REN ESAS Application Note

RL78/G24
Flexible Application Accelerator (FAA) Tool Guide: CS+

Introduction

This guide describes the options that must be set for the build process and debugger of the flexible
application accelerator (FAA) contained in RL78/G24. It also describes how to operate the debugger.

Target Device
RL78/G24
RL78/G24 Fast Prototyping Board

Chapter Composition
Chapter 1: Overview of Flexible Application Accelerator (FAA)

This chapter describes the overview of the flexible application accelerator (FAA) and program creation.

Chapter 2: Overview of build process and debugger of Flexible Application Accelerator (FAA)

This chapter describes the new project creation procedure and the options that must be set for the build
process and debugger of the flexible application accelerator (FAA). It also describes how to operate the
debugger.

Chapter 3: Debugger operation using sample project

This chapter describes debugging operations for FAA programs using the sample code and the sample
script.

Related Documents
RL78/G24 User’'s Manual: Hardware (RO1UH0961)
RL78/G24 Fast Prototyping Board User’'s Manual (R20UT5091)

RO1AN7094EJ0110 Rev.1.10 Page 1 of 68
Mar.28.25 RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

Contents

(P O 1YY 4V 11 R 4
1.1 Flexible Application ACCEIerator (FAA) ... e e e e e e e e e s s e saaraareaae s 4
1.2 Internal Memory SPAce OFf FAA et e e e e e e e e e e e e st ae e e e e e s s e anaraaeeeaeeas 4
1.3 Program fOr RL78/G24 ...ttt e e e e et e e e e e e e et e e e e e e e e s anbaaeeeaeessesansranneaaeeas 5
1.3 Program STIUCIUIEeiii ettt ettt e e e ettt e e e aab et e e e aabe e e e e aabeeeesanbeeeeeans 5
1.3.2 Transfer of Program and Data for FAA ... e e e 5
R TR N o Y N o o[- o TR TSP PTPPPOTPRPNS 6
1.3.4 Build Process and Debug Of FAA Programcooiiiiiiiiiee et a e et e e e e e s e snnraaneaae s 7
2. Option Setting and OPEratioNccccoiiiiiiiiice e e e e e e e e e e e e 8
2.1 Operating ENVIFONMENT ...t a e e bt e e e e bt e s abee e e e eanees 8
D o (o] [=Ter 014 Y- 4 To] o SRR 9
DZ20C T Vo (o [1a T N e o T =T o o T 10
D22 Tt B Yo (o [1a o [oy oW AN 7] 131 0o) 0 1= | SO PSPPI 10
2.3.2 Overview of FAA library’s File StruCUIe ..o e 20
2.4 Build TOOI OPtioN SEHNG.......eieiiiiiiiee ittt e et e e e et e e e e s anbeeeeean 21
241 FAA ASSEMDIE OPLIONS ..ooiiiiiiiiiiiii et e e e e e ettt e e e e e e e et e e e e e e e e e s eneee e e e e e e e annrnneeaaeean 22
D W1 o1 1 @ o) (o) =T PRSPPI 23
D 3G T o T = o T8 = T oy 25
2.5 Debug Tool Option SEHINGcccuiiiiiiee e e e e e e e e e e e s e araeaaee s 26
2.5 CONNECE SEEINGS ...eeiiiiiiie ittt e bt e e ettt e e e sttt e e e sabe e e e e aabeee e e aabeeeeeanbeeeeen 26
2.5.2 DebUG TOOI SEINGSeeiiiiiiiie ittt ettt e et e e e e aab e e e e aabe e e e sanbeeeeaan 27
2.5.3 Download File SEttiNgS......c..eeiiiiiiiii it e e e e 28
DR T S o T =T o 0 T 1011 o] o = T 29
2.6 FAAPIOgram DeDUQGccooioieceeeeeeeeeeee e 30
D22 TR I 19 T= o 10 o 1= o 1Y 30
2.6.2 SOUICE File DISPIAYeeeiiiieiiiie ittt ettt e e ettt e e e et et e e e rabe e e e e aabe e e e e anreeeeen 32
DG T €T 5] (o] o S PUPRRUURRR 33
DG = == do o | | SRR 34
D22 78 TR |V 1= o ¢ Y2 35
DI T Y 401 oo I (=T o =Y) PSPPI 35
D2 TR A =T 13 = 38
DGR T | o PP RRSUURRN 38
B T = 1101 o] LT = o =T o PP 40
K Tt B T o 1= Yol 0= o) 1= PSSP PPPRRN 40
311 SPeCIfiCatioN OVEIVIEW ittt e e e e e e ettt e e e e e e e e nnteeeeeaeeeaantneeeeeaaeaaannns 40
Tt B @ T o 1= = 1 o] T @ =T V1= USSR 41
3.2 Operation Confirmation CONAItIONSeiiiiiiie et e e e e e e e e e e e e e ennes 42
G TG T o P Vo 11T 7= T =T I LYo o] o) o PRSPPSOt 43
RO1AN7094EJ0110 Rev.1.10 Page 2 of 68

Mar.28.25 RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

3.3.1 Example of Hardware Configurationcoiioiiiiiiiiii i e e e e e e e e s e e e e e e e e 43
TR 0 I 11 o) 8T~ To 1T SO PR 43
3.4 SOftWAre DESCIIPLION ...ttt e e e ettt e e e e e e et e e e e e e e e e s eneeeeaaaeeeaanrnneeeaaeeaaannes 44
3.4.1 Smart Configurator SEHNGoooiiiii e 44
K Sy g B O o TSRS 44
R I V£ =Y o o OO PPPPRN 45
R I 00 43 o Yo 1= o | OO PPPPRN 45
K o] 0 =Y S 0T U = SO PR 48
3.4.3 Option Byte SettiNgsSccoiiiiiiiiiiei e 48
344 List Of CONSIANTS ...ttt e e e e e et e e e e e e e e s eneeeeaaae e e e nnnnneeeaeaeaaannes 49
K T I 1] e Y F= o[SRR 49
K T I 11 e U] T (o) - SRR 50
3.4.7 FUNCHON SPECIfICALIONcoiiiieiee et e e e s e e e e e e e et e e e e e e e e s nrareeeaaeeaaannes 50
K N o 1o g - o USSR 51
R T I |V =Y I 0T = USRS 51
3.4.8.2 r_Config_TKBO_end_count_interrupt FUNCLIONooiii e 52
3.4.8.3 FAA PrOCESSING .. . uuuuuuuutuuuuueuuuuuuueueueuaaeeeeeeeeeaeeeesreeeeaaereeetetetessessesstesssssssssssssssnsssssssssssssssnsnsnsnsnnnsnnnsnnes 53
3.5 Sample Script SPECIfICALION.........uiiiii i e e e e r e e e e aaaanes 54
3.5.1 SFR DISPIay OVEIVIEWeeiiiiiiiie ettt e e e e ettt e e e e e e e st a e e e ae e e ssassbeeeaaaeeesannrsreeeaaeeaaannes 54
3.5.2 OPEration OVEIVIEW......cooi ittt e ettt e e e e e e et eeeeeea e e e e e n s teeeeaaeeeaaannnseeeaeaeeeaansneeeeaaaaaaannes 55
3.5.3 LISt Of FUNCLIONS ...ttt e e e e e et e e e e e e e e et e e e e e e e e e s nnnneeeeaaeaaaannes 57
T I 1] o) Y 2= 14 =T o[SO 57
K SIS B (011 o = o PRSP PP UOTPPPPPPPN 58
BT G TS Tod | o gl =T (o UL (oo H OO PPRRRN 63
G TR T A = = 11 oo (=1 o1 Lo o] oT=1 =1 o] o -SRIt 64
3.5.8 Cautions When Using the Sample SCript...... ..o 66
S T 1101 o1 [T 0o o [P 67
5. ReferenCe DOCUMENTSuuuiiiiiiiiiiiiiiiiiiiiii e 67
REVISION HISTOMY ...ttt nnnnnnnnnnes 68
RO1AN7094EJ0110 Rev.1.10 Page 3 of 68

Mar.28.25 RENESAS

RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: CS+

1. Overview
1.1

Flexible Application Accelerator (FAA)

The flexible application accelerator (FAA) contained in RL78/G24 is a Renesas original application
accelerator with a Harvard architecture. It can execute 32-bit multiplication, addition, and subtraction in a

single cycle.

FAA can access some peripheral functions directly by the address bus select function. Operations by the
CPU and FAA can be combined to suit the application, it can improve operation efficiency of the system.

Figure 1-1

1.2

Image diagram of RL78/G24 FAA

RL78/G24

CPU

|

'

Serial

:

O A

Timer AlD

'
'

Internal Memory Space of FAA

When the FAA is in use, some of the RL78/G24's internal RAM is dedicated to the FAA.
Instruction Code Memory: Store the program for FAA
Data Memory: Store the data for FAA

Figure 1-2 Memory Map of the Instruction Code Memory and Data Memory

When the FAA is not in use (FAAEN =0) When the FAA is inuse (FAAEN = 1)
FFFFFH FFFFFH
Special function registers (SFRs) Special fimetion registers (SFRs) Data Memor
258 bytes 255 bytes
FEFOOH FFFOOH Details
FFEFFH General-purpose registers FFEFFH (General-purposs registers FFEFFH User area
FFEEOH 32 bytes FFEEOH 32 bytes) 2480 bytes
FFEDFH FFEDFH [dedicated area
EFDa0H for the B TR CPLL
Cata area
FEFFFH 2043 bytes
{dedicated area
FEBOOH fior the FAA)
RAM RAM FETFFH Code area
12 Kbytes 12 Kbytes 4008 bytes
EDO00H {dedicated area
FO7FFH User area
{for use by the OCD and
llpraries: dedicated area for
FCFOOH FCFDOH FCFOOIH | ine RLTS CPU) 2304 byles
Data memory FCEFFH Mirrar FCEFFH Miror
Space 4375 43.75 Kbytes .
F2000H (bytes F2000H " Instruction Code
Memory
EFFFFH EFFFFH
Resenved Reserved
20000H 20000H
1FFFFH Code flash memory IFFFFH Code flash memory
123 Kbytes 128 Kbytes
000aaH 000H
RO1AN7094EJ0110 Rev.1.10 Page 4 of 68
Mar.28.25 RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

1.3 Program for RL78/G24

1.3.1 Program Structure

Programs for the CPU and programs for the FAA are coded in separate files. FAA programs use the FAA-
dedicated instruction sets. CPU programs and FAA programs are built together in an object file (load module
file) that can be executed in RL78/G24.

Figure 1-3 Program structure when FAA is in use

] _]
CPU program FAA program
source file source file

- (The extension is fixed as “.dsp”)

RL78/G24 program
Executable object file

Figure 1-4 FAA related files provided by the RL78 Smart Configurator

CPU program FAA program
User program Various FAA libraries
and or

(Transfer processing of FAA program
and data)

RL78/G24 Common FAA Module ll Custom FAA library (Template file)

RL78/G24 program

These are provided by the RL78 Smart Configurator (SC).

Remark. If you do not use the FAA program and data transfer processing, and template file provided by the
SC, you will need to prepare your own program.

1.3.2 Transfer of Program and Data for FAA

An executable object file is written to the RL78/G24 code flash memory. However, FAA programs must be
placed in the instruction code memory and FAA data must be placed in the data memory. Therefore, before
executing an FAA program (before the FAA operation is enabled), the FAA program and data stored in the
code flash memory must be transferred to the instruction code memory and data memory, respectively.

The transfer processing of FAA program and data is provided by the FAA component - FAA library
“RL78/G24 Common FAA Module” in the Smart Configurator for RL78. For details about how to generate the
transfer processing in the SC, see 2.3 Adding FAA Program.

RO1AN7094EJ0110 Rev.1.10 Page 5 of 68
Mar.28.25 RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

Figure 1-5 Transfer of the program and data for FAA

When the FAA is in use (FAAEN = 1)
FFFFFH

Special fimction registers (5FRs)
255 byles

FFFOOH Details

FFEFFH General-purpose registers FFEFFH User area

FFEEOH 32 bytes 3480 bytes
FFEDFH (dedicated area

EFonoy | for the RLTE CRU)

Data area
FEFFFH 2048 byee

(dedicated area
FEBOO0H for the FAA)
RAM FETFFH Code arsa
12 Kbytes. 4098 bytes
dedicated area
FDa0aH for the EAAL 4

FDTFFH User area
{for yse by the OCD and

llbrangs: dedheated ap2a for
FCFOOH FCFOOH [the RL7 CPU) 2304 bytes
FCEFFH

Mimor

H 43.75 Kbytes

ff%;ﬁ

e——

Ressrved
Transfer

20000H _/
1FFFFH Code fiash memony

128 Kbytes
DO0O0H

1.3.3 FAA Program
You can create an FAA program by either of the following ways:

® Use a provided FAA library according to the purpose. The library is provided in a source file in which
code cannot be changed. (FAA library of various function)

® Use a template file to code your own FAA program. (Template (Custom FAA library))
In both cases, add the FAA program to the program project by using the Smart Configurator (SC).

For details about how to use the Smart Configurator (SC) to output an FAA program file (library or template),
see 2.3 Adding FAA Program.

Remark. For instruction sets for FAA, refer to the chapter for FAA in RL78/G24 User’'s Manual: Hardware
(RO1UH0961).

RO1AN7094EJ0110 Rev.1.10 Page 6 of 68
Mar.28.25 RENESAS

RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: CS+

1.3.4 Build Process and Debug of FAA Program

To build and debug FAA programs, some options must be set up. This guide describes the options that must
be specified for the processing shown in Figure 1-6. It also describes how to use the debugger for debugging

FAA programs.

Note that this guide requires the use of FAA programs (libraries or templates) generated by the Smart

Configurator (SC).

Figure 1-6 Operating instruction in chapter 2 of this guide

Project creation

v

Adding FAA program

Y

Build option setting,
Program build

v

Debug tool option setting,

Program download

v

Debugging FAA program
End
RO1AN7094EJ0110 Rev.1.10 Page 7 of 68
Mar.28.25 RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

2. Option Setting and Operation

This chapter explains the option settings and debugger operation required for building and debugging an
FAA program in the CS+ for CC environment.

For options that are not described in this guide, set them if necessary. For details about the options and
operations, see the help or documentation of CS+ for CC.

2.1 Operating Environment
This guide uses the following tools:

Table 2-1 Software tool

Integrated development Item version
environment
CS+ CS+ for CC Manufactured by Renesas Electronics V8.12.00
CC-RL Manufactured by Renesas Electronics V1.14.00

DSPASM FAA/GREEN_DSP Structured Assembler V1.05.00
Manufactured by Renesas Electronics

RL78 Smart Configurator Manufactured by Renesas | V1.11.0

Electronics
Table 2-2 Hardware tool
Board / Emulator Item
Board Note' RL78/G24 Fast Prototyping Board Manufactured by Renesas Electronics
Emulator Note2 E2 emulator Lite Manufactured by Renesas Electronics
E2 emulator Manufactured by Renesas Electronics

Note1. Jumper settings etc. differ depending on whether the board is connected to the emulator or using
COM port debugging. Please see RL78/G24 Fast Prototyping Board User’'s manual (R20UT5091)
the instruction manual for details.

Note2. When the debugger and the RL78/G24 Fast Prototyping Board are connected via COM port, the
emulator is not required.

RO1AN7094EJ0110 Rev.1.10 Page 8 of 68
Mar.28.25 RENESAS

RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: CS+

2.2 Project Creation
Select the RL78/G24 product as the microcontroller to be used and create a program project.

Procedure:

1. Launch the CS+.

2. Select [File] menu -> [New] -> [Create New Project] of CS+.

Figure 2-1

[File] menu -> [New] -> [Create New Project]

@3 S+ for CC - [Start]

]

File | Bdit View Project Build Debug Tool Window Help

| Mew

» _g Create New Project..

| Open...

AAA

Open with Encoding...

Ctrl+O

|| Create Mew File

|3 Create Mew Project for Multi-core... 3

Ctrl+N

3. Inthe [Create Project] dialog, select the RL78/G24 products, input the project name and click the

[Create].

Figure 2-2

[Create Project] dialog

Create Project

Microcontroller:

Using microcontroller:

G2

R7TF101GBGxMNP(32pin)
M RTF101GEGxNP{40pin)
M RTF101GFGxFP(44pin)
M RTF101GGGHFE(48pin)
M RTF101GGGKNP(48pin)
M RTF101GIGxFA(52pin)
M RTF101GLGXFA(B4pin)

£ A R7F101GLGxFB(64pin)

Lo im0 40 oo e e

W

Update...

Product Name:R7F101GLGxFB
Intemal ROM size[KBytes]: 128
Intemal RAM size[Bytes]: 12288

Kind of project:

Froject name:

(o}

zamplel

Application(CC-RL)

Browse...

Make the project folder

C\samplelisamplel mip)

Project to be passed:

[] Pass the file composition of an existing project to the new project

Copy compesition files in the diverted project folder to a new project folder.

co

Browse...

Help

RO1AN7094EJ0110 Rev.1.10

Mar.28.25

RENESAS

Page 9 of 68

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

4. After creating the project, change the debug tool you use. In 2.3 Adding FAA Program, the Smart
Configurator (SC) sets some options for the debug tool, so you must first select the debug tool you want
to use.

Figure 2-3 Select debug tool

Project Tree o x
: @ 8@
B_ﬁ samplel (Project)
: R7F101GLGxFB (Microcontroller)
Smart Configurator (Design Tool)
4, CC-RL (Build Tool)

RL78& Simulator (Debug Tu:u:ll)

:) Program Analyzer (Analyze T

=-[J) File

188N cctart.asm

Using Debug Toal » RL7S E2

=] Property RL7S E2 Lite
8o hewinit.asm RL7S COM Port

..... nLn'! stkinit.asm RL78 Simulator

2.3 Adding FAA Program
Use the Smart Configurator (SC) to add an FAA program (library or template) to your project.

This guide only describes the procedure for adding an FAA program, [Clock], [System] and [Voltage
detection] that need to be set in the CPU program. Please set other peripheral functions as appropriate to
suit your system.

2.3.1 Adding FAA Component

Procedure:
1. Inthe CS+ Project Tree, double-click [Smart Configurator (Design Tool)] to launch the RL78 Smart
Configurator.

Figure 2-4 Launch Smart Configurator

Project Tree 3 x
; ©3@

=

1] |
b \‘) Program Analyzer (Analyze Tool)

= File

RO1AN7094EJ0110 Rev.1.10 Page 10 of 68
Mar.28.25 RENESAS

RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: CS+

2. In the Smart Configurator (SC), click [Clock]. Set various clocks and the operation mode according to
your system.

Figure 2-5

Smart Configurator: [Clock] tab

IE Smart Configurator

File Window Help Run

=

& *samplel.scfg X

Clocks configuration

10| &

Generate Code Generate Report

(L)
e/
4

L&

Overview Boa ystem Components| Pins| Interrupt

& Console X

Smart Configurator Qutput

\

Screen size can be adjusted by placing the mouse
cursor on the screen, holding down the "CTRL" key

. el
and moving the mouse wheel up or down.

3. Click the [System]. In the [System] tab, set the debug tool and functions to be used, and security ID.

Figure 2-6 Smart Configurator: [System] tab

% *samplel.scfg x

System configuration

+ On-chip debug setting
On-chip debug operation setting
O Unused
Emulator setting
Or2
Pseudo-RRM/DMM function setting
O Unused
Start/Stop function setting
@ Unused

Monitoring point function setting

Trace function setting
(O Unused

Security ID setting
Use security ID
Security ID

Security ID authentication failure setting

) Do not erase flash memory data
(@) Erase flash memory data

Overview Board Clock ystem | Components Pins| Interrupt

=il=
&l &
Generate Code Generate Report

-~

emulatort O COM Port
® E2 Lite

® Used

O Used

® Used

0x00000000000000000000

RO1AN7094EJ0110 Rev.1.10

Mar.28.25

Re Page 11 of 68
RENESAS

RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: CS+

4. Click the [Component]. Next, click the [Add component] to open the [New Component] dialog.

Figure 2-7

Smart Configurator: [Component] tab

E Smart Configurator
File Window Help Run

] & W

&% *samplelsecfg ®
Software component configuration

»

Components 2 e = gure

B
type filter text

v & Startup
~ & Generic
@ rbsp

Overview Board |Clocks System||C:

a New Component [m] X
Software Component Selection dj
Select component from those available in list
Category All v
Function |All 2
Fiter |
Compenents Short Name Type Version *
8 A/D Converter Code Generator 14.1
3 Board Support Packages. - v1.61 rbsp RL78 Software In.. 161
88 Clock Output /Buzzer Output Controller Code Generator ~ 14.0
8 Comparator Code Generator ~ 13.1
D/A Converter Code Generator ~ 1.3.0
DALI Communication (Control devices) Code Generator 11.0
DAL Communication (Control gear) Code Generator 1.1.0
Data Transfer Controller Code Generator 131
Delay Counter Code Generator ~ 14.1
Divider Function Code Generator 141
8 Event Link Controller Code Generator ~ 1.2.0
External Event Counter Code Generator 141
% Flexible Application Accelerator FAA Configurator 100
11C Communication (Master mode) Code Generator ~ 15.1
11C Communication (Slave mode) Code Generator ~ 14.1
Input Capture Func| Code Generator 120
B e P e s
Show only latest version
Description
The analog to digital (A/D) converter is function for converting analog inputs to digital signals.
Download RL78 Software System modules
Configure general settings..
@ <Back Next > Cancel

RO1AN7094EJ0110 Rev.1.10
Mar.28.25

RENESAS

Page 12 of 68

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

5. Inthe [New Component] dialog, select [Voltage Detector] and click the [Next].

Figure 2-8 Select [Voltage Detector]

G New Component m} s ‘

Software Component Selection tb

Select compeonent from those available in list

Category All k4
Function |All ~
Filter

Components ; Short Name Type Version

Phase Counting Mode Code Generator 1

Ports Code Generator 1

8 Programmable Gain Amplifier Code Generator 1

B PWM Ontion Linit A Codle Generator 1

8 SPI (CSI) Communication Code Generator 1

Square Wave Output Code Generator 1

Three-phase PWM Output Code Generator 1

f# UART Communication Code Generatar 1
| # Violtage Detector Code Generator | 130 |

CoUE GETEraTor—

Show only latest version
Description

The voltage detector is a function that compares the supply voltage with the detection
voltage, and generates internal interrupt signal or internal reset signal.

Download RL78 Software Integration System modules

Configure general settings...

6. Select the [LVDO] at the [Resource]. Check the configuration name and click the [Finish]. (The
configuration name can be changed to any name.)

Figure 2-9 Select resource and check configuration name [Voltage Detector]

6 Mew Component] X ‘

Add new configuration for selected component t}j

Voltage Detector

Configuration name: | |Konfig_LVDO

Resource: VDO ™

v T e

@ < Back

RO1AN7094EJ0110 Rev.1.10 Page 13 of 68
Mar.28.25 RENESAS

RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: CS+

7. The Voltage Detector is added to the component tree. In the settings screen, set the Voltage Detector

according to your system.

Figure 2-10 Smart Configurator: [Voltage Detector] setting screen

< >

% *samplel.scfg x ==
" " o/ =
Software component configuration Generats Cade: Generte Report
Components i ed % = @ Configure @
Bg 1 - - Operation mode setting
type filter text (@ Reset mode
v & Startup When setting LVDO to reset mode, set the detection voltage of LVD1 higher than the detection voltage of LVDO.
v & Generic O Interrupt mode
@ rbsp t LVDO to interm etection vol
v (& Drivers LD undef
- @ Level 3 (low)
« Config_LVDO
Voltage detection setting
Reset generation level(VLVDO) 1.65 ~ (W
1.65 V)

Overview Board |Clocks | System | Components | Pins| Interrupt

8. Open the [New Component] dialog again, select the [Flexible Application Accelerator] and click the

[Next].

Figure 2-11

Select [Flexible Application Accelerator]

!E Mew Component

Category |All
Function | All

Filter

Components

Delay Counter
Divider Function

Software Component Selection t&f

Select component from those available in list

Data Transfer Controller

£ Event Link Controller
8 Fxternal Fvent Counter

Short Name Type Version
Code Generator 1.
Code Generator 1
Code Generator 1.
Code Generator 1
1

Code Generator

4 Flexible Application Accelerator

__FAA Config

Interval Timer

Description

[EETIC Communication (Master mode]
1IC Communication (Slave mode)
& Input Capture Function

& Input Pulse Interval/Period Measurem...
Input Signal High-/Low-Level Width ..
Interrupt Controller

Show only latest version

Code Generator
Code Generator
Code Generator
Code Generator
Code Generator
Code Generator

Code Generator

The flexible application accelerator (FAA) is a processor that specializes in specific arithmetic
operations. It can execute 32-bit multiplication, addition, and subtraction in a single cycle.

Download RL78 Software Integration System modules

Configure general settings

Cancel

RO1AN7094EJ0110 Rev.1.10
Mar.28.25

RENESAS

Page 14 of 68

RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: CS+

9. Check the configuration name and click the [Finish]. (The configuration name can be changed to any

name.)

Figure 2-12 Select resource and check configuration name [Flexible Application Accelerator]

E New Component

Add new configuration for selected component

< |

#

Flexible Application A ar
Configuration name |Conf|g,FAA

@ < Back

Cancel

10. The Flexible Application Accelerator is added to the component tree.

Figure 2-13 Add [Flexible Application Accelerator] component

&% *samplelscfg x
Software component configuration

Components £ -] = Configure

[IRgn] -
ok I C

L

v & Startup
~ (& Generic
@ r_bsp
v (= Drivers
~ & Power management and re
@ Config_LVDO
~ (& Middleware

v = FAR
« Config_FAA

< >

Overview Board |Clocks | System | Components Pins Interrupt

type filter text Please download FAA data

=0
0| =]
Generate Code Generate Report

@

RO1AN7094EJ0110 Rev.1.10

Mar.28.25 RENESAS

Page 15 of 68

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

11. When the FAA component is used for the first time, the download of FAA libraries or template from the
configurator's dedicated server is needed. Click the [Update FAA modules] or the [Please download
FAA data] to download them. (Please use the [Update FAA modules] to check and obtain the latest
version libraries as well.)

Figure 2-14 Update/Download FAA module (Library)

o *samplel.scfg N EY

%l

Software component configuration Generate Code Generate Report

Components i i - = Config

(0]

Ep o1 -
i o

[v & Startup
~ & Generic
& rbsp
| ¥ & Drivers
~ = Power management and re
@« Config_LVDO
|~ &= Middleware
- FAA
« Config_FAA

| < >

Overview Board Clocks System Components Pins| Interrupt

12. Select the library you want to download and click the [Download]. In the disclaimer dialog that follows,
click the [Agree].

Figure 2-15 Download FAA module (Library)

[4] O X ‘
RL78 FAA Modules Download N
Select the RL78 FAA modules for download Lﬂ
Title Version Select All

(b [Crypto Library (AES) 100 | B
[|Motor Control 1.00

[|FFT Library 1.00

] |LED Control 100

[RL78/G24 Common FAA Module 1.00

[|Custom FAA Library 1.00

[[Filter Library 1.00

[] |SHA Library 1.00

Remark. The content displayed on the actual download screen will differ.

Table 2-3 FAA library

Title Overview
RL78/G24 Common The FAA program and data transfer routine described in 1.3.2 Transfer of
FAA Library Program and Data for FAA. When using FAA libraries/templates, this is always
downloaded.
Custom Library A template for writing FAA programs.
Others FAA library of various function
RO1AN7094EJ0110 Rev.1.10 Page 16 of 68

Mar.28.25 RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

13. The downloaded libraries are added. (“RL78/G24 Common FAA Module” is not displayed.)

Figure 2-16 Added FAA library

= *samplel.scig =
Software component configuration

Components [- [Configure

g I = «3 Crypto Library (AES) B 1

v & Startup

v = Generic
@ rbsp
v & Drivers

= Power management and reset function
@« Config_LVDO

v = Middleware
v & FAA

« Config FAA

14. Check the box which libraries/functions you will actually use among the downloaded libraries. If there
are any setting items in the properties of the checked function, set them as appropriate.

Figure 2-17 Select/set FAA library

&k *samplel.scfg = = B8
Software component configuration I =
P 9 Generate Code Generate Report
Components B e = = Configure @
Bggl e [v I3 Crypto Library (AES) ||a;,
|type filter text | FAA Encrypt Only
] FAA Decrypt Only | Property Value
~ & Startup ~ & Configuration
v 1= Generic / # Key length 128
@ rbso # Block cipher modes CBC
~ =Drivers Check the box which libraries/ B
+ @ power f€atures to use. B
@ Config_LVDO ECB + CBC
« (= Middleware |
~ 2 FAA < Set selectable items as necessary
& Config_FAA —Block(iphe‘ (reflected in the generated code)
Block cipher modes of operation
< > < >
Overview |Board | Clocks | System | Components| Pins| Interrupt

Remark. Two types of libraries and functions are provided: The subprocessor type, which can be used in
conjunction with other functions, and the standalone type, which cannot. Do not use the standalone
type simultaneously with any other library or function. When a standalone library or function is

selected, selecting another library or function causes the following message to appear on the
[Console] page.

Figure 2-18 Warning

B Console x

% b &0 | = =8
Smart Configurator Output

Me4050006: Template feature is independent operation type. The independent type cannot be used in combination with other FAA feature.

RO1AN7094EJ0110 Rev.1.10

Page 17 of 68
Mar.28.25 RENESAS

RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: CS+

15. Click the [Generate Code] to generate source files of FAA library and added peripheral functions.

Figure 2-19 Generate Code

& *samplel.scfg % = 8
Software component configuration o =
P 9 Generate Code |Generate Report
Components D | =] Configure ®
LA % = w I3 Crypto Library (AES) % i
‘ty;}e filter text FAA Encrypt Only
[FAA Decrypt Only || | Property Value
v & Startup ~ & Configuration
v (& Generic # Key length 128
@ rbsp # Block cipher modes CBC
~ (& Drivers
~ (= Power management and
@ Config_LVDO
~ [= Middleware
v = FAA < >
« Config FAA Key length
Key length Value
< > < >
Overview |Board |Clocks | System Components| Pins| Interrupt
16. When the [Confirmation linker option change] dialog appears, click the [OK].
Figure 2-20 [Confirmation linker option change] dialog
% samplelscfg < =
- s Ic &
Software component confi 5
P G Confirm linker option change [m} x Satoblidil A i]
Components T ML= | ™
o ssinfol | Setting Old value New value
.. - T | User option byte value E
peiNEEie | 0 Gend | Option byte values for OCD E:
v = Startup — Set debug manitor area ¥
~ & Generic Control allocation to self RA &d
@ rbsp d
~ & Drivers ed

« Config_LVI
v & Middleware
~ = FAA T
« Confia FAA

Remark. Some items set in Smart Configurator's the [Clock], the [System] and the [Voltage Detector] (LVDO)
are reflected in option settings of the build tool (CC-RL).

RO1AN7094EJ0110 Rev.1.10
Mar.28.25

RENESAS

Page 18 of 68

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

17. Source files of the FAA library and added peripheral functions are generated and registered in the
project. The FAA library source files are shown below.

Figure 2-21 Registered FAA library source files

Project Tree 3 x
5 @ 8 @
= _ﬁ samplel (Project}*
M R7F101GLGXFB (Microcontroller)
‘::i Smart Configurator (Design Tool)
A, CC-RL (Build Tool)
2x RL78 E2 Lite (Debug Tool)
¢’ Program Analyzer (Analyze Tool)

- j File
+],'.Iu Build tool generated files

& main.c — File with empty main()

L) Smart Configurator

@~ general

; r_bsp

@l r_config

n r_pincfg

RL78/G24 Common FAA Module
€| Config_FAA_AesEnc.c :] (Include FAA program and data
%] Config FAA Aestnch o _\ transfer routine)

‘ﬂ Config_FAA_common.c
.| Config_FAA_common.h

Ind Config_FAA_common.inc 2
€] Config_FAA_r_aeskey.c

U Config_FAA_r_aes_version.c
"J Config_FAA_r_mw_version.h =<

b| Config_FAA r_stdint.h
@A Config FAA_src.dsp _J/

N

Source files of selected FAA library
(.dsp: source file of FAA program)

Remark 1. Some of the items set in “Clock”, “System” and “Voltage Detector (LVDO0)” of the Smart
Configurator (SC) are reflected in the Linker Option of Build Tool (CC-RL) .

Remark 2. For files other than the red frame above, refer to RL78 Smart Configurator User's Guide: CS+
(R20AN0580).

18. API functions to control the FAA are defined in the FAA library source file. Call these functions in the
CPU program to operate the FAA. Create a CPU program according to your system.

For more information about API functions, see the documentation for each library.
https://www.renesas.com/rl78g24 (search for "documentation” on this page)

RO1AN7094EJ0110 Rev.1.10 Page 19 of 68
Mar.28.25 RENESAS

https://www.renesas.com/rl78g24

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

2.3.2 Overview of FAA library’s File Structure
The overview of the FAA library file structure is shown below.

Table 2-4 Overview of FAA library’s file structure

Library name Files Description
RL78/G24 Common <Config_ FAA>_common.c The transfer processing
FAA Library <Config_FAA>_common.h (R_Config_FAA Create) and common

functions to control the FAA are defined.

The transfer processing is executed within the
peripheral function initialization function
(R_Systeminit) generated by SC, so there is
no need to call it within the user program.

<Config_FAA>_common.inc SFRs for FAA are defined.
Custom FAA Library | <Config_FAA>_src.dsp The template for the FAA source file.
Others <Config_FAA>_XXX.c/asm/s | FAA library of various functions.
<Config_FAA>_XXX.h /inc Refer to documents of each FAA library.

<Config_FAA>_src.dsp

<Config_FAA> is the configuration name set/checked in the step 9.
“XXX” depends on each library.

In the FAA source file (.dsp) provided by the FAA library and the template (Custom FAA Library), the
code section name is defined as FAACODE and the data section name is defined as FAADATA.

When using the Custom FAA Library, add your user code and data to the template. If you build the
template as is, an error will occur.

RO1AN7094EJ0110 Rev.1.10 Page 20 of 68
Mar.28.25 RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

2.4 Build Tool Option Setting

Before starting a build, set the build tool options required to build the FAA program. Some options are set by
the Smart Configurator (SC) in 2.3.1 Adding FAA Component. Manually set the options for which “No” is
indicated in the “Set by SC” column in Table 2-5.

For build tool options that are not described in this guide, set them if necessary.

How to open the build tool property:

Select the build tool node in the project tree, and then select the [View] menu -> [Property] or select the
[Property] from the context menu.

Figure 2-5 shows the build tool options required to build the FAA program.

Table 2-5 Setting options of build tool

Tab Category Item Description S(;tcb y
FAA Assemble | Preprocess Method for recognizing Exact(-macro_identify exact) Yes
Options the text macro
Link Options Section Layout section Yes(-AUTO_SECTION_LAYOUT) No
automatically or
No
Section start address FAACODE,FAADATA/XXXX No
XXXX (hexadecimal number
without “0x”) specifies an even
address after address D8H in the
code flash memory.
ROM to RAM mapped FAACODE=FAACODER Yes
section FAADATA=FAADATAR
Allocate FAA memory Yes Yes Note'
area automatically or
Yes(Automatically allocate
sections by striding FAA memory
area) Note2

Note 1. SC sets “Yes”.

2. When the RAM size used by the user program (CPU program) is larger than 2304 bytes (the user
RAM area before the FAA code area on RAM), manually set it to " Yes(Automatically allocate
sections by striding FAA memory area) ". Also, when “Yes(Automatically allocate sections by striding
FAA memory area)” is specified, set “Yes(-AUTO_SECTION_LAYOUT)” at “Layout section
automatically”.

RO1AN7094EJ0110 Rev.1.10 Page 21 of 68
Mar.28.25 RENESAS

RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: CS+

2.41 FAA Assemble Options

Figure 2-22 FAA Assemble Options

¥ Property

A, CC-RL Property
Debug Information
+ Preprocess
Include paths Include paths[1]
First character of text macro
Text macro definition Text macro definition[0]
Allow to redefine text macro No
Exact(-macro_identify exact)
Outprt-Code
Dutput File
Others

Method for recognizing the text macros
Specifies the method for recognizing the text macros.
‘when replacing. the following criteria are used to recognize the string that follows 2_.

\ Comman Options ,(Compile Options ,(AssembleOptions| / FAA Assemble Options_,}.. Link

Table 2-6 FAA Assemble Options, Overview of settings

Category

ltem Description

Preprocess

Metho for recognizing Set “Exact(-macro_identify exact)”.
the text macros

included in another identifier.

A text macro is replaced in the FAA source file in units
of tokens. Unless Exact is specified, replacement is
performed even if the identifier to be replaced is

RO1AN7094EJ0110 Rev.1.10

Mar.28.25

RENESAS

Page 22 of 68

RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: CS+

2.4.2 Link Options

Figure 2-23 Link Options

A, CC-RL Property
Device
Dutput Code
List
Variables/functions information

[Lavout sections automatically

Yes-AUTO SECTION LAYOUT) |

Automatically allocate sections per module

No

Section start address

FAACODE FAADATA/2000 |

Section that cutputs external defined symbols to the - Section that outputs extemal defined symbaols to the file[0]

+{_ROM to RAM mapped section

| ROM to RAM mapped section[4]

0]
1]
[2]
2]

data=dataR
sdata=sdataR

FAACODE=FAACODER
FAADATA=FAADATAR

[Allocate FAA memory area automatically

Yes

Verify
Message
Others

Section

' Commaon Options 4 Compile Options /4 AssembleOptions 4 FAAAssemble Options |,— Link Options \J

Table 2-7 Link Options, Overview of settings (1/2)

Category Item

Description

Section Layout sections

automatically

Set “Yes(-AUTO_SECTION_LAYOUT)'.

Sections are automatically allocated based on
information in the device file.

When selecting "No", the address of each section used
in the program need to be specified in "Section Start
Address".

Section start address

Set “FAACODE,FAADATA/address”.

Specify the address of code flash memory to store
FAA programs and data. In the FAA program file
(library or template) generated by the Smart
Configurator (SC), the code section name is defined in
FAACODE and the data section name is defined in
FAADATA. Therefore, specify “FAACODE” and
“FAADATA” as the section name.

In addition, SC provides the processing (in
Config_FAA_Common.c, generated by SC) to transfer
the FAA program and data to the instruction code
memory and data memory. The processing is
performed in units of 2 bytes. Therefore, FAACODE
and FAADATA must be aligned to the 2-byte
boundary. specify an even number address after D8H.
(at address 2000H in the example).

RO1AN7094EJ0110 Rev.1.10
Mar.28.25

Page 23 of 68

RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

Table 2-8 Link Options, Overview of settings (2/2)

Category Item Description

Section ROM to RAM mapped Set “FAACODE=FAACODER,FAADATA=FAADATAR”.
section

The definition symbols for the FAA program and data
placed in the code flash memory will be relocated to the
internal RAM (instruction code memory and data
memory). If relocation is not performed, the addresses of
the FAA program and data symbols will remain in the
code flash memory area, and symbol information cannot
be handled correctly during debugging.

The left side specifies the FAA program and data sections
located in code flash memory. The right side specifies the
section of RAM to be transferred.

In the processing to transfer the FAA program and data to
the instruction code memory and data memory (in
Config_ FAA_Common.c generated by SC), FAACODER
and FAADATAR is handled as the transfer destination
RAM section, so the right side specifies FAACODER and
FAADATAR.

Allocate FAA memory Set “Yes”.
area automatically

Reserve a dedicated area for FAA in the internal RAM.
Variables for the CPU program will not be placed in the
FAA instruction code memory (FD800OH-FE7FFH) or data
memory (FE800H-FEFFFH) in the internal RAM.

Figure 2-24 Memory image before and after transfer processing

The linker relocates the defined symbols
to addresses in the RAM section FAADATAR
FE80OH (FAA data memory area)
FAACODER
FD80OH (FAA instruction code area)
FAADATA FAADATA
FAACODE By executing the transfer process FAACODE
2000H generated by SC, the contents are
transferred from the CODE section to
CODER and from the DATA section to
Before transfer processing DATAR. After transfer processing
R0O1AN7094EJ0110 Rev.1.10 Page 24 of 68

Mar.28.25 RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

2.4.3 Program Building

After setting the build tool options necessary to build the FAA program, build it. There are several ways to
run a build. Two methods are described here.

® Select the [Build] menu -> [Build Project] (Figure 2-25)
® Click the [Builds the project] on the toolbar (Figure 2-26)

Figure 2-25 [Build] menu

File Edit View Project |Build [|Debug Tool Window Help
&, st | [[cji[Ed Build Project

@ Oy " | @ & @ Rebuild Project

| Project Tree @ Clean Project

5 @ 8@ Rapid Build

[R B P T

pewg 5

Figure 2-26 Build tool bar

File Edit View Project Build Debug Tecl Window Help

® st (4 i @ @E DefauliBuild -

G Oy | @ @ @ &6l e=r= 3= 2
1 -3 i i
= . Builds the project. (F7) ’—
[1.}| Project Tree =

T Pranmar

RO1AN7094EJ0110 Rev.1.10

Page 25 of 68
Mar.28.25 RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

2.5 Debug Tool Option Setting

Before downloading an executable object to the RL78/G24 Fast Prototyping Board, set the debug tool
options required to debug an FAA program. Some options are set by the Smart Configurator (SC) in 2.3.1
Adding FAA Component. Manually set the options for which “No” is indicated in the “Set by SC” column in
Table 2-9. For debug tool options that are not described in this guide, set them if necessary.

After setting the required options, download the object.

How to open the debug tool property:
Select the debug tool node in the project tree, and then select the [View] menu -> [Property] or select the

[Property] from the context menu.

Table 2-9 shows the build tool options required to build the FAA program.

Table 2-9 Setting options of debug tool

Tab Category ltem Description Set by SC
Connect Settings FAA Debug FAA Yes Yes
Debug Tool Memory FAA memory space Instruction code space No
Settings (n) (n=1-4) or

Data space
Break Stop FAA when No No
stopping or
Yes
Download File Download Specify code section FAACODER Yes
Settings name defined in FAA
source file
Specify data section FAADATAR Yes
name defined in FAA
source file
2.5.1 Connect Settings

Figure 2-27 Connect Settings

P4 Property

=% RL78 E2 Lite Property
Internal ROM/RAM
Clock

Connection with Emulator

Connection with Target Board

~ FAA

Debug FAA

Yes

!
ConnectSettings_l.tl Debug Tool Settings 4 Download File Settings 4 Hook Transaction Settings /

Table 2-10 Connect Settings, Overview of settings

Category

ltem

Description

FAA

Debug FAA

Set “Yes”.

Enable source debugging of the FAA program.

RO1AN7094EJ0110 Rev.1.10

Mar.28.25

RENESAS

Page 26 of 68

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+
2.5.2 Debug Tool Settings

Figure 2-28 Debug Tool Settings

Property
== RL73 E2 Lite Property
Memory mappings 9]
erify on writing to memory Yes
FAA memory space (1) Data space
FAA memory space (2) Instruction code space
FAA memory space (3) Data space
FAL memory space (4) Data space
Access Memory While Runming
w Break
First using type of breakpoint Software break
Stop emulation of timer group when stopping Mo
Stop emulation of serial group when stopping Mo
Stop FAA when stopping No
Irace
Mask for Input Signal
Step funchon
Memory
'\ Connect Settings ,.- Debug Tool Settings 4 Download File Settings /| Hook Transaction Settings _,"

Table 2-11 Debug Tool Settings, Overview of settings

Category Item Description

Memory FAA memory area(n) Set the FAA space corresponding to FAA memory
(n=1-4) space (n).

The debugger can display up to four [Watch] panels
and four [Memory] panels each.

When debugging the FAA program, the space set here
is displayed in each panel.

Break Stop FAA when Set “No” or “Yes”.

stopping

If the debug target is a CPU, select whether to stop the
FAA program when the CPU program is stopped by
the stop button.

RO1AN7094EJ0110 Rev.1.10 Page 27 of 68
Mar.28.25 RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+
2.5.3 Download File Settings

Figure 2-29 Download File Settings

1

CPU Reset after download Yes

Download Mode Speed priority
Erase flash ROM before download No

Automatic change method of event setting position Suspend event

Check reserved area overwriting Yes

Download

I 1
'\ Connect Settings { Debug Tool Settings [, Download File Settings /| Hook Transaction Settings /

Table 2-12 Download File Settings, Overview of settings

Category ltem Description
Download Specify code section name Set “FAACODER".
defined in FAA source

In the FAA program file (library or template) generated
by the Smart Configurator (SC), the code section name
is defined in FAACODE.

However, specify the section name FAACODER to be
relocated to the RAM area.

Reference: The link option “Section mapped from ROM
to RAM”.

Specify data section name Set “FAADATAR”.

defined in FAA source

In the FAA program file (library or template) generated
by the Smart Configurator (SC), the data section name
is defined in FAADATA.

However, specify the section name FAADATAR to be
relocated to the RAM area.

Reference: The link option “Section mapped from ROM
to RAM”.

RO1AN7094EJ0110 Rev.1.10 Page 28 of 68
Mar.28.25 RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

2.5.4 Program Download

After setting the debug tool options necessary to debug the FAA program, connect PC and RL78/G24 Fast
Prototyping Board and then download the object. There are several ways to download. Two methods are
described here.

® Select the [Debug] menu -> [Download] (Figure 2-30)
® Click the [Download] on the toolbar (Figure 2-31)

Caution1: Before downloading, check the power supply in the [Connect Settings] tab — [Connection with
Target Board] of the debug tool option.

Caution2: The FAA program is not placed in the instruction code memory by simply downloading the object.
You need to transfer the FAA program and data from the code flash memory to the instruction
code memory and data memory by using the CPU program.

The RL78 Smart Configurator provides transfer processing function (R_Config_FAA_Create) as
FAA components. The transfer processing function is executed in the initialization routine
(R_Systeminit) before the main function is executed, and the transfer is performed.

Figure 2-30 [Debug] menu

File Edit View Project Buil:‘ Debug | focl Window Help

Q@ Start | [| gl Debug Soluticns 3 4
@Y @ |3 Download |_I @
[1}| Project Tree g Build & Download B[
I P — &) Rebuild & Download —
Figure 2-31 Debug tool bar
File Edit View Project Build Debug Teol Window Help
@, start | [} [@ 0 &7 @ DefaultBuild x| % ¥ By §
BRBhe®eM@ s=EE6 T RTRF a0pa
G2 i T el -
L:: Froje Dewnloads the program to the debug toel. | Property
S| A 3T =
3204 @ |51 RL78 E2 Lie Property
RO1AN7094EJ0110 Rev.1.10 Page 29 of 68

Mar.28.25 RENESAS

RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: CS+

2.6 FAA Program Debug

2.6.1
When debugging the RL78/G24 program, select whether to debug the CPU or FAA. Select by using one of

Debug Target

the following methods.

Select the [View] menu -> [Debug Manager] to open [Debug Manager]. Select the debug target on it.

(Figure 2-32)

Select the target debug on the status bar. (Figure 2-33)

Figure 2-32 Open [Debug Manager]

Figure 2-33 Status bar

Address information is displayed in the address area only for the source file to be debugged, and debugging

FAA \E\EF.E.%Kl Standby&Disable | 0x000

@3 sample - AL78 E2 Lite - €S+ for CC - [Output] Debug Manager x|
Oy My @ (B (@ ") @ 5= 0= 2= 2%

File Edifl|View|| Project Build Debug Tool Window Hel Iﬁ s B> &

= Debug target

jﬁ?)’ Star n(‘ Selution List

| Ocru ® Faa
3 Project Tree

lﬁ —4 f 1 Debug target status:
| Project B3| Property —
| el 3 Running status: | [m] BREAK
gl e g @ Smart Browser -
= Target status: Standbyé&Disable
=l g
E Curent PC: 0000

FE Build & Do_ | F7? Build Proje |8 Ignore Bre H F3 SetiDelete | Ffl Step Over | F1Step In Fi2 Jump to Fun

BEERLTS E2 Lite

\‘fj Mot measured

lCPU

operations such as step execution are possible at the source level.

It is possible to change the debug target in the following status.

Table 2-13 Change debug target

Current debug Status Change from Change from
target CPU to FAA FAA to CPU
CPU CPU program stopping Available —
CPU CPU program running Not available —
FAA FAA program stopping — Available
FAA FAA program running — Available
RO1AN7094EJ0110 Rev.1.10 Page 30 of 68

Mar.28.25

RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

Additionally, CPU or FAA status that is debug target is displayed in the debug manager and status bar.
When FAA is the debug target, the status of FAA is as follows. If multiple statuses exist at the same time, the

statuses are displayed separated by "&".

Table 2-14 FAA status

Status display FAA status
Standby Stops supply of an input clock to FAA. (FAAEN bit = 0)
Disable Disables FAA operation. (ENB bit = 0)
Sleep FAA in Low power consumption mode (SLP bit = 1 and EXE bit = 0)
RO1AN7094EJ0110 Rev.1.10 Page 31 of 68

Mar.28.25 RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

2.6.2 Source File Display

After selecting the FAA as the debug target, display the .dsp file containing the FAA program on the [Editor]
panel. The address information appears in the address area, and debug operations such as step execution
can be performed at the FAA source level.

The address area indicates the addresses in the FAA instruction code memory space. The address area is
not displayed when the debug target is CPU.

Figure 2-34 Source file display

j’ Config_FAA_src.dsp - X
80| 8| = ~ »y | Columns~
Line 22| addr. [0l & =
556 SECTION CODE
557
558
559
560
561
562 =]
563 000
564 .PUBLIC _P Res 128_CbcEnc
565 _P_Res_128_CbcEnc:
566
567
568
569
570
571
572
573
574 H
575 MOV #_V_Res IN TEXT, DPO
576 MOV #_V_Aes OUI_TEXT, RPO
577 MOV #DATA TOP, SPO
578 PUSH DFO H SP 1st)
579 PUSH RPO : (SP 2nd)
580
s81 oos MOV # V_Aes IN BLOCK, DPO
s82 00a MOV # V_Res CALC BLOCK, RPO
583 00c MOV (DPO+), AOD
584 ood MOV R0, (RPO+)
585
586 ooe MOV #_V_Aes INOUT_IVEC, DPO
587 010 MOV § V_Res CALC BUFF, RED
588 012 MOV (DPO+), AOD : MOV 1st
589 013 MOV RO, (RPO+)
590 014 MOV (DPO+), AD : MOV 2nd
__591 015 MOV RO, (RPO+)
|
i (s FE F1] g
FAA [v][m)BREAK Standby&Disable
R0O1AN7094EJ0110 Rev.1.10 Page 32 of 68

Mar.28.25 RENESAS

RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: CS+

2.6.3 Gol/Stop

When selecting FAA as the debug target, FAA source debugging is enabled. There are several ways to
go/stop FAA program. Two methods are described here.

® Select the [Debug] menu -> [Go] / [Stop]. (Figure 2-35)
® Click the [Go] / [Stop] on the toolbar. (Figure 2-36)
® Click the [Go] / [Stop] on the toolbar of the Debug Manager. (Figure 2-37)

Figure 2-35 [Debug] menu
@3 sample1 - RL78 E2 Lite - CS+ for CC
File Edit View Project BuiIE Debug Irool Window Help I:Debug iool Window Help
@ st | [J H &G & Debug Solutions » ebug Solutions »
] 3 Diownloa
@ _-:; “,‘ . "E) ':D‘ h‘l _lh'; Download j_l Download
DB {?“ Build & Download 6 @y Build & Download Fo
o t @8 @ @y Rebuild & Download &) Rebuild & Download
i | _fy PEET—— @8 Connect to Debug Tool @& Connect to Debug Tool
= | -1 samplel (Project]” -]
- .. 3% R7F101GLGxFB (M 3T Upload.. B Upload...
= o : h - i o
-3 SmartCDnlfrguratc g Disconnect from Debug Tool Shift+F6 gu| Disconnect from Debug Teo Shift+F6
Ay CC-RL (Build Tool -
&x RL7BE2 Lite (Deby Using Debug Tool » Using Debug Tool »
j l:rlograrn Analyzer, @) Stop = 5 i_) Stop Shift=FS
— ile = . ES
€] main.c ») Go F5 By Go
'_ﬁ iodefine_faa.in [_>| Ignore Break and Go F8 3 Ignore Break and Go
Figure 2-36 Debug tool bar
@ sample1 - RL78 E2 Lite - CS+ for CC - [main.c] @3 samplel - RL78 E2 Lite - CS+ for CC - [main.c]
Eile Edit View Project Build Debug Tool Window kE Eile Edit View Project Build Debug Tool Window H
@, stat | [J H @ @ G G DefaultBuild @ stat [J | @ G B DefaultBuild
@O " 6 G0 M @ =0 B[O B 6 @ o=cxald
Figure 2-37 Debug Manager
L, ; ® "y @ s=0=%=|gh Oy m B " @ s=CE %=
Debug target: L | Debug targe
O cpPu @® FAA O cru @® FAA
Debug target status: Debug tanget status:
Running status: | (m BREAK Running status: | (» RUN
Target status: Target status:
Curent PC;) 0x000 Curent PC; Running
R0O1AN7094EJ0110 Rev.1.10 Page 33 of 68
Mar.28.25 RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

The FAA program controls are as follows:

v' If the FAA status is “Standby” or “Disable”, program execution cannot start and other debug
operations such as step execution are also disabled. When using FAA libraries, FAA programs runs
by calling the start function (that executes FAAEN=1, ENB=1) provided by each FAA library.

v When the debug target is FAA, the operation to execute or stop programs only executes or stops the
FAA program. The CPU program is not executed or stopped in synchronization. However, you can
use a debug tool option so that stopping a CPU program also stops the FAA program when the debug
target is CPU. To do this, on the [Debug Tool Settings] tab, under the [Break] category, select [Yes]
for [Stop the FAA when stopping the program].

v' Step execution is applicable only to the FAA.

v" Reset operation performs a software reset for the FAA. The whole MCU (CPU and peripheral
functions) are not reset. When the debug target is CPU, the whole MCU (CPU and peripheral
functions) are reset.

v" Do not proceed with debugging of the FAA during execution of a CPU program that includes
operations with the WIND register. Since the debugger temporarily rewrites the WIND register in the
debugging operations for the FAA, the use of FAA debugging may make operation of the program
being executed by the CPU incorrect.

v' Disconnect the debug tool only when the CPU and FAA programs are stopped.

2.6.4 Breakpoint

After selecting the FAA as the debug target, display the FAA source on the [Editor] panel. You can set a
breakpoint by clicking the main area on the row on which you want to set the breakpoint. To cancel a
breakpoint, click the icon set for the breakpoint.

The breakpoint controls for the FAA program are as follows:

v' 4 points hardware breaks are available. (Break after execution)

v' Ifthe FAA is stopped after detecting a hardware break, the CPU is not synchronously stopped.

Figure 2-38 FAA program, breakpoint setting

& Config_FAA_src.dsp

81| #) % &y | Columns~

Line 333 Addr... (ol G

SECTION CODE

IR
o 3o

.PU P Aes 128 CbcEnc

565 _P_Res 128 CbcEn

567 _P Aes 128 CbcEnc Init:

MOV $_V_Aes_IN_TEXT, DPO
Aes RPO

3
o
0

PUSH DPO : (SP 1st)
] PUSH RPO : (SP 2nd)

1]
=X
&b RO

MOV #_V_Aes IN BLOCK, DPO
MOV #_V BLOCK, RPO
MOV (DPO+), A0

MOV A0, (RPO+)

FR-E-X
AaOM o

=y
o
n

| MOV #_V_Aes INOUT_IVEC, DPO

RO1AN7094EJ0110 Rev.1.10 Page 34 of 68
Mar.28.25 RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

2.6.5 Memory

When selecting FAA as the debug target, FAA instruction code memory and data memory are displayed in
the [Memory] panel.

The memory display control for the FAA are as follows:

v" The [Memory] panel that specified in 2.5.2 Debug Tool Settings displays FAA instruction code memory
and data memory.

v" Address is the FAA space.

v When the debug target is CPU, CPU memory is displayed regardless of the settings in 2.5.2 Debug
Tool Settings.

v' The display cannot be updated while the FAA program is running.
v' If the FAA status is “Disable” or “Standby”, the displayed content will be undefined.

Figure 2-39 [Memory] panel

Pﬁ" Property - Memory1 Data 2 x
= Notation > = Size Notation » | Encoding~ | View~
» +||| 23 9
[J Maove when Stop Move
/ ”Bl +0 +1 #2 43 +4 +5 46 +7 +8 +3 +a3 +b +c +d +te +f AsCI A
Verify on writing to memory Yes 700 | 0A 60 00 60|14 00 60 06|1E 00 00 06]00 06 60 00
FAL memory space (1) Data space 010 | 00 00 00 00|00 00 00 00|00 00 00 00|00 00 00 0O
- : B 0z0 | 00 00 00 00|00 0O 00 00|00 00 00 00|00 00 00 00
FAA memory space (2) Instruction code space a0 | 00 00 00 00[00 00 00 00|00 00 00 00|00 00 00 0O
FAA memory space [3) Data space 040 | 60 00 60 00|00 06 60 00|00 00 00 00|00 00 00 00
FAA memory 4) D 050 | 00 00 00 00|00 00 00 00|00 00 00 00|00 00 00 0O
AA memory space (2) ata space 060 | 00 00 00 00|00 0O 00 00|00 00 00 00|00 00 00 00 v
Access Memory While Running szo | an oo nolon oo an oolon oo oo aolon oo oo oo
Break [#® Memory1 Data 5] Local Variables $§f CPU Register
Trace
Mask for Input Signal Metmry2Code| e
v Stepfunction [@ @ | Notation~ | Size Notation » | Encoding~ | View~
Skip specified section No
Memory [J Move when Stop Move
0 #1 ¥2 43 44 +5 46 7 B 49 ta tb o +d e +F AsCl A
000 | 80 00 84 00|88 00 41 00|44 01 A0 13|44 02 A0 1§ 1A 0,70 7.
010 | &7 03 20 4C|DO 18 3B 3E|2F 35 2E 00|00 00 00 00 B LT.K>/S>.._ ..
L . 020 | 00 00 00 00|00 00 OO 00|00 00 00 00|00 00 00 00
\ Connect Settings) Debug Tool S... { DownloadFile.. [HookTransacti.. / ¥ |[030 | 00 00 00 00|00 00 00 00|00 00 00 00 (00 00 00 00

040 | 00 00 00 Q0 (00 00 00 0000 00 00 00|00 00 00 OO - .

050 | 00 00 00 Q0 (00 00 00 000D 00 00 00|00 00 00 OO |

060 | 00 00 00 0000 00 00 000D 00 00 00|00 00 00 00 | v
a0 an oo anlon oo oo oolon oo oo aoloo a0 a0 an

2.6.6 Symbol (Label)

When selecting FAA as the debug target, the symbols (labels) defined in the FAA program are displayed in
the [Watch] panel.

The watch display control for the FAA are as follows:

v' Data for the FAA has 32-bit width. However, 8-bit width data is displayed when a symbol is registered
on a [Watch] panel. Therefore, change the [Size Notation] setting to [4 Bytes]. (Figure 2-40)

v' Address is the FAA space address.

v' If [Offset format] is specified for the watch-expression, the value is displayed every 4 bytes from the
first symbol.

v' If the debug target is CPU, the value column indicates a question mark (?).

v' If the FAA status is “Standby” or “Disable”, the display contents are undefined.

Remark. To make a symbol accessible to the CPU program, it must be defined with a name starting with " "
and must be declared public in the FAA program.

RO1AN7094EJ0110 Rev.1.10 Page 35 of 68
Mar.28.25 RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+
Figure 2-40 [Watch] panel (Size change of symbol)

j Config_FAA_src.dsp - x} Watchl 2 x
Sy o | T

%) %) = ~ e | Columns- __ £ 6- - 12 WA

= —_— Watch Malue Tupe(Rute Size) Address Me

Line a4 Addr. [ol| & | « _V_Aes_CALC_BLOCK -1 Cowtt) 1(1) 0x334

245 _V_Res_CALC s: DATA H'ffffffif

246 DATZ H'ffff

247 (3322444

248 H'EEEEEEEE

249

250 [V Bes_CALC BLOCK: DATA H'ELLfffff

251

28 | | | | | e

253 Const

254 P e

255 _C Res_0: DATA H'00000000 3 2

256 _C Res 1: DATR H'00000001 'g Watch1 &CPU Register :ﬂ Memory1 Data

287

l Right after registration, display width is 1 byte.

j Config_FAA_src.dsp

80 | 83 | => ~ | Columns- P L

Value ze) Address He
Line i3 adar 5] &
245 _V_Res CAIC S: DATA H'EILLILIL IAE e Nk N
246 DATA H'EEELLeLe
247 DATA H'ELELLere Trace Output 4
248 DATA H'ELELLeee Periodic Updating ,
249
250 [V _Res CALC BLOCK: DATA H'ELELLeee [Z] Refresh
2:2 34 Symbol Column
253 =
254 : .
255 C hes 0: DATA H'00000000 < Hotatice '
256 _C Res 1: DATA H'00000001 Fd Wiatch? % CPU Register [Memory Data Encoding 3
7 - Size Notation 3

® Jump to Memory

Q Reset Color
[Save Expanded Watch Data...

Right-click to show the context menu, and select
[Size Notation] - [4 Bytes].

j Config_FAA_src.dsp

Notation v

20 8 = ey | Columns~

Line i3 addr. (ol &

245 _V_Aes CALC_s: DATA H'ELEEffff

246 DATA H'ELEfffff

247 DATA H'ELLfffff

248 DATA H'ELEfffff

243

250 [V Aes_CALC BLOCK: DATA H'ffffffff

251

252 D
253 : Const

254 F
255 _C_2es_0: DATA H'00000000 x i

Value Type(Byte Size)

Address Me

256 _C Aes 1: DATA H'00000001 Fa Watch1 {8 CPU Register P8 Memory1 Data

RO1AN7094EJ0110 Rev.1.10 Page 36 of 68
Mar.28.25 RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+
Figure 2-41 [Watch] panel (How to specify with [Offset format])

@ Config_FAA_src.dsp * X
b -
SR o] Coumner 2 = Value TwpelByte Size) Add H
ve TypelByte Size rass

tine || |38 [fall & | ~ i E R B LR i
233 : (Max 25gbyte)
232
235 _V_Res CALC BUFF: DATA H'EffEFfff
2386 DATA H'EEFELEEE
237 DATA H'EEEELEfE
238 DRTR H'LIffffff
233 M 5
240 V Res CALC T: DATA H'EEFEFFEf v

Fa wiaich1 M CPU Register
[Config FAA sr.dsp Y| Viatchi
8 %)= ey | Columns-
Line | | |33 Addr. |5 & | s
233 [Max 256byte) T
234
235 _V_hes CALC_BUFF: DATA H'SEffffff
236 DATA H'EEFEfFff
237 DATA H"EEEELEfE
238 DRIR H'LIffffff
238 z
240 V Zes CALC T: DATA H'EEFEEFff v

Fal Watchl i CPU Register |

‘ Click the button to add a new watch expression, and specify the
area after “_V_Aes_CALC_BUFF” by using a 4-byte offset value.

[Config_FAA src.dsp T x
%9 | #5 => ~ ey | Columns~ @ F& @ | & 1] X | Notation~

Watch Yalue Type(Byte Size) Address Me
e | | |35 pcer. ol & |
233

: (Max 256byte)

234
235 V Res CALC BUFF: DATA H'EZfEffis ecess Breok
238 DATA H'ELEEEELL cesss Breel 4
237 DATA H'ELFEfEff Trace Output s
238 DATA H'ELFEfEff eriocic Updating R
239 <
240 V Res CALC T: DATA H'Efffffes © -
P wiatch [CPU Register Notation N
Encoding »
l | [SizeNottion 1| 1eyte
B —frmprtotvtermory I (] 2 Bytes
@ Reset Color =) 4By ||
E Sve BxpandedWatch Data., |20 8Bytes

Select all registered watch expressions. Right-click to show
the context menu, and select [Size Notation] — [4 Bytes].

o Config_FA8_sre dsp -x _
I S

80| #3 | > ~ ey | Columns~ Bl 5[5 @ % ' X | Notion

Watch Value Type(Bute Size) Address e
Line | | 33| Ador. |5l & | "
233 ; (Max 256byte)
234
235 _V_Zes CRLC BUFF: DaTR H'"fE£fEFEF
238 DaTR H'"fE£fEFEF
237 DaTR H'"fE£fEFEF
238 DaTR H'"fE£fEFEF
239 < >
240 V Rhes CRLC T: DaTR H'"fEEfFFEF -

|'g \iatch? {6 CPU Register
g Config_FAS_src.dsp - X

o %, 3 - | e
£ #1 = ~ | Columns~ @ [55] @ | & i X | Nottion- | i
— Watch value TypeiByte Sizel Address Mg

e || [3]pe. (5] | B AT —
233 ; (Max 256byte) T W e CALC_BUFF+AR0] -1 (HHREERRE 704D 05304
232 o [V Res CALC_BUFF+a1] -1 CoEHEFEFE) 704D 05309
235 7V7A257CALC73UFF: DRIZ H:ffffffff o [V_Res _CALC_BUFF+a#2] -1 (OxbHEREFEE) 3(A) 0x30e
238 DRIZ HYEIZfIIES o [V_Res CALC_BUFF+a%3] -1 (OxFFEFEFFE) 704) =310
237 DATAR H'ELffffff
238 DATR H'ELffffff
238 < 5
240 ¥ Res CALC T: DATR H'ELffffff v

Fal Wiatch1 (i CFU Register

Click the +/- icons of a category to expand/collapse it.

RO1AN7094EJ0110 Rev.1.10 Page 37 of 68
Mar.28.25 RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

2.6.7 Register

When selecting FAA as the debug target, the operation parameter register set, address pointer set, the
processor control register, etc. are displayed in the [CPU Register] panel.

Figure 2-42 [CPU Register] panel

CPU Register X
[@] = Notation ~ He
Reg ister Hame Va lue
i Operation parameter register set
=Ll 0x00000000
=] Mo 0x00000000
=L 0x00000000
= 0x00000000
=13 000000000
—] RO 000000000
{ Address pointer set
=l 0x000
=] oP1 0x000
—| kPO 0x000
—] PGO 0x000
=] PO 0x800
=P Contro| Registers
1 FaarNT fi=AANN
% CPU Register i SFR .: atch1 : atch2

2.6.8 SFR

When selecting FAA as the debug target, the [SFR] panel displays only SFRs (Special Function Register)
that FAA can access. There are two types of SFRs that the FAA can access.

® SFRs of the FAA

Registers that are not affected by the address bus select register (ADBSEL) settings and can be
accessed via the FAA bus.

® Registers of the peripheral functions

Registers that can be accessed via the FAA bus when “access from the FAA” is selected in the
ADBSEL register.

There are two different types of register access to the peripheral functions as described below.
- Access to a peripheral function register through the FAA address map
- Access to a peripheral function register by using the FAA address pointer (FAAAP)

For the address bus select register (ADBSEL) and how to access, refer to RL78/G24 User’s Manual:
Hardware (RO1UHO0961).

The SFR display control for the FAA are as follows:
v The address area for the FAA SFR displays the FAA addresses.

v Access to some peripheral function SFRs is enabled by using the address bus function to permit
bus access from the FAA. For such SFRs, the display name is suffixed by “ PTR”. The address
displayed in the address field is the FAA address pointer values that be set in the FAA address
pointer (FAAAP) when accessing using the FAAAP register.

v The debugger reads or writes peripheral function SFR values through bus access from the CPU.
Therefore, it cannot access the peripheral function SFRs for which bus access from the FAA is
selected by using the address bus selection function, and the displayed values for these SFRs are
undefined. To display the values of the peripheral function SFRs for which bus access from the
FAA is selected, see 3.5 Sample Script Specification.

RO1AN7094EJ0110 Rev.1.10 Page 38 of 68
Mar.28.25 RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+
Figure 2-43 [SFR] panel

SFR 7 x
[® | # X Notaion- | 53

| (Input all or part of the target SFR/Category name for search.) '?I , ‘
SFR Value Type(Byte Size) Address ~

0x00 SFR[R/W 8] (1) [ESET]
1 PMI_PTR oxtt SFRIRSW 8] (1) Ox1t21
FirPuvI_PTR 0x00 SFR[R/W 8] (1) 0x031
HIPIMI PTR 0x00 SFR[R/W 8] (1) 0x041
1 POMI_PTR 0x00 SFRIRSW 8] (1) 0x051
WIPMCAT_PTR Oxtt SFRIR/W 8] (1) 0x081

) TWR

[#(9 ADC

(# (") DAC

(#(*) OTHER

S FAR SFR

mlw 0x00000000 SFR[R/W 32](4) 0x012

Wi 0x00000000 SFR[RSW 32](4) 0x014

]]

@ SFR {3 CPU Register B Watch1 B Watch2

RO1AN7094EJ0110 Rev.1.10 Page 39 of 68
Mar.28.25 RENESAS

RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: CS+

3. Sample Project

This section describes how to display the SFR values of peripheral functions in the CS+'s [SFR] panel when
debugging a FAA program using sample code and sample scripts.

3.1 Specifications
3.1.1 Specification Overview

This sample code uses a 16-bit timer KB30 (TKB30) to perform two PWM outputs.

PWM output is connected to LED1 and LED2. Initialize TKB30 using the CPU program, count the number of
TKB30 timer interrupts (INTTKBO0O), create a fixed cycle (500ms) timing, and start FAA operation at a fixed

cycle.

The FAA program controls the LED brightness by changing the duty ratio of the PWM output. After changing

the duty ratio, the operation stops.

Table 3-1 Peripheral Functions and Their Usage

Peripheral

Usage

16-bit timer KB30 (TKB30)

Output PWM from TKBOOO pin and TKBOO01 pin

Flexible application accelerator (FAA)

Change the duty ratio of PWM output from TKBOOO pin and
KBOO01 pin

Figure 3-1 Operation overview of PWM output

After 500ms

<Output>
Brightness 80%

.

LED1

After 500ms

Brightness 10%

Ll

Brightness 10%

L)

LED2

Brightness 40%

W G

<Output>
Brightness 80%

LED1 LED2 After 500ms

<Output>
Brightness 20% Brightness 40%

<Output>

Brightness 209 After 500ms

LED1 LED2

Table 3-2 Relationship between PWM output duty ratio and LED brightness

Duty ratio Brightness
10% 10%
20% 20%
40% 40%
80% 80%
RO1AN7094EJ0110 Rev.1.10 Page 40 of 68
Mar.28.25 RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

3.1.2 Operation Overview
In this sample code, 16-bit timer KB30 (TKB30) is used with the standalone mode (period controlled by the
TKBCRNO register), PWM signals are output from P12/TKBOO0O and P13/TKBOO1.

The PWM pulse period of TKB30 is 2ms, and the interrupts (INTTKB30) that occur in each period are
counted 250 times. Start the FAA from the CPU every 500ms and change the duty ratio of PWM output with
FAA.

1. [CPU program] Store the initial values of the TKBCRO1 register and the TKBCRO3 register in variables
for checking the duty value.

[CPU program] Enable the TKB30 operation.

[CPU program] Set SFR access of the TKB30 to FAA bus.

[CPU program] Wait until the TKB30 interrupt occurs 250 times (500ms).

[CPU program] After the TKB30 starts the operation, the TKB30 interrupt occurs every 2ms.
[CPU program] Count the number of interrupt occurrences in the TKB30 interrupt (INTTKB30).

[CPU program] When TKB30 interrupt (INTTKB30) occurs 250 times (500ms), clock supply to the FAA
is enabled and FAA operation is enabled.

8. [CPU program] Set the FAA stack pointer and the start address of the FAA program and start FAA
operation. Then wait until the FAA program completes.

9. [FAA program] Update the compare register (TKBCRO01) and change the duty ratio of TKBOOO output.
And update the compare register (TKBCRO03) and change the duty ratio of TKBOO01 output. Every
500ms, the duty ratio of the TKBOOO output is updated by double in the order of 10% — 20% — 40% —
80%, and after the duty ratio reaches 80%, it is set to 10% again. The duty ratio of the TKBO01 output
is updated by 1/2 in the order of 80% — 40% — 20% — 10%, and after the duty ratio is 10%, it is set to
80% again.

10. [FAA program] Store the updated duty ratio (values of the TKBCRO1 register and the TKBCRO03
register) in global variables and the FAA stops operating.

N o gk~ ooDd

11. [CPU program] When FAA program execution is completed, clock supply to the FAA is stopped and
FAA operation is disabled.

12. [CPU program] Store the updated duty ratio (values of the TKBCRO1 register and the TKBCRO03
register) in variables for duty value confirmation.

13. [CPU program] Return to step 4 and wait for TKB30 interrupts (INTTKB30) to occur 250 times (500ms)
again.

RO1AN7094EJ0110 Rev.1.10 Page 41 of 68
Mar.28.25 RENESAS

RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: CS+

3.2 Operation Confirmation Conditions

Table 3-3 Operation Confirmation Conditions

ltem

Description

MCU

Operating frequency

RL78/G24 (R7F101GLG)
+ High-Speed On-Chip Oscillator Clock: 32MHz
CPU/Peripheral Hardware Clock: 32MHz

Operating voltage

3.3V (Can operate between 2.7V to 5.5V)
LVDO Operation (VLVDO0): Reset Mode
Rising edge = 2.97V

Falling edge = 2.91V

Integrated development
environment (CS+)

CS+ for CC V8.10.00 Manufactured by Renesas Electronics

C compiler (CS+)

CC-RL V1.12.01 Manufactured by Renesas Electronics

Smart Configurator (SC) Manufactured by Renesas Electronics
V1.7.0
Board Support Package (BSP) Manufactured by Renesas Electronics
V1.60
Emulator E2 Emulator Lite
Board RL78/G24 Fast Prototyping Board (RTK7RLG240C00000BJ)

RO1AN7094EJ0110 Rev.1.10
Mar.28.25

Page 42 of 68

RENESAS

RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: CS+

3.3 Hardware Description

3.3.1 Example of Hardware Configuration
The example of the hardware configuration used in this sample code is shown below.

Figure 3-2 Example of Hardware Configuration

Vbbp

Vbbp

L Voo / EVbbo RESET j

For On-chip Debug <—| pag /TooLo 13 /TKBOO1
P12 /TKBOOO

RL78/G24

r REGC
Vss/ EVsso LED1 |_ET:)§2
P V4

Note 1. This simplified circuit diagram was created to show an overview of connections only. When actually
designing your circuit, make sure the design includes appropriate pin handling and meets electrical
characteristic requirements (connect each input-only port to VDD or VSS through a resistor).

Note 2. Connect any pins whose name begins with EVSS to VSS, and any pins whose name begins with

EVDD to VDD, respectively.

Note 3. VDD must not be lower than the reset release voltage (VLVDO0) that is specified for the LVDO.

3.3.2 List of Used Pins

Table 3-1 shows the pins used and their function.

Table 3-4 Pins Used and their Functions

Pin name I/0 Function
P12 / TKBOOO Output PWM output (lighting control for LED1)
P13/ TKBOO1 Output PWM output (lighting control for LED2)

Caution. In this application note, only the used pins are processed. When actually designing your circuit,
make sure the design includes sufficient pin processing and meets electrical characteristic

requirements.

RO1AN7094EJ0110 Rev.1.10
Mar.28.25

Re Page 43 of 68
RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

3.4 Software Description

3.4.1 Smart Configurator Setting
The Smart Configurator (SC) settings in this sample code are shown below. The items and settings in each
SC settings table are explained using the description on the settings screen.

3.4.1.1 Clock

The clock settings used in this sample code are shown below.

Operation mode: High-speed main mode 2.7(V)~5.5(V)
EVDD setting: 2.7 V < EVDDO < 5.5V

High-speed on-chip oscillator: 32MHz

fCLK: 32000kHz

Timer Clock: 32000kHz

Figure 3-3 Clock Settings

.) %l =]
Clocks conflguratlon Generate Code Generate Report

fHoco

——

Overview EDBIE Clocks SPstsm Components| Pins| Interrupt

RO1AN7094EJ0110 Rev.1.10 Page 44 of 68
Mar.28.25 RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

3.41.2 System
The system settings used in this sample code are shown below.

Figure 3-4 System Settings

. q %l 2
SYStem co“ﬁguratlon Generate Code Generate Report
18] =
~ On-chip debug setting
On-chip debug operation setting
O Unused @ Use emulator (O COM Port
Emulator setting
OF2 @E2 Lite
Pseudo-RRM/DMM function setting
(O Unused @ Used
Start/Stop function setting
@ Unused (O Used
Monitoring point function setting
Unused Used
Trace function setting
(O Unused @ Used
Security ID setting
Use security ID
Security ID | 0x00000000000000000000
Security ID authentication failure setting
(O Do not erase flash memary data
(@) Erase flash memory data
v
Overview |Board | Clocks | System | Jomponents | Pins| Interrupt
3.4.1.3 Component
The component settings used in this sample code are shown below.
Table 3-5 Component settings (LVDO)
ltem Description
Component Voltage Detector
Configuration name Config_LVDO
Resource LVDO
Figure 3-5 LVDO Settings
Configure @
Operation mode setting
(@ Reset mode
When setting LVDO to reset mode, set the detection voltage of LVD1 higher than the detection voltage of LVDO.
() Interrupt mode
If LVDO is set to interrupt mode and the LVDO detection voltage is greater than the LVD1 detection voltage,
VDO becomes undefined after the LWVD1 setting following release from the reset state.
Level 3 (low)
Voltage detection setting
Reset generation level(VLVDO) 291 v~ (V)
1.86 (V)
RO1AN7094EJ0110 Rev.1.10 Page 45 of 68

Mar.28.25 RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

Table 3-6 Component settings (TKB30)

ltem Description
Component PWM Output
Operation Standalone mode (Period controlled by the TKBCRNO register)
Configuration name Config_TKBO
Resource TKBO

Figure 3-6 TKB30 Settings

Configure

Count source setting

Operation clock K20 d

Clock source fKBKC » Clock freque s selected as fKBKC
PWM output setting

PWM period 2 | |ms ~ Actual value: 2

Duty (TKBOOO cutput) 10 | o0

Duty (TKBOO1 output) 80 (%)

Delay (TKBOO1 output) 0 (%)

A/D conversion start timing signal output function setting

TKBTGCRD value 0

Output setting

[Enable TKBOOO output

Default level Low level v
Active level High level bod
Enable TKBOO1 output

Default level Low level i
Active level High level ~

PWM output smooth start function setting
[[] Enable TKBOOO smooth start function

[[] Enable TKBOO1 smaooth start function

/—_J—E_—_‘%

Interrupt setting

Level 3 (low
Level 3 (low)
Level 3 (low)
Level 3 (low)
Enable 16-bit timer KB30 end count
Priority Level 3 (low) ~
RO1AN7094EJ0110 Rev.1.10 Page 46 of 68

Mar.28.25 RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+
Table 3-7 Component settings (FAA)
ltem Description
Component Flexible Application Accelerator
Configuration name Config_FAA
Figure 3-7 FAA Settings
Configure @
»% Crypto Library (AES) % i
~ #3 Custom Library :
7 Template Property Value
T Digial Filter & Configuration
o3 FFT
«3 LED Control
3 SHA Library
< >
Template file (.dsp) for FAA source is generated. -
Add user program in user code area. if there is no code and data in the file, FAA
< > assembler error will occur when building. ot

Remark. If any FAA library is not displayed after the sample project is opened, refer to step 11 in 2.3.1
Adding FAA Component to download FAA libraries.

RO1AN7094EJ0110 Rev.1.10
Mar.28.25

RENESAS

Page 47 of 68

RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: CS+

3.4.2 Folder Structure
Table 3-8 shows the structure of the source files/header files used in the sample project.

Table 3-8 Folder Structure

Folder, File name Description Generated
by SC
\sample_project<DIR> Sample project folder
main.c Sample source file
sample_project.py (File for loading sample script)
sample_script.py (Sample script)
\src<DIR> Program storage folder \
\smc_gen<DIR> Smart Configurator generated folder N
\Config_FAA<DIR> FAA program storage folder N
Config_FAA_common.c Common FAA module source file N
Config_FAA_common.h Common FAA module header file N
Config_FAA_common.inc Include file for FAA assembly source file N
Config_FAA src.dsp FAA assembly source file A/ Note 1
\Config_ TKBO<DIR> TKB30 program storage folder \
Config_TKBO.c TKB30 source file \
Config_TKBO0.h TKB30 header file \
Config_ TKBO user.c TKB30interrupt source file A/ Note 2
¥general<DIR> Initialization and common program storage | V
folder
¥r_bsp<DIR> BSP program storage folder N
¥r_config<DIR> Configuration header storage folder N

Note. “<DIR>" indicates a directory.
Note 1. This sample project uses the Custom Library of FAA library. Therefore, file content is only a template

and no code right after the file is generated. Sample code has been added.
Note 2. Sample code has been added in the user code area of SC.

3.4.3 Option Byte Settings

Table 3-9 shows the option byte settings.

Table 3-9 Option Byte Settings

Address Setting value Description

000COH/040COH 1110 1111B (EFH) Watchdog Timer stopped operation

(Count stops after reset release)
000C1H/040C1H 1111 1011B (FBH) LVDO reset mode.

Detection voltage: Rising 2.97V / Falling 2.91V
000C2H/040C2H 1110 1000B (E8H) lash operation mode: High-speed main mode.

High-speed on-chip oscillator frequency: 32MHz
000C3H/040C3H 1000 0100B (84H) On-chip debug operation enabled

RO1AN7094EJ0110 Rev.1.10

Mar.28.25

RENESAS

Page 48 of 68

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

3.4.4 List of Constants
Table 3-10 and Table 3-11 show constants used in the sample code.

Table 3-10 Constants (CPU program)

Constant name Value Description Function that
uses the constant
FAA BUS ACCESS 0200H Enable to access TKB30 register from FAA. | main
(ADBSEL setting value)

Table 3-11 Constans (FAA program)

Constant name Value Description
_C_TKBOOO_DUTY_INIT 1900H Initial duty ratio for TKBOOO output (TKBCRO01 setting value)
_C_TKBOO1_DUTY_INIT C800H Initial duty ratio for TKBOO1 output (TKBCRO03 setting value)
_C _TKBTRG_TKBRDT _REQ | 1H Batch overwrite request of TKB30 compare register

(TKBRDTO setting value)

3.4.5 List of Variables
Table 3-12 and Table 3-13 show variables used in the sample code.

Table 3-12 Variables (CPU program)

Type Variable name Description Function that uses
the variable
uint32_t g_work_tkbo00 Variable to check the current duty ratio for main
TKBOOO output
(Value of TKBCRO1)
uint32_t g_work_tkbo01 Variable to check the current duty ratio for main
TKBOO1 output
(Value of TKBCRO3)
uint8_t g_tkb_interrupt_flag 500ms elapsed flag r_Config TKBO_end
_count_interrupt

Table 3-13 Variables (FAA program)

Size Variable name Description
4 bytes | _V_TKBOOO_DUTY | Storage the updated duty ratio for TKBOOO output (TKBCRO1 setting
value)
4 bytes | _V_TKBOO1_DUTY | Storage the updated duty ratio for TKBOO1 output (TKBCRO3 setting
value)
RO1AN7094EJ0110 Rev.1.10 Page 49 of 68

Mar.28.25 RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

3.4.6 List of Functions

Table 3-14 and Table 3-15show functions and processing used in the sample code. However, functions
generated by the Smart Configurator that have not been modified are excluded.

Table 3-14 Functions (CPU program)

Function name Description Source file
main main process main.c
r_Config TKBO_end_count_interrupt TKB30 interrupt processing Config_ TKBO_user.c
(Count the number of INTTKBOO
occurrences)

Table 3-15 Processing (FAA program)

Label name Description Source file
_P_TKB_PWM Change the duty ratio of TKBOO0O0 and TKBOO1 output | Config_FAA_src.dsp

3.4.7 Function Specification
The function specifications of the sample code are shown below.

CPU program
[FUnction name] main()

Outline main process

Header r_smc_entry.h, Config_TKBO0.h
Declaration void main(void)
Description Start operation of the Timer TKB30, and start operation of the FAA every 500ms.
Argument -

Return value -

CPU program
[Function name] r_Config_ TKBO_end_count_interrupt()

Outline Timer TKB30 interrupt processing
Header r_cg_macrodriver.h, r_cg_userdefine.h, Config_ TKBO0.h
Declaration static void __near r_Config_ TKBO_end_count_interrupt(void)

Count INTTMKB30 occurrences and set the 500ms elapsed flag every 250
interrupts (500ms elapsed).

Argument -
Return value -

Description

FAA program
[Label name] _P_TKB_PWM
Outline Change processing of the duty ratio for TKBO0OO and TKBOO1 output
Header Config_FAA_common.inc
Declaration -
Description Change the duty ratio for TKBO00 and TKBOO1 output.
Argument -

Return value -

RO1AN7094EJ0110 Rev.1.10 Page 50 of 68
Mar.28.25 RENESAS

RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: CS+

3.4.8 Flowchart
3.4.8.1 Main Process

Figure 3-8 shows the flowchart for the main process.

Figure 3-8 Main process

=

Store the initial duty ratio of TKBO0O
and TKBOO1 in variables

Start TKB30 operation
R_Config_TKBO_Start()

Enable interrupt
El()

Enable access from FAA to
peripheral registers of TKB30

500ms elapsed?

Clear 500ms elapsed flag

Enable FAA operation
R_Config_FAA_Enable()

Set FAA stack pointer

Set FAA program pointer

Start FAA operation

Wait until FAA process completes
R_Config_FAA_Wait()

Disable FAA operation
R_Config_FAA_Disable()

Store the updated duty ratio for TKBO0O
and TKBOO1 output in variables

IE—1

ADBSEL<—0x0200

g_tkb_interrupt_flag == 1?

g_tkb_interrupt_flag < 0

SPO < End address of FAA data
memory area (2048)

PGO — _P_TKB_PWM in FAA
program

RO1AN7094EJ0110 Rev.1.10
Mar.28.25

RENESAS

Page 51 of 68

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

3.4.8.2 r_Config_TKBO_end_count_interrupt Function

Figure 3-9 shows the flowchart of the r_Config_ TKBO_end_count_interrupt function.

Figure 3-9 r_Config_ TKBO_end_count_interrupt function

(_Config_TK BO_end_count_i nterru@

Counter +1, then
No 500ms elapsed? 250 == s_tkb_count+1?

Yes

Clear the counter s_tkb_count < 0

Set the 500ms elapsed flag g tkb_interrupt_flag < 1

RO1AN7094EJ0110 Rev.1.10 Page 52 of 68
Mar.28.25 RENESAS

RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: CS+

3.4.8.3 FAA Processing

Figure 3-10 shows the flowchart of the r_Config_ TKBO_end_count_interrupt function.

Figure 3-10 FAA processing

(_P_TKB_PWM)

Set the address of variable to RPO
register

Store the current duty ratio for TKBO0O
output in the register

Double the duty ratio

Store the PWM period in the register

100%(period) > duty ratio?

No

Set the doubled duty ratio for TKBOOO
output

Store the doubled duty ratio in the
variable

Store the current duty ratio for TKBO01
output in the register

Divide the duty ratio by two

Set the 1/2 duty ratio for TKBOO1 output

Store the 1/2 duty ratio in the variable

L

Set the duty ratio to 10% for TKBO0O
output

Store the duty ratio in the variable

Set the duty ratio to 80% for TKBOO1
output

Store the duty ratio in the variable

<
<

Request batch overwrite of compare
register

v
GRS

RPO — # V_TKBOO0O_DUTY

AQ — TKBCRO1

A0 — TKBCRO1 * 2
RO < A0

AQ — TKBCROO

A0 >R0 ?

RO < AO
TKBCRO1 < A0

_V_TKBOO00_DUTY « A0

A0 — TKBCRO03

A0 < TKBCRO03 * 1/2

TKBCRO1 < A0

_V_TKBOO1_DUTY < A0

A0 < Initial value

TKBCRO1 <— A0

_V_TKBOOO_DUTY — A0

A0 < Initial value
TKBCR03 — A0

_V_TKBOO1_DUTY « A0

TKBRDTO < 1

RO1AN7094EJ0110 Rev.1.10

Mar.28.25

RENESAS

Page 53 of 68

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

3.5 Sample Script Specification

This sample project includes the sample script that manipulates the value of the address bus selection
register (ADBSEL) to display peripheral function SFRs on the [SFR] panel in CS+ when debugging an FAA
program. (sample_script.py in the sample project)

CS+ can be controlled by using a script language IronPython (Python that runs on .NET Framework) and the
CS+ Python function. For details about the functions, see the help or documentation of CS+ for CC.

3.5.1 SFR Display Overview

For some peripheral functions of RL78/G24, access from the CPU or from the FAA can be selected with the
address bus selection register (ADBSEL). For the address bus select register (ADBSEL), refer to RL78/G24
User’s Manual: Hardware (RO1UH0961).

The debugger reads or writes peripheral function SFR values through bus access from the CPU. It cannot
access the peripheral function SFRs for which bus access from the FAA is selected with the address bus
select register (ADBSEL). Therefore, reading from or writing to these peripheral function SFRs cannot be
performed on the debugger’s [SFR] panel.

To enable read and write on the debugger’s [SFR] panel for the peripheral function SFRs for which bus
access from the FAA is selected when the debug target is FAA, use the script to manipulate the ADBSEL
register value.

Figure 3-11 Image diagram of address bus select function

—lo
apnnnnnn
0
T
(=
mnianm

R
1]

[TITTIIT)
2]
b
c
e

ADBSEL.TKB30SEL=0

] g |
Timer KB30 1 _@3&
0
1 |

ADBSEL.TKB30SEL=1

Timer KB30 o -3¢ -
l]
Accessible from FAA
O [[[. T T AT T)
1]

Not accessible from CPU

Accessible from CPU

Not accessible from FAA

e ——————dJ

3]

RO1AN7094EJ0110 Rev.1.10 Page 54 of 68
Mar.28.25 RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

3.5.2 Operation Overview

When the debug target is FAA, after the FAA program is stopped by using the stop button, step execution, or
breakpoint, the script assigns the XORed value to the current setting of the ADBSEL register. This
temporality permits access from the CPU (the debugger) for the peripheral function SFRs for which access
from the FAA is selected. In addition, before the FAA program is executed by using the execution button or
step execution, the script assigns the original setting to the ADBSEL register to return the setting to permit
access from the FAA.

This allows access from the FAA to the relevant SFRs during execution of the FAA program and, after the
FAA program stops, allows the debugger to access the relevant SFRs and read or write values on the [SFR]
panel.

Figure 3-12 Image of sample script

Sample script file (.py)

e |n addition to the functions and control statements
supported by the IronPython language, use additional
Python functions for CS+ to create operations to control CS+.

Variable initialization

def BeforeCpuRun():
processing e Register CS+ hook functions to be executed before the
def AfterCpuStop(): program starts running and after it stops running.
processing e Write the process to change ADBSEL register values in each
def AfterCpuReset(): hook function.
processing

The script file for this sample project is sample_script.py.

RO1AN7094EJ0110 Rev.1.10 Page 55 of 68
Mar.28.25 RENESAS

RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: CS+

Figure 3-13

Image diagram of changing ADBSEL register values by script

In the case that script is not used.

ADBSEL register setting: Timer KB30 Bus access is from FAA

g

ADBSEL.TKB30SEL=1

~|o o
!4.

When the FAA program stops:

In the case that ADBSEL value is manipulated by script after FAA program stops/before FAA program runs.

!

ADBSEL.TKB305EL=0

k=] I =l
|

When the program Runs:.

g

ADBSEL.TKB30SEL=1

CcPU

]

FAA program stopped:
The debugger cannot access Timer KB30' SFRs.
{Because the debugger accesses SFRs via CPU bus.)

FAA program running:
The debugger can access Timer KB30' SFRs.

After the FAA program stops:

The script assigns the XORed value to the current setting
of the ADBSEL Register.

This changes the bus access from the FAA to the CPU.
The debugger can access Timer KB30' SFRs.

(R/W to Timer KB30' SFRs is possible on the [SFR] panel.)

Before the FAA program runs:

The script assigns the original setting to the ADBSEL
register to return the setting to permit access from the
FAA.

The FAA program can access Timer KB30' SFRs.

v
RO1AN7094EJ0110 Rev.1.10 Page 56 of 68
Mar.28.25 RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

3.5.3 List of Functions

(1) Hook Functions

The sample script uses the CS+ hook functions to change the ADBSEL register value within a hook function
that is called when an event occurs. Table 3-16 lists the hook functions used in the script and provides an
overview of processing.

Table 3-16 Hook functions used in the sample script and processing overview

Hook function name Event overview
AfterCpuReset After CPU reset Initialize variables used in the sample script.
BeforeCpuRun Before execute Write the original value that CPU sets to ADBSEL register
to the ADBSEL register.
AfterCpuStop After break Write the XORed value of the original value to the ADBSEL
register.

(2) CS+ Python Functions

Table 3-17 lists the CS+ Python functions used in the script and provides an overview of processing.

Table 3-17 CS+ Python functions used in the sample script and processing overview

Function name Overview
debugger.DebugTool.GetType This function displays information about the debug tool.
debugger.Watch.SetValue This function sets a variable (SFR) value.
debugger.Watch.GetValue This function refers to a variable (SFR) value.

3.5.4 List of Variables

(1) CS+ Python Property

Table 3-18 lists the CS+ Python property used in the script and provides an overview of processing.

Table 3-18 CS+ Python property used in the sample script and processing overview

Property name Overview
debugger.ProcessorElement This property sets or refers to the PE of multiple cores with the name.
[Value] 1:CPU 2: FAA

(2) Others

Table 3-19 lists the variables other than CS+ Python property used in the script and provides an overview of
processing.

Table 3-19 Other variables used in the sample script and processing overview

Variable name Overview

FaaStatus The FAA program operation status (Set when Go/Stop button is pressed).
[Value]
RUNNING: FAA program is running STOPPING: FAA program is stopping

previousPe The debug target just before pressing the Go/Stop button.
[Value] 1: CPU 2: FAA

adbsel value cpu ADBSEL register’s value set by the CPU program

number_of command | The number of times the hook function was executed.

RO1AN7094EJ0110 Rev.1.10 Page 57 of 68
Mar.28.25 RENESAS

RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: CS+

3.5.5 Flowchart
(1) Initialization Process

Figure 3-14 shows the flowchart of the initialization process that is executed after loading the sample script

(-py).

Figure 3-14 Initialization process

C

After reading of script)

Initialize variables

Show message in console
“Initialize”

Get debugger type

End)

(2) AfterCpuReset Process

Figure 3-15 shows the flowchart of the AfterCpuReset process.

Figure 3-15 AfterCpuReset process

(AfterCpuReset()

)

Initialize variables

Show message in console
status of variables

Present debug target
is FAA?

YES

Show message in console
warning message

&
<

(End

RO1AN7094EJ0110 Rev.1.10
Mar.28.25

RENESAS

Page 58 of 68

RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: CS+

(3) BeforeCpuRun Process

Figure 3-16 and Figure 3-17 show the flowchart of the BeforeCpuRun process.

Figure 3-16 BeforeCpuRun process (1/2)

C

BeforeCpuRun()

)

Debugger type is
not Simulator ?

Show message in console
“RUN: Debug Target(1=CPU, 2=FAA): X”

No
resent debug target is CPU?

revious debug target is CPU?

Show message in console
“CPU RUN: CPU->CPU”

PreviousPe =1

Show message in console
“ADBSEL = XXXXH”

FAA status is STOPPING?

No

Show message in console
“CPU RUN: FAA(STOPPING)->CPU”

Show message in console
“CPU RUN: FAA(RUNNING)->CPU”

Show message in console
“ADBSEL = XXXXH”

Show message in console
“ADBSEL = XXXXH”

ADBSEL = original value

A

RO1AN7094EJ0110 Rev.1.10
Mar.28.25

RENESAS

Page 59 of 68

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

Figure 3-17 BeforeCpuRun process (2/2)

FAA status = RUNNING Show message in console
warning message

. ©

revious debug target is FAA?

Show message in console

“FAA RUN: FAA->FAA” PreviousPe = 2

Show message in console
“FAA RUN: CPU->FAA”

< |
-

Show message in console
“ADBSEL = XXXXH"

Change debug target to CPU
intemally

ADBSEL = original value

Revert debug target

®

7
=

RO1AN7094EJ0110 Rev.1.10 Page 60 of 68
Mar.28.25 RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

(4) AfterCpuStop Process
Figure 3-18 and Figure 3-19 show the flowchart of the AfterCpuStop process.

Figure 3-18 AfterCpuStop process (1/2)
C AfterCpuStop())

Debugger type is
gther than Simulator 2

Show message in console
“STOP: Debug Target(1=CPU, 2=FAA): X"

Yes

Present debug target is CPU?

Yes
No

revious debug target is CPU?

Show message in console
“CPU STOP: FAA->CPU, debug target
was changed while FAA is running.”

Show message in console
“CPU STOP: CPU->CPU”

A

Save current ADBSEL value

Show message in console
“ADBSEL = XXXXH”

®

RO1AN7094EJ0110 Rev.1.10 Page 61 of 68
Mar.28.25 RENESAS

RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: CS+

Figure 3-19 AfterCpuStop process (2/2)

FAA status = STOPPING

revious debug target is FAA?

No

Y

Show message in console
warning message

Show message in console
“FAA STOP: FAA->FAA”

PreviousPe =2

&
<

Show message in console
“FAA STOP: CPU->FAA”

intemally

Change debug target to CPU

ADBSEL = XOR-ed original value

Revert debug target

®

RO1AN7094EJ0110 Rev.1.10
Mar.28.25

RENESAS

Page 62 of 68

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

3.5.6 Script Execution
There are several ways to execute a script and register hook functions.

® When loading the project file (project-file-name.py)

If there is a file in the same folder as the project file, and with the same name as the project file but
with the "py" extension, then that file is executed automatically when the project file is loaded. The
active project will be processed.

® When downloading the download file (download-file-name.py)

If there is a file in the same folder as the download file, and with the same name as the download
file but with the "py" extension, then that file is executed automatically after downloading.

® Execute in the CS+ [Python Console] panel
Execute the “.py” file by the CS+ Python function: “Source”.

In this sample project, it is executed when the project file is loaded.

The hook functions are declared in the sample_script.py. Also, there is the sample_project.py with the same
name as the sample project “sample_project.mtpj”, and the sample_project.py hooks the sample_script.py
and registers hook functions declared in the sample_script.py. The sample_project.py is executed
automatically when the project file is loaded.

Procedure:
1. Load the sample_project.mtpj to CS+.
2. Select the CS+ [View] menu -> [Python Console].

3. Inthe [Python Console] panel, confirm that the script executes.

Figure 3-20 Python Console

Python Console o X

>>>(1) (output by scriptpj————————
Initialize Script
E2Lite

RO1AN7094EJ0110 Rev.1.10 Page 63 of 68
Mar.28.25 RENESAS

RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: CS+

3.5.7 Basic debug operations

This section explains the basic operations of debugging a FAA program using sample code and sample

scripts.

Procedure:

1. Connect the RL78/G24 Fast Prototyping Board (with the emulator or via COM port) to the PC.
2. Select the [Debug] menu -> [Rebuild & Download].

3. Select the [View] menu -> [Debug Manager] and select the CPU as debug target.

Figure 3-21

Debug Manager

Debug Manager
@O0 6 @) 5= 5= %= d
Debug tanget:
[T®cru O FaA
Debug target status:
Running status: IE] BREAK
Target status
Cument PC: = 0x00172

4. Open the main.c. Click the main area of “FAACNT = 0x0001U;” to set the breakpoint (Software break).

Figure 3-22 main.c (Debug target: CPU)

j‘ main.c
80| %) = ~ e | Columns-
Line 341 Address | 0]
60 =]
61 * Function Name: main
62 -
63 void main(void)
64 =
65 [* TKBCRO1.TKBCRO3 initial value */
66 00172 ® g_work_tkbo00 = TKBCRO1;
67 0017¢c _waork_tkbo01 = TKECRO3:
68
69 [* TKB30 start =/
70 00186 | R_Config_TKBO_Start():
7
72 0018a | EI(:
73
74 [FAA bus select ™/
75 00130 | ADBSEL = FAA_BUS_ACCESS:
76
77 while (1)
78 {
79 [+ Wait INTINTTMKBO *f
80 00193 | while (g_tkb_interrupt_flag == OU)
81 {
82 :
83 1
84
&5 [* Clear user flag %/
85 00198 | g_tkb_interrupt_flag = 0U;
87
88 [* FAA operation enable */
89 0019b | R_Caonfig_FAA_Enable();
a0
a1 [* Set stack pointer for FAA
92 001a5 | SP0=FAA_ADDR_SP:
93 [* Set program painter for FAA ¥/
94 001aa | PGO = FAA_ADDR_CODE(P_TKE_PWM):
a5 [* Start FAA program execution */
96 001b0 | FAACNT = 0x0001U:
97
98 [* Wait until FAA stops */
a9 001b1 | R_Config_FAA_Wait();
100 [* FAA operation disable */
101 001b5 | R_Config_FAA_Disable();
102 [* Store TKBCRO1 value changed by FAA
103 001b9 g_work_tkbo00 = V_TKBOO0O_DUTY:
104 001c5 g_work_tkbo01 = V_TKBOO1_DUTY:

RO1AN7094EJ0110 Rev.1.10

Mar.28.25

RENESAS

Page 64 of 68

RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: CS+

5. Click the reset button and then click the execution button in the [Debug Manager].

Figure 3-23 Debug Manager

Debug
ci’_;—'"f'ﬁl ﬁl-\gl }3_"‘"1 @ | 5= (= %= | J§

Debug targ\% \
Go
[OX«; Reset (U FAA
Debug target status:
Running status D BREAK
Target status:
Cument PC: P 0x00172

[X|

6. After the program stopped by the breakpoint, change the debug target to the FAA on the [Debug
Manager]. To debug FAA programs, the FAA must be enabled (FAAEN=1, ENB=1). In the sample
code, “R_Config FAA_Enable()” enables the FAA. Therefore, the FAA has been enabled at the

breakpoint.

7. Register variables (_V_TKBO00_DUTY, _V _TKBOO01_DUTY) and SFRs (TKBCR01_PTR,
TKBCRO03_PTR PPP, RRR) whose values are changed in the FAA program to the [Watch] panel.

After registering the variable, change it to 4-byte notation. (Refer to 2.6.6 Symbol (Label)

SFRs can also be displayed in the [SFR] panel.
The [Watch] panel to display the variables must be set to the FAA data space.(Refer to 2.5.2

Debug Tool Settings)

Figure 3-24

[Watch] panel

Watch2

@ S| & L L] M | Notation~

Watch

Value Type(Byte Size)

« _V_TKEOOO_DUTY 0%00000000
« _W_TKEOO1_DUTY 0x
FiITKBCRO1 PTR

U TRECROS PTR

A

watchl ': Watch2 (5] Local Variables # SFR (gl Events

Address Memo
LR
0x010

0x8742

RO1AN7094EJ0110 Rev.1.10
Mar.28.25

RENESAS

Page 65 of 68

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

8. Step-execute/execute the FAA program and debug while checking the values of variables, SFRs, and
registers.

+ Breakpoints can be set by clicking in the main area of the FAA program source. (Refer to 2.6.4
Breakpoint)

+ After running the program, check in the [Python Console] panel whether the ADBSEL register
value is the value set in the CPU program.
(Remark: ADBSEL register is only accessible by the CPU, so the value of the ADBSEL register
cannot be displayed in the [SFR] panel while debugging the FAA.)

Figure 3-25 Example of FAA program debugger screen

jmamc & Config_FAA src - x| |Watch2 2 x
08 | ol @ 5% & £) X | Notation~ @
= olumns~
ateh Malue TypelByte Size) Address Memo
. e —_
Line| [383 addifnl & _V_TKBODO_DUTY 0%00000000 7 (4) 0x000
22 .I* Start user code for section data. Do not edit comment generated here */ _TKEOD1 DUTY o 00 78 o010
23 s - . .
, ; I TKBCRO1 PTR SFRIR/Y 16](2) K842
24 _C_TKBOOO_DUTY_INIT: DATA H'1900 : Initial duty for TKBOOO = .
25 “C_TKBOOT_DUTY_INIT: DATA HCB800 - Initial duty for TKBOOT R THoR03PTR g sFIR/R 151c2) orarie
26 _C_TKBTRG_TKBRDT_REQ: DATA H'01 For setting TKBRDT
27)
28 PUBLIC _V_TKBOOO_DUTY Variables, SFRs value
29 _V_TKBOOO_DUTY: DATA H'00000000 : Storing updated futy of TKBOOO < >
0 PUBLIC _V_TKBOO1_DUTY Pl Watch! Fl Weich2 (5] Local Vriables 1 SFR (3] Evens
3 _V_TKBOO1_DUTY: DATA H'00000000 : Storing updated futy of TKBOO1 -
32 CPU Register 7 x
;C: _D_TKBTRG_TKBRSF_AND: DATA H'01 : For checking TKBRSFO @ | Notation~ | ™3 Registers value
35 -I* End user code. Do not edit comment generated here */ Register Name vaiue ~
36 S)ff Operation parameter register set
D N CODE £ Ao 0%00001900
Hardware breakpoint jser code for section code. Do not edit comment generated here */ £ Mo 0% 00000000
W 0%00000000
40 PUBLIC _P_TKB_PWM = 0x00000000
41 _P_TKB_PWM: g 0x00000000
42 000 MOV #_V_TKBOO00_DUTY. RPO
43 002 IN (¥TKBCROT1), AO Python Console | 7 x
44 004 SFT_LL :AD*2-> AD : AD = (TKBCRO01*2) -
45 005 MOV AO, RO :AD-> RO : RO =(TKBCR01*2) (9) (output by script)—
46 006 5 || IN (#TKBCROD), AD RUN Debug Targel(1=CPU, 2-| s After executing the program,
47 008 SUBR - A0-RO-> A0 : (TKBCROO - (TKBCR01"2)) A AASFAA check whether the ADBSEL
48 009 JMP UNDER. #P_| DUTY INIT : TKBCROO < (TKBCR01*2) DBSEL‘ 200 H register value was restored to
49 -
50 P_DUTY_CHANGE the original value CPU has set.
51 00b PUSH RO : RO -> stack (10) (output by script)-
52 00c POP AQ : stack -> A0 : AQ = (TKBCRO1"2) STOP: Debug Target(1=CPU, 2= FA
53 00d OUT AD. (§TKBCROQT) : (TKBCRO172) -> TKBCRO1 < | —
54 00f MOV AQ, (0.RPQ) : current TKBCRO1-> _V_TKBOOO_DUTY | console) CSSmrle SR
55 011 IN (#TKBCR03), AD Output 1 x
56 013 SFT_RL 1AD/2-> A0 : AD = (TKBCRO03/2) TEOF] -

3.56.8 Cautions When Using the Sample Script

v' To disable this script (initialize Python), enter the following in the [Console] tab of the [Python console]
panel.

common.Pythonlnitialize()

Alternatively, if you want to re-enable the sample script without reloading the sample project, enter the
following in the [Console] tab of the [Python console] panel.

import os

Source (0s.path.join(os.path.dirname(project.Path), 'sample_script.py'))

Remark. “os.path.join(os.path.dirname(project.Path)” is a description to get the full path of the file.

v' The operation of sample code is not guaranteed. And the operation of this sample script is not
guaranteed with all application programs and debugging operations.

v' This sample script assists in displaying SFRs when debugging FAA programs. After completing
debugging, thoroughly evaluate your system without using the sample script.

RO1AN7094EJ0110 Rev.1.10 Page 66 of 68
Mar.28.25 RENESAS

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

4. Sample Code

Sample code can be downloaded from the Renesas Electronics website.

5. Reference Documents

RL78/G24 User’s Manual: Hardware (RO1UH0961)

RL78 family User's Manual: Software (R0O1US0015)

DSPASM FAA/GREEN_DSP Structured Assembler User's Manual (R20UT3911)
RL78/G24 Fast Prototyping Board User’s Manual (R20UT5091)

RL78 Smart Configurator User’s Gude: CS+ (R20AN0580)

CS+ V8.10.00 User’'s Manual: RL78 Debug Tool (R20UT5301)

(The latest version can be downloaded from the Renesas Electronics website.)
Technical Update/Technical News

(The latest version can be downloaded from the Renesas Electronics website.)

All trademarks and registered trademarks are the property of their respective owners.

RO1AN7094EJ0110 Rev.1.10
Mar.28.25 RENESAS

Page 67 of 68

RL78/G24

Flexible Application Accelerator (FAA) Tool Guide: CS+

Revision History

Description
Rev. Date Page Summary
1.00 Nov. 14. 23 - First edition
1.10 Mar. 28. 25 5 Figure1-4: Modification

1.3.2: Addition of description

6 1.3.3: Addition of Remark
8 Table2-1: Modification of tool version
Table2-2: Addition of Note1
16 Figure2-15: Modification
17 Figure2-16: Modification
Figure2-17: Modification
Figure2-18: Modification
18 Figure2-19: Modification
19 Figure2-21: Modification, Addition of Remark1
18: Addition of Link
20 Table2-4: Addition of function name of transfer processing
21 Note2: Modification of description
29 Caution2: Addition of function name of transfer processing
32 Figure2-34: Modification
34 The FAA program controls: Addition of description
Figure2-38: Modification
35 2.6.6: Modification of description for watch expression
36 Figure2-40: Modification
37 Figure2-41: Modification

RO1AN7094EJ0110 Rev.1.10

Mar.28.25

Re Page 68 of 68
RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or /0
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V.
(Max.) and Vi1 (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between Vi (Max.) and Vix (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.

Notice

1.

10.

11.

12.

13.
14.

(Note1)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Flexible Application Accelerator (FAA)
	1.2 Internal Memory Space of FAA
	1.3 Program for RL78/G24
	1.3.1 Program Structure
	1.3.2 Transfer of Program and Data for FAA
	1.3.3 FAA Program
	Build Process and Debug of FAA Program

	2. Option Setting and Operation
	2.1 Operating Environment
	Project Creation
	2.3 Adding FAA Program
	2.3.1 Adding FAA Component
	2.3.2 Overview of FAA library’s File Structure

	2.4 Build Tool Option Setting
	2.4.1 FAA Assemble Options
	2.4.2 Link Options
	2.4.3 Program Building

	2.5 Debug Tool Option Setting
	2.5.1 Connect Settings
	2.5.2 Debug Tool Settings
	2.5.3 Download File Settings
	2.5.4 Program Download

	2.6 FAA Program Debug
	2.6.1 Debug Target
	2.6.2 Source File Display
	2.6.3 Go/Stop
	2.6.4 Breakpoint
	2.6.5 Memory
	2.6.6 Symbol (Label)
	2.6.7 Register
	2.6.8 SFR

	3. Sample Project
	3.1 Specifications
	3.1.1 Specification Overview
	3.1.2 Operation Overview

	3.2 Operation Confirmation Conditions
	3.3 Hardware Description
	3.3.1 Example of Hardware Configuration
	3.3.2 List of Used Pins

	3.4 Software Description
	3.4.1 Smart Configurator Setting
	3.4.1.1 Clock
	3.4.1.2 System
	3.4.1.3 Component

	3.4.2 Folder Structure
	3.4.3 Option Byte Settings
	3.4.4 List of Constants
	3.4.5 List of Variables
	3.4.6 List of Functions
	3.4.7 Function Specification
	3.4.8 Flowchart
	3.4.8.1 Main Process
	3.4.8.2 r_Config_TKB0_end_count_interrupt Function
	3.4.8.3 FAA Processing

	3.5 Sample Script Specification
	3.5.1 SFR Display Overview
	3.5.2 Operation Overview
	3.5.3 List of Functions
	(1) Hook Functions
	(2) CS+ Python Functions

	3.5.4 List of Variables
	(1) CS+ Python Property
	(2) Others

	3.5.5 Flowchart
	(1) Initialization Process
	(2) AfterCpuReset Process
	(3) BeforeCpuRun Process
	(4) AfterCpuStop Process

	3.5.6 Script Execution
	3.5.7 Basic debug operations
	3.5.8 Cautions When Using the Sample Script

	4. Sample Code
	5. Reference Documents

