LENESAS APPLICATION NOTE

RX Family C/C++ Compiler Package (CC-RX) ROLANA195E00100

ev.l.
Programming Techniques May. 17, 2018
Introduction

This application note describes methods of programming for efficiency in terms of code size, speed of execution, and
ROM data size.

Compiler Revision for which Correct Operation has been Confirmed
CC-RX V2.08.00 for the RX family

Contents
Ta Lo Yo [V Lo} A o] o F PPN 1
O O 1T T 4
FZ © o) {0 1P 5
P R O o ¢ o 1 [=T g @] o] o] o K= SRR PRRTOPPI 5
2.1.1 -inStalignd/-iNSTaligNSo e e re s 8
2.1.2 -n0USE_AIV_INST i 10
2.1.3 -stack_protector/-stack_protector_allccccevieeiiiiiiiiie e 11
2.1.4 -avoid_cross_boundary prefetCh ... 13
220 S T oY o 12 0 - S 14
P I GRS o T=T =T o I] . PP PPPPPRPR 15
P2 I A [Yo T o RPN 16
P2 R S R T 011 o = T TP PP 17
P2 T o7 11 SO PP PPPP PP 19
P20 I L B Vo Y- | = PP PRR 20
220 I It R o 0} 1] A o 1 o V2 SRR 21
2.1.12 -const_div/-NOCONSE_iV...coiiiiiiiiiiii 22
P2 I G T 1 o] -1 Y P U P PPPPPR PR 23
P2 I oo] =Y B g Vo 1] o 0] 1T PPPPPRPRO 24
2.1.15 -SChedule/-NOSCREAUIEcoeeiiii e 26
P22 I T g - o 0] 12 =1 o SO 27
2 R A T o] o 0) 1 Y S 28
2.1.18 -SIMPIE_flOAt_CONV oot e e e e e e e e e e neeae s 29
P2 I R T o o 1 o 1 U PP PPPPP TR 30
P 2 O B | 1T 1RO PPPPP TR 31
P2 2 R T o T o 1 1 1 1 = RS 32
I 1= o 1= Y 1= RS 33
2 22 TV o Yo] =T oY o T 1= 2 S 34
RO1AN4195EJ0100 Rev.1.0 Page 1 of 80

May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

2 2 R | o | =Y - S 35
2.1.25 -iNt 10 _SNOI coiiiii 36
P N I T) o T = 10 o PO PPPPSRPPP 37
N A G o - o] QTP 38
P 2 S T 1o 1 A = 1= - S 40
2.1.29 -BIANCH o 43
2.0.30 -D8SE i 44
P2 S N R g Lo TU EL R oY o J (=T T] (=T O PP PPPRRRO 45
A G - NV = - (o o PO PPRRPSRPPP 46
2.1.33 -CONLrol_fIOW _INTEGIILY ...eeteiiiiii et e e e e e e a7
P22 N1 =Y =T o] o] 1= G @ o) 10 o PSRRI 48
22 T IR 1 01 Vo 1= I ©] o} 1o] K= SRR 49
2.3.1 -0ptimize=SYMDBDOI _AEIELE ...uovvi e 50
2.3.2 -OPUMIZEESAME COUR. .. ittt ettt e et e e e s et e e e e e e s nbb e e e e e e e e e anneeneeas 51
2.3.3 -0ptiMize=Short_fOrMaAL ... 52
2.3.4 -0PHMIZEZDraNCR oo e 53
3. Language EXTENSIONS ...ttt e e e e e e e araa 54
0 < o T = Vo [F= W DT =T o3 4 Y= SRR 54
R 0 A= o = To 1 0 = W1 1 0= 0 PRSP 55
4. CodiNg TECANIQUES ... 56
ot R U] [o o S 4 U Loa (1 =2 SRR PTTPPPRR 57
4.2 Variables and the const QUAalIfier ..., 58
4.3 Local Variables and Global Variables ... 59
4.4 Offsets fOr StruCtUre MEMDEISoi it 60
I N o Yot= 1 g Yo T 2 T = o £ SRR 62
4.6 LoOP CONrOl VAri@blet e e a e 63
A7 FUNCHION INTEITACES ...ttt e e e ettt e e e e e s e abb e e e e e e e e e s nbrbeeeaaaa s 64
4.8 Reducing the NUMDEr Of LOOPS ... ittt ettt et e e e e e e nbebeeeaaaeeas 65
e T U =] o Yo T 1=] = PR 66
I =T = g o 1= PP PP 67
I 1 | T = =t o = 1 1] o1 PSR 68

4.12 Moving Identical Expressions in More than One Conditional Branch Destination before
the ConditioNal BranChl........coiiiioiieie e 70

4.13 Replacing a Sequence of Complicated if Statement with a Simple Statement Having the
Same LOGIiCal MEANING ...cvviiiiiiirii ettt e et nere e nnreennreeens 72
4.14 Converting short- or char-Type Variables into the int Typeccccovve v, 73
4.15 Unifying Common case Processing in switch Statements.........cccccceeiviiiiiiinee v, 74
4.16 Replacing for Loops With dO-Whil@ LOOPSuuiiiiiiiiiiiiiiiiie ettt 76
4.17 Replacing Division by Powers of Two with Shift Operationsccccccoviiiiiiininiiee, 77
4.18 Changing Bit Fields with Two or More Bits to the char Typecccccoeiiiiiiiiiieiee, 78
RO1AN4195EJ0100 Rev.1.0 Page 2 of 80

May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

4.19 Assigning Small Absolute Values when Referring to Constants..........cccccvvvvveeciivciieenenenn, 79
WEDSItE aNd SUPPOIT ...ttt 80
RO1AN4195EJ0100 Rev.1.0 Page 3 of 80

May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

1. Overview

The methods of programming which lead to efficiency in terms of code size, speed of execution, and ROM data size are
classified under the following three headings.

e Options
e Language extensions
e Coding techniques

The results of measurement and assembly code given in this application note were obtained by using VV2.08 of the CC-
RX compiler. The value assumed for the -isa/-cpu option was -isa=rxv2. The default values for optimization options
are as follows.

Emphasize efficiency in the generation of code -size
Optimization level -optimize=2
Unrolling loops -loop=2
Inline expansion -noinline
Converting division by constants into multiplication -noconst_div
Scheduling instructions -schedule
Propagation of const-qualified variables as constants | -const_copy
Division of optimizing ranges -scope
Optimization of access to external variables -nomap
Optimization in consideration of the types of data L .
indicated by pointers -alias=noansi

Note that the degrees of the effects depend on the details of the source code and may also change due to upgrading of
the CC-RX compiler.

RO1AN4195EJ0100 Rev.1.0 Page 4 of 80
May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

2. Options

This chapter describes the effects on code size, ROM data size, and speed of execution when options for CC-RX are

specified.

The degrees of the effects depend on the details of the source code.

2.1 Compiler Options

\: Improved, x: Worsened, A: Depends on the situation, —: No effect, (): Default

Option

Code
Size

ROM
Size

Required
Number
of Cycles

Remarks

-instalign4

Instructions at branch destinations
are aligned with 4-byte
boundaries for CPUs with 32-bit
unit instruction queues (mainly
intended for RX200-series
MCUs).

-instalign8

Instructions at branch destinations
are aligned with 8-byte
boundaries for CPUs with 64-bit
unit instruction queues (mainly
intended for RX600-series
MCUs).

-nouse_div_inst

Generation of division operations
is suppressed to shorten
response times in the execution of
interrupt functions. Specifying this
option may lower efficiency in
terms of code size and speed of
execution.

-stack_protector
-stack_protector_all

This option generates code to
detect stack smashing at the entry
and exit points of functions.

The code for the detection of
stack smashing may lower
efficiency in terms of code size
and speed of execution.

-avoid_cross_boundary_prefetch

This option is used to prevent the
reading of data across 4-byte
boundaries in prefetching for
string manipulation instructions.
Specifying this option may lower
efficiency in terms of code size
and speed of execution.

-optimize
(specified with -size)

When -size is specified,
optimization will emphasize code
size. However, specifying this
option may lower efficiency in
terms of the speed of execution.

-optimize
(specified with -speed)

When -speed is specified,
optimization will emphasize
execution performance. However,
specifying this option may lower
efficiency in terms of code size.

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018

RENESAS

Page 5 of 80

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

At the time of linkage, inter-
module optimization is applied to
files compiled with this option
-goptimize \ \ \ specified.
For optimization at the time of
linkage, refer to section 2.3,
Linkage Options.
-speed X — N
-size () — (x)
Joop X o N The effect of_specifying this option
depends on its parameter.
inline X o N The effect of_specifying this option
depends on its parameter.
The more case labels the
-case=ifthen X \ A statements have, the larger the
code size will become.
The more case labels the
statements have, the larger the
_case=table N x A ROM data size will become. _
However, the speed of execution
remains the same regardless of
the number of labels.
-volatile X — X
Propagation as constants
proceeds even for const-qualified
external variables. Specifying this
-const_copy Q) o Q) option will improve e?ficier):cygin
terms of code size and speed of
execution.
_noconst_copy X L fgﬁg[[fy::nogthB option disables -
-const_div X — N
-noconst_div () — ()
-library=intrinsic N — N
Specifying this option may lower
-noscope \ — \ the performance of object code
for large functions.
Instructions are scheduled to
facilitate pipeline processing.
-schedule o o) Specifying I[t)his opE[Jion will in?prove
the speed of execution.
-noschedule o o X sgﬁgg)l/;reg this option disables -
-map N — N
-smap N — N
_approxdiv L L N The pr_ecision and order of
operations may be changed.
_simple_float_conv N o N Specifying this option wi.II improve
- = the performance when -isa=rxv1.
-nofpu X — X
-alias=ansi N — N
-ip_optimize N A N
-merge_files N A \
-whole_program N A N

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018

RENESAS

Page 6 of 80

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

-dbl_size=8

Specifying this option leads to the
double type being handled as 8
bytes by the compiler.

-int_to_short

The int type is replaced with the
short type before compilation.

-auto_enum

-pack

< | <]

-fint_register

This option specifies general
registers as being only for use in
fast interrupt functions. Specifying
this option will improve the
performance of such interrupt
functions but may lower the
performance of normal functions.

-branch=16

-branch=32

-base

Specifying this option is effective
when the entire program includes
frequent access to external
variables.

-nouse_pid_register

Since the generated code does
not use the PID register,
specifying this option may lower
efficiency in terms of code size
and speed of execution.

-save_acc

This option generates code for the
saving and restoring of the
accumulators in the case of
interrupt functions.

Although specifying this option
may lower the performance of
interrupt functions, it allows the
generation of instructions that use
the accumulator.

-control_flow_integrity

This option leads to the checking
of indirect function calls. The code
for checking may lower efficiency
in terms of code size, speed of
execution, and ROM data size.

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018

RENESAS

Page 7 of 80

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

211 -instalign4/-instalign8

These options are used to align instructions at branch destinations with 4- or 8-byte boundaries. While these options
facilitate efficient use of the CPU’s instruction queues and accelerate program execution, they may also increase the
code size.

Specifying -instalign4 aligns the addresses of instructions to suit the specifications of CPUs with 4-byte unit instruction
queues. This option is mainly intended for RX200-series MCUs.

Specifying -instalign8 aligns the addresses of instructions to suit the specifications of CPUs with 8-byte unit instruction
queues. This option is mainly intended for RX600-series MCUs.

The specifications of instruction queues are covered in the user’s manuals (hardware manuals) for the individual MCUs.

C source code

long a;

int funcl(int num)

{
return (num + 1);
}
void func2(void)
{
a += 1;
a += a;
}
void main(void)
{

unsigned iInt i;
for (i = 0; 1 < 10; ++i) {
if (funcl(i) < 10) {
func2();
}

a += 1;

}

-cpu=rx200 (CPUs with 32-bit instruction queues)

With -instalign4 Without -instalign4
Code size (bytes) 57 55
Number of cycles (cycles) | 278 297

-cpu=rx600 (CPUs with 64-bit instruction queues)

With -instalign8 Without -instalign8
Code size (bytes) 61 55
Number of cycles (cycles) | 259 278
RO1AN4195EJ0100 Rev.1.0 Page 8 of 80

May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

The same effects can also be obtained by #pragma directives. When -instalign4 or -instalign8 and a #pragma
directive are specified at the same time, the #pragma directive will take priority.

Example: With —instalign4

void funcl(void) /* Aligned with a 4-byte boundary (by -instalign4) */

{
}

#pragma instalign8 func2

void func2(void) /* Aligned with an 8-byte boundary */
{

}

#pragma noinstalign func3

void func3(void) /* Not aligned */
{

}

Example: With —instalign8

void funcl(void) /* Aligned with an 8-byte boundary (by -instalign8) */
{
}
#pragma instalign4 func2
void func2(void) /* Aligned with a 4-byte boundary */
{
}
#pragma noinstalign func3
void func3(void) /* Not aligned */
{
}
RO1AN4195EJ0100 Rev.1.0 Page 9 of 80

May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

2.1.2 -nouse_div_inst

This option leads to the generation of code in which DIV, DIVU, or FDIV instructions are never used for division and

modular division operations in the program.

This option calls the equivalent runtime functions instead of DIV, DIVU, or FDIV instructions. This may shorten
response times in the execution of interrupt functions by 1 to 20 cycles but lower efficiency in terms of code size and

speed of execution.

C source code

long a, b;

unsigned long c, d;
float e, T;

const float cf= 11.0;

void main(void)

{
a=a/ b;
c=c/ d;
e=-¢e/ T;
f=¢e / cf;
3

With -nouse_div_inst

Without -nouse_div_inst

Code size (bytes) 85

69

Number of cycles (cycles) | 701

59

Note: Using this option may also increase the required ROM size.

RO1AN4195EJ0100 Rev.1.0

May. 17, 2018 RENESAS

Page 10 of 80

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

2.1.3

-stack_protector/-stack_protector_all
This option generates code to detect stack smashing at the entry and exit points of functions.

The code to detect stack smashing may lower efficiency in terms of code size and speed of execution.

C source code

#include <stdio.h>
#include <stdlib.h>
void func(void)
{
volatile char str[10];
int i;
for (i = 0; 1 <=9; i++) {
str[i] = i;
}
}
void _ stack chk_fail(void)
{
/* stack is broken! */
__brkQ;
}
void main(void)
{
func(Q;
s
With With Without
-stack_protector -stack_protector_all -stack_protector/
-stack_protector_all
Code size (bytes) 44 65 24
Number of cycles (cycles) 75 82 68

The same effects can also be obtained by #pragma directives. When -stack_protector or -stack_protector_all and a

#pragma directive are specified at the same time, the #pragma directive will take priority.

RO1AN4195EJ0100 Rev.1.0

May.

17,2018

RENESAS

Page 11 of 80

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

Example: With -stack _protector/-stack_protector_all

struct DATA
{

int a, b, ¢, d;

};

{
struct DATA data = {0, 1, 2, 3};

return data;

}

#pragma no_stack _protector (func2)

stack smashing */

{
struct DATA data = {0, 1, 2, 3};

return data;

}

struct DATA funcl(void) /* Generates code to detect stack smashing */

struct DATA func2(void) /* Prevents the generation of code to detect

Example: Without -stack_protector/-stack_protector_all

struct DATA
{

int a, b, c, d;

};

stack smashing */

{
struct DATA data = {0, 1, 2, 3};

return data;

}

#pragma stack protector (func2)

{
struct DATA data = {0, 1, 2, 3};

return data;

}

struct DATA funcl(void) /* Prevents the generation of code to detect

struct DATA func2(void) /* Generates code to detect stack smashing */

RO1AN4195EJ0100 Rev.1.0

May. 17, 2018 RENESAS

Page 12 of 80

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

214 -avoid_cross_boundary_prefetch
This option is used to prevent the reading of data across 4-byte boundaries in prefetching for string manipulation

instructions.

Specifying this option may lower efficiency in terms of code size and speed of execution when source code includes
calls of library functions for string handling, i.e. memchr(), strlen(), strcpy(), strncpy(), stremp(), strnemp(), strcat(), or
strncat(), and -library=intrinsic has been specified for compilation.

C source code

void main(void)

{

}

#include <string.h>

unsigned long len;

char str[] = "abcdefghijkImnopgrstuvwxyz';
len = strlen(str);

With
-avoid_cross_boundary_prefetch

Without
-avoid_cross_boundary_prefetch

Code size (bytes)

50

43

Number of cycles (cycles)

79

73

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018

RENESAS

Page 13 of 80

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

2.15 -optimize

This option specifies the optimization level. The default is -optimize=2.

The default values of the options listed below vary with the combination of whether the size or speed option has been
selected, the optimization level, and whether the input source code is C or C++.

ltem

Option

Unrolling loops

-loop

Inline expansion

-inline / -noinline

Converting division by constants into multiplication

-const_div / -noconst_div

Scheduling instructions

-schedule / -noschedule

Propagation of const-qualified variables as constants

-const_copy / -noconst_copy

Division of optimizing ranges

-scope / -noscope

Optimization of access to external variables

-map / -smap / -nomap

Optimization in consideration of the types of data
indicated by pointers

-alias=ansi / -alias=noansi

C source code

int i = 0;
int x[10], y[10];
static void sub(int* a, int* b,
{ -

int temp;

temp = a[i];

a[il b[i];

b[i] temp;
}

void main(void)
{

sub(x, vy, 1);
}

int i)

-optimize=0

-optimize=1

-optimize=2 -optimize=max

Code size (bytes) 63 37

35 24

Number of cycles (cycles) | 36 20

14 10

Note:

Using this option may also increase the required ROM size.

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018

Page 14 of 80

RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

2.1.6 -speed/-size
This option is used to select whether speed or size should be emphasized in optimization.

When -speed is specified, emphasis in optimization will be on execution performance.

When -size is specified, emphasis in optimization will be on code size (default).

C source code

long a;
void main(void)
{
unsigned long 1 = 0;
unsigned long j = O;
for (i = 0; 1 <5; ++1) {
for g = 0; J <5; ++j)
a+= (i + J);
a*= (i +J);
}
}
}
-speed -size
Code size (bytes) 70 45
Number of cycles (cycles) | 226 310
RO1AN4195EJ0100 Rev.1.0 Page 15 of 80
May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

2.1.7 -loop
This option specifies whether to optimize speed by unrolling loops.

Unrolling loop statements accelerates execution while increasing the code size.

C source code

long val;
void main(void)
{
unsigned long i, j, k, I;
for (i = 1; 1 <7; ++1) {
for G =15 j <65 ++j) {
for (k = 1; k < 5; ++k) {
for (1 =1; 1 < 4; ++1) {
val += (i + j + K);
val *= (i + J + k);
}
}
}
val += (i * 10);
}
}
-loop=1 -loop=2 -loop=8
Code size (bytes) 154 204 307
Number of cycles (cycles) | 4391 3424 3069

Note: -loop=8 is the default value when -optimize=max/-speed.

RO1AN4195EJ0100 Rev.1.0

May. 17, 2018 RENESAS

Page 16 of 80

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

2.1.8 -inline

This option specifies whether functions are to be automatically inline expanded.

When -inline is specified, the compiler automatically performs inline expansion.

When -noinline is specified, the compiler does not automatically perform inline expansion.

You can also use a parameter with the -inline option to specify the allowed increase in the function's size due to the use
of inline expansion. For example, when inline=100, functions will be inline-expanded if their size is increased by up to
100% (size is doubled). When inline=0, functions will only be inline-expanded if the size remains the same or

decreases.

C source code

long val;
long x[1000];

static void funcl(void)

{

++val ;

}
void func2(int a)
{
if (@) {
x[a] = O;
}

}

void main(void)
{
signed int i;
func2(val);
for (i = 0; 1 < 10; ++i) {
func2(i);
funcl();
func2(val);

by
func2(val);

}

-inline=200

-inline=0

-noinline

Code size (bytes) 93

58

70

Number of cycles (cycles) | 150

364

465

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018

RENESAS

Page 17 of 80

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

You can also use #pragma directives to enable or disable inline expansion for particular functions. When -inline or -
noinline and a #pragma directive are specified at the same time, the #pragma directive will take priority.

Example: With -inline

void funcl(void) /* Inline expansion is enabled (by -inline). */
{
}

#pragma noinline(func2)

void func2(void) /* Inline expansion is disabled. */
{

}

Example: With -noinline

void funcl(void) /* Inline expansion is disabled (by -noinline).
*/
{
}

#pragma inline(func2)

void func2(void) /* Inline expansion is enabled. */
{

}

RO1AN4195EJ0100 Rev.1.0 Page 18 of 80
May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

2.1.9 -case
This option specifies how switch statements will be expanded.

When -case=ifthen is specified, switch statements will be expanded by using the if _then method. The more case labels
the statements have, the larger the code size will become. The speed of execution will also depend on the number of
case labels.

When -case=table is specified, switch statements will be expanded by using the table method. The more case labels the
statements have, the larger the ROM data size will become. However, the speed of execution remains the same
regardless of the number of labels.

When -case=auto (default) is specified, the compiler automatically selects between the if _then and table methods.

C source code

long val = 10;
void main(void)
{
switch (val) {
case 1:
val += 10;
break;
case 2:
val *= 10;
break;
case 3:
val /= 10;
break;
default:
val -= 10;
break;
}
}
-case=ifthen -case=table
Code size (bytes) 31 39
ROM size (bytes) 4 7
Number of cycles (cycles) 15 13

Note: For the above example of C source code, the compiler selects if _then when -case=auto.

RO1AN4195EJ0100 Rev.1.0 Page 19 of 80
May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

2.1.10 -volatile

This option is used to select whether all external variables should be handled as if they were volatile-qualified.

When -volatile is specified, all external variables are handled as if they were volatile-qualified. Accordingly, the
number of times and order of access to external variables are exactly the same as is written in the C/C++ source file.
However, this prevents the optimization of external variables and thus may lower efficiency in terms of code size and

speed of execution.

C source code

long val = 0;

void main(void)

{
val += 1;
val -= 2;
val *= 3;
val /= 4;
}
With -volatile Without -volatile
Code size (bytes) 33 19
Number of cycles (cycles) 22 12
RO1AN4195EJ0100 Rev.1.0 Page 20 of 80
May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

2.1.11 -const_copy
This option is used to enable or disable propagation by the compiler of const-qualified external variables as constants.

Enabling constant propagation accelerates program execution.
When -const_copy (default) is specified, the compiler propagates const-qualified external variables as constants.

When -noconst_copy is specified, const-qualified external variables are not propagated as constants.

C source code

const long val = 0;
long result;

void main(void)

{

result = val + 10;

}

-const_copy -noconst_copy

Code size (bytes) 10 19
Number of cycles (cycles) 5 8

RO1AN4195EJ0100 Rev.1.0 Page 21 of 80

May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

2.1.12 -const_div/-noconst_div

These options are used to enable or disable converting calculations for division and modulo operations (obtaining the
remainders of division) of integer constants into sequences of multiplication and bitwise operation (shift or bitwise
AND operation) instructions. Enabling this conversion accelerates the speed of execution, while increasing the code
size.

When -const_div is specified, calculations for division and modulo operations of integer constants in the source file are
converted into sequences of multiplication and bitwise operation (shift or bitwise AND operation) instructions. Using
this option in conjunction with the -size option increases the speed of execution compared to cases where -noconst_div
is specified.

When -noconst_div is specified, the corresponding division and modulo instructions are used for calculating the results
of division and modulo operations of integer constants in the source file (except in the case of unsigned integers that are
powers of two). Using this option in conjunction with the -speed option reduces the code size compared to cases where
-const_div is specified.

C source code

long a = OX7FFFFFFF;
void main(void)
{
a = a / 1000;
}
_const_div (-size) -const_div (- -noconst_div
- speed) (-sizel-speed)
Code size (bytes) 26 27 16
Number of cycles (cycles) | 13 12 23
RO1AN4195EJ0100 Rev.1.0 Page 22 of 80

May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

2.1.13 -library

This option is used to specify the extent to which library functions will be expanded.

When -library=function is specified, all library functions will be called. This may lower efficiency in terms of code

size and speed of execution.

When -library=intrinsic (default) is specified, only abs(), fabsf(), and library functions which can use string
manipulation instructions will be expanded. When -library=intrinsic and -isa=rxv2 are selected at the same time, calls
of the sqrtf() function or of the sqrt() function when -dbl_size=4 are expanded as FSQRT instructions. Note, however,

that no value is set for errno in such cases.

C source code

#include <stdlib.h>
int a;

void main(void)

{

a = abs(a);

}

-library=function

-library=intrinsic

Code size (bytes) 19

13

Number of cycles (cycles) 16

8

RO1AN4195EJ0100 Rev.1.0

May. 17, 2018 RENESAS

Page 23 of 80

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

2.1.14 -scope/-noscope
This option is used to select whether to divide the target range for optimization before compilation.

When -noscope is specified, the target range for optimization is not divided before compilation. A larger target range

generally improves the performance of the object code, although compilation will take longer.

In the compilation of large functions, the handling of numerous general-purpose registers in the object code may lower
its performance. Using -scope in such cases allows large functions to be treated as multiple separate ranges in

optimization. This will improve object performance compared to cases where -noscope is specified.

C source code

long array[40];
long val = 10;
void main(void)
t
int i;
for (i = 0; i < 40; ++i) {
array[i] = val * i;
3
for (i = 0; 1 < 40; ++i) {
if (array[i] > i) {
array[i] += val + i;
3
else if (array[i] > (i * 2)) {
array[i] += val + (i * 2);
3
else if (array[i] > (i * 3)) {
array[i] += val + (i * 3);
3
else if (array[i] > (i * 4)) {
array[i] += val + (i * 4);
3
else if (array[i] > (i * 5)) {
array[i] += val + (i * 5);
ks
else if (array[i] > (i * 6)) {
array[i] += val + (i * 6);
3
else if (array[i] > (i * 7)) {
array[i] += val + (i * 7);
3
else if (array[i] > (i * 8)) {
array[i] += val + (i * 8);
3
else if (array[i] > (i * 9)) {
array[i] += val + (i * 9);
3
else {
array[i] += val + (i * 10);
3
3
ks

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018 RENESAS

Page 24 of 80

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

-scope -noscope
Code size (bytes) 318 312
Number of cycles (cycles) 1089 1046

Note: -loop=2 is assumed for the above results.

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018

RENESAS

Page 25 of 80

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

2.1.15 -schedule/-noschedule

This option is used to select whether to schedule instructions to facilitate pipeline processing. Scheduling instructions

improves the speed of execution.

When -schedule is specified, instructions are scheduled to facilitate pipeline processing. -schedule is assumed when -

optimize=2 or -optimize=max is specified.

When -noschedule is specified, instructions are not scheduled so they are handled in the order in which they are written

in the C/C++ source file. -noschedule is assumed when -optimize=1 or -optimize=0 is specified.

C source code

long a, b;
unsigned long c, d;
float e, T;

void main(void)

{
a=a+ b;
cC =c + d;
e=-e+ T;
}
-schedule -noschedule
Code size (bytes) 58 58
Number of cycles (cycles) 24 25
RO1AN4195EJ0100 Rev.1.0 Page 26 of 80
May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

2.1.16 -map/-smap

This option is used to select whether to optimize access to external variables. Optimizing access to external variables
will improve efficiency in terms of code size and speed of execution.

When -map is specified, CC-RX optimizes access to external variables, generating code that uses addresses relative to a
base address (selected according to the external-symbol allocation information file created by the optimizing linkage
editor) for access to external or static variables. How the -map option is used differs with the specification of the -
output option.

(1) When -output=0obj or -output=src

Compile the source file without specifying -map. Then specify -map=<filename> at the time of linkage to create an
external-symbol allocation information file (.bls).

cerx -isa=rxv2 -output=obj tpl.c tp2.c

rlink tp1.obj tp2.0bj -map=out.bls

Specify -map=<name of the external-symbol allocation information file> in ccrx and compile and link the source
files again. CC-RX generates code in which access to external variables has been optimized.

cerx -isa=rxv2 -output=obj -map=out.bls tpl.c tp2.c

rlink tpl.0bj tp2.0bj -output=out.abs

(2) When -output=abs, -output=hex, or -output=sty

Specify -map without any parameters. CC-RX automatically proceeds with compilation and linkage twice and
generates code in which access to external variables has been optimized.

CcCrx -isa=rxv2 -output=abs -map tpl.c tp2.c

When -smap is specified, CC-RX sets a base address for external or static variables defined in the file to be compiled
and generates code that uses addresses relative to that base address for access to those variables.

C source code [tpl.c]

long a, b, c;
extern long d, e, F;
void main(void)

{
a=d;
b = e;
c =T;
}
C source code [tp2.c]
long d = 10;
long e = 10;
long ¥ = 10;
-map -smap Without -map/-smap
Code size (bytes) 21 33 43
Number of cycles (cycles) 13 14 16
RO1AN4195EJ0100 Rev.1.0 Page 27 of 80

May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

2.1.17 -approxdiv

This option is used to convert the division of floating-point constants into the multiplication of the reciprocals of the
constants. Specifying this option improves performance in the division of floating-point constants. It may, however,

change the precision and order of operations, so take care on these points.

C source code

float a;
void main(void)

{
a/=1.1;
}

With -approxdiv

Without -approxdiv

Code size (bytes) 18

18

Number of cycles (cycles) 9

23

RO1AN4195EJ0100 Rev.1.0

May. 17, 2018 RENESAS

Page 28 of 80

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

2.1.18 -simple_float_conv

This option omits part of the type-conversion processing for the floating-point types. This option can be expected to be
effective when the instruction set architecture of the code to be generated is RXv1.

This option changes the code generated to handle type conversion of floating-point numbers in the following cases.
(a) Type conversion from 32-bit floating-point type to unsigned integer type

(b) Type conversion from unsigned integer type to 32-bit floating-point type

(c) Type conversion from integer type to 64-bit floating-point type via 32-bit floating-point type (except when -
optimize=0)

Specifying this option will improve efficiency in terms of code size and speed of execution. However, the results of
conversion may differ from those for conversion in accord with the C/C++ language specifications, so take care on this
point.

C source code

unsigned long isrc = 2;
float fsrc = 2.0;
unsigned long idst;

float fdst;

void main(void)
{
idst
fdst
}

(unsigned long)fsrc;
(float)isrc;

With -simple_float_conv

Without -simple_float_conv

Code size (bytes)

36

73

Number of cycles (cycles)

17

23

Note:

RXv1 (-isa=rxv1l) is assumed in this case.

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018

RENESAS

Page 29 of 80

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

2.1.19 -nofpu

This option is used to select whether to generate code in which FPU instructions are used.

When -nofpu is specified, the generated code does not use FPU instructions.

When -fpu is specified, the generated code uses FPU instructions.

The default for this option is -fpu except when -cpu=rx200 is specified, in which it is -nofpu. It is not possible to

specify -cpu=rx200 and -fpu at the same time.

C source code

float a, b;

void main(void)

{

const float ¢ = 11.0;

a /= b;
b /= c;
}
-fpu -nofpu
Code size (bytes) 31 45
Number of cycles (cycles) 40 97
RO1AN4195EJ0100 Rev.1.0 Page 30 of 80
May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

2.1.20 -alias

This option selects whether to perform optimization in consideration of the types of data indicated by pointers.
Specifying this option improves code efficiency in terms of code size and speed of execution. However, the results of
conversion may differ from the expected values if the C source code does not comply with the ISO/IEC 9899 standard.

When -alias=ansi is specified, optimization in consideration of the types of data indicated by pointers proceeds in
accord with ISO/IEC 9899. The performance of object code is generally better when -alias=ansi is specified than when
-alias=noansi is specified, but the results of execution may differ according to whether -alias=ansi or -alias=noansi is
specified.

When -alias=noansi is specified, ISO/IEC 9899-based optimization in consideration of the types of data indicated by
pointers is not performed.

C source code

long a, b;
short* ps;

void main(void)

-alias=ansi -alias=noansi
Code size (bytes) 30 36
Number of cycles (cycles) 10 16

RO1AN4195EJ0100 Rev.1.0 Page 31 of 80
May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

2.1.21 -ip_optimize

This option is used to select whether to apply global optimization such as optimization in which inter-procedural alias
analysis and the propagation of constant parameters and return values are utilized.

C source code

long result;

{
return (x -y + 2);
}
void main(void)
{

}

result = func(3, 4,

5);

static long func(long x, long y, long z)

With -ip_optimize

Without -ip_optimize

Code size (bytes)

21

23

Number of cycles (cycles) 17 18
RO1AN4195EJ0100 Rev.1.0 Page 32 of 80
May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

2.1.22 -merge_files

This option allows the compiler to compile multiple C source files and output the results to a single object file.

Specifying both -merge_files and -ip_optimize can obtain a synergistic effect.

C source code [tpl.c]

long result;

void main(void)

{
}

result = func(3, 4, 5);

C source code [tp2.c]

#pragma inline (func)

{

return (x -y + 2);

}

long func(long x, long y, long z)

With -merge_files

Without -merge_files

Code size (bytes)

122

131

Number of cycles (cycles)

5

19

Notes: 1. In some cases, ROM size may also be improved.

2. The code size here also includes the size of the startup routine.

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018

RENESAS

Page 33 of 80

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

2.1.23 -whole_program

This option is used to apply global optimization by merging all source files to be compiled on the assumption that the
entire program is to be compiled.

When this option is specified, compilation proceeds on the assumption that the conditions listed below are satisfied.
Correct operation is not guaranteed otherwise.

Condition 1: Files outside the scope of compilation at this time will neither modify nor refer to the values and addresses
of extern variables defined in the target source files.

Condition 2: Files outside the scope of compilation at this time will not call functions within the target source files,
although calls of functions in files outside the scope of compilation by target source files are allowed.

C source code [tpl.c]

extern const int c;
int result;

int func(void);

void main(void)

{
result = c;
result += func();

}

C source code [tp2.c]

const int c = 1;
int x = 10;
int *p;

int func(void)

{ - -
int i;
for (i = 0; 1 < x; ++i) {
p) +=c;
}
return (*p);
}
With -whole_program | Without -whole_program
Code size (bytes) 170 171
Number of cycles (cycles) 93 163

Notes: 1. In some cases, ROM size may also be improved.
2. The code size here also includes the size of the startup routine.

RO1AN4195EJ0100 Rev.1.0 Page 34 of 80
May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

2.1.24 -dbl_size

This option specifies whether or not to change variables of the double and long double types to the float type.

When -dbl_size=4 is specified, this option changes the given types to the float type (default).

When -dbl_size=8 is specified, this option does not change the types.

C source code

double a, b;
const double ¢ = 11.0;

void main(void)

{
a=a/b;
b=Db/c;
}
-dbl_size=4 -dbl_size=8
Code size (bytes) 31 63
ROM size (bytes) 4 8
Number of cycles (cycles) 40 107
RO1AN4195EJ0100 Rev.1.0 Page 35 of 80
May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

2.1.25 -int_to_short

Before compilation, variables in the source file are changed to the short type if written as the int type and to the
unsigned short type if written as the unsigned int type.

In the program with no portability and written on the assumption that the sizes of int and unsigned int are 32 bits, this

may change the results of execution.

C source code

int x;
long y;
const int imm = 1;

void main(void)

{ -
X += Imm;
y += X;
¥
With -int_to_short | Without -int_to_short
Code size (bytes) 26 24
ROM size (bytes) 2 4
Number of cycles (cycles) 13 12
RO1AN4195EJ0100 Rev.1.0 Page 36 of 80
May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

2.1.26 -auto_enum

This option selects the processing of enumerated values, i.e. lists qualified by enum, as the minimum set of required

values, i.e. only those which are actually used in the code.

Although this reduces the ROM data size, expanding the values in enum to the long type, etc., may also affect the code

size and speed of execution.

C source code

enum number {
one
two
three

};

11
21
3

int x;
enum number num;
const enum number DATA = one;

void main(void)

{
num += num;
X += num;
}
With -auto_enum Without -auto_enum
Code size (bytes) 26 24
ROM size (bytes) 1 4
Number of cycles (cycles) 13 12

RO1AN4195EJ0100 Rev.1.0

May. 17, 2018 RENESAS

Page 37 of 80

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

2.1.27 -pack
This option specifies the unit for the boundary alignment of structure and class members.
When -pack is specified, the unit of boundary alignment for structure and class members is 1, which reduces the ROM

data size. However, in cases where alignment is required, it will also lead to deterioration in terms of the code size and
speed of execution.

When -unpack (default) is specified, the boundary alignment value for structure and class members equals the
maximum boundary alignment value for the members.

C source code

struct DATA
{

char c;
long I;
};

struct DATA data = {1, 2};
long result;

long func(void)

{
return (data.l);
}
void main(void)
{
result = func(Q;
}
-pack -unpack
Code size (bytes) 23 21
ROM size (bytes) 5 8
Number of cycles (cycles) 17 16

The same effects can also be obtained by #pragma directives. When -pack and a #pragma directive are specified at the
same time, the #pragma directive will take priority.

RO1AN4195EJ0100 Rev.1.0 Page 38 of 80
May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques
Example: With -pack

struct DATAl /* The -pack option applies. */

{
char a; /* Byte offset = 0 */
long b; /* Byte offset = 1 */
short c; /* Byte offset =5 */
} datal; /* The total size is 7 bytes. */

#pragma unpack
struct DATA2 /* The -pack option is not applicable from here. */

{
char a; /* Byte offset = 0 */
long b; /* Byte offset = 4 */
short c; /* Byte offset = 8 */
} data2; /* The total size is 12 bytes. */

#pragma packoption
struct DATA3 /* The -pack option applies. */

{
char a; /* Byte offset = 0 */
long b; /* Byte offset = 1 */
short c; /* Byte offset =5 */
} datas3; /* The total size is 7 bytes. */

Example: With -unpack

struct DATAl /* The -pack option applies. */

{
char a; /* Byte offset = 0 */
long b; /* Byte offset = 4 */
short c; /* Byte offset = 8 */
} datal; /* The total size is 12 bytes. */

#pragma pack

struct DATA2 /* Operation from here is as If the -pack option were
specified. */

{
char a; /* Byte offset = 0 */
long b; /* Byte offset = 1 */
short c; /* Byte offset =5 */
} data2; /* The total size is 7 bytes. */

#pragma packoption
struct DATA3 /* The -pack option applies. */

{
char a; /* Byte offset = 0 */
long b; /* Byte offset = 4 */
short c; /* Byte offset = 8 */
} data3; /* The total size is 12 bytes. */

RO1AN4195EJ0100 Rev.1.0

Page 39 of 80
May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

2.1.28 -fint_register

This option specifies general registers as being only for use in fast interrupt functions (functions that have the fast
interrupt setting (fint) in their interrupt specification as stated with #pragma interrupt). For details on the extended
language specifications of #pragma interrupt, refer to section 3.1.1. The specified registers cannot be used in
functions other than fast interrupt functions. The registers specified by this option can thus be used in fast interrupt
(fint) functions without having to be saved and restored. Since this reduces the number of registers available to other
functions, the performance of interrupt functions is improved but the performance of the program as a whole is in
general lowered, although this depends on the number of registers specified.

Option Registers for Use Only with Fast Interrupts
fint_register=0 (default) None
fint_register=1 R13
fint_register=2 R12, R13
fint_register=3 R11, R12, R13
fint_register=4 R10, R11, R12, R13
RO1AN4195EJ0100 Rev.1.0 Page 40 of 80

May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

C source code [normal function]

long val[40];
long tmp = 10;
void main(void)
{
int i;
for (i = 0; 1 < 40; ++i) {
if (tmp > 1) {
val[i] = tmp + i;
}
else if (tmp > (i * 2)) {
val[i] = tmp + (i * 2);
}
else if (tmp > (i * 3)) {
val[i] = tmp + (i * 3);
}
else if (tmp > (i * 4)) {
val[i] = tmp + (i * 4);
}
else if (tmp > (i * 5)) {
val[i] = tmp + (i * 5);
}
else if (tmp > (i * 6)) {
val[i] = tmp + (i * 6);
}
else if (tmp > (i * 7)) {
val[i] = tmp + (i * 7);
}
else if (tmp > (i * 8)) {
val[i] = tmp + (i * 8);
}
else if (tmp > (i * 9)) {
val[i] = tmp + (i * 9);
}
else {
val[i] = tmp + (i * 10);
}
}
b5
fint_register | fint_register | fint_register | fint_register | fint_register
=0 =1 =2 =3 =4
Code size (bytes) 153 153 153 161 170
Number of cycles (cycles) 1654 1654 1654 1734 1873

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018

RENESAS

Page 41 of 80

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

C source code [interrupt function]

{
}

volatile int count;

count++;

#pragma interrupt int_func(vect=10, fint)
void int_func(void)

fint_register
=0

fint_register
=1

fint_register
=2

fint_register
=3

fint_register
=4

Code size (bytes)

18

18

14

14

14

Number of cycles (cycles)

12

10

8

8

8

RO1AN4195EJ0100 Rev.1.0

May. 17, 2018

RENESAS

Page 42 of 80

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

2.1.29 -branch
This option specifies the width of addresses for branches to functions defined in other sections or files.

When -branch=16 is specified, the program is compiled with branch widths within 16 bits.
When -branch=24 is specified, the program is compiled with branch widths within 24 bits (default).

When -branch=32 is specified, no branch width is specified.

C source code

void sub(void);

void main(void)
{

sub(Q);
}

#pragma section ResetPRG
void sub(void)

{
}
-branch=16 -branch=24 -branch=32
Code size (bytes) 3 4 8
Number of cycles (cycles) 6 6 7

RO1AN4195EJ0100 Rev.1.0 Page 43 of 80

May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

2.1.30 -base
This option specifies a fixed general register for use with base addresses throughout the program.

In the case of an entire program that includes frequent access to external variables, specifying this option will improve
efficiency in terms of code size and speed of execution.

C source code

long val[40];
long tmp = 10;

void main(void)
{ - -
int i;
for (i = 0; 1 < 40; ++i) {

if (tmp > 1) {
val[i] = tmp + i;

}

else if (tmp > (i * 2)) {
val[i] = tmp + (i * 2);

}

else if (tmp > (i * 3)) {
val[i] = tmp + (i * 3);

}

else if (tmp > (i * 4)) {
val[i] = tmp + (i * 4);

}

else if (tmp > (i * 5)) {
val[i] = tmp + (i * 5);

}

else if (tmp > (i * 6)) {
val[i] = tmp + (i * 6);

}

else if (tmp > (i * 7)) {
val[i] = tmp + (i * 7);

}

else if (tmp > (i * 8)) {
val[i] = tmp + (i * 8);

}

else if (tmp > (i * 9)) {
val[i] = tmp + (i * 9);

by
else {
val[i] = tmp + (i * 10);
}
}
}
With -base .
CnmsEe e Without -base
Code size (bytes) 165 166
ROM size (bytes) 4 4
Number of cycles (cycles) 1533 1540
RO1AN4195EJ0100 Rev.1.0 Page 44 of 80

May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

2.1.31 -nouse_pid_register

When this option is specified, the generated code does not use the PID register.

Specifying this option may lower efficiency in terms of code size and speed of execution.

C source code

long val[40];
long tmp = 10;
void main(void)
{ - -
int i;
for (i = 0; 1 < 40; ++i) {
if (tmp > 1) {
val[i] = tmp + i;
}
else if (tmp > (i * 2)) {
val[i] = tmp + (i * 2);
}
else if (tmp > (i * 3)) {
val[i] = tmp + (i * 3);
}
else if (tmp > (i * 4)) {
val[i] = tmp + (i * 4);
}
else if (tmp > (i * 5)) {
val[i] = tmp + (i * 5);
}
else if (tmp > (i * 6)) {
val[i] = tmp + (i * 6);
}
else if (tmp > (i * 7)) {
val[i] = tmp + (i * 7);
}
else if (tmp > (i * 8)) {
val[i] = tmp + (i * 8);
}
else if (tmp > (i * 9)) {
val[i] = tmp + (i * 9);
}
else {
val[i] = tmp + (i * 10);
}
}
}
With Without
-nouse_pid_register -nouse_pid_register
Code size (bytes) 167 158
Number of cycles (cycles) 1823 1674

Note: Measurement was with -fint_register=3.

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018

Page 45 of 80

RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

2.1.32 -save_acc

This option generates code for the saving and restoring of the accumulators (ACC, ACCO, or ACC1) in the case of

interrupt functions.

When this option is specified, the values of the accumulators are retained even if interrupts occur. This permits the

generation of instructions that use an accumulator, such as MACLO, from C/C++ statements.

C source code [normal function]

short srcl[3]
short src2[3]
int result;

{

}

void main(void)

i result = func(srcl,

{10, 11, 123%;
{20, 21, 22};

src2);

int func(const short* srcl, const short* src2)

return (srcl[0] * src2[0]) + (srcil[1l] * src2[1]) + (srcl[2] * src2[2]);

With -save _acc

Without -save _acc

Code size (bytes)

49

49

Number of cycles (cycles)

25

27

Note: The -speed option is specified for the above results.

C source code [interrupt function]

#include <machine.h>

10;
20;

long srcl
long src2
long result;

void func(void)

{
}

void main(void)

{
int_exception(10);
nopQ;

}

#pragma interrupt func(vect=10)

result = srcl * src2;

With -save _acc

Without -save_acc

Code size (bytes)

53

31

Number of cycles (cycles)

32

18

Note: The code size and number of cycles are for the interrupt function alone.

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018

RENESAS

Page 46 of 80

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

2.1.33

-control_flow_integrity

This option is used to check the calling functions in the case of indirect function calls.

Since this involves the addition of code and data for use in checking, specifying this option may lower efficiency in
terms of code size, ROM data size, and speed of execution.

C source code

void (*pl)(char a)
void (*p2)(long b)

void func4(void)

{
func3();

}

void main(void)
{
p1(l);
p2(1);
funcd4(;
}

void funcl(char a) {}
void func2(long b) {}
void func3(void){}

void _ control_flow_chk fail(void) {}

funcl;
func?2;

With -control_flow_integrity

Without -control_flow_integrity

Code size (bytes) 192 147
ROM size (bytes) 188 65
Number of cycles (cycles) 81 36

Note:

The code size and ROM size include the size of the startup routine.

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018

RENESAS

Page 47 of 80

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

2.2 Assembler Option

\: Improved, x: Worsened, A: Depends on the situation, —: No effect

Required
. Code ROM Number
Option Size Size of Remarks
Cycles
At the time of linkage, inter-module
optimization is applied to files for
- which this option was specified.
"goptimize v v v For optimization at the time of
linkage, refer to section 2.3,
Linkage Options.
RO1AN4195EJ0100 Rev.1.0 Page 48 of 80

May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

2.3 Linkage Options

This section describes the effects on code size, ROM data size, and speed of execution when optimizing linkage options
are specified. Optimization is applied to files for which -goptimize was specified at the time of compilation or

assembly.

Optimization is not applied to sections for which -section_forbid is specified.

Optimization is also not applied to ranges from the address plus the size for which -absolute_forbid is specified.

\: Improved, x: Worsened, A: Depends on the situation, —: No effect

Required
. Code ROM Number
Option Size Size of Remarks
Cycles
-optimize=symbol_delete N N —
-optimize=same_code N — X
-optimize=short_format N — —
-optimize=branch N — —

Note:

When the linkage editor is started from the command line, all optimization options apply by default.

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018

RENESAS

Page 49 of 80

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

231 -optimize=symbol_delete

Variables or functions to which nothing refers are deleted. Be sure to specify #pragma entry at the time of compilation
or the entry symbol with -entry in the linkage editor.

With this option specified, the deletion of variables and functions with -symbol_forbid specified is not allowed.

C source code

int valuel
int value2

0;
0;

void funcl(void)
{

valuel++;

}

void func2(void)
{

value2++;

}

void main(void)
{
funcl(Q;

}

With -optimize=symbol_delete Without -optimize=symbol_delete
Code size (bytes) 59 135

ROM size (bytes) 56 64

Note: The code size and ROM size include the size of the startup routine.

RO1AN4195EJ0100 Rev.1.0 Page 50 of 80
May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

2.3.2 -optimize=same_code
Subroutines are created from identical sequences of instructions.

Specifying this option may improve code size but lower the speed of execution.

-samesize specifies the minimum code size to which this form of optimization is to be applied (the default is -

samesize=1E).

C source code

int vi;
int v2;

volatile int value = 0;

void sub(void)

{
value += v1;
value += v2;
value += v3;
value += v4;
value += v5;
}
void main(void)
{
value += vi;
value += v2;
value += v3;
value += v4;
value += v5;
sub(Q);
}
With -optimize=same_code Without -optimize=same_code
Code size (bytes) 116 253
Number of cycles (cycles) 91 74

Note: The code size includes the size of the startup routine.

RO1AN4195EJ0100 Rev.1.0

May. 17, 2018

RENESAS

Page 51 of 80

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

2.3.3 -optimize=short_format
Instructions having a displacement or immediate value are replaced with smaller instructions, reducing the code size by
the amounts taken up by displacements and immediate values.

C source code

int vi;
int v2;
int v3;
int v4;
int v5;

volatile int value = 0;

void main(void)

{
value += vl;
value += v2;
value += v3;
value += v4;
value += v5;
}
With -optimize=short_format Without -optimize=short_format
Code size (bytes) 157 179

Note: The code size includes the size of the startup routine.

RO1AN4195EJ0100 Rev.1.0

May. 17, 2018

RENESAS

Page 52 of 80

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

234 -optimize=branch
The sizes of branch instructions are optimized with the use of program allocation information.

C source code

extern void sub(void);

void main(void)
{

sub(Q);

sub(Q);

sub(Q);

sub(Q);

sub(Q);

With -optimize=branch Without -optimize=branch
Code size (bytes) 116 135
Note: The code size includes the size of the startup routine.

RO1AN4195EJ0100 Rev.1.0 Page 53 of 80
May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

3. Language Extensions

This chapter describes the effects on code size, ROM data size, and speed of execution of #pragma directives among

the language extensions.

3.1 #pragma Directives

\: Improved, x: Worsened, A: Depends on the situation, —: No effect

Directive Code ROM Size Required | Remarks
Size Number
of Cycles
Changing interrupt
specifications used with this
#pragma interrupt A — A directive (fint, etc.) can improve
the performance of interrupt
functions.
RO1AN4195EJ0100 Rev.1.0 Page 54 of 80
May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

3.1.1 #pragma interrupt

This directive is used to declare that a function is an interrupt function. Changing interrupt specifications can improve
the performance in terms of the speed of execution and code size of interrupt functions.

Interrupt Specifications Format | Specifications
. ' Specifies the function as being for use as the handler for
Fast interrupt fint .
a fast interrupt.
Limits the number of registers used in the interrupt
function to R1 to R5, R14, and R15. The code for saving
Limitation on registers in and restoring the values of these registers is not
. : save 2 .
interrupt function generated, so they cannot be used in interrupt functions
with this parameter specified. It may thus lower code
efficiency in terms of speed.
Nested interrupt enable enable Sets the | flag_m the PSW to 1 at th_e beglr_mmg of the
interrupt function to enable the nesting of interrupts.
. Generates instructions for saving and restoring the
Accumulator saving acc
accumulators.

C source code

long count;
long 11, 12;

#pragma interrupt int_func
void int_func(void)

{
}

count = 11 * 12;

The following table shows the result of comparison when no particular interrupt specifications are made and when fint,
save, enable, or acc is specified for the C source code above.

None fint save enable acc
Code size (bytes) 31 27 31 33 53
Number of cycles (cycles) | 18 11 18 19 32

Specifying the -fint_register compiler option for fast interrupts (fint) will increase the speed of functions for fast
interrupts. For -fint_register, refer to section 2.1.28.

RO1AN4195EJ0100 Rev.1.0 Page 55 of 80
May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

4. Coding Techniques

This chapter describes the effects on code size, ROM data size, and speed of execution through particular methods for
the coding of user programs.

\: Improved, x: Worsened, A: Depends on the situation, —: No effect

Required
Iltem Code Size | ROM Size | Number Remarks
of Cycles

Using Structures

Variables and the const Qualifier

Local Variables and Global Variables
Allocating Bit Fields

Loop Control Variable

Function Interfaces

Reducing the Number of Loops

Using Tables

Branches

Inline Expansion

Using if-else Statements Instead of switch
Statements

Using Temporary Variables to Reduce
Multiple Lines of Code for Access to an N
External Variable into a Single Line for
This Purpose

Moving Identical Expressions in More
than One Conditional Branch Destination \ — \
before the Conditional Branch
Replacing a Sequence of Complicated if
Statement with a Simple Statement \ — \
Having the Same Logical Meaning
Converting short- or char-Type Variables
into the int Type

Unifying Common case Processing in
switch Statements

Replacing for Loops with do-while Loops

|| 2= | <= |=]=]] |
|
S N P P P P A e A

|
x

Replacing Division by Powers of Two with
Shift Operations

Changing Bit Fields with Two or More Bits
to the char Type

Assigning Small Absolute Values when
Referring to Constants

|
2| 2 |2 =< | <

< | 2 2 || <2 | <
|

RO1AN4195EJ0100 Rev.1.0 Page 56 of 80
May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

4.1 Using Structures
Declaring related data in structures may improve the speed of execution.

In cases of repeated reference to related data in the same function, using a structure makes it easy for the compiler to
generate code using relative access and this can be expected to improve efficiency in terms of code size and speed of
execution. Passing the data as an argument also improves code efficiency. Since relative access places a limit on the
range of access, it is effective when the data which are frequently accessed are placed at the top of the structure.

Declaring data in structures facilitates tuning through the adjustment of data expressions.

Without a Structure With a Structure
C source code C source code
int a, b, c; struct s
{
void func(void) int a;
{ int b;
a=1; int c;
b = 2; } si;
c = 3;
} void func(void)
{
struct s *p = &sl;
p->a = 1;
p->b = 2;
p->c = 3;
¥
Assembly-language expanded code Assembly-language expanded code
_func: _Func:
.STACK_func=4 .STACK_func=4
MOV.L # a, R14 MOV.L # s1, R1
MOV.L #00000001H, [R14] MOV.L #00000001H, [R1]
MOV.L # b, R14 MOV.L #00000002H, O04H[R1]
MOV.L #00000002H, [R14] MOV.L #00000003H, O8H[R1]
MOV.L # c, R14 RTS
MOV.L #00000003H, [R14]
RTS
Code size: 28 bytes Code size: 15 bytes
Number of cycles: 9 Number of cycles: 7
RO1AN4195EJ0100 Rev.1.0 Page 57 of 80

May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

4.2 Variables and the const Qualifier

Declare variables for which the values will not change with the const qualifier.

When program code includes the initialization of a global variable with a declaration, the initial value is allocated to
ROM and the global variable to RAM. The global variable is initialized when the initial value is transferred from ROM
to RAM when the program is started. When a variable with an initial value has been const-qualified, the variable will
not be rewritten and the compiler will not reserve RAM for it. This reduces the amount of RAM in use and eliminates

the need for the transfer from ROM to RAM.

Not const-Qualified

Const-Qualified

C source code

char a[] =
{1, 2, 3, 4, 5};

C source code

const char a[] =
{1, 2, 3, 4, 5};

ROM size: 5 bytes
RAM size: 5 bytes

ROM size: 5 bytes
RAM size: 0 bytes

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018

Page 58 of 80

RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

4.3 Local Variables and Global Variables
Declaring variables for local use, such as temporary variables and loop counters, as local variables by declaration within
the functions where they are used will improve the speed of execution.
If a variable can be used as a local variable, declare it in that way, rather than as a global variable. Since the value of a
global variable may be changed by a call of a function or operations that affect a pointer, optimization will be less

efficient if a variable that can be declared as local is declared as global.

Before Using a Local Variable

After Using a Local Variable

C source code
int tmp;

void func(int* a, int* b)

{
tmp = *a;
*a = *b;
*b = tmp;
}

C source code

{
int tmp;
tmp = *a;
*a = *b;
*b = tmp;
}

void func(int* a, Int* b)

Assembly-language expanded code

_func:
.STACK_func=4
MOV.L # tmp, R14
MOV.L [R1], [R14]
MOV.L [R2], [R1]
MOV.L [R14], [R2]
RTS

Assembly-language expanded code

_Func:
.STACK_func=4
MOV.L [R1], R14
MOV.L [R2], [R1]
MOV.L R14, [R2]
RTS

Code size: 12 bytes
Number of cycles: 13

Code size: 8 bytes
Number of cycles: 8

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018

RENESAS

Page 59 of 80

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

4.4 Offsets for Structure Members
Declaring members which are more often used higher in the code may improve code size.

Before Improvement

After Improvement

C source code

struct str {
long 11[8];
char c1;

};

struct str strl;
char x;

void func(void)

{

X = strl.cl;

3

C source code

struct str {
char c1;

long 11[8];
}:

struct str strl;
char x;

void func(void)

{

X = strl.cl;

bs

Assembly-language expanded code

_func:
.STACK_func=4
MOV.L # x, R14
MOV.L # strl, R15
MOV.B 20H[R15], [R14]
RTS

Assembly-language expanded code

_Func:
.STACK_func=4
MOV.L # x, R14
MOV.L # strl, R15
MOV.B [R15], [R14]
RTS

Code size: 16 bytes
Number of cycles: 8

Code size: 15 bytes
Number of cycles: 8

When defining a structure, declare the members in consideration of the alignment value. Alignment means that the
addresses to which variables are allocated for more efficient access to the variables.

For example, the boundary alignment value for the long type is 4 bytes and the long-type variable must be allocated to
the address which is a multiple of 4. For a structure variable, alignment applies to both its members and to the structure
variable itself. The boundary alignment values for members are the same as those for variables of the same type that are
not structure members. The boundary alignment value of a structure variable is the highest value among those of its
members. If allocating the members of a structure variable without any spaces would violate the required alignments,
alignment of the addresses is obtained by including spaces. That is, padding is required. Padding is also required when
the size of a structure variable is not a multiple of the highest boundary alignment value. Frequent requirements for
padding lower the efficiency of allocation to memory.

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018

Page 60 of 80
RENESAS

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

Before Improvement After Improvement
C source code C source code
/* The boundary alignment value is /* The boundary alignment value is
4 bytes since the member with the 4 bytes since the member with the
maximum alignment value is of the maximum alignment value is of the
long type. */ long type. */
struct str { struct str {
char cl; /* 1 byte */ char cl; /7* 1 byte */
/* 3 bytes of padding */ char c2; /* 1 byte */
long 11; /* 4 bytes */ char c3; /* 1 byte */
char c2; /* 1 byte */ char c4; /* 1 byte */
char c3; /* 1 byte */ long 11; /* 4 bytes */
char c4; /* 1 byte */ } stri;
/* 1 byte for padding */
} stri;
Assembly-language expanded code Assembly-language expanded code
.SECTION B,DATA,ALIGN=4 -SECTION B,DATA,ALIGN=4
_strl: _strl:
.blkl 3 -blkl 2
RO1AN4195EJ0100 Rev.1.0 Page 61 of 80

May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

4.5 Allocating Bit Fields

Allocate bit fields to which values are to be consecutively set to the same structure.

To set members of bit fields in different structures, access to each of the structures is required for access to the
members. Such access can be kept down to a single access to the structure itself by collectively allocating related bit

fields to the same structure.

The following shows an example in which the size is improved by allocating related bit fields to the same structure.

Before Allocating Bit Fields to the Same
Structure

After Allocating Bit Fields to the Same
Structure

C source code

struct str

{
int flagl:1;
} bl, b2, b3;

void func(void)

bl.flagl = 1;

b2.flagl = 1;

b3.flagl = 1;
}

C source code

struct str

{
int flagl:1;
int flag2:1;
int flag3:1;

} al;
void func(void)
{
al.flagl = 1;
al.flag2 = 1;
al.flag3 = 1;
}

Assembly-language expanded code

_func:
.STACK_func=4
MOV.L # bl, R14
BSET #00H, [R14]-B
MOV.L # b2, R14
BSET #00H, [R14]-B
MOV.L # b3, R14
BSET #00H, [R14]-B
RTS

Assembly-language expanded code

_Func:
.STACK_func=4
MOV.L # al, R14
BSET #O00H, [R14]-B
BSET #01H, [R14]-.B
BSET #02H, [R14]-.B
RTS

Code size: 25 bytes
Number of cycles: 13

Code size: 13 bytes
Number of cycles: 13

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018

Page 62 of 80
RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

4.6 Loop Control Variable

Declaring a loop control variable as a signed 4-byte integer type (signed int or signed long) raises the likelihood of
optimization in the form of loop unrolling, which reduces the code size and increases the speed of execution.

Declaration without signed long

Declaration with signed long

C source code

unsigned long n = 50;
signed short array[100];

void func(void)

{
signed short i;
for (i = 0; 1 < nj; i++) {
array[i+5] = O;
}
}

C source code

unsigned long n = 50;
signed short array[100];

void func(void)
{
signed long i;
for (i = 0; 1 < n;
array[i+5] = O;
}
}

i++) {

Assembly-language expanded code

_func:
.STACK_func=4
MOV.L #00000000H, R15
MOV.L # n, R14
MOV.L [R14], R14
MOV.L #_array, R5
L11: ; bb7
MOV.W R15, R15
CMP R14, R15
BGEU L13
L12: ; bb
SHLL #01H, R15, R1
ADD R5, R1
ADD #01H, R15
MOV.W #0000H, OAH[R1]
BRA L11
L13: ; return
RTS

Assembly-language expanded code

_Func:
.STACK_func=4
MOV.L #00000000H, R5
MOV.L # n, R15
MOV.L [R15], R15
MOV.L #_ array, R14
ADD #0AH, R14
MOV.L #00000000H, R4
L11: ; bbé
CMP R15, R5
BEQ L13
L12: ; bb
MOV.W R4, [R14+]
ADD #01H, R5
BRA L11
L13: ; return
RTS

Code size: 35 bytes
Number of cycles: 511

Code size: 31 bytes
Number of cycles: 362

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018

RENESAS

Page 63 of 80

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

4.7 Function Interfaces

Efficient use of the arguments of functions reduces the amount of RAM required and improves the speed of execution.

The number of arguments should be carefully selected so that all arguments can be allocated to registers (up to four). If
there are too many arguments, turn them into a structure and pass the pointer to it. If the structure itself is passed instead
of a pointer to the structure, the variables may not be allocated to registers. Allocating arguments to registers simplifies
calling and processing at the entry and exit points of functions. This also saves space in the stack area.

The user’s manual for the compiler describes the specifications of function interfaces.

No Arguments in a Structure

Arguments in a Structure

C source code

void func(char a, char b, char c,
char d, char e, char T,
char g, char h) {}

void call_func(void)

{
func(1,2,3,4,5,6,7,8);

}

C source code

struct str

{
char a;
char b;
char c;
char d;
char e;
char T;
char g;
char h;

};
void func(struct str* str_arg) {}

void call_func(void)

{

struct str arg =
{1,2,3,4,5,6,7,8};
func(&arg);
¥

Assembly-language expanded code

_call_func:
.STACK_call_func=8
SUB #04H, RO

MOV.L #00000004H, R4
MOV.B #05H, [RO]
MOV.L #00000003H, R3
MOV.L #00000002H, R2
MOV.B #08H, O3H[RO]
MOV.L #00000001H, R1
MOV.B #07H, O2H[RO]
MOV.B #06H, O1H[RO]
BSR _func

ADD #04H, RO

RTS

Assembly-language expanded code

_call_func:
.STACK_call_func=12
SUB #08H, RO
MOV.L RO, R1
MOV.L #04030201H, [RO]
MOV.L #08070605H, O4H[RO]
BSR _func
RTSD #08H

Code size: 28 bytes
Number of cycles: 21

Code size: 22 bytes
Number of cycles: 15

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018

Page 64 of 80

RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

4.8 Reducing the Number of Loops

Unrolling loops will considerably improve the speed of execution.

Unrolling loops is especially effective for inner loops. Since unrolling loops increases the sizes of programs, loops
should be unrolled when fast execution is to take priority over the code size.

Before Unrolling

After Unrolling

C source code
int a[100];

void func(void)

{ {
int i; int i;
for (i = 0; 1 < 100; i++) { for (i = 0; 1 <100; 1 += 2) {
a[i] = 0; a[i] = 0;
3 a[i+1] = 0;
} }
bs

C source code
int a[100];

void func(void)

Assembly-language expanded code

_func:
.STACK_func=4
MOV.L #00000064H, R15
MOV.L # a, R14
MOV.L #00000000H, R5
L11: ; bb
SUB #01H, R15
MOV.L R5, [R14+]
BNE L11
L12: ; return
RTS

Assembly-language expanded code

_Func:
.STACK_func=4
MOV.L #00000032H, R14
MOV.L # a, R1

L11: ; bb
MOV.L #00000000H, [R1]
MOV.L #00000000H, O4H[R1]
ADD #08H, R1
SUB #01H, R14
BNE L11

L12: ; return
RTS

Code size: 19 bytes
Number of cycles: 603

Code size: 22 bytes
Number of cycles: 353

Specifying the -loop option selects optimization in the form of unrolling loops. In the source code before improvement
in the example above, when the -loop option is specified for compilation, assembly-language expanded code which is
the same as that in the source code after the improvement is output. When the entire processing of the loop is unrolled,
the loop’s conditional expression is also deleted. For example, when the number of iterations is 8 and -loop=8 is

specified, the conditional expression is deleted.

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018

Page 65 of 80

RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

4.9 Using Tables

Using tables instead of branching for switch statements will improve the speed of execution.

If the processing for each case label of a switch statement is almost the same, consider the use of a table.

In the example below, the character constant to be assigned to variable ch changes with the value of variable i.

switch Statement

Equivalent Table-Based Code

C source code

char func(int i)
{
char ch;
switch (i){
case O:
ch "a"; break;
case
ch
case
ch "b"; break;
default:
ch = 0; break;
}

return (ch);

"x"; break;

o Il 1

}

C source code

const char chbuf[] =
{a®, "x", "b"};

char func(int i)

ifT ((unsigned int)i < 3) {
return (chbuf[i]);
}

return (0);
}

Assembly-language expanded code

_func:
.STACK_func=4
CMP #00H, R1
BEQ L14

L11: ; entry
CMP #01H, R1
BEQ L15

L12: ; entry
CMP #02H, R1
BEQ L16

L13: ; switch _clause_bb5
MOV.L #00000000H, R1
RTS

L14: ; switch_break bb
MOV.L #00000061H, R1
RTS

L15: ; switch _clause_bb3
MOV.L #00000078H, R1
RTS

L16: ; switch _clause bb4
MOV.L #00000062H, R1
RTS

Assembly-language expanded code

_func:
.STACK_func=4
CMP #02H, R1
BGTU L12

L11: ; if_then_bb
MOV.L #_chbuf, R14
MOVU.B [R14,R1], R1

RTS

L12: ; bb8
MOV.L #00000000H, R1
RTS

Code size: 27 bytes
Number of cycles: 7

Code size: 17 bytes
Number of cycles: 5

RO1AN4195EJ0100 Rev.1.0 Page 66 of 80
May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

410 Branches

Changing the positions of cases for branching can improve the speed of execution. When comparison is performed in
order beginning from the top, such as in an else if statement, the speed of execution for the cases at the end becomes
slow if there are many preceding branches. Cases to which branching is frequent should be placed near the beginning of

the sequence.

Before Changing the Position of a Case

After Changing the Position of a Case

C source code

int func(int a)
{
if (a==1) {
a = 2;
}
else if (a == 2) {
a = 4;
}
else if (a == 3) {
a = 8;
}
else {
a = 0;
}

return (a);

}

C source code

int func(int a)
{
if (a ==3) {
a = 8;
}
else if (a == 2) {
a = 4;
}
else if (a == 1) {
a= 2;
}
else {
a = 0;
}

return (a);

}

Assembly-language expanded code

_func:
.STACK_func=4
CMP #01H, R1
STZ #02H, R1
BEQ L13

L11: ; if_else bb
CMP #02H, R1
STZ #04H, R1
BEQ L13

L12: ; if _else bb9
CMP #03H, R1
SCEQ.L R1
SHLL #03H, R1

L13: ; if_break bbl7

Assembly-language expanded code

_Func:
.STACK_func=4
CMP #03H, R1
STZ #08H, R1
BEQ L13

L11: ; if_else bb
CMP #02H, R1
STZ #04H, R1
BEQ L13

L12: ; if _else bb9
CMP #01H, R1
SCEQ.-L R1
SHLL #01H, R1

L13: ; if_break bbl7

RTS RTS
Number of cycles: 12 Number of cycles: 7
(for a=3) (for a=3)
RO1AN4195EJ0100 Rev.1.0 Page 67 of 80
May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

4.11 Inline Expansion

The speed of execution can be improved by applying inline expansion to functions that are frequently called. The inline
expansion of functions is specified by #pragma inline. However, inline expansion generally increases the sizes of

programs.

When other source files do not refer to an inline-expanded function, change the function to a static function. Some code
in the function will be removed and the code size may be reduced.

Before Inline Expansion After Inline Expansion
C source code C source code
int x[10], y[10]; int x[10], y[10];
static void sub(int* a, int* b, #pragma inline (sub)
int i) static void sub(int* a, int* b,
{ int i)
int temp; {
temp = a[i]; int temp;
a[i] = b[i]; temp = a[i];
b[i] = temp; a[i] = b[i];
} b[i] = temp;
}
void func(void)
{ void func(void)
int i; {
for (i = 0; 1 < 10; i++) { int i;
sub(x, y, 1); for (i = 0; 1 < 10; i++) {
3 sub(x, y, 1);
} }
}
RO1AN4195EJ0100 Rev.1.0 Page 68 of 80
May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

Assembly-language expanded code

__$sub:
.STACK__ $sub=4
MOV.L [R3,R2], R14
MOV.L [R3,R1], R15
MOV.L R14, [R3,R1]
MOV.L R15, [R3,R2]
RTS
_func:
-STACK_func=16
PUSHM R6-R8
MOV.L # vy, R7
MOV.L # x, R8
MOV.L #00000000H, R6
L12: ; bb
MOV.L R8, R1
MOV.L R7, R2
MOV.L R6, R3
BSR __ $sub
ADD #01H, R6
CMP #0AH, R6
BNE L12
L13: ; return
RTSD #O0CH, R6-R8

Assembly-language expanded code

_Func:
.STACK_func=4
MOV.L #0000000AH, R5
MOV.L # vy, R14
MOV.L # x, R15

L11: ; bb
SUB #01H, R5
MOV.L [R14], R4
MOV.L [R15], R3
MOV.L R4, [R15+]
MOV.L R3, [R14+]
BNE L11

L12: ; return
RTS

Code size: 47 bytes
Number of cycles: 189

Code size: 29 bytes
Number of cycles: 84

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018

Page 69 of 80

RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

4.12 Moving ldentical Expressions in More than One Conditional Branch

Destination before the Conditional Branch
When there are identical expressions in more than one conditional branch destination, move and unify them into one

section before the conditional branch.

Expression before the Branch

Identical Expressions Following a Branch
C source code C source code
int s; int s;
int func(int a, int b, iInt c) int func(int a, int b, int ¢)
{ {
return (a + b + ¢); return (a + b + ¢);
} }
int call_func(int x) int call_func(int x)
{ {
if (x>=0) { int tmp = func(0, 1, 2);
if (x > func(0, 1, 2)) { if x>=0) {
S++; if (x> tmp) {
} S++;
} }
else { }
if (x < -func(0, 1, 2)) { else {
S——: if (x < -tmp) {
} sS--;
by ¥
return (0); }
} return O;
3}
RO1AN4195EJ0100 Rev.1.0 Page 70 of 80
RENESAS

May. 17, 2018

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

Assembly-language expanded code

_call_func:
.STACK call_func=12
PUSHM R6-R7
ADD #00H, R1, R6
BN L17

L12: ; if_then_bb
MOV.L #00000002H, RS3
MOV.L #00000001H, R2
MOV.L #00000000H, R1
BSR _func
CMP R6, R1
MOV.L # s, R7
BGE L14

L13: ; if _then _bb9
MOV.L [R7], R14
MOV.L #00000000H, R1
ADD #01H, R14
MOV.L R14, [R7]
BRA L16

L14: ; if _else bb
MOV.L #00000002H, RS3
MOV.L #00000001H, R2
MOV.L #00000000H, R1
BSR _func
NEG R1
CMP R1, R6
BGE L17

L15: ; if_then_bbl8
MOV.L [R7], R14
MOV.L #00000000H, R1
SUB #01H, R14
MOV.L R14, [R7]

L16: ; if_then_bbl8
BRA L18

L17: ; if_break_bb22
MOV.L #00000000H, R1

L18: ; if_break_bb22
RTSD #08H, R6-R7

Assembly-language expanded code

_call_func:
.STACK_call_func=8
PUSH.L R6
MOV.L R1, R6
MOV.L #00000002H, R3
MOV.L #00000001H, R2
MOV.L #00000000H, R1
BSR _func
CMP #0OOH, R6
BN L17

L12: ; if_then_bb
CMP R6, R1
MOV.L # s, R14
BGE L14

L13: ; if_then_bbl2
MOV.L #00000000H, R1
MOV.L [R14], R15
ADD #01H, R15
MOV.L R15, [R14]

BRA L16

L14: ; if else bb
NEG R1
CMP R1, R6
BGE L17

L15: ; if_then_bb21
MOV.L #00000000H, R1
MOV.L [R14], R15
SUB #01H, R15
MOV.L R15, [R14]

L16: ; if_then_bb21
BRA L18

L17: ; if_break bb25
MOV.L #00000000H, R1

L18: ; if_break bb25
RTSD #04H, R6-R6

Code size: 65 bytes
Number of cycles: 42

Code size: 57 bytes
Number of cycles: 30

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018

RENESAS

Page 71 of 80

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

4.13

Having the Same Logical Meaning
When a sequence of if statements and conditional expressions is complicated, replace them with a simple expression

which has the same meaning.

Replacing a Sequence of Complicated if Statement with a Simple Statement

Complicated Sequence

Single if Statement

C source code
int x;
int func(int s, int t)

{
s &= 1;
t &= 1;
if (1s) {
if (0 {
X = 1;
}
}
else {
if (1) {
X = 1;
}
}

return (0);
}

C source code
int x;
int func(int s, int t)

{
s &= 1;
t &= 1;
if (0 (s™1) {
X = 1;
}
return (0);

Assembly-language expanded code

_func:
.STACK_func=4
AND #01H, R2
BTST #O00OH, R1
MOV.L # x, R14
BNE L12
L11: ; if_then_bb
CMP #00H, R2
BNE L13
BRA L14
L12: ; if_else bb
CMP #00H, R2
BNE L14
L13: ; if_then _bb28
MOV.L #00000001H,
L14: ; if_break bb30
MOV.L #00000000H, R1
RTS

[R14]

Assembly-language expanded code

_func:
.STACK_func=4
XOR R1, R2
BTST #O00OH, R2
BNE L12

L11: ; if_then_bb
MOV.L # x, R14
MOV.L #00000001H,

L12: ; if_break bb
MOV.L #00000000H, R1
RTS

[R14]

Code size: 24 bytes
Number of cycles: 12

Code size: 18 bytes
Number of cycles: 8

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018

RENESAS

Page 72 of 80

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

4.14 Converting short- or char-Type Variables into the int Type

In accord with the ANSI-C specification, the CC-RX compiler converts short- or char-type operations into the int type
before generating code for the operations. Type conversion is also produced when an int-type value is substituted for a
short- or char-type variable. Defining variables as the int type in the first place can reduce additional type conversion.

Note: When the type of a variable is converted into the int type, the range of variables or values obtained by the
operation will be changed. If you change the type, take care that this does not affect the operation of the

program.

char-Type Variables

int-Type Variables

C source code

{

char t = a + b;
return (t >> c);

}

char func(char a, char b, char c)

C source code

{
int t = a + b;
return (t >> c¢);

}

int func(int a, int b, iInt c¢)

Assembly-language expanded code

_func:
.STACK_func=4
ADD R1, R2

MOVU.B R2, R14
SHLR R3, R14
MOVU.B R14, R1
RTS

Assembly-language expanded code

_func:
.STACK_func=4
ADD R1, R2
MOV.L R2, R1
SHAR R3, R1
RTS

Code size: 10 bytes
Number of cycles: 7

Code size: 8 bytes
Number of cycles: 6

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018

RENESAS

Page 73 of 80

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

4.15 Unifying Common case Processing in switch Statements
When the branch destinations of multiple case labels have the same processing, move the case labels and unify the

processing.
Same Processing at Multiple Destinations Unified Processing
C source code C source code
int x; int x;
void func(void) void func(void)
{ {
switch(x) { switch(x) {
case O: case 0:
dummyl1(Q); case 1:
break; case 2:
case 1: dummy1();
dummy1(Q); break;
break; case 3:
case 2: case 4:
dummyl(Q); dummy2();
break; break;
case 3: default:
dummy2(Q); break;
break; }
case 4: }
dummy2();
break;
default:
break;
}
}
R01AN4195EJ0100 Rev.1.0 Page 74 of 80
May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

Assembly-language expanded code

_func:
.STACK_func=4
MOV.L # x, R14
MOV.L [R14], R14
CMP #00H, R14
BEQ L18

L13: ; entry
CMP #01H, R14
BEQ L18

L14: ; entry
CMP #02H, R14
BEQ L18

L15: ; entry
CMP #03H, R14
BEQ L19

L16: ; entry
CMP #04H, R14
BEQ L19

L17: ; return
RTS

L18: ; switch _clause _bb2
BRA _dummyl

L19: ; switch _clause bb4
BRA _dummy2

Assembly-language expanded code

_func:
.STACK_func=4
MOV.L # x, R14
MOV.L [R14], R14
CMP #03H, R14
BLTU L15
L13: ; entry
SUB #03H, R14
CMP #02H, R14
BLTU L16
L14: ; return
RTS
L15: ; switch _clause_bb
BRA _dummyl
L16: ; switch _clause bbl
BRA _dummy2

Code size: 30 bytes
Number of cycles: 20

Code size: 23 bytes
Number of cycles: 15

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018

Page 75 of 80

RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

4.16

Replacing for Loops with do-while Loops

Replacing a for statement with a do-while statement if it is clear that the loop is executed at least once may reduce the
code size. Replacing another kind of conditional expression with an equality or inequality operator may also reduce the

code size.

for Loop

do-while Loop

C source code
int array[10][10];

void func(int nsize, Int msize)

{

;l ;l
~

rray[0][0];

ize * msize;

0; 1 <s; i+t) {
0;

©

I
A S R0 _X%m
- D w1 D us

*
ke
+
+

C source code
int array[10][10];

void func(int nsize, int msize)
{

i;

*p;

S;

&array[0]1[0];

nsize * msize;

0;

o

n
n
n

Q = (N O

o{
*p++ = 0;
i++;
} while (i = s);
}

Assembly-language expanded code

_func:
.STACK_func=4
MUL R1, R2
MOV.L #_array, R15
MOV.L #00000000OH, R14
MOV.L #00OOOOOOH, R5
L11: ; bbil3
CMP R2, R14
BGE L13
L12: ; bb
MOV.L R5, [R15+]
ADD #01H, R14
BRA L11
L13: ; return
RTS

Assembly-language expanded code

_Func:
.STACK_func=4
MUL R1, R2
MOV.L #_ array, R15
MOV.L #00000000H, R14
MOV.L #00000000H, R5
L11: ; bb
ADD #01H, R14
CMP R2, R14
MOV.L R5, [R15+]
BLT L11
L12: ; return
RTS

Code size: 24 bytes
Number of cycles: 458

Code size: 18 bytes

Number of cycles: 324

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018

Page 76 of 80

RENESAS

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

4.17 Replacing Division by Powers of Two with Shift Operations
If it is clear that the divisor in division is a power of two and the dividend is a positive value, replace the division with a

shift operation.

Division by a Power of Two

Shift Operation

C source code

int s;

void func(void)
{

s=s/ 2;

}

C source code
int s;

void func(void)

{

S =s > 1;

}

Assembly-language expanded code

_func:
.STACK_func=4
MOV.L # s, R14
MOV.L [R14], R15
DIV #02H, R15
MOV.L R15, [R14]
RTS

Assembly-language expanded code

_Func:
.STACK_func=4
MOV.L # s, R14
MOV.L [R14], R15
SHAR #01H, R15
MOV.L R15, [R14]
RTS

Code size: 15 bytes
Number of cycles: 10

Code size: 11 bytes
Number of cycles: 8

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018

Page 77 of 80
RENESAS

RX Family C/C++ Compiler Package (CC-RX)

Programming Techniques

4.18 Changing Bit Fields with Two or More Bits to the char Type
When a bit field has two or more bits, change the bit field to the char type. Note, however, that this will increase the

amount of ROM in use.

Bit Fields

char

C source code

struct {
unsigned char b0:1;
unsigned char bl:2;
} dw;

unsigned char dummy;
int func(void)

if (dw.bl) {
dummy++;

}
return (0);

}

C source code

struct {
unsigned char b0:1;
unsigned char bl;

} db;

unsigned char dummy;
int func(void)

if (db.bl) {
dummy++;

}
return (0);

}

Assembly-language expanded code

_func:
.STACK_func=4
MOV.L #00000006H, R15
MOV.L # dw, R14
TST [R14].UB, R15
BNE L12

L11: ; if_break bb
MOV.L #00000000H, R1
RTS

L12: ; if_then_bb
MOV.L #00000000H, R1
MOV.L #_dummy, R14
MOVU.B [R14], R15
ADD #01H, R15
MOV.B R15, [R14]
RTS

Assembly-language expanded code

_Func:
.STACK_func=4
MOV.L # db, R1
MOVU.B 01H[R1], R1
CMP #00H, R1
BNE L12

L11: ; if_break bb
MOV.L #00000000H, R1
RTS

L12: ; if_then_bb
MOV.L #00000000H, R1
MOV.L # dummy, R14
MOVU.B [R14], R15
ADD #01H, R15
MOV.B R15, [R14]
RTS

Code size: 30 bytes
ROM size: 1 byte
Number of cycles: 10

Code size: 29 bytes
ROM size: 2 bytes
Number of cycles: 9

RO1AN4195EJ0100 Rev.1.0
May. 17, 2018

RENESAS

Page 78 of 80

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

4.19 Assigning Small Absolute Values when Referring to Constants

When referring to constants, assigning a small absolute value may reduce the code size. When constant values are used
to assign IDs, use numbers with small absolute values.

Larger Value Smaller Value
C source code C source code
#define ID_1 (1000) #define ID_1 ()
int id; int id;
void func(void) void func(void)
{ {
id = ID_1; id = ID_1;
} }
Assembly-language expanded code Assembly-language expanded code
_func: _Func:
.STACK_func=4 .STACK_func=4
MOV.L #_id, R14 MOV.L # id, R14
MOV.L #000003E8H, [R14] MOV.L #00000001H, [R14]
RTS RTS
Code size: 11 bytes Code size: 10 bytes

RO1AN4195EJ0100 Rev.1.0 Page 79 of 80

May. 17, 2018 RENESAS

RX Family C/C++ Compiler Package (CC-RX) Programming Techniques

Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

RO1AN4195EJ0100 Rev.1.0 Page 80 of 80
May. 17, 2018 RENESAS

http://www.renesas.com/
http://www.renesas.com/contact/

Revision History

Description

Rev. Date Page Summary

1.00 May 17, 2018 New release

10.

11
12.

Notice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application

examples.

No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by

you or third parties arising from such alteration, modification, copying or reverse engineering.

Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the

product's quality grade, as indicated below.

“Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic
equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are

not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause

serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all

liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or

other Renesas Electronics document.

When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified

ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury

or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult

and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and

sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics

products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable

laws and regulations.

Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or

transactions.

It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third

party in advance of the contents and conditions set forth in this document.

This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

LENESANS

SALES OFFICES Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Disseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.

13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan

Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949

Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.

Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

© 2018 Renesas Electronics Corporation. All rights reserved.

Colophon 7.0

	Introduction
	1. Overview
	2. Options
	2.1 Compiler Options
	2.1.1 -instalign4/-instalign8
	2.1.2 -nouse_div_inst
	2.1.3 -stack_protector/-stack_protector_all
	2.1.4 -avoid_cross_boundary_prefetch
	2.1.5 -optimize
	2.1.6 -speed/-size
	2.1.7 -loop
	2.1.8 -inline
	2.1.9 -case
	2.1.10 -volatile
	2.1.11 -const_copy
	2.1.12 -const_div/-noconst_div
	2.1.13 -library
	2.1.14 -scope/-noscope
	2.1.15 -schedule/-noschedule
	2.1.16 -map/-smap
	2.1.17 -approxdiv
	2.1.18 -simple_float_conv
	2.1.19 -nofpu
	2.1.20 -alias
	2.1.21 -ip_optimize
	2.1.22 -merge_files
	2.1.23 -whole_program
	2.1.24 -dbl_size
	2.1.25 -int_to_short
	2.1.26
	2.1.26 -auto_enum
	2.1.27
	2.1.27 -pack
	2.1.28
	2.1.28 -fint_register
	2.1.29 -branch
	2.1.30 -base
	2.1.31 -nouse_pid_register
	2.1.32 -save_acc
	2.1.33 -control_flow_integrity

	2.2 Assembler Option
	2.3 Linkage Options
	2.3.1 -optimize=symbol_delete
	2.3.2 -optimize=same_code
	2.3.3 -optimize=short_format
	2.3.4 -optimize=branch

	3. Language Extensions
	3.1 #pragma Directives
	3.1.1 #pragma interrupt

	4. Coding Techniques
	4.1 Using Structures
	4.2 Variables and the const Qualifier
	4.3 Local Variables and Global Variables
	4.4 Offsets for Structure Members
	4.5 Allocating Bit Fields
	4.6 Loop Control Variable
	4.7 Function Interfaces
	4.8 Reducing the Number of Loops
	4.9 Using Tables
	4.10 Branches
	4.11
	4.11 Inline Expansion
	4.12 Moving Identical Expressions in More than One Conditional Branch Destination before the Conditional Branch
	4.13 Replacing a Sequence of Complicated if Statement with a Simple Statement Having the Same Logical Meaning
	4.14 Converting short- or char-Type Variables into the int Type
	4.15 Unifying Common case Processing in switch Statements
	4.16 Replacing for Loops with do-while Loops
	4.17 Replacing Division by Powers of Two with Shift Operations
	4.18 Changing Bit Fields with Two or More Bits to the char Type
	4.19 Assigning Small Absolute Values when Referring to Constants

	Website and Support
	Revision History

