
 APPLICATION NOTE

R20AN0296EJ0132 Rev.1.32 Page 1 of 39

Feb 01, 2019

RX Family

Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

Introduction

This is the Socket API FIT Module for Embedded TCP/IP M3S-T4-Tiny (Hereafter T4).

T4 has APIs corresponds ITRON TCP/IP. Many regions, and many people like a network APIs are “Socket APIs”. So,
many people will be able to develop T4 application, we prepared socket APIs for T4. User can use socket APIs adding

this module to T4 system.

For about T4, please refer to the following URL.

https://www.renesas.com/mw/t4

Socket APIs and T4 are provided as FIT Module. Please refer to the URL to understand FIT outline.

FIT: Firmware Integration Technology.

https://www.renesas.com/en-us/solutions/rx-applications/fit.html

This figure shows 2 cases of T4 software stack.

Figure 1 T4 Software Stack

Notice:

This socket API is easily implementation and this socket API provides basic functions only. It is impossible to port the

apache etc using generic socket API applications to this module with T4.

Sample Program
Echo server application

T4 Library

(R20AN0051)

Interface conversion module for

Ether Driver and Embedded system T4

(R20AN0311)

Ether Driver

(R01AN2009)

CMT Driver

(R01AN1856)

BSP

(R01AN1685)

S
o
ftw

are

EtherC/EDMAC CMT

Socket API

(R20AN0296)

case1: ITRON TCP/IP APIs Style

(T4 native)

Sample Program

Echo server application

T4 Library

(R20AN0051)

Interface conversion module for

Ether Driver and Embedded system T4

(R20AN0311)

Ether Driver

(R01AN2009)

CMT Driver

(R01AN1856)

BSP

(R01AN1685)

S
o
ftw

are

EtherC/EDMAC CMT

case2: Socket APIs style

R20AN0296EJ0132
Rev.1.32

Feb 01, 2019

https://www.renesas.com/mw/t4
https://www.renesas.com/en-us/solutions/rx-applications/fit.html

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 2 of 39

Feb 01, 2019

Target Device

RX Family

Contents

1. Overview ... 3

1.1 Mapping of Socket APIs to T4 APIs ... 3

2. API Information ... 4

3. API Functions ... 9

4. User Interface function .. 33

5. Note ... 38

5.1 Several Ethernet channel support. .. 38

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 3 of 39

Feb 01, 2019

1. Overview

1.1 Mapping of Socket APIs to T4 APIs

Table 1 below provides the mapping list of socket APIs to T4 APIs.

Table 1 Mapping list of socket APIs to T4 APIs

No Function Descriptions Socket APIs T4 API Mapped To

1 Open the socket APIs. R_SOCKET_Open() tcpudp_get_ramsize()

tcpudp_open()

2 Close the socket APIs R_SOCKET_Close() tcpudp_close()

3 Creates a new socket of a certain socket type,

identified by an integer number, and allocates

system resources to it.

socket() get_random_number()

4 bind() can set the local port number to use in

accept()

bind() -

5 Used on the client side, and assigns a free local

port number to a socket. In case of a TCP socket, it

causes an attempt to establish a new TCP

connection.

Use the fixed IP address and port number when

UDP is selected.

connect() tcp_con_cep()

get_random_number()

6 Used on the server side, and causes a bound TCP

socket to enter listening state.

listen() tcp_acp_cep()

7 Used on the server side. It accepts a responds to

incoming attempt to create a new TCP connection

from a remote client.

accept() tcp_acp_cep()

tcp_rcv_dat()

8 Writes data to the socket from buffer. send() tcp_can_cep()

tcp_snd_dat()

9 Writes data the remote host specified into buffer.

The socket must be a SOCK_DGRAM (UDP)

socket

sendto() udp_snd_dat()

10 Reads data from the socket into buffer. recv() tcp_rcv_dat()

11 Reads data from the remote host specified by

fromAddr into buffer. The socket must be a

SOCK_DGRAM (UDP) socket.

recvfrom()

12 Finish sending. - tcp_sht_cep()

13 Closes an existing socket closesocket() tcp_can_cep()

tcp_cls_cep()

udp_can_cep()

14 Modify a socket fcntl() -

15 Synchronous I/O multiplexing for a socket select() tcpudp_get_time()

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 4 of 39

Feb 01, 2019

2. API Information

This API adheres to the Renesas API naming standards.

2.1 Hardware Requirements

None

2.2 Software Requirements

This FIT Module is dependent upon the following packages:

- r_t4_rx

- r_t4_driver_rx

2.3 Supported Toolchains

This driver is tested and works with the following toolchain:

- Renesas RX Toolchain v.2.05.00

2.4 Header Files

All API calls and their supporting interface definitions are located in r_socket_rx_if.h.

2.5 Integer Types

This project uses ANSI C99 "Exact width integer types" in order to make the code clearer and more portable. These

types are defined in stdint.h.

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 5 of 39

Feb 01, 2019

2.6 Configuration Overview

The configuration options in this module are specified in r_socket_rx_config.h. The option names and setting values
are listed in the table below.

Table 2 configuration options

Configuration options in r_socket_rx_config.h

#define MAX_UDP_CCEP
- Default value = 4

The number of UDP communication end-point

allocated for T4. Please select a suitable number

for your system.

#define MAX_TCP_CCEP
- Default value = 4

The number of TCP communication end-point

allocated for T4. Please select a suitable number

for your system.

Please set the 2 or more to the MAX_TCP_CCEP.

#define MAX_TCP_CREP
- Default value = MAX_TCP_CCEP

The number of TCP reception end-point allocated

for T4. Typically we allocate a number equal to the

number of TCP communication end-point.

#define SOCKET_TCP_WINSIZE
- Default value = 1460

The window size for T4.

#define TCPUDP_WORK
- Default value = 7200

Size of the work area used by T4. Work area size is

dependent on the number and type of sockets

allocated.

The size of the work area can be determined by

this T4 API "tcpudp_get_ramsize()".

Default value is 7200 bytes when

MAX_TCP_CCEP = 4 and MAX_UDP_CCEP = 4.

#define TOTAL_BSD_SOCKET
- Default value = (MAX_UDP_CCEP+
MAX_TCP_CCEP)

The total number of sockets that can be used. This

parameter corresponds to the total number of T4

communications endpoints defined in structure

"tcp_ccep[]" and "udp_ccep[]".

#define SOCKET_IF_USE_SEMP
- Default value = 0

If a suitable locking mechanism or semaphore is

available, please set to 1. This will protect critical

sections in the socket() API from concurrent

function call.

#define R_SOCKET_PAR_CHECK
- Default value = 1

#undef this if you want to skip parameter checking

in all of the socket APIs.

#define BSD_RCV_BUFSZ
- Default value = 1460

Size of the receive buffer used to store data

received by socket.

#define BSD_SND_BUFSZ
- Default value = 1460

Size of the transmit buffer used to store data

transmitted by socket.

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 6 of 39

Feb 01, 2019

2.7 API Data Structure

This section details the data structures that are used with the wrapper’s API functions.

struct sockaddr {

 unsigned short sa_family; /* address family, AF_xxx */

 char sa_data[14]; /* up to 14 bytes of direct address */

};

struct in_addr {

 union

 {

 struct

 {

 unsigned char s_b1,s_b2,s_b3,s_b4;

 } S_un_b;

 struct

 {

 unsigned short s_w1,s_w2;

 } S_un_w;

 unsigned long S_addr;

 } S_un;

};

struct sockaddr_in {

 short sin_family;

 unsigned short sin_port;

 struct in_addr sin_addr;

 char sin_zero[8];

};

typedef struct _tagfd_set {

 __fd_mask fds_bits[__howmany(FD_SIZE, __NFDBITS)];

} fd_set;

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 7 of 39

Feb 01, 2019

2.8 Return Values

This shows the different values API functions can return. These definitions are all found in r_socket_rx_if.h.

/**** Return values for functions ****/

/* Socket does not exist */

#define INVALID_SOCK (-1)

#define INVALID_SOCKET (-1)

/* Operation failed */

#define SOCKET_ERROR (-1)

/* No memory is available to allocate packet buffer */

#define SOCKET_BFR_ALLOC_ERROR (-2)

/* No connection between network and the host */

#define SOCKET_HOST_NO_ROUTE (-3)

/* Socket transmission length exceed size of data buffer */

#define SOCKET_MAX_LEN_ERROR (-4)

/* Socket is not ready for transmission */

#define SOCKET_NOT_READY (-5)

/* Socket is not ready for transmission. For backward compatibility */

#define SOCKET_TX_NOT_READY (-5)

/* Socket connection has not yet been established */

#define SOCKET_CNXN_IN_PROGRESS (-6)

/* Parameter error */

#define E_PAR (-33)

2.9 Error Codes

This shows all error codes used in socket APIs.

Table 3 Error Codes

Error Code Value Significance

ENFILE 23 No more file descriptors are available

EAGAIN 11 The non-blocking request has been accepted

EINPROGRESS 150 The connection cannot be connected immediately

EALREADY 37 The requested socket is in use

ENOTSOCK 38 No valid socket to refer

EDESTADDRREQ 39 Socket is not bound to local address

EPROTOTYPE 41 Socket type is not supported

EPROTONOSUPPORT 43 Protocol is not supported

EOPNOTSUPP 45 The socket is in listening mode and cannot be

connected

EAFNOSUPPORT 47 Address family is not supported

ECONNRESET 54 The connection was forcibly closed by a peer

EISCONN 56 The specified socket is already connected

ENOTCONN 57 The specified socket is not connected

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 8 of 39

Feb 01, 2019

2.10 Adding Driver to Your Project

The driver must be added to an existing e2studio project. It is the best to use the e2studio FIT plugin to add the driver to

your project as that will automatically update the include file paths for you. Alternatively, the driver can be imported

from the archive that accompanies this application note and manually added by following these steps:

1. This application note is distributed with a zip file package that includes the Embedded TCP/IP M3S-T4-Tiny

Socket API module in its own folder r_socket.

2. Unzip the package into the location of your choice.

3. In a file browser window, browse to the directory where you unzipped the distribution package and locate the

r_socket folder.

4. Open your e2studio workspace.

5. In the e2studio project explorer window, select the project that you want to add the socket module to.

6. Drag and drop the r_socket folder from the browser window (or copy/paste) into your e2studio project at the top

level of the project

7. Update the source search/include paths for your project by adding the paths to the module files:

a. Navigate to the "Add directory path" control:

i. 'project name'->properties->C/C++ Build->Settings->Compiler->Source -Add (green +icon)

b. Add the following paths:

i. "${workspace_loc:/${ProjName}/r_socket}"

ii. "${workspace_loc:/${ProjName}/r_socket/src}"
Whether you used the plug-in or manually added the package to your project, it is necessary to configure the driver

for your application.

8. Locate the r_socket_config_reference.h file in the r_socket/ref/ source folder in your project and copy

it to your project's r_config folder.

9. Change the name of the copy in the r_config folder to r_socket_config.h.

10. Make the required configuration settings by editing the copied r_socket_config.h file. Please refer to Chapter

2.6 Configuration Overview.

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 9 of 39

Feb 01, 2019

3. API Functions

3.1 Summary

Table 4 List of API functions supported by Socket Module

Function Description

R_SOCKET_Open() Initialize all socket structures.

R_SOCKET_Close() Close socket module.

socket() Create a new socket

bind() Bind socket to local address

connect() Request a connection to server side

listen() Place socket in listening state

accept() Accept a connection from client side

send() Send data to stream socket

sendto() Send data to datagram socket

recv() Receive data from stream socket

recvfrom() Receive data from datagram socket

closesocket() Close an existing socket

fcntl() Modify time-out value of socket

select() Synchronize I/O multiplexing

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 10 of 39

Feb 01, 2019

3.2 R_SOCKET_Open()

Initialize the socket structure to a known initial value.

Format
void R_SOCKET_Open(void)

Parameters
None

Return Values
None

Error Types
None

Properties
Prototyped in r_socket_rx_if.h

Description
Initialize the socket structure to a known initial value. It also sets the rbufsz of the underlying CCEP, the
T4 communication end-point data structure.And this API is calling tcpudp_open(). tcpudp_open()
function uses the parameters in CCEP end point (such as rbufsz) to allocate reception buffers within
the tcpudp_work[] work RAM.

Reentrant
No

Examples
R_SOCKET_Open();

Special Notes
This API initializes the tcp_ccep[], the data structure for each TCP communication end-point used in T4.
In particular, the size of the receive buffer, rbufsz, corresponding to each TCP end point. T4’s
tcpudp_open() API uses this parameter to assign buffer addresses from T4’s working memory,
tcpudp_work[]. And this API calling T4’s tcpdudp_open(). And initialize for network layer API, lan_open()
should be called with this API. Please call lan_open(), R_SOCKET_Open() in this sequence.

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 11 of 39

Feb 01, 2019

3.3 R_SOCKET_Close()

Close the socket APIs.

Format
void R_SOCKET_Close(void)

Parameters
None

Return Values
None

Error Types
None

Properties
Prototyped in r_socket_rx_if.h

Description

Reentrant
No

Examples
R_SOCKET_Close();

Special Notes

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 12 of 39

Feb 01, 2019

3.4 socket()

This function creates a new socket.

Format
int socket(int domain, int type, int protocol)

Parameters
domain

AF_INET are acceptable. SOCKET_ERROR is returned when other values are specified.
type

SOCK_STREAM: a TCP Socket is created.
SOCK_DGRAM: a UDP Socket is created.

protocol
Set IP protocol to “IPPROTO_UDP” when type is SOCK_DGRAM
or set to “IPPROTO_TCP” when type is SOCK_STREAM.

Return Values
SOCKET_ERROR Operation failed; check errno to indicate the type of error
E_PAR Parameter Error
0 or Positive value Operation successfully, and return socket ID.

Error Types
EAFNOSUPPORT The specified address family is not supported.
EPROTOTYPE The socket type is not supported by the protocol.
ENFILE No more sockets are available.
EPROTONOSUPPORT The protocol is not supported by either the address family or the
 implementation.

Properties
Prototyped in r_socket_rx_if.h

Description
This function creates a new socket.

Reentrant
Yes (When using Realtime OS(When SOCKET_IF_USE_SEMP is defined to 1)

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 13 of 39

Feb 01, 2019

Example
int32_t sock1;

sock1 = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

if(sock1 == SOCKET_ERROR)

{

 /*… check errno and proceed with error handling …*/

}

Special Notes
Socket number {0 … MAX_TCP_CCEP-1} are reserved for TCP type while those in the range
{MAX_TCP_CCEP…(MAX_TCP_CCEP+MAX_UDP_CCEP-1)} are for UDP type.

A locking mechanism must be provided to protect critical sections in systems where concurrent socket()
call cannot be avoided.

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 14 of 39

Feb 01, 2019

3.5 bind()

The bind function assigns a name to an unnamed socket.

Format
int bind(int sock, const struct sockaddr * name, int namelen)

Parameters
sock

 Socket identifier
name

 Pointer to the sockaddr structure containing the local address of the socket
namelen

 Length of the sockaddr structure

Return Values
SOCKET_ERROR Operation failed; check errno to indicate the type of error
E_PAR Parameter Error
E_OK Operation successful

Error Types
ENOTSOCK The sock argument does not refer to a socket.
EADDRNOTAVAIL The specified local address is not available.
EINVAL Socket is already bound or the protocol doesn’t require binding or the socket
 has been shut down.
EPROTONOSUPPORT The protocol is not supported by either the address family or the
 implementation.

Properties
Prototyped in r_socket_rx_if.h

Description
The bind function assigns a name to an unnamed socket. The name refers to an IP address and port
number.

Reentrant
Yes (When using Realtime OS(When SOCKET_IF_USE_SEMP is defined to 1)

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 15 of 39

Feb 01, 2019

Example

SOCKET sck;

struct sockaddr_in serveraddr;

sck = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

/* this is an Internet address */

serveraddr.sin_family = AF_INET;

/* let the system figure out our IP address */

serveraddr.sin_addr.s_addr = htonl(INADDR_ANY);

/* this is the port we will listen on */

serveraddr.sin_port = (unsigned short)(1234);

/*

 * bind: associate the socket, sck, with a port

 */

if (bind(sck, (struct sockaddr *)&serveraddr, sizeof(serveraddr)) < 0)

{

 closesocket(sck);

 return SOCKET_ERROR;

}

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 16 of 39

Feb 01, 2019

3.6 connect()

This function connects to a host.

Format
int connect(int sock, struct sockaddr * name, int namelen)

Parameters
sock

Socket identifier
name

Pointer to the sockaddr structure containing the remote host’s IP address and port number
namelen

Length of the sockaddr structure

Return Values
SOCKET_ERROR Operation failed, check errno to indicate the type of error
E_PAR Parameter Error
E_OK Operation successful

Error Types
ENOTSOCK The sock argument does not refer to a socket.
EADDRNOTAVAIL The specified local address is not available.
EALREADY A connection request is already in progress for the specified socket.
EISCONN The specified socket is connection-mode and is already connected.
EOPNOTSUPP The socket is not in the right state (listening etc.,) and cannot be connected.
EINVAL The address length is not a valid length for the address family or invalid
 address family in the sockaddr structure.
EINPROGRESS O_NONBLOCK is set for timeout. The request is being performed
 asynchronously.
ETIMEDOUT The attempt to connect timed out before a connection was made.
EPROTONOSUPPORT The protocol is not supported by either the address family or the
 implementation.

Properties
Prototyped in r_socket_rx_if.h

Description
This function initiates a connection request to a host by sending it a TCP SYN signal.

Reentrant
Yes (When using Realtime OS(When SOCKET_IF_USE_SEMP is defined to 1)

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 17 of 39

Feb 01, 2019

Example

SOCKET sck;

struct sockaddr_in serveraddr;

sck = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

/* this is an Internet address */

serveraddr.sin_family = AF_INET;

/* let the system figure out our IP address */

serveraddr.sin_addr.s_addr = htonl(INADDR_ANY);

/* this is the port we will listen on */

serveraddr.sin_port = (unsigned short)(0);

/*

 * bind: associate the socket, sck, with a port

 */

if (bind(sck, (struct sockaddr *)&serveraddr, sizeof(serveraddr)) < 0)

{

 closesocket(sck);

 return SOCKET_ERROR;

}

serveraddr.sin_family = AF_INET;

serveraddr.sin_addr.s_addr = 0x0800A8C0; // 192.168.0.8

serveraddr.sin_port = (unsigned short)1024;

ercd = connect(sck, (struct sockaddr*)&serveraddr, sizeof(serveraddr));

Special Notes
In socket non-blocking mode, TMO_NBLK is set for tmout argument of the BSD socket’s structure:
When connect() API is called, if the connection cannot be established immediately, the connect() API
will return SOCKET_ERROR and set errno to EINPROGRESS. However the connection request will
not be aborted, the connection will be established asynchronously. Before the connection is
established, a subsequent calls to connect() for the same socket will be failed and set errno to
EALREADY.

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 18 of 39

Feb 01, 2019

3.7 listen()

The listen function sets the specified socket to a listening mode. After transiting to listening mode, this specified socket

will wait for an incoming client in case of non-blocking mode.

Format
int listen(int sock, int backlog)

Parameters
sock

Socket identifier
backlog

Maximum number of connection requests that can be queued (not in use). Please set to 1.

Return Values
SOCKET_ERROR Operation failed; check errno to indicate the type of error
E_PAR Parameter Error
E_OK Operation successful

Error Types
ENOTSOCK The sock argument does not refer to a socket.
ENOBUFS Insufficient resources are available in the system.
EINVAL The socket has been shut down.
EDESTADDRREQ The socket is not bound to a local address and the protocol does not
support listening on an unbound socket.
EOPNOTSUPP The socket is not in the right state (listening etc.,) and cannot be connected.
ENFILE No more sockets are available.

Properties
Prototyped in r_socket_rx_if.h

Description
The listen function sets the specified socket to enter listening mode.

Reentrant
Yes (When using Realtime OS(When SOCKET_IF_USE_SEMP is defined to 1)

Example
/*… After binding …*/

/*

 * listen: make this socket ready to accept connection requests

 */

if (listen(sck, 1) < 0) /* allow 1 requests to queue up */

{

 closesocket(sck);

 return SOCKET_ERROR;

}

Special Notes
In non-blocking mode, another socket is acquired internally and is switched to be a
BSD_CONNECTING socket. This socket is placed on standby for connecting. If there are no spare
socket, SOCKET_ERROR is returned with errno = ENFILE.

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 19 of 39

Feb 01, 2019

3.8 accept()

The accept function is used to accept a connection request queued for a listening socket.

Format
int accept(int sock, struct sockaddr * address, int * address_len)

Parameters
sock

Socket identifier
address

Pointer to the sockaddr structure that will receive the connecting node IP address and port number,
user does not need to store the value.

address_len
A value-result parameter and should initially contain the amount of space pointed to by address_len.
On return it contains the actual length in bytes of the address_len returned.

Return Values
SOCKET_ERROR Operation failed; check errno to indicate the type of error
E_PAR Parameter Error
Positive Value Operation successful, returned Socket identifier

Error Types
ECONNABORTED A connection has been aborted.
ENOTSOCK The sock argument does not refer to a socket.
EADDRNOTAVAIL The specified local address is not available.
EAGAIN O_NONBLOCK is set for the socket file descriptor and no connections are
 present to be accepted.
EINVAL The socket is not accepting connections.
EOPNOTSUPP The socket type of the specified socket does not support accepting
connections.

Properties
Prototyped in r_socket_rx_if.h

Description
The accept function is used to accept a connection request queued for a listening socket.

Reentrant
Yes (When using Realtime OS(When SOCKET_IF_USE_SEMP is defined to 1)

Example

SOCKET parent_sock, child_sock;

struct sockaddr clientaddr;

int clientlen;

/* after binding */

child_sock = accept(parent_sock, &clientaddr, &clientlen);

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 20 of 39

Feb 01, 2019

Special Notes
In socket non-blocking mode, when accept() API is called, if there are no connection to be accepted,
the accept() API will return SOCKET_ERROR immediately with errno set to EAGAIN. Later use the,
select() API to verify whether the connection has been established.

If the accepted socket is the same as the original socket, the original socket cannot accept any more
connections. To avoid this situation, please prepare in advance the number of available socket is 2
more than the desired number of connections. e..g if 4 connection is desired, prepare 6 sockets, 1 for
listening, 1 as standby for connection and the other 4 to accept the connection.

Table 5 : Accept with 4 available sockets (non-blocking mode)

Socket’s

role

Listener Standby Child socket Remarks

Socket status BSD_LISTENING BSD_CONNECTING BSD_CONNECTED

Socket()

bind(),

0 --- --- Socket #0 is created and bind to a local address and port

listen() 0 11 --- Socket #0 is placed in listening mode and socket #1 is on

standby for connection

After 1st accept 0 21 1 Socket #1 is returned as child socket, socket#2 becomes

standby for connection

After 2nd accept 0 31 2 Socket #2 is returned as child socket, socket#3 becomes

standby for connection

After 3rd accept 0 -12 3 Socket #3 is returned as child socket. As there are no more

socket, the standby socket is -1.

When 4th accept 0 -12 SOCKET_ERROR

errno = ENFILE

At 4th accept, SOCKET_ERROR is returned with errno =

ENFILE;

Example of operations:- after some time, socket #2 is closed. When called, the select() will detect an unused socket and raise a “can_read” flag for the

listening socket, signifying the user application to issue an accept().

After 5th accept 0 23 SOCKET_ERROR

errno = ENFILE

Socket #2 now becomes the standby socket. The accept

API still returns a SOCKET_ERROR. Subsequent accept

will return the standby socket (i.e. socket #2).

Close the listener

socket #0

--- --- --- When socket #0 is closed, the standby socket (currently

#2) will also be closed.

1 Next available socket, assuming sequence is 1,2,3

2 All sockets (0,1,2,3) are used. A -1 signifies invalid socket number.

3 Socket #2 has been closed. It is now available for use as standby socket when user issue the accept() API.

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 21 of 39

Feb 01, 2019

3.9 send()

The function is used to send outgoing data to a connected socket. (TCP)

Format
int send(int sock, const char * buffer, size_t length, int flags)

Parameters
sock

Socket identifier
buffer

Application data buffer containing data to transmit
length

Length of data in bytes. Maximum length of data is 0x7FFFH for blocking mode and
BSD_SND_BUFSZ for non-blocking mode.

flags
Message flags. Currently this field is not supported and must be 0.

Return Values
SOCKET_ERROR Operation failed; check errno to indicate the type of error
E_PAR Parameter Error
Positive Value Operation successful, transmitted data size will be returned.

Error Types
ENOTCONN The socket is not connected.
ENOTSOCK The sock argument does not refer to a socket.
EADDRNOTAVAIL The specified local address is not available.
ECONNRESET A connection was forcibly closed by a peer.
EOPNOTSUPP The socket argument is associated with a socket that does not support one
 or more of the values set in flags.
ENOBUFS Insufficient resources are available in the system.
EAGAIN O_NONBLOCK is set for the socket file descriptor and no wait for the data is
 transmitted completely.
E_QOVR Two or more requests are issued on same socket descriptor concurrently.

Properties
Prototyped in r_socket_rx_if.h

Description
The function is used to send outgoing data on a socket of type stream.
The socket type must be SOCK_STREAM.

Reentrant
Yes (When using Realtime OS(When SOCKET_IF_USE_SEMP is defined to 1)

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 22 of 39

Feb 01, 2019

Example 1: send() API operation in blocking mode
/* Socket operation in blocking mode */

int32_t sock1, remain_len, send_len;

int8_t buffer[1000], *pbuf;

/*… sock1 was created and TCP sessions established … */

pbuf = &buffer[0];

remain_len = 1000;

send_len = send(sock1, pbuf, remain_len, 0);

Example 2: send() API operation in non-blocking mode
/* Socket operation in non-blocking mode */

int32_t sock1, remain_len, send_len;

int8_t buffer[1000], *pbuf;

/*… sock1 was set to non-blocking mode (O_NONBLOCK) */

/*… sock1 was created and TCP sessions established … */

pbuf = &buffer[0];

remain_len = 1000;

/* Call send() API */

send_len = send(sock1, pbuf, remain_len, 0);

if (remain_len == send_len)

{

 /* All data in buffer are copied to socket’s transmit internal buffer */

 /* send() in non-blocking mode is accepted! */

 remain_len = 0; // Clear remain_len

}

else

{

 /* Handle error process */

}

Special Notes
In socket non-blocking mode, send() API will return the number of bytes that is transferred to socket’s
sending buffer. The actual data may not been transferred. If the length to be sent is greater than the
size of send buffer(BSD_SND_BUFSZ), a SOCKET_ERROR is returned with errno = ENOBUFS.
Please confirm using the select() API that all data has been transfer and that a new transfer can be
initiated.

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 23 of 39

Feb 01, 2019

3.10 sendto()

The function is used to send outgoing data on a socket of type datagram only. (UDP)

Format
int sendto(int sock, const void * buffer, size_t length, int flags, const

struct sockaddr * to, int tolen)

Parameters
sock

Socket identifier
buffer

Application data buffer containing data to transmit
length

Length of data in bytes. Maximum length of data is 0x7FFFH for blocking mode and
BSD_SND_BUFSZ for non-blocking mode.

flags
Message flags. Currently this field is not supported and must be 0.

to
Pointer to the sockaddr structure containing the destination address

tolen
Length of the sockaddr structure

Return Values
SOCKET_ERROR Operation failed; check errno to indicate the type of error
E_PAR Parameter Error
Positive Value Operation successful, transmitted data size will be returned.

Error Types
EOPNOTSUPP The socket argument is associated with a socket that does not support one
 or more of the values set in flags.
ENOTCONN The socket is not connected.
ENOTSOCK The sock argument does not refer to a socket.
EADDRNOTAVAIL The specified local address is not available.
ENOBUFS Insufficient resources are available in the system.
ECONNRESET A connection was forcibly closed by a peer.
EINVAL The tolen argument is not a valid length for the address family.
EAGAIN O_NONBLOCK is set for the socket file descriptor and no wait for the data is
 transmitted completely.

Properties
Prototyped in r_socket_rx_if.h

Description
The function is used to send outgoing data on a socket of type datagram.
The socket type must be SOCK_DGRAM.
The recipient’s address and port number must always be supplied.

Reentrant
Yes (When using Realtime OS(When SOCKET_IF_USE_SEMP is defined to 1)

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 24 of 39

Feb 01, 2019

Example 1: sendto() API operation in blocking mode
/* Socket operation in blocking mode */

int32_t sock1, remain_len, send_len;

int8_t buffer[1000], *pbuf;

struct sockaddr dest;

int32_t addr_len;

/*… sock1 was created and TCP sessions established … */

pbuf = &buffer[0];

remain_len = 1000;

/* set the destination addr and len */

send_len = sendto(sock1, pbuf, remain_len, 0, &dest, addr_len);

Example 2: sendto() API operation in non-blocking mode
/* Socket operation in non-blocking mode */

int32_t sock1, remain_len, send_len;

int8_t buffer[1000], *pbuf;

struct sockaddr dest;

int32_t addr_len;

/*… sock1 was set to non-blocking mode (O_NONBLOCK) */

/*… sock1 was created and TCP sessions established … */

pbuf = &buffer[0];

remain_len = 1000;

/* set the destination addr and len */

/* Call sendto() API */

send_len = sendto(sock1, pbuf, remain_len, 0, &dest, addr_len);

if (remain_len == send_len)

{

 /* All data in buffer are copied to socket’s transmit internal buffer */

 /* sendto() in non-blocking mode is accepted! */

 remain_len = 0; // Clear remain_len

}

else

{

 /* Handle error process */

}

Special Notes
In socket non-blocking mode, sendto() API will return the number of bytes that is transferred to socket’s
sending buffer. The actual data may not been transferred. If the length to be sent is greater than the
size of sending buffer(BSD_SND_BUFSZ), a SOCKET_ERROR is returned with errno = ENOBUFS.
Please confirm using the select() API that all data has been transfer and that a new transfer can be
initiated.

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 25 of 39

Feb 01, 2019

3.11 recv()

The function is used to receive incoming data that has been queued for a socket. (TCP)

Format
int recv(int sock, void * buffer, size_t length, int flags)

Parameters
sock

Socket identifier
buffer

Application data receive buffer
length

Buffer length in bytes
flags

Message flags. Currently this field is not supported and must be set to 0.

Return Values
SOCKET_ERROR Operation failed; check errno to indicate the type of error
E_PAR Parameter Error
Positive Value Operation successful, received data size will be returned.
0 Operation successful, a connection was closed by a peer.

Error Types
EOPNOTSUPP The socket argument is associated with a socket that does not support one
 or more of the values set in flags.
EPROTONOSUPPORT The protocol is not supported by either the address family or the
 implementation.
ENOTSOCK The sock argument does not refer to a socket.
ENOBUFS Insufficient resources are available in the system.
ECONNRESET A connection was forcibly closed by a peer.
ENOTCONN The socket is not connected.
EAGAIN O_NONBLOCK is set for the socket file descriptor and no wait for the data is
 available on receive window to be read.
E_QOVR Two or more requests are issued on same socket descriptor concurrently.

Properties
Prototyped in r_socket_rx_if.h

Description
The function is used to receive incoming data that has been queued for a socket.
The socket type must be SOCK_STREAM.

Reentrant
Yes (When using Realtime OS(When SOCKET_IF_USE_SEMP is defined to 1)

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 26 of 39

Feb 01, 2019

Example 1: recv() API operation in blocking mode
/* Socket operation in blocking mode */

int32_t sock1, remain_len, send_len;

uint8_t buffer[1000];

uint16_t rcvLen;

/*… sock1 was created and TCP sessions established … */

/* Call recv() API */

rcvLen = recv(sock1, buffer, 1000, 0); //API only returns when data is

available on receive window to be read or an error has occurred.

if (SOCKET_ERROR == rcvLen)

{

 /* Handle error or close process */

}

else

{

 /* Data is available to be read */

}

Example 2: recv() API operation in non-blocking mode
/* Socket operation in non-blocking mode */

int32_t sock1, remain_len, send_len;

uint8_t buffer[1000];

uint16_t rcvLen;

/*… sock1 was set to non-blocking mode (O_NONBLOCK)*/

/*… sock1 was created and TCP sessions established … */

/* Call recv() API */

/* If the socket’s receive internal buffer has data,

this API will copy data to user’s buffer and then

return the size of copied data.

Otherwise, it will return SOCKET_ERROR immediately */

rcvLen = recv(sock1, buffer, 1000, 0);

if (rcvLen <= 0)

{

 if ((SOCKET_ERROR == rcvLen)&&(EAGAIN == errno))

 {

 /* recv() non-blocking is accepted! */

 }

 else

 {

 /* Handle error process */

 }

}

else

{

 /* Data is available in socket’s receive internal buffer to be read */

}

Special Notes
Please check the actual number of bytes received.

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 27 of 39

Feb 01, 2019

3.12 recvfrom()

The function is used to receive incoming data that has been queued for a socket of type datagram. (UDP)

Format
int recvfrom(int sock, void * buffer, size_t length, int flags, struct

sockaddr * from, int * fromlen)

Parameters
sock

Socket identifier
buffer

Application data receive buffer
length

Buffer length in bytes
flags

Message flags. Currently this field is not supported and must be 0
from

Pointer to the sockaddr structure that will be filled in with the destination address
fromlen

Size of sockaddr structure

Return Values
SOCKET_ERROR Operation failed; check errno to indicate the type of error
E_PAR Parameter Error
Positive Value Operation successful, received data size will be returned.

Error Types
EOPNOTSUPP The socket argument is associated with a socket that does not support one
 or more of the values set in flags.
ENOTSOCK The sock argument does not refer to a socket.
EADDRNOTAVAIL The specified local address is not available.
ENOBUFS Insufficient resources are available in the system.
ENOTCONN The socket is not connected.
ECONNRESET A connection was forcibly closed by a peer.
EAGAIN O_NONBLOCK is set for the socket file descriptor and no wait for the data is
 available on receive window to be read.
EINVAL The fromlen argument is not a valid length for the address family.

Properties
Prototyped in r_socket_rx_if.h

Description
The function is used to receive incoming data that has been queued for a socket.
The socket type must be SOCK_DGRAM.

Reentrant
Yes (When using Realtime OS(When SOCKET_IF_USE_SEMP is defined to 1)

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 28 of 39

Feb 01, 2019

Example 1: recvfrom() operation in blocking mode
/* Socket operation in blocking mode */

int32_t sock1, rcvLen;

uint8_t buffer[1000];

struct sockaddr dest;

int32_t addr_len;

/*… sock1 was created and TCP sessions established … */

/* Call recvfrom() API */

 rcvLen = recvfrom(sock1, buffer, 1000, 0, &dest, &addr_len);

Example 2: recvfrom() operation in non-blocking mode
/* Socket operation in non-blocking mode */

int32_t sock1, rcvLen;

uint8_t buffer[1000];

struct sockaddr dest;

int32_t addr_len;

/*… sock1 was set to non-blocking mode (O_NONBLOCK) */

/*… sock1 was created and TCP sessions established … */

/* Call recvfrom() API */

 rcvLen = recvfrom(sock1, buffer, 1000, 0, &dest, &addr_len);

if (rcvLen <= 0)

{

 if ((SOCKET_ERROR == rcvLen)&&(EAGAIN == errno))

 {

 /* recvfrom() non-blocking is accepted! */

 }

 else

 {

 /* Handle error process */

 }

}

else

{

 /* Data is available in socket’s receive internal buffer to be read */

}

Special Notes
Please check the actual number of bytes received and process the data according to the sender IP
address and port number as given in the struct sockaddr *from structure.

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 29 of 39

Feb 01, 2019

3.13 closesocket()

The function closes an existing socket.

Format
int closesocket(int sock)

Parameters
sock

Socket identifier

Return Values
SOCKET_ERROR Operation failed; check errno to indicate the type of error
E_PAR Parameter Error
E_OK Operation successful

Error Types
ENOTCONN The socket is not connected.
ENOTSOCK The sock argument does not refer to a socket.
EAGAIN O_NONBLOCK is set for the socket file descriptor and no wait for closing
 socket is processed completely.

Properties
Prototyped in r_socket_rx_if.h

Description
The function closes an existing socket.

Reentrant
Yes (When using Realtime OS(When SOCKET_IF_USE_SEMP is defined to 1)

Special Notes
In case this socket API uses the blocking method of T4. When a TCP socket is closed, all outstanding
T4 events must be cancelled. And this API might take 100 milliseconds to complete.

Please ensure all data transfer is complete before issuing this closesocket() API.
The above remark applies to TCP socket. When closing a UDP socket, no handshake is needed
between its partners. A UDP connection can be closed by either side at any time.

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 30 of 39

Feb 01, 2019

3.14 fcntl()

The function modifies the properties of an existing socket.

Format
int fcntl(int sock, int command, int flags)

Parameters
sock

Socket identifier
command

F_GETFL: Get the timeout value of the socket specified by sock argument.
F_SETFL: Set the timeout value to blocking or non-blocking for the socket specified by sock argument.
Others: Invalid.

flags
timeout value to be set. O_NONBLOCK and O_BLOCK are supported only.

Return Values
SOCKET_ERROR Operation failed; check errno to indicate the type of error
E_PAR Parameter Error
E_OK Set command operation successful

Error Types
ENOTSOCK The sock argument does not refer to a socket.
EINVAL Bad input parameters or the socket has not created yet.

Properties
Prototyped in r_socket_rx_if.h

Description
The function modifies the timeout value of an existing socket.

Reentrant
Yes (When using Realtime OS(When SOCKET_IF_USE_SEMP is defined to 1)

Example
int32_t sock1, err;

sock1 = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

if(sock1 == SOCKET_ERROR)

{

 /*… check errno and proceed with error handling …*/

}

/* Set socket to non-blocking mode */

err = fcntl(sock1, F_SETFL, O_NONBLOCK);

Special Notes
When a non-blocking mode for some sockets is selected, please ensure that socket APIs are not
issued from multiple task concurrently.

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 31 of 39

Feb 01, 2019

3.15 select()

This function checks a set of sockets for their readiness to perform read or write operation. In other cases, exception

conditions that are pending will be reported.

Format
int select(int nfds, fd_set *p_readfds, fd_set *p_writefds, fd_set

*p_errorfds, struct timeval *timeout)

Parameters
nfds

Examine the first nfds descriptor of each set.
p_readfds

A set of descriptors to be checked for read readiness. Set NULL if no check.
p_writefds

A set of descriptors to be checked for write readiness. Set NULL if no check.
p_errorfds

A set of descriptors to be checked for exception conditions. Set NULL if no check.
timeout

A timeout value to be set. This function will be not finished until occurring event (readable/writeable/
exception) when set the NULL to timeout.

Return Values
SOCKET_ERROR Operation failed; check errno to indicate the type of error
E_PAR Parameter Error
Positive value Operation successful. The total number of socket’s descriptor ready for writing,
 reading or error pending in all output sets.
 p_readfds, p_writefds, p_errorfds are updated.

Error Types
None

Properties
Prototyped in r_socket_rx_if.h

Description
A list(s) of sockets is presented for checking. If any sockets are ready for reading, writing or an
exceptions condition is pending, they are returned via the same pointer.

The fd_set is a 32bit fixed unsigned variable.

Please use functions FD_SET, FD_CLR, FD_ISSET, FD_ZERO and FD_ISZERO to manipulate file
descriptors of type fd_set.
FD_SET(fd, fdsetp) adds the file descriptor, fd, to the set pointed to by fdsetp.
FD_CLR(fd, fdsetp) removes the file descriptor, fd, from the set pointed to by fdsetp.
FD_ISSET(fd, fdsetp) shall evaluate to non-zero if the file descriptor, fd, is a member of the set pointed
to by fdsetp, and shall evaluate to zero otherwise.
FD_ZERO(fdsetp) shall initialize the descriptor set pointed to by fdsetp to the null set. It is assumed the
fd_set contains MAX_BSD_SOCKET elements.
FD_ISZERO(fdsetp) shall verify whether or not all file descriptors in the set are equal to 0.

Reentrant
Yes (When using Realtime OS(When SOCKET_IF_USE_SEMP is defined to 1)

Example

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 32 of 39

Feb 01, 2019

int32_t sock1, child_sock, err;

struct sockaddr_in serveraddr;

struct sockaddr clientaddr;

int clientlen;

fd_set nfds, readfds, writefds, errorfds, rdtestfds, wrtestfds, errtestfds;

/* Create socket */

sock1 = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

if (SOCKET_ERROR != sock1)

{

 nfds = sock1 + 1;

 FD_SET(sock1, &readfds);

 FD_SET(sock1, &writefds);

 FD_SET(sock1, &errorfds);

}

…

/*...sock1 was set to non-blocking mode */

/* sock1 was bound, listened */

………

/* Make a connection */

child_sock = accept(sock1, &clientaddr, &clientlen);

if ((SOCKET_ERROR == child_sock) && (EAGAIN == errno)

{

 /* Non-blocking accept() is accepted! */

}

else

{

 closesocket(sock1);

}

...

/* Do something else users want */

...

while(1)

{

 FD_COPY(&readfds, &rdtestfds);

 FD_COPY(&writefds, &wrtestfds);

 FD_COPY(&errorfds, &errtestfds);

 select(nfds, &rdtestfds, &wrtestfds, &errtestfds, NULL);

 if (FD_ISSET(sock1, &rdtestfds))

 {

 /* The connection has been established */

 /* Be able to start receiving data from client */

 ……………………

 }

 if (FD_ISSET(sock1, &wrtestfds))

 {

 /* Be able to write data to client */

 ……………………

 }

 if (FD_ISSET(sock1, &errtestfds))

 {

 /* Either error occurred or sock1 has been closed completely */

 /* Handle the corresponding processes */

 ……………………………

 }

}

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 33 of 39

Feb 01, 2019

4. User Interface function

Please implement following user interface functions by user.

In case, use with realtime os : Implement referring each Example

In case, use without realtime os : Implement as empty function

4.1 Summary

Table 6 List of User Interface functions supported by Socket Module

Function Description

r_socket_task_switch() Initialize all socket structures.

r_socket_task_switch_select() Create a new socket

r_socket_sem_lock()

r_socket_sem_release()

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 34 of 39

Feb 01, 2019

4.2 r_socket_task_switch()

Waiting for socket API process.

Format
void r_socket_task_switch(int sock)

Parameters
sock

socket ID

Return Values
None.

Properties
Prototyped in r_socket_rx_if.h.

Description

Socket API module calls this function in repeatedly when calls each APIs (connect()、accept()、

send()、sendto()、recv()、recvfrom()) as blocking mode. And, socket API module calls this function in

repeatedly when calls closesocket() as blocking/non-blocking mode.
Please call system call that can switch the task (in case ITRON, dly_tsk()) when use the Realtime OS.
Please do not call the function when not use the Realtime OS.

Example

void r_socket_task_switch(int sock)

{

#if BSP_CFG_RTOS_USED == 0 // Non-OS

#elif BSP_CFG_RTOS_USED == 1 // FreeRTOS

 vTaskDelay(2 / portTICK_RATE_MS);

#elif BSP_CFG_RTOS_USED == 2 // SEGGER embOS

#elif BSP_CFG_RTOS_USED == 3 // Micrium MicroC/OS

#elif BSP_CFG_RTOS_USED == 4 // Renesas RI600V4 & RI600PX

 dly_tsk(2);

#endif

}

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 35 of 39

Feb 01, 2019

4.3 r_socket_task_switch_select()

Waiting for select() process.

Format
void r_socket_task_switch_select(void)

Parameters
None.

Return Values
None.

Properties
Prototyped in r_socket_rx_if.h.

Description
Socket API module calls this function in repeatedly when calls select().
Please call system call that can switch the task (in case ITRON, dly_tsk()) when use the Realtime OS.
Please do not call the function when not use the Realtime OS.

Example

void r_socket_task_switch_select(void)

{

#if BSP_CFG_RTOS_USED == 0 // Non-OS

#elif BSP_CFG_RTOS_USED == 1 // FreeRTOS

 vTaskDelay(2 / portTICK_RATE_MS);

#elif BSP_CFG_RTOS_USED == 2 // SEGGER embOS

#elif BSP_CFG_RTOS_USED == 3 // Micrium MicroC/OS

#elif BSP_CFG_RTOS_USED == 4 // Renesas RI600V4 & RI600PX

 dly_tsk(2);

#endif

}

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 36 of 39

Feb 01, 2019

4.4 r_socket_sem_lock()

Semaphore lock function.

Format
int r_socket_sem_lock(void)

Parameters
None.

Return Values
SOCKET_ERROR Operation failed
E_OK Operation successful

Properties
Prototyped in r_socket_rx_if.h.

Description
This function is called when SOCKET_IF_USE_SEMP=1.

Please call the semaphore lock function when you use the Realtime OS.

Example

#if BSP_CFG_RTOS_USED == 1 // FreeRTOS

extern xSemaphoreHandle r_socket_semaphore;

#elif BSP_CFG_RTOS_USED == 4 // Renesas RI600V4 & RI600PX

extern ID r_socket_semaphore;

#endif

int r_socket_sem_lock(void)

{

 int retcode;

 retcode = E_OK;

#if BSP_CFG_RTOS_USED == 0 // Non-OS

#elif BSP_CFG_RTOS_USED == 1 // FreeRTOS

 if (pdTRUE != xSemaphoreTake(r_socket_semaphore, portMAX_DELAY))

 {

 retcode = SOXKER_ERROR;

 }

#elif BSP_CFG_RTOS_USED == 2 // SEGGER embOS

#elif BSP_CFG_RTOS_USED == 3 // Micrium MicroC/OS

#elif BSP_CFG_RTOS_USED == 4 // Renesas RI600V4 & RI600PX

 if (E_OK != pol_sem (r_socket_semaphore))

 {

 retcode = SOXKER_ERROR;

 }

#endif

 return retcode;

}

4.5 r_socket_sem_release()

Semaphore release function.

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 37 of 39

Feb 01, 2019

Format
int r_socket_sem_release(void)

Parameters
None.

Return Values
SOCKET_ERROR Operation failed
E_OK Operation successful

Properties
Prototyped in r_socket_rx_if.h.

Description
This function is called when SOCKET_IF_USE_SEMP=1.

Please call the semaphore release function when you use the Realtime OS.

Example

#if BSP_CFG_RTOS_USED == 1 // FreeRTOS

extern xSemaphoreHandle r_socket_semaphore;

#elif BSP_CFG_RTOS_USED == 4 // Renesas RI600V4 & RI600PX

extern ID r_socket_semaphore;

#endif

int r_socket_sem_release(void)

{

 int retcode;

 retcode = E_OK;

#if BSP_CFG_RTOS_USED == 0 // Non-OS

#elif BSP_CFG_RTOS_USED == 1 // FreeRTOS

 if (pdTRUE != xSemaphoreGive(r_socket_semaphore))

 {

 retcode = SOXKER_ERROR;

 }

#elif BSP_CFG_RTOS_USED == 2 // SEGGER embOS

#elif BSP_CFG_RTOS_USED == 3 // Micrium MicroC/OS

#elif BSP_CFG_RTOS_USED == 4 // Renesas RI600V4 & RI600PX

 if (E_OK != sig_sem (r_socket_semaphore))

 {

 retcode = SOXKER_ERROR;

 }

#endif

 return retcode;

}

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 38 of 39

Feb 01, 2019

5. Note

5.1 Several Ethernet channel support.

This module support only 1 port.

RX Family Embedded TCP/IP M3S-T4-Tiny Socket API Module

Firmware Integration Technology

R20AN0296EJ0132 Rev.1.32 Page 39 of 39

Feb 01, 2019

Website and Support

Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

Revision History

Rev. Date

Description

Page Summary

1.32 Feb 01, 2019 - Changes associated with functions:

Added support setting function of configuration option Using

GUI on Smart Configurator.

[Description]

Added a setting file to support configuration option setting

function by GUI.

1.31 Oct 01, 2016 - Updated the xml file for FIT.

Deleted USE_BSD_NON_BLOCKING macro.

Added SOCKET_TCP_WINSIZE macro.

Changed R_SOCKET_Init() API name to R_SOCKET_Open().

Added R_SOCKET_Close().

Omitted Ether-2 channels support.

Added section4 and section5 in this document.

1.30 Sep 15, 2015 - Changed: added fcntl(), select() and errno for each API.
Update descriptions of send/sendto/accept API.

1.22 Feb 12, 2015 - Fixed source code.

1.21 Jun 31, 2015 - Changed FIT Module name.

Added Support MCUs.

1.20 Jun 31, 2015 - Changed: Support for new T4 that can handle 2 ETHER
channels.

1.10 Apr 01, 2014 - Changed: Revision number corresponds to the software
version.

1.00 - - First edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the

products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Corporation
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

SALES OFFICES

© 2019 Renesas Electronics Corporation. All rights reserved.
Colophon 7.2

(Rev.4.0-1 November 2017)

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by

you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are

not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause

serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all

liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or

other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury

or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult

and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and

sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics

products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable

laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or

transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third

party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

	1. Overview
	1.1 Mapping of Socket APIs to T4 APIs

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Toolchains
	2.4 Header Files
	2.5 Integer Types
	2.6 Configuration Overview
	2.7 API Data Structure
	2.8 Return Values
	2.9 Error Codes
	2.10 Adding Driver to Your Project

	3. API Functions
	3.1 Summary
	3.2 R_SOCKET_Open()
	3.3 R_SOCKET_Close()
	3.4 socket()
	3.5 bind()
	3.6 connect()
	3.7 listen()
	3.8 accept()
	3.9 send()
	3.10 sendto()
	3.11 recv()
	3.12 recvfrom()
	3.13 closesocket()
	3.14 fcntl()
	3.15 select()

	4. User Interface function
	4.1 Summary
	4.2 r_socket_task_switch()
	4.3 r_socket_task_switch_select()
	4.4 r_socket_sem_lock()
	4.5 r_socket_sem_release()

	5. Note
	5.1 Several Ethernet channel support.

	Website and Support
	Revision History
	General Precautions in the Handling of Microprocessing Unit and MicrocontrollerUnit Products
	Notice

