware
	4.1 Hardware Configuration Example
	4.1.1 RL78 – PC (GUI) Environment
	4.1.2 RL78 – RL78 Environment
	4.1.3 RL78 – User Modbus Device Environment

	4.2 Table of Pins Connecting the RL78/G22 Fast Prototyping Board and the RTKA788152DE0000BU
	4.3 RTKA788152DE0000BU Jumper Pin Settings
	4.4 List of Pins Used

	5. Description of the Software
	5.1 Operation Overview
	5.1.1 UART Communication Settings for Modbus Communication
	5.1.2 UART Communication Settings for Modbus Log Output
	5.1.3 Supported Function Codes
	5.1.4 Modbus Register Assignments

	5.2 Setting of Option Byte
	5.3 File Organization
	5.4 Slave Mode (ASCII)
	5.4.1 Main Processing
	5.4.2 Serial Receive Interrupt Handling
	5.4.3 Interval Between Characters Error Interrupt

	5.5 Slave Mode (RTU)
	5.5.1 Main Processing
	5.5.2 Serial Receive Interrupt Handling
	5.5.3 Interval Between Characters Interrupt Handling
	5.5.4 Modbus Received Interrupt Handling

	5.6 Master Mode (ASCII)
	5.6.1 Main Processing
	5.6.2 Read Coil Send Interrupt Handling
	5.6.3 Serial Receive Interrupt Handling
	5.6.4 Interval Between Characters Error Interrupt Handling

	5.7 Master Mode (RTU)
	5.7.1 Main Processing
	5.7.2 Read Coil Send Interrupt Handling
	5.7.3 Serial Receive Interrupt Handling
	5.7.4 Interval Between Characters Interrupt Handling
	5.7.5 Modbus Received Interrupt Handling

	5.8 List of Constants
	5.8.1 Modbus Operation Configuration Constants
	5.8.2 Modbus Status Constants
	5.8.3 Modbus Receive Results Constants

	5.9 List of Variables
	5.10 List of Structures
	5.11 List of Functions
	5.11.1 API Functions
	5.11.2 Supported Function Codes

	5.12 Function Specifications
	5.13 Log Specifications
	5.14 ROM/RAM Size

	6. Preparing to Run
	6.1 RL78 – PC (GUI) Environment
	6.1.1 Connection Example
	6.1.2 Set Firmware Constants
	6.1.3 GUI Parameter Settings
	6.1.4 How to Run

	6.2 RL78 – RL78 Environment
	6.2.1 Connection Example
	6.2.2 Set Firmware Constants
	6.2.3 How to Run

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

