LENESAS Application Note
RX Family

Firmware Updating Communications Module Using Firmware Integration Technology

Introduction

This application note describes a firmware updating communications module using the Firmware Integration
Technology (FIT).

In a system consisting of a primary MCU and a secondary MCU, this module allows user updating of the
firmware of the secondary MCU. This application note explains how to use this module, incorporate its API
functions into user applications, and extend its functionality.

The release package associated with this application note includes two demonstration projects. You can
confirm the basic operation of the functionality for updating the firmware of the secondary MCU with the use
of this module by following the steps described in chapter 5, Demonstration Projects, to build an environment
to run the demonstration.

Operation Confirmation Devices
RX140 Group

RX23E-B Group

RX261 Group

RX66T Group

RX660 Group

If you intend to use this application note with other Renesas MCUs, careful evaluation is recommended after
making modifications to suit the specifications of the alternative MCU.

Related Application Notes

e Firmware Integration Technology User’s Manual (RO1AN1833)

o RX Family Adding Firmware Integration Technology Modules to Projects (RO1AN1723)

o RX Family Board Support Package Module Using Firmware Integration Technology (RO1AN1685)
e RX Family SCI Module Using Firmware Integration Technology (RO1AN1815)

o RX Family Firmware Update Module Using Firmware Integration Technology (RO1ANG6850)

Target Compilers

e Renesas Electronics C/C++ Compiler Package for RX Family
e GCC for Renesas RX

For details of the environments in which operation has been confirmed, refer to section 6.1, Environments for
Confirming Operation.

RO1AN7757EJ0100 Rev.1.00 Page 1 of 43
May.20.25 RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

Contents

O O V=T 4T PP PPEPPP PP 4
1.1 About the Firmware Updating Communications MOUIE..............cooiiiiiiiiiiiiie e 4
1.2 Supported Communications IP and Hardware Configurationcccoeuveieiniiiee e 4
1.3 SOftWare CONFIQUIALIONeiiiiiiiiie ittt ettt e st e e e s et b e e et e e e s ennb e e e e annbe e e s annreas 4
1.3.1 Setting UART COMMUNICALIONSouiiiiiiiiieeeee ittt e e ettt e e e e e s et e e e e e e e e e s s aanbaeeeeaeeeaaaabbbeeeeeaeeeaannnes 5
A - (ol (] @] 4] U g 1= i o] o PR 5
R DT v o] 1 1 1 F- | O TP PP TPPPPPPPPPPTPOE 6
1.5.1 Data FOrmMat Of PACKELS.uuuiiiiieiiiiiiiiiii et e e e e e s e e e e e e e e s e s e taaeeeaeeeaassssbaneeeaeeeannnnnes 6
1.6 Specifications Of COMMEANTSoiiiiiiiie ittt e st e e s et e e e et b e e e s anb e e e s anbe e e e anreas 7
1.6.1 COMMON COMMEBNGSiiiiiiieieiee e ettt e e e e e e et e ettt aeeessaaateeeeeaaeesa s s ebeeeeeaeeesaanssbeeeeaaeeesaanssbeeeaaaeeesannnnes 7
1.6.2 FWWUP COMMANAS ..eiiiiiiiiiitiiiti e ettt e e et ettt e e e e s s b be e et e ee e e s e aa s b be et e e eeeeaaasnbbeeeeeeeeeaaaabbbeeeeaaeeeaannne 8
1.6.2.2 Flow of Communications for the FWUP COMMANScccccveiiiiiiiiiiiiee e 10
A o B VT | T o = o £ PSR 11
1.8 OVEINVIEW Of API FUNCHIONSuviiiiieeii ittt e ettt e e e e e e sttt e e e e s st e e e e eeassssteaeeeeeeeseannstnneeeeeeeannnsnes 11
A N I 1010} .= L1 o S 12
2.1 Hardware REQUITEIMENTScoiiiiiiiiiiiiie ettt e ettt e e e st et e e e st e e e e s sa b et e e e aabe e e e e sabeeeeeanbreeeeanbeeeeeaaes 12
2.2 SOftWAIE REQUIMEIMENTScei ittt ettt e e e e e e bt e e e e e e s s aa b bbe e e e e e e e e e bbbbeeeeeaeessannbnbeeeaaaeaaan 12
b2 TS U o] o To g {=To I o o] [od o F= 11 1 SRR 12
b o (=T Vo [T a1 ORI 12
T 1 (=To =T g)Y oSO PP P PP PP PPPTPPPPPP 12
b G I ©fo 1001 o 1 =T g Y= 1] T O OO P PP PPPPRPPTPPRN 13
2.7 Code Size Of the SAMPIE PrOJECESoiiiiiiiiiiiiiie et e e e e aaes 15
2.8 ATQUITIEINTS ...ttt e 17
2.9 REIUIM VAIUES ... oottt ettt ettt e e e sttt e e e e a bt e e e e sabe e e e e sabe e e e e snbeeeeesnbbeeeeanbeeeesantaeeeeanes 19
2.10 Adding the FIT Module t0 YOUI PrOJECEuuuiiieiiiiiiiiieiee e e e s ettt e e s st e e e e e s s e e e e e e e e snnnaraeeeaeeaean 19
2.11 “for”, “while” and “do While” STatemMENTScoceiiiiii e 19
B T N o I 1] o 1o S 21
3.1 R_FWUPCOMM_OPEN FUNCHON ..ceeiitiieeiiitiiee ettt e sttt e sttt e e asbe e e e e sabe e e e s snbe e e e e snbneeessnbeeeeeaan 21
1 T2 = S e VATAU 1 = @@ 1Y Y T @ [0 1= 8 U o od T o 21
3.3 R _FWUPCOMM_CmMASENd FUNCHONuuiiiiieeiiiiiiiiiee e e e e s estieee e e e e e s s et e e e e e e s s e sntabaeeeaaeaesnnnntaeneaaeanan 22
3.4 R_FWUPCOMM_ProcessCmdLOOP FUNCHONc..uviiiiiee et e e e e s e e e e e e e snnrnraeneaa e 23
4. Extending the Functionality of ThiS MOAUIEuuu e 24
v o R o [o |10 T I @2 0] 1 4111 =T o [0 LS SO SO PP PRSPPI 24
4.2 Changing the Method of COMMUNICALIONSoiiuiiiiiiiiiie et 27
4.2.1 COomMMUNICAIONS INTEITACE. ... ettt e e e e e bbbt e e e e e e e s bbb e e e e e e e e e sannbeeeeeas 27
4.2.1.1 fwupcomm_err_t (*OPEN)(VOIA) .. .uueiiieeeiiiiiiieiie e e s e e e st e e e e e e st e e e e e e s e sanrere e e e e e e s e snnraneees 27
o Y o [0 I o3 [1Y =) 1Yo o | SRR 27
RO1AN7757EJ0100 Rev.1.00 Page 2 of 43

May.20.25 RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

4.2.1.3 fwupcomm_err_t (*send)(Uint8_t *Src, UINLE T SIZE) ...eeeieiiiiiiiiiiiiiie et 28
4.2.1.4 fwupcomm_err_t (*recv)(Uint8_t *dest, UINtLB L SIZE) ...cviieiiiiiiiiiiiiie e e e e 28
o STV o (o I (ot 1013 1) 177 T) SRS 28
4.2.2 How to Change the Method of COMMUNICALIONS..........uuuiiieeiiiiiiiiiie e 29
5. DemONSLratiON PrOJECESueiiiiiiiiiiiiiiit ittt e e e e e s bbb e e e e e s s et b e e e e e e e e e aaans 30
5.1 Configuration for the Demonstration PrOJECLSccuuiiiiiiiiieiiiiiee e e e 30
5.1 PHMANY MCU ...ttt eea et e e e s a bt e e e sk b et e e e ok b et e e e aab et e e e aabb e e e e anbb e e e s anbeeeeeaan 30
5.1.2 SECONAAIY MCU ...ttt ettt e e e e e ettt e e e e e s ok bbb e et e e e e e e s e abab et e e e e e e e saanbnbeeeaaaeaean 30
5.2 Preparing an Operating ENVIFONMENT..........ccoiiiiiiiiiiiiiei e e e e s e e e e e e s s e e e e e e e e snnrnreeeeeaeanan 31
L N 1 153 = 1 To T =T = 1T 2 SRS 31
5.2.2 Installing the Python EXecution ENVIFONMENT..........ocuiiiiiiiiiie ittt e e sbeee e 31
5.2.3 INStalling the FIASH WIILETcooiiiiiiiieie ettt e et e e e e e s snbeeeeenaes 31
5.3 Procedure for Executing a Demonstration ProOJECL............ocuiiiiiiiiii e 32
5.3.1 EXECULION ENVIFONIMENToiiiiiiiiie ettt ettt e st e et e e s s e e e s s s e e e s sare e e e s aan s e e e s anreeeeenan 32
5.3.2 Building the DemOonNStration PrOJECESuuiiiiiiiiiiiiiiiee e s e e s s e e e e e s s e e e e e e e e snnrnteeeeeaeaean 32
LT 7 A w1 1= 1V 1 U SRR 32
5.3.2.2 Creating Initial and Updating Images for the Secondary MCUcccoceeiiiiiiiiiiiiiii e 32
5.3.3 Programming the INitial IMAGEuuiiiiiiiiiii et e b e e eaes 33
5.3.4 Executing @ FIrMWAre UPGALEuuiiiiiiiiieiiiiie ettt ettt e st e et e e s st e e e s snbn e e e s snbeeeeeanes 34
T Y o] 1= o [0 [o7 == 36
6.1 Environments for Confirming OPEratioNcoiiiiiiiiiiiie e e e e e e e e e s srarnreeeeaaeaean 36
6.2 Settings for UART COMMUNICALIONSuvviiiiieeiiiiiiiiieeee e e e s e siteie e e e e e s s e stnte e e e e e e s s sessanbeeeeaaeeesnnrnraneeaaeanan 37
6.3 Operating Environment for the Demonstration ProJECESooceiieiiiiieiiiiiiee e 38
6.3.1 Environment for Confirming Operation With an RX140coocuiiiiiiiiiiiiiiiee e 38
6.3.2 Environment for Confirming Operation with an RX23E-Bcccoiouiiiiiiiiiiiiiiiee e 39
6.3.3 Environment for Confirming Operation with an RX26L1eiiiiiiiiiiiiiiee e 40
6.3.4 Environment for Confirming Operation With an RXB6Tceeeiiieeiiiiiiiiiieeee et e e e srirree e e 41
6.3.5 Environment for Confirming Operation with an RX660ccceveeiiiiiiiiiieeee e 42
REVISION HISTOIY ... ittt e ettt e e e e e e bbbttt e e e e e e e b bbb e et e e e e e e s nnnneees 43
RO1AN7757EJ0100 Rev.1.00 Page 3 of 43

May.20.25 RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

1. Overview

1.1 About the Firmware Updating Communications Module

The firmware updating communications module is middleware which controls communications between
MCUs in which the secondary MCU receives firmware for use in updating from the primary MCU and applies
the firmware to updating in a system of the kind shown in Figure 1-1, consisting of the primary MCU and the
secondary MCU. Users can easily update the firmware of the secondary MCU by embedding this module
into the primary and secondary MCUSs.

1.2 Supported Communications IP and Hardware Configuration

This module supports UART communications through serial communication interface (SCI) as the
communications interfaces. Figure 1-1 shows the hardware configuration assumed for this module. The
primary and secondary MCUs have one-to-one connections on the same bus via two-wire UART (TXD and
RXD).

D s
Primary MCU Secondary MCU
SCl

Y

F

SCl
| TXD RXD |
| RXD TXD |
S -

Figure 1-1 Hardware Configuration

1.3 Software Configuration

Figure 1-2 (for the primary MCU) and Figure 1-3 (for the secondary MCU) show the configurations of the
software modules. This module is available for bare-metal and FreeRTOS projects.

|

é ImageData
(RSU format)

Primary MCU
5 Sample application (Secondary FW update app)
g NP
@«
© ‘ Buffer
m
@
O
'_ s
%
E FWUP Communication
(r_fwupcomm)

\ |
- | Secondary

e

| BSP(r_bsp) |

| MCU |

Figure 1-2 Configuration of Software Modules in the Primary MCU

RO1AN7757EJ0100 Rev.1.00 Page 4 of 43
May.20.25 RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

Primary
MCU
é ImageData
(RSU format)

Secondary MCU

Sample application (Secondary FW update app)

‘ Buffer

L

FWUP Communication FWUP FIT (r_fwup)
(r_fwupcomm)

| scl FI'IY(r_sci) |
\l/

| BSP(r_bsp) |

N

| MCU |

Figure 1-3 Configuration of Software Modules in the Secondary MCU

1.3.1 Setting UART Communications

The operation of this module has been confirmed with the settings for UART communications listed in
section 6.2, Settings for UART Communications.

1.4 Packet Communications

Packet communications proceed between primary and secondary MCUSs via the communications interface.
The primary MCU sends request packets to the secondary MCU. When the secondary MCU receives a
request packet, it processes the command and sends the results to the primary MCU as a response packet.
Figure 1-4 shows the flow of packet communications.

Primary MCU Secondary MCU
Sends a request packet.

Receives the request packet.
Processes the command.
Sends a response packet.

Receives the response packet.

Figure 1-4 Flow of Packet Communications

All commands are classified according to their individual purposes, and the classification is called the
command class.

RO1AN7757EJ0100 Rev.1.00 Page 5 of 43
May.20.25 RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

1.5 Data Format

This section describes the specifications for packet communications between the primary and secondary
MCUs. The specification of the data format is independent of the method of physical communications

between the MCUs.

1.5.1 Data Format of Packets
Figure 1-5 shows the data format of command packets, each of which consists of a command header and

command data.

Header Command data
. Command [Command
Device Command [Command [Command Command . .
. . . Command data size |data size
Address version info option argument
[LSByte] [[MSByte]

S Command data size =~ ------- >

Figure 1-5 Data Format of Command Packets

Figure 1-6 shows the data format of response packets.

Header Response data
. Response [Response
Device Command |[Command |Command Command . .
. . . Command data size |data size
Address version info option result
[LSByte] [[MSByte]

<-mmmme- Response data size ~ ------- >

Figure 1-6 Data Format of Response Packets

Table 1-1 lists the specifications of the headers of packets.

Table 1-1 Specifications of the Headers of Packets

Iltem

Description

Device address

Device address of the secondary MCU to which the command is sent.

The secondary MCU only processes a command when it receives the command
with its own device address in the header.

e 0x00 — OxFE: Device address of the secondary MCU

e OxFF: Reserved.

Command version

Version of the command. The secondary MCU only processes a command when
the version of the command is the same as that of the command on the secondary
MCU.

0x00 — OxFF

Command info

e b7:0: Command, 1: Response
e b4 —b6: Command class. Refer to section 1.6, Specifications of Commands.
e b0 -b3: Command ID

Command option

e b7:0: Aresponse is to be sent. 1: No response is to be sent.
e b0 - b6: Reserved.

Command

Indicates the command. Refer to section 1.6, Specifications of Commands.

Command
argument/result

Indicates an argument of the command when a command is being sent.
Indicates the result of executing the command when a response is being sent.
Refer to section 1.6, Specifications of Commands.

Command/Response | Size of the command data or response data.
data size The size must be in bytes and a multiple of 4.
RO1AN7757EJ0100 Rev.1.00 Page 6 of 43

May.20.25

RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

1.6 Specifications of Commands

This module has definitions of FWUP commands to control updating of firmware of the secondary MCU and
common commands for general data communications.

Table 1-2 List of Command Class

Command class Description Value

Common Commands Commands for general data communications. 0x00

FWUP Commands Commands for contolling updating of firmware of the | 0x01
secondary MCU.

1.6.1 Common Commands

The common commands are a set of commands for general purpose use. Table 1-3 lists the commands.

Table 1-3 List of Common Commands

Command Description Value

DATA_SEND: Sending data Sends data with the desired size to the secondary MCU. 0x01

DATA_RECV: Receiving data | Requests sending of data with the desired size for the 0x02
secondary MCU.

(1) DATA_SEND: Sending data

This command sends data to the secondary MCU.

Table 1-4 Specifications of the COMMON DATA_SEND Command

Item Value
Command 0x01
Command argument 0x00

Command result

0x00: Processing succeeded. / 0x02: Processing failed.

Command data size

Desired data length which can be set according to section 2.6,
Compiler Settings.

Response data size 0
Command data Desired data
Response data None

(2) DATA_RECV: Receiving data

This command requests sending of data for the secondary MCU.

Table 1-5 Specifications of the COMMON DATA_RECYV Command

Item Value
Command 0x02
Command argument 0x00

Command result

0x00: Processing succeeded. / 0x02: Processing failed.

Command data size

0

Response data size

Desired data length which can be set according to section 2.6,
Compiler Settings.

Command data

None

Response data

Desired data

RO1AN7757EJ0100 Rev.1.00
May.20.25

Page 7 of 43
RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

1.6.2 FWUP Commands

FWUP commands are a group of commands used in updating of the firmware. Table 1-6 lists the FWUP
commands.

Table 1-6 List of FWUP Commands

Command Description Value

START: Starting of updating the firmware Starts updating the firmware. 0x01

WRITE: Writing the updated firmware Writes the updated firmware. 0x02

INSTALL: Installing the updated firmware Installs and executes the updated 0x03
firmware.

CANCEL: Canceling of updating the Cancels updating of the firmware. 0x04

firmware

(1) START: Starting of updating the firmware
This command requests starting of updating the firmware of the secondary MCU.

The desired data length can be set for the command data. It is used for sending data which are required for
initialization processing on the user side when updating of the firmware is started.

On reception of this command, the secondary MCU enables reception of the data for updating the firmware.

When starting of updating the firmware, send this command first.

Table 1-7 Specifications of the FWUP START Command

Item Value
Command 0x01
Command argument 0x00
Command result 0x00: Processing succeeded. / 0x02: Processing failed.
Command data size Desired data length which can be set according to section 2.6,
Compiler Settings.
Response data size 0
Command data Desired data
Response data None
RO1AN7757EJ0100 Rev.1.00 Page 8 of 43

May.20.25 RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

(2) WRITE: Writing the updated firmware

This command sends the data for the updated firmware to the secondary MCU and requests writing of the
firmware.

The secondary MCU runs the processing for writing. It also runs signature verification processing when the
data for the updated firmware are in the final block.

Table 1-8 Specifications of the FWUP WRITE Command

Item Value

Command 0x02

Command argument 0x00

Command result 0x00: Processing succeeded. / 0x01: Signature verification succeeded.
/ 0x02: Processing failed.

Command data size An integer multiple of the ROM writing unit of the secondary MCU.
The data size can be set according to section 2.6, Compiler Settings.

Response data size 0x04

Command data Data for the updated firmware

Response data Size of data for the remaining updated firmware

(3) INSTALL: Installing the updated firmware

This command requests installing and executing the updated firmware which has been written to the
secondary MCU.

Table 1-9 Specifications of the FWUP INSTALL Command

Item Value

Command 0x03

Command argument 0x00

Command result 0x00: Processing succeeded. / 0x02: Processing failed.
Command data size 0

Response data size 0

Command data None

Response data None

(4) CANCEL: Canceling of updating the firmware
This command requests canceling of updating the firmware for the secondary MCU.

The secondary MCU stops updating the firmware and erases the updated firmware that has been written.

Table 1-10 Specifications of the FWUP CANCEL Command

Item Value
Command 0x04
Command argument 0x00
Command result 0x00: Processing succeeded. / 0x02: Processing failed.
Command data size 0
Response data size 0
Command data None
Response data None
RO1AN7757EJ0100 Rev.1.00 Page 9 of 43

May.20.25 RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

1.6.2.2 Flow of Communications for the FWUP Commands

Figure 1-7 shows the flow of communications for the commands when the firmware of the secondary MCU is

to be updated by using the FWUP commands.

Primary MCU Secondary MCU
Sends the FWUP START
command.
----- >
Receives the FWUP START
command.
Makes the transition to the state
for receiving updated firmware.
Sends the FWUP START
response.
P —
Receives the FWUP START
response.
Sends the FWUP WRITE
command.
----- >
Receives the FWUP WRITE
command.
Writes the received data for the
updated firmware to the ROM by
using the APl of FWUP FIT.
Sends the FWUP WRITE
response.
P —

Receives the FWUP WRITE
response.

Repeats the above communications from the FWUP WRITE command

until all data for the updated

firmware have been received.

Sends the FWUP INSTALL
command.

Receives the FWUP INSTALL
command.

Installs the updated firmware and
prepares for execution of the
updated firmware after sending
the response.

Sends the FWUP INSTALL
response.

Receives the FWUP INSTALL
response.

Executes the updated firmware.

Figure 1-7 Flow of Communications for the FWUP Commands

RO1AN7757EJ0100 Rev.1.00
May.20.25 RENESAS

Page 10 of 43

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

1.7 Handling Errors

If the secondary MCU fails in attempting to analyze the header of a received command packet, it will send
the received command header to the primary MCU. However, the command version is overwritten with that
set in the secondary MCU. Also, the command data size is overwritten as 0. In this case, no processing for
the command proceeds. Analyzing the header of the command packet will fail in the following cases.

e The header of the received command packet differs from the defined specifications.
¢ The command version of the received command packet differs from that which has been set in the

secondary MCU.

e The command class or command has an undefined value.
e The size of command data corresponding to the specified command data size was not received.

The primary MCU side can detect the failure of the header analysis on the secondary MCU side by
confirming that the most significant bit of command info in the received packet is “0: Command”.

1.8 Overview of API Functions

Table 1-11 lists the API functions included in this module.

Table 1-11 List of APl Functions

Function

Description

R_FWUPCOMM_Open()

Opens a communications channel for use by or
within this module.

R_FWUPCOMM_Close()

Closes a communications channel for use by or
within this module.

R_FWUPCOMM_CmdSend()

Sends a command for the secondary MCU and
receives a corresponding response.

R_FWUPCOMM_ProcessCmdLoop()

Receives a command from the primary MCU, runs
the corresponding handler, and sends the result of
executing the command.

RO1AN7757EJ0100 Rev.1.00
May.20.25

Page 11 of 43
RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

2. API Information

Operation of this module was confirmed under the following conditions.

2.1 Hardware Requirements
The MCUs in use must support the following function.

e SCI

2.2 Software Requirements
This module depends on the following drivers.

e Board support package (r_bsp)
e Serial communications interface (r_sci)

2.3 Supported Toolchains

The module has been confirmed to work with the toolchains listed in section 6.1, Environments for
Confirming Operation.

2.4 Header Files
All API calls and their supporting interface definitions are stated in r_fwupcomm_if.h.

Configuration options which can be set during building are defined in r_fwupcomm_config.h.

2.5 Integer Types
This module uses ANSI C99. The integer types for use are defined in stdint.h.

RO1AN7757EJ0100 Rev.1.00 Page 12 of 43
May.20.25 RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

2.6 Compiler Settings

The file r_fwupcomm_config.h contains the configuration option settings for this module.

The names of the options and descriptions of their settings are listed in Table 2-1.

Table 2-1 Configuration Settings (r_fwupcomm_config.h)

Configuration Option (r_fwupcomm_config.h)
FWUPCOMM_CFG_PARAM_CHECKING_ENABLE
*The default setting is 0.

0: Checking of parameters in the code at the time of
building is omitted.

1: Checking of parameters in the code at the time of
building is included.

Setting BSP_CFG_PARAM_CHECKING_ENABLE
selects use of the default setting for the system.

FWUPCOMM_CFG_DEVICE_PRIMARY
*The default setting is 0.

0: Secondary MCU
1: Primary MCU

FWUPCOMM_CFG_SCI_UART_CHANNEL
*The default setting is 1.

Sets the SCI channel number to be used for
communications.

FWUPCOMM_CFG_SCI_UART_BAUDRATE
*The default setting is 115200.

Sets the baud rate for UART communications.

FWUPCOMM_CFG_SCI_UART_INT_PRIORITY
*The default setting is 15.

Sets the priority of interrupts from the SCI channel to
be used for communications.

FWUPCOMM_CFG_SEND_PACKET_BUFFER_SIZE
*The default setting is 1500.

Sets the size of the transmission buffer for
commands.

FWUPCOMM_CFG_RECV_PACKET_BUFFER_SIZE
*The default setting is 1500.

Sets the size of the reception buffer for commands.

FWUPCOMM_CFG_DEVICE_ADDRESS
*The default setting is OxAOQ.

Sets a specific address for the device.

FWUPCOMM_CFG_CMD_SEND_TIMEOUT
*The default setting is 500.

Sets the timeout time for sending in
communications. Unit is milliseconds.

FWUPCOMM_CFG_CMD_RECV_TIMEOUT
*The default setting is 500.

Sets the timeout time for receiving in
communications. Unit is milliseconds.

FWUPCOMM_CFG_CMD_COMMON_ENABLE
*The default setting is 1.

Select whether to enable the Common command.

FWUPCOMM_CFG_CMD_HANDLER_COMMON
*The default setting is
R_FWUPCOMM_CmdHandler_Common.

Sets the name of the handler function to be called
when a Common command is received.

FWUPCOMM_CFG_CMD_HANDLER_FWUP
*The default setting is 1.

Select whether to enable the FWUP command.

FWUPCOMM_CFG_CMD_HANDLER_FWUP
*The default setting is R_FWUPCOMM_CmdHandler_FWUP.

Sets the name of the handler function to be called
when an FWUP command is received.

FWUPCOMM_CFG_CMD_VER
*The default setting is 1.

Sets the version number of commands.

FWUPCOMM_CFG_CMD_FWUP_START_DATA _SIZE
*The default setting is 0.

Sets the size of data to be included with the
FWUP_START command.

FWUPCOMM_CFG_CMD_FWUP_WRITE_FW_BLOCK_SIZE
*The default setting is 1024.

Sets the size of the block of firmware to be included
with the FWUP_WRITE command.

FWUPCOMM_CFG_CMD_COMMON_MAX_DATA_SIZE
*The default setting is 10.

Sets the maximum size of data to be included with a
common command.

RO1AN7757EJ0100 Rev.1.00
May.20.25

Page 13 of 43

RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

The configuration option settings for the SCI FIT module used with this module are contained in
r_sci_rx_config.h.

Table 2-2 describes the names of options and values of settings for the SCI FIT module. For details on the
options, refer to RX Family SCI Module Using Firmware Integration Technology (RO1AN1815).

Table 2-2 Configuration Settings (r_sci_rx_config.h)

Configuration Option (r_sci_rx_config.h)

SCI_CFG_CHx_INCLUDED Includes resources such as the transmission and
*1. CHx = CHO to CH12 reception buffers, counters, interrupts, other programs,
*2. The default settings for each of the channels are as and areas of RAM for each of the channels.
follows. Specify 1 for the same SCI channel number as that
CHO =1, CH1to CH12=0 specified with
FWUPCOMM_CFG_SCI_UART_CHANNEL.
SCI_CFG_CHx_TX_BUFSIZ Specifies the buffer size used for the transmission
*1. CHx = CHO to CH12 queues of each channel in asynchronous mode.
*2. The default setting for each channel is 80. Specify the buffer size which was specified for
FWUPCOMM_CFG_SEND_PACKET_BUFFER_SIZE.
SCI_CFG_CHx_RX_BUFSIZ Specifies the buffer size used for the reception queues of
*1. CHx = CHO to CH12 each channel in asynchronous mode.
*2. The default setting for each channel is 80. Specify the buffer size which was specified for
FWUPCOMM_CFG_RECV_PACKET_BUFFER_SIZE.
SCI_CFG_TEI_INCLUDED Enables the transmission complete interrupt for serial
*The default setting is 0. transmission.
Specify 1 because this FIT module uses the serial
transmission complete interrupt.

RO1AN7757EJ0100 Rev.1.00 Page 14 of 43
May.20.25 RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

2.7 Code Size of the Sample Projects

Table 2-3 lists the ROM and RAM sizes for the sample projects included in the package for this application
note. The values in the table were confirmed under the following conditions.

Module revision: r_fwupcomm rev.1.00
Compiler versions: Renesas Electronics C/C++ Compiler for RX Family V3.07.00
GCC for Renesas RX 8.3.0.202411
CC-RX

e Optimization level(-optimize): Level 2: Performs whole module optimization
e Optimization type(-speed/-size): Optimizes with emphasis on code size
o Delete variables or functions to which there is no reference (-optimize=symbol_delete)

GCC
e Optimization level: Size (-Os)

Table 2-3ROM and RAM Sizes for the Sample Projects(Half Update Method)

ROM and RAM Code Sizes
Device Category I(\:/Igrg(ry Used (Byte) GCC Project Name
RX140 ROM 25681 21308 app_rx140_fpb_wo_buffer
29328 31184 bootloader rx140 fpb_wo_buffer
RAM 13380 13308 app_rx140_fpb_wo_buffer
8869 10108 bootloader_rx140 fpb_wo_buffer
RX23E-B | ROM 25783 21392 app_rx23eb_rssk_wo_buffer
13823 13820 bootloader_rx23eb_rssk_wo_buffer
RAM 14629 14629 app_rx23eb_rssk_wo_buffer
8986 10236 bootloader_rx23eb_rssk_wo_buffer
RX261 ROM 26574 22356 app_rx261_fpb_wo_buffer
29830 32232 bootloader_rx261_fpb_wo_buffer
RAM 13777 13692 app_rx261 fpb_wo_buffer
9107 10492 bootloader_rx261_fpb_wo_buffer
RX66T ROM 28155 24788 app_rx66t_rsk_wo_buffer
37654 34804 bootloader rx66t_rsk_wo_buffer
RAM 14350 13564 app_rx66t_rsk_wo_buffer
10641 14460 bootloader_rx66t_rsk _wo_buffer
RX660 ROM 28139 24708 app_rx660_tb_wo_buffer
38048 34420 bootloader _rx660 tb_wo_buffer
RAM 13729 14204 app_rx660_tb_wo_buffer
10496 14588 bootloader_rx660_tb wo_buffer
RO1AN7757EJ0100 Rev.1.00 Page 15 of 43

May.20.25 RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

Table 2-4 ROM and RAM Sizes for the Sample Projects(Full Update Method)

ROM and RAM Code Sizes

Memory Used (Byte)

Device Category CC-RX GCC Project Name
RX140 ROM 25681 21308 app_rx140_fpb_wo_buffer
29328 31184 bootloader _rx140 fpb_wo_buffer
RAM 13380 13308 app_rx140_fpb_wo_buffer
8869 10108 bootloader_rx140 fpb_wo_buffer
RX23E-B | ROM 25783 21392 app_rx23eb_rssk_wo_buffer
13823 13820 bootloader _rx23eb_rssk_wo_buffer
RAM 14629 14629 app_rx23eb_rssk_wo_buffer
8986 10236 bootloader_rx23eb_rssk_wo_buffer
RX261 ROM 26574 22356 app_rx261_fpb_wo_buffer
29830 32232 bootloader _rx261 fpb_wo_buffer
RAM 13777 13692 app_rx261_fpb_wo_buffer
9107 10492 bootloader_rx261_fpb_wo_buffer
RX660 ROM 28155 24788 app_rx66t_rsk_wo_buffer
37654 34804 bootloader_rx66t_rsk_wo_buffer
RAM 14350 13564 app_rx66t_rsk_wo_buffer
10641 14460 bootloader_rx66t_rsk _wo_buffer

RO1AN7757EJ0100 Rev.1.00

May.20.25

RENESAS

Page 16 of 43

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

2.8 Arguments

This section shows the definitions of structures and enumerated types that are used as arguments of the API
functions. The definitions of these types are described in r_fwupcomm_if.h, along with the prototype
declarations of the API functions.

/* Structure used for registering a timer interface */
typedef struct r fwupcomm timer

{

r fwupcomm start timer t start; // Pointer to the function to start counting by a timer
r fwupcomm stop timer t stop; // Pointer to the function to stop counting by a timer

} r fwupcomm timer t;

/* Structure used as an argument of the Open function during initialization */
typedef struct r fwupcomm cfg
{

r fwupcomm timer t timer; // Timer interface

} r fwupcomm cfg t;

/* Structure for specifying command information */
struct r fwupcomm cmd info

{

uint8 t device address; // Address of the destination device for a command

uint8 t class; // Command class

uint8 t type; // Command

uint8 t arg; // Command argument
uintl6 t data size; // Command data size
const void *data; // Pointer to command data
uint8 t id; // Command ID

/* Structure for storing response information */

struct r fwupcomm resp info

{
int8 t result; // Command result
void *data; // Pointer to the destination for storing response data
uintl6 t data size; // Size of the destination for storing response data

}i

/* Structure used as an argument of the CmdSend function when a command is to be sent */
struct r fwupcomm cmd instr

{

uintlé_t timeout ms; // Timeout time from sending the command to receiving the response
r fwupcomm cmd info t cmd; // Command information

r fwupcomm resp_info_t resp; // Destination for storing response information

RO1AN7757EJ0100 Rev.1.00 Page 17 of 43
May.20.25 RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

/* Enumerated type for defining the command classes */
typedef enum
{
FWUPCOMM CMD CLS COMMON = 0, // Common command
FWUPCOMM CMD CLS_FWUP, // FWUP command
FWUPCOMM CMD NUM CLS // Number of defined command classes
} r fwupcomm cmd class t;

/* Enumerated type for defining commands of the common command class */
typedef enum
{

FWUPCOMM CMD COMMON DATA SEND = 0, // DATA SEND command

FWUPCOMM CMD COMMON DATA RECV, // DATA RECV command

FWUPCOMM CMD COMMON NUM COMMANDS // Number of defined common commands
} r fwupcomm cmd type common t;

/* Enumerated type for defining commands of the FWUP command class */
typedef enum
{

FWUPCOMM_CMD FWUP_START = 0, // START command

FWUPCOMM CMD FWUP_WRITE, // WRITE command

FWUPCOMM CMD FWUP INSTALL, // INSTALL command

FWUPCOMM CMD FWUP_ CANCEL, // CANCEL command

FWUPCOMM CMD FWUP NUM COMMANDS // Number of defined FWUP commands

} r fwupcomm cmd type fwup t;

RO1AN7757EJ0100 Rev.1.00 Page 18 of 43
May.20.25 RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

2.9 Return Values

This section describes the return values of the API functions. The enumerated type is defined in
r_fwupcomm_if.h, along with the prototype declarations of the API functions.

typedef enum

{
FWUPCOMM_SUCCESS = 0,

FWUPCOMM ERR INVALID PTR, // The pointer passed as an argument was NULL.
FWUPCOMM_ERR_INVALID ARG, // The parameter passed as an argument was invalid.
FWUPCOMM_ERR_NOT_OPEN, // The module has not been opened.

FWUPCOMM ERR_ALREADY OPEN, // The module has already been initialized.
FWUPCOMM_ERR_INVALID CMD, // An invalid command was received.

FWUPCOMM ERR_INVALID RESP, // The received response was invalid.

FWUPCOMM_ERR_RECV_RESP_TIMEOUT, // A timeout occurred before a response was received.
FWUPCOMM_ERR NO_ CMD, // No command was received.

FWUPCOMM ERR _CH ALREADY OPEN, // The communications channel has already been opened.

FWUPCOMM ERR_CH_ SEND, // Sending of data in the communications channel failed.
FWUPCOMM_ERR_CH_ SEND BUSY, // The communications channel was busy so sending of data failed.
FWUPCOMM_ERR _CH RECV, // Receiving of data from the communications channel failed.
FWUPCOMM ERR CH RECV_NO DATA, // The communications channel does not have enough received data.

} fwupcomm err t;

2.10 Adding the FIT Module to Your Project
The module must be added to each project in which it is used.

Renesas recommends the method using the Smart Configurator described in (1) below. However, the Smart
Configurator only supports some RX devices. Use the method under (2) for RX devices that are not
supported by the Smart Configurator.

(1) Adding the FIT module to your project by using the Smart Configurator in the e? studio

By using the Smart Configurator in the e? studio, the FIT module is automatically added to your project. Refer
to “RX Smart Configurator User’'s Guide: e? studio (R20AN0451)” for details.

(2) Adding the FIT module to your project by using the FIT Configurator in the e? studio

By using the FIT Configurator in the e? studio, the FIT module is automatically added to your project. Refer to
“RX Family Adding Firmware Integration Technology Modules to Projects (RO1AN1723)” for details.

2.11 “for”, “while” and “do while” Statements

",

In this module, “for”, “while”, and “do while” statements (loop processing) are used in processing to wait for
registers to reflect written values and so on. For such loop processing, the comment “WAIT_LOOP” is written
as a keyword. Therefore, if the user wishes to incorporate fail-safe processing into the loop processing, the
user can search for the corresponding processing by using “WAIT_LOOP”.

The following listings are examples of such loop processing.

RO1AN7757EJ0100 Rev.1.00 Page 19 of 43
May.20.25 RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

while statement example:
/* WAIT LOOP */
while (0 == SYSTEM.OSCOVFSR.BIT.PLOVF)
{
/* The delay period needed is to make sure that the PLL has stabilized. */

for statement example:

/* Initialize reference counters to 0. */

/* WAIT_LOOP */

for (i = 0; i < BSP_REG _PROTECT TOTAL ITEMS; i++)
{

g _protect counters[i] = 0;

do while statement example:
/* Reset completion waiting */
do
{
reg = phy read(ether channel, PHY REG CONTROL) ;
count++;
} while ((reg & PHY CONTROL RESET) && (count < ETHER CFG PHY DELAY RESET));
/* WAIT LOOP */

RO1AN7757EJ0100 Rev.1.00 Page 20 of 43
May.20.25 RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

3. API Functions
3.1 R_FWUPCOMM_Open Function

Table 3-1 Specifications of the R_FWUPCOMM_Open Function

Format fwupcomm_err_t R_ FWUPCOMM_Open(r_fwupcomm_hdl_t *hdl, void *cfg)
Description | Opens a communications channel for use by or within this module. This function must be
executed before other API functions are used.
Parameters | hdl: Handler of the module
cfg: Structure variable with information required for initializing modules
Return FWUPCOMM_SUCCESS The channel was successfully initialized.
Values FWUPCOMM_ERR_INVALID_PTR The pointer passed as an argument was
NULL.
FWUPCOMM_ERR_ALREADY_OPEN Opening has already proceeded.
FWUPCOMM_ERR_CH_ALREADY_OPEN | The communications channel has already
been opened.
FWUPCOMM_ERR_NOT_OPEN Initializing the communications channel
failed.
Special —
Notes
Example:

fwupcomm err t fwupcomm err;

r fwupcomm hdl t fwupcomm hdl = {0};

r fwupcomm cfg t fwupcomm cfg;
fwupcomm cfg.timer.start = demo_ start timer;
fwupcomm cfg.timer.stop = demo stop timer;

fwupcomm err = R FWUPCOMM Open (&fwupcomm hdl,

&fwupcomm cfqg) ;

3.2 R_FWUPCOMM_Close Function

Table 3-2 Specifications of the R_FWUPCOMM_Close Function

Format fwupcomm_err_ t R FWUPCOMM_Close(r_fwupcomm_hdl_t *hdl)
Description | Closes a communications channel for use by or within this module.
Parameters | hdl: Handler of the module
Return FWUPCOMM_SUCCESS Closing was successful.
Values FWUPCOMM_ERR_NOT_OPEN The module has not been opened.
FWUPCOMM_ERR_INVALID_PTR The pointer passed as an argument is NULL.
Special —
Notes
Example:

fwupcomm err =

R _FWUPCOMM Close (&fwupcomm hdl) ;

RO1AN7757EJ0100 Rev.1.00
May.20.25

Page 21 of 43

RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

3.3 R_FWUPCOMM_CmdSend Function

Table 3-3 Specifications of the R_FWUPCOMM_CmdSend Function

Format fwupcomm_err_t R_ FWUPCOMM_CmdSend(r_fwupcomm_hdl_t *hdl,
r_fwupcomm_cmd_instr_t *cmd_instr)
Description | Sends a command for the secondary MCU and receives a corresponding response.
Parameters | hdl: Handler of the module
cmd_instr: Structure variable with information on the command to be sent and the
destination for storing the response
Return FWUPCOMM_SUCCESS The command was successfully
Values completed.
FWUPCOMM_ERR_NOT_OPEN The module has not been opened.
FWUPCOMM_ERR_INVALID_PTR The pointer passed as an argument was
NULL.
FWUPCOMM_ERR_INVALID_ARG The parameter passed as an argument
was invalid.
FWUPCOMM_ERR_CH_SEND Sending of data in the communications
channel failed.
FWUPCOMM_ERR_CH_RECV Receiving of data from the communications
channel failed.
FWUPCOMM_ERR_RECV_RESP_TIMEOUT | A timeout occurred before a response was
received.
Special —
Notes
Example:
r fwupcomm cmd info t cmd = {0};
r fwupcomm resp info t resp = {0};
uint8 t resp datafl4] = {0};
cmd.device address = 0xAQ;
cmd.class = FWUPCOMM CMD CLS FWUP;
cmd.type = FWUPCOMM CMD FWUP START;
cmd.arg = 0;
cmd.data = NULL;
cmd.data size = 0;

resp.data = resp data;

r fwupcomm cmd instr t cmd instruction =

{

.timeout ms = 5000,
.cmd = cmd,
.resp = resp

b

fwupcomm err = R _FWUPCOMM CmdSend (&fwupcomm hdl, &cmd instruction);

RO1AN7757EJ0100 Rev.1.00
May.20.25

Page 22 of 43
RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

3.4 R_FWUPCOMM_ProcessCmdLoop Function
Table 3-4 Specifications of the R_FWUPCOMM_ProcessCmdLoop Function

Format fwupcomm_err_t R_ FWUPCOMM_ProcessCmdLoop(r_fwupcomm_hdl_t *hdl)
Description | Receives a command from the primary MCU, runs the corresponding handler, and sends
the result of executing the command. Periodically execute this function in the secondary
MCU while it is waiting for commands.

Parameters | hdl: Handler of the module

Return FWUPCOMM_SUCCESS The channel was successfully initialized.
Values FWUPCOMM_ERR_NOT_OPEN The module has not been opened.
FWUPCOMM_ERR_INVALID_PTR The pointer passed as an argument was
NULL.
FWUPCOMM_ERR_INVALID_ARG The parameter passed as an argument
was invalid.
FWUPCOMM_ERR_NO_CMD No command was received.
FWUPCOMM_ERR_INVALID_CMD An invalid command was received.
FWUPCOMM_ERR_CH_SEND Sending of data in the communications
channel failed.
FWUPCOMM_ERR_CH_RECV Receiving of data from the communications
channel failed.
Special —
Notes
Example:
do

{
fwupcomm err = R FWUPCOMM ProcessCmdLoop (&fwupcomm hdl) ;
}while((FWUPCOMM_SUCCESS == fwupcomm err) || (FWUPCOMM ERR NO CMD == fwupcomm err)) ;

RO1AN7757EJ0100 Rev.1.00 Page 23 of 43
May.20.25 RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

4. Extending the Functionality of This Module

This chapter describes how to add commands to this module and change the method of communications.

4.1 Adding Commands

This section describes how to define desired commands in addition to the FWUP and common commands
which have already been defined for this module. Here, ADDITIONAL1 and ADDITIONAL2 commands
having the UserDefined command class name are added as an example.

(1) Create a source file such as r_fwupcomm_cmd_user_defined.c and a header file such as
r_fwupcomm_cmd_user_defined.h.
Include the r_fwupcomm_if.h header file and also include the header file of the created UserDefined
commands in the source file.

(2) Create an enumerated type for defining the UserDefined commands, such as
r_fwupcomm_cmd_class_user_defined_t shown below, in the header file and define enumerators to
indicate the ADDITIONAL1 and ADDITIONAL2 commands. Define an enumerator to indicate the number
of elements as the last enumerator of the enumerated type.

typedef enum

{
FWUPCOMM CMD USERDEFINED ADDITIONALI,
FWUPCOMM CMD USERDEFINED ADDITIONALZ,
FWUPCOMM CMD USERDEFINED NUM COMMANDS

} r fwupcomm cmd class user defined t;

(3) Define an array of the r_fwupcomm_cmd_table_t type in the source file and place information on the
ADDITIONAL1 and ADDITIONAL2 commands as the two elements of the array.

const r fwupcomm cmd table t
r fwupcomm user defined cmd table[FWUPCOMM CMD USERDEFINED NUM COMMANDS] =

{
{ FWUPCOMM CMD USERDEFINED ADDITIONALl, 0x01, 0U, 0U },
{ FWUPCOMM CMD USERDEFINED ADDITIONAL2, 0x02, 0U, 0U }
}s;

The r_fwupcomm_cmd_table_t type is a structure defined in r_fwupcomm_if.h. Each of the members is
defined as follows.

typedef struct r fwupcomm cmd table
{

uint8 t type; // Value indicating this command (enumerator)

uint8 t value; // Actual value used for communications by this command
uintl6_t cmd data max size; // Maximum size of the command data of this command
uintl6 t resp data max size; // Maximum size of the response data of this command

} r fwupcomm cmd table t;

RO1AN7757EJ0100 Rev.1.00 Page 24 of 43
May.20.25 RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

(4) Define the handler function which describes the processing to be executed when the secondary MCU
receives the UserDefined command in the source file.
The pointer variable of the r_fwupcomm_cmd_info_t type contains the information on the received
command such as pointers to the command arguments or command data. Refer to such command
information to run the processing within the handler function. After that, store the information on
responses to be sent to the primary MCU (command results, pointer to the response data, and response
data size) in a pointer variable of the r_fwupcomm_resp_info_t type as the argument.

void R _FWUPCOMM CmdHandler UserDefined(r fwupcomm cmd info t *cmd,
r fwupcomm resp info t *resp)

if ((NULL == cmd) | | (NULL == resp))
{

return;

if (cmd->type >= FWUPCOMM CMD USERDEFINED NUM COMMANDS)
{

return;

switch (cmd->type)
{
case FWUPCOMM CMD USERDEFINED ADDITIONALL:
/* Describe the processing to be executed upon receiving the ADDITIONALl command. */
break;
case FWUPCOMM CMD USERDEFINED ADDITIONALZ:
/* Describe the processing to be executed upon receiving the ADDITIONAL2 command. */

break;

(5) Declare an array of the r_fwupcomm_cmd_table_t type for the UserDefined command, which was
previously defined in the source file, in the header file as extern. Similarly, write a prototype declaration
for the handler function of the UserDefined command.

extern const r fwupcomm cmd table t r fwupcomm user defined cmd table
[FWUPCOMM_ CMD TOMMON_ NUM_ COMMANDST;

#if FWUPCOMM CFG _DEVICE PRIMARY == (0) // Macro which enables only the secondary MCU

void R FWUPCOMM CmdHandler UserDefined (r fwupcomm cmd info t *cmd,
r fwupcomm resp info t *resp);

#endif

(6) Include the header file for the UserDefined command in the
r_fwupcomms¥src¥commands¥r_fwupcomm_cmd.h file.

#include "r fwupcomm cmd common.h"
#include "r fwupcomm cmd fwup.h"

#include " r fwupcomm cmd user defined.h"

RO1AN7757EJ0100 Rev.1.00 Page 25 of 43
May.20.25 RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

(7) Add an enumerator indicating the UserDefined command to the r_fwupcomm_cmd_class_t enumerated
type which is defined in the r_fwupcomm_cmd.h file.

typedef enum

{
FWUPCOMM CMD CLS COMMON = 0,
FWUPCOMM CMD CLS FWUP,
FWUPCOMM CMD CLS USERDEFINED,
FWUPCOMM CMD NUM CLS

} r fwupcomm cmd class t;

(8) Add the UserDefined command to the array of the r_fwupcomm_cmd_def table_t type which is defined in
the r_fwupcomm_cmd.c file.

const r fwupcomm cmd def table t r fwupcomm cmd def table list[] =

{

[FWUPCOMM CMD CLS COMMON] = {r fwupcomm common cmd table, FWUPCOMM CMD COMMON NUM COMMANDS},
[FWUPCOMM CMD CLS_FWUP] = {r_fwupcomm fwup cmd table, FWUPCOMM_ CMD_FWUP_ NUM COMMANDS},
[FWUPCOMM_CMD CLS_USERDEFINED] = {r_ fwupcomm user defined cmd table,

FWUPCOMM CMD USERDEFINED NUM COMMANDS}

As stated, the r_fwupcomm_cmd_def _table t type is defined in r_fwupcomm_cmd.h. Specify the array of
the r_fwupcomm_cmd_table t type defined in the source file as the table member. Specify the number of
commands in that command class as the num_cmd member.

typedef struct

{
const r fwupcomm cmd table t *table;
uint8 t num cmd;

} r fwupcomm cmd def table t;

(9) Add the handler functions of the UserDefined command defined in the source file to the array of the
R_FWUPCOMM_CmdHandler_t type which is defined in the r_fwupcomm_cmd.c file.

#if FWUPCOMM CFG_DEVICE PRIMARY == (0) // Macro which enables only the secondary MCU
const R FWUPCOMM CmdHandler t r fwupcomm cmd handler 1list[FWUPCOMM CMD NUM CLS] =
{

[FWUPCOMM_CMD_CLS_COMMON] = FWUPCOMM CFG_CMD HANDLER COMMON,
[FWUPCOMM_CMD_CLS_FWUP] = FWUPCOMM CFG_CMD HANDLER FWUP,
[FWUPCOMM CMD CLS USERDEFINED] = R FWUPCOMM CmdHandler UserDefined
}i
#endif

The steps described above are used for adding commands. For further information, refer to the definition
files for the FWUP commands (r_fwupcomm_cmd_fwup.c and r_fwupcomm_cmd_fwup.h) and for the
common commands (r_fwupcomm_cmd_common.c and r_fwupcomm_cmd_common.h) in the
r_fwupcomms¥src¥commands folder.

RO1AN7757EJ0100 Rev.1.00 Page 26 of 43
May.20.25 RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

4.2 Changing the Method of Communications

This module only supports UART communications via the SCI. This section describes how to change to
another method of communications.

4.2.1 Communications Interface
This module specifies the communications interface for packet communications. It is defined in

r_fwupcommy¥src¥connectivity¥r_fwupcomm_ch.h as follows.

typedef struct r fwupcomm ch api

{

fwupcomm err t

void

fwupcomm err t

fwupcomm err t

(*open) (void) ;

(*close) (void) ;

void (*rx_ flush) (void);

} r fwupcomm ch api t;

(*send) (uint8 t *src, uintl6 t size);
(*recv) (uint8 t *dest, uintl6_t size);

4.2.1.1 fwupcomm_err_t (*open)(void)

Table 4-1 Specifications of the open Function

Format fwupcomm_err_t (*open)(void)

Description | Opens a communications channel.

Parameters | —

Return FWUPCOMM_SUCCESS The channel was successfully initialized.

Values FWUPCOMM_ERR_CH_ALREADY_OPEN | The communications channel has already
been opened.

FWUPCOMM_ERR_NOT_OPEN Initializing the communications channel

failed.

Special —

Notes

4.2.1.2 void (*close)(void)

Table 4-2 Specifications of the close Function

Format

void (*close)(void)

Description

Closes a communications channel.

Parameters

Return
Values

Special
Notes

RO1AN7757EJ0100 Rev.1.00

May.20.25

RENESAS

Page 27 of 43

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

4.2.1.3 fwupcomm_err_t (*send)(uint8_t *src, uintl6_t size)

Table 4-3 Specifications of the send Function

Format fwupcomm_err_t (*send)(uint8_t *src, uint16_t size)
Description | Sends data by using a communications channel.
Parameters | src: Pointer to the destination for storing data to be sent
size: Size of data to be sent

Return FWUPCOMM_SUCCESS The channel was successfully initialized.
Values FWUPCOMM_ERR_INVALID_PTR The src pointer is NULL.
FWUPCOMM_ERR_INVALID_ARG size is 0.
FWUPCOMM_ERR_NOT_OPEN The communications channel has not been
opened.

FWUPCOMM_ERR_CH_SEND_BUSY The communications channel was busy so
sending of data failed.
FWUPCOMM_ERR_CH_SEND Sending of data in the communications
channel failed.

Special —
Notes

4.2.1.4 fwupcomm_err_t (*recv)(uint8_t *dest, uint16_t size)

Table 4-4 Specifications of the recv Function

Format fwupcomm_err_t (*recv)(uint8_t *dest, uint16_t size)
Description | Receives data by using a communications channel.
Parameters | dest: Pointer to the buffer for storing received data
size: Required size of received data

Return FWUPCOMM_SUCCESS The channel was successfully initialized.
Values FWUPCOMM_ERR_INVALID_PTR The dest pointer is NULL.
FWUPCOMM_ERR_INVALID_ARG size is 0.
FWUPCOMM_ERR_NOT_OPEN The communications channel has not been
opened.
FWUPCOMM_ERR_CH_RECV_NO_DATA | The communications channel does not have
enough received data.

Special —
Notes

4.2.1.5 void (*rx_flush)(void)

Table 4-5 Specifications of the rx_flush Function

Format void (*rx_flush)(void)

Description | Empties the reception buffer of the communications channel.
Parameters | —

Return —

Values
Special —
Notes

RO1AN7757EJ0100 Rev.1.00 Page 28 of 43
May.20.25 RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

4.2.2 How to Change the Method of Communications
(1) Implement the functions for communications interfaces described in section 4.2.1 by using the method of
communications you wish to use.

(2) Define the r_fwupcomm_ch_api variable of the const r_fwupcomm_ch_api_t type, and initialize the
functions which have been created for the communications interface as shown below.

const r fwupcomm ch api t r fwupcomm ch api =

{ .open = r fwupcomm rx sci uart open, // open
.close = r fwupcomm rx sci uart close, // close
.send = r fwupcomm rx sci uart send, // send
.recv = r_ fwupcomm rx sci uart recv, // recv
.rx_flush = r fwupcomm rx sci uart rx flush // rx_flush

}s

(3) Create a header file with a name such as r_fwupcomm_ch_user_defined.h to declare the
r_fwupcomm_ch_api variable as extern.

extern r fwupcomm ch api t const r fwupcomm ch api;

(4) Add the definition of the communications interface to the r_fwupcomm¥src¥r_fwupcomm_private.h file in
such a way that the newly created header file is included instead of the one that has been previously
created.

#define FWUPCOMM CH RX SCI UART (1)
#define FWUPCOMM CH USERDEFINED (2)
#define FWUPCOMM USE CH (FWUPCOMM CH USERDEFINED)
#if (FWUPCOMM USE CH == FWUPCOMM CH RX_SCI UART)
#include "r fwupcomm rx sci uart.h"
#elif (FWUPCOMM USE CH == FWUPCOMM CH USERDEFINED)
#include "r fwupcomm ch user defined.h"
#endif

That ends the description of how to change the method of communications.

RO1AN7757EJ0100 Rev.1.00 Page 29 of 43
May.20.25 RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

5. Demonstration Projects

This demonstration projects are sample programs for updating the firmware of the secondary MCU, as
shown in Figure 5-1. The primary MCU is connected to a PC and receives the firmware for use in updating
that of the secondary MCU via serial communications from the PC. The primary MCU then transfers that
firmware to the secondary MCU by using the FWUP Comm module.

3 's
Primary MCU Secondary MCU

Serial communications Serial communications |

P | FWUP Comm. » FWUP Comm. |
—-—“-..R { /-;7
‘\.\ ,f
e - PR L
s‘)‘ P
-.,“ ‘,’

“==={1010}"""
010

Figure 5-1 Configuration of the Demonstrations

5.1 Configuration for the Demonstration Projects

5.1.1 Primary MCU
Only the RX65N device is used for the demonstration project in the primary MCU side.

o FreeRTOS environment: FITDemos¥rx65n-ck¥(compiler name)¥app_rx65n_ck_primary_frtos
e Bare-metal environment: FITDemos¥rx65n-ck¥(compiler name)¥app_rx65n_ck_primary

5.1.2 Secondary MCU

Demonstration projects in the secondary MCU are classified into folders for each of the supported device
groups.

e Partial update method in linear mode: FITDemos¥(board hame)¥w_buffer¥(compiler name)¥(project
name)

¢ Full update method in linear mode: FITDemos¥(board name)¥wo_buffer¥(compiler name)¥(project name)

Boot loader projects:

e Partial update method in linear mode: bootloader_(board name) w_buffer
o Full update method in linear mode: bootloader_(board name)_wo_buffer

Application projects:

o Partial update method in linear mode: app_(board name)_w_buffer
o Full update method in linear mode: app_(board name)_wo_buffer:

RO1AN7757EJ0100 Rev.1.00 Page 30 of 43
May.20.25 RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

5.2 Preparing an Operating Environment

To update the firmware of the secondary MCU, use the firmware updating module. To run the demonstration
projects, you need to install certain tools on your Windows PC.

5.2.1 Installing TeraTerm

TeraTerm is used to transfer the firmware updating image via serial communications from a Windows PC to
the primary MCU. For the demonstration project, the operation was confirmed with TeraTerm 4.106.

After installation, make the serial port communications settings listed in Table 5-1.

Table 5-1 Specifications for Communications

Item Description
Communications system Asynchronous
Bit rate 115200 bps
Data length 8 bits

Parity None

Stop bit 1 bit

Flow control RTS/CTS

5.2.2 Installing the Python Execution Environment
The Python execution environment is used by Renesas Image Generator (image-gen.py) to create the initial
and updating images.

Renesas Image Generator uses ECDSA to generate signature data. For the demonstration project, the
operation was confirmed with Python 3.10.4.

The Python encryption library (pycryptodome) is also used. Accordingly, after installing Python, execute the
following pip command from the command prompt to install the library.

pip install pycryptodome

5.2.3 Installing the Flash Writer
A flash writer is required to write the initial image.

Renesas Flash Programmer V3.18.00 is used with the demonstration projects.

Renesas Flash Programmer (Programming GUI) | Renesas

RO1AN7757EJ0100 Rev.1.00 Page 31 of 43
May.20.25 RENESAS

https://www.renesas.com/en/software-tool/renesas-flash-programmer-programming-gui

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

5.3 Procedure for Executing a Demonstration Project

This section describes an example of the procedure for executing a demonstration project with the use of an
RX140 device. The procedure for executing the demonstration project is common to other MCU products;
however, only the environment for confirming the operation differs with the MCU. Confirm the environment
(section 6.1, Environments for Confirming Operation) for the MCU product you intend to use. The procedure
for executing the demo project is also common for the CC-RX compiler and GCC compiler environments.

5.3.1 Execution Environment

Prepare the environment for confirming the operation with an RX140 (6.3.1). For MCU products other than
RX140 devices, refer to the environment for confirming the operation of the applicable product.

5.3.2 Building the Demonstration Projects
Follow the steps below to build the projects for the primary and secondary MCUs.

5.3.2.1 Primary MCU

(1) Import the app_rx65n_ck_primary project into the e? studio and build the project. For the full update
method, change the “FWUP_FULL_UPDATE” macro definition to (1) in
app_rx65n_ck_primary¥src¥app_rx65n_ck_primary.h before the build.

) #define FWUP_FULL_UPDATE (D]

(2) Confirm that the following MOT file has been generated in the HardwareDebug folder for the project.
— app_rx65n_ck_primary.mot

5.3.2.2 Creating Initial and Updating Images for the Secondary MCU

The procedure for creating the initial and updating images, using initial_firm.mot as the name of the initial
image and update_firm.mot as the name of the updating image, is described below. This is the procedure for
the partial update method, but the procedure is the same for the full update method, so please replace
projects used with those for the full update method.

(1) Import the bootloader_rx140 fpb_w_buffer and app_rx140 fpb_w_buffer projects into the e? studio and
build the projects.

(2) Confirm that the following MOT files have been generated in the HardwareDebug folder for each project.
— bootloader_rx140_fpb_w_buffer.mot
— app_rx140_fpb_w_buffer.mot

(3) Store the MOT files created by building the demonstration project in the
bootloader rx140 fpb_w_buffer¥src¥smc_gen¥r_fwup¥tool folder. Also store the
FITDemos¥keys¥secp256rl.privatekey file there as well.

image-gen.py

RX140 Linear_Full_ImageGenerator PRM.csv
RX140_Linear_Half_ImageGenerator_ PRM.csv
secp256rl.privatekey
bootloader rx140 fpb_w_buffer.mot

app_rx140 fpb_w_buffer.mot

RO1AN7757EJ0100 Rev.1.00 Page 32 of 43
May.20.25 RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

(4) Execute the following command in the bootloader_rx140 fpb_w_buffer¥src¥smc_gen¥r_fwup¥tool folder
to create the initial image. For the full update method, use RX140_Linear_Full_ImageGenerator PRM.csv
instead of RX140_Linear_Half ImageGenerator PRM.csv.

python .¥image-gen.py -iup ".¥app rx140 fpb w buffer.mot" -
ip .¥RX140 Linear Half ImageGenerator PRM.csv -o initial firm -ibp
".¥bootloader rx140 fpb w buffer.mot" -vt ecdsa -key ".¥secp256rl.privatekey"

(5) Open the app_rx140_fpb_w_buffer¥src¥fwupcomm_demo_main.h file. Change the definition of
DEMO_VER_MAJOR from (1) to (2) and rebuild the app_rx140_fpb_w_buffer project. After that, store the
MOT files created by building the project in the tool folder.

| #idefine DEMO_VER_MAIJOR (2)
#define DEMO_VER_MINOR (@)
#define DEMO_VER_BUILD (@)

(6) Execute the following command to create the updating image. For the full update method, use
RX140_Linear_Full_ImageGenerator_PRM.csv instead of
RX140_Linear_Half_ImageGenerator_PRM.csv.

python .¥image-gen.py -iup ".¥app rx140 fpb w buffer.mot" -
ip .¥RX140 Linear Half ImageGenerator PRM.csv -o update firm -vt ecdsa -key
".¥secp256rl.privatekey"”

Confirm that the initial and updating images have been generated in the tool folder.

Image-gen.py
RX140_Linear_Full_ImageGenerator PRM.csv
RX140 Linear_Half_ImageGenerator PRM.csv
secp256rl.privatekey
bootloader _rx140 fpb_w_buffer.mot
app_rx140_fpb_w_buffer.mot

initial_firm.mot

update_firm.rsu

5.3.3 Programming the Initial Image
Use the flash writer to program app_rx65n_ck_primary.mot to the MCU on the CK-RX65Nv2 board.

Similarly, use the flash writer to program the initial image (initial_firm.mot) to the MCU on the FPB-RX140
board. After programming is finished, turn off the power to the board and disconnect the debugger (E2 Lite).

RO1AN7757EJ0100 Rev.1.00 Page 33 of 43
May.20.25 RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

5.3.4 Executing a Firmware Update

Once the initial image firmware has been activated, it waits for the transfer of the updating image through the
primary MCU. The received updating image is programmed to the flash memory, and after the transfer is
completed, the signature of the updating image is verified and the firmware is activated.

Follow the steps below to execute a firmware update.

(1) Launch two TeraTerm windows on the PC, select the serial COM ports for the primary MCU (CK-
RX65Nv2) and the secondary MCU (FPB-RX140) in the respective windows, and configure the

connection settings.

(2) Turn on the board. The following messages will be output to the TeraTerm windows.

Primary MCU side:

= RX65N : FWUPCOMM DEMO [Primary] ====
Send image(*.rsu) via UART.

Secondary MCU side:

==== RX140 : BootLoader [with buffer] ====

verify install area main [sig-sha256-ecdsa]..

execute image ..
==== RX140 :

. 0K

FWUPCOMM DEMO [Secondary][with buffer]

ver. 1.0.0 ====

RO1AN7757EJ0100 Rev.1.00
May.20.25

RENESAS

Page 34 of 43

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

(3) Send the updating image via TeraTerm.

Click on [Send file] from the [File] menu of TeraTerm for the primary MCU side. Select update_firm.rsu

then [Binary] as the option and click on [Open].

The following messages are output during the transfer of the updating image, a software reset is applied
after installation and signature verification are completed, and the firmware from the updating image is

executed.

The version number output in the last message from the secondary MCU having been incremented

indicates that the upedate was successful.

Primary MCU side:

Send FWUP_START command... OK.

Send FWUP_WRITE command... OK. (1024 bytes sent, remaining 38912 bytes.)
Send FWUP_WRITE command... OK. (1024 bytes sent, remaining 37888 bytes.)

Send FWUP_WRITE command... OK. (1024 bytes sent, remaining 2048 bytes.)
Send FWUP_WRITE command... OK. (1024 bytes sent, remaining 1024 bytes.)

Send FWUP_INSTALL command... OK.
Firmware update for the device(@xA@) is successful.

Secondary MCU side:

Received FWUPCOMM_CMD_FWUP_START command.
Received FWUPCOMM_CMD_FWUP_WRITE command. size=1024

W OxFFF78000, 512 ... OK
W OxFFF78200, 256 ... OK
W OxFFF78300, 256 ... OK

Received FWUPCOMM_CMD_FWUP_WRITE command. size=1024
W OxFFF78400, 1024 ... OK

Received FWUPCOMM_CMD_FWUP_WRITE command. size=1024

W OxFFF81400, 1024 ... OK
Received FWUPCOMM_CMD_FWUP_WRITE command. size=1024
W OxFFF81800, 768 ... OK
W OxFFFEFF@O, 256 ... OK

verify install area buffer [sig-sha256-ecdsa]...OK
Received FWUPCOMM_CMD_FWUP_INSTALL command.
software reset...

==== RX140 : BootLoader [with buffer] ====

verify install area buffer [sig-sha256-ecdsa]...OK
activating image ... OK

software reset...

==== RX140 : BootLoader [with buffer] ====

verify install area main [sig-sha256-ecdsa]...OK
execute image ...

==== RX140 : FWUPCOMM DEMO [Secondary][with buffer] ver.

RO1AN7757EJ0100 Rev.1.00
May.20.25 RENESAS

Page 35 of 43

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

6. Appendices

6.1 Environments for Confirming Operation
This section describes environments in which the operation of this module has been confirmed.

Table 6-1 Environment for Confirming Operation (CC-RX)

Item

Description

Integrated development
environment

e? studio 2025-04 from Renesas Electronics

C compiler C/C++ Compiler for RX Family V3.07.00 from Renesas Electronics
Compiler option: The following option is added to the default settings of the integrated
development environment.
-lang = c99

Endian Little endian

Revision of the module Rev. 1.00

Board used

Fast Prototyping Board for RX140 MCU Group (product No.: RTK5FP1400S00001BE)
Renesas Solution Starter Kit for RX23E-B (product No.: RTKOES1001C00001BJ)
Fast Prototyping Board for RX261 MCU Group (product No.: RTK5FP2610S00001BE)
Target Board for RX660 (product No.: RTK5RX6600C00000BJ)

Renesas Starter Kit for RX66T (product No.: RTK50566TOS00000BE)

Cloud Kit for RX65N Microcontroller Group (product No.: RTK5CK65N0S08001BE)

USB-to-serial conversion
board

Pmod USBUART (from DIGILENT)
https://digilent.com/reference/pmod/pmodusbuart/start

Table 6-2 Environment for Confirming Operation (GCC)

Item

Description

Integrated development
environment

e? studio 2025-04 from Renesas Electronics

C compiler GCC for Renesas RX 8.3.0.202411
Compiler option: The following option is added to the default settings of the integrated
development environment.
-std=gnu99

Endian Little endian

Revision of the module Rev. 1.00

Board used

Fast Prototyping Board for RX140 MCU Group (product No.: RTK5FP1400S00001BE)
Renesas Solution Starter Kit for RX23E-B (product No.: RTKOES1001C00001BJ)
Fast Prototyping Board for RX261 MCU Group (product No.: RTK5FP2610S00001BE)
Target Board for RX660 (product No.: RTK5RX6600C00000BJ)

Renesas Starter Kit for RX66T (product No.: RTK50566TOSO0000BE)

Cloud Kit for RX65N Microcontroller Group (product No.: RTK5CK65N0S08001BE)

USB-to-serial conversion
board

Pmod USBUART (from DIGILENT)
https://digilent.com/reference/pmod/pmodusbuart/start

RO1AN7757EJ0100 Rev.1.00 Page 36 of 43

May.20.25

RENESAS

https://digilent.com/reference/pmod/pmodusbuart/start
https://digilent.com/reference/pmod/pmodusbuart/start

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

6.2 Settings for UART Communications

Table 6-3 lists the settings for UART communications by this module.

Table 6-3 Settings for UART Communications

ltem Description

Data length 8 bits

Parity None

Stop bit 1 bit

Flow control None

Bit rate 1 Mbps
RO1AN7757EJ0100 Rev.1.00 Page 37 of 43
May.20.25 RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

6.3 Operating Environment for the Demonstration Projects
This section shows the configurations of connections of each device for the demonstration projects.

For the PMOD pins of the evaluation board and the USB-to-serial conversion board in the figure, pins 1 to 6
of the PMOD interface are connected to pins 1 to 6 of the USB-to-serial conversion board (Pmod

USBUART).

6.3.1 Environment for Confirming Operation with an RX140

The configuration of connect

ions is shown below.

USB-to-
E L
b1 board
A
CK-RX65Nv2 PMOD1 FPB-RX140
IUSE-m-ser\al
T cug;zz\un PMOD1
GND] J: GND
RXBEN J |:| RX140 {
]
B I
|:| R -t ;=E =
USB
Figure 6-1 Configuration of Connections on the FPB-RX140

Table 6-4 Correspondence of Connected Pins for UART Communications between the CK-RX65Nv2

and FPB-RX140

CK-RX65Nv2

J24 pin 7: GND

J23 pin 2: D1/TXD

J23 pin 1: DO/RXD

FPB-RX140

J10 pin 7

J12 pin 1: DO/RX

J12 pin 2: D1/TX

RO1AN7757EJ0100 Rev.1.00

May.20.25

RENESAS

Page 38 of 43

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

6.3.2 Environment for Confirming Operation with an RX23E-B
The configuration of connections is shown below.
Please make the following settings to supply power to the RSSK-RX23E-B from the USB-to-serial conversion
board.
— Short-circuit “Pins 1-2” of jumper JP1 on the RSSK-RX23E-B.

— Short-circuit “Pins 1-2” of jumper JP3 on the RSSK-RX23E-B.
— Short-circuit “Pins VCC-SYS” of jumper JP1 on the USB-to-serial conversion board (Pmod

USBUART).
USB_—tn-
E L omon
board
CK-RXB5Nv2 RSSK-RX23 Z oo | | ovion:
USB-to-serial
.[cogxézrrilun PMOD1 /
GND
RXB5N RX23E-B

XD
RXD

Figure 6-2 Configuration of Connections on the RSSK-RX23E-B

Table 6-5 Correspondence of Connected Pins for UART Communications between the CK-RX65Nv2
and RSSK-RX23E-B

CK-RX65Nv2 RSSK-RX23E-B
J24 pin 7: GND PMOD?2 pin 5
J23 pin 2: D1/TXD PMOD?2 pin 3
J23 pin 1: DO/RXD PMOD?2 pin 2
RO1AN7757EJ0100 Rev.1.00 Page 39 of 43

May.20.25 RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

6.3.3 Environment for Confirming Operation with an RX261

The configuration of connections is shown below.

M

CK-RX65Nv2

IUSB—Iu—senal
conversion |PMOD1
I board

RXB5N

’ﬁ_

USB-to-
serial

lconversion

board

PMOD1

FPB-RX261

1 g1

TXD

H ——S IR0

RX261

RXD

Figure 6-3 Configuration of Connections on the FPB-RX261

Table 6-6 Correspondence of Connected Pins for UART Communications between the CK-RX65Nv2

and FPB-RX261

CK-RX65Nv2

J24 pin 7: GND

J23 pin 2: D1/TXD

J23 pin 1: DO/RXD

FPB-RX261

J10 pin7

J12 pin 1: DO/RX

J12 pin 2: D1/TX

RO1AN7757EJ0100 Rev.1.00

May.20.25 RENESAS

Page 40 of 43

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

6.3.4 Environment for Confirming Operation with an RX66T
The configuration of connections is shown below.

Please make the following settings to supply power to the RSK-RX66T from the DC power connector (5V).

— Short-circuit jumper J7 on the RSK-RX66T.

Power
supply

-
CK-RX65Nv2

USB-to-serial
conversion (PMOD1

‘[board

DC PWR
IN (5V)

GND

RX65N

XD
RXD

~
RSK-RX66T

RX66T

Figure 6-4 Configuration of Connections on the RSK-RX66T

Table 6-7 Correspondence of Connected Pins for UART Communications between the CK-RX65Nv2

and RSK-RX66T

CK-RX65Nv2 RSK-RX66T

J24 pin 7: GND PMOD1 pin 5
J23 pin 2: D1/TXD PMODL1 pin 3
J23 pin 1: DO/RXD PMOD1 pin 2

RO1AN7757EJ0100 Rev.1.00
May.20.25 RENESAS

Page 41 of 43

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

6.3.5 Environment for Confirming Operation with an RX660
The configuration of connections is shown below.

1.

CK-RX65Nv2 TB-RX660

l USB-to-serial

conversion |PMOD1
T board /
GND /

RXB5N RX660

\

USB-to-serial
conversion
board

f

Figure 6-5 Configuration of Connections on the TB-RX660

Table 6-8 Correspondence of Connected Pins for UART Communications between the CK-RX65Nv2
and TB-RX660

CK-RX65Nv2 TB-RX660
J24 pin 7: GND PMODL1 pin 11
J23 pin 2: D1/TXD PMODL1 pin 10
J23 pin 1: DO/RXD PMODL1 pin 9

Table 6-9 Correspondence of Connected Pins for UART Communications between the TB-RX660 and
USB-to-serial Conversion Board (Pmod USBUART)

TB-RX660 Pmod USBUART
MCU header CN2 pin 22 Pin 2
MCU header CN2 pin 20 Pin 3
MCU header CN2 pin 12 Pin 5
RO1AN7757EJ0100 Rev.1.00 Page 42 of 43

May.20.25 RENESAS

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

Revision History

Rev.

Date

Description

Page

Summary

1.00

May.20.25

First edition issued

RO1AN7757EJ0100 Rev.1.00

May.20.25

RENESAS

Page 43 of 43

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V.
(Max.) and Vi (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Viu (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of
your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the
use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas
Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas
Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’'s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc.
Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products
outside of such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you
are responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. ltis the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

(Notel) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.
(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 2020.10)

Corporate Headquarters Contact information

TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology, the most up-to-date
Koto-ku, Tokyo 135-0061, Japan version of a document, or your nearest sales office, please visit:
WWww.renesas.com www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 About the Firmware Updating Communications Module
	1.2 Supported Communications IP and Hardware Configuration
	1.3 Software Configuration
	1.3.1 Setting UART Communications

	1.4 Packet Communications
	1.5 Data Format
	1.5.1 Data Format of Packets

	1.6 Specifications of Commands
	1.6.1 Common Commands
	(1) DATA_SEND: Sending data
	(2) DATA_RECV: Receiving data

	1.6.2 FWUP Commands
	(1) START: Starting of updating the firmware
	(2) WRITE: Writing the updated firmware
	(3) INSTALL: Installing the updated firmware
	(4) CANCEL: Canceling of updating the firmware
	1.6.2.2 Flow of Communications for the FWUP Commands

	1.7 Handling Errors
	1.8 Overview of API Functions

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Toolchains
	2.4 Header Files
	2.5 Integer Types
	2.6 Compiler Settings
	2.7 Code Size of the Sample Projects
	2.8 Arguments
	2.9 Return Values
	2.10 Adding the FIT Module to Your Project
	(1) Adding the FIT module to your project by using the Smart Configurator in the e2 studio
	(2) Adding the FIT module to your project by using the FIT Configurator in the e2 studio

	2.11 “for”, “while” and “do while” Statements

	3. API Functions
	3.1 R_FWUPCOMM_Open Function
	3.2 R_FWUPCOMM_Close Function
	3.3 R_FWUPCOMM_CmdSend Function
	3.4 R_FWUPCOMM_ProcessCmdLoop Function

	4. Extending the Functionality of This Module
	4.1 Adding Commands
	4.2 Changing the Method of Communications
	4.2.1 Communications Interface
	4.2.1.1 fwupcomm_err_t (*open)(void)
	4.2.1.2 void (*close)(void)
	4.2.1.3 fwupcomm_err_t (*send)(uint8_t *src, uint16_t size)
	4.2.1.4 fwupcomm_err_t (*recv)(uint8_t *dest, uint16_t size)
	4.2.1.5 void (*rx_flush)(void)

	4.2.2 How to Change the Method of Communications

	5. Demonstration Projects
	5.1 Configuration for the Demonstration Projects
	5.1.1 Primary MCU
	5.1.2 Secondary MCU

	5.2 Preparing an Operating Environment
	5.2.1 Installing TeraTerm
	5.2.2 Installing the Python Execution Environment
	5.2.3 Installing the Flash Writer

	5.3 Procedure for Executing a Demonstration Project
	5.3.1 Execution Environment
	5.3.2 Building the Demonstration Projects
	5.3.2.1 Primary MCU
	(1) Import the app_rx65n_ck_primary project into the e2 studio and build the project. For the full update method, change the “FWUP_FULL_UPDATE” macro definition to (1) in app_rx65n_ck_primary\src\app_rx65n_ck_primary.h before the build.

	5.3.2.2 Creating Initial and Updating Images for the Secondary MCU

	5.3.3 Programming the Initial Image
	5.3.4 Executing a Firmware Update

	6. Appendices
	6.1 Environments for Confirming Operation
	6.2 Settings for UART Communications
	6.3 Operating Environment for the Demonstration Projects
	6.3.1 Environment for Confirming Operation with an RX140
	6.3.2 Environment for Confirming Operation with an RX23E-B
	6.3.3 Environment for Confirming Operation with an RX261
	6.3.4 Environment for Confirming Operation with an RX66T
	6.3.5 Environment for Confirming Operation with an RX660

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

