LENESAS Application Note
RL78/G22, RL78/G23

Firmware Updating Communications Module

Introduction

This application note describes a firmware updating communications module for the RL78/G22 and
RL78/G23.

In a system consisting of a primary MCU and a secondary MCU, this module allows user updating of the
firmware of the secondary MCU. This application note explains how to use this module, incorporate its API
functions into user applications, and extend its functionality.

The release package associated with this application note includes two demonstration projects. You can
confirm the basic operation of the functionality for updating the firmware of the secondary MCU with the use
of this module by following the steps described in chapter 5, Demonstration Projects, to build an environment
to run the demonstration.

Operation Confirmation Devices
RL78/G22 (R7F102GGE)
RL78/G23 (R7F100GSN)

If you intend to use this application note with other Renesas MCUs, careful evaluation is recommended after
making modifications to suit the specifications of the alternative MCU.

Related Application Notes

e RL78 Family Board Support Package Module Using Software Integration System (R0O1AN5522)
o RL78 Smart Configurator User’'s Guide: e2 studio (R20AN0579)

e Smart Configurator User's Guide: RL78 API Reference (R20UT4852)

e RL78/G22, RL78/G23, RL78/G24 Firmware Update Module (RO1AN6374)

Target Compilers
e CC-RL V1.15.00 from Renesas Electronics

For details of the environments in which operation has been confirmed, refer to section 6.1, Environments for
Confirming Operation.

RO1AN7825EJ0110 Rev.1.10 Page 1 of 46
Dec.24.25 RENESAS

RL78/G22, RL78/G23 Firmware Updating Communications Module

Contents

S © 1YY 1 PRI 4
1.1 About the Firmware Updating Communications Module................cccoiiiiiiiiiiiiiiii e 4
1.2 Supported Communications IP and Hardware Configurationccooooiiiiiiiiinice e 4
2 B U N o o o 10 10 T o= 4[] o 1 SR 4
1.2.2 SPI COMMUNICALIONSeiiiiitiiie ettt e ittt e ettt e e sttt e e e st e e e sta e e e e ssteeeeesntaeaeesnteeeeesnsaeeesanseeeeesnsseeeesnseeeasanes 4
1.3 Software CONfIQUIALIONcoiiiiee e e e e e e e e e e e e s et e e e e e e e e senanraeeeaeeaeas 5
1.3.1 Setting UART COMMUNICALIONScoiiiiiiiiiiiiiiiee ettt e s e s e e e e e e e st e e e e e e e s eannraeeeaaeaeas 5
L o= T (=) A @7 0] a1 0 418] T (7= (oo < SRR 5
R T B = - o] 5 o - S 6
1.5.1 Data Format Of PaCKets.coo e e e e e e s e e e e an 6
1.6 Specifications of COMMEANGS...........oooiiiiiiiiieee e e e e e e e e e e et e e e e e e e s eeaanbreeeaaaaan 7
1.6.1 COMMON COMMEANGSoiiiiiiiieeiiiiee ettt e ettt e e e st ee s stee e e e sabeeeeeanbeeeeesateeeeesnbeeeesanbeeeesanbeeeesabeeeeesreeeessnss 7
1.6.2 FWUP COMIMANGScviiiiiiiiiie ettt steee et e et e e e st e e e st e e e e sateeeeesateeeeesmbeeeeeanteeeeeanbeeeesanbeeeeesnreeeeeanes 8
1.6.2.2 Flow of Communications for the FWUP Commandsccccuiiiiieeiiiiiiiiiiiice e cveiee e sveeeees 11
A F= 1o [T o = (] T SO PTUPRTII 12
1.8 Overview Of AP FUNCHONS ...ttt e e e e e e e e e e e e e anneeeeeeas 12
P2 N I [014 02T (o o SRS 13
2.1 Hardware REQUIFEMENTSuuuiiiiiiiiii s 13
2.2 SOftWare REQUITEIMENTS ..ottt e e e e e e e e e s e et e e e e e e e seetabeeeeeeeeesaanbnbaeeeaaeanan 13
ARG B S 1] o) oo o (=T BN oo] e =110 - ORI 13
A o o= T LY {1 SO 13
P I 101 (=TT o Y o 1= SRR 13
G T 0701041 o 1 L=Y Y=Y u]V 1= SRR 14
2.7 Code Size of the SAMPIE PrOJECLSccueuiiiiiiie e e e e et e e e e 15
2.8 ATQUITIENTS ..eeiiiiiiiiitiiiitt s 16
2.9 REIUIM VAIUES ...ttt ettt e e e ettt e e e e e et aeeeaeeesaasssteaeeaaeeesaansnteeeeaaeeesansntannaaeennsn 18
2.10 “for”, “while” and “do While” StatemMENTScoovereee e e 19
3. APT FUNCHONS ..t nn 20
3.1 R _FWUPCOMM _Open FUNCHON ...t e e e e et eeeaa e an 20
3.2 R _FWUPCOMM _CIOSE FUNCHON ..ottt e e e e e e e e e st aeeaaaeeean 20
3.3 R _FWUPCOMM_ProcessCmdLoop FUNCLONuuiiiiiiiiicieeee et 21
4. Extending the Functionality of This MOAUIE ... 22
o B Ao [0 [10T @7] 1 41010 =1 o Lo L= SRR 22
4.2 Changing the Method of COmMMUNICAIONSoiiuiiiiiiiii e 26
421 CommuNiCatioNS INTEITACE. ... et e e e e e e e e e e e e e eee s 26
4.21.1 fwupCoOmMM_err_t (FOPEN)(VOIA).....ceiiueiieeiieiiee et ee e sttt e e ettt e e sttt e e e sttt e e st e e e ssseeeeesenseeeesanseeeesannaeeean 26
I o o N (e 0 Y=Y =) Y T SR 26
RO1AN7825EJ0110 Rev.1.10 Page 2 of 46

Dec.24.25 RENESAS

RL78/G22, RL78/G23 Firmware Updating Communications Module

4.2.1.3 fwupcomm_err_t (*send)(uint8_t *src, UiNt16_t SiZ€)ooveriiiiiiii e 27
4.21.4 fwupcomm_err_t (*recv)(uint8_t *dest, UiNt16_t SIZ€)cccvviiiiiiiiiiii e 27
o BT VLo (o I G o G (=119 1Y 1o I PRSP 27
4.2.2 How to Change the Method of CommUNICAtIONS............coiiiiiiiiiiiiiiie e 28
5. DemonStration PrOJECESuuuuiiiiiiiii e 29
5.1 Configuration for the Demonstration Projects ... 29
51001 PrIMAary MCU ...ttt e e ettt e e e aa bt e e e e aa b et e e e s be e e e e s bb e e e e e bee e e e abeeeeeaan 29
Tt I - Yoo Lo =1 Y 1V [U SRS 29
5.2 Preparing an Operating ENVIFONMENT...........cooiiiiiiiiiiiie e e e e e e e e e 30
5.2.1 INSTAlING TOIATEIM ...eueiiiiieiiie s 30
5.2.2 Installing the Python Execution ENVIrONMENt...........c.ooiiiiiiiiiiie e 30
5.2.3 Installing the FIash WIILEI ...ttt e e s sbe e e e 30
5.3 Procedure for Executing a Demonstration Project ... 31
5.3.1 EXecution ENVIFONMENT ... ittt e e et e e e e e e e e et e e e e e e e e s nnnteeeaaaaaean 31
5.3.2 Building the Demonstration ProjECESu e 31
5.3.2.1 Creating Initial and Updating Images for the Primary MCUcccooiiiiiiiii i 31
5.3.2.2 Creating Initial and Updating Images for the Secondary MCUcccccceveiiiiiciiiinece e 32
5.3.3 Programming the Initial IMageooiiiiiiii e 33
5.3.4 Executing @ FIrmware UPateooiiiiiiiiiiiiiee ettt e et e e s sbe e e 34
5.4 Procedure for Executing the Demo Project When the Communication Method Between the PC and
Primary MCU iS XIMODEM ...ttt et e ettt e e e e e e ee e e amaeeeaneeeeneeeeneeeeneeeannes 36
5.5 Settings for the Demo Project When Using SPI Communication Between MCUScccceeeeenn. 38
T Y o oY= Lo [o7 39
6.1 Environments for Confirming OPerationcoocoiiiiiiii oo 39
6.2 Settings for UART COMMUNICALIONSuuviiiiiiiiiiiiiiiiie ettt e e e e e e e eeaea e an 40
6.3 Operating Environment for the Demonstration Projectscccccoiiiiiiiiiii e 41
6.3.1 Environment for Confirming Operation with an RL78/G23...........ccoooiiiiiii e 41
6.3.1.1 Connection Configuration for UART CommuNiCatioNS...........c.coiiiiiiiiiiiiiei e 41
6.3.1.2 Connection Configuration for SPI ComMmMUNICAtIONc..ceiiiiiiiiiiiie e 42
6.3.2 Environment for Confirming Operation with an RL78/G22...............cooviiiiieeeiii e 43
6.3.2.1 Connection Configuration for UART CommuniCatioNs............ccccceeiiiiiiiiiiieee e 43
6.3.2.2 Connection Configuration for SP1 CoOmmUNICAtIONS..........cooiiiiiiiiiiiie e 44
6.3.3 Environment for Confirming Operation with an RXB5N ... 45
6.3.3.1 Connection Configuration When the Communication Method Between the PC and Primary MCU is
XIMODEM ...ttt et a ettt b e a et h e e et e e bt b e nn e 45
REVISION HISTOMY ...ttt ettt e e e e e e s e e e e e e e e e e nnnnees 46
RO1AN7825EJ0110 Rev.1.10 Page 3 of 46

Dec.24.25 RENESAS

RL78/G22, RL78/G23 Firmware Updating Communications Module

1. Overview

1.1 About the Firmware Updating Communications Module

The firmware updating communications module is middleware which controls communications between
MCUs in which the secondary MCU receives firmware for use in updating from the primary MCU and applies
the firmware to updating in a system of the kind shown in Figure 1-1, consisting of the primary MCU and the
secondary MCU. Users can easily update the firmware of the secondary MCU by embedding this module
into the primary and secondary MCUs.

1.2 Supported Communications IP and Hardware Configuration

This module supports UART communications through serial communication interface (SCI) and synchronous
serial communications using either SCI or the serial peripheral interface (RSPI) as the communications
interfaces.

1.2.1 UART Communications
Figure 1-1 shows the hardware configuration for UART communications assumed for this module. The

primary and secondary MCUs have one-to-one connections on the same bus via two-wire UART (TXD and
RXD).

Primary MCU) i Secondary MCU
SCI SAU
(50— ~o]
[RXD |« XD
S -

Figure 1-1 Hardware Configuration(UART)

1.2.2 SPlI Communications

Figure 1-2 shows the hardware configuration for synchronous serial communication assumed for this
module. The primary MCU and secondary MCUs are connected on the same bus via a three-wire bus
(Sl(hereinafter referred to as MOSI), SO(hereinafter referred to as MISO), SCK).

In SPI communication for this module, the MISO line is used to signal the primary MCU that the secondary
MCU is in a busy state and cannot communicate. When the Secondary MCU is busy, it outputs MISO low.
After returning from the busy state to a communicable state, the Secondary MCU changes MISO to open
drain. Therefore, when using this module for SPI communication, pull up the MISO line.

(" ™ (™
Primary MCU Secondary MCU
SCl SAU
| MOSI > MOSI |
| MISO |« MISO |
| SCLK » SCK
" S L J

Figure 1-2 Hardware Configuration(SPI)

RO1AN7825EJ0110 Rev.1.10 Page 4 of 46
Dec.24.25 RENESAS

RL78/G22, RL78/G23 Firmware Updating Communications Module

1.3 Software Configuration

Figure 1-3 show the configurations of the software modules.

Primary
MCU
é ImageData
(RSU format)

Secondary MCU

Sample application (Secondary FW update app)
‘ Buffer

FWUP Communication FWUP module

(r_fwupcomm) (r_fwup)

UART, SF’IVCommunication
|
| \ BSP(r_bsp) |

| MCU |

Figure 1-3 Configuration of Software Modules in the Secondary MCU

1.3.1 Setting UART Communications

The operation of this module has been confirmed with the settings for UART communications listed in
section 6.2, Settings for UART Communications.

1.4 Packet Communications

Packet communications proceed between primary and secondary MCUs via the communications interface.
The primary MCU sends request packets to the secondary MCU. When the secondary MCU receives a
request packet, it processes the command and sends the results to the primary MCU as a response packet.
Figure 1-4 shows the flow of packet communications.

Primary MCU Secondary MCU

Sends a request packet.

Receives the request packet.

Processes the command.

Sends a response packet.

Receives the response packet.

Figure 1-4 Flow of Packet Communications

All commands are classified according to their individual purposes, and the classification is called the
command class.

RO1AN7825EJ0110 Rev.1.10 Page 5 of 46
Dec.24.25 RENESAS

RL78/G22, RL78/G23 Firmware Updating Communications Module

1.5 Data Format

This section describes the specifications for packet communications between the primary and secondary
MCUs. The specification of the data format is independent of the method of physical communications
between the MCUs.

1.5.1 Data Format of Packets

Figure 1-5 shows the data format of command packets, each of which consists of a command header and
command data.

Header Command data

. Command [Command
Device Command [Command [Command Command . .
. . . Command data size |data size
Address version info option argument

[LSByte] [[MSByte]

S Command data size =~ ------- >

Figure 1-5 Data Format of Command Packets

Figure 1-6 shows the data format of response packets.

Header Response data
) Response |Response
Device Command |[Command |Command Command . .
Command data size |data size
Address version info option result

[LSByte] [[MSByte]

e Response data size =~ ------- >

Figure 1-6 Data Format of Response Packets

Table 1-1 lists the specifications of the headers of packets.

Table 1-1 Specifications of the Headers of Packets

Item Description

Device address Device address of the secondary MCU to which the command is sent.

The secondary MCU only processes a command when it receives the command
with its own device address in the header.

e 0x00 — OxFD: Device address of the secondary MCU

e OxFE: Broadcast address

e OxFF: Reserved.

Command version Version of the command. The secondary MCU only processes a command when
the version of the command is the same as that of the command on the secondary
MCU.
0x00 — OxFF

Command info e b7:0: Command, 1: Response

b4 — b6: Command class. Refer to section 1.6, Specifications of Commands.
b0 — b3: Command ID

Command option e b7:0: Aresponse is to be sent. 1: No response is to be sent.

e b0 - b6: Reserved.
Command Indicates the command. Refer to section 1.6, Specifications of Commands.
Command Indicates an argument of the command when a command is being sent.
argument/result Indicates the result of executing the command when a response is being sent.

Refer to section 1.6, Specifications of Commands.

Command/Response | Size of the command data or response data.
data size The size must be in bytes and a multiple of 4.

RO1AN7825EJ0110 Rev.1.10 Page 6 of 46
Dec.24.25 RENESAS

RL78/G22, RL78/G23

Firmware Updating Communications Module

1.6 Specifications of Commands

This module has definitions of FWUP commands to control updating of firmware of the secondary MCU and
common commands for general data communications.

Table 1-2 List of Command Class

Command class Description Value

Common Commands Commands for general data communications. 0x00

FWUP Commands Commands for controlling updating of firmware of the | 0x01
secondary MCU.

1.6.1 Common Commands
The common commands are a set

of commands for general purpose use. Table 1-3 lists the commands.

Table 1-3 List of Common Commands

Command Description Value

DATA_SEND: Sending data Sends data with the desired size to the secondary MCU. 0x01

DATA_RECV: Receiving data | Requests sending of data with the desired size for the 0x02
secondary MCU.

(1) DATA_SEND: Sending data

This command sends data to the secondary MCU.

Table 1-4 Specifications of the COMMON DATA_SEND Command

Item Value
Command 0x01
Command argument 0x00

Command result

0x00: Processing succeeded. / 0x02: Processing failed.

Command data size

Desired data length which can be set according to section 2.6,
Compiler Settings.

Response data size 0
Command data Desired data
Response data None

(2) DATA_RECV: Receiving data

This command requests sending of data for the secondary MCU.

Table 1-5 Specifications of the COMMON DATA_RECV Command

Item Value
Command 0x02
Command argument 0x00

Command result

0x00: Processing succeeded. / 0x02: Processing failed.

Command data size

0

Response data size

Desired data length which can be set according to section 2.6,
Compiler Settings.

Command data

None

Response data

Desired data

RO1AN7825EJ0110 Rev.1.10
Dec.24.25

Page 7 of 46
RENESAS

RL78/G22, RL78/G23 Firmware Updating Communications Module

1.6.2 FWUP Commands

FWUP commands are a group of commands used in updating of the firmware. Table 1-6 lists the FWUP
commands.

Table 1-6 List of FWUP Commands

Command Description Value

START: Starting of updating the firmware Starts updating the firmware. 0x01

WRITE: Writing the updated firmware Writes the updated firmware. 0x02

INSTALL: Installing the updated firmware Installs and executes the updated 0x03
firmware.

CANCEL: Canceling of updating the Cancels updating of the firmware. 0x04

firmware

VERSION: Confirming the Firmware Confirms the currently running O0xFO

Version firmware version.

(1) START: Starting of updating the firmware
This command requests starting of updating the firmware of the secondary MCU.

The desired data length can be set for the command data. It is used for sending data which are required for
initialization processing on the user side when updating of the firmware is started.

On reception of this command, the secondary MCU enables reception of the data for updating the firmware.

When starting of updating the firmware, send this command first.

Table 1-7 Specifications of the FWUP START Command

Item Value
Command 0x01
Command argument 0x00
Command result 0x00: Processing succeeded. / 0x02: Processing failed.
Command data size Desired data length which can be set according to section 2.6,
Compiler Settings.
Response data size 0
Command data Desired data
Response data None
RO1AN7825EJ0110 Rev.1.10 Page 8 of 46

Dec.24.25 RENESAS

RL78/G22, RL78/G23

Firmware Updating Communications Module

(2) WRITE: Writing the updated firmware

This command sends the data for the updated firmware to the secondary MCU and requests writing of the

firmware.

The secondary MCU runs the processing for writing. It also runs signature verification processing when the
data for the updated firmware are in the final block.

Table 1-8 Specifications of the FWUP WRITE Command

Item Value
Command 0x02
Command argument 0x00

Command result

0x00: Processing succeeded. / 0x01: Signature verification succeeded.
/ 0x02: Processing failed.

Command data size

An integer multiple of the ROM writing unit of the secondary MCU.
The data size can be set according to section 2.6, Compiler Settings.

Response data size

0x04

Command data

Data for the updated firmware

Response data

Size of data for the remaining updated firmware

(3) INSTALL: Installing the updated firmware

This command requests installing and executing the updated firmware which has been written to the

secondary MCU.

Table 1-9 Specifications of the FWUP INSTALL Command

Item Value
Command 0x03
Command argument 0x00

Command result

0x00: Processing succeeded. / 0x02: Processing failed.

Command data size

0

Response data size 0
Command data None
Response data None

(4) CANCEL: Canceling of updating the firmware

This command requests canceling of updating the firmware for the secondary MCU.

The secondary MCU stops updating the firmware and erases the updated firmware that has been written.

Table 1-10 Specifications of the FWUP CANCEL Command

Item Value
Command 0x04
Command argument 0x00

Command result

0x00: Processing succeeded. / 0x02: Processing failed.

Command data size

0

Response data size 0
Command data None
Response data None

RO1AN7825EJ0110 Rev.1.10
Dec.24.25

Page 9 of 46
RENESAS

RL78/G22, RL78/G23 Firmware Updating Communications Module

(5) VERSION: Confirming the Firmware Version

This command requests the current firmware version running on the secondary MCU.

Table 1-11 Specifications of the FWUP VERSION Command

Item Value
Command 0xFO
Command argument 0x00
Command result 0x00: Processing succeeded. / 0x02: Processing failed.
Command data size 0
Response data size 0
Command data None
Response data Currently running firmware version
RO1AN7825EJ0110 Rev.1.10 Page 10 of 46

Dec.24.25 RENESAS

RL78/G22, RL78/G23 Firmware Updating Communications Module

1.6.2.2 Flow of Communications for the FWUP Commands

Figure 1-7 shows the flow of communications for the commands when the firmware of the secondary MCU is
to be updated by using the FWUP commands.

Primary MCU Secondary MCU

Sends the FWUP START
command.

Receives the FWUP START
command.

Makes the transition to the state
for receiving updated firmware.

Sends the FWUP START
response.

Receives the FWUP START
response.

Sends the FWUP WRITE
command.

Receives the FWUP WRITE
command.

Writes the received data for the
updated firmware to the ROM by
using the APl of FWUP FIT.

Sends the FWUP WRITE
response.

Receives the FWUP WRITE
response.

Repeats the above communications from the FWUP WRITE command until all data for the updated
firmware have been received.

Sends the FWUP INSTALL
command.

Receives the FWUP INSTALL
command.

Installs the updated firmware and
prepares for execution of the
updated firmware after sending
the response.

Sends the FWUP INSTALL
response.

Receives the FWUP INSTALL
response.

Executes the updated firmware.

Figure 1-7 Flow of Communications for the FWUP Commands

RO1AN7825EJ0110 Rev.1.10 Page 11 of 46
Dec.24.25 RENESAS

RL78/G22, RL78/G23

Firmware Updating Communications Module

1.7 Handling Errors

If the secondary MCU fails in attempting to analyze the header of a received command packet, it will send
the received command header to the primary MCU. However, the command version is overwritten with that
set in the secondary MCU. Also, the command data size is overwritten as 0. In this case, no processing for
the command proceeds. Analyzing the header of the command packet will fail in the following cases.

e The header of the received command packet differs from the defined specifications.
e The command version of the received command packet differs from that which has been set in the

secondary MCU.

e The command class or command has an undefined value.
e The size of command data corresponding to the specified command data size was not received.

The primary MCU side can detect the failure of the header analysis on the secondary MCU side by
confirming that the most significant bit of command info in the received packet is “0: Command”.

1.8 Overview of APl Functions

Table 1-12 lists the API functions included in this module.

Table 1-12 List of API Functions

Function

Description

R_FWUPCOMM_Open()

Opens a communications channel for use by or
within this module.

R_FWUPCOMM_Close()

Closes a communications channel for use by or
within this module.

R_FWUPCOMM_ProcessCmdLoop()

Receives a command from the primary MCU, runs
the corresponding handler, and sends the result of
executing the command.

RO1AN7825EJ0110 Rev.1.10
Dec.24.25

Page 12 of 46

RENESAS

RL78/G22, RL78/G23 Firmware Updating Communications Module

2. API Information

Operation of this module was confirmed under the following conditions.

2.1 Hardware Requirements
The MCUs in use must support the following function.

e SAU

2.2 Software Requirements
This module depends on the following drivers.

e Board support package (r_bsp)
e UART Communication driver (Config_ UART)
e SPI (CSI) Communication driver (Config_CSI)

2.3 Supported Toolchains

The module has been confirmed to work with the toolchains listed in section 6.1, Environments for
Confirming Operation.

2.4 Header Files
All API calls and their supporting interface definitions are stated in r_fwupcomm_if.h.

Configuration options which can be set during building are defined in r_fwupcomm_config.h.

2.5 Integer Types
This module uses ANSI C99. The integer types for use are defined in stdint.h.

RO1AN7825EJ0110 Rev.1.10 Page 13 of 46
Dec.24.25 RENESAS

RL78/G22, RL78/G23

Firmware Updating Communications Module

2.6 Compiler Settings

The file r_fwupcomm_config.h contains the configuration option settings for this module.

The names of the options and descriptions of their settings are listed in Table 2-1.

Table 2-1 Configuration Settings (r_fwupcomm_config.h)

Configuration Option (r_fwupcomm_config.h)
FWUPCOMM_CFG_PARAM_CHECKING_ENABLE
*The default setting is 0.

0: Checking of parameters in the code at the time of
building is omitted.

1: Checking of parameters in the code at the time of
building is included.

Setting BSP_CFG_PARAM_CHECKING_ENABLE
selects use of the default setting for the system.

FWUPCOMM_CFG_CH_INTERFACE
*The default setting is 0.

Sets the communication IP and communication
method to use.

20: RL78/G23 CSl21

21: RL78/G22 CSI21

30: RL78/G23 UART3

32: RL78/G22 UART1

FWUPCOMM_CFG_SPI_CSI_SO_PORTNO
*The default setting is “0”.

Sets the CSI SO port number for SPI
communication.

FWUPCOMM_CFG_SPI_CSI_SO_BITNO
*The default setting is “7”.

Sets the pin number for the CSI SO port for SPI
communication.

FWUPCOMM_CFG_SEND_PACKET_BUFFER_SIZE
*The default setting is 1048U.

Sets the size of the transmission buffer for
commands. The size must be specified as 8 or
greater and a multiple of 4.

FWUPCOMM_CFG_RECV_PACKET_BUFFER_SIZE
*The default setting is 1048U.

Sets the size of the reception buffer for commands.
The size must be specified as 8 or greater and a
multiple of 4.

FWUPCOMM_CFG_DEVICE_ADDRESS
*The default setting is 0xAO0.

Sets a specific address for the device.

FWUPCOMM_CFG_CMD_SEND_TIMEOUT
*The default setting is 500U.

Sets the timeout time for sending in
communications. Unit is milliseconds.

FWUPCOMM_CFG_CMD_RECV_TIMEOUT
*The default setting is 500U.

Sets the timeout time for receiving in
communications. Unit is milliseconds.

FWUPCOMM_CFG_CMD_COMMON_ENABLE
*The default setting is 1.

Select whether to enable the Common command.

FWUPCOMM_CFG_CMD_HANDLER_COMMON
*The default setting is
R_FWUPCOMM_CmdHandler_Common.

Sets the name of the handler function to be called
when a Common command is received.

FWUPCOMM_CFG_CMD_HANDLER_FWUP
*The default setting is 1.

Select whether to enable the FWUP command.

FWUPCOMM_CFG_CMD_HANDLER_FWUP
*The default setting is R_FWUPCOMM_CmdHandler_FWUP.

Sets the name of the handler function to be called
when an FWUP command is received.

FWUPCOMM_CFG_CMD_VER
*The default setting is 0x01.

Sets the version number of commands.

FWUPCOMM_CFG_CMD_FWUP_START_DATA_SIZE
*The default setting is 0U.

Sets the size of data to be included with the
FWUP_START command.

FWUPCOMM_CFG_CMD_FWUP_WRITE_FW_BLOCK_SIZE
*The default setting is 1024U.

Sets the size of the block of firmware to be included
with the FWUP_WRITE command.

FWUPCOMM_CFG_CMD_COMMON_MAX_DATA_SIZE
*The default setting is 12U.

Sets the maximum size of data to be included with a
common command.

RO1AN7825EJ0110 Rev.1.10
Dec.24.25

Page 14 of 46

RENESAS

RL78/G22, RL78/G23

Firmware Updating Communications Module

2.7 Code Size of the Sample Projects

Table 2-2 lists the ROM and RAM sizes for the sample projects included in the package for this application
note. The values in the table were confirmed under the following conditions.

Module revision:

r_fwupcomm rev.1.10

Compiler versions: Renesas Electronics C/C++ Compiler for RL78 Family V1.15.00

CC-RL

e Optimization level: Code size and Speeed optimization (-Odefault)

o Delete variables or functions to which there is no reference (-optimize=symbol_delete)

Table 2-2 ROM and RAM Sizes for the Sample Projects(Half Update Method)

ROM and RAM Code Sizes

Memory Used (Byte)

Device Category CC-RL Project Name
RL78/G23 | ROM 30067 app_rl78g23 fpb_w_buffer
20357 bootloader_rl78g23_fpb_w_buffer
RAM 4189 app_rl78g23 fpb_w_buffer
1338 bootloader rl78g23 fpb_w_buffer
RL78/G22 | ROM 13551 app_rl78g22_fpb_w_buffer
12596 bootloader_rl78g22_fpb_w_buffer
RAM 2315 app_rl78g22_fpb_w_buffer
783 bootloader rl78g22 fpb_w_buffer

Table 2-3 ROM and RAM Sizes for the Sample Projects(Full Update Method)

ROM and RAM Code Sizes

Device

Category

Memory Used (Byte)

Project Name

CC-RL
RL78/G23 | ROM 7263 app_rl78g23 fpb_wo_buffer
33134 bootloader rl78g23_fpb_wo_buffer
RAM 3596 app_rl78g23 fpb_wo_buffer
4187 bootloader rl78g23 fpb_wo_buffer
RL78/G22 | ROM 9108 app_rl78g22_fpb_wo_buffer
15287 bootloader_rl78g22_fpb_wo_buffer
RAM 2338 app_rl78g22_fpb_wo_buffer
2317 bootloader rl78g22 fpb_wo_buffer

RO1AN7825EJ0110 Rev.1.10

Dec.24.25

RENESAS

Page 15 of 46

RL78/G22, RL78/G23 Firmware Updating Communications Module

2.8 Arguments

This section shows the definitions of structures and enumerated types that are used as arguments of the API
functions. The definitions of these types are described in r_fwupcomm_if.h, along with the prototype
declarations of the API functions.

/* Structure used for registering a timer interface */
typedef struct r fwupcomm timer

{

r fwupcomm start timer t start; // Pointer to the function to start counting by a timer
r fwupcomm stop timer t stop; // Pointer to the function to stop counting by a timer

} r fwupcomm timer t;

/* Structure used as an argument of the Open function during initialization */
typedef struct r fwupcomm cfg
{

r fwupcomm timer t timer; // Timer interface

} r fwupcomm cfg t;

/* Structure for specifying command information */
struct r fwupcomm cmd info

{

uint8 t device address; // Address of the destination device for a command

uint8 t class; // Command class

uint8 t type; // Command

uint8 t arg; // Command argument
uintl6 t data size; // Command data size
const void *data; // Pointer to command data
uint8 t id; // Command ID

/* Structure for storing response information */

struct r fwupcomm resp info

{
int8 t result; // Command result
void *data; // Pointer to the destination for storing response data
uintl6 t data size; // Size of the destination for storing response data

}i

/* Structure used as an argument of the CmdSend function when a command is to be sent */
struct r fwupcomm cmd instr

{

uintlé_t timeout ms; // Timeout time from sending the command to receiving the response
r fwupcomm cmd info t cmd; // Command information

r fwupcomm resp_info_t resp; // Destination for storing response information

RO1AN7825EJ0110 Rev.1.10 Page 16 of 46
Dec.24.25 RENESAS

RL78/G22, RL78/G23 Firmware Updating Communications Module

/* Enumerated type for defining the command classes */
typedef enum
{
FWUPCOMM CMD CLS COMMON = (0), // Common command
FWUPCOMM CMD CLS FWUP = (1), // FWUP command
} r fwupcomm cmd class t;

/* Enumerated type for defining commands of the common command class */
typedef enum
{

FWUPCOMM CMD_ COMMON DATA SEND = (0), // DATA SEND command

FWUPCOMM CMD COMMON DATA RECV, // DATA RECV command

FWUPCOMM CMD COMMON NUM COMMANDS // Number of defined common commands

} r_ fwupcomm cmd type common t;

/* Enumerated type for defining commands of the FWUP command class */
typedef enum
{

FWUPCOMM CMD FWUP_START = (0), // START command

FWUPCOMM CMD FWUP WRITE, // WRITE command

FWUPCOMM CMD_FWUP_INSTALL, // INSTALL command

FWUPCOMM CMD_ FWUP_CANCEL, // CANCEL command

FWUPCOMM CMD_ FWUP VERSION, // VERSION command

FWUPCOMM CMD FWUP NUM COMMANDS // Number of defined FWUP commands

} r fwupcomm cmd type fwup t;

RO1AN7825EJ0110 Rev.1.10 Page 17 of 46
Dec.24.25 RENESAS

RL78/G22, RL78/G23

Firmware Updating Communications Module

2.9 Return Values

This section describes the return values of the API functions. The enumerated type is defined in
r_fwupcomm_if.h, along with the prototype declarations of the API functions.

typedef enum

{

FWUPCOMM SUCCESS = 0,
FWUPCOMM ERR INVALID PTR,
FWUPCOMM_ERR_INVALID ARG,
FWUPCOMM ERR NOT OPEN,
FWUPCOMM ERR ALREADY OPEN,
FWUPCOMM_ERR_INVALID CMD,
FWUPCOMM ERR INVALID RESP,
FWUPCOMM ERR RECV RESP TIMEOUT,
FWUPCOMM _ERR_NO CMD,
FWUPCOMM ERR CH ALREADY OPEN,
FWUPCOMM ERR CH SEND,
FWUPCOMM _ERR_CH SEND BUSY,
FWUPCOMM ERR CH RECV,
FWUPCOMM ERR CH RECV _NO DATA,

} fwupcomm err t;

// The pointer passed as an argument was NULL.

// The parameter passed as an argument was invalid.

// The module has not been opened.

// The module has already been initialized.

// An invalid command was received.

// The received response was invalid.

// A timeout occurred before a response was received.

// No command was received.

// The communications channel has already been opened.

// Sending of data in the communications channel failed.

// The communications channel was busy so sending of data failed.
// Receiving of data from the communications channel failed.

// The communications channel does not have enough received data.

RO1AN7825EJ0110 Rev.1.10
Dec.24.25

Page 18 of 46
RENESAS

RL78/G22, RL78/G23 Firmware Updating Communications Module

2.10 “for”, “while” and “do while” Statements

",

In this module, “for”, “while”, and “do while” statements (loop processing) are used in processing to wait for
registers to reflect written values and so on. For such loop processing, the comment “WAIT_LOOP” is written
as a keyword. Therefore, if the user wishes to incorporate fail-safe processing into the loop processing, the
user can search for the corresponding processing by using “WAIT_LOOP”.

The following listings are examples of such loop processing.

while statement example:
/* WAIT LOOP */
while (0 == SYSTEM.OSCOVFSR.BIT.PLOVF)
{
/* The delay period needed is to make sure that the PLL has stabilized. */

for statement example:

/* Initialize reference counters to 0. */

/* WAIT LOOP */

for (i = 0; i < BSP_REG PROTECT TOTAL ITEMS; i++)
{

g protect counters[i] = 0;

do while statement example:
/* Reset completion waiting */
do
{
reg = phy read(ether channel, PHY REG CONTROL) ;
count++;
} while ((reg & PHY CONTROL RESET) && (count < ETHER CFG PHY DELAY RESET));
/* WAIT_LOOP */

RO1AN7825EJ0110 Rev.1.10 Page 19 of 46
Dec.24.25 RENESAS

RL78/G22, RL78/G23

Firmware Updating Communications Module

3. API Functions

3.1 R_FWUPCOMM_Open Function
Table 3-1 Specifications of the R_FWUPCOMM_Open Function
Format fwupcomm_err_ t R FWUPCOMM_Open(r_fwupcomm_hdl_t *hdl, void *cfg)
Description | Opens a communications channel for use by or within this module. This function must be
executed before other API functions are used.
Parameters | hdl: Handler of the module
cfg: Structure variable with information required for initializing modules
Return FWUPCOMM_SUCCESS The channel was successfully initialized.
Values FWUPCOMM_ERR_INVALID_PTR The pointer passed as an argument was
NULL.
FWUPCOMM_ERR_ALREADY_OPEN Opening has already proceeded.
FWUPCOMM_ERR_CH_ALREADY_OPEN | The communications channel has already
been opened.
FWUPCOMM_ERR_NOT_OPEN Initializing the communications channel
failed.
Special —
Notes
Example:

fwupcomm err t fwupcomm err;

r fwupcomm hdl t fwupcomm hdl = {0};
r fwupcomm cfg t fwupcomm cfg;
fwupcomm cfg.timer.start = demo_ start timer;
fwupcomm cfg.timer.stop = demo stop timer;

fwupcomm err = R FWUPCOMM Open (&fwupcomm hdl,

&fwupcomm cfqg) ;

3.2 R_FWUPCOMM_ Close Function

Table 3-2 Specifications of the R_FWUPCOMM_Close Function

Format fwupcomm_err_t R_FWUPCOMM_Close(r_fwupcomm_hdI_t *hdl)
Description | Closes a communications channel for use by or within this module.
Parameters | hdl: Handler of the module
Return FWUPCOMM_SUCCESS Closing was successful.
Values FWUPCOMM_ERR_NOT_OPEN The module has not been opened.
FWUPCOMM_ERR_INVALID PTR The pointer passed as an argument is NULL.
Special —
Notes
Example:

fwupcomm err =

R _FWUPCOMM Close (&fwupcomm hdl) ;

RO1AN7825EJ0110 Rev.1.10
Dec.24.25

Page 20 of 46

RENESAS

RL78/G22, RL78/G23 Firmware Updating Communications Module

3.3 R_FWUPCOMM_ProcessCmdLoop Function
Table 3-3 Specifications of the R_FWUPCOMM_ProcessCmdLoop Function

Format fwupcomm_err_ t R FWUPCOMM_ProcessCmdLoop(r_fwupcomm_hdl_t *hdl)

Description | Receives a command from the primary MCU, runs the corresponding handler, and sends
the result of executing the command. Periodically execute this function in the secondary
MCU while it is waiting for commands.

Parameters | hdl: Handler of the module

Return FWUPCOMM_SUCCESS The channel was successfully initialized.
Values FWUPCOMM_ERR_NOT_OPEN The module has not been opened.
FWUPCOMM_ERR_INVALID PTR The pointer passed as an argument was
NULL.
FWUPCOMM_ERR_INVALID ARG The parameter passed as an argument
was invalid.
FWUPCOMM_ERR_NO_CMD No command was received.
FWUPCOMM_ERR _INVALID_CMD An invalid command was received.
FWUPCOMM_ERR_CH_SEND Sending of data in the communications
channel failed.
FWUPCOMM_ERR _CH_RECV Receiving of data from the communications
channel failed.
Special —
Notes
Example:
do

{
fwupcomm err = R FWUPCOMM ProcessCmdLoop (&fwupcomm hdl) ;
}while((FWUPCOMM_SUCCESS == fwupcomm err) || (FWUPCOMM ERR NO CMD == fwupcomm err)) ;

RO1AN7825EJ0110 Rev.1.10 Page 21 of 46
Dec.24.25 RENESAS

RL78/G22, RL78/G23 Firmware Updating Communications Module

4. Extending the Functionality of This Module

This chapter describes how to add commands to this module and change the method of communications.

4.1 Adding Commands

This section describes how to define desired commands in addition to the FWUP and common commands
which have already been defined for this module. Here, ADDITIONAL1 and ADDITIONAL2 commands
having the UserDefined command class name are added as an example.

(1) Create a source file such as r_fwupcomm_cmd_user_defined.c and a header file such as
r_fwupcomm_cmd_user_defined.h.
Include the r_fwupcomm_if.h header file and also include the header file of the created UserDefined
commands in the source file.

(2) Create an enumerated type for defining the UserDefined commands, such as
r_fwupcomm_cmd_class_user_defined_t shown below, in the header file and define enumerators to
indicate the ADDITIONAL1 and ADDITIONAL2 commands. Define an enumerator to indicate the number
of elements as the last enumerator of the enumerated type.

typedef enum

{
FWUPCOMM CMD USERDEFINED ADDITIONALI,
FWUPCOMM CMD USERDEFINED ADDITIONALZ,
FWUPCOMM CMD USERDEFINED NUM COMMANDS

} r fwupcomm cmd class user defined t;

(3) Define an array of the r_fwupcomm_cmd_table_t type in the source file and place information on the
ADDITIONAL1 and ADDITIONAL2 commands as the two elements of the array.

const r fwupcomm cmd table t
r fwupcomm user defined cmd table[FWUPCOMM CMD USERDEFINED NUM COMMANDS] =

{
{ FWUPCOMM CMD USERDEFINED ADDITIONALl, 0x01, 0U, 0U },
{ FWUPCOMM CMD USERDEFINED ADDITIONAL2, 0x02, 0U, 0U }
}s;

The r_fwupcomm_cmd_table_t type is a structure defined in r_fwupcomm_if.h. Each of the members is
defined as follows.

typedef struct r fwupcomm cmd table
{

uint8 t type; // Value indicating this command (enumerator)

uint8 t value; // Actual value used for communications by this command
uintl6_t cmd data max size; // Maximum size of the command data of this command
uintl6 t resp data max size; // Maximum size of the response data of this command

} r fwupcomm cmd table t;

RO1AN7825EJ0110 Rev.1.10 Page 22 of 46
Dec.24.25 RENESAS

RL78/G22, RL78/G23 Firmware Updating Communications Module

(4) Define the handler function which describes the processing to be executed when the secondary MCU
receives the UserDefined command in the source file.
The pointer variable of the r_fwupcomm_cmd_info_t type contains the information on the received
command such as pointers to the command arguments or command data. Refer to such command
information to run the processing within the handler function. After that, store the information on
responses to be sent to the primary MCU (command results, pointer to the response data, and response
data size) in a pointer variable of the r_fwupcomm_resp_info_t type as the argument.

void R _FWUPCOMM CmdHandler UserDefined(r fwupcomm cmd info t *cmd,
r fwupcomm resp info t *resp)

if ((NULL == cmd) | | (NULL == resp))
{

return;

if (cmd->type >= FWUPCOMM CMD USERDEFINED NUM COMMANDS)
{

return;

switch (cmd->type)
{
case FWUPCOMM CMD USERDEFINED ADDITIONALL:
/* Describe the processing to be executed upon receiving the ADDITIONALl command. */
break;
case FWUPCOMM CMD USERDEFINED ADDITIONALZ:
/* Describe the processing to be executed upon receiving the ADDITIONAL2 command. */

break;

(5) Declare an array of the r_fwupcomm_cmd_table_t type for the UserDefined command, which was
previously defined in the source file, in the header file as extern. Similarly, write a prototype declaration
for the handler function of the UserDefined command.

extern const r fwupcomm cmd table t r fwupcomm user defined cmd table
[FWUPCOMM_ CMD TOMMON_ NUM_ COMMANDST;

#if FWUPCOMM CFG _DEVICE PRIMARY == (0) // Macro which enables only the secondary MCU

void R FWUPCOMM CmdHandler UserDefined (r fwupcomm cmd info t *cmd,
r fwupcomm resp info t *resp);

#endif

(6) Include the header file for the UserDefined command in the
r_fwupcommi¥src¥commands¥r_fwupcomm_cmd.h file.

#include "r fwupcomm cmd common.h"
#include "r fwupcomm cmd fwup.h"

#include " r fwupcomm cmd user defined.h"

RO1AN7825EJ0110 Rev.1.10 Page 23 of 46
Dec.24.25 RENESAS

RL78/G22, RL78/G23 Firmware Updating Communications Module

(7) Enter the total number of command classes after adding the UserDefined command into the
FWUPCOMM_CMD_NUM_CLASS macro defined in the r_fwupcomm_cmd.h file.

#define FWUPCOMM CMD NUM CLASS (FWUPCOMM CFG CMD COMMON ENABLE +
FWUPCOMM CFG_CMD_FWUP_ENABLE + 1) - - -

(8) Add an enumerator indicating the UserDefined command to the r_fwupcomm_cmd_class_t enumerated
type which is defined in the r_fwupcomm_cmd.h file.

typedef enum
{

FWUPCOMM_CMD CLS_COMMON = (0),
FWUPCOMM CMD CLS FWUP = (1),
FWUPCOMM CMD CLS USERDEFINED = (2)

} r_ fwupcomm cmd class_t;

(9) Add the UserDefined command to the array of the r_fwupcomm_cmd_def table_t type which is defined in
the r_fwupcomm_cmd.c file.

const r fwupcomm cmd def table t r fwupcomm cmd def table list[] =

{

[FWUPCOMM CMD CLS_COMMON] = {r_fwupcomm common cmd_table, FWUPCOMM CMD COMMON_NUM_ COMMANDS},
[FWUPCOMM_CMD_CLS_FWUP] = {r_fwupcomm_ fwup cmd_ table, FWUPCOMM CMD FWUP_NUM_ COMMANDS},
[FWUPCOMM CMD CLS USERDEFINED] = {r fwupcomm user defined cmd table,

FWUPCOMM CMD USERDEFINED NUM COMMANDS}

As stated, the r_fwupcomm_cmd_def table t type is defined in r_fwupcomm_cmd.h. Specify the array of
the r_fwupcomm_cmd_table t type defined in the source file as the table member. Specify the number of
commands in that command class as the num_cmd member.

typedef struct

{
const r fwupcomm cmd table t *table;
uint8 t num cmd;

} r fwupcomm cmd def table t;

(10) Add the handler functions of the UserDefined command defined in the source file to the array of the
R_FWUPCOMM_CmdHandler_t type which is defined in the r_fwupcomm_cmd.c file.

#if FWUPCOMM CFG_DEVICE PRIMARY == (0) // Macro which enables only the secondary MCU
const R FWUPCOMM CmdHandler t r fwupcomm cmd handler 1ist[FWUPCOMM CMD NUM CLS] =
{

[FWUPCOMM CMD CLS COMMON] = FWUPCOMM CFG CMD HANDLER COMMON,
[FWUPCOMMﬁCMD7CLsiFWUP] = FWUPCOMM CFG CMD HANDLER FWUP,
[FWUPCOMM_CMD_CLS_USERDEFINED} = R_FWUPCOMM_Cdeandler_UserDefined

}i

#endif

RO1AN7825EJ0110 Rev.1.10 Page 24 of 46

Dec.24.25 RENESAS

RL78/G22, RL78/G23 Firmware Updating Communications Module

The steps described above are used for adding commands. For further information, refer to the definition
files for the FWUP commands (r_fwupcomm_cmd_fwup.c and r_fwupcomm_cmd_fwup.h) and for the

common commands (r_fwupcomm_cmd_common.c and r_fwupcomm_cmd_common.h) in the
r_fwupcomms¥src¥commands folder.

RO1AN7825EJ0110 Rev.1.10

Page 25 of 46
Dec.24.25 RENESAS

RL78/G22, RL78/G23 Firmware Updating Communications Module

4.2 Changing the Method of Communications

This module only supports UART communications via the SAU. This section describes how to change to
another method of communications.

4.2.1 Communications Interface

This module specifies the communications interface for packet communications. It is defined in
r_fwupcomma¥src¥connectivity¥r_fwupcomm_ch.h as follows.

typedef struct r fwupcomm ch api

{
fwupcomm err t (*open) (void);
void (*close) (void);
fwupcomm err t (*send) (uint8 t *src, uintl6 t size);
fwupcomm err t (*recv) (uint8 t *dest, uintl6 t size);
void (*rx reset) (void);

} r fwupcomm ch api t;

4.2.1.1 fwupcomm_err_t (*open)(void)

Table 4-1 Specifications of the open Function

Format fwupcomm_err_t (*open)(void)
Description | Opens a communications channel.
Parameters | —
Return FWUPCOMM_SUCCESS The channel was successfully initialized.
Values FWUPCOMM_ERR_CH_ALREADY_OPEN | The communications channel has already
been opened.
FWUPCOMM_ERR_NOT_OPEN Initializing the communications channel
failed.
Special —
Notes
4.2.1.2 void (*close)(void)
Table 4-2 Specifications of the close Function
Format void (*close)(void)
Description | Closes a communications channel.
Parameters | —
Return —
Values
Special —
Notes
RO1AN7825EJ0110 Rev.1.10 Page 26 of 46

Dec.24.25 RENESAS

RL78/G22, RL78/G23 Firmware Updating Communications Module

4.2.1.3 fwupcomm_err_t (*send)(uint8_t *src, uint16_t size)

Table 4-3 Specifications of the send Function

Format fwupcomm_err_t (*send)(uint8_t *src, uint16_t size)
Description | Sends data by using a communications channel.
Parameters | src: Pointer to the destination for storing data to be sent
size: Size of data to be sent

Return FWUPCOMM_SUCCESS The channel was successfully initialized.
Values FWUPCOMM_ERR_INVALID_PTR The src pointer is NULL.
FWUPCOMM_ERR_INVALID_ARG size is 0.
FWUPCOMM_ERR_NOT_OPEN The communications channel has not been
opened.

FWUPCOMM_ERR_CH_SEND_ BUSY The communications channel was busy so
sending of data failed.

FWUPCOMM_ERR_CH_SEND Sending of data in the communications
channel failed.

Special —
Notes

4.2.1.4 fwupcomm_err_t (*recv)(uint8_t *dest, uint16_t size)

Table 4-4 Specifications of the recv Function

Format fwupcomm_err_t (*recv)(uint8_t *dest, uint16_t size)
Description | Receives data by using a communications channel.
Parameters | dest: Pointer to the buffer for storing received data
size: Required size of received data

Return FWUPCOMM_SUCCESS The channel was successfully initialized.
Values FWUPCOMM_ERR_INVALID_PTR The dest pointer is NULL.
FWUPCOMM_ERR_INVALID_ARG size is 0.
FWUPCOMM_ERR_NOT_OPEN The communications channel has not been
opened.
FWUPCOMM_ERR_CH_RECV_NO_DATA | The communications channel does not have
enough received data.

Special —
Notes

4.2.1.5 void (*rx_reset)(void)

Table 4-5 Specifications of the rx_reset Function

Format void (*rx_reset)(void)

Description | Enables the communication channel for reception.
Parameters | —

Return —

Values

Special —
Notes

RO1AN7825EJ0110 Rev.1.10 Page 27 of 46
Dec.24.25 RENESAS

RL78/G22, RL78/G23 Firmware Updating Communications Module

4.2.2 How to Change the Method of Communications

(1) Implement the functions for communications interfaces described in section 4.2.1 by using the method of
communications you wish to use.

(2) Define the r_fwupcomm_ch_api variable of the const r_fwupcomm_ch_api_t type, and initialize the
functions which have been created for the communications interface as shown below.

const r fwupcomm ch api t r fwupcomm ch api =

{ .open = r fwupcomm rx sci uart open, // open
.close = r fwupcomm rx sci uart close, // close
.send = r fwupcomm rx sci uart send, // send
.recv = r_ fwupcomm rx sci uart recv, // recv
.rx_reset = r fwupcomm rx sci uart rx reset // rx reset

}s

(3) Create a header file with a name such as r_fwupcomm_ch_user_defined.h to declare the
r_fwupcomm_ch_api variable as extern.

extern r fwupcomm ch api t const r fwupcomm ch api;

(4) Add the definition of the communications interface to the r_fwupcomm3¥src¥r_fwupcomm_private.h file in
such a way that the newly created header file is included instead of the one that has been previously
created.

#define FWUPCOMM CFG CH INTERFACE (2)
#if (FWUPCOMM CFG CH INTERFACE == 1) /* RX SCI UART */
#define FWUPCOMM CH RX SCI UART (FWUPCOMM CFG CH INTERFACE)
#define FWUPCOMM COMM IF (FWUPCOMM COMM TF UART)
#elif (FWUPCOMM CFG CH INTERFACE == 2) /* USERDEFINED */
#define FWUPCOMM CH USERDEFINED (FWUPCOMM CFG CH INTERFACE)
fendif
#define FWUPCOMM USE CH (FWUPCOMM CFG CH INTERFACE)
#if (FWUPCOMM USE_CH == FWUPCOMM CH RX_SCI_UART)

#include "r fwupcomm rx sci uart.h"
#elif (FWUPCOMM USE CH == FWUPCOMM CH USERDEFINED)

#include "r fwupcomm ch user defined.h"
#endif

That ends the description of how to change the method of communications.

RO1AN7825EJ0110 Rev.1.10 Page 28 of 46
Dec.24.25 RENESAS

RL78/G22, RL78/G23 Firmware Updating Communications Module

5. Demonstration Projects

This demonstration projects are sample programs for updating the firmware of the secondary MCU, as
shown in Figure 5-1. The primary MCU is connected to a PC and receives the firmware for use in updating
that of the secondary MCU via serial communications from the PC. The primary MCU then transfers that
firmware to the secondary MCU by using the FWUP Comm module.

N s
Primary MCU Secondary MCU

Serial communications Serial communications |

P | FWUP Comm. » FWUP Comm. |
—-—‘-..\‘ { /-7
5.\ ,f
e - PR L
s‘)‘ ”,
e -

“==={1010}"""
010

Figure 5-1 Configuration of the Demonstrations

5.1 Configuration for the Demonstration Projects

5.1.1 Primary MCU
The primary MCU demo project is only for the RX65N and is organized into folders as follows.

Demos¥rx65n-ck¥(compiler name)¥(project name)

Boot loader projects:

¢ Partial update method in linear mode : bootloader_rx65n_ck_w_buffer

Application projects:

Partial update method in linear mode: app_rx65n_ck_primary

5.1.2 Secondary MCU

Demonstration projects in the secondary MCU are classified into folders for each of the supported device
groups.

o Partial update method in linear mode: Demos¥(board name)¥w_buffer¥(project name)
o Full update method in linear mode: Demos¥(board name)¥wo_buffer¥(project name)
Boot loader projects:

o Partial update method in linear mode: bootloader_(board name) w_buffer
¢ Full update method in linear mode: bootloader_(board name)_wo_buffer

Application projects:

e Partial update method in linear mode: app_(board name) w_buffer
e Full update method in linear mode: app_(board name) wo_buffer

RO1AN7825EJ0110 Rev.1.10 Page 29 of 46
Dec.24.25 RENESAS

RL78/G22, RL78/G23 Firmware Updating Communications Module

5.2 Preparing an Operating Environment

To update the firmware of the secondary MCU, use the firmware updating module. To run the demonstration
projects, you need to install certain tools on your Windows PC.

5.2.1 Installing TeraTerm

TeraTerm is used to transfer the firmware updating image via serial communications from a Windows PC to
the primary MCU. For the demonstration project, the operation was confirmed with TeraTerm 5.5.0.

After installation, make the serial port communications settings listed in Table 5-1.

Table 5-1 Specifications for Communications

Item Description
Communications system Asynchronous
Bit rate 115200 bps
Data length 8 bits

Parity None

Stop bit 1 bit

Flow control RTS/CTS

5.2.2 Installing the Python Execution Environment
The Python execution environment is used by Renesas Image Generator (image-gen.py) to create the initial
and updating images.

Renesas Image Generator uses ECDSA to generate signature data. For the demonstration project, the
operation was confirmed with Python 3.10.4.

The Python encryption library (pycryptodome) is also used. Accordingly, after installing Python, execute the
following pip command from the command prompt to install the library.

pip install pycryptodome

5.2.3 Installing the Flash Writer
A flash writer is required to write the initial image.

Renesas Flash Programmer V3.21.00 is used with the demonstration projects.

Renesas Flash Programmer (Programming GUI) | Renesas

RO1AN7825EJ0110 Rev.1.10 Page 30 of 46
Dec.24.25 RENESAS

https://www.renesas.com/en/software-tool/renesas-flash-programmer-programming-gui

RL78/G22, RL78/G23 Firmware Updating Communications Module

5.3 Procedure for Executing a Demonstration Project

This section describes an example of the procedure for executing a demonstration project with the use of an
RL78/G23 device. The procedure for executing the demonstration project is common to other MCU products;
however, only the environment for confirming the operation differs with the MCU. Confirm the environment
(section 6.1 Environments for Confirming Operation) for the MCU product you intend to use.

The following describes the procedure for executing UART communication using the FWUPCOMM FIT
module. For SPI communication settings, refer to “5.5 Settings for the Demo Project When Using SPI
Communication Between MCUs.”

5.3.1 Execution Environment
Prepare the environment for confirming the operation with an RL78/G23 (6.3.1).

5.3.2 Building the Demonstration Projects
Follow the steps below to build the projects for the primary and secondary MCUs.

5.3.2.1 Creating Initial and Updating Images for the Primary MCU

The procedure for creating the initial and updating images, using initial_firm_rx65n.mot as the name of the
initial image and update_firm_rx65n.rsu as the name of the updating image, is described below.

(1) Import the bootloader_rx65n_ck_w_buffer and app_rx65n_ck_primary project into the e? studio and build
the project. For the full update method, change the “APP_COMM_CONFIG_FWUP_FULL_UPDATE” macro
definition to (1) in app_rx65n_ck_primary¥src¥fwup¥app_fwup_config.h before the build.

¥ W H
=
[wl
a1}

*

Mt =
S WD 0O =]

=]
,

#define APP_COMM_CONFIG_FWUP_FULL_UPDATE)

L]
U

(2) Confirm that the following MOT file has been generated in the HardwareDebug folder for each project.
— bootloader_rx65n_ck_w_buffer.mot
— app_rx65n_ck_primary.mot

(3) Store the MOT files created by building the demonstration project in the
bootloader rx65n_ck w_buffer¥src¥smc_gen¥r_fwup¥tool folder. Also store the
FITDemos¥keys¥fwup¥secp256r1.privatekey file there as well.

image-gen.py

RX65N_Linear_Half ImageGenerator PRM.csv
secp256r1.privatekey

bootloader rx65n_ck w_buffer.mot
app_rx65n_ck_primary.mot

(4) Execute the following command in the bootloader _rx65n_ck w_buffer¥src¥smc_gen¥r_fwup¥tool folder
to create the initial image.

python .¥image-gen.py -iup ".¥app_rx65n_ck_primary.mot" -
ip .¥RX65N_Linear_Half ImageGenerator_PRM.csv -o initial_firm_rx65n -ibp
".¥bootloader_rx65n_ck_w_buffer.mot" -vt ecdsa -key ".¥secp256rl.privatekey”

RO1AN7825EJ0110 Rev.1.10 Page 31 of 46
Dec.24.25 RENESAS

RL78/G22, RL78/G23 Firmware Updating Communications Module

(5) app_rx65n_ck_primary¥src¥app_rx65n_ck_primary.h file. Change the definition of DEMO_VER_MAJOR
from (1) to (2) and rebuild the app_rx65n_ck_primary project. After that, store the MOT files created by
building the project in the tool folder.

41 /* FW Version definition */

42 #define DEMO_VER_MAJOR (1)
43 #define DEMO_VER_MINOR (0)
44 #define DEMO_VER BUILD (0)

ar

(6) Execute the following command to create the updating image.

python .¥image-gen.py -iup ".¥app_rx65n_ck_primary.mot" -
ip .¥RX65N_Linear_Half ImageGenerator_PRM.csv -o update_firm_rx65n -vt ecdsa -key
".¥secp256rl.privatekey”

Confirm that the initial and updating images have been generated in the tool folder.

Image-gen.py

RX65N_Linear_Half ImageGenerator PRM.csv
secp256r1.privatekey

bootloader rx65n_ck w_buffer.mot
app_rx65n_ck_w_primary.mot
initial_firm_rx65n.mot

update_firm_rx65n.rsu

5.3.2.2 Creating Initial and Updating Images for the Secondary MCU

The procedure for creating the initial and updating images, using initial_firm_rl78g23.mot as the name of the

initial image and update_firm_rl78g23.mot as the name of the updating image, is described below. This is the
procedure for the partial update method, but the procedure is the same for the full update method, so please

replace projects used with those for the full update method.

(1) Import the bootloader_rl78g23 fpb_w_buffer and app_rl78g23_fpb_w_buffer projects into the e? studio
and build the projects.

(2) Confirm that the following MOT files have been generated in the HardwareDebug folder for each project.
— bootloader_rl78g23 fpb_w_buffer.mot
— app_rl78g23_fpb_w_buffer.mot

(3) Store the MOT files created by building the demonstration project in the
Demos¥RenesasimageGenerator folder. Also store the Demos¥keys¥secp256r1.privatekey file there as
well.

image-gen.py

RL78 G23 Full_ImageGenerator PRM.csv
RL78 G23 ImageGenerator PRM.csv
secp256r1.privatekey
bootloader_rl78g23_fpb_w_buffer.mot
app_rl78g23_fpb_w_buffer.mot

RO1AN7825EJ0110 Rev.1.10 Page 32 of 46
Dec.24.25 RENESAS

RL78/G22, RL78/G23 Firmware Updating Communications Module

(4) Execute the following command in the Demos¥RenesasimageGenerator folder to create the initial image.
For the full update method, use RL78 G23 ImageGenerator PRM.csv instead of
RL78 G23 Full_ImageGenerator PRM.csv.

python .¥image-gen.py -iup ".¥app rl178g23 fpb w buffer.mot" -
ip .¥RL78 G23 ImageGenerator PRM.csv -o initial firm r178g23 -ibp
".¥bootloader rl78g23 fpb w buffer.mot" -vt ecdsa -key ".¥secp256rl.privatekey"

(5) Open the app_ri78g23 fpb_w_buffer¥src¥fwupcomm_demo_main.h file. Change the definition of
DEMO_VER_MAJOR from (1) to (2) and rebuild the app_rl78g23 fpb_w_buffer project. After that, store
the MOT files created by building the project in the tool folder.

| #idefine DEMO_VER_MAIJOR (2)
#define DEMO_VER_MINOR (@)
#define DEMO_VER_BUILD (@)

(6) Execute the following command to create the updating image. For the full update method, use
RL78_G23_Full_ImageGenerator_PRM.csv instead of RL78_G23_ImageGenerator_PRM.csv.

python .¥image-gen.py -iup ".¥app rl178g23 fpb w buffer.mot" -
ip .¥RL78 G23 ImageGenerator PRM.csv -o update firm rl78g23 -vt ecdsa -key
".¥secp256rl.privatekey"”

Confirm that the initial and updating images have been generated in the RenesasimageGenerator folder.

image-gen.py

RL78 G23 Full_ImageGenerator PRM.csv
RL78 G23 ImageGenerator PRM.csv
secp256r1.privatekey
bootloader_rl78g23_fpb_w_buffer.mot
app_rl78g23 fpb_w_buffer.mot
initial_firm_rl78g23.mot
update_firm_rl78g23.rsu

5.3.3 Programming the Initial Image
Use the flash writer to program initial_firm_rx65n.mot to the MCU on the CK-RX65Nv2 board.

Similarly, use the flash writer to program the initial image (initial_firm_rl78g23.mot) to the MCU on the
RL78/G23-128p FPB board. After programming is finished, turn off the power to the board.

RO1AN7825EJ0110 Rev.1.10 Page 33 of 46
Dec.24.25 RENESAS

RL78/G22, RL78/G23 Firmware Updating Communications Module

5.3.4 Executing a Firmware Update

Once the initial image firmware has been activated, it waits for the transfer of the updating image through the
primary MCU. The received updating image is programmed to the flash memory, and after the transfer is
completed, the signature of the updating image is verified and the firmware is activated.

Follow the steps below to execute a firmware update.

(1) Launch two TeraTerm windows on the PC, select the serial COM ports for the primary MCU (CK-
RX65Nv2) and the secondary MCU (RL78/G23-128p FPB) in the respective windows, and configure the
connection settings.

(2) Turn on the board. The following messages will be output to the TeraTerm windows.

Primary MCU side:

==== RX65N : BootLoader [with buffer] ====
verify install area main [sig-sha256-ecdsa]...OK
execute image ..
==== RX65N : FWUPCOMM DEMO [Primary][with buffer] ver 1.0.0 ====
Please select the target MCU to update firmware.
©0: Primary MCU
1: Secondary MCU

Secondary MCU side:

==== RL78G23 : BootLoader [with buffer] ====

verify install area main [sig-sha256-ecdsa]...OK

execute new image ...

=== RL78/G23 : FWUPCOMM DEMO [Secondary][with buffer] ver. 1.0.0 ====

(3) On the primary MCU's TeraTerm screen, enter the number of the MCU to be updated.

(4) Send the updating image via TeraTerm.
Click on [Send file] from the [File] menu of TeraTerm for the primary MCU side. Select
update_firm_rl78g23.rsu then [Binary] as the option and click on [OK].
The following messages are output during the transfer of the updating image, a software reset is applied
after installation and signature verification are completed, and the firmware from the updating image is
executed.
The version number output in the last message from the targeted MCU having been incremented
indicates that the upedate was successful.

RO1AN7825EJ0110 Rev.1.10 Page 34 of 46
Dec.24.25 RENESAS

RL78/G22, RL78/G23 Firmware Updating Communications Module

The following is an example of log output when the secondary MCU (RL78/G23-128p FPB) is the target for

the firmware update.

Primary MCU side:

Please send the firmware for secondary MCU
[S]Received 512 bytes. total 512 bytes.
Confirmed the Secondary ready state.

Send FWUP_START command... OK.

Confirmed the Secondary ready state.

Send FWUP_WRITE command... OK. (512 bytes sent, remaining 4294966784 bytes.)

[S]Received 512 bytes. total 1024 bytes.
Send FWUP_WRITE command... OK. (512 bytes sent, remaining 8448 bytes.)

[S]Received 512 bytes. total 9216 bytes.

Send FWUP_WRITE command... OK. (512 bytes sent, remaining 256 bytes.)
[S]Received 256 bytes. total 9472 bytes.

Send FWUP_WRITE command... OK. All data sent. Verification succeeded.
Send FWUP_INSTALL command... OK.

Firmware update for the device(@xA@) is successful.

Secondary MCU side:

Received FWUPCOMM_CMD_FWUP_START command.
Received FWUPCOMM_CMD_FWUP_WRITE command. size=512

W oxleee, 512 ... OK
Received FWUPCOMM_CMD_FWUP_WRITE command. size=512
W ox1200, 256 ... OK
W ox13e0, 256 ... OK

Received FWUPCOMM_CMD_FWUP_WRITE command. size=512

W ex4Cee, 512 ... OK
Received FWUPCOMM_CMD_FWUP_WRITE command. size=256
W Ox4E00, 256 ... OK

verify install area buffer [sig-sha256-ecdsa]...OK
Received FWUPCOMM_CMD_FWUP_INSTALL command.
software reset...

==== RL78G23 : BootLoader [with buffer] ====
verify install area buffer [sig-sha256-ecdsa]...OK
copy to main area ... OK

software reset...

==== RL78G23 : BootLoader [with buffer] ===
verify install area main [sig-sha256-ecdsa]...OK

execute new image ...

==== RL78/G23 : FWUPCOMM DEMO [Secondary][with buffer] ver. 2.0.0 ====

RO1AN7825EJ0110 Rev.1.10
Dec.24.25 RENESAS

Page 35 of 46

RL78/G22, RL78/G23 Firmware Updating Communications Module

5.4 Procedure for Executing the Demo Project When the Communication Method
Between the PC and Primary MCU is XMODEM

This demo project uses UART binary data communication between the PC and primary MCU as the default
communication method.

The following describes the procedure for using XMODEM.

(1) Connect the primary MCU CK-RX65Nv2 as described in “6.3.3.1 Connection Configuration When the
Communication Method Between the PC and Primary MCU is XMODEM”.

(2) Set APP_COMM_CONFIG_PROTOCOL defined in src/comm/app_comm_config.h of the primary MCU's
application project to (2).

(3) Perform the procedures in “5.3.2 Building the Demonstration Projects” and “5.3.3 Programming the
Initial Image”.

(4) In “5.3.4 Executing a Firmware Update,” launch TeraTerm in three windows. In addition to the serial
COM ports for the primary MCU (CK-RX65Nv2) and secondary MCU (RL78/G23-128p FPB), select the
serial COM port for the additionally connected USB terminal and configure the connection settings.

(5) Power on the board. The following messages will be displayed in TeraTerm.
Primary MCU side:

==== RX65N : BootLoader [with buffer] ====
verify install area main [sig-sha256-ecdsa]...OK
execute image ..
==== RX65N : FWUPCOMM DEMO [Primary][with buffer] ver 1.0.0 ====
Please select the target MCU to update firmware.
@: Primary MCU
1: Secondary MCU

Secondary MCU side:

==== RL78G23 : BootLoader [with buffer] ===
verify install area main [sig-sha256-ecdsa]...OK

execute new image ...

==== RL78/G23 : FWUPCOMM DEMO [Secondary][with buffer] ver. 1.0.0 ====

(6) On the primary MCU's TeraTerm window, enter the number of the MCU to be updated with the new
firmware.

(7) Send the update image from TeraTerm.
From the [File] menu in TeraTerm on the primary MCU, click [Transfer] — [XMODEM] — [Send]. Select
update_firm_rx65n.rsu for updating the primary MCU's firmware, or update_firm_rl78g23.rsu for updating
the secondary MCU's firmware, then click [Open]. It may take several seconds for the update firmware
transmission to begin. Note: This demo project does not support transfers with a 1K byte block size.
During the update image transfer, progress is output to the TeraTerm on the additionally connected serial
COM port. Once installation and signature verification complete, a software reset occurs, and the firmware
from the update image begins execution.
If the version number output in the message on the MCU targeted for the firmware update has
incremented, the update was successful.

RO1AN7825EJ0110 Rev.1.10 Page 36 of 46
Dec.24.25 RENESAS

RL78/G22, RL78/G23 Firmware Updating Communications Module

The following is an example of log output during XMODEM transfer when updating the firmware on the
secondary MCU (RL78G23-128p FPB).

Primary MCU side (1):

==== RX65N : BootLoader [with buffer] ====
verify install area main [sig-sha256-ecdsa]...OK
execute image ..[
==== RX65N : FWUPCOMM DEMO [Primary][with buffer] ver 1.0.0 ====
Please select the target MCU to update firmware.
©0: Primary MCU
1: Secondary MCU

> 1
Please send the firmware for secondary MCU

Primary MCU side (2) (Additional connection for XMODEM):

[S]Received 128 bytes. total 128 bytes.

Send FWUP_START command... OK.

[S]Received 128 bytes. total 256 bytes.

[S]Received 128 bytes. total 384 bytes.

[S]Received 128 bytes. total 512 bytes.

Send FWUP_WRITE command... OK. (512 bytes sent, remaining 4294966784 bytes.)
[S]Received 128 bytes. total 640 bytes.

[S]Received 128 bytes. total 768 bytes.

[S]Received 128 bytes. total 896 bytes.

[S]Received 128 bytes. total 1024 bytes.

Send FWUP_WRITE command... OK. (512 bytes sent, remaining 8448 bytes.)

[S]Received 128 bytes. total 9344 bytes.

[S]Received 128 bytes. total 9472 bytes.

Send FWUP_WRITE command... OK. All data sent. Verification succeeded.
Send FWUP_INSTALL command... OK.

Firmware update for the device(@xA@) is successful.

RO1AN7825EJ0110 Rev.1.10 Page 37 of 46
Dec.24.25 RENESAS

RL78/G22, RL78/G23 Firmware Updating Communications Module

Secondry MCU side:

Received FWUPCOMM_CMD_FWUP_START command.
Received FWUPCOMM_CMD_FWUP_WRITE command. size=512

W exleee, 512 ... OK
Received FWUPCOMM_CMD_FWUP_WRITE command. size=512
W ox1200, 256 ... OK
W ox13e0, 256 ... OK

Received FWUPCOMM_CMD_FWUP_WRITE command. size=512

W @x4Ce0, 512 ... OK
Received FWUPCOMM_CMD_FWUP_WRITE command. size=256
W Ox4E00, 256 ... OK

verify install area buffer [sig-sha256-ecdsa]...OK
Received FWUPCOMM_CMD_FWUP_INSTALL command.
software reset...

==== RL78G23 : BootLoader [with buffer] ====

verify install area buffer [sig-sha256-ecdsa]...OK

copy to main area ... OK

software reset...

==== RL78G23 : BootLoader [with buffer] ====

verify install area main [sig-sha256-ecdsa]...OK

execute new image ...

==== RL78/G23 : FWUPCOMM DEMO [Secondary][with buffer] ver. 2.0.0 ====

5.5 Settings for the Demo Project When Using SPI Communication Between MCUs

This demo project uses UART communication between MCUs by default.

To use SPI communication, change the r_fwupcomm setting in src/src/r_config/r_fwupcomm_config.h as

follows.
Primary MCU (CK-RX65Nv2) side:
Table 5-2 Changes to r_fwupcomm settings on the primary MCU side

Property Macro definition Vale

Communication Interface | FWUPCOMM_CFG_CH_INTERFACE | SCI SPI (Primary MCU Only)

Secondary MCU(RL78 MCU) side:

Table 5-3 Changes to r_fwupcomm settings on the secondary MCU side

Property Macro definition Vale

Communication Interface | FWUPCOMM_CFG_CH_INTERFACE | 20 (RL78/G23)
21 (RL78/G22)

RO1AN7825EJ0110 Rev.1.10
Dec.24.25 RENESAS

Page 38 of 46

RL78/G22, RL78/G23

Firmware Updating Communications Module

6. Appendices
6.1

Environments for Confirming Operation

This section describes environments in which the operation of this module has been confirmed.

Table 6-1 Environment for Confirming Operation (CC-RL)

Item

Description

Integrated development
environment

e? studio 2025-10 from Renesas Electronics

C compiler C/C++ Compiler for RL Family V1.15.00 from Renesas Electronics
Compiler option: The following option is added to the default settings of the integrated
development environment.
-lang = c99

Endian Little endian

Revision of the module Rev. 1.10

Board used

RL78/G23-128p Fast Prototyping Board (product No.: RTK7RLG230CSNO00BJ)
RL78/G22 Fast Prototyping Board (product No.: RTK7RLG220C00000BJ)

USB-to-serial conversion
board

Pmod USBUART (from DIGILENT)
https://digilent.com/reference/pmod/pmodusbuart/start

Table 6-2 Environment for Confirming Operation (CC-RX)

Item

Description

Integrated development
environment

e? studio 2025-10 from Renesas Electronics

C compiler C/C++ Compiler for RX Family V3.07.00 from Renesas Electronics
Compiler option: The following option is added to the default settings of the integrated
development environment.
-lang = c99

Endian Little endian

Revision of the module Rev. 1.10

Board used

Cloud Kit for RX65N Microcontroller Group (product No.: RTKSCK65N0S08001BE)

USB-to-serial conversion
board

Pmod USBUART (from DIGILENT)
https://digilent.com/reference/pmod/pmodusbuart/start

Table 6-3 Environment for Confirming Operation (GCC)

Item

Description

Integrated development
environment

e? studio 2025-10 from Renesas Electronics

C compiler GCC for Renesas RX 14.2.0.202505
Compiler option: The following option is added to the default settings of the integrated
development environment.
-std=gnu99

Endian Little endian

Revision of the module Rev. 1.10

Board used

Cloud Kit for RX65N Microcontroller Group (product No.: RTKSCK65N0S08001BE)

USB-to-serial conversion
board

Pmod USBUART (from DIGILENT)
https://digilent.com/reference/pmod/pmodusbuart/start

RO1AN7825EJ0110 Rev.1.10

Dec.24.25

Page 39 of 46
RENESAS

https://digilent.com/reference/pmod/pmodusbuart/start
https://digilent.com/reference/pmod/pmodusbuart/start
https://digilent.com/reference/pmod/pmodusbuart/start

RL78/G22, RL78/G23 Firmware Updating Communications Module

6.2 Settings for UART Communications
Table 6-4 lists the settings for UART communications by this module.

Table 6-4 Settings for UART Communications

Item Description
Data length 8 bits
Parity None
Stop bit 1 bit
Flow control None
Bit rate 1 Mbps
RO1AN7825EJ0110 Rev.1.10 Page 40 of 46

Dec.24.25 RENESAS

RL78/G22, RL78/G23 Firmware Updating Communications Module

6.3 Operating Environment for the Demonstration Projects
This section shows the configurations of connections of each device for the demonstration projects.

For the PMOD pins of the evaluation board and the USB-to-serial conversion board in the figure, pins 1 to 6
of the PMOD interface are connected to pins 1 to 6 of the USB-to-serial conversion board (Pmod
USBUART).

6.3.1 Environment for Confirming Operation with an RL78/G23
The configuration of connections is shown below.

6.3.1.1 Connection Configuration for UART Communications

-

A———k\

CK-RX65Nv2 FL78/G23-128p FPB lUl—BI

USB-te-serial
conversion |PMOD1
board

RXB5N \ RL78/G23

S @
TXD
|:| RXD ==,

PMOD1

Figure 6-1 Configuration of Connections on the RL78/G23-128p FPB(UART)

Table 6-5 Correspondence of Connected Pins for UART Communications between the CK-RX65Nv2
and RL78/G23-128p FPB

CK-RX65Nv2 RL78/G23-128p FPB
J24 Pin7: GND PMOD1 Pin5
J23 Pin2: D1/TX PMOD1 Pin3
J23 Pin1: DO/RX PMOD1 Pin2
RO1AN7825EJ0110 Rev.1.10 Page 41 of 46

Dec.24.25 RENESAS

RL78/G22, RL78/G23 Firmware Updating Communications Module

6.3.1.2 Connection Configuration for SPI Communication
For this demo project, pull up the MISO line.

CK-RX65Nv2 RL78/G23-128p FPB
l USB-to-serial
conversion |PMOD1
-L board i = MOS|
GND -

RL78/G23

RX65N

et
U

PMOD1

Figure 6-2 Configuration of Connections on the RL78/G23-128p FPB(SPI)

Table 6-6 Correspondence of Connected Pins for SPI Communications between the CK-RX65Nv2 and
RL78/G23-128p FPB

CK-RX65Nv2 RL78/G23-128p FPB
J24 Pin7: GND N J3 Pin12

J24 Pin6: SPI_SCK WA J3 Pin3

J24 Pin5: SPI_MISO [l J3 Pin5

J24 Pin4: SPI_MOS| Rl J3 Pin4

RO1AN7825EJ0110 Rev.1.10 Page 42 of 46
Dec.24.25 RENESAS

RL78/G22, RL78/G23

Firmware Updating Communications Module

6.3.2 Environment for Confirming Operation with an RL78/G22

The configuration of connections is shown below.

6.3.2.1 Connection Configuration for UART Communications

CK-RX65Nv2

-
[Uss-to-serial
conversion |PMOD1

T board

RX65N

(e] RL78/G22 FPB | Fore

GND

TXD
RXD

™

RL78/G22

TXD
RXD

o—

Figure 6-3 Configuration of Connections on the RL78/G22 FPB(UART)

Table 6-7 Correspondence of Connected Pins for UART Communications between the CK-RX65Nv2

and RL78/G22 FPB

CK-RX65Nv2

J24 Pin7: GND

J23 Pin2: D1/TX

J23 Pin1: DO/RX

RL78/G22 FPB

J8 Pin7

J7 Pin1 RX/0

J7 Pin2 TX/1

RO1AN7825EJ0110 Rev.1.10

Dec.24.25 RENESAS

Page 43 of 46

RL78/G22, RL78/G23 Firmware Updating Communications Module

6.3.2.2 Connection Configuration for SPI Communications
For this demo project, pull up the MISO line.

1.

e
[
CK-RXB5Nv2)
(USB-lo-serial
| cugverion PMOD1
GND P
ViSO
MosI
RX6B5N f RL78/G22
R
S
B
H RO
Figure 6-4 Configuration of Connections on the RL78/G22 FPB(SPI)

Table 6-8 Correspondence of Connected Pins for SPI Communications between the CK-RX65Nv2 and
RL78/G22 FPB

CK-RX65Nv2
J24 Pin7: GND o

RL78/G22 FPB
PMOD2 Pin5

J24 Pin6: SPI_SCK

288 PMOD2 Pin4

J24 Pin5: SPI_MISO

i PMOD2 Pin2

J24 Pin4: SPI_MOSI

il PMOD2 Pin3

RO1AN7825EJ0110 Rev.1.10

Dec.24.25

RENESAS

Page 44 of 46

RL78/G22, RL78/G23 Firmware Updating Communications Module

6.3.3 Environment for Confirming Operation with an RX65N
The configuration of connections is shown below.

6.3.3.1 Connection Configuration When the Communication Method Between the PC and
Primary MCU is XMODEM

When the communication method between the PC and primary MCU is XMODEM, the connection between
the CK-RX65Nv2 and the PC requires connecting the CK-RX65Nv2's USB Type-C port to the PC, in addition
to the connection required for UART RAW mode.

e

CK-RX65Nv2

| USBZ UL
| g |PMODY a

RX65N

U
uss
Type-C R
b B

TXD
RXD

Figure 6-5 Configuration of Connection on the CK-RX65Nv2 for XMODEM Communication

RO1AN7825EJ0110 Rev.1.10 Page 45 of 46
Dec.24.25 RENESAS

RL78/G22, RL78/G23

Firmware Updating Communications Module

Revision History

Description
Rev. Date Page Summary
1.00 May.20.25 — First edition issued
1.10 Dec.24.25 — e Module

— Added SPI communication functionality

— Added broadcast address

— Added FWUP_VERSION command

— Renamed communication interface function from
rx_flush to rx_reset

e Demo project

— Added XMODEM to the firmware update data transfer
method from PC

— Supported firmware updates for the primary MCU

RO1AN7825EJ0110 Rev.1.10

Dec.24.25

Page 46 of 46
RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an 1/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V.
(Max.) and Vi (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Vi (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.

Notice

1.

10.

11.

12.

13.
14.

(Note1)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of
your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the
use of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas
Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas
Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc.
Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products
outside of such specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you
are responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 2020.10)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 About the Firmware Updating Communications Module
	1.2 Supported Communications IP and Hardware Configuration
	1.2.1 UART Communications
	1.2.2 SPI Communications

	1.3 Software Configuration
	1.3.1 Setting UART Communications

	1.4 Packet Communications
	1.5 Data Format
	1.5.1 Data Format of Packets

	1.6 Specifications of Commands
	1.6.1 Common Commands
	(1) DATA_SEND: Sending data
	(2) DATA_RECV: Receiving data

	1.6.2 FWUP Commands
	(1) START: Starting of updating the firmware
	(2) WRITE: Writing the updated firmware
	(3) INSTALL: Installing the updated firmware
	(4) CANCEL: Canceling of updating the firmware
	(5) VERSION: Confirming the Firmware Version
	1.6.2.2 Flow of Communications for the FWUP Commands

	1.7 Handling Errors
	1.8 Overview of API Functions

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Toolchains
	2.4 Header Files
	2.5 Integer Types
	2.6 Compiler Settings
	2.7 Code Size of the Sample Projects
	2.8 Arguments
	2.9 Return Values
	2.10 “for”, “while” and “do while” Statements

	3. API Functions
	3.1 R_FWUPCOMM_Open Function
	3.2 R_FWUPCOMM_Close Function
	3.3 R_FWUPCOMM_ProcessCmdLoop Function

	4. Extending the Functionality of This Module
	4.1 Adding Commands
	4.2 Changing the Method of Communications
	4.2.1 Communications Interface
	4.2.1.1 fwupcomm_err_t (*open)(void)
	4.2.1.2 void (*close)(void)
	4.2.1.3 fwupcomm_err_t (*send)(uint8_t *src, uint16_t size)
	4.2.1.4 fwupcomm_err_t (*recv)(uint8_t *dest, uint16_t size)
	4.2.1.5 void (*rx_reset)(void)

	4.2.2 How to Change the Method of Communications

	5. Demonstration Projects
	5.1 Configuration for the Demonstration Projects
	5.1.1 Primary MCU
	5.1.2 Secondary MCU

	5.2 Preparing an Operating Environment
	5.2.1 Installing TeraTerm
	5.2.2 Installing the Python Execution Environment
	5.2.3 Installing the Flash Writer

	5.3 Procedure for Executing a Demonstration Project
	5.3.1 Execution Environment
	5.3.2 Building the Demonstration Projects
	5.3.2.1 Creating Initial and Updating Images for the Primary MCU
	(1) Import the bootloader_rx65n_ck_w_buffer and app_rx65n_ck_primary project into the e2 studio and build the project. For the full update method, change the “APP_COMM_CONFIG_FWUP_FULL_UPDATE” macro definition to (1) in app_rx65n_ck_primary\src\fwup\a...

	5.3.2.2 Creating Initial and Updating Images for the Secondary MCU

	5.3.3 Programming the Initial Image
	5.3.4 Executing a Firmware Update

	5.4 Procedure for Executing the Demo Project When the Communication Method Between the PC and Primary MCU is XMODEM
	(1) Connect the primary MCU CK-RX65Nv2 as described in “6.3.3.1 Connection Configuration When the Communication Method Between the PC and Primary MCU is XMODEM”.
	(2) Set APP_COMM_CONFIG_PROTOCOL defined in src/comm/app_comm_config.h of the primary MCU's application project to (2).
	(3) Perform the procedures in “5.3.2 Building the Demonstration Projects” and “5.3.3 Programming the Initial Image”.
	(4) In “5.3.4 Executing a Firmware Update,” launch TeraTerm in three windows. In addition to the serial COM ports for the primary MCU (CK-RX65Nv2) and secondary MCU (RL78/G23-128p FPB), select the serial COM port for the additionally connected USB ter...
	(5) Power on the board. The following messages will be displayed in TeraTerm.
	(6) On the primary MCU's TeraTerm window, enter the number of the MCU to be updated with the new firmware.
	(7) Send the update image from TeraTerm. From the [File] menu in TeraTerm on the primary MCU, click [Transfer] → [XMODEM] → [Send]. Select update_firm_rx65n.rsu for updating the primary MCU's firmware, or update_firm_rl78g23.rsu for updating the secon...

	5.5 Settings for the Demo Project When Using SPI Communication Between MCUs

	6. Appendices
	6.1 Environments for Confirming Operation
	6.2 Settings for UART Communications
	6.3 Operating Environment for the Demonstration Projects
	6.3.1 Environment for Confirming Operation with an RL78/G23
	6.3.1.1 Connection Configuration for UART Communications
	6.3.1.2 Connection Configuration for SPI Communication

	6.3.2 Environment for Confirming Operation with an RL78/G22
	6.3.2.1 Connection Configuration for UART Communications
	6.3.2.2 Connection Configuration for SPI Communications

	6.3.3 Environment for Confirming Operation with an RX65N
	6.3.3.1 Connection Configuration When the Communication Method Between the PC and Primary MCU is XMODEM

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

