ENESAS APPLICATION NOTE

RX Family
CAN API Using Firmware Integration Technology

Introduction

The Renesas CAN Application Programming Interface enables you to send, receive, and monitor data on the
CAN bus. This manual explains the usage of this APl and some of the features of the CAN peripheral.

Bundled with this application note comes the CAN API driver source code files. Demonstration source code
for the APl is included in the download, the demo code essentially being in can_api_demo.c, and switches.c.
The demo allows the user to press board switches to send CAN frames and to change demo receive and
transmit CAN IDs.

Target Devices
The following is a list of devices that are currently supported by this API:
e RX64M Group
e RX71M Group
e RX65N, RX651 Groups
e RX66T Group
e RX66N Group
e RX671 Group
e RX72T Group
e RX72M Group
e RX72N Group

When using this application note with other Renesas MCUSs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Target Compilers
¢ Renesas Electronics C/C++ Compiler Package for RX Family
e GCC for Renesas RX
e |AR C/C++ Compiler for Renesas RX

For details of the confirmed operation contents of each compiler, refer to “10.1 Confirmed Operation
Environment.”

R0O1AN2472EU0573 Rev.5.73 Page 1 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

Contents

L © 1= 1= P 4
R = 7= T o S 4
1.2 COMMUNICAION LAYEIS.....coiiiiiiiiiiiii ettt ettt e ettt e e e aab et e e e aa b et e e e aabe e e e e anbeeeesanbeeeeaans 4
1.3 Using the FIT CAN MOAUIEooiiiiiiii ettt e et e et e e s aabe e e e e aabeeeeens 5
1.3.1 Using FIT CAN mModule in CH+ PrOJECT.........uiiiiiiiee ittt e e e e e s e e e e s s e snnraaeeaae s 5
L I o 01V (x| I 7] oo 1= Tox 1o o W PRSPPI 5
LT I T3 O N 1V = T1 oo) O SRUPTPRR 5
T (=T g T [T I SR 5
2. AP N OIMAtION ... 6
D T o =10 A1V T =T o LU (=T 0 1= (O 6
2.2 Hardware Resource ReQUIFEMENTSo i e e e e e e et e e e e e e e e enneeeeeaaeeas 6
D B =4 o) a =T = T Yo U = PR 6
2.2.2 Other Peripherals USEd....... .o ittt e e e e e et e e e e e e e e e nne e e e e e e e e e e annneneeeaaeeas 6
2.3 SOftWare REQUIFEIMENTSoiii it e e e e e e e e e et e e e s e st e aeeeeaessessnbaaeeeaeesssansnraeeeaaaeas 6
2 W 1011 =1 (0T o - TSP PPP S PTPPPTP 6
241 RAM LoCation LIMIAtIONSoiiieiieeee et e e 6
P22 S TS TW] o] oo Ty {Yo I o To] o] = T1 o SRR 6
D2 T) (=4 B o A =Y o (o SR 6
D A o == T oY {1 SR 6
D28 T 11 (=0 1= S I8/ o = 7
DS I 070101 ilo (U = 1] o TSRO PPPTR 7
2.9.1 Interrupt vs. Polled Mode and CAN Interrupt Level & generation Timingcccccooeecviiieeeeeeeccciiieeeennn, 7
2.9.2 Standard & Extended CAN IDS ...ttt e e e e e e e e e e e e e s st e e e e e e e e e e annnneeeaaeeas 7
2.9.3 CAN Channel enabling and Pin Mapping..........cueee ottt 8
2.9.4 Max Register POl TIMIE ...ueiii ittt e bt e bt e e e bt e e e nre e e e eanes 9
Dt O 0o o [T v USRS 9
2.11 Adding the CAN FIT Module t0 YOUr PrOjECEcccoiiiiieeeeee et 10
212 “for”, “while” and “do while” statemeNntsooi i 10
B T B o L= @ I . PP 11
SUMMIAIY ittt e ettt e e e e e ettt e et e e e ee e tateeeeeaeeesaataseeeeaeeaeassteaeeeaeeeaasssseaeeaaeeeaannsssnaeaeeseaansssseneeeeeeannsnes 11
=0 T O To Lo SR PRR 12
07 N AV 01 - (USSR 13
L7 N AV o] o 65T USSR 15
L0 N AV o 1 o USSR 16
07 N N RS 1= 11 = (SO PPPPRRN 17
R_CAN_TxSet and R_CAN_TXSEIXITccoueiiieiiiiie ittt e st e e s et e e e e nnre e e e ennees 20
L O 5 SRS 22
L OV (4 4 Yo SRR 23
RO1AN2472EU0573 Rev.5.73 Page 2 of 65

Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

07 N AV 65 (] o] 1Y T USSR 24
R_CAN_RxSet and R_CAN_RXSEIXIAuiiiiiiiiiieiiie ettt 25
RUCAN_RXPOI ...ttt ettt b e o et e eh e e e et e e ettt e es bt e e bt e e be e e ea bt e e neeenereennnee 26
RUCAN_RXREAA. ...ttt e ettt b e st e eb e e e e bt e ettt e e s bt e e b et e be e e eere e e an e e e nen e eanee 27
07 N AV S T=1 111/ = T USSP 28
07 N AV O 1= o7 1y USSR 30
R_CAN_RxSetFIFO and R_CAN_RXSEtFIFOXIuetiiiieeiieii et 33
4. PN SEtNG i e e e e e e e e e e e e as 35
T B =T 0 Lo I o] [=Tex £ P PPR 36
51 Adding a Demo t0 @ WOIKSPACE..........uuuuuiiiiiiiiiiiiiieieiitiieieeeieebeeaeaeeeebatebsbeaeee e tssasssssssssssssssnsssnsnsnsssnsssnnes 36
5.1.1 Import and Debug Project With €2 StUIOcceeiuiiiiiiiiiie e e 36
o 0t I {0 T 9 = o o o USSR 37
52 The Renesas Debug CONSOIEcooiiiiiiiiiiee et 38
G T 1= 1Y (o o = U 39
&0t N o T o o ¥ T - USSR 39
6.1.1 Internal - Test node WithOUt CAN DUSoiiiii et e e e e e e e e e e e ennes 39
6.1.2 External - TeStNOAE ON DUScooiiiiiiiiiiie e s 39
6.2 Listen Only = BUS MONITOMINGuviiiiiieiiiiiiiee ettt e e e e e e e e e e e e et e e e e e e e sentsreeeeaeeeeaanes 40
A 1121301 €= 10] o R 41
8. CAN SIEEP MOGE ... ittt e e e e e e e e e e e e s 42
S O | L0 43
TR Y o] o<1 T o= 44
10.1 Confirmed Operation ENVIFONMENT.........coiiiiiiiiieiie e e e e e e e e e e et e e e e e e s senrnreees 44
10.2 TroUbIESNOOING ... ——— 58
10.3 API Functions Changes from Rev. 3.20 t0 ReV. 4.00oooiiiiiiiiiiiieeee e 58
10.4 API Functions Changes from Rev. 4.10 10 ReV. 5.00cooiiiiiiiiiiiiiiiiieeiee e 58
10.5 API Functions Changes from Rev. 5.00 0 ReV. 5.10oiiiiiiiiiiiiic e 58
10.6 API Functions Changes from Rev. 5.50 0 ReV. 5.60ccoouiiiiiiiiiiiiiiieieee e 59
Related TechniCal UpAatesooooiiiiiiiii e e e e e 60
RN] (o T 1] (o] AP USPPPPIN 61
RO1AN2472EU0573 Rev.5.73 Page 3 of 65

Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

1. Overview

The RX CAN peripheral has 32 CAN mailboxes with which it can communicate on a CAN bus. The term
‘mailbox’, or in some literature ‘message box’ or ‘message buffer refers to the physical location where
messages are stored inside the MCU’s CAN peripheral. In this document we will use the term ‘mailbox’. The
mailboxes are message ‘buffers’ and will hold a CAN data frame until overwritten by either incoming data, or
rewritten by the MCU.

Each mailbox can be configured dynamically to transmit or receive. Most are usually configured to receive
and fewer to transmit, but this is completely flexible.

1.1 Basics
CAN was designed to provide extremely reliable communication for applications in which safety and real-
time operation is a priority.

CAN is based on a “multiple master, multiple slave” topology. Message or Data Frames transmitted do not
contain the addresses of either the transmitting node or of any intended receiving node. This means that any
node can act as master or slave at any time. Messages can be broadcast, or sent between nodes,
depending on which nodes at a particular moment are listening for a specific ID. New nodes can be added
without having to update others. Such design flexibility makes it practical for building intelligent, redundant,
and easily reconfigured systems.

Main attributes of CAN may be listed as
¢ High reliability and noise immunity
e Error handling on silicon
e Two bus wires / node connection points - Low wiring cost
¢ Flexible architecture
o Easy to scale to large network

Complex stack software to take care of error handling at the low level is not needed since this takes place in
silicon. Since the MCU bus connectors need only two pins, a CAN network is also at the physical level more
reliable than networking schemes that need multiple bus connections. Adding new nodes is simple; just tap
the bus wire at any point.

Bit rate determines the number of nodes that can be connected and cable length. Allowed CAN data bit rates
are: 62.5, 125, 250, 500 Kbps and 1 Mbps. At the highest speed, the network can support 30 nodes on a 40-
meter cable. At lower speeds, the network can support more than 100 nodes on a 1000-meter cable.

The basic building blocks of a CAN network are a CAN microcontroller, the firmware to run it, a CAN
transceiver to drive and read the bus signal, and a physical bus media (2 wires). Choose a CAN MCUs with
enough mailboxes to fit your applications.

1.2 Communication Layers

The figure below shows the CAN communication layers, with the application layer at the top and the
hardware layer at the bottom.

s ~

Application

Renesas CAN API (in can.c)

CAN peripheral (SFR registers)

MCU / transceivers / CAN bus

Figure 1. CAN physical and source code layers.

In this document we will not discuss any higher-level protocols such as CANopen or DeviceNet. (For some
Renesas CAN MCUs there is a CANopen solution. Contact your sales representative.)

RO1AN2472EU0573 Rev.5.73 Page 4 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

1.3 Using the FIT CAN module

1.3.1 Using FIT CAN module in C++ project
For C++ project, add FIT CAN module interface header file within extern “C”{}:

Extern “C”

{
#include “r smc _entry.h”
#include “r can rx if.h”

}
1.4 Physical Connection

The Protocol Controller of the CAN peripheral in your CAN MCU must be connected to a bus transceiver
located outside the chip via the CAN Transmit (CTXn) and receive (CRXn) MCU pins.

1.5 The CAN Mailbox

The CAN Protocol Controller reads and writes to the CAN peripheral mailboxes. When a CAN message is to
be sent, it must first be written to a mailbox by the application firmware. It will then be sent automatically as
soon as the bus becomes idle, unless a message of lower ID is sent by another node. If a mailbox is
configured to receive, the message is written to the mailbox by the Protocol Controller and must be copied by
the user, using the API, to user memory area quickly to free the mailbox for the next message coming from
the network.

The API calls will do all the writing to and from the mailbox for you. All you have to do is provide application
data frame structures which the API functions can write incoming messages to and copy outgoing messages
from. It is recommended to have a least one structure for outgoing messages, and one for incoming. For
outgoing messages this could be a local variable (on the stack). For incoming messages one for each
mailbox is recommended. This CAN data frame structure, of type can_frame_t, is provided by the API
header file and has the following structure:

typedef struct

{
uint32 t elg
uint8 t dlc;
uint8 t data[8];

} can frame t;

Note that the timestamp is not included in this structure, but can easily be added.

Aside from CAN bus arbitration, priority is determined using the lowest mailbox number - except for SH
(RCAN-ET) where the highest mailbox has priority. This is true for both transmit and receive operations. If
two mailboxes have been set with the same CAN ID, the lowest mailbox number has the highest priority.
Therefore, if two mailboxes are configured to receive with the same ID, one mailbox will never receive a
message.

1.6 Extended CAN

To use extended ID, FRAME_ID _MODE in r_can_rx_config.h must be set. When Extended CAN is enabled,
the API functions ending in ‘Xid’ can be called. These functions will automatically cause the ID field of the
CAN mailbox to be formatted to use extended ID. In other words, the user need only call these Xid-functions,
and the ID value passed in the can_frame_t structure will be sent as a 29-bit ID (instead of 11-bit).

RO1AN2472EU0573 Rev.5.73 Page 5 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

2. API Information

The names of the APIs of the RSPI FIT module follow the Renesas APl naming standard.

21 Hardware Requirements

This driver requires that your MCU supports the following peripheral:
e CAN Module (CAN)

2.2 Hardware Resource Requirements

This section details the hardware peripherals that this driver requires. Unless explicitly stated, these
resources must be reserved for the driver, and cannot be used elsewhere in the application.

2.2.1 Peripheral Required
CAN Module (CAN)

2.2.2 Other Peripherals Used

The driver requires I/O port pins to be assigned for CAN bus receive and transmit signals. Assigned pins
may not be used for GPIO.

The driver optionally uses GPIO port pins for Standby and Enable corresponding to each CAN channel.

2.3 Software Requirements

This driver is dependent upon the following FIT module:

e Renesas Board Support Package (r_bsp) v5.20 or higher

2.4 Limitations

2.4.1 RAM Location Limitations

In FIT, if a value equivalent to NULL is set as the pointer argument of an API function, error might be
returned due to parameter check. Therefore, do not pass a NULL equivalent value as pointer argument to an
API function.

The NULL value is defined as 0 because of the library function specifications. Therefore, the above
phenomenon would occur when the variable or function passed to the API function pointer argument is
located at the start address of RAM (address 0x0). In this case, change the section settings or prepare a
dummy variable at the top of the RAM so that the variable or function passed to the API function pointer
argument is not located at address 0x0.

In the case of the CCRX project (e2 studio V7.5.0), the RAM start address is set as 0x4 to prevent the
variable from being located at address 0x0. In the case of the GCC project (e2 studio V7.5.0) and IAR project
(EWRX V4.12.1), the start address of RAM is 0x0, so the above measures are necessary.

The default settings of the section may be changed due to the IDE version upgrade. Please check the
section settings when using the latest IDE.

2.5 Supported Toolchain

This driver has been confirmed to work with the toolchain listed in 10.1 Confirmed Operation Environment.

2.6 Interrupt Vector

When CAN TX and CAN RX interrupts are used, make sure the respective interrupt are mapped to a
software configurable interrupt. This can be done in “r_bsp_interrupt_config.h”

2.7 Header Files

All API calls and their supporting interface definitions are located in “r_can_rx_if.h".

Build-time configuration options are selected or defined in the file "r_can_rx_config.h”.
To reference CAN API elements in this FIT Module from your code include the following:

#include “r_can_rx_if.h”

RO1AN2472EU0573 Rev.5.73 Page 6 of 65
Dec.26.25 RENESAS

RX Family

CAN API Using Firmware Integration Technology

2.8 Integer Types

This software uses ANSI C99. These types are defined in stdint.h.

29 Configuration

It will be necessary to make maodifications to the r_can_rx_config.h file to customize the application for
desired functionality. For example, there is the option of running in CAN polled mode or CAN interrupt mode.
It is not recommended to change the r_can_rx.c file, which contains the Renesas CAN API driver function,
but this may be merited to add some feature not available with the API.

If installing this software by using the “Smart Configurator” in e? studio, the configuration settings for this FIT
module are made through the Smart Configurator “Components-> Property” view. Otherwise,
r_can_rx_config.h can be edited manually using the following tables as a guide.

2.9.1 Interrupt vs. Polled Mode and CAN Interrupt Level & generation Timing
Set the method of checking CAN mailboxes for messages received and sent. If Interrupt mode is used, then

also set the interrupt level for the channel

Define

USE_CAN_POLL

Value
0 = Use interrupt, not polled
1 = Use polling, not interrupt

Meaning

Define method of checking
CAN mailboxes for messages
received and sent.

CAN_CFG_TXFIFO_INT_GEN_TIMING

0 = Every time transmission is
completed.

1 = When the transmit FIFO
becomes empty due to
completion of transmission.

Transmit FIFO Interrupt
Generation Timing Control

CAN_CFG_RXFIFO_INT_GEN_TIMING

0 = Every time reception is
completed.

1 = When the receive FIFO
becomes buffer warning by
completion of reception.

Receive FIFO Interrupt
Generation Timing Control

Valid range = 0to 15 (0 to

Sets the CAN interrupt level

CANO_INT_LVL disable) for channel 0

CAN1 INT LVL \(ahd range=0to 15 (0 to Sets the CAN interrupt level
- - disable) for channel 1

CAN2_INT_LVL Valid range = 0to 15 (0 to Sets the CAN interrupt level

disable)

for channel 2

CAN_CFG_EN_NESTED_INT

0 = Disable nested interrupt.
1 = Enable nested interrupt.

Specifies enable/disable of the
nested interrupt.

2.9.2 Standard & Extended CAN IDs

Select what type of CAN ID type to enable in the driver, that is, usage of 11-bit Standard, or 29-bit Extended
CAN IDs. The API can be setto STD_ID_MODE, EXT_ID_MODE, or MIXED_ID_MODE. If it is set to mixed
mode, the whole API becomes available.

Define Meaning

STD_ID_MODE = 11-bit CAN ID.
EXT_ID_MODE = 29-bit CAN ID.
MIXED_ID MODE = 11-bit and 29-bit
IDs are both in use

STD_ID_MODE or EXT_ID_MODE
enables only those API functions
belonging to that ID mode. If it is set
to mixed mode, the whole API
becomes available.

Note: MIXED_ID_MODE must be used if there will be both Standard and Extended frames on the bus,
otherwise unexpected data may result.

FRAME_ID_MODE

RO1AN2472EU0573 Rev.5.73
Dec.26.25

Page 7 of 65
RENESAS

RX Family

CAN API Using Firmware Integration Technology

2.9.3 CAN Channel enabling and Pin Mapping
The CAN channel must be enabled here to be included in the driver build. Disabling a channel will remove

some code from build.

Specify also where the CAN transceiver control pins are physically connected to the MCU. This is much
more flexible as they are not specific to the CAN peripheral. General IO is used for this. Some transceivers
may have other control pins for which the user will need to add own configuration code.

Define Value Meaning

0 = Disable Enables or disables the use
CAN_USE_CANO 1 = Enable of CAN channel 0.

0 = Disable Enables or disables the use
CAN_USE_CANO_STANDBY_E 1 =Enable of CAN channel 0 standby

NABLE_PINS

and enable pins.

CANO_TRX_STB_PORT

Port Number or Letter

GPIO output port value for
the Standby signal

CANO_TRX_STB_PIN

Port pin#

GPIO output pin number for
the Standby signal

CANO_TRX_STB_LVL

0 = active low
1 = active high

Standby signal active level

CANO_TRX_ENABLE_PORT

Port Number or Letter

GPIO output port value for
the Enable signal

CANO_TRX_ENABLE_PIN

Port pin#

GPIO output pin number for
the Enable signal

CANO_TRX_ENABLE_LVL

0 = active low

Enable signal active level

1 = active high

0 = Disable Enables or disables the use
CAN_USE_CAN1 1 = Enable of CAN channel 1.

0 = Disable Enables or disables the use
CAN_USE_CAN1_STANDBY_E 1 = Enable of CAN channel 1 standby

NABLE_PINS

and enable pins.

CAN1_TRX_STB_PORT

Port Number or Letter

GPIO output port value for
the Standby signal

CAN1_TRX_STB_PIN

Port pin#

GPIO output pin number for
the Standby signal

CAN1_TRX_STB_LVL

0 = active low
1 = active high

Standby signal active level

CAN1_TRX_ENABLE_PORT

Port Number or Letter

GPIO output port value for
the Enable signal

CAN1_TRX_ENABLE_PIN

Port pin#

GPIO output pin number for
the Enable signal

CAN1_TRX_ENABLE_LVL

0 = active low

Enable signal active level

1 = active high

0 = Disable Enables or disables the use
CAN_USE_CAN2 1 = Enable of CAN channel 2.

0 = Disable Enables or disables the use
CAN_USE_CAN2_STANDBY_E 1 = Enable of CAN channel 2 standby

NABLE_PINS

and enable pins.

CAN2_TRX_STB_PORT

Port Number or Letter

GPIO output port value for
the Standby signal

CAN2_TRX_STB_PIN

Port pin#

GPIO output pin number for
the Standby signal

CAN2_TRX_STB_LVL

0 = active low
1 = active high

Standby signal active level

CAN2_TRX_ENABLE_PORT

Port Number or Letter

GPIO output port value for
the Enable signal

RO1AN2472EU0573 Rev.5.73
Dec.26.25

RENESAS

Page 8 of 65

RX Family CAN API Using Firmware Integration Technology

Define Value Meaning
CAN2 TRX ENABLE PIN Port pin# GPIO output.pm number for
- — — the Enable signal
0 = active low Enable signal active level

CAN2_TRX_ENABLE_LVL

1 = active high

2.9.4 Max Register Poll Time

Maximum number of loops to poll a CAN register bit for expected value. If you are using polled mode, and If
you wish to wait a certain time to check that a mailbox has received a frame, increase this value. This can be
set to a very low value, but do not set to zero or the mailbox may not be checked at all.

Define Meaning

Integer value Valid only for polling mode.

range >0 Max loops to poll a CAN register bit for
MAX_ CANREG_POLLCYCLES expected value. This can be set to a very low

value, but do not set to zero or the mailbox may
not be checked at all.

210 Code Size

The code size is based on optimization level 2 for size using the Renesas CCRX toolchain 3.07, GCC for
Renesas RX 14.2.0.202505 and IAR Embedded Workbench for Renesas RX 5.20.01. The ROM (code,
constants, and preinitialized data) and RAM (preinitialized data, uninitialized data) sizes are determined by
the build-time configuration options set in the module configuration header reference file for the device.

ROM and RAM code sizes

. : Size (byte)
Build Settings Area CCRX Goc AR
Polled mode, Only channel 0 enabled ROM 3350 5196 3832
CANO Standby/Enable pins not used
Interrupt mode, Only channel 0 enabled ROM 3853 5548 4158
CANO Standby/Enable pins not used
Interrupt mode, 3 channels enabled ROM 4547 6548 4878
All CAN Standby/Enable pins enabled
All RAM 60 116 60
RO1AN2472EU0573 Rev.5.73 Page 9 of 65

Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

211 Adding the CAN FIT Module to Your Project

This module must be added to each project in which it is used. Renesas recommends using “Smart
Configurator” described in (1) or (2). However, “Smart Configurator” only supports some RX devices. Please
use the methods of (3) for unsupported RX devices.

(1) Adding the FIT module to your project using “Smart Configurator” in e? studio.
By using the “Smart Configurator” in e? studio, the FIT module is automatically added to your project.
Refer to “Renesas e? studio Smart Configurator User Guide (R20AN0451)” for details.

(2) Adding the FIT module to your project using “Smart Configurator” on CS+
By using the “Smart Configurator Standalone version” in CS+, the FIT module is automatically added to
your project. Refer to “Renesas e? studio Smart Configurator User Guide (R20AN0451)” for details.

(3) Adding the FIT module to your project in CS+
In CS+, please manually add the FIT module to your project. Refer to “Adding Firmware Integration
Technology Modules to CS+ Projects (RO1AN1826)” for details.

212 “for”, “while” and “do while” statements

LT

In this module, “for”, “while” and “do while” statements (loop processing) are used in processing to wait for
register to be reflected and so on. For these loop processing, comments with “WAIT_LOOP” as a keyword
are described. Therefore, if user incorporates fail-safe processing into loop processing, user can search the
corresponding processing with “WAIT_LOOP”.

The following shows example of description.

while statement example :

/* WAIT_LOOP */

while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)
{

/* The delay period needed is to make sure that the PLL has stabilized. */

}

for statement example :
/* Initialize reference counters to 0. */
/* WAIT_LOOP */
for (i = 0; i < BSP_REG_PROTECT_TOTAL_ITEMS; i++)
{
g_protect_counters[i] = 0;

}

do while statement example :
/* Reset completion waiting */
do
{
reg = phy_read(ether_channel, PHY_REG_CONTROL);
count++;
} while ((reg & PHY_CONTROL_RESET) && (count < ETHER_CFG_PHY_DELAY_RESET)); /* WAIT_LOOP */

RO1AN2472EU0573 Rev.5.73 Page 10 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

3. The CAN API

The API is a set of functions that allow you to use CAN without having to commit attention to all the details of
setting up the CAN peripheral, to be able to easily have your application communicate with other nodes on
the network.

CAN configuration and communication is accomplished via the CAN SFR Registers described in your MCU'’s
HW manual. As the registers in the CAN peripheral must be configured and read in the proper sequence to
achieve useful communication, a CAN API greatly simplifies this. The API takes numerous tedious issues
and does them for you.

After initializing the peripheral, all you need to do is use the receive and transmit API calls, and on a regular
basis check for any CAN error states. If an error state is encountered the application can just wait and
monitor for the peripheral to recover, as the CAN peripheral takes itself on or off line depending on its state.
After a recovery is discovered, the application should restart.

Note: From Rev. 3.20 to Rev. 4.00, some of the functions have been changed significantly. Therefore, when
upgrading application with CAN FIT Rev. 4.00, users are advised to exercise care

Please refer to 10.3 API Functions Changes from Rev. 3.20 to Rev. 4.00 for more details of the changes.

Summary

The following functions are included in this design:

Function Name Description

R_CAN_Create() Initializes CAN peripheral

R_CAN_PortSet() Configures the MCU and transceiver port pins
R_CAN_Control() Set CAN operating modes

R_CAN_SetBitrate() Set the CAN bitrate (communication speed)
R_CAN_TxSet() and R_CAN_TxSetXid() Set up a mailbox to transmit

R_CAN_Tx() Starts message transmission onto the CAN bus
R_CAN_TxCheck() Check for successful data frame transmission
R_CAN_TxStopMsg() Stop a mailbox that has been asked to transmit a frame
R_CAN_RxSet() and R_CAN_RxSetXid() Set up a mailbox to receive

R_CAN_RxPoll() Checks if a mailbox has received a message
R_CAN_RxRead() Read the CAN data frame content from a mailbox
R_CAN_RxSetMask() Sets the CAN ID Acceptance Masks
R_CAN_CheckErr() Check for bus errors

R_CAN_RxSetFIFO() and Set up a FIFO mailbox to receive

R_CAN_RxSetFIFOXid()

RO1AN2472EU0573 Rev.5.73 Page 11 of 65
Dec.26.25 RENESAS

RX Family

CAN API Using Firmware Integration Technology

Return Codes

API Return Codes

Description

R_CAN_OK

Action completed successfully.

R_CAN_NOT_OK

Action did not complete successfully. Usually a more specific

return code is used

R_CAN_SW_BAD_MBX

Bad mailbox number.

R_CAN_BAD_CH_NR

The channel number does not exist.

R_CAN_BAD_MODE

The mode number does not exist.

R_CAN_BAD_ACTION_TYPE

No such action type exists for this function.

R_CAN_MSGLOST

Message was overwritten or lost

R_CAN_NO_SENTDATA

No message was sent.

R_CAN_RXPOLL_TMO

Polling for received message timed out.

R_CAN_SW_WAKEUP_ERR

The CAN peripheral did not wake up from Sleep mode.

R_CAN_SW_SLEEP_ERR

The CAN peripheral did not enter Sleep mode

R_CAN_SW_HALT_ERR

The CAN peripheral did not enter Halt mode.

R_CAN_SW_RST_ERR

The CAN peripheral did not enter Reset mode.

R_CAN_SW_TSRC_ERR

Time Stamp error

R_CAN_SW_SET_TX_TMO

Waiting for previous transmission to finish timed out.

R_CAN_SW_SET_RX_TMO

Waiting for previous reception to complete timed out.

R_CAN_SW_ABORT_ERR

Wait for abort timed out.

R_CAN_MODULE_STOP_ERR

Whole CAN peripheral is in stop state (low power)

CAN_ERR_NOT_FIFO_MODE

Current mailbox mode is not FIFO mailbox mode.

CAN_ERR_BOX_FULL

Transmit FIFO is full (4 unsent messages)

CAN_ERR_BOX_EMPTY

No unread message in receive FIFO

CAN BUS State Codes

Description

R_CAN_STATUS_ERROR_ACTIVE

Node status is normal.

R_CAN_STATUS_ERROR_PASSIVE

Node has sent at least 127 Error frames for either the Transmit

Error Counter, or the Receive Error Counter

R_CAN_STATUS_BUSOFF

Node’s Transmit Error Counter has surpassed 255 due to the

node’s failure to transmit correctly

RO1AN2472EU0573 Rev.5.73
Dec.26.25

Page 12 of 65

RENESAS

RX Family CAN API Using Firmware Integration Technology

R_CAN_Create

Initializes CAN peripheral - Sets user communication callback functions, configures CAN interrupts, sets
different bitrate for different channels, mailbox defaults, and enters CAN Operation Mode

This function sets the CAN interrupt levels and user callbacks. This function will also call
R_CAN_SetBitrate() and sets the mask to default: not mask any frames.

Format
uint32 t R CAN Create(const uint32 t ch nr,
const uint32 t mb_mode,
const can bitrate config t p cfg,

void (*tx cb func) (void),
void (*txf cb func) (void),
void (*rx cb_ func) (void),
void (*rxf cb func) (void),
void (*err cb func) (void));
Parameters
ch_nr
CAN channel to use (0-2 MCU dependent).
mb_mode
Normal mailbox (0)
FIFO mailbox (1)
pP_cfg

It is an address to the data structure containing the BRP, TSEG1, TSEG2, and SJW that constitute the bitrate for
channel ch_nr.

tx_cb_func
The name of a function in your application which will be called by the CAN driver when a mailbox has finished
transmitting. If you are using polled mode, or do not want a callback for interrupt mode for some reason, specify
NULL.

txf cb_func
The name of a function in your application which will be called by the CAN driver when every time mailbox in the
transmit FIFO has finished transmitting or the transmit FIFO becomes empty due to completion of transmission. If
you do not want a callback for interrupt mode for some reason, specify NULL.

rx_cb_func
The name of a function in your application which will be called by the CAN driver when a mailbox has finished
receiving. If you are using polled mode, or do not want a callback for interrupt mode for some reason, specify
NULL.

rxf ¢cb_func
The name of a function in your application which will be called by the CAN driver when every time mailbox in the
receive FIFO has finished receiving or the receive FIFO becomes buffer warning by completion of reception. If you
do not want a callback for interrupt mode for some reason, specify NULL.

err_cb_func
The name of a function in your application which will be called by the CAN driver when there is a CAN error. If

you are using polled mode, or do not want a callback for interrupt mode for some reason, specify NULL.

Return Values

R _CAN OK Action completed successfully.

R CAN SW BAD MBX Bad mailbox number.

R CAN BAD CH NR The channel number does not exist.

R CAN BAD MODE The mode number does not exist.

R CAN SW RST ERR The CAN peripheral did not enter Reset mode.

R CAN MODULE STOP ERR Whole CAN peripheral is in stop state (low power). Perhaps the
PRCR register was not used to unlock the module stop register.
See also R_CAN_Control() return values.

Properties
Prototyped in »_can_rx_if'h
Implemented in »_can_rx.c

RO1AN2472EU0573 Rev.5.73 Page 13 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

Description
This function wakes the peripheral from CAN Sleep mode and puts it in CAN Reset mode. It configures the
mailboxes with these default settings:

Sets mailbox mode: either normal mailbox mode or FIFO mailbox mode.

Overwrite an unread mailbox data when new frames arrive.

Sets the device to use ID priority (normal CAN behavior, not the optional mailbox number priority).
Sets all mailboxes’ masks invalid.

R_CAN_Create calls the R_CAN_SetBitrate function and configures CAN interrupts if USE_CAN_POLL is
commented in r_can_rx_config.h.

Before returning, it clears all mailboxes, sets the peripheral into Operation mode, and clears any errors.

Note: Users need to declare the baud rate prescaler division and bit timing values to set the bitrate of the

CAN channel through the p_cfg argument before call R_CAN_Create function. See the below example:

Example
/* Declares the baud rate prescaler division and bit timing values for CANO */
#define CANO BRP (5)

#define CANO_SJW (2)
#define CANO TSEG1 (15)
#define CANO TSEG2 (8)

/* Sets the bitrate for CANO through CANO bitrate cfg */
can _bitrate config t CANO bitrate cfg;

CANO bitrate cfg.BRP = CANO BRP;

CANO bitrate cfg.SJWw = CANO SJW;

CANO bitrate cfg.TSEGl = CANO TSEGIL;

CANO bitrate cfg.TSEG2 = CANO TSEG2;

#if USE CAN POLL
api status = R CAN Create (g can channel, mb mode, CANO bitrate cfg, NULL,
NULL, NULL, NULL, NULL);
telse
/* Using interrupts. */
api status = R CAN Create(g can channel, mb mode, CANO bitrate cfg,
my can_ tx0 callback, my can txf0 callback, my can rx0 callback,
my can rxf0 callback, my can err0 callback);
#endif B - B

RO1AN2472EU0573 Rev.5.73 Page 14 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

R_CAN_PortSet

Configures the MCU and transceiver port pins. This function is responsible for configuring the MCU and
transceiver port pins. Transceiver port pins such as Enable will vary depending on design, and this function
must then be modified. The function is also used to enter the CAN port test modes, such as Listen Only.

Format
uint32 t R _CAN PortSet (const uint32 t ch nr, const uint32 t action type);

Parameters
ch_nr

CAN channel to use (0-2 MCU dependent).
action_type

Port actions:

ENABLE Enable the CAN port pins and the CAN transceiver.
DISABLE Disable the CAN port pins and the CAN transceiver.
CANPORT _TEST LISTEN ONLY Set to Listen Only mode. No ACKs or Error frames are sent.
CANPORT TEST 0 EXT LOOPBACK Use external bus and loopback. Useful for initial debug. See
separate test section.
CANPORT TEST 1 INT LOOPBACK Only internal mailbox communication. Useful for initial debug.
See separate test section.
CANPORT RETURN TO NORMAL Return to normal port usage.
Return Values
R CAN OK Action completed successfully.
R CAN SW BAD MBX Bad mailbox number.
R CAN BAD CH NR The channel number does not exist.
R CAN BAD ACTION TYPE No such action type exists for this function.
R CAN SW _HALT ERR The CAN peripheral did not enter Halt mode.
R _CAN _SW _RST ERR The CAN peripheral did not enter Reset mode.

See also R_CAN_Control() return values.

Properties
Prototyped in »_can_rx_ifh
Implemented in »_can_rx.c

Description
Unless Internal Loopback mode is used (for initial test and debug) make sure this function is called after any
board default port set up function is used (e.g., ‘hwsetup’).

Observe that a stray output high/low on an MCU CAN port pin that was set by some other (default) board
setup code could affect the bus negatively. You may discover that a hard reset on a node could cause other
nodes to go into error mode. The reason may be that all ports were set as default output hi/low before CAN
reconfigures the ports. Such code should be removed, or else, for a brief period of time, the ports may be
output low/high and disrupt the CAN bus voltage level.

You may have to change/add transceiver port pins according to your transceiver.
Example

/* Normal CAN bus usage. */
R CAN PortSet (0, ENABLE) ;

RO1AN2472EU0573 Rev.5.73 Page 15 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

R_CAN_Control

Set CAN operating modes. Controls transition to CAN operating modes determined by the CAN Control
register. For example, the Halt mode should be used to later configure a receive mailbox.

Format
uint32 t R CAN Control (const uint32 t ch nr, const uint32 t action type);

Parameters
ch_nr

CAN channel to use (0-2 MCU dependent).
action_type
Peripheral actions:
EXITSLEEP CANMODE Exit CAN Sleep mode, the default state when the peripheral starts up.
ENTERSLEEP CANMODE Enter CAN Sleep mode to save power.
RESET_CANMODE Put the CAN peripheral into Reset mode.

HALT CANMODE Put the CAN peripheral into Halt mode. CAN peripheral
is still connected to the bus but stops communicating.

OPERATE _CANMODE Put the CAN peripheral into normal Operation mode.

Return Values

R CAN OK Action completed successfully.

R CAN SW BAD MBX Bad mailbox number.

R CAN BAD CH NR The channel number does not exist.

R CAN BAD ACTION TYPE No such action type exists for this function.

R _CAN SW _WAKEUP_ERR The CAN peripheral did not wake up from Sleep mode.
R _CAN SW SLEEP ERR The CAN peripheral did not enter Sleep mode.

R CAN SW HALT ERR The CAN peripheral did not enter Halt mode.

R CAN SW RST ERR The CAN peripheral did not enter Reset mode.

See also R_CAN_PortSet() return values.

Properties
Prototyped in r_can_rx_if.h

Description

Other than calling this API to enter Halt mode, CAN mode transitions are called via the other API functions
automatically. For example, the default mode when starting up is CAN Sleep mode. Use the API to switch to
other operating modes, for example first ‘Exit Sleep’ followed by ‘Reset’ to initialize the CAN registers for
bitrate and interrupts, then enter ‘Halt’ mode to configure mailboxes.

Example
/* Normal CAN bus usage. */
result = R CAN Control (0, OPERATE CANMODE); //Check that result is = R _CAN OK.

RO1AN2472EU0573 Rev.5.73 Page 16 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

R_CAN_SetBitrate

Set the CAN bitrate (communication speed). The baud rate and bit timing must always be set during the
configuration process. It can be changed later if reset mode is entered.

Format
void R _CAN SetBitrate(const uint32 t ch nr, const can bitrate config t p cfqg);

Parameters
ch_nr

CAN channel to use (0-2 MCU dependent).

pP_cfg
It is an address to the data structure containing the BRP, TSEG1, TSEG2, and SJW that constitute the bitrate for

channel ch_nr.

Return Values
None

Properties
Prototyped in r_can_rx_if.h

Description
Setting the baud rate or data speed on the CAN bus requires some understanding of CAN bit timing and
MCU frequency, as well as reading hardware manual figures and tables.

Some calculations need to be done to set up the baud rate: Selects the baud rate prescaler division value,
time segment 2 control, time segment 1 control, and resynchronization jump width control indicated by p_cfg.
First some explanations. The CAN system clock, fcanci, is the internal clock period of the CAN peripheral.
This CAN system clock is determined by the CAN Baud Rate Prescaler value and the peripheral bus clock.
One Time Quantum is equal to the period of the CAN clock.

One CAN bus bit-time is an integer sum of a number of Time Quanta, Tq. Each bitrate register is then given
a certain number of Tq of the total number of Time Quanta that make up one CAN bit period, or Tqtot.

Formulas to calculate the bitrate register settings.

PCLK is the peripheral clock frequency, PCLKB.

fcan = PCLK or EXTAL

The prescaler scales the CAN peripheral clock down with a factor.
fcanclk = fcan/prescaler

One Time Quantum is one clock period of the CAN clock.

Tq =1/fcanclk

Tqtot is the total number of CAN peripheral clock cycles during one CAN bit time and is by the
peripheral built by the sum of the “time segments” and “SS” which is always 1. In the code, Tqtot is
shown to be

BSP_CFG_XTAL_HZ *BSP_CFG_PLL_MUL)/ (CAN_BRP * BITRATE * BSP_CFG_PCKB_DIV)
Set these macros so that a Tqtot is found which is not larger than accepted by the CAN registers.
Note: CAN_BRP defined in user program

BITRATE as expected bitrate

See the HW-manual’s table of examples for bitrate settings.
Another restriction is:
Tqtot = TSEG1 + TSEG2 + SS (TSEG1 must be > TSEG2)
SS is always 1. SIW is often given by the bus administrator. Select 1 <= SJW <=4.

RO1AN2472EU0573 Rev.5.73 Page 17 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

Example calculate the bitrate register settings

CAN BITRATE Settings
See 'CAN Communication Speed Setting', and 'Bit Rate' sections in HW-manual.

CCLKS is O(running on PCLK which is PCLKB), that is,

FCAN = PCLK = PCLKB.

CAN_BRP = Baudrate prescaling.

FCANCLK = FCAN / CAN_BRP

P = value selected in BRP[9:0] bits in BCR (P = 0 to 1023). P + 1 = CAN_BRP.
TQTOT = Nr CAN clocks in one CAN bit = FCANCLK/BITRATE.

With CCLKS = 0, and using r_bsp macros we get:
FCAN = (BSP_CFG_XTAL_HZ *BSP_CFG_PLL _MUL /BSP_CFG_PCKB_DIV) (Eq. 1)
TQTOT = (FCAN/(CAN_BRP * BITRATE)) (Eq. 2)

Eqg. (1) in (2):

TQTOT = (BSP_CFG_XTAL_HZ * BSP_CFG_PLL_MUL / BSP_CFG_PCKB_DIV)/(CAN_BRP *
BITRATE)), or

TQTOT = (BSP_CFG_XTAL_HZ * BSP_CFG_PLL_MUL)/(CAN_BRP * BITRATE *
BSP_CFG_PCKB_DIV) (Eq. 3)

Example: Desired baudrate 500 kbps.
Try CAN_BRP =4, Equation 3:
TQTOT = (24000000 * 10)/(4 * 500000 * 4) = 30. This is too large. TQTOT can be max 25.
Try CAN_BRP = 5.
TQTOT =
(BSP_CFG_XTAL_HZ * BSP_CFG_PLL_MUL)/(CAN_BRP * BITRATE * BSP_CFG_PCKB_DIV)
= (24000000 * 10)/(5 * 500000 * 4) = ***24***
TQTOT =24 = TSEG1 + TSEG2 + SS:
Try:
SS =1 Tq always.
TSEG1=15Tq
TSEG2=8Tq

RO1AN2472EU0573 Rev.5.73 Page 18 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

You can also use this Python code as an aid to change bit rate.

Python 3.5.1. Simple python code to help calculate bitrate register settings.
If you don't have Python, just follow the code, you should see how to calculate
register settings by hand.

from fractions import Fraction
BITRATE = 500000

Try a BRP. If TQTOT is too large for register settings, increase.
CAN BRP = 4

Limit on what is tolerated if TQTOT is not a whole integer.
If it is not, it is impossible to get an exact baudrate.

Value is not tested.

MAX TQ FRACTION DEV = 0.1

XTAL HZ = 12000000

PLL MUL = 4 # Depending on part, these may not exist, and so be = 1.
PCKB DIV = 2
TQTOT = (XTAL_HZ * PLL_MUL)/(CAN_BRP * BITRATE * PCKB_DIV)

print ("TQTOT is", round(TQTOT, 2), "=> Set TSEGl larger than TSEG2, and SJW to
1, so that the sum of these is TQTOT.")
print ("============= ")

Example
/* Declares the baud rate prescaler division and bit timing values for CANO */
#define CANO BRP (5)

#define CANO_SJW (2)
#define CANO TSEG1 (15)
#define CANO TSEG2 (8)

/* Sets the bitrate for CANO through CANO bitrate cfg */
can _bitrate config t CANO bitrate cfg;

CANO bitrate cfg.BRP = CANO BRP;

CANO bitrate cfg.SJW = CANO SJW;

CANO bitrate cfg.TSEGl1 = CANO TSEGI1;

CANO bitrate cfg.TSEG2 CANO TSEGZ;

/* Set BAUDRATE */
R CAN SetBitrate (0, CANO bitrate cfqg);

RO1AN2472EU0573 Rev.5.73 Page 19 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

R_CAN_TxSet and R_CAN_TxSetXid

Set up a mailbox to transmit. R_CAN_TxSet will write to a mailbox the specified ID, data length and data
frame payload, then set the mailbox to transmit mode and send a frame onto the bus by calling R_CAN_Tx().

R_CAN_TxSetXid does the same, except if this function is used, the ID will be a 29-bit ID.

Format
uint32 t R CAN TxSet (const uint32 t ch nr, const uint32 t mb mode, const
uint32 t mbox nr, const can frame t* frame p, const
uint32 t frame type);
uint32 t R CAN TxSetXid(const uint32 t ch nr, const uint32 t mb mode, const
uint32 t mbox nr, can frame t* frame p, const
uint32 t frame type);
Parameters
ch_nr
CAN channel to use (0-2 MCU dependent).
mbox_nr
Mailbox to use.
mb_mode

Normal mailbox (0)
FIFO mailbox (1)
frame_p
Pointer to a data frame structure in memory. It is an address to the data structure containing the ID, DLC and data
that constitute the dataframe the mailbox will transmit.
frame_type

DATA FRAME Send a normal data frame.
REMOTE _FRAME Send a remote data frame request.

Return Values

R CAN OK The mailbox was set up for transmission.
R CAN SW BAD MBX Bad mailbox number.

R CAN BAD CH NR The channel number does not exist.

R CAN BAD MODE The mode number does not exist.

CAN _ERR BOX FULL Transmit FIFO is full (4 unsent messages).

R CAN BAD ACTION TYPE No such action type exists for this function.

Properties
Prototyped in r_can_rx_if.h

Description
This function sets up transmitting for normal mailboxes or transmit FIFO mailboxes.

To transmit FIFO mailboxes, this function first interrupt disables the mailbox temporarily when setting up the
mailbox. It then checks to ensure the transmit FIFO is not full to perform setting up the mailbox: Copies the
data frame payload bytes (0-7) into the mailbox, selects data frame or remote frame request, sets the ID
value for the mailbox and finally the Data Length Code indicated by frame_p. The mailbox is interrupt
enabled as well as transmit FIFO interrupt generation timing again unless USE_CAN_POLL was defined.
Finally, R_CAN_Tx is called to deliver the message.

To normal mailboxes, this function first waits for any previous transmission of the specified mailbox to
complete. It then interrupt disables the mailbox temporarily when setting up the mailbox: Sets the ID value for
the mailbox, the Data Length Code indicated by frame_p, selects dataframe or remote frame request and
finally copies the data frame payload bytes (0-7) into the mailbox. The mailbox is interrupt enabled again
unless USE_CAN_POLL was defined. Finally, R_CAN_Tx is called to deliver the message.

RO1AN2472EU0573 Rev.5.73 Page 20 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

Example
#define MY TX SLOT (7)
can_ frame t my tx dataframe;

my tx dataframe.id = 1
my tx dataframe.dlc =
my tx dataframe.datal0
my tx dataframe.datall

2;
] = O0xAA;

] = 0xBB;

/* Send my frame. */

api_ status = R CAN TxSet (0, 0, MY TX SLOT, &my tx dataframe, DATA FRAME) ;

RO1AN2472EU0573 Rev.5.73 Page 21 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

R_CAN_Tx

Starts actual message transmission onto the CAN bus. This API will wait until the mailbox finishes handling a
prior frame, then set the mailbox to transmit mode.

Format
uint32 t R CAN Tx(const uint32 t ch nr, const uint32 t mb mode, const uint32 t

mbox nr) ;

Parameters
ch_nr
CAN channel to use (0-2 MCU dependent).
mb_mode
Normal mailbox (0)
FIFO mailbox (1)
mbox_nr
Which CAN mailbox to use (0-31).

Return Values

R CAN OK Set up to transmit was performed successfully.

R CAN SW BAD MBX Bad mailbox number.

R CAN BAD CH NR The channel number does not exist.

R CAN BAD MODE The mode number does not exist.

CAN _ERR BOX FULL Transmit FIFO is full (4 unsent messages).

R _CAN SW _SET TX TMO Waiting for previous transmission to finish timed out.
R CAN SW SET RX TMO Waiting for previous reception to complete timed out.
Properties

Prototyped in r_can_rx_if.h

Description
R_CAN_TxSet must have been called at least once for this mailbox after system start to set up the mailbox
content, as this function only tells the mailbox to send its content.

Example
#define MY TX SLOT (7)

/* Send mailbox content. This mailbox is presumed to have been set up to send
some time in the past. */
R CAN Tx(0, 0, MY TX SLOT);

RO1AN2472EU0573 Rev.5.73 Page 22 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

R_CAN_TxCheck

Check for successful data frame transmission. Use to check a mailbox for a successful data frame
transmission.

Format
uint32 t R CAN TxCheck(const uint32 t ch nr, const uint32 t mbox nr);

Parameters
ch_nr

CAN channel to use (0-2 MCU dependent).
mbox_nr

Which CAN mailbox to use (0-31).

Return Values

R _CAN OK Transmission was completed successfully.
R CAN SW BAD MBX Bad mailbox number.

R _CAN BAD CH NR The channel number does not exist.

R _CAN MSGLOST Message was overwritten or lost.

R CAN NO _SENTDATA No message was sent.

Properties

Prototyped in r_can_rx_if.h

Description

This function is only needed if an application needs to verify that a message has been transmitted for
example so that it can progress a state machine, or if messages are sent back-to-back. With CAN’s level of
transport control built into the silicon, it can reasonably be assumed that once a mailbox has been asked to
send with the API that the message will indeed be sent. Safest if of course to use this function after a
transmission.

Example
/* TRANSMITTED a particular frame? */
api status = R CAN TxCheck (0, CANBOX TX) ;

if (api status == R CAN OK)
{

message x sent flag = TRUE; // Notify main application.
}

RO1AN2472EU0573 Rev.5.73 Page 23 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

R_CAN_TxStopMsg

Stop a mailbox that has been asked to transmit a frame

Format
uint32 t R CAN TxStopMsg(const uint32 t ch nr, const uint32 t mb mode, const

uint32 t mbox nr);

Parameters
ch_nr
CAN channel to use (0-2 MCU dependent).
mb_mode
Normal mailbox (0)
FIFO mailbox (1)
mbox_nr
Which CAN mailbox to use (0-31).

Return Values

R _CAN OK Action completed successfully.

R CAN SW BAD MBX Bad mailbox number.

R _CAN BAD MODE The mode number does not exist.

R CAN BAD CH NR The channel number does not exist.
R CAN SW ABORT ERR Waiting for an abort timed out.
Properties

Prototyped in r_can_rx_if.h

Description

This function clears the mailbox control or transmit FIFO control flags so that a transmission is stopped
(TrmReq is set to 0 for normal mailboxes or TFE is set to 0 for transmit FIFO mailboxes). A software counter
then waits for an abort for a maximum period of time.

If the message was not stopped, R_CAN_SW_ABORT_ERR is returned. Note that the cause of this could be
that the message was already sent.

Example
R_CAN TxStopMsg (0, 0, MY TX SLOT);

RO1AN2472EU0573 Rev.5.73 Page 24 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

R_CAN_RxSet and R_CAN_RxSetXid

Set up a mailbox to receive.

R_CAN_RxSet: The API sets up a given mailbox to receive data frames with the given CAN 11-bit ID.
Incoming data frames with the same ID will be stored in the mailbox.

R_CAN_RxSetXid: Does the same, except the ID will be a 29-bit ID.

Format
uint32 t R CAN RxSet (const uint32 t ch nr, const uint32 t mbox nr,
const uint32 t id, const uint32 t frame type);
uint32 t R CAN RxSetXid(const uint32 t ch nr, const uint32 t mbox nr,
uint32 t xid, const uint32 t frame type);
Parameters
ch_nr
CAN channel to use (0-2 MCU dependent).
mbox_nr
Which CAN mailbox to use (0-31).
id
xid
The CAN ID which the mailbox should receive.
frame_type

DATA FRAME Send a normal data frame.
REMOTE FRAME Send a remote data frame request.

Return Values

R CAN OK Action completed successfully.

R CAN SW BAD MBX Bad mailbox number.

R CAN BAD CH NR The channel number does not exist.

R CAN SW _SET TX TMO Waiting for previous transmission to finish timed out.
R CAN SW _SET RX TMO Waiting for previous reception to complete timed out.
Properties

Prototyped in r_can_rx_if.h

Description

The function will first wait for any previous transmission/reception to complete, then temporarily interrupt
disable the mailbox. It sets the mailbox to the given standard ID value, and whether to receive normal CAN
dataframes or remote frame requests.

Example
#define MY RX SLOT (8)
#define SID FAN SPEED 0x10

R_CAN RxSet (0, MY RX SLOT, SID FAN SPEED, DATA FRAME);

RO1AN2472EU0573 Rev.5.73 Page 25 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

R_CAN_RxPoll

Checks if a mailbox has received a message

Format
uint32 t R CAN RxPoll (const uint32 t ch nr, const uint32 t mbox nr);

Parameters
ch_nr

CAN channel to use (0-2 MCU dependent).
mbox_nr

Which CAN mailbox to check (0-31).

Return Values

R CAN OK There is a message waiting.

R CAN NOT OK No message waiting or pending.

R CAN RXPOLL TMO Message pending but timed out.

R CAN SW BAD MBX Bad mailbox number.

R _CAN BAD CH NR The channel number does not exist.
Properties

Prototyped in r_can_rx_if.h

Description
When a mailbox is set up to receive certain messages, it is important to determine when it has finished
receiving successfully. There are two methods for doing this:

Polling. Call the API regularly to check for new messages. USE_CAN_POLL must be defined in the CAN
configuration file. If there is a message use R_CAN_RxRead to fetch it.

Using the CAN receive interrupt (USE_CAN_POLL not defined): Use this API to check which mailbox
received. Then notify the application.

The function returns R_CAN_OK if new data was found in the mailbox.

Example
See example in R_CAN_RxRead().

RO1AN2472EU0573 Rev.5.73 Page 26 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

R_CAN_RxRead

Read the CAN data frame content from a mailbox. The API checks if a given mailbox has received a
message. If so, a copy of the mailbox’s dataframe will be written to the given structure.

Format
uint32 t R CAN RxRead(const uint32 t ch nr, const uint32 t mb mode,
const uint32 t mbox nr, can frame t* const frame p);

Parameters
ch_nr
CAN channel to use (0-2 MCU dependent).
mb_mode
Normal mailbox (0)
FIFO mailbox (1)
mbox_nr
Which CAN mailbox to check (0-31).
frame p
Refers to a pointer to a data frame structure in memory. It is an address to the data structure into which the function
will place a copy of the mailbox’s received CAN dataframe.

Return Values

R CAN OK There is a message waiting.

R _CAN BAD MODE The mode number does not exist.

R CAN SW BAD MBX Bad mailbox number.

R _CAN BAD CH NR The channel number does not exist.
CAN_ERR BOX EMPTY No unread message in receive FIFO
R CAN MSGLOST Message was overwritten or lost.
Properties

Prototyped in r_can_rx_if.h

Description
This function is used to receive the message by the normal mailboxes or receive FIFO mailboxes.

To receive FIFO mailboxes, it checks Receive FIFO Empty Status Flag to ensure unread message in receive
FIFO. If have, it loads the ID value, the Data Length Code and the data frame payload bytes (0-7) of
message into the mailbox. Finally, it checks Message Lost then write FF to Receive FIFO Pointer Control
Register.

To normal mailboxes, Use R_CAN_RxPoll() first to check whether the mailbox has received a message.

This function is used to fetch the message from a mailbox, either when using polled mode or from a CAN
receive interrupt.

Example
#define MY RX SLOT (8)
can frame t my rx dataframe;

api_status = R_CAN RxPoll (0, CANBOX RX DIAG);

if (api_status == R _CAN OK)
{

R CAN RxRead (0, 0, CANBOX RX DIAG, &my rx dataframe);
}

RO1AN2472EU0573 Rev.5.73 Page 27 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

R_CAN_RxSetMask

Sets the CAN ID Acceptance Masks. To accept only one ID, set mask to all ones. To accept all messages,
set mask to all zeros. To accept a range of messages, set the corresponding ID bits to zero.

Format
void R_CAN RxSetMask (const uint32 t ch nr, const uint32 t mbox nr,

const uint32 t mask value);

Parameters
ch_nr
CAN channel to use (0-2 MCU dependent).
mbox_nr
Which mailbox to mask (0-31). Four mailboxes will be affected within its group.

mask_value
Mask value. (0-0x7FF)

Return Values
None

Properties
Prototyped in r_can_rx_if.h

Description

Receive mailboxes can use a mask to filter out one message or expand receiving to a range of messages
(CAN IDs). The mask enables this using the mailbox group’s ID field. There is one mask for mailbox 0-3, one
for 4-7, etc. Changing a mask will therefore affect the behavior of adjacent mailboxes.

- Each '0" in the mask means "mask this bit", or “don't look at that bit”; accept anything.
- Each "1' means check if the CAN-ID bit in this position matches the CAN-ID of the mailbox.
How to set a mask

Let's say that the range of CAN-IDs that you want to receive in a mailbox is 700-704h. Using standard 11-bit
IDs we then have the following Ids in hex and binary:

Hex representation Bit representation
0x700 011100000000b
0x701 011100000001b
0x702 011100000010b
0x703 011100000011b
0x704 011100000100b

Normally, the mailbox will only accept frames whose ID matches the set receive ID, but if a bit position’s
MASK is 0, an ID bit of both 0 and 1 will be accepted. If we then want to accept all of above, we set the mask
as 011111111000b, or 07F 8.

The CAN receive filter will only look at bit positions b10 (MSB) to b3 (LSB), whether these match the receive
ID of the mailbox.

If we then set one of the mailboxes belonging to above mask (they are grouped - four mailboxes per mask)
to receive ID 0x700, that mailbox will accept all IDs from 0x700 to 0x707. (Setting the ID to 0x700-0x707 will
give the same result.) Because of this, IDs 0x705 to 0x707 must later be ignored ‘manually’ by the
application software.

RO1AN2472EU0573 Rev.5.73 Page 28 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

Fast filtering of messages with Acceptance Filter Support

If you have used a mask to receive a broad range of message IDs, you must filter for the actual desired
messages with firmware. To increase the speed of this search one may use the Acceptance Filter Support
instead.

The Acceptance Filter Support Unit (ASU) provides a faster search compared to software filtering of
messages using a mask (with the R_CAN_RxSetMask API). Software filtering can be time consuming as the
Standard ID bits are rearranged and not stored as a normal word in memory. Another problem could be that
the acceptance mask may not be able to be set to receive the particular combination of messages you want.
If you set the mask to accept all messages you may have to ‘waste’ time by checking a long list of the
messages using software for each incoming ID. This manual filtering’ would also involve having all the IDs in
a readable format. An efficient solution in such cases is to use the Acceptance Filter Support Unit.

To use it, one writes the CAN-ID as it is stored in the message box into the ASU. When reading back from
the ASU register, the data word is used to search through a table. The data readout has the following parts.
Bit 0-7 = Table ‘Address Search Info”, ASI, SID10 -3.

Bit 8-15 = “Bit Search Information”, BSI, SID0-3 has now been converted to a bit position to enable faster
table searches.

Acceptance filter Upper 8 bits
of received ID

T support registers

(11 bits)

SID0-3 value converted to
a bit position for faster
search

Register configuration during read operation

bl5 b8 b7 b0

CSID JOSID | O SIS TSI CEI0: O SIS, (O SIy| ST0g | SIDy | SIDg | SIDy | SIDg | SIDs | SIDy | SIDs

e AN /
Y _ YT

BSI = Converted value of lower 3 bits. ASI= Upper 8 bits of

CS8IDx =1 if 8ID2-0 is x. Example: received ID}

CSID3 =1 if the SID2-0 is 3.

Figure 2. The Acceptance Filter Support Unit (ASU).

When read, the representation of the ID is formatted to enable a fast search through a table. This provides a
faster response than a search through a ‘normal’ array of CAN IDs.

The search table

A table must be prepared by the user to check whether an ID is of interest to the application. The firmware
must search the table at each byte address ASI and bit position BSI. If a bit BSI-value is set in the user’s
table, the bit pattern matches the BSI pattern of the register which means the address is of interest to the
node, and the frame should be processed by the application.

See REJ05B0276 “CAN Application Note” for more information on how to use the ASU.
Download from www.renesas.com

RO1AN2472EU0573 Rev.5.73 Page 29 of 65
Dec.26.25 RENESAS

http://www.renesas.com/

RX Family CAN API Using Firmware Integration Technology

R_CAN_CheckErr
Check for bus errors. The API checks the CAN status, or Error State, of the CAN peripheral.

Format
uint32 t R CAN CheckErr (const uint32 t ch nr);

Parameters
ch_nr

CAN channel to use (0-2 MCU dependent).

Return Values

R CAN BAD CH NR The channel number does not exist.

R _CAN STATE ERROR _ACTIVE CAN bus status is normal.

R CAN STATE ERROR PASSIVE Node has sent at least 127 Error frames for either the Transmit Error
Counter, or the Receive Error Counter.

R CAN STATE BUSOFF Node’s Transmit Error Counter has surpassed 255 due to the node’s

failure to transmit correctly.

Properties
Prototyped in “r_can_rx_if.h".

Description
The API checks the CAN status flags of the CAN peripheral and returns the status error code. It tells whether
the node is in a functioning state or not and is used for application error handling.

It should be polled either routinely from the main loop, or via the CAN error interrupt. Since the peripheral
automatically handles retransmissions and Error frames it is usually of no advantage to include an error
interrupt routine.

If an error state is encountered the application can just wait and monitor for the peripheral to recover, as the
CAN peripheral takes itself on or off line depending on its state. After a recovery is discovered, the
application should restart.

Bus States

CAN is designed to protect network communication in the event that any CAN network node becomes faulty.
Every time the transmitter sees an Error flag, the Transmit Error Counter is increased, and when an error in a
received frame is detected, the Receive Error Counter is increased. The Transmit and Receive Error
Counters are respectively decreased with every successfully transmitted or received frame. In both the Error
Active state (the normal operating state) and the Error Passive State, messages can be transmitted and
received.

RO1AN2472EU0573 Rev.5.73 Page 30 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

Error Active

Norma/

11 consecutive recessive

TEC <128 bits detected 128 times

and

TEC > 127 REC < 128

or
REC > 127

Error Bus Off
Passive
No comm-

unication

No error
frames sent TEC > 255

Figure 3. CAN bus error states.

(1) Error Active

When a node is in Error Active state it communicates with the bus normally. If the unit detects an error, it
transmits an active Error flag. Once it counts 127 errors, it switches to the Error Passive state.

(2) Error Passive

When either error counter exceeds 128, the CAN status for that node changes to state Error passive, and
messages can still be transmitted and received, but the node will not send Error frames. Error frames are
invisible to the user and are taken care of by the peripheral silicon.

(3) Bus Off

If the transmit error counter exceeds 255, the CAN node enters the Bus Off state. This prevents a faulty node
from causing a bus failure. When serious problems cause a CAN node to enter the Bus Off state, no
messages can be transmitted or received by that node until it detects 11 consecutive ‘recessive’ bits 128
times, or until the peripheral is reset. When the application detects a recovery from Bus Off, the user should
reinitialize all registers of the CAN module and restart the application.

(a) Using CAN Polling

Call the API regularly to check the CAN state for the application, so it does not try to communicate if the
node is Bus Off. In the following, it is assumed that handle_can_bus_state() is called once every loop of the
main application.

RO1AN2472EU0573 Rev.5.73 Page 31 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

Normal application activity
Poll if peripheral is in Bus Off

Peripheral recovered:

Bus Off reached Reinitialize CAN peripheral and

slots

Figure 4. Handling recovery from Bus Off for the application.

The MCU detects recovery of the bus on its own. A node will automatically resume the normal Error Active
state again after seeing 11 consecutive recessive bits on the bus 128 times. Note that the time a node
spends in Bus Off could be very short, e.g., less than a millisecond.

Poll with the Check Error function once every cycle in the main routine what state the node is in (or use the
CAN error interrupt). If the node has reached Bus Off a certain number of times within a certain time period,
you may want to send a warning message, light an LED etc.

The minimum action required of a node if Bus Off is reached is shown above. Stop trying to communicate
and poll the peripheral with the Check Error function to see when the peripheral has returned to the normal
Error Active state. When the node has recovered, it is important to reinitialize the CAN peripheral and the
application to make sure the slots are in a known state.

Example
See usage of handle_can_bus_state() in can_api_demo.c.

(b) Using CAN Error Interrupts.

The CAN error interrupt can be used to check the error state of the node, although polling with the API
regularly is usually sufficient since low level error handling is done by the peripheral.

The API can be called from the error ISR to determine the error state, and then flag the application if a state
transition has occurred. Most often the Transmit or Receive Error Counter will have just incremented.

Interrupts can be enabled separately for each of: A single error, transition to Error Passive, and transition to
Bus Off. If the first of these, the CAN Error interrupt is enabled, an interrupt is generated each time an error
is detected. Again, generating this interrupt is usually unnecessary as CAN handles errors on its own.

RO1AN2472EU0573 Rev.5.73 Page 32 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

R_CAN_RxSetFIFO and R_CAN_RxSetFIFOXid

Set up a mailbox to receive.

R_CAN_RxSetFIFO: The API sets up a given FIFO mailbox to receive data frames with the given CAN 11-bit

ID. Incoming data frames with the same ID will be stored in the mailbox.
R_CAN_RxSetFIFOXid: Does the same, except the ID will be a 29-bit ID.

Format

uint32 t R CAN RxSetFIFO (const uint32 t ch nr,
const uint32 t mb mode,
const uint32 t mbox nr,
const uint32 t fidcr0 value,
const uint32 t fidcrl value,
const uint32 t fidcr0 frame type,
const uint32 t fidcrl frame type,
const uint32 t mkr6 value,
const uint32 t mkr7 value)

uint32 t R CAN RxSetFIFOXid(const uint32 t ch nr,
const uint32 t mb_mode,
const uint32 t mbox nr,
const uint32 t xfidcr0 value,
const uint32 t xfidcrl value,
const uint32 t fidcrO_ frame type,
const uint32 t fidcrl frame type,
const uint32 t mkr6 value,
const uint32 t mkr7 value)

Parameters

ch_nr

CAN channel to use (0-2 MCU dependent).
mb_mode

Normal mailbox (0)
FIFO mailbox (1)
mbox_nr
Which CAN mailbox to use (28-31).
fider0_value
fiderl value
xfider0_value
xfiderl value
The CAN ID which the mailbox should receive
fider0_frame_type

fiderl frame_type
DATA FRAME Send a normal data frame.

REMOTE_FRAME Send a remote data frame request.

mkr6_value
mkr7 value
The mask register

Return Values

R _CAN OK Action completed successfully.

R CAN SW BAD MBX Bad mailbox number.

R CAN BAD CH NR The channel number does not exist.
R CAN BAD MODE The mode number does not exist.

CAN _ERR NOT FIFO MODE Current mailbox mode is not FIFO mailbox mode.

Properties
Prototyped in r_can_rx_if.h

RO1AN2472EU0573 Rev.5.73
Dec.26.25 RENESAS

Page 33 of 65

RX Family CAN API Using Firmware Integration Technology

Description

The function will first temporarily interrupt disable the mailbox. Then it sets whether to receive normal CAN
data frames or remote frame requests. It also sets the FIFO mailbox to the given ID value. Next, it performs
setting value for mask register, refer to R_CAN_RxSetMask for details.

Example

uint32 t ch nr = 0;

uint32 t mb mode = 1;

uint32 t mbox nr = 0;

const uint32 t FIDCRO value = 0x05A;

const uint32 t FIDCR1 value = 0x06B;

const uint32 t FIDCRO frame type = DATA FRAME;
const uint32 t FIDCR1 frame type = DATA FRAME;
0x00;

const uint32 t MKR7 value = 0x00;

const uint32 t MKR6 value

api status = R CAN RxSetFIFO(ch nr, mb mode, mbox nr, FIDCRO value, FIDCR1 value,
FIDCRO frame type, FIDCR1l frame type, MKR6 value, MKR7 value);

RO1AN2472EU0573 Rev.5.73 Page 34 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology
4. Pin Setting

To use the CAN FIT module, assign input/output signals of the peripheral function to pins with the multi-
function pin controller (MPC). The pin assignment is referred to as the “Pin Setting” in this document.

Please perform the pin setting after calling the R_CAN_Create() function.

When performing the pin setting in the e? studio, the Pin Setting feature of the Smart Configurator can be
used. When using the Pin Setting feature, a source file is generated according to the option selected in the
Pin Setting window in the Smart Configurator. Then pins are configured by calling the function defined in the
source file. Refer to Table 4.1 Function Output by the Smart Configurator for details.

Table 4.1 Function Output by the Smart Configurator

MCU Used Function to be Output Remarks
All MCUs R_CAN_PinSet_ CANXx x: Channel number
RO1AN2472EU0573 Rev.5.73 Page 35 of 65

Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

5. Demo Projects

CAN demo projects are complete stand-alone programs. They include function main() that utilizes the
module and its dependent modules.

Note: The demos have been upgraded with CAN FIT module Rev 5.50
Revision history demo update:

- Rev4.00:
Please refer to 10.3 API Functions Changes from Rev. 3.20 to Rev. 4.00 for more details of the API
functions changes in Rev. 4.00.

- Rev 5.00:
Please refer to 10.4 API Functions Changes from Rev. 4.10 to Rev. 5.00 for more details of the API
functions changes in Rev. 5.00.

The major change in the demo program: Declares the baud rate prescaler division and bit timing
values to set the bitrate of the CAN channel through the p_cfg argument before call
R_CAN_Create() function.

- Rev 5.50:
Updated demo projects to support FIFO callback.

5.1 Adding a Demo to a Workspace

Demo projects are found in the FITDemos subdirectory of the distribution file for this application note. To
add a demo project to a workspace, select File>Import>General>Existing Projects into Workspace, then click
“‘Next”. From the Import Projects dialog, choose the “Select archive file” radio button. “Browse” to the
FITDemos subdirectory, select the desired demo zip file, then click “Finish”.

The demo CAN application code is in the ../src directory, namely in files can_api_demo.c and switches.c.

To run the demo, import the e2studio project archive r01an2472eu1xxxx_can.zip into e? studio as explained
below.

5.1.1 Import and Debug Project with e? studio
5.1.1.1 New workspace

Create an empty folder, where you want the workspace.
Start e? studio, and point to above folder when e? studio asks what workspace to open.
Click Workbench icon (bottom right in blue intro-screen).
Continue with next step below.
5.1.1.2 Existing workspace
Select Import.
Select General => Existing Projects into workspace. ("Create new projects from an archive file or directory.")
If the code is a zipped, previously exported archive:
Browse to the archive zip-file and select it.

If the code is an e? studio project directory with source code (with a .project file):
Browse to the root directory of the project. (The folder containing the “.project” file.) Make sure to check
box "Copy project to workspace" if you want the code to be local to the workspace (where the .metadata
directory is).

Click "Finish".

You have now imported this project into the workspace. You can go ahead and import other projects into the
same workspace.

5.1.1.3 Run the code

Create a debug session, download and run the code.

RO1AN2472EU0573 Rev.5.73 Page 36 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

5.1.2 Run Demo

Included in the package is a demonstration of using the CAN API, showing how to receive and transmit using
the CAN API at 500 kbps. The demo can be run in polled mailbox mode, or with CAN receive and transmit
interrupts. In interrupt mode, the demo can be run in normal or FIFO mailbox mode (determined by
g_mb_mode, defaultis CANBOX_NORMAL).

The demo can physically be set up a few different ways:

1. Program two boards and connect them together over the CAN bus. Swap the CAN ID values
TX_CANID_DEMO_INIT and RX_CANID_DEMO_INIT on one of the boards before programming
and running the demo.

2. With CANPORT_TEST_1_INT_LOOPBACK used in the R_CAN_PortSet APl you can communicate
internally, no external bus needed!

3. Use a CAN bus monitor, e.g. SysTec low-cost monitor 3204000, to send and receive frames to/from
the demo.

Remote frames can also be demonstrated if CAN interrupts are enabled.
5.1.2.1 Operation

The demo transmits and receives frames with the default CAN-IDs TX_CANID_DEMO_INIT and
RX_CANID_DEMO_INIT. The demo starts up by sending NR_STARTUP_TEST_FRAMES test frames back-
to-back as fast as possible. This has two purposes. 1) Check the bus link. 2) Demonstrate how messages
are sent back-to-back as fast as possible.

5.1.2.2 User action

Press SW1 to send one CAN frame. To increment the TxID hold SW2 down and press SW3. The actual
send command is invoked by the Sw1Func() function. To change RxID hold SW3 down and press SW2. The
demo "action" can best be seen inside function can_int_demo() or can_poll_demo() depending on the setting
of USE_CAN_POLL in r_can_rx_config.h.

5.1.2.3 Remote Frames

Besides demonstrating transmit and receive of standard CAN frames, the demo will also send remote frame
responses for remote frame requests received by the mailbox at CAN-ID 50h (in standard ID mode) or
50000h (in extended ID mode or mixed ID mode) to the RX. The CAN-ID is defined as the
REMOTE_TEST _ID macro in the can_api_demo.h file.

Set REMOTE_DEMO_ENABLE to 1 in can_api_demo.h to add this feature to the demo.

The demo requires interrupt mode; that is, USE_CAN_POLL set to 0 in the CAN API config-file. Remote
requests must come from an outside source, e.g. the CAN monitor mentioned above. This external CAN
source must be set to send remote frame requests to CAN-ID 50h (in standard ID mode) or 50000h (in
extended ID mode or mixed ID mode).

5.1.2.4 FIFO mailbox mode

The demo will transmit and receive the frames by FIFO mailbox mode if the variable g_mb_mode is set to
CANBOX_FIFO in can_api_demo.c

Note:

1. The FIFO mailbox mode demo only runs in interrupt mode (USE_CAN_POLL set to 0).

2. FIFO mailboxes can only receive data frame (REMOTE_DEMO_ENABLE = 0) or remote frame
(REMOTE_DEMO_ENABLE = 1) at a time.

3. FIFO mailboxes can only receive remote frames in standard ID mode.

RO1AN2472EU0573 Rev.5.73 Page 37 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

5.2 The Renesas Debug Console

Enabling trace data from the E1/E20 to the e? studio Debug Console allows you to output data from your
application in real-time. This means you have the ability to use printf() statements in C to send trace strings
to the standard output. Standard output will in this case be the E1/E20 debug register.

To use this set BSP_CFG_10_LIB_ENABLE to 1 in ../r_config/r_bsp_config.h.

The macro should automatically enable code in order to make the Debug Console available, but there are
certain actions you must take.

1. Make sure INIT_IOLIB() is called. See resetprog.c.

The code in lowlvl.c should contain functions charput and charget so that E1/E20 debug registers are used
for the lowest level I/O processing. charput for example must contain

[* Wait for transmit buffer to be empty */

while(0 = (E1_DBG_PORT.DBGSTAT & TXFLOEN));

Include <stdio.h> in any files where you wish to use printf-statements.
To any file where printf() is called, add
#if BSP_CFG_IO_LIB_ENABLE
#include <stdio.h>

#endif

In e2 studio, depending on version, it may be necessary to add the Debug Console window by clicking on
both icons “1/0” and “Pin Console” as shown below. Both must be on so the print buffer in E1/E20 can be
emptied and not block code execution.

I [1ES] =RAn Rl
Pin Console

Figure 5. Buttons to control the Debug Console.

-~

Press the I/O button for the console in €2 studio again if the console seems unresponsive. If nothing is
printed, press the Clear icon a few times. (The icon partially concealed by the red border.)

RO1AN2472EU0573 Rev.5.73 Page 38 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology
6. Test Modes

There are test modes that may be useful for example during product development. There are two loopback
modes “Internal” and “External”, and a Listen only mode.

6.1 Loopback

With loopback modes, the node will itself also receive any messages it sends if a mailbox is configured to
receive the same message. This can be useful for testing an application, or self-diagnosis during application
debug.

6.1.1 Internal - Test node without CAN bus

Internal Loopback mode, or Self Test mode, allows you to communicate via the CAN mailboxes without
connecting to a bus. The node acknowledges its own data with the ACK bit in the data frame. The node also
stores its own transmitted messages into a receive mailbox if it was configured for that CAN ID. This is
normally not possible.

CAN bus

Node can
acknowledge its own data, and

Message transmission

receive sent data to another mailbox
‘ Uraneal Siot without CAN bus {Communicating node
not hecessary)
‘ Receive slot

Same ID set for transmit
and receive slot

Figure 6. CAN Internal Loopback mode lets you test the functionality of a node without having a CAN
bus connected.

Internal Loopback can be convenient when testing as this mode allows the CAN controller to run without
sending CAN errors due to no ACKs received when the node is alone on the bus, it acknowledges
transmitted frames itself.

6.1.2 External - Test node on bus

External Loopback is like Internal Loopback with the differences that there must be a CAN bus connected to
the node, and that the messages is also transmitted onto the bus. Just like internal loopback, a sent
message is acknowledged by the node itself so the node can be alone on the bus. This is an advantage as
nodes can be tested standalone.

CAN bus

Node can
acknowledge its own data, and
receive sent data to another mailbox
via CAN bus (Communicating node
not necessary)

Message transmission

| Transmit slot ‘

| Receive slot ‘

Same |D set for transmit
and receive slot

Figure 7. External Loopback: The message is transmitted onto the CAN bus and can be received back
on the same node.

This is convenient when testing code and when a node is alone on the bus.

RO1AN2472EU0573 Rev.5.73 Page 39 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

6.2 Listen Only = Bus Monitoring

In Listen Only mode, or Bus Monitoring, the node is quiet. A node in Listen Only mode will not acknowledge
messages or send Error frames etc. This enables you to test your node without affecting bus traffic.

Caution:

1. Do not transmit frames from the Listen Only node. That is not a correct behavior, and the CAN
module has not been designed for this.

2. If you only have two nodes on the network and one of them is Listen Only, the other node will not get
any ACKs and will keep trying to send over and over.

3. Mark entering listen only mode clearly in your code so you remember to disable Listen Only mode

again.
“Normal” node: ACK is output,
or, if communication error,
o Emror frame is output instead.
Node transmitting frame
Eus node - Eus node
Bus rode - Transmitting Bus node Transmitting
< node o MNode
NeeB T) Modein
Listen Only [Listen Only ¢
EE = mode
No ACK or Emor frame

sent by
Listen Only node!

Figure 8. A node in Listen Only mode will not acknowledge messages or send Error frames etc.

Listen Only is useful for bringing up a new node that has been added to an existing CAN bus. The mode can
be used for a recently connected node’s application to ensure that frames have properly been received
before going live.

A common usage is to detect a bus’s communication speed before letting the new unit go ‘live’. Listen Only
is not a part of the Bosch CAN specification, but is required by 1ISO-11898 for bitrate detection.

RO1AN2472EU0573 Rev.5.73 Page 40 of 65
Dec.26.25 RENESAS

RX Family

CAN API Using Firmware Integration Technology

7. Time Stamp

The timestamp function captures the value of the on-chip time stamp to a mailbox when a message is
received. By examining the time stamp you can for example determine the sequence of messages if they are
spread out over multiple receive mailboxes. Time stamp reading is not done by the API, so you will have to
poll the mailbox, and if the return value is R_CAN_OK (a message waiting) you can then go in and read the

timestamp.

Automatically writes
timestamps during

normal receive operation

Useful for determining

sequence in which a

group of messages was

recaivead

Standard cycle:
_\ 1-hit-time cycle
Prescaler
(Drivide by 1, 2, 4, or 8)

Mmoo Em EmoEmEm e,

, -
£ Receive slot

-

Received ID

Received data

Timestamp

T Em Em e Em Em Em o Em

r

\.-—————————F

LY

16-bit
freetunning counter

« Cvtle and initialization
are programemable

I

Reset by software

Figure 9. CAN Timestamp is available in each mailbox.

RO1AN2472EU0573 Rev.5.73

Dec.26.25

RENESAS

Page 41 of 65

RX Family CAN API Using Firmware Integration Technology

8. CAN Sleep Mode

The default mode after an MCU reset is CAN Sleep mode. Use the API to switch to other operating modes,
see the R_CAN_Control API. Entering the CAN Sleep mode instantly stops the clock supply to the module
and thereby reduces power dissipation. All registers remain unchanged when the CAN module enters CAN

sleep mode.

RO1AN2472EU0573 Rev.5.73 Page 42 of 65

Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

9. CANFIFO

CAN FIFO buffering is available in the RX MCUs that have CAN hardware, and FIFO mode is supported in
this software.

RO1AN2472EU0573 Rev.5.73 Page 43 of 65
Dec.26.25 RENESAS

RX Family

CAN API Using Firmware Integration Technology

10. Appendices

10.1 Confirmed Operation Environment
This section describes confirmed operation environment for the CAN FIT module.

Table 10.1 Confirmed Operation Environment (Rev.5.73)

Item

Contents

Integrated development
environment

Renesas Electronics e? studio Version 2025-10
IAR Embedded Workbench for Renesas RX 5.20.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX RX 14.2.0.202505
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-WI,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 5.20.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module

Rev.5.73

Board used

Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2CxxxxxBE)

RO1AN2472EU0573 Rev.5.73 Page 44 of 65

Dec.26.25

RENESAS

RX Family CAN API Using Firmware Integration Technology

Table 10.2 Confirmed Operation Environment (Rev.5.72)

Item Contents

Integrated development Renesas Electronics e? studio Version 2025-01

environment IAR Embedded Workbench for Renesas RX 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.07.00

Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX RX 8.3.0.202411
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-WI,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 5.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module Rev.5.72

Board used -

RO1AN2472EU0573 Rev.5.73 Page 45 of 65

Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

Table 10.3 Confirmed Operation Environment (Rev.5.71)

Item Contents

Integrated development Renesas Electronics e? studio Version 2025-01

environment IAR Embedded Workbench for Renesas RX 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.07.00

Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX RX 8.3.0.202411
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-WI,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 5.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module Rev.5.71

Board used -

RO1AN2472EU0573 Rev.5.73 Page 46 of 65

Dec.26.25 RENESAS

RX Family

CAN API Using Firmware Integration Technology

Table 10.4 Confirmed Operation Environment (Rev.5.70)

Item

Contents

Integrated development
environment

Renesas Electronics e? studio Version 2024-01
IAR Embedded Workbench for Renesas RX 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.06.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX RX 8.3.0.202311
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-WI,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 5.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module

Rev.5.70

Board used

Renesas Starter Kit+ for RX671 (product No.: RTK55671EDC1xxxxBJ)

Table 10.5 Confirmed Operation Environment (Rev.5.60)

Item

Contents

Integrated development
environment

Renesas Electronics e? studio Version 2023-10
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.3.0.202305
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-WI,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module

Rev.5.60

Board used

Renesas Starter Kit+ for RX671 (product No.: RTK55671EDC1xxxxBJ)

RO1AN2472EU0573 Rev.5.73 Page 47 of 65

Dec.26.25

RENESAS

RX Family

CAN API Using Firmware Integration Technology

Table 10.6 Confirmed Operation Environment (Rev.5.50)

Item

Contents

Integrated development
environment

Renesas Electronics e? studio Version 2023-07
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.3.0.202305
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-WI,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian

Big endian/little endian

Revision of the module

Rev.5.50

Board used

Renesas Starter Kit+ for RX64M (product No.: ROK50564MxxxxBE)
Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2CxxxxxBE)
Renesas Starter Kit+ for RX72N (product No.: RTK557 2NXXXXXXXXXX).
Renesas Starter Kit+ for RX71M (product No.: ROK50571MCxxxBE)
Renesas Starter Kit+ for RX72M (product No.: RTK5572MNDCxxxxxBJ)
Renesas Starter Kit+ for RX671 (product No.: RTK55671EDC1xxxxBJ)
Renesas Starter Kit for RX72T (product No.: RTK5572TKCCxxxxxBE)
Renesas Starter Kit for RX66T (product No.: RTK50566 TOCxxxxxBE)

RO1AN2472EU0573 Rev.5.73 Page 48 of 65

Dec.26.25

RENESAS

RX Family

CAN API Using Firmware Integration Technology

Table 10.7 Confirmed Operation Environment (Rev.5.40)

Item

Contents

Integrated development
environment

Renesas Electronics e? studio Version 22.7.0
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.3.0.202104
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-WI,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module

Rev.5.40

Board used

Renesas Starter Kit+ for RX64M (product No.: ROK50564MxxxxBE)
Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2CxxxxxBE)
Renesas Starter Kit+ for RX71M (product No.: ROK50571MCxxxBE)
Renesas Starter Kit+ for RX72M (product No.: RTK5572MNDCxxxxxBJ)
Renesas Starter Kit+ for RX671 (product No.: RTK55671EDC1xxxxBJ)
Renesas Starter Kit for RX72T (product No.: RTK5572TKCCxxxxxBE)
Renesas Starter Kit for RX66T (product No.: RTK50566 TOCxxxxxBE)

RO1AN2472EU0573 Rev.5.73 Page 49 of 65

Dec.26.25

RENESAS

RX Family

CAN API Using Firmware Integration Technology

Table 10.8 Confirmed Operation Environment (Rev.5.30)

Item

Contents

Integrated development
environment

Renesas Electronics e? studio Version 22.7.0
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.3.0.202104
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-WI,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module

Rev.5.30

Board used

Renesas Starter Kit+ for RX64M (product No.: ROK50564MxxxxBE)
Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2CxxxxxBE)
Renesas Starter Kit+ for RX71M (product No.: ROK50571MCxxxBE)
Renesas Starter Kit+ for RX72M (product No.: RTK5572MNDCxxxxxBJ)
Renesas Starter Kit+ for RX671 (product No.: RTK55671EDC1xxxxBJ)
Renesas Starter Kit for RX72T (product No.: RTK5572TKCCxxxxxBE)
Renesas Starter Kit for RX66T (product No.: RTK50566 TOCxxxxxBE)

RO1AN2472EU0573 Rev.5.73 Page 50 of 65

Dec.26.25

RENESAS

RX Family

CAN API Using Firmware Integration Technology

Table 10.9 Confirmed Operation Environment (Rev.5.21)

Item

Contents

Integrated development
environment

Renesas Electronics e? studio Version 21.7.0
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.3.0.202004
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-WI,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module

Rev.5.21

Board used

Renesas Starter Kit+ for RX671 (product No.: RTK5567 1XXXXXXXXXX)

Table 10.10 Confirmed Operation Environment (Rev.5.20)

Item

Contents

Integrated development
environment

Renesas Electronics e? studio Version 21.7.0
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.3.0.202004
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-WI,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module

Rev.5.20

Board used

Renesas Starter Kit+ for RX671 (product No.: RTK5567 1XXXXXXXXXX)

RO1AN2472EU0573 Rev.5.73 Page 51 of 65

Dec.26.25

RENESAS

RX Family

CAN API Using Firmware Integration Technology

Table 10.11 Confirmed Operation Environment (Rev.5.10)

Item

Contents

Integrated development
environment

Renesas Electronics e? studio Version 21.7.0
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.3.0.202004
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-WI,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module

Rev.5.10

Board used

Renesas Starter Kit+ for RX671 (product No.: RTK5567 1XXXXXXXXXX)

RO1AN2472EU0573 Rev.5.73 Page 52 of 65

Dec.26.25

RENESAS

RX Family

CAN API Using Firmware Integration Technology

Table 10.12 Confirmed Operation Environment (Rev.5.00)

Item

Contents

Integrated development
environment

Renesas Electronics e? studio Version 21.1.0
IAR Embedded Workbench for Renesas RX 4.20.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.3.0.202004
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-WI,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module

Rev.5.00

Renesas Starter Kit+ for RX64M (product No.: ROK50564MSxxxBE).
Renesas Starter Kit+ for RX65N-2M (product No.: RTK50565NXXXXXXXXX).

Board used Renesas Starter Kit for RX66T (product No.: RTK50566T0SxxxxxBE).
Renesas Starter Kit+ for RX71M (product No.: ROK50571MSxxxBE).
Renesas Starter Kit+ for RX72M (product No.: RTK557 2MXXXXXXXXXX).
Renesas Starter Kit+ for RX72N (product No.: RTK5572NXXXXXXXXXX).
RO1AN2472EU0573 Rev.5.73 Page 53 of 65

Dec.26.25

RENESAS

RX Family

CAN API Using Firmware Integration Technology

Table 10.13 Confirmed Operation Environment (Rev.4.10)

Item

Contents

Integrated development
environment

Renesas Electronics e? studio Version 7.8.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.3.0.201904
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-WI,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module

Rev.4.10

Renesas Starter Kit+ for RX64M (product No.: ROK50564MSxxxBE).
Renesas Starter Kit+ for RX65N-2M (product No.: RTK50565NXXXXXXXXX).
Renesas Starter Kit for RX66T (product No.: RTK50566 TOSxxxxxBE).

Board used
Renesas Starter Kit+ for RX71M (product No.: ROK50571MSxxxBE).
Renesas Starter Kit+ for RX72M (product No.: RTK557 2MXXXXXXXXXX).
Renesas Starter Kit+ for RX72N (product No.: RTK557 2NXXXXXXXXXX).
RO1AN2472EU0573 Rev.5.73 Page 54 of 65

Dec.26.25

RENESAS

RX Family

CAN API Using Firmware Integration Technology

Table 10.14 Confirmed Operation Environment (Rev.4.00)

Item

Contents

Integrated development
environment

Renesas Electronics e? studio Version 7.8.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.3.0.201904
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-WI,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module

Rev.4.00

Board used

Renesas Starter Kit+ for RX65N-2M (product No.: RTK50565NXXXXXXXXX).
Renesas Starter Kit+ for RX72M (product No.: RTK557 2MXXXXXXXXXX).

RO1AN2472EU0573 Rev.5.73 Page 55 of 65

Dec.26.25

RENESAS

RX Family

CAN API Using Firmware Integration Technology

Table 10.15 Confirmed Operation Environment (Rev.3.20)

Item

Contents

Integrated development
environment

Renesas Electronics e? studio Version 7.7.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 4.8.4.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-WI,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module

Rev.3.20

Board used

Renesas Starter Kit+ for RX72N (product No.: RTK557 2NXXXXXXXXXX).

Table 10.16 Confirmed Operation Environment (Rev.3.11)

Item

Contents

Integrated development
environment

Renesas Electronics e? studio Version 7.5.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 4.8.4.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-WI,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module

Rev.3.11

Board used

Renesas Starter Kit+ for RX72M (product No.: RTK557 2MxXXXXXXXXX)

RO1AN2472EU0573 Rev.5.73 Page 56 of 65

Dec.26.25

RENESAS

RX Family

CAN API Using Firmware Integration Technology

Table 10.17 Confirmed Operation Environment (Rev.3.10)

Item

Contents

Integrated development
environment

Renesas Electronics e? studio Version 7.5.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 4.8.4.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-WI,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module

Rev.3.10

Board used

Renesas Starter Kit+ for RX72M (product No.: RTK557 2MxXXXXXXXXX)

Table 10.18 Confirmed Operation Environment (Rev.3.00)

Item

Contents

Integrated development
environment

Renesas Electronics e? studio Version 7.3.0
IAR Embedded Workbench for Renesas RX 4.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 4.8.4.201803
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-WI,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module

Rev.3.00

Board used

Renesas Starter Kit+ for RX65N-2M (product No.: RTK50565NXXXXXXXXX)

RO1AN2472EU0573 Rev.5.73 Page 57 of 65

Dec.26.25

RENESAS

RX Family CAN API Using Firmware Integration Technology

10.2 Troubleshooting

(1) Q: I have added the FIT module to the project and built it. Then | got the error: Could not open source file
“platform.h”.

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules
is correct with the following documents:

® Using CS+:

Application note “Adding Firmware Integration Technology Modules to CS+ Projects
(RO1AN1826)”
° Using e? studio:

Application note “Adding Firmware Integration Technology Modules to Projects (RO1AN1723)"

When using this FIT module, the board support package FIT module (BSP module) must also be added
to the project. Refer to the application note “Board Support Package Module Using Firmware Integration
Technology (RO1AN1685)”.

(2) Q: | have added the FIT module to the project and built it. Then | got the error: This MCU is not supported
by the current r_can_rx module.

A: The FIT module you added may not support the target device chosen in your project. Check the
supported devices of added FIT modules.

(3) Q: I have added the FIT module to the project and built it. Then | got an error for when the configuration
setting is wrong.

A: The setting in the file “r_can_rx_config.h” may be wrong. Check the file “r_can_rx_config.h”. If there is
a wrong setting, set the correct value for that. Refer to 2.9 Configuration for details.

10.3 API Functions Changes from Rev. 3.20 to Rev. 4.00

(1) R_CAN_TxSet(); R_CAN_Create(); R_CAN_TxSetXid(); R_CAN_Tx(); R_CAN_TxStopMsg();
R_CAN_RxRead(): the new input arguments(mb_mode; txf_cb_func; rxf_cb_func) have been added. Refer
to 3. The CAN API for details.

(2) R_CAN_RxSetMask(): Removed command which shift the CAN operation to OPERATE_CANMODE.
Need to call R_CAN_Control(ch_nr, OPERATE_CANMODE) before call R_CAN_TxSet() or
R_CAN_TxSetXid().

(3) R_CAN_Control(): if the action_type is EXITSLEEP_CANMODE, it will not go to OPERATE_CANMODE,
instead it will go to RESET_CANMODE.

(4) R_CAN_PortSet(): Removed source code pin-setting in case enable and disable. From now, setting
pin/port by using R_CAN_PinSet CANn()(n=0,1,2) in file “/smc_gen/r_pincfg/r_can_rx_pinset.c”.

10.4 API Functions Changes from Rev. 4.10 to Rev. 5.00

(1) R_CAN_Create(); R_CAN_SetBitrate(): the new input argument(p_cfg) have been added.

From now, define the baud rate prescaler division and bit timing values for setting bitrate in user program.
Refer to 3. The CAN API for details.

10.5 API Functions Changes from Rev. 5.00 to Rev. 5.10
(1) R_CAN_RXxSet (): Changed the input argument name from sid to id.

RO1AN2472EU0573 Rev.5.73 Page 58 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

10.6 API Functions Changes from Rev. 5.50 to Rev. 5.60

(1) R_CAN_RxSetFIFO(); R_CAN_RxSetFIFOXid(): Removed the argument frame_type and added two new
arguments fidcrO_frame_type and fidcr1_frame_type to support the reception of both data frames and
remote frames in FIFO mailbox mode.

Refer to 3. The CAN API for details.

RO1AN2472EU0573 Rev.5.73 Page 59 of 65
Dec.26.25 RENESAS

RX Family CAN API Using Firmware Integration Technology

Related Technical Updates
This module reflects the content of the following technical updates.

TN-RX*-A151A/E

RO1AN2472EU0573 Rev.5.73 Page 60 of 65
Dec.26.25 RENESAS

RX Family

CAN API Using Firmware Integration Technology

Revision History

Rev. Date

Description

Page

Summary

1.00 Nov 17, 2014

First release. 64M.

2.00 Feb 20, 2015

Added 71M.

2.01 Jul 01, 2015

21

- Introduction slightly revised.

- Comments section under R_CAN_RxSetMask() slightly
revised.

- Source code: R_CAN_TxCheck() and R_CAN_TxStopMsg()
in r_can_rx.c modified because of RX64M/71M UM 43.2.8
note "Bits SENTDATA and TRMREQ cannot be setto 0
simultaneously.”

2.02 Oct 30, 2015

5.3,54,
p9, p15.

Updates to code packaging (only) for FIT.
R_CAN_Create(): Added arguments for interrupt callbacks.
R_CAN_Tx(): Rephrased R_CAN_OK return case.

2.10 Mar 3, 2016

- 65N added.

- Set IDE bit according to requested frame type for mixed ID
mode only.

- Change in R_CAN_RxRead() Mixed mode.

- R_CAN_Control(). Cases EXITSLEEP_CANMODE and
ENTERSLEEP_CANMODE, OPERATE_CANMODE.

2.11 Jan 30, 2017

All

Added 65N-2MB.

Application note:
- Comments from Japan review.

- Added chapter “Using the Renesas Debug Console”.

- R_CAN_SetBitrate() section rewritten and expanded.
Code:

- Added user level CAN error diagnostics code to
can_api_demo.c. This is to aid user in bus problem
diagnostics during development & test. This code is macro
enabled by setting ERROR_DIAG to 1.

- Removed all USE_LCD code. Using debug console (printf)
instead. Added corresponding trace code to demo.

- Function names changed_to_this_style(), except for API for
legacy purpose.

- Cleaned up code in Handle_can_bus_state().

- Fig. 4 text "TEC or REC > 127" changed to "TEC < 128 and
REC <128".

- 7.2. For Remote Frames, the value for USE_CAN_POLL
corrected to "0".

2.12 Aug 15, 2017

22

- Text in Comments section of R_CAN_RxSetMask()
adjusted.

- ICU.GRPBEO.BIT changed for channels 1 and 2 in
CAN_ERS_ISR(). (All were set to channel 0.)

Text change in description of R_CAN_Create(). Removed
reference to R_CAN_RxSetMask () and R_CAN_PortSet ()
calls.

213 Oct 26, 2018

All

Added RX66T as Target Device.
Changed title to add new device.

2.14 Nov 16, 2018

All

Maijor revision of application note to updated template.
All sections affected.

2.15 Jan 10, 2019

Revision changed. Added RX72T device.

3.00 May.20.2019

Supported the following compilers:

RO1AN2472EU0573 Rev.5.73
Dec.26.25

Page 61 of 65
RENESAS

RX Family CAN API Using Firmware Integration Technology
Description
Rev. Date Page Summary
- GCC for Renesas RX
- IAR C/C++ Compiler for Renesas RX
6 2.3 Software Requirements
Requires r_bsp v5.20 or higher
9 Updated the section of 2.9 Code Size
36 Table 9.1 Confirmed Operation Environment (Rev. 3.00) :
Updated.
37 Added 9.2 Troubleshooting
38 Deleted the section of Website and Support.
Program Changed bellow for support GCC and IAR compiler:
1. Replaced evenaccess with the macro definition of BSP.
2. Replaced nop with the intrinsic functions of BSP.
3. Replaced the declaration of interrupt functions with the
macro definition of BSP.
Changed the processing to prevent register access
contention between peripheral functions that occurs when
using RTOS or when multiple interrupts are enabled.
1. Changed the setting process of the Interrupt Request
Enable Bits (IEN)
[Description]
Changed the setting process of the Interrupt Request Enable
Bits (IEN) to use R_BSP_InterruptRequestDisable, and
R_BSP_InterruptRequestEnable in the API functions of BSP.
2. Changed the setting process of the Group Interrupt
Request Enable Register (GENBL1) (RX64M, RX65N,
RX66T, RX71M, and RX72T).
[Description]
Changed to perform the setting process of the Group
Interrupt Request Enable Register (GENBL1) while interrupts
are disabled.
3.10 Aug.15.19 1 Added support for RX72M
9 Added code size corresponding to RX72M
35 9.1 Confirmed Operation Environment:
Added Table for Rev.3.10
Program Added support for RX72M.
3.1 Sep.16.19 6 Added Interrupt Vector chapter
36 9.1 Confirmed Operation Environment:
Added Table for Rev.3.11
Program Fixed issue of interrupt sources are not assigned vector
number.
3.20 Dec.30.19 1 Added support for RX66N, RX72N.
10 Added code size corresponding to RX66N, RX72N.
36 9.1 Confirmed Operation Environment:
Added Table for Rev.3.20
Program Added support for RX66N, RX72N.
4.00 Jun.30.20 8, 13-16, Added support for CAN FIFO.
21-23, 25,
28, 34, 35,
41
9,10 2.9.3 CAN Channel enabling and Pin Mapping:

RO1AN2472EU0573 Rev.5.73

Dec.26.25

Page 62 of 65
RENESAS

RX Family CAN API Using Firmware Integration Technology
Description
Rev. Date Page Summary
Removed TX, RX, pin-setting macro from r_can_rx_config.h.
11 Updated code size corresponding to CAN FIFO.
36 Added section 4. Pin Setting.
42 10.1 Confirmed Operation Environment:
Added Table for Rev.4.00.
Program Added support for CAN FIFO.
Added support for Pin Setting. Pin-setting for RX, TX is now
by Smart Configurator.
Fixed MDF file not support for RX651.
Fixed R_CAN_Control() — case EXITSLEEP_CANMODE.
Fixed R_CAN_RxSetMask().
Added warning text for STB/EN port/pin in MDF file.
Removed parentheses at value of macros for STB/EN
port/pin in r_can_rx_config.h.
Updated and added new demo project.
4.10 Jan.04.21 13, 37 Added note about the API changes.
43 10.1 Confirmed Operation Environment:
Added Table for Rev.4.10.
48 Added section 10.3 API Functions Changes from Rev. 3.20
to Rev. 4.00.
Program Changed can_tx_callback to can_txf_callback in case
txf_cb_funcis NULL in R_CAN_Create().
Upgraded demo project with CAN FIT module Rev. 4.10.
5.00 Apr.01.21 10 Removed section 2.9.4 Bitrate Settings.
Updated code size corresponding to support for setting
different bitrate for different channels.
11 Added section 2.12 “for”,”while”, and “do while” statements.
14, 15, Added argument p_cfg and updated example
18,19,20 for R_CAN_Create() and R_CAN_SetBitrate().
37 5. Demo Projects:
Updated note for changes corresponding to CAN FIT module
Rev. 5.00.
43 10.1 Confirmed Operation Environment:
Added Table for Rev.5.00.
49 Added section 10.4 API Functions Changes from Rev. 4.10
to Rev. 5.00.
Program Added support for setting different bitrate for different
channels.
Removed default macros for setting bitrate.
Upgraded demo project with CAN FIT module Rev. 5.00.
5.10 Apr.07.21 1 Added support for RX671.
5 Added 1.3 Using the FIT CAN module.
Added 1.3.1 Using FIT CAN module in C++ project.
10 Added code size corresponding to RX671.
26 Changed sid to id in R_CAN_RxSet().
43 10.1 Confirmed Operation Environment:
Added Table for Rev.5.10.
49 Added section 10.5 API Functions Changes from Rev. 5.00

RO1AN2472EU0573 Rev.5.73
Dec.26.25

Page 63 of 65
RENESAS

RX Family CAN API Using Firmware Integration Technology

Description
Rev. Date Page Summary

to Rev. 5.10.
Program Added support for RX671.
Changed sid to id in R_CAN_RxSet().
5.20 Sep.13.21 43 Table 10.1: Confirm Operation Environment:
Added Table for Rev. 5.20.
Program Updated and added new demo projects.
Added CS+ support for demo project.
5.21 Feb.21.22 43 Table 10.1: Confirm Operation Environment:
Added Table for Rev. 5.21.
Program Updated minor version.
5.30 Jun.28.22 43 Table 10.1: Confirm Operation Environment:
Added Table for Rev. 5.30.
Program Updated demo projects

5.40 Sep.20.22 51 10.3 API Functions Changes from Rev. 3.20 to Rev. 4.00:
Section (2): Added R_CAN_TxSetXid().
43 Table 10.1: Confirm Operation Environment:

Added Table for Rev. 5.40.
Program Updated demo projects.

5.50 Sep.08.23 10, 35 Deleted the description of FIT configurator from "2.11 Adding
the CAN FIT Module to Your Project" and "4. Pin Settings".
36, 37 5. Demo Projects:

Added note for changes in demo project.
Updated descriptions for demo project.
Added support FIFO callback.

42 Table 10.1: Confirm Operation Environment:
Added Table for Rev. 5.50.

Program Updated and added new demo projects.
Updated demo projects to support FIFO callback.
Added WAIT_LOOP comments.

5.60 Dec.21.23 9 Updated code size corresponding to source code CAN v5.60.
12, 20 Modified the description of CAN_ERR_BOX_FULL.
22-28, 33 Modified the description of mbox_nr.
33 Removed the argument frame_type and added two new

arguments fidcrO_frame_type and fidcr1_frame_type for
R_CAN_RxSetFIFO and R_CAN_RxSetFIFOXid to support
the reception of both data frames and remote frames in FIFO
mailbox mode.

34 Updated the example for R_CAN_RxSetFIFO and
R_CAN_RxSetFIFOXid.

44 Table 10.1: Confirm Operation Environment:
Added Table for Rev. 5.60.

56 Added section 10.6 API Functions Changes from Rev. 5.50
to Rev. 5.60.

Program Added support to receive both data frames and remote
frames in FIFO mailbox mode.
Fixed issue cannot receive remote frames with extended ID
in FIFO mailbox mode.

5.70 Nov.01.24 7 Added new macros CAN_CFG_EN_NESTED_INT to support
nested interrupt.
44 Table 10.1: Confirm Operation Environment:

Added Table for Rev. 5.70.
Program Added support for nested interrupt.

RO1AN2472EU0573 Rev.5.73 Page 64 of 65
Dec.26.25 RENESAS

RX Family

CAN API Using Firmware Integration Technology

Description
Rev. Date Page Summary
5.71 Mar.15.25 44 Table 10.1: Confirm Operation Environment:
Added Table for Rev. 5.71.
Program Updated FIT Disclaimer and Copyright.
5.72 Oct.30.25 44 Table 10.1: Confirm Operation Environment:
Added Table for Rev. 5.72.
Program Removed doc folder and updated .rcpc file in FITDemos.
5.73 Dec.26.25 9 Updated code size corresponding to source code CAN v5.73.
22 Changed “Return values” in R_CAN_Tx.
44 Table 10.1: Confirm Operation Environment:
Added Table for Rev. 5.73.
Program Updated the format of the <package> element in the XML

file.

Added the condition to check if transmit FIFO is not full in
R_CAN_Tx().

Updated the source code specifies mailbox 28 instead of
"mbox_nr"in R_CAN_RxRead().

RO1AN2472EU0573 Rev.5.73

Dec.26.25

Page 65 of 65
RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an 1/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or /O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between Vi
(Max.) and Vin (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between ViL (Max.) and Vi (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

Notice

1.

10.

1.

12.

13.
14.

(Note1)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’'s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Basics
	1.2 Communication Layers
	1.3 Using the FIT CAN module
	1.3.1 Using FIT CAN module in C++ project

	1.4 Physical Connection
	1.5 The CAN Mailbox
	1.6 Extended CAN

	2. API Information
	2.1 Hardware Requirements
	2.2 Hardware Resource Requirements
	2.2.1 Peripheral Required
	2.2.2 Other Peripherals Used

	2.3 Software Requirements
	2.4 Limitations
	2.4.1 RAM Location Limitations

	2.5 Supported Toolchain
	2.6 Interrupt Vector
	2.7 Header Files
	2.8 Integer Types
	2.9 Configuration
	2.9.1 Interrupt vs. Polled Mode and CAN Interrupt Level & generation Timing
	2.9.2 Standard & Extended CAN IDs
	2.9.3 CAN Channel enabling and Pin Mapping
	2.9.4 Max Register Poll Time

	2.10 Code Size
	2.11 Adding the CAN FIT Module to Your Project
	2.12 “for”, “while” and “do while” statements

	3. The CAN API
	Summary
	Return Codes
	R_CAN_Create
	R_CAN_PortSet
	R_CAN_Control
	R_CAN_SetBitrate
	R_CAN_TxSet and R_CAN_TxSetXid
	R_CAN_Tx
	R_CAN_TxCheck
	R_CAN_TxStopMsg
	R_CAN_RxSet and R_CAN_RxSetXid
	R_CAN_RxPoll
	R_CAN_RxRead
	R_CAN_RxSetMask
	R_CAN_CheckErr
	(1) Error Active
	(2) Error Passive
	(3) Bus Off

	R_CAN_RxSetFIFO and R_CAN_RxSetFIFOXid

	4. Pin Setting
	5. Demo Projects
	5.1 Adding a Demo to a Workspace
	5.1.1 Import and Debug Project with e2 studio
	5.1.2 Run Demo

	5.2 The Renesas Debug Console

	6. Test Modes
	6.1 Loopback
	6.1.1 Internal - Test node without CAN bus
	6.1.2 External - Test node on bus

	6.2 Listen Only = Bus Monitoring

	7. Time Stamp
	8. CAN Sleep Mode
	9. CAN FIFO
	10. Appendices
	10.1 Confirmed Operation Environment
	10.2 Troubleshooting
	10.3 API Functions Changes from Rev. 3.20 to Rev. 4.00
	10.4 API Functions Changes from Rev. 4.10 to Rev. 5.00
	10.5 API Functions Changes from Rev. 5.00 to Rev. 5.10
	10.6 API Functions Changes from Rev. 5.50 to Rev. 5.60

	Related Technical Updates
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

