

RL78/I1A

RL78/I1Aによる照明通信(受信編)

R01AN1115JJ0301 Rev.3.01 2017.06.27

目的

本アプリケーションノートは、RL78/I1A の機能を使用して、DALI、DMX512、赤外線リモコンなどのさまざまな照明システムにおける調光制御の通信インタフェースを実装する方法について説明します。

対象読者

本書は、通信機能を持つ照明システムの設計や開発に携わる照明システム・エンジニアを対象にしています。

対象製品は以下の通りです。

• 20ピン: R5F1076C

• 30ピン: R5F107AE, R5F107AC

• 38ピン: R5F107DE

目 次

1.	はじ	じめに			5
2.	Арр	lilet E	Z for HC	CD Controller について	6
				ル	
	0	7.1,0	1. 1		
3.	DAL	⊥诵信			8
-					
	0.1			ま	
				。 烙構成	
				構成概要 構成概要	
			3.1.2.2		
		3.1.3		ステム構成	
				システム構成	
		0.4.4		Control Gear	
		3.1.4		信の特徴 信の概要	
		3.1.5		ョの低安 データ構造とフレーム構造	
				ファース構造とプレー公構造 Settling time	
			3.1.5.3	送受信タイミング	
			3.1.5.4	コマンド	
	3.2	RL78		ALI 通信を実現する方法	
		3.2.1	DALI 通	信で使用する RL78/I1A の機能:DALI/UART4 インタフェース	16
			3.2.1.1	通信回路	
				データ通信時のタイミング・チャート	
		3.2.2		信のパラメータの保存	
	0.0	3.2.3		5 5	
	3.3	DALI		ピソフトウェアの構成	
	0.4	3.3.1		/フトウェアフローチャート	
				・ドリスト	
	3.5			·HCD DALI 通信機能 関数一覧(EZ-0012 版)	
		3.5.1	_	DALL :	
				DALI_init DALI_getValue	
			3.5.1.2	DALI_getvalue DALI_ActualLevelChangeCheck	
			3.5.1.4	DALI RevceiveCommand	
			3.5.1.5	DALI Fading	
			3.5.1.6	DALI_UpdateVariables	49
			3.5.1.7	DALI_SetSystemFailure	49
			3.5.1.8	DALI_ResetValue	
			3.5.1.9	DALI_CheckReset	
		252		DALI_RandmInit	
		3.5.2	3.5.2.1	nalyze.cDALI CheckConfigCommand	
			3.5.2.1	DALI Check2ndCommand	
			3.5.2.3	DALI_AnalyzeCommand	
			3.5.2.4	DALI CheckAddress	
		3.5.3	r_dali_c	ommand.c	
			3.5.3.1	DALI_LightingCommand	
			3.5.3.2	DALI_QueryCommand	
			3.5.3.3	DALI_ConfigCommand	
			3.5.3.4	DALL_SatAraPayerWithEada	
			3.5.3.5	DALI_SetArcPowerWithFade	52

			3.5.3.6	DALI_SpecialC	ommand	52
		3.5.4	r_dali_n	nemorybank.c		52
			3.5.4.1		rybank	
			3.5.4.2	DALI_WriteMe	norybank	53
			3.5.4.3		emorybank	
			3.5.4.4		morybank	
			3.5.4.5		emorybankSaving	
			3.5.4.6		ksum	
		3.5.5	r dali ti			
			3.5.5.1			
			3.5.5.2			
			3.5.5.3		er	
			3.5.5.4	DALI_StopTime	er	54
			3.5.5.5	DALI_IsTimerR	unning	55
			3.5.5.6	DALI_StartFad	eTimer	55
			3.5.5.7	DALI_StopFade	eTimer	55
			3.5.5.8	DALI_IsFading		55
			3.5.5.9	DALI_GetRand	omValue	55
		3.5.6	r_dali_v			
			3.5.6.1		tion	
			3.5.6.2		iables	
			3.5.6.3		ables	
			3.5.6.4		lode	
			3.5.6.5		ng	
		3.5.7				
			3.5.7.2		mand	
			3.5.7.3		wer	
			3.5.7.4		eception	
			3.5.7.5	—	eception	
			3.5.7.6		ohibit	
			3.5.7.7	DALI_CheckInt	erfaceDown	58
	D. 4.	VE40	· z /=			50
4.						
	4.1				b	
					フェース	
	4.2	RL78	/I1A の [DMX512 通信機	能	62
		4.2.1	周辺機能	É		62
		4.2.2	動作の概	既要		62
	4.3	DMX	調光制御	リソフトウェア	の説明	64
		4.3.1	内部周边	辺機能の初期化		64
		4.3.2	動作の角	Z説とソフトウェ	アのフローチャート	65
5.	赤外	線通	言			69
٥.						
	J. I				D概要	
		5.1.1 5.4.2	ハー じょ	ファテネル ノロ トコル(りょ マキ)が	リ慨妥 フェース	
	5 0					
	5.2					
	- ^					
	5.3				,	
		5.3.2	動作の角	¥説とフローチャ	- h	76
<i> </i> _1_4	- A			Þ		82
1 . T∓	:τ Δ	フル	+ フスィ	'		Q'

1. はじめに

RL78/I1A マイクロコントローラは、LED 照明システムの調光制御において、次のようなさまざまな通信プロトコルをサポートしています。

- シリアル・アレイ・ユニット 4, DALI/UART4 (送受信フレーム: 8, 16, 17, 24 ビット) のチャネル 0 および 1 に搭載された内蔵マンチェスター・エンコーダ・ペリフェラルでサポートされる DALI 通信
- UARTO シリアル・インタフェースおよび 16 ビット・タイマ・アレイ・ユニットでサポートされる DMX512 通信
- 16 ビット・タイマ・アレイ・ユニットの入力信号ハイ/ロウ・レベル幅測定機能を使用したハードウェアによって、赤外線(IR) リモコン信号の受信を管理可能

ソフトウェアを使用すると、このような調光インタフェースを制御するためのサンプル・コードが自動的に生成されます。このアプリケーションノートでは、Applilet EZ for HCD Controller Ver.9.0(以下 Applilet EZ for HCD Controller)で生成されたサンプル・コードについて記述します。

Applilet EZ for HCD Controller は、*RL78/I1A DC/DC LED 制御評価ボード*用のサンプル・コードを生成することができます。ボードのブロック図(図 1-1)の左側にある赤いブロックは、上記3つの通信回路であり、RL78/I1A の周辺機能との接続の概要を示しています。

- DALI 回路 → DALI/UART4 インタフェース
- DMX512 回路 → UARTO インタフェースおよびロウ・レベル幅測定モードでの TAU チャネル
- 赤外線リモコン回路 → ハイ・レベル幅測定モードでの TAU チャネル

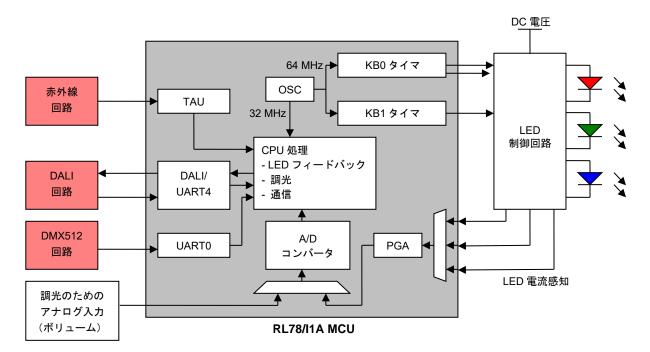


図 1-1 RL78/I1A DC/DC LED 制御評価ボードのブロック図

2. Applilet EZ for HCD Controller について

2.1 概要

Applilet EZ for HCD Controller は、LED 照明/イルミネーション用マイコンのソフトウェア自動生成、およびプログラム書き込み用ツールです。

調光動作や通信モードを GUI 上で指定するだけで、LED を定電流で制御するマイコンのソフトウェアを簡単に生成することができます。また、生成されたソフトウェアを、USB ケーブル経由でマイコンのフラッシュ・メモリに自動的に書き込み、動作確認を評価ボードで簡単に行うことができます。

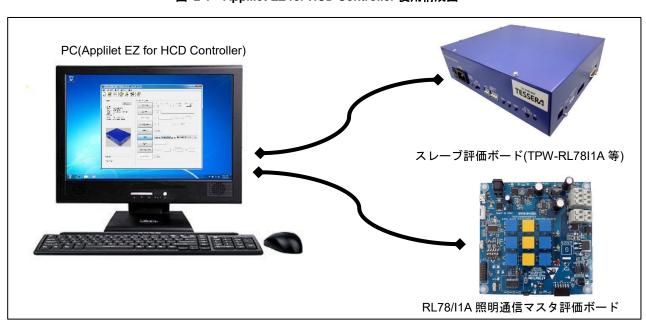
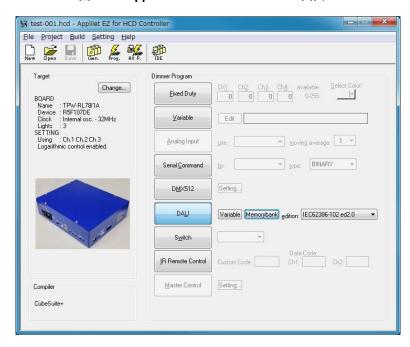



図 2-1 Applilet EZ for HCD Controller 使用構成図

2.2 対応プロトコル

Applilet EZ for HCD Controller で対応する照明通信プロトコルを示します。

表 2-1 対応プロトコル

プロトコル名	概要
	DALI(Digital Addressable Lighting Interface)は、国際オープンの照明制御通信プロト
DALI	コルで、主に複数の蛍光灯や LED 照明の調光や調色を行うために使用します。異なる
27.2	メーカーの製品間でも通信できるように作られた規格です。
	DMX512は、デジタル・データ送信のための有線通信プロトコルで、舞台照明や展示照
DMX512	明などの産業照明用途(調光器、スキャナ、移動ライト、ストロボなどを搭載した装置)
2	で幅広く使用されています。
	赤外線を利用して信号を送受信して行う無線通信で、Applilet EZ for HCD Controller で
	はNECフォーマットに対応します。
IR	NECフォーマットは、世界中の産業界で広く使用されている赤外線送信プロトコルの1
	つです。NECの赤外線リモート・コントロールでは、約950 nmの赤外線を使用して、低
	速で数バイトの情報を送信します。

詳細については、Applilet EZ for HCD Controller V9.0 のユーザーズマニュアル(R20UT0435JJ1300)を参照してください。

2.3 対応ボード

Applilet EZ for HCD Controller で対応するボード一覧を示します。

表 2-2 対応ボード

ボード名	対象コンポーネント	概要
EZ-0012	Control gear	RL78/I1Aを採用したLEDの評価ボードです。 Red, Green, Blueの3色のLEDを搭載しています。RL78/I1AとFET による制御が定電流ドライバICなしで可能です。
TPW-RL78I1A	Control gear	RL78/I1Aを搭載したテセラテクノロジ製のLED電源評価装置です。 PFCと3chまでのLEDを制御することが可能です。マイコンへの書き 込み、デバッグはオンボードUSBIFまたはE1を用いて行います。
AC/DC 1コンバータ LED電源評価装置	Control gear	RL78/I1Aを採用した、非絶縁型1コンバータ方式によるLED制御の評価ボードです。マイコンへの書き込み、デバッグはオンボードUSB-IFまたはE1を用いて行います。
AC/DC 2コンバータ LED電源評価装置	Control gear	RL78/I1Aを採用した、非絶縁型2コンバータ方式によるLED制御の評価ボードです。マイコンへの書き込み、デバッグはオンボードUSB-IFまたはE1を用いて行います。
照明通信マスタ	Control device (Application controller)	各種照明評価ボードを制御するための通信マスタボードとして使用することが可能です。DALIプロトコル通信、DMX512プロトコル通信、赤外線リモコンの各インタフェースをサポートしています。また、マスタボード上のスイッチ操作のみでの通信も可能です。

注意 本アプリケーションノートでは、EZ-0012 以前の LED 評価ボード (EZ-0005, EZ-0006 等) および照明通信マスタ評価ボード (EZ-0008) を対象としておりません。

3. DALI 通信

本アプリケーションノートでは、特に記述の無い限り、IEC62386101ed1.0、IEC62386-102ed1.0 について説明しています。

ソフトウェアの構成、関数については、評価ボード(EZ-0012)の IEC62386-102ed1.0 用のものを用いて説明します。 2014 年 11 月にリリースされた IEC62386-101 ed.2.0, IEC62386-102 ed.2.0 では、マルチマスタのサポート、通信タイミング等について変更が入っています。詳細については付録 A、付録 B を参照してください。

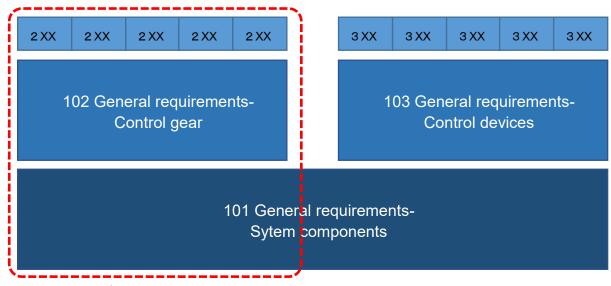
3.1 DALI 概説

3.1.1 DALIとは

DALI(Digital Addressable Lighting Interface)は、国際オープンの照明制御通信プロトコルで、主に複数の蛍光灯や LED 照明の調光を行うために使用します。異なるメーカーの製品間でも通信できるように作られた規格です。

3.1.2 DALI 規格構成

DALI は IEC62386 にて規定されています。


3.1.2.1 構成概要

DALI の規格の構成を以下に示します。

IEC62386 にはシリーズと呼ばれるいくつかの Part を含んでいます。

- Part 101 システムコンポーネントに関する一般要件
- Part 102 Control Gear (スレーブ) のための一般要件
- Part 103 Control Device (マスタ) にための一般要件
- ・Part 2xx Control Gear (スレーブ) に関する光源特有の拡張機能
- Part 3xx Control Device(マスタ)に関する Input Device 固有の拡張機能

図 3-1 IEC62386 概要図

※赤枠内が本アプリケーションノート対象範囲

3.1.2.2 拡張機能概要

Part102,及び Part103 に対する拡張機能概要を以下の表に示します。

表 3-1 Part2xx 概要

Part番号	内容
201	蛍光ランプ(装置タイプ0)
202	内臓式非常照明(装置タイプ1)
203	放電ランプ(蛍光ランプを除く)(装置タイプ2)
204	低電圧ハロゲンランプ(装置タイプ3)
205	白熱ランプ用電源電圧コントローラ(装置タイプ4)
206	デジタル信号の直流電圧への変換(装置タイプ5)
207	LEDモデル(装置タイプ6)
208	スイッチング機能(装置タイプ7)
209	色彩制御(装置タイプ8)
210	シーケンサ(装置タイプ9)

表 3-2 Part3xx 概要

Part番号	内容
301	押しボタン
302	スイッチ&スライダー
303	プレゼンス検出器
304	光センサー
305	カラーセンサー
306	IPインタフェース
307	ロータリー
332	フィードバック
333	マニュアル設定

3.1.3 DALI システム構成

DALI のシステム構成について以下に示します。

3.1.3.1 システム構成

DALI 規格に準拠するシステムは、表 3-3 に示すコンポーネントで構成されなければなりません。

表 3-3 システムコンポーネント

コンポーネント	個数	詳細情報の参照
Bus power supply	≧ 1	IEC62386-101
Control gear	≧ 0	IEC62386-102
Application controller	≧ 1	IEC62386-103
Input device	≧ 0	IEC62386-103
Bus	1	IEC62386-101

システムの構成例を図 3-2 に示します。

Bus power supply Bus power supply (IEC62386-101) Control Device Application Input device controller (IEC62386-103) Bus (IEC62386-101) Control gear Control gear Control gear (IEC62386-102)

図 3-2 システム構成例

※赤枠内が本アプリケーションノート対象範囲

3.1.3.2 Control Gear

Control gear は、少なくとも 1 つの出力(光源)を制御するために、Control device(Application controller)からのコマンドを受信し、出力(光源)の設定や調光を行うためのデバイスです。

Control gear は 1 つの Bus 上に論理デバイスも含め最大 64 台の接続が可能です。Bus 上に複数の Application controller が存在(マルチマスタ^注)した場合においても、Control gear の接続最大数は 64 台になります。

図 3-3 システム構成例

Control gear の詳細については IEC62386-102 を参照してください。

注:マルチマスタは IEC62386-102 ed. 2.0 以降でサポートされます。

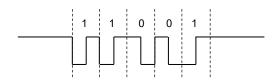
3.1.4 DALI 通信の特徴

- 1 つのマスタから、スレーブを最大 64 台接続可能
- 2線式, 半二重, 1200 ±10% [bit/sec] の通信
- ネットワーク化でスレーブのグループ化が可能
 - ▶ 最大64のショート・アドレス
 - ▶ 最大 16 のグループ・アドレス
- 254 段階(8 ビット精度)の調光レベル、任意の調光レベルをシーンとして 16 個まで保存または切り替え可能

3.1.5 DALI 通信の概要

3.1.5.1 データ構造とフレーム構造

(1) データ構造 (=ビットの定義)

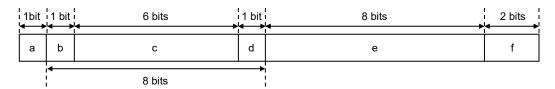

• DALI 通信はマンチェスタ符号化されています。

マンチェスタ・コード:

- ▶ ビット1または0の定義は H/L といった電圧レベルではなく、電圧変化のエッジで表します。
- ♪ 立ち下がりエッジは「O」、立ち上がりエッジは「1」とビット定義されます。
- なお、通信がない状態では信号は H レベルを維持します。

(2) フレーム構造

図 3-4 マンチェスタ・コードの例


DALI 通信プロトコルのフレーム構造は、Forward フレームと Backward フレームで定義されます。

• Forward フレーム

Forward フレームは、マスタから送信されるフレームで、19 ビットで構成されます。

図 3-5 に Forward フレームの構造を示します。

図 3-5 Forward フレームの構造

a : スタート・ビット(1ビット, 「1」と同じ波形) : フレームの先頭を示します。

bcd : アドレス・バイト (8 ビット) ¹ : フレームの送信先, またはスペシャルコマンドを

表します。

b : <0>ショート・アドレス

<1>グループ・アドレス/ブロードキャスト

c : アドレス・ビット d : セレクト・ビット。

<0>Direct Arc Power Control コマンド

<1>その他のコマンド

e : データ・バイト (8 ビット) **2 : コマンドまたは直接調光レベルを指定する

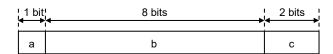
Direct Arc Power Control Commands のデータで

す。

f : ストップ・ビット(2ビットハイ・レベル固定) : フレームの最後を示します。

注1: アドレス・バイトの詳細は 3.1.5.4 コマンドの「(1) アドレス・バイト」をご参照ください。

注2: データ・バイトの詳細は 3.1.5.4 コマンドの「(2) コマンド」をご参照ください。


• Backward フレーム

Backward フレームは、スレーブから送信されるフレームで、11 ビットで構成されます。 マスタからの問いかけに対する返信用となっています。

a : スタート・ビット(1 ビット,「1」と同じ波形) : フレームの先頭を示します。
b : データ・バイト(8 ビット) : マスタへの返答を行います。
c : ストップ・ビット(8 ビット) : フレームの最後を示します。

図 3-6 に Backward フレームの構造を示します。

図 3-6 Backward フレームの構造

3.1.5.2 Settling time

Settling time について以下に示します。

(1) IEC62386-101ed1.0

図 3-7, 図 3-8 に IEC62386-101ed1.0 の Settling time について示します。

図 3-7 forward to backward frames

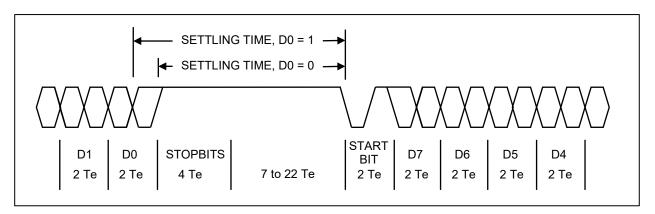
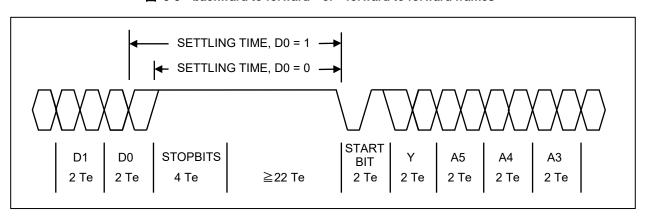



図 3-8 backward to forward or forward to forward frames

IEC62386-101ed1.0 の Settling time は、データの最終 bit が 0 か 1 で長さが 1Te 分変わります。

例えば、Forward から Backward フレームまでの送信間隔は、

最終 bit である D0 が 0 である場合の Settling time は

Settling time = StopBits(4 Te) + $(7 \text{ Te} \sim 22 \text{ Te})$

最終 bit である D0 が 1 である場合の Settling time は

Settling time = 1 Te + StopBits(4 Te) + $(7 \text{ Te} \sim 22 \text{ Te})$

と言うように、最終 bit のデータによって変化します。

IEC62386-101ed1.0 でのフレーム間タイミングは、StopBits 終了から StartBit 開始までの時間を規定しています。 (3.1.5.3 送受信タイミング参照)

注意 Te = 416.67 μs

備考 IEC62386-101ed2.0 の Settling time については付録 B DALI(IEC62386-101,102)ed2.0 通信タイミングを参照してください。

3.1.5.3 送受信タイミング

(1) フレームボーレート

DALI 通信のボーレート: 1200bps

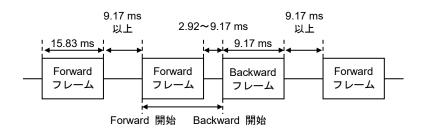
ビット幅 $^{\pm}$: 1ビット = 833.3 μ s \pm 10%

注: Forward フレームと Backward フレームとを問わず、ビット幅は同じです。

(2) フレーム間のタイミング (101ed1.0)

DALI はフレーム単位で、次のタイミング制御が必要です。

● Forward フレーム幅:15.83 ms±10%


• Backward フレーム幅: 9.17 ms±10%

• Forward フレームと Backward フレームとの通信間隔: 2.92~9.17 ms

• Forward フレームと次の Forward フレームとの間隔: 9.17 ms 以上

• Backward フレームと次の Forward フレームとの間隔: 9.17 ms 以上

図 3-9 フレーム間のタイミング

備考 IEC62386-101ed2.0 のフレーム間のタイミングについては付録 B DALI(IEC62386-101,102)ed2.0 通信タイミングを参照してください。

3.1.5.4 コマンド

(1) アドレス・パイト

DALI 通信プロトコルは3つのアドレス・モード(ブロードキャスト、グループ、シングル)をアドレス・バイトで指定して、スレーブのデバイスをコントロールしています。アドレス・バイトは特殊コマンドを表すこともあります。

表 3-4 アドレス

アドレス種類	アドレス・バイト
ブロードキャスト・アドレス	1111111S
64 ショート・アドレス	0AAAAAS (AAAAAA=0-63)
16 グループ・アドレス	100AAAAS (AAAA=0-15)
特殊コマンド	101CCCC1 110CCCC1

A: アドレス・ビット

S: セレクト・ビット DirectArcPowerControl コマンドか他のコマンドかを選択するビットです。 S = '0' DirectArcPowerControl コマンドです。データ・バイトは調光レベル設定になります。 S = '1' データ・バイトはその他コマンドのコマンド・ナンバーになります。

C: 特殊コマンド・ナンバー

コマンド例:

グループ・アドレス9のスレーブを調光レベル254に設定する場合

アドレス・バイト データ・バイト

10010010 11111110

解説:

- アドレス・バイトの上位 3 ビットが 100 となっていることから、グループ・アドレス指定となります。また、ビット 4-1 が 1001 なので、グループ・アドレス 9 が選択されています。
- 最下位のセレクト・ビットが 0 なので、このコマンドは Direct Arc Power Control コマンドとなり、2 バイト目 (データ・バイト)で 254 (最大調光レベル)の直接調光レベルを指定しています。

(2) コマンド

ここでは DALI 通信プロトコルの主なコマンドを示します。

全コマンド・リストについては、「3.4 DALI全コマンドリスト」をご参照ください。

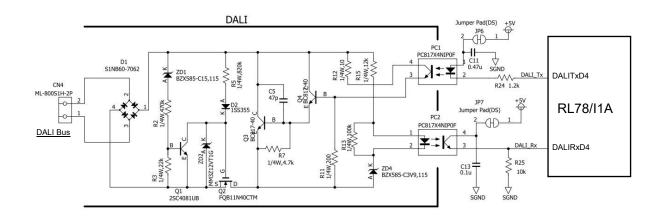
表 3-5 DALI 通信プロトコルの主なコマンド

	コマンド種類	Command 例	役割	アドレス	コマンド/データ (8 ビット)
1	Arc power control commands 調光レベルを操作するコ	DIRECT ARC POWER CONTROL	数値で直接調光レベルを指定す る (フェードあり)	YAAAAAA0	XXXX XXXX
	マンド	OFF	オフにする	YAAAAAA1	0000 0000
		SET UP	現在の調光レベル+1 (フェー ドなし)オンオフなし	YAAAAAA1	0000 0011
2	Configuration	RESET	スレーブの設定を初期化	YAAAAAA1	0010 0000
	commands スレーブの設定を行うコ マンド	ADD TO GROUP	アドレスで使用されたスレーブ をグループ XXXX に加える	YAAAAAA1	0110 XXXX
3	Query commands スレーブの状態を調べる コマンド	QUERY STATUS	STATUS INFORMATION を返 す	YAAAAAA1	10010000
4	Special commands アドレス設定を行うコマ ンド	INITIALISE	アドレス検出動作を開始する (XXXX でスレーブを指定)	10100101	XXXX XXXX
5	Extending special commands 機能拡張用のコマンド	ENABLE DEBICE TYPE X	デバイス XXXX を追加する(特 殊なデバイスの追加)	1100 0001	XXXX XXXX
6	Application extended commands デバイス拡張, 規格更新用コマンド	QUERY EXTENDED VERSION NUMBER	デバイスタイプと対応する通信 規格のバージョンを返す	YAAAAAA1	1111 1111

3.2 RL78/I1A で DALI 通信を実現する方法

3.2.1 DALI 通信で使用する RL78/I1A の機能: DALI/UART4 インタフェース

RL78/I1A マイクロコントローラはシリアル・インタフェース DALI/UART4 を搭載しており、DALI 通信のスレーブとしての送受信をハードウェアで行うことが可能です。


従って、DALI 通信時におけるソフトウェア処理を少なく、CPU 負荷も小さくすることが可能です。

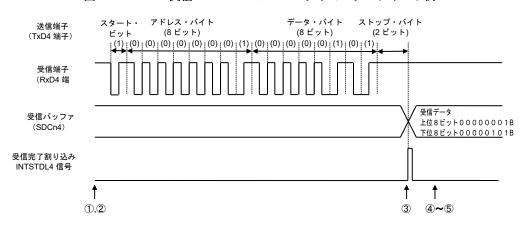
3.2.1.1 通信回路

図 3-10 に DALI 通信の回路構成例を示します。

ここで、 DALI 通信に必要な端子は DALI 受信入力 (RxD4 端子) 、DALI 送信出力(TxD4 端子)の 2 端子です。

図 3-10 DALI 通信の回路構成例

3.2.1.2 データ通信時のタイミング・チャート


(1) 受信時

マスタから Forward フレームを受信する時のタイミング・チャートの例を図 3-11 に示します。

図 3-11 はショート・アドレスで 'RECALL MAX LEVEL' を受信した場合です。

コマンド:00000001 00000101

図 3-11 DALI 受信 Forward フレームタイミング・チャート例

受信動作の概要は次の通りです。

<受信準備>

<1> DALI/UART4 の初期設定をします。

- DALI/UART4 へのクロック供給を開始(PER1 レジスタの DALIEN ビットを 1)します。
- fclk の 4 クロック以上を待ってから、SPS4 レジスタで動作クロックを設定します。
- DALI モード、動作モード、通信フォーマット、転送ボー・レートの設定を各レジスタ(SOC4、SMR4n、SMR4r、SCR4n、SDR4n)で行ないます。
- <2> 通信待機状態に設定します。
 - 対象チャネルの SS40/SS41 ビットに"1"を設定し、通信待機状態にします。
 - ※ 割り込み設定なども必要に応じ適宜行います。

<受信処理>

- <3> 受信データのスタート・ビットの検出を待ってデータの受信を行います。
 - データ受信が正常に行なわれると割り込み INTSTDL4 が発生し, 受信データが SDR41 レジスタに格納されます。SDR41 レジスタから受信データを読み出して処理します。
 - 受信エラー時は、割り込み INTSREDL4 が発生し、受信エラー・ステータスが SSR41 レジスタに格納されます。
 - 必要に応じて割り込み要求をクリアします。
 - ※ 図 3-11 は正常受信時のタイミング・チャートです。

<受信の停止>

- <4> ST40/ST41 ビットに 1 を書き込み, 通信動作を停止します。
- <5> DALI/UART4 へのクロック供給を禁止に設定(PER1 レジスタの DALIEN ビットを 0) します。

(2) 送信時

マスタへ Backward フレームの送信をする時のタイミング・チャート例を図 3-12 **図** 3-12 に示します。 この例は、マスタから受信したコマンド(例 QUERY LAMP FAILURE '照明にトラブルはありますか?')に対して'Yes'を応答した場合です。

'Yes': 1111 1111

送信バッファ 8 ビット・データ 11111111B (SDTn4) データ・バイト (8)ビット ストップ・ビッ ・ビット (1) : (1) : (1) : (1) : (1) : (1) : (1) : (1) 送信端子 (TxD4 端子) 受信端子 (RxD4 端子) 送信完了割り込み INTSRDL4 信号 1~3 (4) (5) **6**)

図 3-12 DALI 受信 Backward フレームタイミング・チャート例

送信動作概要は次の通りです。

く送信準備>

- <1> DALI/UART4 の初期設定を行います。
 - DALI/UART4 クロック供給を開始(PER1 レジスタの DALIEN ビットを 1)します。
 - fclk の 4 クロック以上を待ってから、SPS4 レジスタで動作クロックを設定します。
 - DALI モード, 動作モード, 通信フォーマット, 転送ボー・レート, 出力の設定を各レジスタ (SOC4, SMR4n, SMR4r, SCR4n, SDR4n, SO4, SOE4) で行います。
- <2> 通信待機状態に設定します。
 - 対象チャネルの SS40/SS41 ビットに"1"を設定し、通信待機状態にします。

<送信処理>

- <3> SDTL4, SDTH4 レジスタに送信データを設定し、通信開始します。
- <4> 送信完了時に INTSRDL4 割り込みが発生します。 必要に応じて割り込み要求をクリアします。

<送信の停止>

- <5> ST40/ST41 ビットに 1 を書き込み、通信動作を停止します。
- <6> DALI/UART4 へのクロック供給を禁止に設定(PER1 レジスタの DALIEN ビットを 0) します。

3.2.2 DALI 通信のパラメータの保存

DALI 通信では一部のパラメータが不揮発であることが求められています。パラメータの保存は RL78/I1A のデータフラッシュを使用した EEPROM エミュレーション・ライブラリ^注で実現します。

● Applilet EZ for HCD で生成されるサンプル・コードは、scene、faderate、fadetime、などのパラメータをスレーブ・チャンネル分 EEPROM エミュレーションで格納します。初期値は DALI Property で設定する事ができます。設定パネルを図 3-13 に示します。

図 3-13 Applilet EZ for HCD の DALI パラメータ設定パネル

● これらのパラメータはヘッダファイル r_dali.h と r_dali_user.c 内に構造体 dali_variables として格納されます。 保存されるデータの一覧を表 3-6 に示します。

項目	DALI_Variables メンバ名	サイズ [バイト]	項目	DALI_Variables メンバ名	サイズ [バイト]
Version Number	version_number	1	Short Address	short_address	1
Physical Min Level	physical_min_level	1	Random Address h	random_address_h	1
Device Type	device_type	1	Random Address h	random_address_m	1
Power On Level	power_on_level	1	Random Address h	random_address_I	1
System Failure Level	system_failure_level	1	Group settings (0 to 7)	group_0_7	1
Min Level	min_level	1	Group settings (8 to 15)	group_8_15	1
Max Level	max_level	1	scene	scene	16
Fade Rate	fade_rate	1	Actual Level	actual_level	1
Fade Time	fade_time	1			

表 3-6 EEPROM エミュレーション機能で保存されるパラメータ

注: ルネサス エレクトロニクスがご提供する EEPROM エミュレーション・ライブラリの詳細は「EEPROM Emulation Library」(資料番号: R01AN0707ED0100)(英語版のみ)をご参照ください。

3.2.3 動作概要

ここでは DALI 通信におけるスレーブ動作について解説します。

スレーブはマスタから Forward フレームを受信し、解析した後に調光動作や Backward フレーム送信(応答)などの処理を行います。

DALI 通信を使用した調光動作で使用する周辺機能は次の通りです。

- DALI 通信に使用するハードウェア: DALI/UART4, TAU, データフラッシュ(EEPROM エミュレーション)
- 調光に使用するハードウェア: A/D, TAU, PGA, 16 ビット・タイマ KB0, KB1, KB2

周辺機能の設定を以下に示します。

- 使用する周辺機能と設定
 - 16 ビットタイマ・アレイ・ユニットのチャンネル 0
 - カウント・クロック fclк=32 MHz
 - ▶ 1 ms のインターバル・タイマとして設定
 - 16 ビットタイマ・アレイ・ユニットのチャンネル 1
 - ▶ カウント・クロック fclk=32 MHz を選択
 - 100 μs のインターバル・タイマとして設定
 - A/D コンバータ
 - ➤ A/D 変換時間 2.97 us に設定
 - プログラマブル・ゲイン・アンプ (PGA)
 - ▶ 増幅率に8倍に設定
 - ▶ 入力チャンネル ANI2 に設定
 - 16 ビット・タイマ KB
 - ▶ カウント・クロック f_{PLL} = 64 MHz
 - ▶ TKBO, TKB1 を単体動作モードに設定
 - ▶ 使用するタイマ出力(TKBO00, TKBO01, TKBO10)のデフォルト・レベルをロウ・レベル、アクティブ・レベルをハイ・レベルに設定
 - ▶ PWM 出力ディザリング機能を使用
 - ▶ PWM 出力周波数を 250 kHz に設定

● TAU 動作の詳細

[TAU00]

TAU00 は 1 ms のインタバール・タイマとして設定し、DALI 通信を実現するためのタイミングコントロールとして使用しています。主なタイミングコントロールは次の通りです。

- Forward フレームと Backward フレーム間隔のウエイト
 (DALI 通信規格に合わせるため、プログラム中では 4 ms に設定)
- Configuration commands (Command 番号 32~129) 2 回目受信までの制限時間 (100 ms)
- Address commands (Command 番号 259~270) の処理可能時間の制限時間 (15 min)
- フェード処理実行のタイミング(10 ms)
- DAPC sequence の制限時間(200 ms)
- DALI 通信のパラメータを自動保存するための時間計測
 (パラメータ変更後、調光レベルが 100 ms の間変化しなかった場合に保存)
- DALI マスタボードとの間の信号線の監視
 (一定時間 LOW の場合に System Failure と判断する) (500 ms)
- コマンド受信禁止する時間の計測
 (backward フレーム送信の可能性があるコマンドの場合, コマンド受信から 19 ms の間, 受信禁止)

[TAU01]

TAU01 は 100 μ s のインタバール・タイマとして LED 調光のフィードバック処理 $^{\pm}$ で使用します。フィードバック処理の詳細はアプリケーションノート「RL78/I1A による LED 制御」(資料番号: R01AN10875J)をご参照ください。

3.3 DALI 通信調光ソフトウェアの構成

【ソフトウェアのファイル構成】

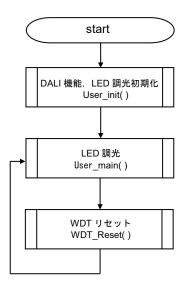
DALI 通信を実現するソフトウェアのファイル構成は以下の通りです。

本ソフトウェアは Applilet EZ for HCD で生成することが可能です。生成手順の詳細は Applilet EZ for HCD のユーザーズマニュアルをご覧下さい。

表 3-7 サンプル・コードのファイル構成

機能	ファイル	概要
オプション・バイ トの設定	r_init.asm	・マイコンの基本動作を設定するオプション・バイトの設定を行います。 ウォッチドッグ・タイマの設定 動作モード、高速内蔵発振回路の設定 オンチップ・デバッグの設定 ※オプション・バイトの設定は、統合開発環境で行う事もできます。
LED 調光制御	r_usermain.c r_LED.c r_LED1.c r_LED2.c r_LED3.c	 3 チャンネルの LED を 250 kHz の PWM で制御しています。 100 μs 毎フィードバック処理を行い目標値に合わせて PWM 出力を変更します。 詳細に関しては、アプリケーションノート「RL78/I1A による LED 制御」をご参照ください。
システムクロック 初期化処理	r_systeminit.c r_cgc.c r_lvd.c	 クロック、電圧検出回路(LVD)の設定を行います。 高速内蔵発振回路動作、PLL機能設定 各周辺回路に対する入力クロック供給の設定 A/D コンバータ、シリアル・アレイ・ユニット 0、タイマ・アレイ・ユニットシリアル・アレイ・ユニット4(DALI/UART4)、コンパレータ/プログラマブル・ゲイン・アンプ、16 ビット・タイマ KBLVDの動作モードを設定(リセット・モード)
ウォッチドッグ・ タイマ処理	r_wdt.c	・ ウォッチドック・タイマのカウンタをクリアする処理を行います。
タイマ割り込み INTTM00	r_timer.c	・ TAU00 をインタバール・タイマモード(1 ms)に設定し,DALI 機能動作のため の時間管理を行います。
DALI 通信 プロトコル処理	r_dali.c r_dali_timer.c r_dali_analyze.c r_dali_command.c r_dali_memorybank.c r_dali_user.c r_dali_variable.c	 DALI 通信を実現するためのファイル/関数群です。 DALI 通信機能の初期化、受信したコマンドの解析、指定チャンネルの調光レベル制御などの処理が含まれています。 含まれている関数と役割については 3.5 Applilet EZ for HCD DALI 通信機能関数一覧(EZ-0012版)をご参照ください。

3.3.1 動作とソフトウェアフローチャート


本節では DALI 通信プログラムの構造を詳しく説明します。 DALI 通信を実現するソフトウェアのゼネラルフローを図 3-14 に示します。

● ゼネラルフローチャート このプログラムは初期化, LED 調光, WDT リセットの 3 つに大別できます。

【概要】

プログラムは最初に初期化が行われ、その後、LED 調光と WDT リセットクリアを繰り返し実行します。 DALI の処理は LED 調光の中で行われています。受信データがあれば、コマンド解析を行い、必要な場合は返信し、または調光を行います。

図 3-14 ゼネラルフロー

● 初期化処理フローチャート

初期化処理 User_init()は以下 2 つの処理を行っています。フローチャートを図 3-15 に示します。

LED 調光に関連する周辺機能の初期化 : LED_init() DALI 通信機能に関連する周辺機能の初期化 : DALI_init()

注: LED 調光に関連する周辺の初期化については、アプリケーションノート「RL78/I1A による LED 制御」で説明されています。詳細はそちらもご参照ください。

【概要】

User_init()は LED_init()と DALI_init()が含まれています。DALI_init()はパラメータ、EEPROM エミュレーションの初期化を行い、DALI 機能で使用するタイマ変数についても DALI_init_Timer()で初期化しています。

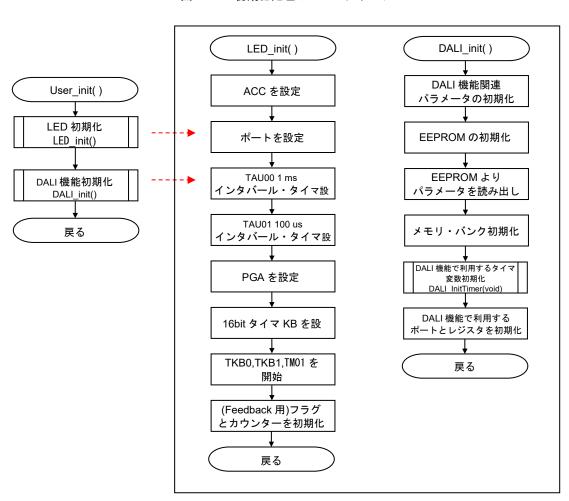
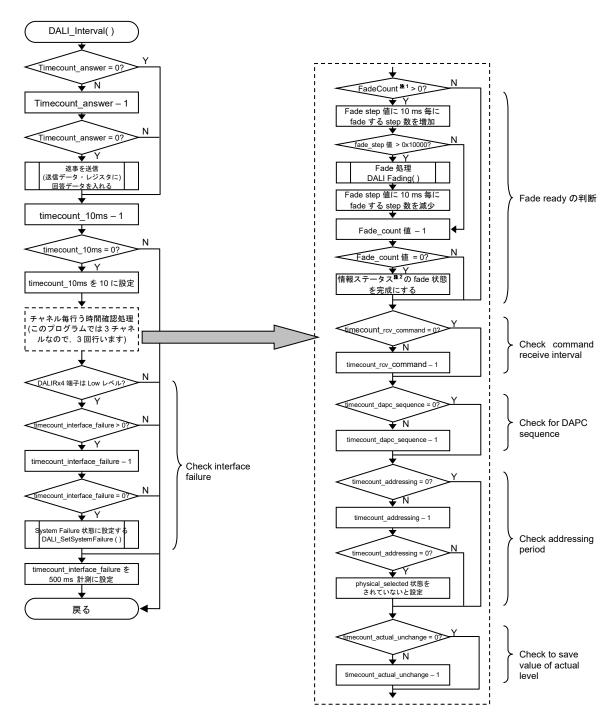


図 3-15 初期化処理のフローチャート

● DALI 定周期処理フローチャート


DALI_Interval()は DALI 通信処理で使用する各ソフトウェアタイマの基本となる関数です。フローチャートを図 3-16 に示します。

【概要】

DALI Interval()は TAU00 を使用した 1 ms の定周期処理を行う関数です。

この関数は内部で複数のソフトウェア・タイマを構成・制御を行っており、DALI 通信処理で時間管理が必要な処理の基準となっています。ソフトウェア・タイマの変数について表 3-8 に示します。

図 3-16 DALI インターバル処理(1 ms)のフローチャート

注1: fade count 値が n の場合は、fade time=10 ms×n を意味しています。

注2: 情報ステータスの 'STATUS INFORMATION' byte のことです。

bit 4 fade ready;

'0' = fade is ready;

'1' = fade is running

表 3-8 ソフトウェア・タイマの変数一覧

変数一覧					
timecount_answer	Forward フレーム受信から backward フレーム返信までウェイトするためのタイマカウンタ				
timecount_10ms	10 ms の間隔を生成するためのタイマカウンタ				
timecount_rcv_command	Configuration commands 2 回受信までの時間を計測するためのタイマカウンタ				
timecount_dapc_sequence	DAPC sequence 時の制限時間計測のためのタイマカウンタ				
timecount_addressing	Address commands 処理可能期間計測のためのタイマカウンタ				
timecount_actual_unchange	DALI パラメータ保存のタイミングを得るためのタイマカウンタ				
timecount_interface_failure	DALI マスタボードとの通信線確認のためのタイマカウンタ				
timecount_prohibit_reception	コマンド受信禁止する期間を計測するためのタイマカウンタ				

● LED 調光処理フローチャート

User_main()は DALI 通信プロトコルとしてもっとも重要なコマンドの受信、分析および LED 調光処理を行っています。フローチャートを図 3-17 で示します。

【概要】

User_main()は DALI コマンドの受信と解析を行う DALI_ReceiveCommand(), チャンネル毎に LED の調光レベルを 得る DALI_getvalue(), 新しい調光レベルを設定する LEDn_set()から構成されています。LEDn_set()はチャンネルごとに関数が存在します。

User_main()

DALI command を受信,解析
DALI_ReceiveCommand()

LED 新設定値を取得(channel 毎に実行)
DALI_getvalue()

新設定値で LED を設定(channel 毎に実行)
LEDn_Set() (n = 1, 2, 3) を

図 3-17 LED 調光処理フローチャート

注: LEDn_Set() の詳細はアプリケーションノート「RL78/I1A による LED 制御」をご参照ください。

● DALI コマンドの受信、解析フローチャート
DALI コマンドの受信、解析を行う DALI_ReceiveCommand()のフローチャートを図 3-18 に示します。

【概要】

DALI_ReceiveCommand()における DALI コマンドの受信は、割り込みフラグ(SRDLIF4, SREDLIF4)をポーリングすることで確認しています。フラグを確認し、正常受信であれば受信データを解析処理します。返信が必要であれば、返信用の時間管理のために Forward フレームと Backward フレーム間隔のウェイト用タイマカウンタ (timecount_answer)を 4 ms に設定します。DALI_ProhibitReception()関数により、受信したコマンドが応答を必要とするコマンドである場合には想定される応答送信までの時間、受信禁止状態にします。

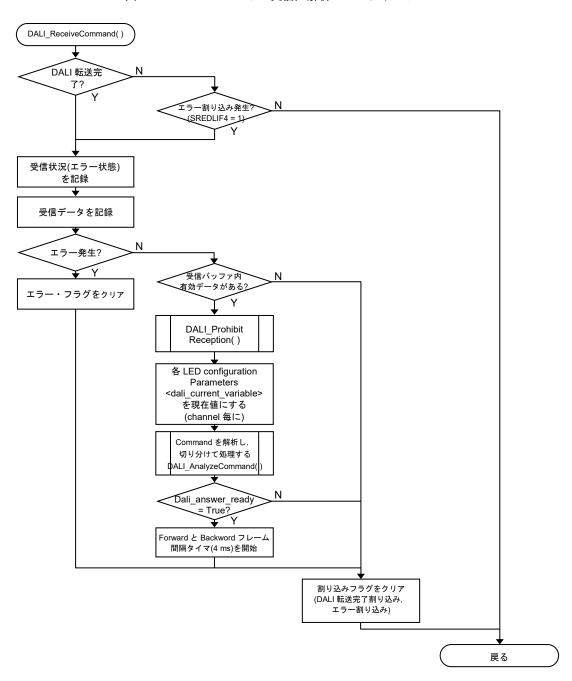


図 3-18 DALIコマンドの受信,解析フローチャート

● コマンド解析、切り分け処理フローチャート

DALI_ReceiveCommand()内でコマンド解析および切り分け処理を DALI_AnalyzeCommand()が行っています。フローチャートを図 3-19 に示します。

【概要】

受信した DALI コマンドはアドレスとコマンドの 2 バイトデータとなります。ここではアドレスとコマンドに分けて 処理しています。

〇 アドレスの分析:

アドレス値の大きさ(3.1.5.4 コマンドをご参照ください)により、アドレスの種類を判断します。

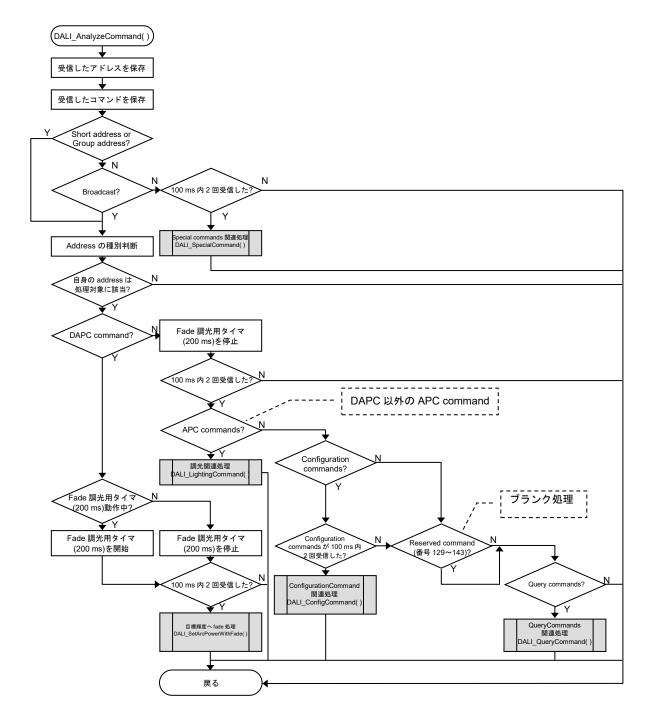
ブロードキャスト・アドレス、ショート・アドレス、グループ・アドレス以外の場合は、特殊コマンドと判断されます。

特殊コマンドであれば、特殊コマンド関連処理 DALI_SpecialCommand()を実行します。

特殊コマンドでなければ(ブロードキャスト・アドレス,ショート・アドレス,またグループ・アドレスのどちらかに該当する場合),スレーブが自分自身のアドレスが処理対象に該当するかどうかを判断します。該当する場合,コマンドの分析に入ります。

〇 コマンドの分析:

コマンドの種類に対応する処理を行います。

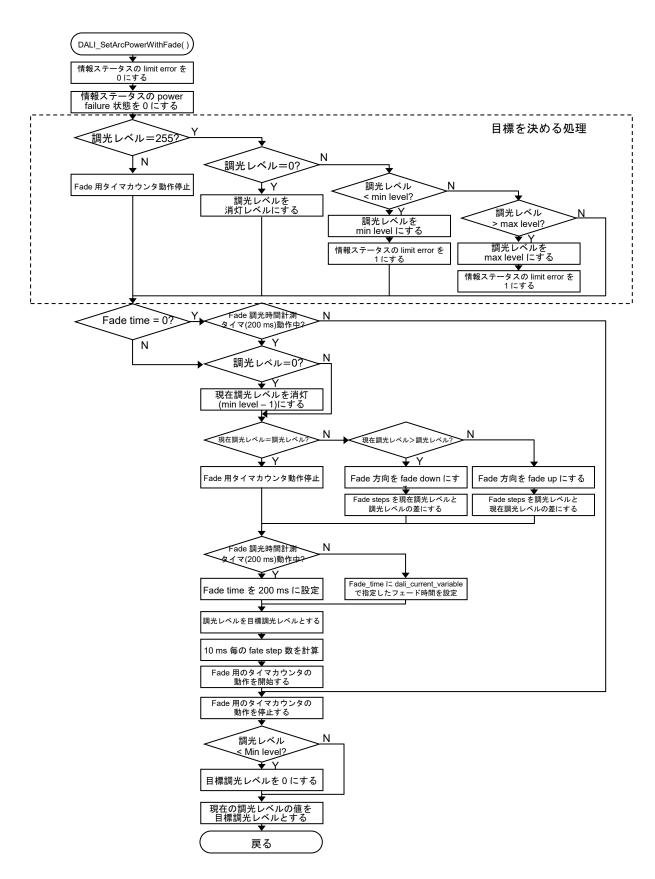

具体的には下記4種類に分かれます。これらの関数はr_dali_command.c内に記述されています。

- Direct arc power control command であれば、目標調光レベルへフェード処理を行う DALI_SetArcPowerWithFade()を実行します。
- DAPC 以外の Arc power command であれば、調光関連処理の DALI_LightingCommand()を実行します。^注
- Configuration Command は、100 ms 内に 2 回受信できたら、Configuration Command 関連処理の

 DALI_ConfigCommand()を実行します。^注
- Query Commands であれば、Query commands 関連処理 *DALI_QueryCommand()*を実行します。^注

注: フローチャート上では一部省略しています。詳細はプログラムをご参照ください。

図 3-19 コマンド解析、切り分け処理フローチャート



● DAPC コマンドとフェード処理フローチャート
DALI_SetArcPowerWithFade()は DAPC コマンド受信時に目標調光レベルと時間管理を行う関数です。フローチャートを図 3-20 に示します。

【概要】

DALI_SetArcPowerWithFade()は DALI_AnalyzeCommand()から呼び出され、受信した DAPC コマンドを調光レベル として使用します。調光レベルは、関数内で最大調光レベル(MAX LEVEL)と最小調光レベル(MIN LEVEL)に収まるように制限されます。この制限された値が目標調光レベルとなり、fade time で設定された時間でフェードを行います。なお、消灯している場合は、目標調光レベルで点灯します。

図 3-20 DAPC コマンドとフェード処理フローチャート

◆ LED 調光レベルの取得処理フローチャートDALI_GetValue()は LED の調光レベルを得る関数です。フローチャートを図 3-21 に示します。

【概要】

DALI_GetValue()は User_main()内で呼び出される関数で、LED の調光レベルを返します。この値は DALI コマンドの受信と解析を行う DALI ReceiveCommand()により求められた値です。

DALI_GetValue()は常に実行されるため、コンフィグデータの保存もここで行います。コンフィグデータ保存フラグが ON (コンフィグデータあるいは調光レベルが変更されている)、 DALI コマンド応答の送信待ちではない、ランダムアドレス割当処理中ではない、という全ての条件を満たす場合に、コンフィグデータの保存処理を行います。コンフィグデータの保存が失敗した場合は、SystemFailure 状態になります。

○ 現在調光レベル変化確認処理(DALI_ActureLevelChangeCheck())について コンフィグデータの「POWER ON LEVEL」が 255 の場合は、POWERON 時の調光レベルを最後に設定されて いた調光レベルにする必要があります。このため、調光レベル(Actual Level)が変化した場合に保存していま す。保存は、調光レベルが最後に変化してから 500 ms の間変化しなかった時に行われます。

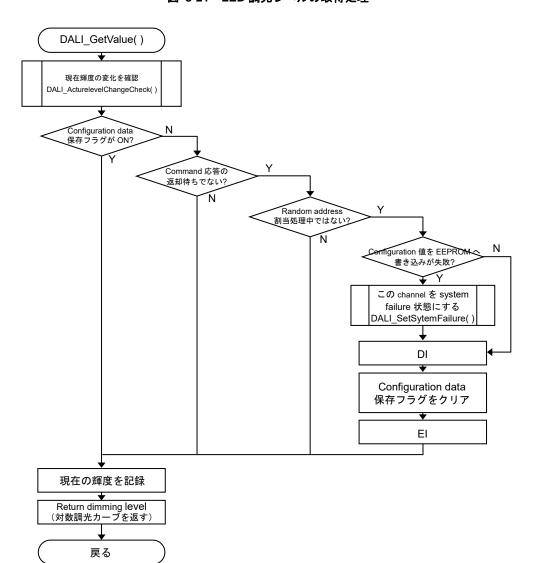


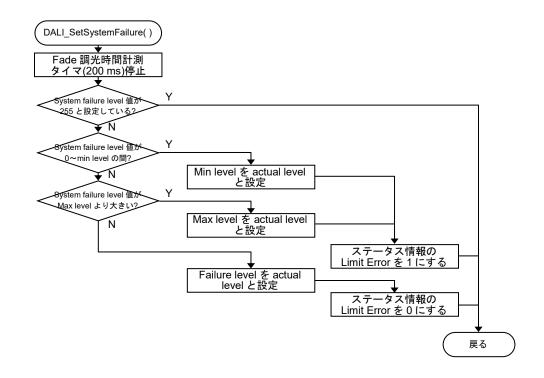
図 3-21 LED 調光レベルの取得処理

• System Failure 状態に設定する処理フローチャート DALI_SetSystemFailure()はコンフィグデータの書き込みに失敗した時など、SystemFailure 状態に設定する為の関数 です。フローチャートを図 3-22 に示します。

【概要】

DALI SetSystemFailure()では、指定されたチャンネルを EEPROM 内保存されたリセット値で設定した上で SystemFailure 状態にします。

動作の流れは次の通りです。


- フェード処理用の計測タイマ(200 ms)を停止
- Failure level により、Actual level と情報ステータスを以下条件に従って変更。
- Failure_level = 255 の時, Actual level は変更しない
- 0<Failure_level ≦Min level の時, Actual level を Min level の値にします
- Failure_level>Max level の時, Actual level を Max level の値にします
- Min level ≦Failure_level ≦Max level の時, また Failure_level=0 の時は, Actual level を Failure level の値にしま
- 上記処理に応じて、情報ステータスのビット 3:Limit Error *#の値が変わります。

注: Limit Error

0:前回の Arc power 値が Min と Max level の間, あるいは OFF

1:前回の Arc power 値が Min と Max level の間ではない

図 3-22 System Failure 状態に設定する処理

3.4 DALI 全コマンドリスト

(1) Arc power control commands

調光レベルを操作するコマンド

番号	コード	名称	内容
_	YAAA AAA0 XXXX XXXX	DIRECT ARC POWER CONTROL	Fade time に従って、任意の調光レベルXXXX XXXX に調光します。
0	YAAA AAA1 0000 0000	OFF	消灯します。
1	YAAA AAA1 0000 0001	UP	Fade rate に従って200 ms 間調光レベルをUP します。 ^{注1}
2	YAAA AAA1 0000 0010	DOWN	Fade rate に従って200 ms 間調光レベルをDOWN します。注1
3	YAAA AAA1 0000 0011	STEP UP	調光レベルを+1 します。 (フェードなし) ^{注1}
4	YAAA AAA1 0000 0100	STEP DOWN	調光レベルを-1 します。 (フェードなし) ^{注1}
5	YAAA AAA1 0000 0101	RECALL MAX LEVEL	調光レベルを最大にします。(フェードなし) ^{注2}
6	YAAA AAA1 0000 0110	RECALL MIN LEVEL	調光レベルを最小にします。(フェードなし) ^{注2}
7	YAAA AAA1 0000 0111	STEP DOWN AND OFF	調光レベルを−1 し、調光レベルが最小であれば消灯します。 (フェードなし)
8	YAAA AAA1 0000 1000	ON AND STEP UP	調光レベルを+1 し,消灯状態であれば点灯します。 (フェードなし)
9	YAAA AAA1 0000 1001	ENABLE DAPC SEQUENCE	DAPC コマンドの繰り返しの開始を示します。
10	YAAA AAA1 0000 1010	GO TO LAST ACTIVE LEVEL	Fade time にしたがって,前回の調光レベルに調光しま
			す。 (IEC62386-102ed2.0 のみ存在するコマンド)
11~15	YAAA AAA1 0000 11XX	RESERVED	[未使用]
16~31	YAAA AAA1 0000 XXXX	GO TO SCENE	Fade time に従って、Scene XXXX に調光します。

備考: Y: <0>ショート・アドレス

<1>グループ・アドレス/ブロードキャスト

A: アドレス・ビット

X:データ

注1: スレーブが消灯状態(Actual Level=0)から点灯状態へ,および点灯状態から消灯状態(Actual Level=0)へ 移行することはしません。

注2: スレーブが消灯状態(Actual Level=0)の場合、点灯状態へ移行します。

(2) Configuration commands

スレーブの設定値を変更するコマンドです。

番号	コード	名称	内容
32	YAAA AAA1 0010 0000	RESET	スレーブをRESET状態にします。
33	YAAA AAA1 0010 0001	STORE ACTUAL LEVEL IN THE DTR	現在の調光レベルをDTR(DTR0)に保存します。
		(STORE ACTUAL LEVEL IN DTR0)	(括弧内はIEC62386-102ed2.0での名称)
34	YAAA AAA1 0010 0010	SAVE PERSISTENT VARIABLES	変数を不揮発性メモリ(NVM)に保存してください。
			(IEC62386-102ed2.0 のみ存在するコマンド)
35	YAAA AAA1 0010 0011	SET OPERATING MODE	DTRO のデータをオペレーティングモードとして設定しま
			す。
			(IEC62386-102ed2.0 のみ存在するコマンド)
36	YAAA AAA1 0010 0100	RESET MEMORY BANK	DTRO で指定したメモリ・バンクをリセット値に変更しま
			す。
			(IEC62386-102ed2.0 のみ存在するコマンド)
37	YAAA AAA1 0010 0101	IDENTIFY DEVICE	デバイスの識別状態を開始します。
			(IEC62386-102ed2.0 のみ存在するコマンド)
38~41	YAAA AAA1 0010 XXXX	RESERVED	[未使用]
42	YAAA AAA1 0010 1010	STORE THE DTR AS MAX LEVEL	DTRのデータを調光レベルの上限として設定します。
		(SET MAX LEVEL)	(括弧内はIEC62386-102ed2.0での名称)
43	YAAA AAA1 0010 1011	STORE THE DTR AS MIN LEVEL	DTRのデータを調光レベルの下限として設定します。
		(SET MIN LEVEL)	(括弧内はIEC62386-102ed2.0での名称)
44	YAAA AAA1 0010 1100	STORE THE DTR AS SYSTEM	DTRのデータを'FAILURE LEVEL'として設定します。
		FAILURE LEVEL	(括弧内はIEC62386-102ed2.0での名称)
		(SET SYSTEM FAILURE LEVEL)	
45	YAAA AAA1 0010 1101	STORE THE DTR AS POWER ON	DTR のデータを'POWER ON LEVEL'として設定しま
		LEVEL	す。
		(SET POWER ON LEVEL)	(括弧内はIEC62386-102ed2.0での名称)
46	YAAA AAA1 0010 1110	STORE THE DTR AS FADE TIME	DTRのデータをFade timeに設定します。
		(SET FADE TIME)	(括弧内はIEC62386-102ed2.0での名称)
47	YAAA AAA1 0010 1111	STORE THE DTR AS FADE RATE	DTRのデータをFade rateに設定します。
		(SET FADE RATE)	(括弧内はIEC62386-102ed2.0での名称)
48	YAAA AAA1 0011 0000	SET EXTENDED FADE TIME	DTR0 のデータを Extended Fade Time に設定します。
			(IEC62386-102ed2.0 のみ存在するコマンド)
49~63	YAAA AAA1 0011 XXXX	RESERVED	[未使用]
64~79	YAAA AAA1 0100 XXXX	STORE THE DTR AS SCENE	DTRのデータをScene XXXXとして設定します。
		(SET SCENE)	(括弧内はIEC62386-102ed2.0での名称)
80~95	YAAA AAA1 0101 XXXX	REMOVE FROM SCENE	Scene XXXXの設定を削除します。
			(1111 1111をScene レジスタへ)
96~111	YAAA AAA1 0110 XXXX	ADD TO GROUP	Group XXXXに加えます。
112~127	YAAA AAA1 0111 XXXX	REMOVE FROM GROUP	Group XXXXから除きます。
128	YAAA AAA1 1000 0000	STORE DTR AS SHORT ADDRESS	DTRのデータをShort Addressとして設定します。
		(SET SHORT ADDRESS)	(括弧内はIEC62386-102ed2.0での名称)
129	YAAA AAA1 1000 0001	ENABLE WRITE MEMORY	メモリ・バンクの書き込みを許可します。
130~143	YAAA AAA1 1000 XXXX	RESERVED	[未使用]

備考: Y : <0>ショート・アドレス

<1>グループ・アドレス/ブロードキャスト

A : アドレス・ビット

X : データ

DTR : Data Transfer Register

(3) Query commands

スレーブの状態を調べるコマンド

番号		状態を調べるコマンド コード	名称	内容
144	Fw:	YAAA AAA1 1001 0000	QUERY STATUS	STATUS INFORMATION' ^{注1} を返します。
	Bw:	STATUS INFORMATION		
145	Fw:	YAAA AAA1 1001 0001	QUERY CONTROL GEAR	通信可能なスレーブはありますか?
	Bw:	YES'/'NO'	(QUERY CONTROL GEAR PRESENT)	(括弧内はIEC62386-102ed2.0での名称)
146	Fw:	YAAA AAA1 1001 0010	QUERY LAMP FAILURE	照明にトラブルはありますか? ^{注2}
	Bw:	YES'/'NO'		
147	Fw:	YAAA AAA1 1001 0011	QUERY LAMP POWER ON	照明は点灯していますか?
	Bw:	YES'/'NO'		
148	Fw:	YAAA AAA1 1001 0100	QUERY LIMIT ERROR	↓ │ 設定された調光レベルは最大値~最小値の範囲外
1.10	Bw:	YES'/'NO'	goziti zimii zititori	ですか?
149	Fw:	YAAA AAA1 1001 0101	QUERY RESET STATE	Reset状態ですか?
1.10	Bw:	YES'/'NO'	QOENT NEOET OF THE	
150	Fw:	YAAA AAA1 1001 0110	QUERY MISSING SHORT ADDRESS	↓ ・ ショート・アドレスを持っていませんか?
130	Bw:	YES'/'NO'	QUEIN MICOING GHOIN ADDITEGO	Jan Toxem See Below .
151	Fw:	YAAA AAA1 1001 0111	QUERY VERSION NUMBER	対応するIECの規格番号は?
131	Bw:	(規格番号)	QUENT VERSION NOMBER	AJAB A WIE CONNETTED THE
152	Fw:	YAAA AAA1 1001 1000	QUERY CONTENT DTR	DTRの内容は何ですか?
132	Bw:	(DTRの内容)	(QUERY CONTENT DTR0)	(括弧内はIEC62386-102ed2.0での名称)
153	Fw:	YAAA AAA1 1001 1001	QUERY DEVICE TYPE	デバイスのタイプは何ですか? ^{注3}
133	Bw:	(デバイスのタイプ)	QUENT DEVICE TIFE	(蛍光灯:00000000) (IEC62386-207は6固定)
154	Fw:	YAAA AAA1 1001 1010	QUERY PHYSICAL MINIMUM LEVEL	ハードウェアで決められた調光レベルの下限は?
134	Bw:	(ハード上の下限)	QUEIXI FITTSICAL MINIMOM LEVEL	ア・コンエンで次のラッカのためのプログライドはは、
155	Fw:	YAAA AAA1 1001 1011	QUERY POWER FAILURE	電源ON後一度もReset、または調光レベルの操作
133	Bw:	YES'/'NO'	QUENT FOWER PAILORE	をしていませんか?
156	Fw:	YAAA AAA1 1001 1100	QUERY CONTENT DTR1	DTR1の内容は何ですか?
130	Bw:	(DTR1の内容)	QUENT CONTENT BINT	Difficulty Cy No.
157	Fw:	YAAA AAA1 1001 1101	QUERY CONTENT DTR2	DTR2の内容は何ですか?
137	Bw:	(DTR2の内容)	QUENT CONTENT DINZ	DITEOPHERIC TO NO.
158	Fw:	YAAA AAA1 1001 1110	QUERY OPERATING MODE	OperatingMode は何ですか?
130	Bw:	(OperatingMode)	QUEIT OF EXAMINO MODE	(IEC62386-102ed2.0 のみ存在するコマンド)
159	Fw:	YAAA AAA1 1001 1111	QUERY LIGHT SOURCE TYPE	光源の種類は何ですか?
109	Bw:	(光源の種類)	QUENT EIGHT SOUNCE THE	(IEC62386-102ed2.0 のみ存在するコマンド)
160	Fw:	YAAA AAA1 1010 0000	QUERY ACTUAL LEVEL	"ACTUAL LEVEL"は?
100	Bw:	(ACTUAL LEVEL)	QUENT ACTUAL LEVEL	(現在の調光レベル)
161	Fw:	YAAA AAA1 1010 0001	QUERY MAX LEVEL	調光レベルの上限は?
101	Bw:	(調光レベルの上限)	QUENT WAX LEVEL	前月1000年度16
162	Fw:	YAAA AAA1 1010 0010	QUERY MIN LEVEL	調光レベルの下限は?
102	Bw:	(調光レベルの下限)	QOEIXI WIIIVEEVEE	BUJG C TOOT PACIES.
163	Fw:	YAAA AAA1 1010 0011	QUERY POWER ON LEVEL	"POWER ON LEVEL"は?
103	Bw:	(POWER ON LEVEL)	QUENTI OWEN ON LEVEL	(電源入力時の調光レベル)
164	Fw:	YAAA AAA1 1010 0100	QUERY SYSTEM FAILURE LEVEL	"SYSTEM FAILURE LEVEL"は?
104	Bw:	(FAILURE LEVEL)	QUENT OTOTEW PAILONE LEVEL	(障害発生時の調光レベル)
165	Fw:	YAAA AAA1 1010 0101	QUERY FADE TIME/FADE RATE	Fade rate / Fade time(t?
100	Bw:	<上位>Time <下位>Rate	GOERT TABLE TIME/TABLE TATLE	. all sales i add different
166	Fw:	YAAA AAA1 1010 0110	QERY MANUFACTURER SPECIFIC	Specific Mode は?
100	Bw:	(SpesificMode)	MODE	Specific Mode 13: (IEC62386-102ed2.0 のみ存在するコマンド)
167	Fw:	YAAA AAA1 1010 0111	QUERY NEXT DEVICE TYPE	次の Device Type は何ですか?
107		(NextDeviceType)	QUEINT NEAT DEVICE TIPE	(IEC62386-102ed2.0 のみ存在するコマンド)
160	Bw:		OHEDV EXTENDED FADE TIME	Extended Fade Time は?
168	Fw:	YAAA AAA1 1010 1000	QUERY EXTENDED FADE TIME	
	Bw:	(SpesificMode)		(IEC62386-102ed2.0 のみ存在するコマンド)

番号	コード		名称	内容	
169	Fw: YAAA AAA1 1010 1010		QUERY CONTROL GEAR FAILURE	スレーブに異常は有りますか?	
	Bw:	(SpesificMode)		(IEC62386-102ed2.0 のみ存在するコマンド)	
170~175		YAAA AAA1 1010 XXXX	RESERVED	[未使用]	
176~191	Fw:	YAAA AAA1 1011 XXXX	QUERY SCENE LEVEL	SCENE XXXXの調光レベルは?	
	Bw:	(調光レベル)	(SCENES 0-15)		
192	Fw:	YAAA AAA1 1100 0000	QUERY GROUPS 0-7	GROUP0~7のうち、属してるグループはありま	
	Bw:	ビット毎に<0>No <1>Yes		すか?(各ビットが各グループに対応)	
193	Fw:	YAAA AAA1 1100 0001	QUERY GROUPS 8-15	GROUP8~15のうち、属してるグループはありま	
	Bw:	ビット毎に<0>No <1>Yes		すか? (各ビットが各グループに対応)	
194	Fw:	YAAA AAA1 1100 0010	QUERY RANDOM ADDRESS (H)	ランダムアドレスの上位8ビットは?	
	Bw:	ランダムアドレス(上)			
195	Fw:	YAAA AAA1 1100 0011	QUERY RANDOM ADDRESS (M)	ランダムアドレスの中位8ビットは?	
	Bw:	ランダムアドレス(中)			
196	Fw:	YAAA AAA1 1100 0100	QUERY RANDOM ADDRESS (L)	ランダムアドレスの下位8ビットは?	
	Bw:	ランダムアドレス (下)			
197	Fw:	YAAA AAA1 1100 0101	READ MEMORY LOCATION	メモリロケーションの内容は?	
	Bw:	メモリロケーションの内容			
198~223		YAAA AAA1 110X XXXX	RESERVED	[未使用]	

備考: Y : <0>ショート・アドレス

<1>グループ・アドレス/ブロードキャスト

A : アドレス・ビット

X : データ

DTR : Data Transfer Register

'YES' : 1111 1111 'NO' : Backward なし

注1: 'STATUS INFORMATION':

バラストの状態を示す8ビットのデータ。各ビットの内容は以下のとおり。

bit0 Status of control gear <0>=OK

bit1 Lamp failure(cmd146) <0>=OK

bit2 Lamp arc power on(cmd147) <0>=OFF

bit3 Query Limit Error(cmd148) <0>=YES

bit4 Fade running <0>=fade is ready <1>=fade is running

bit5 Query RESET STATE(cmd149) <0>=No

bit6 Query Missing short address(cmd150) <0>=No

bit7 Query POWER FAILURE(cmd155) <0>=No

注2: 'LAMP FAILUR':

IEC62386-207 時の Lamp Failure ステータスは以下の条件で設定されます。

FAILURE STATUS の以下の bit (0-4) が 1 つでも設定された場合に LampFailure と判断されます。

bit0 short circuit <0>=NO
bit1 open circuit <0>=NO
bit2 load decrease <0>=NO
bit3 load increase <0>=NO
bit4 current protector active <0>=NO

注3: 'DEVICE TYPE':

DEVICE TYPE は表 3-9 の値を返します。

表 3-9 Device Type

Part番号	Device Type	内容
201	0	蛍光ランプ(装置タイプ0)
202	1	内臓式非常照明(装置タイプ1)
203	2	放電ランプ(蛍光ランプを除く)(装置タイプ2)
204	3	低電圧ハロゲンランプ(装置タイプ3)
205	4	白熱ランプ用電源電圧コントローラ(装置タイプ4)
206	5	デジタル信号の直流電圧への変換(装置タイプ5)
207	6	LEDモデル(装置タイプ6)
208	7	スイッチング機能(装置タイプ7)
209	8	色彩制御(装置タイプ8)
210	9	シーケンサ(装置タイプ9)

Part2xx が組み込まれていないシステムの場合、以下のように応答します。

• IEC62386-102ed1.0

規格上、拡張規格がないことが想定されていません。

Applilet EZ for HCD ではデフォルトで 6 を返す仕様としておりますが、207 モードを選択しない場合は、207 の サポートは行われません。

· IEC62386-102ed2.0

254 : Part2xx is not implemented

(4) Application extended configuration commands

特定セットの拡張コマンド

番号	コード	名称	内容				
224	YAAA AAA1 1110 0000	REFERENCE SYSTEM POWER	電力測定開始				
			(IEC62386-207 のみ存在するコマンド)				
225	YAAA AAA1 1110 0001	ENABLE CURRENT PROTECTOR	電流保護を有効にします。				
			(IEC62386-207 のみ存在するコマンド)				
226	YAAA AAA1 1110 0010	DISABLE CURRENT PROTECTOR	電流保護を無効にします。				
			(IEC62386-207 のみ存在するコマンド)				
227	YAAA AAA1 1110 0011	SELECT DIMMING CURVE	Dimming curveを選択します。				
			(IEC62386-207 のみ存在するコマンド)				
228	YAAA AAA1 1110 0100	STORE DTR AS FAST FADE TIME	DTRのデータをFast Fade Timeとして設定します。				
			(IEC62386-207 のみ存在するコマンド)				
229~236	YAAA AAA1 1110 XXXX	RESERVED	[未使用]				

備考: Y : <0>ショート・アドレス

<1>グループ・アドレス/ブロードキャスト

A : アドレス・ビット

X : データ

H, M, L : サーチ・アドレス

'YES' : 1111 1111

'NO' : Backward なし

Fw : Forward
Bw : Backward

(5) Application extended query commands

特定セットの拡張コマンド

番号	コード		名称	内容	
237	Fw:	YAAA AAA1 1110 1101	QUERY GEAR TYPE	'GEAR TYPE' ^{注1} を返します。	
	Bw:	(GEAR TYPE)		(IEC62386-207 のみ存在するコマンド)	
238	Fw:	YAAA AAA1 1110 1110	QUERY DIMMING CURVE	使用中のDmming curveを返します。	
	Bw:	(Dimming curve 番号)		(IEC62386-207 のみ存在するコマンド)	
239	Fw:	YAAA AAA1 1110 1111	QUERY POSSIBLE OPERATING MODE	'POSSIBLEG OPERATING MODE' ^{注2} を返します。	
	Bw:	(POSSIBLE OPERATION MODE)		(IEC62386-207 のみ存在するコマンド)	
240	Fw:	YAAA AAA1 1111 0000	QUERY FEATURES	'FEATURES' ^{注3} を返します。	
	Bw:	(FEATURE)		(IEC62386-207 のみ存在するコマンド)	
241	Fw:	YAAA AAA1 1111 0001	QUERY FAILURE STATUS	'FAILURE STATUS' ^{注4} を返します。	
	Bw:	(FAILURE STATUS)		(IEC62386-207 のみ存在するコマンド)	
242	Fw:	YAAA AAA1 1111 0010	QUERY SHORT CIRCUIT	'FAILURE STATUS' ^{注4} のbit0 short circuitを返しま	
	Bw:	'YES'/'NO'		す。(IEC62386-207 のみ存在するコマンド)	
243	Fw:	YAAA AAA1 1111 0011	QUERY OPEN CIRCUIT	'FAILURE STATUS' ^{注4} のbit1 open circuitを返しま	
	Bw:	'YES'/'NO'		す。(IEC62386-207 のみ存在するコマンド)	
244	Fw:	YAAA AAA1 1111 0100	QUERY LOAD DECREASE	'FAILURE STATUS' ^{達4} のbit2 load decreaseを返し	
	Bw:	'YES'/'NO'		ます。(IEC62386-207 のみ存在するコマンド)	
245	Fw:	YAAA AAA1 1111 0101	QUERY LOAD INDREASE	'FAILURE STATUS' ^{注4} のbit3 load increaseを返しま	
	Bw:	'YES'/'NO'		す。(IEC62386-207 のみ存在するコマンド)	
246	Fw:	YAAA AAA1 1111 0110	QUERY CURRENT PROTECTOR	'FAILURE STATUS' 注4のbit4 current protector	
	Bw:	'YES'/'NO'	ACTIVE	activeを返します。	
				(IEC62386-207 のみ存在するコマンド)	
247	Fw:	YAAA AAA1 1111 0111	QUERY THERMAL SHOT DOWN	"FAILURE STATUS" 準のbit5 thermal shot downを返	
	Bw:	'YES'/'NO'		します。(IEC62386-207 のみ存在するコマンド)	
248	Fw:	YAAA AAA1 1111 1000	QUERY THERMAL OVERLOAD	'FAILURE STATUS' 達4のbit6 thermal overload	
	Bw:	'YES'/'NO'		with light level reductionを返します。	
040	F	VAAA AAA 4444 4004	OLIEDY DEEA DENICE DUNINUNG	(IEC62386-207 のみ存在するコマンド)	
249	Fw:	YAAA AAA1 1111 1001	QUERY REFARENCE RUNNING	Reference System Powerが動作中かを返します。 (IEC62386-207 のみ存在するコマンド)	
250	Bw: Fw:	'YES'/'NO'	QUERY REFERENCE MEASURMENT	(IEC02300-207 のが存在するコマンド) 'FAILURE STATUS' 達4のbit7 reference	
250	Bw:	YAAA AAA1 1111 1010 'YES'/'NO'	FAILED	measurement failedを返します。	
	DW.	TES/NO	TALLED	(IEC62386-207 のみ存在するコマンド)	
251	Fw:	YAAA AAA1 1111 1011	QUERY CURRENT PROTECTOR	Curent protectorの状態を返します。	
201	Bw:	'YES'/'NO'	ENABLE	(IEC62386-207 のみ存在するコマンド)	
252	Fw:	YAAA AAA1 1111 1100	QUERY OPERATING MODE	'OPERATING MODE' ^{注5} を返します。	
	Bw:	(OPERATION MODE)		(IEC62386-207 のみ存在するコマンド)	
253	Fw:	YAAA AAA1 1111 1101	QUERY FAST FADE TIME	設定されたFast fade timeを返します。	
	Bw:	(Fast fade time)		 (IEC62386-207 のみ存在するコマンド)	
254	Fw:	YAAA AAA1 1111 1110	QUERY MIN FAST FADE TIME	設定されたMinimum fast fade timeを返します。	
	Bw:	(Minumum fast fade time)		(IEC62386-207 のみ存在するコマンド)	
255	Fw:	YAAA AAA1 1111 1111	QUERY EXTENDED VERSION	拡張対応したバージョン番号はいくつですか?	
	Bw	(1 or 'NO')	NUMBER	IEC62386-207 : 1	
		,		その他:NO(応答なし)	

備考: Y : <0>ショート・アドレス

<1>グループ・アドレス/ブロードキャスト

A : アドレス・ビット

X : データ

H, M, L : サーチ・アドレス

'YES' : 1111 1111 'NO' : Backward なし

Fw : Forward

Bw : Backward

注1: 'GEAR TYPE':

GEAR TYPE を示す8ビットのデータ。各ビットの内容は以下のとおり。

bit0 LED power supply integrate <0>=NO
bit1 LED module integrated <0>=NO
bit2 a.c. supply possible <0>=NO
bit3 d.c. supply possible <0>=NO

bit4-7 unused

注 2: 'POSSIBLE OPERATING MODE':

POSSIBLE OPERATING MODE を示す8ビットのデータ。各ビットの内容は以下のとおり。

<0>=NO

bit0 PWM mode is possible <0>=NO
bit1 AM mode is possible <0>=NO
bit2 output is current controlled <0>=NO
bit3 high current pulse mode <0>=NO

bit0 short circuit detection can be queried

bit4-7 unused

注3: 'FEATURES':

FEATURES を示す8ビットのデータ。各ビットの内容は以下のとおり。

bit1 open circuit detection can be queried <0>=NO bit2 detection of load decrease can be queried <0>=NO bit3 detection of load increase can be queried <0>=NO bit4 current protestor is implemented and can be queried <0>=NO bit5 thermal shut down can be queried <0>=NO bit6 light level reduction due to over temperature can be queried <0>=NO physical selection supported <0>=NO bit7

注4: 'FAILURE STATUS':

FEATURES を示す 8 ビットのデータ。各ビットの内容は以下のとおり。

bit0 short circuit <0>=NO bit1 open circuit <0>=NO <0>=NO bit2 load decrease bit3 load increase <0>=NO bit4 current protestor active <0>=NO bit5 thermal shut down <0>=NO bit6 thermal overload with light level reduction <0>=NO bit7 reference measurement failed <0>=NO

注 5: 'OPERATING MODE':

OPARATING MODE を示す 8 ビットのデータ。各ビットの内容は以下のとおり。

bit0 PWM mode active <0>=NO
bit1 AM mode active <0>=NO
bit2 output is current controlled <0>=NO
bit3 high current pulse mode is active <0>=NO
bit4 non-logarithmic dimming curve active <0>=NO

bit5-7 unused

(6) Special commands

アドレスの設定をするコマンドです。

番号	コード	名称	内容
256	1010 0001 0000 0000	TERMINATE	INITIALISE状態を解除します。
257	1010 0011 XXXX XXXX	DATA TRANSFER REGISTER(DTR)	DTR(DTR0)にデータXXXX XXXXを格納します。
		(DTR0)	(括弧内はIEC62386-102ed2.0での名称)
258	1010 0101 XXXX XXXX	INITIALISE	指定したスレーブ ^{注1} を15分間INITIALISE状態にします。 INITIALISE状態のスレーブのみコマンド259-270が有効になり ます。
259	1010 0111 0000 0000	RANDOMISE	ランダム・アドレスを生成します。
260	Fw: 1010 1001 0000 0000 Bw: 'YES' / 'NO'	COMPARE	ランダム・アドレス≦サーチ・アドレスですか?
261	1010 1011 0000 0000	WITHDRAW	ランダム・アドレスとサーチ・アドレスが一致したスレーブ をCompareプロセスから排除します。
262	1010 1101 0000 0000	RESERVED	[未使用]
263	1010 1111 0000 0000	PING	スレーブでは無視します。
			(IEC62386-102ed2.0 のみ存在するコマンド)
264	1011 0001 HHHH HHHH	SEARCHADDRH	サーチ・アドレスの上位8ビットを設定します。
265	1011 0011 MMMM MMMM	SEARCHADDRM	サーチ・アドレスの中位8ビットを設定します。
266	1011 0101 LLLL LLLL	SEARCHADDRL	サーチ・アドレスの下位8ビットを設定します。
267	1011 0111 0AAA AAA1	PROGRAM SHORT ADDRESS	選択中のスレーブ ^{注2} のShort AddressをAAA AAAに設定します。
268	Fw: 1011 1001 0AAA AAA1 Bw: 'YES' / 'NO'	VERIFY SHORT ADDRESS	Short AddressはAAA AAAですか?
269	Fw : 1011 1011 0000 0000 Bw : 0AAA AAA1	QUERY SHORT ADDRESS	選択中のスレーブ ^{注2} のShort Addressは何ですか?
270	1011 1101 0000 0000	PHYSICAL SELECTION	Physical Selection Modeに設定し、Compareプロセスから排除します。 (IEC62386-102ed1.0, -207ed1.0にのみ存在するコマンド)
271	1011 1111 XXXX XXXX	RESERVED	[未使用]

注1: INITIALISE の対象スレーブ指定(XXXX XXXX)

0000 0000: 全スレーブが対象

0AAA AAA1: アドレス AAAAAA が対象

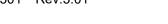
1111 1111: Short Address のないスレーブが対象

注2: サーチ・アドレスと同じランダム・アドレスを持つスレーブ、または Physical Selection Mode のスレーブです。

RENESAS

備考: Y : <0>ショート・アドレス

<1>グループ・アドレス/ブロードキャスト


A : アドレス・ビット

X : データ

 $H, M, L : \mathcal{H} - \mathcal{F} \cdot \mathcal{F} \mathcal{F} \mathcal{F} \mathcal{F}$

'YES' : 1111 1111 'NO' : Backward なし

Fw : Forward
Bw : Backward

(7) Extending special commands

機能拡張用のコマンド

番号	コード	名称	内容
272	1100 0001 XXXX XXXX	ENABLE DEBICE TYPE X	デバイスXXXXを追加する(特殊なデバイスの追加)
273	1100 0011 XXXX XXXX	DATA TRANSFER REGISTER1 (DTR1)	DTR1にデータXXXXを格納する
274	1100 0101 XXXX XXXX	DATA TRANSFER REGISTER2 (DTR2)	DTR2にデータXXXXを格納する
275	1100 0111 XXXX XXXX	WRITE MEMORY LOCATION	データを指定メモリ・バンクの指定アドレスに書き込み ます。(BW 有り) (DTR(DTR0):アドレス, DTR1:メモリ・バンク番号)
276	1100 1001 XXXX XXXX	WRITE MEMORY LOCATION – NO REPLY	データを指定メモリ・バンクの指定アドレスに書き込みます。(BW 無し) (DTR0:アドレス, DTR1:メモリ・バンク番号) (IEC62386-102ed2.0のみ存在するコマンド)
276~349		RESERVED	[未使用]

3.5 Applilet EZ for HCD DALI 通信機能 関数一覧(EZ-0012 版)

本資料は、DALI 通信機能部分のプログラムの理解をするために、関数の入出力と動作概要について記したものです。

<関数一覧> 2.5.1 r_dali.c 2.5.1.1 DALI init 2.5.1.2 DALI getValue 2.5.1.3 DALI_ActualLevelChangeCheck 2.5.1.4 DALI_RevceiveCommand 2.5.1.5 DALI Fading 2.5.1.6 DALI UpdateVariables 2.5.1.7 DALI SetSystemFailure 2.5.1.8 DALI ResetValue 2.5.1.9 DALI_CheckReset 2.5.1.10 DALI RandmInit 2.5.2 r dali analyze.c 2.5.2.1 DALI CheckConfigCommand 2.5.2.2 DALI Check2ndCommand 2.5.2.3 DALI_AnalyzeCommand 2.5.2.4 DALI_CheckAddress 2.5.3 r dali command.c 2.5.3.1 DALI LightingCommand 2.5.3.2 DALI QueryCommand 2.5.3.3 DALI ConfigCommand 2.5.3.4 DALI_Fade200ms 2.5.3.5 DALI SetArcPowerWithFade 2.5.3.6 DALI SpecialCommand 2.5.4 r_dali_memorybank.c 2.5.4.1 DALI InitMemorybank 2.5.4.2 DALI WriteMemorybank 2.5.4.3 DALI_EnableMemorybank 2.5.4.4 DALI ReadMemorybank 2.5.4.5 DALI CheckMemorybankSaving 2.5.4.6 DALI GetChecksum 2.5.5 r dali timer.c 2.5.5.1 DALI_InitTimer 2.5.5.2 DALI Interval 2.5.5.3 DALI StartTimer 2.5.5.4 DALI_StopTimer 2.5.5.5 DALI IsTimerRunning 2.5.5.6 DALI StartFadeTimer 2.5.5.7 DALI StopFadeTimer 2.5.5.8 DALI IsFading 2.5.5.9 DALI GetRandomValue 2.5.6 r_dali_variable.c 2.5.6.1 DALI_InitEmulation 2.5.6.2 DALI_ReadVariables 2.5.6.3 DALI SaveVariables 2.5.6.4 DALI SetEELMode 2.5.6.5 DALI EELPolling

- 2.5.6 r_dali_hw.c
 - 2.5.6.1 DALI_InitHW
 - 2.5.6.2 DALI_GetCommand
 - 2.5.6.3 DALI_SendAnswer
 - 2.5.6.4 DALI_ProhibitReception
 - 2.5.6.5 DALI_PermitReception
 - 2.5.6.6 DALI_CheckProhibit
 - 2.5.6.5 DALI_CHeckInterfaceDown

3.5.1 r_dali.c

3.5.1.1 **DALI_init**

フォーマット	void DALI_init(void)						
	パラメータ						
パラメータ	I/O	データ型	概要				
-	_	_	-				
D-t		データ型	概要				
Return value		void	-				
Feature DALI 機能を初期化しま		機能を初期化します。					

3.5.1.2 DALI_getValue

フォーマット	uint8_t	uint8_t DALI_getValue(uint8_t channel)				
	パラメータ					
パラメータ	パラメータ I/O データ型 概要					
channel	ı	8 bits	調光レベルを取得するチャンネル(1~3)を指定します			
		(unsigned char)				
Return value		データ型	概要			
Return value		unsigned char	LED の調光レベル			
	LED σ	調光レベルを返却します	す。LEDの調光レベルは,DALI_ReceiveCommand()によりすでに設定され			
Feature	ている値になります。また、コンフィグデータ保存フラグが ON、DALI コマンド応答の返却待ちでない、					
reature	ランダムアドレス割当処理中でない,の全ての条件を満たす場合に,コンフィグデータの保存処理を行い					
	ます。					

3.5.1.3 DALI_ActualLevelChangeCheck

フォーマット	void D	void DALI_ActualLevelChangeCheck(uint8_t channel)				
	パラメータ					
パラメータ	I/O データ型 概要					
channel	I	8 bits (unsigned char)	調光レベルを取得するチャンネル(1~3)を指定します			
Return value		データ型 void	概要			
1			 す(一定期間変化しなかったときに ActualLevel を保存するため)			

3.5.1.4 DALI_RevceiveCommand

フォーマット	void D	oid DALI_ReceiveCommand				
	パラメータ					
パラメータ	I/O	データ型	概要			
-	-	_	-			
Detum value		データ型	概要			
Return value		void	=			
Feature DALI コマンドを受信し、解析処理を呼び出します。		処理を呼び出します。				

3.5.1.5 DALI_Fading

フォーマット	void D	void DALI_Fading (uint8_t channel)					
	パラメータ						
パラメータ	I/O	データ型	概要				
channel	I	8 bits	チャンネル(1~3)を指定します				
		(unsigned char)					
D-to		データ型	概要				
Return value		void	-				
Feature 指定されたチャンネルのフェート		れたチャンネルのフェー	- ド処理を行います。				

3.5.1.6 DALI_UpdateVariables

フォーマット	void D	void DALI_UpdateVariable (uint8_t channel)				
	パラメータ					
パラメータ	I/O	I/O データ型 概要				
channel	I	8 bit	チャンネル(1~3)を指定します			
		(unsigned char)				
Detum velve		データ型	概要			
Return value		void	-			
Feature	指定されたチャンネルのコンフィグデータのセーブフラグをたてます。					

3.5.1.7 DALI_SetSystemFailure

フォーマット	void D	void DALI_SetSystemFailure (uint8_t channel)				
	パラメータ					
パラメータ	I/O	I/O データ型 概要				
channel	- 1	8 bit	チャンネル(1~3)を指定します			
		(unsigned char)				
Detum value		データ型	概要			
Return value		void	_			
Feature	指定されたチャンネルを SystemFailure 状態にします。					

3.5.1.8 DALI_ResetValue

フォーマット	void D	void DALI_ResetValue (void)			
	パラメータ				
パラメータ	I/O	データ型	概要		
-	-	-	-		
Return value		データ型	概要		
		void	-		
Feature	コンフ	コンフィグ値をリセット値にします。			

3.5.1.9 DALI_CheckReset

フォーマット	void D	void DALI_CheckReset (void)				
	パラメータ					
パラメータ	I/O	データ型	概要			
-	_	_	-			
Return value		データ型	概要			
		void	-			
Feature	コンフ	コンフィグ値がリセット値かを調べ,RESET STATUS を更新します。				

3.5.1.10 DALI_RandmInit

フォーマット	void D	void DALI_RandmInit (void)			
	パラメータ				
パラメータ	I/O	データ型	概要		
-	-	-			
Return value		データ型	概要		
		void	-		
Feature	ランダ	ランダムシード値を作成します。			

3.5.2 r_dali_analyze.c

3.5.2.1 DALI_CheckConfigCommand

フォーマット	uint8_t	uint8_t DALI_CheckConfigCommand(uint8_t command)			
	パラメータ				
パラメータ	I/O	データ型	概要		
command	I	8 bits	コマンド		
		データ型	概要		
Return value		unsigned char	TRUE: 2 重送信コマンドを受信した		
			FALSE:対象外のコマンド		
Feature	め, そ; ms 以i	DALI のコンフィグコマンド (コマンド番号 32~129) は 100 ms 以内に 2 回送信されなければならないため、それを確認します。コマンドを受け取った際に、それがコンフィグコマンドの 2 回目の受信でそれが 100 ms 以内の受信であれば TRUE を返します。それ以外は FALSE を返します。コンフィグコマンドの 1 回目			
	の受信であればタイマをセットします。				

3.5.2.2 DALI_Check2ndCommand

フォーマット	uint8_	uint8_t DALI_Check2ndCommand(uint8_t command)			
	パラメータ				
パラメータ	I/O	データ型	概要		
command	I	8 bits	コマンド		
		データ型	概要		
Return value		unsigned char	TRUE: 2 重送信コマンドを受信した		
			FALSE:対象外のコマンド		
	DALI	のコンフィグコマンド (コマンド番号 32~129)は 100 ms 以内に 2 回送信されなければなりません。		
Feature	その 1	その 100 ms の間に 2 回目のコマンドを受信した場合に TRUE を返します。別のコマンドの場合は FALSE			
	を返し	ます。			

3.5.2.3 DALI_AnalyzeCommand

フォーマット	void D	void DALI_AnalyzeCommand(uint16_t command)				
	パラメータ					
パラメータ	1/0	データ型	概要			
command	I	16bit	コマンド			
Return value		データ型	概要			
		void	-			
Feature	コマンドを解析し、処理を切り分けます。					

3.5.2.4 DALI_CheckAddress

フォーマット	uint8_t	uint8_t DALI_CheckAddress(uint8_t address)			
	パラメータ				
パラメータ	I/O	I/O データ型 概要			
address	ı	8 bits	DALI コマンド内のアドレス値		
		データ型	概要		
Return value		unsigned char	TRUE: 正常終了		
			FALSE: 対象外		
Facture	アドレスの 8bit の形式から,BROADCAST/SHORT ADDRESS/GROUP の種別を判断し,自身のアドレスが				
Feature	処理対	象であるか否かを判断し	処理対象であるか否かを判断し、TRUE/FALSE を返します。		

3.5.3 r_dali_command.c

3.5.3.1 DALI_LightingCommand

フォーマット	void D	void DALI_LightingCommand(uint8_T cmd)			
	パラメータ				
パラメータ	I/O	I/O データ型 概要			
cmd	I	8 bits	コマンド		
Return value		データ型	概要		
		-	-		
Feature	調光関連のコマンド処理を行います。				

3.5.3.2 DALI_QueryCommand

フォーマット	void D	void DALI_QueryCommand(uint8_t cmd)				
	パラメータ					
パラメータ	I/O	データ型	概要			
cmd	I	8 bits	コマンド			
Return value		データ型	概要			
		-	_			
Feature	Query 関連のコマンド処理を行います。					

3.5.3.3 DALI_ConfigCommand

フォーマット	void D	void DALI_ConfigCommand(uint8_t cmd)			
	パラメータ				
パラメータ	I/O	データ型	概要		
cmd	I	8 bits	コマンド		
Return value		データ型	概要		
		-	-		
Feature	コンフィグ関連のコマンド処理を行います。				

3.5.3.4 DALI_Fade200ms

フォーマット	void DALI_Fade200ms(uint8_t fade_rate, uint8_t fade_direction)					
	パラメータ					
パラメータ	I/O	I/O データ型 概要				
fade_rate	ı	unsigned char	フェードレート			
fade_direction	ı	unsigned char	フェードの方向			
D-4		データ型	概要			
Return value		-	-			
Feature	200 ms のフェード処理を行います。					

3.5.3.5 DALI_SetArcPowerWithFade

フォーマット	void D	void DALI_SetArcPowerWithFade(uint8_t level_new)				
パラメータ						
パラメータ	I/O	I/O データ型 概要				
level_new	I	unsigned char	目標調光レベル			
Detum value		データ型	概要			
Return value		-	-			
Feature	パラメータで渡された目標調光レベルに向かって、フェード処理を行います。					

3.5.3.6 DALI_SpecialCommand

フォーマット	void D	void DALI_SpecialCommand(uint8_t cmd, uint8_t data)				
	パラメータ					
パラメータ	I/O データ型 概要					
cmd	I	unsigned char	コマンド			
data	I	unsigned char	データ			
		データ型	概要			
Return value			-			
Feature	SpecialCommand の処理を行います。					

3.5.4 r_dali_memorybank.c

3.5.4.1 DALI_InitMemorybank

フォーマット	void DALI_InitMemorybank					
	パラメータ					
パラメータ	I/O	データ型	概要			
-	_	-	-			
D-t		データ型	概要			
Return value		void	-			
Feature	メモリ	メモリ・バンク用変数の初期化を行います。				

3.5.4.2 DALI_WriteMemorybank

フォーマット	uint8_	uint8_t DALI_WriteMemorybank(uint8_t bank,uint8_t,address,uint8_t data)				
	パラメータ					
パラメータ	I/O	データ型	概要			
bank	I	unsigned char	バンク番号			
address	I	unsigned char	バンク内のアドレス			
data	I	unsigned char	書き込むデータ			
		データ型	概要			
Return value unsigned char		unsigned char	TRUE: 正常に書き込めた。			
			FALSE:書き込めなかった。			
Feature	re メモリ・バンクの指定された箇所に値を書き込みます。					

3.5.4.3 DALI_EnableMemorybank

フォーマット	void D	void DALI_EnableMemorybank(uint8_t enable)				
	パラメータ					
パラメータ	I/O	I/O データ型 概要				
enable	I	unsigned char	TRUE:メモリ・バンク書き込み許可			
			FALSE:メモリ・バンク書き込み禁止			
D-(データ型	概要			
Return value		void				
Feature	メモリ・バンクの書き込みの許可,禁止の設定を行います。					

3.5.4.4 DALI_ReadMemorybank

フォーマット	uint8_	uint8_t DALI_ReadMemorybank(uint8_t bank,uint8_t,address,uint8_t* data)				
	パラメータ					
パラメータ	I/O	データ型	概要			
bank	I	unsigned char	バンク番号			
address	I	unsigned char	バンク内のアドレス			
data	0	unsigned char	読み出したデータ			
	Return value		概要			
Return value			TRUE: 正常に読み出せた。			
			FALSE:読み出せなかった。			
Feature	メモリ・バンクの指定された箇所から値を読み出します。					

3.5.4.5 DALI_CheckMemorybankSaving

フォーマット	Uint8_	Uint8_t DALI_ChecMemorybankSaving(uint8_t ch)				
	パラメータ					
パラメータ	I/O データ型 概要					
ch	_	unsigned char	チャンネル番号			
Detum value		データ型	概要			
Return value		unsigned char	TRUE: 正常終了			
Feature	指定されたチャンネルのメモリ・バンクの情報が更新されていた場合、メモリ・バンクデータをデータ FLASH へ書き込みます。					

3.5.4.6 DALI_GetChecksum

フォーマット	uint8_1	uint8_t DALI_GetChecksum(uint8_t *membank)				
	パラメータ					
パラメータ	1/0	I/O データ型 概要				
bank	I	unsigned char *	チェックサム算出メモリ・バンク先頭ポインタ			
Data		データ型	概要			
Return value		unsigned chat	チェックサム値			
Feature	指定されたメモリ・バンクのチェックサムを計算して、チェックサム値を返します。					

3.5.5 r_dali_timer.c

3.5.5.1 DALI_InitTimer

フォーマット	void D	void DALI_InitTimer(void)				
	パラメータ					
パラメータ	I/O	データ型	概要			
-	-	-	_			
Return value		データ型	概要			
		void	-			
Feature	DALI 🛊	DALI 機能で利用するタイマ変数を初期化します。				

3.5.5.2 DALI_Interval

フォーマット	void D	void DALI_Interval(void)				
	パラメータ					
パラメータ	I/O	データ型	概要			
-	_	-	_			
Return value		データ型	概要			
		void	-			
Feature	タイマ	タイマ1 ms ごとに呼び出される。タイマカウント処理を行います。				

3.5.5.3 DALI_StartTimer

7	フォーマット	void D	void DALI_StartTimer(uint8_t type)			
	パラメータ					
,	パラメータ	1/0	NO データ型 概要			
type		1		使用するタイマカウンタの種別		
	Return value		データ型	概要		
				-		
	Feature	type で指定された種別に従って、タイマカウントを開始します。				

3.5.5.4 DALI_StopTimer

フォーマット	void D	void DALI_StopTimer(uint8_t type)				
	パラメータ					
パラメータ	I/O	I/O データ型 概要				
type	I	8 bits	使用するタイマカウンタの種別			
Detum value		データ型	概要			
Return value		void	-			
Feature	指定された種別のタイマカウントを停止します。					

3.5.5.5 DALI_IsTimerRunning

フォーマット	uint8_	uint8_t DALI_IsTimerRunning(uint8_t type)					
	パラメータ						
パラメータ	I/O データ型 概要						
type	I	8 bits	使用するタイマカウンタの種別				
		データ型	概要				
Return value		void	TRUE:動作中				
			FALSE:停止中				
Feature	指定された種別のタイマカウントが動作中か否かを返します。						

3.5.5.6 DALI_StartFadeTimer

フォーマット	void D	void DALI_StartFadeTimer(uint32_t fadestep, uint16_t fadetime)					
	パラメータ						
パラメータ	I/O データ型 概要						
fadestep	I	unsigned int	フェードステップ				
fadetime	I	unsigned short	フェード時間				
D-(データ型	概要				
Return value		=	-				
Feature	フェード用のタイマカウントの動作を開始します。						

3.5.5.7 DALI_StopFadeTimer

フォーマット	void D	void DALI_StopFadeTimer(uint8_t channel)					
	パラメータ						
パラメータ	I/O	データ型	概要				
channel	_	unsigned char	チャンネル番号				
Detum value		データ型	概要				
Return value		_	-				
Feature	フェード用のタイマカウントの動作を停止します。						

3.5.5.8 DALI_IsFading

フォーマット	uint8_t DALI_IsFading(uint8_t channel)						
	パラメータ						
パラメータ	I/O	データ型	概要				
channel	_	unsigned char	チャンネル番号				
		データ型	概要				
Return value		unsigned char	TRUE:動作中				
			FALSE:停止中				
Feature	フェード用のタイマカウントの動作/停止を返します。						

3.5.5.9 DALI_GetRandomValue

フォーマット	uint16	uint16_t DALI_GetRandomValue(uint16_t size)					
	パラメータ						
パラメータ	I/O	データ型	概要				
size	I	unsigned short	返却値の範囲				
Detum value		データ型	概要				
Return value		unsigned short	乱数值				
Feature	タイマ用の変数を元に乱数を生成します。						

3.5.6 r_dali_variable.c

3.5.6.1 DALI_InitEmulation

	フォーマット	unsign	unsigned char DALI_InitEmuration(void)				
	パラメータ						
	パラメータ	I/O	データ型	概要			
	-	1	-	_			
	Return value		データ型	概要			
			unsigned char	ステータス			
	Feature	EEPR	EEPROM エミュレーションの初期処理を行います。				

3.5.6.2 DALI_ReadVariables

フォーマット	uint8_1	uint8_t DALI_ReadVariables(uint8_t DataNumber)				
	パラメータ					
パラメータ	I/O	データ型	概要			
DataNumber	I	unsigned char	_			
Return value		データ型	概要			
		unsigned char	ステータス			
Feature	コンフィグ値をデータ FLASH から読み出します。					

3.5.6.3 DALI_SaveVariables

フォーマット	uint8_1	uint8_t DALI_SaveVariables(uint8_t DataNumber)				
	パラメータ					
パラメータ	I/O	データ型	概要			
DataNumber	I	unsigned char	_			
5		データ型	概要			
Return value		unsigned char	ステータス			
Feature	コンフィグ値をデータ FLASH へ書き込みます。					

3.5.6.4 DALI_SetEELMode

フォーマット	void D	void DALI_SetEELMode(uint8_t mode)				
	パラメータ					
パラメータ	I/O	I/O データ型 概要				
mode	I	unsigned char	EEL_MODE_ENFORCED: 実行完了待ち			
			EEL_MODE_POLLING: 実行即時復帰			
Detum value		データ型	概要			
Return value		void	-			
Feature	EEL の動作モードを設定します。					

3.5.6.5 DALI_EELPolling

フォーマット	uint8_	uint8_t DALI_EELPolling(void)				
	パラメータ					
パラメータ	I/O	データ型	概要			
-	_	void	-			
		データ型	概要			
Return value		unsigned char	STATUS_OK: 正常終了			
			STATUS_NG:異常終了			
	EEL σ)継続実行処理を行います	f .			
Feature	プール	がフルの場合はクリー	ンアップ処理を,ブロックに不整合がある場合,フォーマット処理をデータ			
	FLASH	H に対して行います。				

3.5.7 R_dali_hw.c

3.5.7.1 DALI_InitHW

	フォーマット	void D	void DALI_InitHW (void)			
	パラメータ					
	パラメータ	I/O	データ型	概要		
void		I	_	_		
	Return value		データ型	概要		
			-	-		
	Feature	DALI ji	通信の設定を行います。			

3.5.7.2 DALI_GetCommand

フォーマット	uint8_t DALI_GetCommand (uint16_t* received_data)								
パラメータ									
パラメータ	I/O	/O データ型 概要							
received_data	0	unsigned short*	受信データ格納変数ポインタ						
		データ型	概要						
Return value		unsigned char	TRUE:正常受信						
			FALSE: 受信無し、もしくは受信エラー						
Feature データ受信の確認、及び受信データの取得を行います。									

3.5.7.3 DALI_SendAnswer

フォーマット	void D	oid DALI_SendAnswer (uint8_t answer)							
パラメータ									
パラメータ	I/O	データ型	概要						
answer	I	unsigned char	answer データ						
D-to		データ型	概要						
Return value		void	-						
Feature 応答デ		ータの送信を行います。							

3.5.7.4 DALI_ProhibitReception

フォーマット	void D	oid DALI_ProhibitReception (uint16_t received_data)							
パラメータ									
パラメータ	パラメータ I/O データ型 概要								
Received_data	_	受信したコマンド							
D-t		データ型	概要						
Return value		-	-						
Feature			フレームを返す可能性のあるものであった場合, backward フレームが送信さ 「。コマンドで指定されたアドレスが自分宛でなかった場合も処理の対象とし						

3.5.7.5 DALI_PermitReception

フォーマット	void D	oid DALI_PermitReception (void)							
パラメータ									
パラメータ	1/0	データ型	概要						
-	-	-	-						
Data-manada-			概要						
Return value		_	-						
Feature	受信拒	否状態を解除します。							

3.5.7.6 DALI_CheckProhibit

フォーマット	uint8_	uint8_t DALI_CheckProhibit (void)									
	パラメータ										
パラメータ	I/O	データ型	概要								
-			-								
	データ型 Return value unsigned char		概要								
Return value			TRUE:正常受信								
			FALSE: 受信無し、もしくは受信エラー								
Feature DALI 応答データ送信時の立ち下がりエッヂを検知し、DALI データ受信禁止時間を 10 ms 延長します。											

3.5.7.7 DALI_CheckInterfaceDown

フォーマット	uint8_t	int8_t DALI_CheckInterfaceDown (void)								
	パラメータ									
パラメータ	I/O	データ型	概要							
-	ı	_	-							
		データ型	概要							
Return value	rn value unsigned char		TRUE: 通信ライン HI							
			FALSE: 通信ライン LOW							
Feature	受信ポ	ートの状態を確認し、F	ll の場合は TRUE を,LOW の場合は FALSE を返します。							

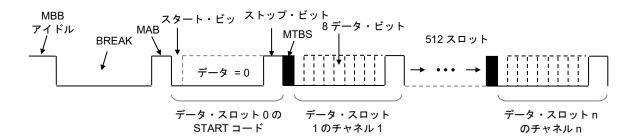
4. DMX512 通信

この章では、DMX512 通信プロトコルについて紹介すると同時に、RL78/I1A マイクロコントローラを使用して実装できる受信用のソリューションも紹介しています。このアプリケーション回路では外部に RS-485 互換トランシーバが必要になります。

4.1 DMX512 照明通信プロトコル

4.1.1 DMX512 規格の概要

DMX512 は、デジタル・データ送信のための有線通信プロトコルで、舞台照明や展示照明などの産業照明用途(調光器、スキャナ、移動ライト、ストロボなどを搭載した装置)で幅広く使用されています。DMX512 システムは、マスタまたはホストと呼ばれる1台の送信機と複数の受信機で構成されます。


DMX512 規格は、電気的特性(EIA/TIA-485 規格に準拠)、データ・フォーマット、データ・プロトコル、コネクタ・タイプについて規定しています。この規格は、異なるメーカーのコントローラ間において、通信レベルと機器レベルの両方で相互運用性を保証するためのものです。DMX512 という名前は、512 のデータ・スロットを持つデジタル多重送信(Digital MultipleX) が由来になっています。

データは、3線で構成される RS-485 送信規格互換の物理インタフェースを使用して、250 kbps のレート(各ビット長: $4 \mu s$)で送信され、2本の差動信号線とグラウンド(0 V)によってデータ信号が転送されます。

DMX512 のデータ・スロットはデータ・スロット 1 から最後のデータ・スロット 512 の順に、非同期シリアル・フォーマットで順次送信されます。

最初のデータ・スロットが送信される前に、BREAK、MARK AFTER BREAK、START コード(1 バイト)で構成される開始シーケンス(RESET シーケンス)が必要になります。そのため、START コードを含め、合計 513 のスロットが送信されることになります。有効な DMX512 データ・スロット値の範囲は $0\sim255$ です。

図 4-1 DMX512 受信機のタイミング図

	最小値	標準値	最大値	単位
BREAK	88	176	_	μS
MAB	8	ı	1 000 000	μS
スロット幅	İ	44	-	μS
スタート/データ/ストップ・ビット	3.92	4	4.08	μS
MTBS	0	ı	1 000 000	μS
MBB	0	ı	1 000 000	μS

データ・パケットは以下のタイム・スロットで構成されます。

BREAK

新しいパケットの開始を示します。標準値は 176 µs です。

• MARK AFTER BREAK (MAB)

BREAK と START コード・タイム・スロットを分割します。値は $8 \mu s$ から 1 s の間です。

START CODE

MARK AFTER BREAK 後の最初のスロット(スロット 0)。

パケットのそれ以降のデータ・バイトの機能を識別します。調光コマンドの場合、START コードの値は 0x00 になるため、NULL START コードとも呼ばれます。START コードはすべての DMX デバイスに対して明度レベルの送信を通知するためのものです。

• DATA SLOTS

それ以降のデータ・バイトにはそれぞれの受信装置の調光レベルが入ります。

データ・リンクではデータ・スロット数の下限値はありません。タイミング要件によっては 512 スロット未満のデータ・パケットも送信することができます。受信機は、BREAK 間の間隔が 1196 μ s(最小値)から 1.25 s(最大値)の間にパケットを受信すると正しく動作します。

2 つのデータ・スロット間の時間は, 0 から 1 秒の間で変動する場合があります。この時間は, MARK TIME BETWEEN SLOTS (MTBS) と呼ばれます。

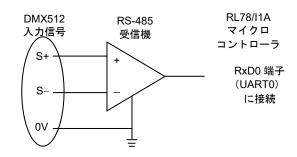
それぞれのデータ・スロットは、1スタート・ビット、8 データ・ビット、2 ストップ・ビットという構成になります。スタート・ビットは常に0になり、ストップ・ビットは1になります。

• MARK BEFORE BREAK (MBB)

所定のデータ・パケットの最後のデータ・スロットの2番目のストップ・ビットから、次のデータ・パケットのBREAK の立ち下がりエッジまでの時間を表します。この時間は0から1秒の間になります。データ・リンクを介して送信されるすべてのデータ・パケットは、RESETシーケンスとして定義されているBREAK、MARK AFTER BREAK、STARTコード・シーケンスで送信開始します。

DMX512 プロトコルでは、送信機がパケットの送信を継続的に反復する(少なくとも 1 秒に 1 回)ことを要求しています。

4.1.2 ハードウェア制御インタフェース


RL78/I1A マイクロコントローラで DMX512 通信を実装する場合、ハードウェア制御インタフェースは、UART0 シリアル・インタフェースの RxD0 受信端子に RS-485 トランシーバを接続することで構成できます。

前項で説明したように、RS-485 規格では3線を使用してビットを送信します。

- +信号線 (S+)
- -信号線 (S-)
- グラウンド線(0 V)

図 4-2 に、DMX512 受信機のハードウェア・インタフェースを示します。

図 4-2 DMX512 受信機のハードウェア・インタフェース

DMX512 プロトコルは半二重であり、1 つの DMX デバイスに対するデータの送受信は同時には行われません。S+/S-信号は、位相が 180° 異なる差動信号であり、4 μ S で S->S+の場合は論理 0、4 μ S で S+>S-の場合は論理 1 が認識されます。信号線での送信では、S+/S-を+6 V と 0 V の間で物理的に切り替える必要があります。受信機は、電圧レベルが -7 V~+12 V の信号に対応する必要があります。

- 一般的な DMX512 システムは、次の原則に基づいています。
- (1) 複数の受信機がデイジーチェーンで DMX 送信機に接続されており、すべてのパケットが接続されたすべての受信機を通過する。
- (2) 各受信機は、RS-485 トランシーバを介して差動信号を受信する。今回のケースでは、RL78/I1A マイクロコントローラが、RxD0 端子を介してパケットを受信する。
- (3) 各受信機には特定の DMX アドレス (1~512) がプログラムされており、それぞれのパケットからどの特定フレームを抽出する必要があるかが、わかるようになっている。各受信機は DMX コントローラから送信されるバイトの数をカウントし、そのアドレスに対応するバイトのみをキャプチャする。
- (4) 受信機は、データを解釈し、適切な調光動作を実行する。今回のケースでは、RL78/I1A が、受信したデータに従って PWM 出力のデューティ・サイクルを修正する。

4.2 RL78/I1A の DMX512 通信機能

4.2.1 周辺機能

DMX512 パケットの受信プロセスは、次の3つの部分に分けられます。

- 新しいデータ・パケット(長時間の BREAK 信号で識別)の開始と同期して受信機が起動。
- BREAK 信号が識別され認識された後、ラインがアイドル状態(MARK AFTER BREAK)になって最初のデータ・バイトが到着するまで受信機はウエイト。
- 受信機がデータ(最大 512 バイト)をキャプチャし、それを受信バッファに順次格納(ループ処理)

RL78/I1A マイクロコントローラは、上記の動作を実行し、特定の周辺機能を使用して、DMX512 通信で受信した信号が DMX512 通信フォーマットと一致するかチェックします。

- TAU チャネル 7: BREAK 信号検出および BREAK 信号長測定
- TAU チャネル 0: MARK AFTER BREAK および MARK TIME BETWEEN SLOTS の測定
- UARTO インタフェース: START コードおよびデータ・スロットの受信

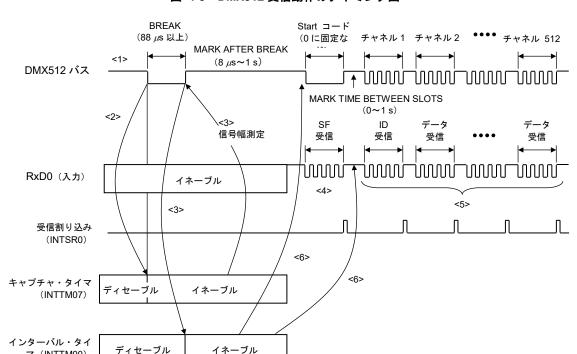
4.2.2 動作の概要

この節では、上記の RL78/I1A の周辺機能を使用して DMX 通信を実行する方法について詳細に説明します。このプロセスをわかりやすくするため、次のページにタイミング図を示します。

● TAU チャネル 7: BREAK 信号検出および BREAK 信号長測定

タイマ・アレイ・ユニット・チャネル 7 の入力信号ロウ・レベル幅測定機能は、BREAK 期間の立ち下がりエッジを 検出し、BREAK 信号幅 (88 μs 以上でロウ・レベル) を測定、認識するために使用します。このタイマは、UARTO のシリアル・データ入力端子 (RxD0) における信号入力の立ち下がりエッジでカウントを開始し、立ち上がりエッ ジでタイマのカウント値をキャプチャします。この方法でロウ・レベル幅を測定します。ロウ・レベル幅が特定の値 より大きい場合、BREAK 信号と判定します。

● TAU チャネル 0: MARK AFTER BREAK および MARK TIME BETWEEN SLOTS の測定


タイマ・アレイ・ユニット・チャネル 0 のインターバル・タイマ・モードは、MARK AFTER BREAK 信号幅($8~\mu$ s ~1 s でハイ・レベル)を測定、判定するために使用します。また、このタイマは MARK TIME BETWEEN SLOTS も測定し、この時間が 1 秒未満であることを確認するためにも使用します。

● UARTO インタフェース: START コードおよびデータ・スロットの受信

BREAK 信号の検出後、START コードとデータ・スロットを受信するために UARTO インタフェースを使用します。 RL78/I1A は、RxDO 端子で信号を受信するまで待ち、その後指定されたボー・レートでシリアル・データが RXDO レジスタ(シリアル・データ・レジスタ 01(SDR01)のビット 7~0)に順次格納していきます。ストップ・ビットが検出されると、受信終了割り込み要求(INTSRO)が発生します。

次のタイミング図に、DMX512 スロット検出を行う設定シーケンスを示します。

図 4-3 DMX512 受信動作のタイミング図

(1) : 待機状態 (アイドル)

マ (INTTM00)

INTTM07 割り込みがマスク、INTSR0 割り込みがマスク解除され、1 s インターバル・タイマの停止

(2) : BREAK 信号の開始

エラーによる INSRO 割り込み → INTTM07 マスク解除

(3) : BREAK 信号の終了

INTTM07 割り込み: BREAK 信号長測定

長さ<80 µs のとき → 状態 1

長さ≧80 µs のとき → 1s インターバル・タイマの開始

(4) : START コードの受信

INSR0 受信割り込み:データ・チェック

受信エラーの場合 → 状態 1

受信エラーがない場合 → 1sインターバル・タイマの再始動

(5) : データ・スロットの受信

INSR0 受信割り込み:データ・チェック

受信エラーの場合 → 状態 1

受信エラーがない場合 → 1sインターバル・タイマの再始動

* それぞれのデータ・スロットで状態5を反復

(6) : MARK AFTER BREAK および MARK TIME BETWEEN SLOTS のチェック

1sインターバル・タイマ割り込み(時間が1秒を超えたとき)→ 状態1

4.3 DMX 調光制御ソフトウェアの説明

4.3.1 内部周辺機能の初期化

DMX512 受信動作での周辺機能の初期化では、以下の設定が行われます。

- PLL を使用して CPU クロック周波数を 32 MHz に設定(高速内部発振クロック f_{IH} x 1/2 の 16 倍)
- 周辺機能クロック供給の設定
- I/O ポートの設定
- UART0 インタフェースの設定
 - o 動作クロックfcLK (32 MHz) を設定
 - シリアル・アレイ・ユニット0のチャネル0をUART送信モードに設定
 - シリアル・アレイ・ユニット0のチャネル1をUART受信モードに設定(立ち下がりエッジ=スタート・ビット)
 - TAUチャネル7の入力をRXD0端子の入力信号に切り替え(ISCレジスタ)
- 16 ビット TAU チャネル 7 の設定
 - カウント・クロックfclk(32 MHz)を設定
 - o スタート・トリガおよびキャプチャ・トリガとして使用されるTIOn端子入力の両エッジで、キャプチャおよび1カウント・モード(カウントアップ)に設定
 - o 以下の状態でロウ・レベル幅測定に設定
 - スタート・トリガ:立ち下がりエッジ、キャプチャ・トリガ:立ち上がりエッジ
 - 割り込みINTTM07をマスク解除し、TAUチャネル7を開始
- 16 ビット TAU チャネル 0 の設定
 - 割り込みINTTM00をマスク(1 sインターバル・タイマ・モードにあらかじめ設定)

サンプル・プログラムから抽出した DMX512 受信周辺機能初期化の設定を以下に示します(「 $r_dmx.c$ 」ファイルの「DMX init()」関数)。

SPS0	= 0x0000;	/* CK00で32 MHzを選択	*/
SMR00	= 0x0022;	/* ユニット0のch.0 UARTモード	*/
SMR01	= 0x0122;	/* ユニット0のch.1 UARTモード	*/
SCR01	= 0x4097;	/* 1ストップ・ビット	*/
SDR01	= 0x7E00;	/* 250 Kbps	*/
SIR01	= 0x0007;	/* エラー・クリア	*/
NFEN0	= 0x01;	/* ノイズ・フィルタ・オン	*/
PM1.1	= 1;	/* P1.1 UART RXモード	*/
PIM1.1	= 1;		
ISC	= 0x02;	/* RXD0 = TAU	*/
TPS0	= TPS0 0x0000;	/* 32 MHz	*/
TMR07	= 0x828C;	/* タイマ7のモード設定	*/
NFEN1	= 0x80;		
TMIF00	= 0;	/* 割り込みフラグ・クリア	*/
TMMK00	= 1;	/* INTTM00ディセーブル	*/
TMIF07	= 0;	/* 割り込みフラグ・クリア	*/
TMMK07	= 1;	/* INTTM07ディセーブル	*/
SRIF0	= 0;	/* 割り込みフラグ・クリア	*/
SRMK0	= 0;	/* INTSR0イネーブル	*/
TS0	= 0x0080;	/* タイマのch.7開始	*/
SS0	= 0x0002;	/* uart0のch.1開始	*/

4.3.2 動作の解説とソフトウェアのフローチャート

この節では、DMX512 通信インタフェースに基づく調光制御デモンストレーション・コードのフローチャートを示します。この例では、独立したアドレスを使用して、3 つの LED チャネルを制御します。

このプロセスの最初のステップは、タイマ・アレイ・ユニット・チャネル7を使用した BREAK 信号の検出です。タイマは、RxD0 受信端子で立ち下がりエッジが検出されるとカウントを開始し、次の信号の立ち上がりエッジで割り込みを生成します。キャプチャしたタイマ値は、BREAK 信号の長さを測定するために使用されます。キャプチャした時間が 80 μs より大きい場合、BREAK 信号が認識され、BREAK 信号受信フラグがセットされます。MARK AFTER BREAK の時間をチェックするために、タイマ・アレイ・ユニット 0 も起動します。

次のフローチャートに、このプロセスの詳細を示します。

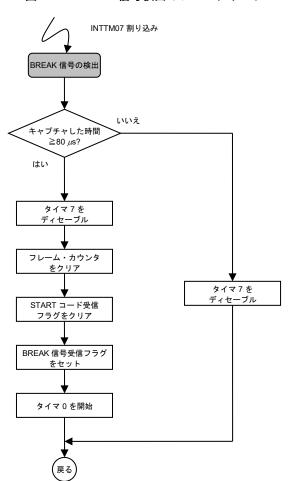
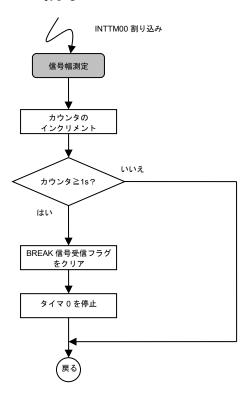



図 4-4 BREAK 信号検出のフローチャート

MARK AFTER BREAK および MARK TIME BETWEEN SLOTS の時間が常に 1 秒未満になることを確保するため、タイマ・アレイ・ユニット・チャネル 0 が使用されます。インターバル・タイマがこの値を超えた場合、BREAK 信号受信フラグがクリアされます。

次のフローチャートに、このプロセスの詳細を示します。

図 4-5 MARK AFTER BREAK および MARK TIME BETWEEN SLOTS 測定のフローチャート

INTSR0 割り込みサービス・ルーチンは、LED チャネル・アドレスに対応するデータ・スロット(1 スロット=1 バイト)をキャプチャするだけで正しい START コード(0x00)が受信され、3 つの LED チャネルの調光レベルが格納されたかチェックします。デフォルトでは、LED チャネルに割り当てられるスロットは次のように定義されています。

チャネル1:スロット=1, チャネル2:スロット=2, チャネル3:スロット=3

これらの値は、Applilet EZ for HCD Controller のメイン・ウィンドウで修正することができ、調光器プログラムが「DMX512」に設定されている場合、3 つのそれぞれの LED チャネルに割り当てるスロット・アドレスをカスタマイズすることができます。その場合、「Project」メニューを選択して「DMX512 Property」ダイアログ・ボックスを開き、「DMX512...」をクリックするか、「Setting」ボタンをクリックします。

図 4-6 Applilet EZ for HCD Controller の「DMX512 Property」ダイアログ・ボックス

割り当てるスロットを変更すると、サンプル・コード・プロジェクトの「r_user.h」ファイル内にある対応する#defineマクロがそれに合わせて修正されます。

#define DMX_CHANNEL_LED1 1
#define DMX_CHANNEL_LED2 2
#define DMX CHANNEL LED3 3

有効な RESET シーケンス(BREAK 信号,MARK AFTER BREAK,START コード)および DMX512 パケット時間が検出されると,受信したパケットが処理されます。プログラムされた LED チャネル・アドレスに従って,受信したパケットから特定のデータ・スロットが選択され,関数「DMX_getValue()」が呼び出されてそれぞれの LED チャネルの調光値が更新されます。次に関数「LEDn_set()」($n=1,\ 2,\ 3$)が,更新された LED 調光値を適用します。PWM のデューティ・サイクルは,「255」でデューティ・サイクル 100%,「0」でデューティ・サイクル 0%のように変化します。

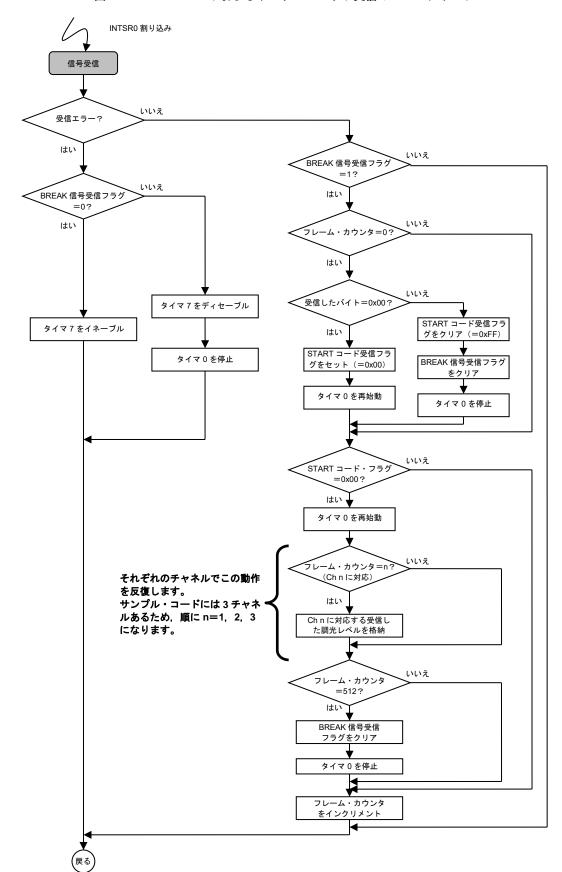


図 4-7 START コードおよびデータ・スロット受信のフローチャート

5. 赤外線通信

この章では、NEC 赤外線通信プロトコルについて紹介すると同時に、RL78/I1A マイクロコントローラを使用して実装できる受信用のソリューションも紹介しています。このアプリケーションでは赤外線通信接続のために赤外線トランシーバが必要になります。

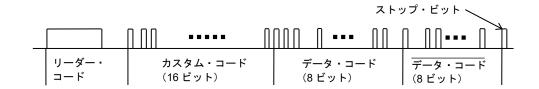
5.1 赤外線通信プロトコル

5.1.1 NEC 赤外線プロトコルの概要

NEC の赤外線リモート・コントロールでは、約 950 nm の赤外線を使用して、低速で数バイトの情報を送信します。 赤外線はバイナリ(0/1) データの送信で使用しますが、赤外線の ON/OFF ステータスで二進値を表現するというような 機構ではありません。

NEC フォーマットは、世界中の産業界で広く使用されている赤外線送信プロトコルの 1 つです。以下に詳細を説明します。

一般的なフォーマット


赤外線リモート・コントロール信号は、リーダー・コードで開始します。

リーダー・コードに続き、フレームには 16 ビットのカスタム・コード (アドレス), 8 ビットのデータ・コード (コマンド), 反転バイナリ 8 ビット・コードが含まれ、最後にメッセージ送信の最後を示すストップ・ビットで構成されます。

次に NEC 赤外線リモート・コントロール・フォーマットの例を示します。

この信号の後にはフレーム・スペースが続き、その間赤外線は放出されません。リーダー・コードからフレーム・スペースまでのすべてを含めたフレーム長は 108 ms です。

図 5-1 赤外線リモート・コントロールの NEC フォーマットの例

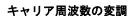
リーダー・コード

リーダー・コードは 9 ms の間 ON になり、4.5 ms の間 OFF になります。波形のこの部分のタイミングは、以下のデータ・コード・セクションと大きく異なるため、リーダー・コードを容易に認識することができます。

反復する場合, OFF の期間はわずか 2.25 ms で、その後にストップ・ビットが続きます。カスタム・コードやデータ・コードはありません。

送信データ

カスタム・コードおよびデータ・コードのセクションにはバイナリ・データ (0 または 1) が含まれます。これらのセクションのデータについては、LSB が最初に送信されます。


バイナリ・データ(0/1)の区別は単純に赤外線のON/OFFのステータスではなく、ビット長に基づいて行います(OFF ステータスで長さを抽出)。そのため、カスタム・コード・セクションの長さはデータによって変動し、データ・コー

ドによっても変動します。ただし反転データ・コードも送信されるため、データ・コードと反転データ・コードを含む合計データ長は常に同じになります(データ・ビット「0」と「1」の合計は 8)。

ON OFF 0.56 ms 0.56 ms ON 0.56 ms ON 0.56 ms ON 0.56 ms

図 5-2 リモート・コントロール信号の「0」および「1」データ・ビット値の差

データ=0 のとき

OFF

完全に ON の期間、赤外線は連続して出力されず、赤外線 ON の期間、赤外線 OFF の期間と一定の周期(「キャリア周波数」と呼ばれる)で反復的に切り替わります。標準的なキャリア周波数は 38 kHz で、キャリア・デューティ比の推奨値は 1/3 です。この設定によって、電力消費を最低限におさえることができます。

1.125 ms

そのため、NEC 赤外線送信プロトコルは、メッセージ・ビットのパルス距離エンコーディングを行います。それぞれのパルス・バーストは、38 kHz のキャリア周波数で波長 $562.5\,\mu$ s になります($26.3\,\mu$ s、約 21 サイクル)。論理「1」は送信するのに $2.25\,m$ s かかり、論理「0」はその半分、 $1.125\,m$ s で送信できます。

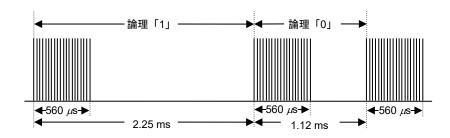
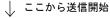


図 5-3 キャリア周波数の変調

データ送信シーケンス

この方法で送信するリモート・コントロール信号は、カスタム・コードとデータ・コードで構成されます。 カスタム・コードは最初に送信されるもので、長さ 16 ビットになりますが、2 つの 8 ビット・セクションに分けられます。リモート・コントロール・デバイスの初期のバージョンでは、カスタム・コードは長さ 8 ビット (C0~C7)で、信頼性を向上させるためその次の 8 ビットで論理的に反転したデータ (C'0~C'7) も送信されていました。現在この C'0~C'7 セクションは、カスタム・コードの 2 番目のセクションとして割り当てられており、そのためにカスタム・コードは長さ 16 ビットになっています。送信時、カスタム・コードは LSB が最初に送信され (C0~C7)、カスタム・コード・も LSB が最初に送信されます (C'0~C'7)。


図 5-4 カスタム・コード・セクションの送信シーケンス

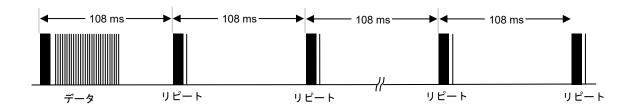
、 ここから送信開始

C0	C1	C2	C3	C4	C5	C6	C7	C'0	C'1	C'2	C'3	C'4	C'5	C'6	C'7
カスタム・コード								カスタム・コード'							

送信されるデータは長さ8ビットです。論理的に反転した8ビット・データがその後送信されるため、データ送信では合計16ビットが使用されます。このデータが受信されると、反転した8ビット・データ・コードは、エラーが発生していないことをチェックするための信頼性ツールとして、最初の8ビット・データ・コードの論理反転としてチェックされます。

図 5-5 データ・コード・セクションの送信シーケンス

DO	D1	D2	D3	D4	D5	D6	D7	_ D0	 D1	_ D2	 D3	— D4	 D5	_ D6	— D7
	データ・コー									デー	タ・コ	<u> </u>			

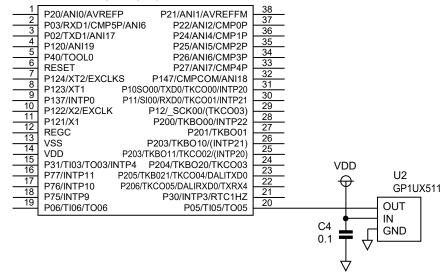

リピート・コード

リモート・コントローラのキーを押し続けると、通常、パルス・バーストの約 40 ms 後に、メッセージの終了を示す リピート・コードが出力されます。リピート・コードは、キーが最終的に解放されるまで 108 ms 間隔で送信し続けられます。

データ・コードは一度だけ送信されるため、リピート・コードは以下の要素のみ(この順序)で構成されます。

- 9 ms のリーディング・パルス・バースト
- 2.25 ms のスペース
- スペースの終了を示す (同時に送信されたリピート・コードの終了も表す) 562.5 µs のパルス・バースト (ストップ・ビット)

図 5-6 初期メッセージ・フレーム後のリピート・コードの送信



5.1.2 ハードウェア制御インタフェース

赤外線コントロール・インタフェースは、RL78/I1A 入力端子と赤外線受信機の間に 5 V 38 kHz 赤外線リモコン受信機をタイマ入力端子 5 に接続するだけで実現されます。その他のインタフェース回路は必要ありません。

図 5-7 赤外線コントロール・インタフェース

U1 R5F107DE

5.2 RL78/I1A の赤外線通信機能

5.2.1 周辺機能

赤外線信号の検出と受信は、タイマ・アレイ・ユニットのチャネル 5 とチャネル 6 を使用します。次の節で、その構成と動作の概要について説明します。

- チャネル6をインターバル・タイマで構成:リーダー・コード検出に使用
- チャネル 5 をキャプチャおよび 1 カウント・モードで構成:カスタム・コードおよびデータ・コードのビット長の計算に使用

5.2.2 動作の概要

受信したリモート・コントロール信号を解釈するため、信号の両エッジを使用して、各信号の期間の長さを測定します。

赤外線リモート・コントロール・プリアンプから出力されるデータは負の論理データであるため、以下では、これらの 信号を負の論理入力信号として記述します。

通常の リーダー・ コード リピート・ リーダー・ コード 2.25 ms

図 5-8 リーダー・コードの検出

TAU チャネル 6: リーダー・コードの検出

リーダー・コードには 9 ms の OFF 期間があるため、入力信号のリーダー・コード立ち下がりエッジ(**図** 5-8 の A)を検出するために、受信端子のステータスをチェックするタイマ割り込み機能が使用されます。このタイマは、インターバル・タイマ・モードの TAU チャネル 6 です。

入力信号の立ち上がりエッジ(図 5-8 の B) も, タイム・カウンタとして構成された同じ割り込み機能を使用してチェックします。これにより, 立ち下がりエッジから立ち上がりエッジまでの期間を測定することができます。この OFF 期間の検出を試みるとき, 最短時間の 7 ms が使用されます。

次にプログラムは、次の立ち下がりエッジ(図 5-8 の C)までの期間を測定し、これが通常のリーダー・コードであるかリピート・リーダー・コードであるかを判定します。通常のリーダー・コードとリピート・リーダー・コードを区別する場合、時間が 3 ms 以上かどうかが基準になります。

正しいリーダー・コードが検出されると、カスタム・コードとデータ・コードの検出を開始するため、TAU チャネル 5 が始動します。リピート・リーダー・コードが検出されると、LED 調光レベルを変更する関数が再び呼び出されます。

TAU チャネル5:カスタム・コードおよびデータ・コードの検出

リーダー・コードの検出が完了すると、次の動作として、カスタム・コードとデータ・コードのビット長が計算されます。

精度を確保するには ON の期間と OFF の期間の両方をチェックする必要がありますが、ON の期間をチェックするだけで、データ値(0 または 1)を単純に判定することもできます。つまり、1 ms という中間点を使用することで、データ値「1」の 1.69 ms(2.25 ms -0.56 ms)の ON 期間とデータ値「0」の 0.565 ms(1.125 ms -0.56 ms)の ON 期間を単純に区別することができます。

このようなハイ・レベルの幅測定を行うには、TAU チャネル 5 をキャプチャおよび 1 カウント・モードで構成し、TI05 入力端子の両エッジをスタート・トリガおよびキャプチャ・トリガとして使用し、立ち上がりエッジをスタート・トリガ、立ち下がりエッジをキャプチャ・トリガにします。

32 ビット信号を正確にチェックすることが重要になります。32 ビット信号が検出されると、LED 調光レベルを変更する関数が呼び出されます。

フレーム・スペース

フレーム・スペースをチェックするためのもっとも正確な方法は、フレームの全長が 108 ms であるかチェックすることですが、この場合は、データ長が 32 ビット (4 バイト) を超えているかどうかチェックするだけで十分です。32 ビットのデータが受信されると、カスタム・コード、データ・コード、反転データ・コードのチェックとデコードが実行されます。最後に調光コマンドが実行されます。

5.3 赤外線調光制御ソフトウェア

5.3.1 内部周辺機能の初期化

赤外線受信動作での周辺機能の初期化には、以下の設定をする必要があります。

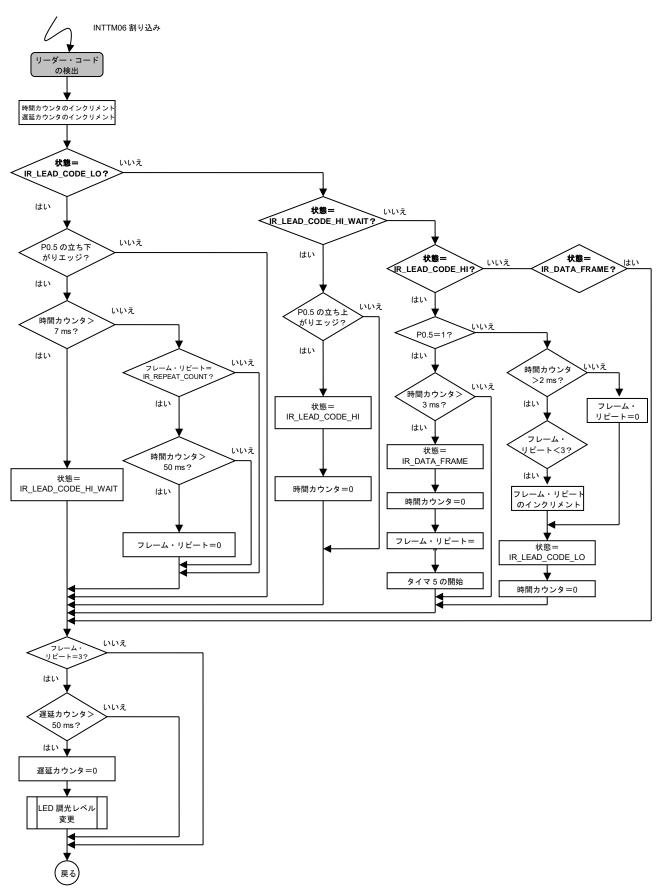
- PLL を使用して CPU クロック周波数を 32 MHz に設定(高速内部発振クロック fin x 1/2 の 16 倍)
- 周辺機能クロック供給の設定
- I/O ポートの設定
- 16 ビット TAU チャネル 5 の設定
 - カウント・クロックを fclk (32 MHz) に設定
 - スタート・トリガおよびキャプチャ・トリガとして使用される TIOn 端子入力の両エッジを、キャプチャおよび1カウント・モード(カウントアップ)に設定
 - 次の条件でハイ・レベル幅測定に設定
 - スタート・トリガ:立ち上がりエッジ、キャプチャ・トリガ:立ち下がりエッジ
 - 割り込み INTTM05 をマスク
- 16 ビット TAU チャネル 6 の設定
 - カウント・クロックを fclk (32 MHz) に設定
 - インターバル・タイマ・モードに設定、ソフトウェアで始動
 - インターバル時間を 100 µs ((TDR06+1)/fclk) に設定
 - 割り込み INTTM06 をマスク解除

サンプル・プログラムから抽出した赤外線受信周辺機能初期化の設定を以下に示します(「r_ir.c」ファイルの「IR_init()」 関数)。

PM0.5	= 1;		
TMR05	= 0x02CC;	/* ロウ/ハイ・レベル幅	*/
TMIF05	= 0;	/* 割り込みフラグ・クリア	*/
TMMK05	= 1;	/* INTTM05ディセーブル	*/
TMR06	= 0x0000;	/* @32 MHz	*/
TDR06	= 3199;	/* 期間の初期値を100 μs @ 32 MHzに設定	*/
TMIF06	= 0;	/* 割り込みフラグ・クリア	*/
TMMK06	= 0;	/* INTTM06イネーブル	*/
TS0	= 0x0040;	/* タイマのch.6開始	*/

5.3.2 動作の解説とフローチャート

この節では、プログラムのフローチャートを示し、関数について説明します。これにより、RL78/I1A タイマ・アレイ・ユニットのチャネルを使用した赤外線受信動作を明確にします。


すでに説明したように、赤外線受信プロセスでは、リーダー・コードが検出された後、「0」と「1」を区別した上で ビット長が検出されますが、部分ごとに異なるタイマ・チャネルが使用されます。

リーダー・コードの検出プロセスは4つの異なる状態で分かれます。

- ロウ・レベル検出状態 (IR LEAD CODE LO) : 立ち下がりエッジのチェック
- ハイ・レベル待機状態 (IR_LEAD_CODE_HI_WAIT) : 立ち上がりエッジのチェック
- ハイ・レベル幅チェック状態(IR_LEAD_CODE_HI): 通常のリーダー・コードとリピート・リーダー・コードを区別するためのハイ・レベル幅のチェック
- カスタム・コードおよびデータ・コード受信状態(IR_DATA_FRAME): タイマ・チャネル 6 の割り込みサービス・ルーチンの終了と、通常のリーダー・コードが検出されたときのタイマ・チャネル 5 の開始

次のフローチャートに、このプロセスの詳細を示します。

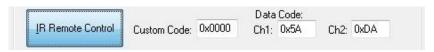
図 5-9 リーダー・コード検出のフローチャート

2番目の動作は、カスタム・コードおよびデータ・コードのビット長の検出ですが、これは単純に ON 期間のチェック で実行します。

- ON 時間>IR_HIGH_LEVEL_TIME のとき:ビットが検出され論理「1」として格納
- ON 時間<IR_HIGH_LEVEL_TIME のとき:ビットが検出され論理「0」として格納

32 ビット(4 バイト)を受信すると、INTTM05 割り込みがディセーブルになり、チャネル 5 の動作が停止します。初 期のロウ・レベル検出状態 (IR LEAD CODE LO) が再び選択され、受信したカスタム・コードおよびデータ・コード を解釈する関数(「IR_ControlLED()」)が呼び出されて、適切な LED 調光コマンドを実行します。

次のフローチャートに、このプロセスの詳細を示します。


図 5-10 ビット長検出のフローチャート INTTM05 割り込み ビット長の検出 いいえ タイマ・ オーバーフロー? はい いいえ はい 受信データ・バッファに 「1」を格納 受信データ・バッファに 「O」を格納 タイマ 5 の停止 状態= IR_LEAD_CODE_LO 受信ビット・カウンタ=0 受信データ・バッファをクリ いいえ 受信ビット・カウンタ ≧8? 受信バイト・カウンタ=0 はい 受信ビット・カウンタを インクリメント 受信ビット・カウンタ=0 受信ビット・カウンタ=0 いいえ **/** 受信バイト・カウンタ >3? はい タイマ 5 を停止 受信バイト・カウンタ=0 受信ビット・カウンタ=0 LED 調光レベル 変更

「IR_ControlLED()」関数は、カスタム・コードおよびデータ・コードが所定のものと一致することをチェックします。 デフォルトでは、次のように定義されています。

カスタム・コード=0x0000, データ・コード=チャネル1の0x5A(チャネル2では0xDA)

これらの値は、Applilet EZ for HCD Controller のメイン・ウィンドウで修正することができ、調光器プログラムが「IR Remote Control」に設定されている場合、「Custom Code」と「Data Code」をユーザーの必要性にあわせてカスタマイズすることができます。

図 5-11 Applilet EZ for HCD Controller の「IR Remote Control」パラメータ

カスタム・コードまたはデータ・コードを変更すると、サンプル・コード・プロジェクトの「r_user.h」ファイル内にある対応する#define マクロがそれに合わせて修正されます。

#define IR_CUSTOM_CODE	0x0000
#define IR_DATA_CODE	0x5A
#define IR DATA CODE	0xDA

チャネル1のデータ・コード(デフォルトで 0x5A)と一致すると、この関数はその次の定義済みの調光レベルを選択し、他の関数がこの新しい調光レベル (0~255) への3つの LED チャネルの設定を行います。

デフォルトでは、6 つの定義済みの調光段階があり、有効な赤外線パケットを受信するたびに、0、85、170、255、170、85 の順序で連続して適用されます。

チャネル 2 のデータ・コード(0xDA)と一致するとき,この関数は 0 から最大調光レベル(255)の間で LED の調光レベルを切り替えます。

次のフローチャートに、このプロセスの詳細を示します。

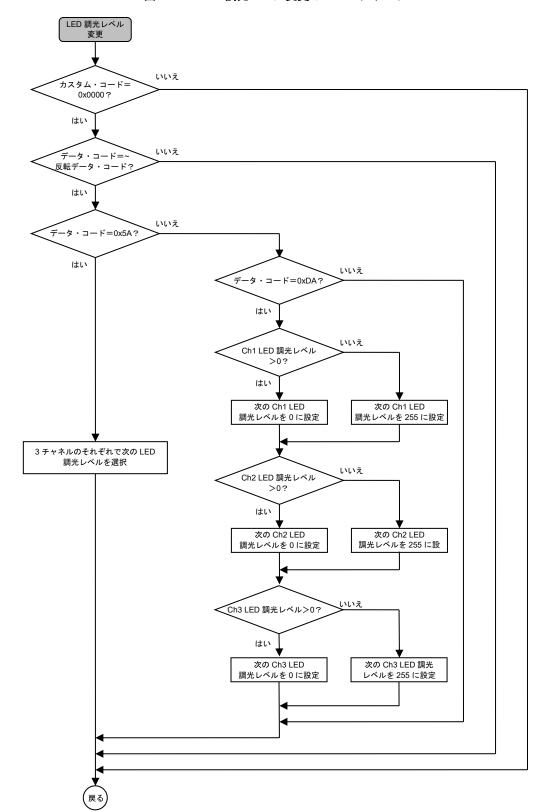


図 5-12 LED 調光レベル変更のフローチャート

付録 A マルチマスタ

2014 年に改訂, 及び追加された IEC62386-101ed2.0, IEC62386-102ed2.0, IEC62386-103ed1.0 ^注ではマルチマスタへのサポートが追加されました。

マルチマスタに関する仕様は IEC62386-101ed2.0, IEC62386-103ed1.0 に記述されております。

マルチマスタに対応させるために Application controller に必要とされるコリジョン対応については、 「RL78/I1A による照明通信(送信編) (R01AN3193JJ0100)」を参照ください。

注: IEC62386-103ed1.0 は 2014 年の改訂で追加されました。 2009 年版では Control device に関する個別の規格書は存在しません。

システムの構成例を示します。

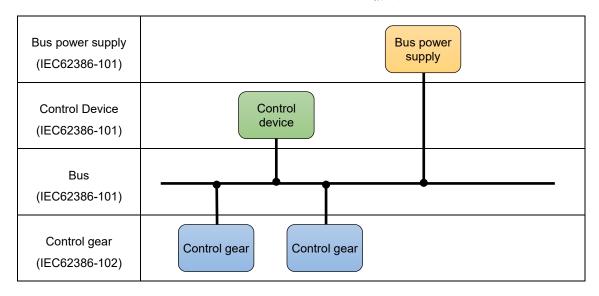


図 A-0 シングルマスタシステム構成例

2009 年版の IEC62386101ed1.0, IEC62386-102ed1.0 では、1 台の Control device(送信側)の下に最大 64 台の Control gear(受信側)を接続する1対nの構成(シングルマスタ構成)のみ規定されています。

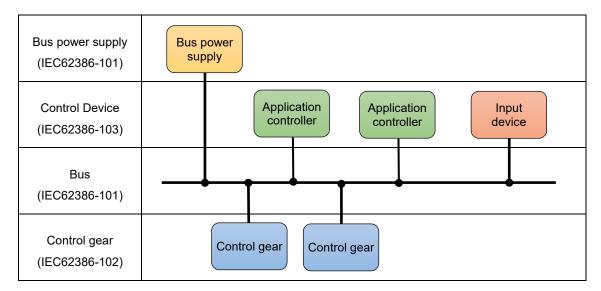


図 A-1 マルチマスタシステム構成例

2014 年改訂版の IEC62386101ed2.0, IEC62386-103ed1.0 では、最大 64 台の Control device(送信側)の下に最大 64 台の Control gear(受信側)を接続する n 対 n の構成(マルチマスタ構成)が可能となりました。

2009 年版での Control device は Application Controller に変更となり、Control device は新たに追加された Input device も含むマスタ側の総称に変更されています。

Control gear との通信は Application controller のみ行う事が可能です。

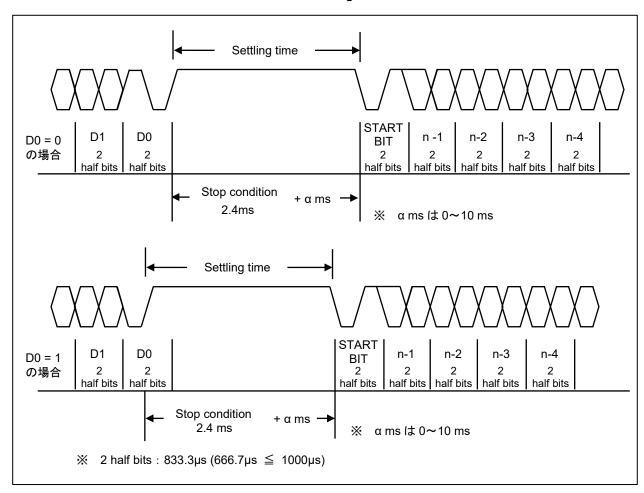
マルチマスタ構成の場合、1 台の Control gear に対する通信を複数台の Application controller から行うことが可能となっています。

マルチマスタを行うための Control device には、コリジョンの検出、及び発生からの復旧のシーケンスを組み込む必要があります。

付録 B DALI(IEC62386-101,102)ed2.0 通信タイミング

IEC62386-101ed2.0 での通信に関するタイミング変更部分について記載します。

変更点


- · Settling time
- 通信タイミング

注意 規格の詳細については規格書をご確認ください。

(1) Settling time

IEC62386-101ed2.0 の Settling time について示します。

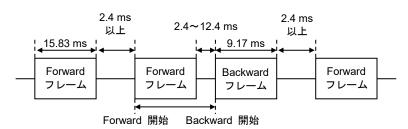
図 B-0 Settling time

IEC62386-101ed2.0 の Settling time は最終 bit のデータに関わらず一定です。

IEC62386-101ed2.0 では、StopCondition の開始を最終 Bit の立ち上がりエッヂと規定しています。

Settling time は、必ず StopCondition の開始から StartBit の開始までとなります。

IEC62386-101ed2.0 でのフレーム間タイミングは、Settling time で規定しています。 (付録 B (2)フレーム間のタイミングを参照してください)



(2) フレーム間のタイミング

DALI はフレーム単位で、次のタイミング制御が必要です。

- Forward フレーム幅: 15.83 ms(12.66~19.00 ms)
- Backward フレーム幅: 9.17 ms(7.33~11.00 ms)
- Forward フレームと Backward フレームとの通信間隔: 2.4~12.4 ms (Settling time)
- Forward フレームと次の Forward フレームとの間隔: 2.4 ms 以上(Settling time)
- Backward フレームと次の Forward フレームとの間隔: 2.4 ms 以上(Settling time)

図 B-1 フレーム間のタイミング

※フレーム間タイミングは全て Settling time にて表しています。

(3) Signal rise time and fall time

立ち上がり、立ち下がり時間は表 B-0 の条件に適合しなくてはなりません。 図 B-2、図 B-3 は tRISE と tFALL を測定するために使用されるレベルを示しています。

表 B-0 Signal rise and fall times

	Minimum	Typical	Maximum
tRISE, tFALL for transmitter and multi-master transmitter	3 μ s		
tRISE, tFALL for transmitter			25 μ s
^t RISE, ^t FALL for multi-master transmitter			15 μ s

注意 タイミングに関する詳細な条件は規格書をご確認ください。

図 B-2 Maximum signal rise and fall time measurements

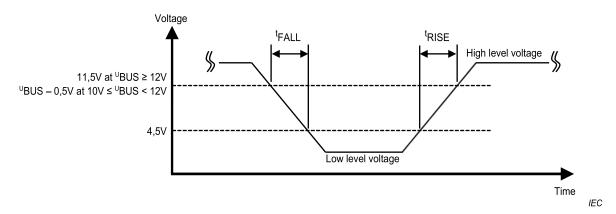
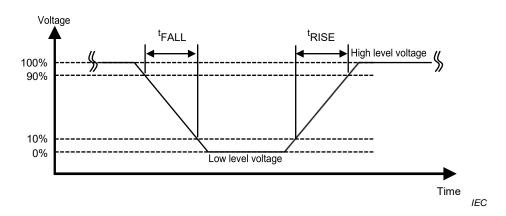



図 B-3 Minmum signal rise and fall time measurements

(4) Transmitter bit timing

Transmitter のビットタイミングは、表 B-1 に示す制限に適合しなければなりません。 図 B-4 には、典型的なフレームの一部を示します。

Low レベル電圧や High レベル電圧に関係なく、タイミングは 8.0V のレベルで測定されます。

8.0 V | Sit i+1 | Bit i | Bit i-1 | Bit i-2 | Sit i-2 | Sit i-2 | Sit i-1 | Bit i-2 | Sit i-2 | Sit i-1 | Bit i-2 | Sit i-2 | Sit i-1 | Bit i-2 | Sit i-2 | Sit i-1 | Bit i-2 | Sit i-2 | Sit i-1 | Bit i-2 | Sit i-2 | Sit i-1 | Bit i-2 | Sit i-2 | Sit i-1 | Bit i-2 | Sit i-2 | Sit i-1 | Bit i-2 | Sit i-2 | Sit i-1 | Sit i-2 |

図 B-4 Bit timing example

表 B-1 Transmitter bit timin

	Minimum	Typical	Maximum
Half bit time ^t HIGH, ^t LOW	336.7 μ s	416.7 µ s	466.7 μ s
Double halh bit time ^t DOUBLE LOW, ^t DOUBLE HIGH	733.3 μ s	833.3 µ s	933.3 μ s
Stop condition time ^T STOP	2450 µ s		

(5) Transmitter frame sequence timing

図 B-5 は連続するフレーム間の Settling time を示しています。

Settling time については、表 B-6 に示す値に適合しなければなりません。

図 B-5 Settling time illustraton

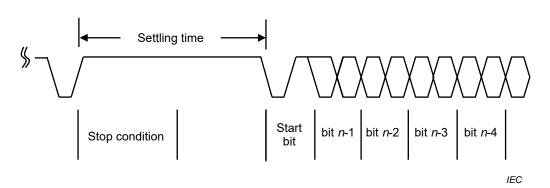


表 B-6 Transmitter settling time value

	Minimum	Typical	Maximum
Settling time between a forward frame and a backward frame	5.5 ms		10.5 ms
Settling time between any other frame and a forward frame	13.5 ms		75.0 ms

注意 タイミングに関する詳細な条件は規格書をご確認ください。

(6) Receiver bit timing

Receiver は、フレームを受け入れるか廃棄するかを以下のビットタイミング条件によって決定します。 エッジで始まる論理ビットについては、開始エッジから次のエッジまでは表 B-7 の期間に適合しなければなりません。論理ビット内のエッジから次のエッジまでは表 B-8 の期間に適合しなければなりません。

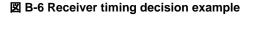
表 B-7 については Start bit, Stop condition, その他論理 bit の最初の Half bit, 表 B-8 については Half bit,

Double half bit, Stop condition の可能性があります。

図 B-6 に表 B-7, B-8 がどの期間に適用されるかの例を示します。

Minimum	Typical	Maximum	Description
		< 333.3 μ s	Gray area
333.3 µ s	416.7 μ s	500 μ s	Half bit
> 500 µ s		< 750 μ s	Gray area
750 µ s		1400 µ s ^a	Bit timing violation
		45 ms ^b	
> 1400 µ s ^a		< 2400 μ s ^a	Gray area
2400 µ s ^a			Stop condition

表 B-7 Receiver timing starting at the beginning of a logical bit


- a アイドルステート時。
- b アクティブステート時、45 ms以上継続する場合はバスパワーダウンと判断。

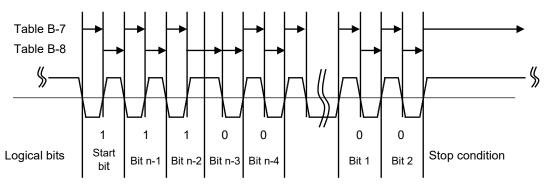

Minimum	Typical	Maximum	Description
		< 333.3 μ s	Gray area
333.3 μ s	416.7 μ s	500 μ s	Half bit
> 500 µ s		< 666.7 μ s	Gray area ^c
666.7 µ s	833.3 µ s	1000 μ s	2 hail bit
> 1000 µ s		< 1200 μ s	Gray area
1200 µ s		< 1400 µ s ^a	Bit timing violation
		45 ms ^b	
> 1400 µ s ^a		< 2400 μ s ^a	Gray area
2400 µ s ^a			Stop condition

表 B-8 Receiver timing starting at an edge inside of a logical bit

- a アイドルステート時。
- b アクティブステート時, 45 ms以上継続する場合はバスパワーダウンと判断。
- c グレーエリア内でエッジが発生した場合、タイミングバイオレーションと判断されますが、バックワードフレームの重複で引き起こされる可能性があります。

注意 タイミングに関する詳細な条件は規格書をご確認ください。

(7) Receiver frame sequence timing

新しいフレームの復号化は、Stop condition の検出後にのみ開始されなければなりません。 Receiver は表 B-9 で与えられた Settling time を含んだフレームシーケンスに適合しなければなりません。

表 B-9 Receiver settling time values

	Minimum	Typical	Maximum	Description
	> 1.4 ms		< 2.4 ms	Gray area
Settling time between forward frame and	2.4 ms		12.4 ms	Frame shall be accepted as backward frame.
backward frame	> 12.4 ms		< 13.4 ms	Gray area
	13.4 ms			Frame shall not be interpreted as backward frame.
Settling time between	> 1.4 ms		< 2.4 ms	Gray area
forward frame and forward frame	2.4 ms			Frame shall be accepted as forward frame.
	> 1.4 ms		< 2.4 ms	Gray area
Settling time between first and second forward	2.4 ms		94 ms	Frames shall be accepted as send-twice forward frames.
frame of send-twice forward frames	> 94 ms		< 105 ms	Gray area
lorward frames	105 ms			Frames shall be accepted as two separate forward frames.
Settling time between	> 1.4 ms		<2.4 ms	Gray area
backward frame and forward frame	2.4 ms			Frame shall be accepted as forward frame.

注意 この要件は、24bit Forward frame の送信中に Receiver が起動した場合、24bit Forward frame が 16bit Forward frame として解釈されないこと等を保証します。

注意 タイミングに関する詳細な条件は規格書をご確認ください。

(8) Collision detection

Collision detection は、任意の Forward frame の送信中に適用されます。

バス上で、Multi-master transmitter が送信したものに、表 B-13 の値とは異なる信号が含まれていた場合、Multi-master transmitter は直ぐに送信を停止しなくてはなりません。

送信を停止した Transmitter は、送信を停止する前に作られた信号が、表 B-12、表 B-13 の Destroy area の条件を満たさないことが保証できる場合、Collision avoidance に戻らなければなりません。

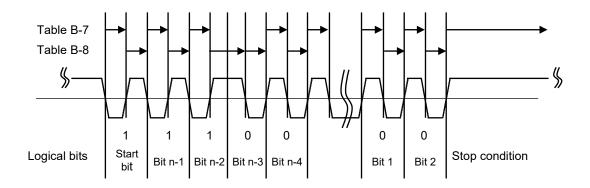
図 B-7 に表 B-12, B-13 がどの期間に適用されるかの例を示します。

Minimum	Typical	Maximum	Description
		< 100 µ s	Gray area
100 µ s		356.7 µ s	Destroy area ^a
> 356.7 μ s		< 400.0 µ s	Gray area
400.0 μ s		433.3 μ s	Valid half bit
> 433.3 µ s		< 476.7 μ s	Gray area

表 B-12 Checking a logical bit, starting at an edge at the beginning of the bit

- a 信号がデストロイエリアに入る場合はコリジョンリカバリ処理を行います。
- b アクティブステート時。

476.7 **μ** s


表 B-13 Checking a logical bit, starting at an edge inside the bit

Destroy area a,b

Typical	Maximum	Description
	< 100 µ s	Gray area
	356.7 μ s	Destroy area ^a
	< 400.0 µ s	Gray area
	433.3 μ s	Valid half bit
	< 476.7 μ s	Gray area
	723.3 µ s	Destroy area ^a
	< 800 µ s	Gray area
833.3 µ s	866.7 µ s	2 valid half bit
	< 943.3 µ s	Gray area
		Destroy area ^{ab}
	833.3 µ s	<pre>< 100 μs 356.7 μs < 400.0 μs 433.3 μs < 476.7 μs 723.3 μs < 800 μs 833.3 μs</pre>

- a 信号がデストロイエリアに入る場合はコリジョンリカバリ処理を行います。
- b アクティブステート時。

図 B-7 Collision detection timing decision example

ホームページとサポート窓口

ルネサス エレクトロニクスホームページ

http://japan.renesas.com/

お問合せ先

http://japan.renesas.com/contact/

改訂記録

Rev.	発行日		改訂内容
		ページ	ポイント
1.00	2012.03.28	_	初版発行
2.00	2012.09.27	p.6	図 2-2 Forward フレームの構造 に
			アドレス・バイト(8 ビット)、およびデータ・バイト(8 ビット)の説明を変更
		p.7	図24 フレーム間のタイミング の数値を修正
		p.7, 8	2.1.3.3(1) アドレス・パイト の説明を変更
		p.17	2.3.1 動作とソフトウェアフローチャート
			・初期化処理フローチャートの【概要】の説明を変更
		p.28, 29, 31	2.4 DALI 全コマンドリスト の備考で Y の説明を変更
		p.32	2.4 (4) Special commands で 備考 を追加
		p.33	2.4 (5) Application extended commands で特定セットの拡張コマンドに、
			番号 224~254,および 備考 を追加
2.01	2013.03.26	p. 1	対象読者の説明を変更
		p. 12	表 23 EEPROM エミュレーション機能で保存されるパラメータに Fade Time を
			追加
		p. 46	3.1.2 ハードウェア制御インタフェース
			DALI/UART4 を UART0 に変更
			DALIRxD4 端子を RxD0 端子に変更
3.00	2016.03.31	_	表題を RL78/I1A による照明通信(受信編)に変更
		P. 5	Applilet EZ for HCD について の説明を追加
		P. 7, 8, 9	3.1.2 DALI 規格構成, 3.1.3 DALI システム構成の説明を追加
		P. 12,13	DALI Settling time の説明を追加
		P. 14	IEC62386-102ed2.0 の送受信タイミングの説明を追加
		P. 36-	IEC62386-102ed2.0 のコマンドリストの項目説明を追加
		P. 47-	関数一覧修正
		P. 68	図 4-6 を Applilet EZ for HCD V9.0 の画像に変更
		P. 81	図 5-11 を Applilet EZ for HCD V9.0 の画像に変更
		P. 82-91	付録 A,付録 B 追加
3.01	2017.06.27	_	誤字修正

本製品は外国為替及び外国貿易法の規定により規制貨物等に該当しますので、日本国外に輸出する場合には、 同法に基づき日本国政府の輸出許可が必要です。

すべての商標および登録商標は、それぞれの所有者に帰属します。

製品ご使用上の注意事項

ここでは、マイコン製品全体に適用する「使用上の注意事項」について説明します。個別の使用上の注意事項に ついては、本ドキュメントおよびテクニカルアップデートを参照してください。

1. 未使用端子の処理

【注意】未使用端子は、本文の「未使用端子の処理」に従って処理してください。

CMOS製品の入力端子のインピーダンスは、一般に、ハイインピーダンスとなっています。未使用端子を開放状態で動作させると、誘導現象により、LSI周辺のノイズが印加され、LSI内部で貫通電流が流れたり、入力信号と認識されて誤動作を起こす恐れがあります。未使用端子は、本文「未使用端子の処理」で説明する指示に従い処理してください。

2. 電源投入時の処置

【注意】電源投入時は、製品の状態は不定です。

電源投入時には、LSIの内部回路の状態は不確定であり、レジスタの設定や各端子の状態は不定です。

外部リセット端子でリセットする製品の場合、電源投入からリセットが有効になるまでの期間、端子の状態は保証できません。

同様に、内蔵パワーオンリセット機能を使用してリセットする製品の場合、電源投入からリセットのかかる一定電圧に達するまでの期間、端子の状態は保証できません。

3. リザーブアドレス(予約領域)のアクセス禁止

【注意】リザーブアドレス(予約領域)のアクセスを禁止します。

アドレス領域には、将来の機能拡張用に割り付けられているリザーブアドレス(予約領域)があります。 これらのアドレスをアクセスしたときの動作については、保証できませんので、アクセスしないようにしてください。

4. クロックについて

【注意】リセット時は、クロックが安定した後、リセットを解除してください。

プログラム実行中のクロック切り替え時は、切り替え先クロックが安定した後に切り替えてください。 リセット時、外部発振子(または外部発振回路)を用いたクロックで動作を開始するシステムでは、クロックが十分安定した後、リセットを解除してください。また、プログラムの途中で外部発振子 (または外部発振回路)を用いたクロックに切り替える場合は、切り替え先のクロックが十分安定してから切り替えてください。

5. 製品間の相違について

【注意】型名の異なる製品に変更する場合は、製品型名ごとにシステム評価試験を実施してください。

同じグループのマイコンでも型名が違うと、内部ROM、レイアウトパターンの相違などにより、電気的特性の範囲で、特性値、動作マージン、ノイズ耐量、ノイズ輻射量などが異なる場合があります。型名が違う製品に変更する場合は、個々の製品ごとにシステム評価試験を実施してください。

ご注意書き

- 1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。お客様の機器・システムの設計におい て、回路、ソフトウェアおよびこれらに関連する情報を使用する場合には、お客様の責任において行ってください。これらの使用に起因して生じた損害(お客様 または第三者いずれに生じた損害も含みます。以下同じです。)に関し、当社は、一切その責任を負いません。
- 2. 当社製品、本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許権、著作権その他の 知的財産権に対する侵害またはこれらに関する紛争について、当社は、何らの保証を行うものではなく、また責任を負うものではありません。
- 3. 当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 4. 当社製品を、全部または一部を問わず、改造、改変、複製、その他の不適切に使用しないでください。かかる改造、改変、複製等により生じた損害に関し、当社 は、一切その青仟を負いません。
- 5. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、各品質水準は、以下に示す用途に製品が使用されることを意図しております。

煙淮水淮 · コンピュータ ○△機哭 通信機哭 計測機哭 △\/機哭

高品質水準: 輸送機器(自動車、電車、船舶等)、交通制御(信号)、大規模通信機器、

家電、工作機械、パーソナル機器、産業用ロボット等

金融端末基幹システム. 各種安全制御装置等

当社製品は、直接生命・身体に危害を及ぼす可能性のある機器・システム(生命維持装置、人体に埋め込み使用するもの等)、もしくは多大な物的損害を発生させ るおそれのある機器・システム(宇宙、海底中継器、原子力制御システム、航空機制御システム、プラント基幹システム、軍事機器等)に使用されることを意図 しておらず、これらの用途に使用することはできません。たとえ、意図しない用途に当社製品を使用したことにより損害が生じても、当社は一切その責任を負い ません。

- 6. 当社製品をご使用の際は、最新の製品情報(データシート、ユーザーズマニュアル、アプリケーションノート、信頼性ハンドブックに記載の「半導体デバイスの使 用上の一般的な注意事項」等)をご確認の上、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他指定条件の範囲内でご使用ください。指 定条件の範囲を招えて当社製品をご使用された場合の故障、誤動作の不具合および事故につきましては、当社は、一切その責任を負いません。
- 7. 当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合がありま す。また、当社製品は耐放射線設計を行っておりません。仮に当社製品の故障または誤動作が生じた場合であっても、人身事故、火災事故その他社会的損害等を 生じさせないよう、お客様の責任において、冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての 出荷保証を行ってください。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行ってく
- 8. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。かかる法令を遵守しないことにより生じた損害に関して、 当社は、一切その責任を負いません。
- 9. 当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。また、当社製品および技術 を、(1)核兵器、化学兵器、生物兵器等の大量破壊兵器およびこれらを運搬することができるミサイル(無人航空機を含みます。)の開発、設計、製造、使用もし くは貯蔵等の目的、(2)通常兵器の開発、設計、製造または使用の目的、または(3)その他の国際的な平和および安全の維持の妨げとなる目的で、自ら使用せず、か つ 第三者に使用。販売、譲渡、輸出、賃貸もしくは使用許諾しないでください。
 - 当社製品および技術を輸出、販売または移転等する場合は、「外国為替及び外国貿易法」その他日本国および適用される外国の輸出管理関連法規を遵守し、それら の定めるところに従い必要な手続きを行ってください。
- 10. お客様の転売、貸与等により、本書(本ご注意書きを含みます。) 記載の諸条件に抵触して当社製品が使用され、その使用から損害が生じた場合、当社は一切その 責任を負わず、お客様にかかる使用に基づく当社への請求につき当社を免責いただきます。
- 11. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。
- 12. 本資料に記載された情報または当社製品に関し、ご不明点がある場合には、当社営業にお問い合わせください。
- 注1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社がその総株主の議決権の過半数を 直接または間接に保有する会社をいいます。
- 注2. 本資料において使用されている「当社製品」とは、注1において定義された当社の開発、製造製品をいいます。

(Rev.3.0-1 2016.11)

■営業お問合せ窓口

http://www.renesas.com

※営業お問合せ窓口の住所は変更になることがあります。最新情報につきましては、弊社ホームページをご覧ください。

ルネサス エレクトロニクス株式会社 〒135-0061 東京都江東区豊洲3-2-24 (豊洲フォレシア)

■技術的なお問合せおよび資料のご請求は下記へどうぞ。 総合お問合せ窓口: https://www.renesas.com/contact/