
 Application Note

R01AN7757EJ0110 Rev.1.10 Page 1 of 64

Dec.24.25

RX Family

Firmware Updating Communications Module Using Firmware Integration Technology

Introduction

This application note describes a firmware updating communications module using the Firmware Integration
Technology (FIT).

In a system consisting of a primary MCU and a secondary MCU, this module allows user updating of the
firmware of the secondary MCU. This application note explains how to use this module, incorporate its API
functions into user applications, and extend its functionality.

The release package associated with this application note includes two demonstration projects. You can
confirm the basic operation of the functionality for updating the firmware of the secondary MCU with the use
of this module by following the steps described in chapter 5, Demonstration Projects, to build an environment
to run the demonstration.

Operation Confirmation Devices

RX140 Group

RX23E-B Group

RX261 Group

RX65N Group

RX66T Group

RX660 Group

If you intend to use this application note with other Renesas MCUs, careful evaluation is recommended after
making modifications to suit the specifications of the alternative MCU.

Related Application Notes

• Firmware Integration Technology User’s Manual (R01AN1833)

• RX Family Adding Firmware Integration Technology Modules to Projects (R01AN1723)

• RX Family Board Support Package Module Using Firmware Integration Technology (R01AN1685)

• RX Family SCI Module Using Firmware Integration Technology (R01AN1815)

• RX Family RSPI Module Using Firmware Integration Technology (R01AN1827)

• RX Family Firmware Update Module Using Firmware Integration Technology (R01AN6850)

• RX Family MCUboot Firmware Integration Technology (R01AN7374)

Target Compilers

• Renesas Electronics C/C++ Compiler Package for RX Family

• GCC for Renesas RX

For details of the environments in which operation has been confirmed, refer to section 6.1, Environments for
Confirming Operation.

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 2 of 64

Dec.24.25

Contents

1. Overview .. 5

1.1 About the Firmware Updating Communications Module ... 5

1.2 Supported Communications IP and Hardware Configuration ... 5

1.2.1 UART Communications ... 5

1.2.2 SPI Communications ... 5

1.3 Software Configuration .. 6

1.3.1 Setting UART Communications .. 6

1.4 Packet Communications .. 7

1.5 Data Format ... 8

1.5.1 Data Format of Packets ... 8

1.6 Specifications of Commands ... 9

1.6.1 Common Commands .. 9

1.6.2 FWUP Commands .. 10

1.6.2.2 Flow of Communications for the FWUP Commands .. 13

1.7 Handling Errors.. 14

1.8 Overview of API Functions .. 14

2. API Information .. 15

2.1 Hardware Requirements ... 15

2.2 Software Requirements ... 15

2.3 Supported Toolchains ... 15

2.4 Header Files .. 15

2.5 Integer Types ... 15

2.6 Compiler Settings .. 16

2.7 Code Size of the Sample Projects .. 20

2.8 Arguments ... 22

2.9 Return Values .. 24

2.10 Adding the FIT Module to Your Project ... 24

2.11 “for”, “while” and “do while” Statements .. 24

3. API Functions .. 26

3.1 R_FWUPCOMM_Open Function .. 26

3.2 R_FWUPCOMM_Close Function .. 26

3.3 R_FWUPCOMM_CmdSend Function ... 27

3.4 R_FWUPCOMM_ProcessCmdLoop Function .. 28

4. Extending the Functionality of This Module ... 29

4.1 Adding Commands .. 29

4.2 Changing the Method of Communications .. 33

4.2.1 Communications Interface ... 33

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 3 of 64

Dec.24.25

4.2.1.1 fwupcomm_err_t (*open)(void) .. 33

4.2.1.2 void (*close)(void) .. 33

4.2.1.3 fwupcomm_err_t (*send)(uint8_t *src, uint16_t size) .. 34

4.2.1.4 fwupcomm_err_t (*recv)(uint8_t *dest, uint16_t size) ... 34

4.2.1.5 void (*rx_reset)(void) ... 34

4.2.2 How to Change the Method of Communications ... 35

5. Demonstration Projects ... 36

5.1 Configuration for the Demonstration Projects ... 36

5.1.1 Primary MCU ... 37

5.1.2 Secondary MCU .. 37

5.2 Preparing an Operating Environment .. 38

5.2.1 Installing TeraTerm ... 38

5.2.2 Installing the Python Execution Environment .. 38

5.2.3 Installing the Flash Writer .. 38

5.3 Procedure for Executing a Demonstration Project .. 39

5.3.1 Execution Environment ... 39

5.3.2 Building the Demonstration Projects ... 39

5.3.2.1 Creating Initial and Updating Images for the Primary MCU .. 39

5.3.2.2 Creating Initial and Updating Images for the Secondary MCU ... 40

5.3.3 Programming the Initial Image .. 41

5.3.4 Executing a Firmware Update ... 42

5.4 Procedure for Executing the MCUboot Project ... 44

5.4.1 Execution Environment ... 44

5.4.2 Building the Demonstration Projects ... 44

5.4.2.1 Creating Initial and Updating Images for the Primary MCU .. 44

5.4.2.2 Creating Initial and Updating Images for the Secondary MCU ... 46

5.4.3 Executing a Firmware Update ... 47

5.5 Procedure for Executing the Demo Project When the Communication Method Between the PC and

Primary MCU is XMODEM .. 48

5.6 Settings for the Demo Project When Using SPI Communication Between MCUs 50

6. Appendices .. 51

6.1 Environments for Confirming Operation .. 51

6.2 Settings for UART Communications ... 51

6.3 Operating Environment for the Demonstration Projects ... 52

6.3.1 Environment for Confirming Operation with an RX140 ... 52

6.3.1.1 Connection Configuration for UART Communications .. 52

6.3.1.2 Connection Configuration for SPI Communication ... 53

6.3.2 Environment for Confirming Operation with an RX23E-B ... 54

6.3.2.1 Connection Configuration for UART Communications .. 54

6.3.2.2 Connection Configuration for SPI Communication ... 55

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 4 of 64

Dec.24.25

6.3.3 Environment for Confirming Operation with an RX261 ... 56

6.3.3.1 Connection Configuration for UART Communications .. 56

6.3.3.2 Connection Configuration for SPI Communication ... 57

6.3.4 Environment for Confirming Operation with an RX66T ... 58

6.3.4.1 Connection Configuration for UART Communications .. 58

6.3.4.2 Connection Configuration for SPI Communication ... 59

6.3.5 Environment for Confirming Operation with an RX660 ... 60

6.3.5.1 Connection Configuration for UART Communications .. 60

6.3.5.2 Connection Configuration for SPI Communication ... 61

6.3.6 Environment for Confirming Operation with an RX65N .. 62

6.3.6.1 Connection Configuration When the Communication Method Between the PC and Primary MCU is

XMODEM .. 62

6.3.6.2 Connection Configuration for SPI Communication Using RSPI with RSK-RX65N-2MB(TSIP) 63

Revision History .. 64

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 5 of 64

Dec.24.25

1. Overview

1.1 About the Firmware Updating Communications Module

The firmware updating communications module is middleware which controls communications between
MCUs in which the secondary MCU receives firmware for use in updating from the primary MCU and applies
the firmware to updating in a system of the kind shown in Figure 1-1, consisting of the primary MCU and the
secondary MCU. Users can easily update the firmware of the secondary MCU by embedding this module
into the primary and secondary MCUs.

1.2 Supported Communications IP and Hardware Configuration

This module supports UART communications through serial communication interface (SCI) and synchronous
serial communications using either SCI or the serial peripheral interface (RSPI) as the communications
interfaces.

1.2.1 UART Communications

Figure 1-1 shows the hardware configuration for UART communications assumed for this module. The
primary and secondary MCUs have one-to-one connections on the same bus via two-wire UART (TXD and
RXD).

Figure 1-1 Hardware Configuration(UART)

1.2.2 SPI Communications

Figure 1-2 shows the hardware configuration for synchronous serial communication assumed for this
module. The primary MCU and secondary MCUs are connected on the same bus via a three-wire bus
(MOSI, MISO, SCLK).

Note that synchronous serial communication using SCI is supported only on the primary MCU side.

In SPI communication for this module, the MISO line is used to signal the primary MCU that the secondary
MCU is in a busy state and cannot communicate. When the Secondary MCU is busy, it outputs MISO low.
After returning from the busy state to a communicable state, the Secondary MCU changes MISO to open
drain. Therefore, when using this module for SPI communication, pull up the MISO line.

Figure 1-2 Hardware Configuration(SPI)

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 6 of 64

Dec.24.25

1.3 Software Configuration

Figure 1-3 (for the primary MCU) and Figure 1-4 (for the secondary MCU) show the configurations of the
software modules. This module is available for bare-metal and FreeRTOS projects.

Figure 1-3 Configuration of Software Modules in the Primary MCU

Figure 1-4 Configuration of Software Modules in the Secondary MCU

1.3.1 Setting UART Communications

The operation of this module has been confirmed with the settings for UART communications listed in
section 6.2, Settings for UART Communications.

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 7 of 64

Dec.24.25

1.4 Packet Communications

Packet communications proceed between primary and secondary MCUs via the communications interface.
The primary MCU sends request packets to the secondary MCU. When the secondary MCU receives a
request packet, it processes the command and sends the results to the primary MCU as a response packet.
Figure 1-5 shows the flow of packet communications.

Primary MCU Secondary MCU

Sends a request packet.

 ----->

 Receives the request packet.

 Processes the command.

 Sends a response packet.

 <-----

Receives the response packet.

Figure 1-5 Flow of Packet Communications

All commands are classified according to their individual purposes, and the classification is called the
command class.

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 8 of 64

Dec.24.25

1.5 Data Format

This section describes the specifications for packet communications between the primary and secondary
MCUs. The specification of the data format is independent of the method of physical communications
between the MCUs.

1.5.1 Data Format of Packets

Figure 1-6 shows the data format of command packets, each of which consists of a command header and
command data.

Figure 1-6 Data Format of Command Packets

Figure 1-7 shows the data format of response packets.

Figure 1-7 Data Format of Response Packets

Table 1-1 lists the specifications of the headers of packets.

Table 1-1 Specifications of the Headers of Packets

Item Description

Device address Device address of the secondary MCU to which the command is sent.

The secondary MCU only processes a command when it receives the command

with its own device address in the header.

• 0x00 – 0xFD: Device address of the secondary MCU

• 0xFE: Broadcast address

• 0xFF: Reserved.

Command version Version of the command. The secondary MCU only processes a command when

the version of the command is the same as that of the command on the secondary

MCU.

0x00 – 0xFF

Command info • b7: 0: Command, 1: Response

• b4 – b6: Command class. Refer to section 1.6, Specifications of Commands.

• b0 – b3: Command ID

Command option • b7: 0: A response is to be sent. 1: No response is to be sent.

• b0 – b6: Reserved.

Command Indicates the command. Refer to section 1.6, Specifications of Commands.

Command

argument/result

Indicates an argument of the command when a command is being sent.

Indicates the result of executing the command when a response is being sent.

Refer to section 1.6, Specifications of Commands.

Command/Response

data size

Size of the command data or response data.

The size must be in bytes and a multiple of 4.

Header Command data

Device

Address

Command

version

Command

info

Command

option
Command

Command

argument

Command

data size

[LSByte]

Command

data size

[MSByte]

<------- Command data size ------->

Header Response data

Device

Address

Command

version

Command

info

Command

option
Command

Command

result

Response

data size

[LSByte]

Response

data size

[MSByte]

<------- Response data size ------->

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 9 of 64

Dec.24.25

1.6 Specifications of Commands

This module has definitions of FWUP commands to control updating of firmware of the secondary MCU and
common commands for general data communications.

Table 1-2 List of Command Class

Command class Description Value

Common Commands Commands for general data communications. 0x00

FWUP Commands Commands for controlling updating of firmware of the

secondary MCU.

0x01

1.6.1 Common Commands

The common commands are a set of commands for general purpose use. Table 1-3 lists the commands.

Table 1-3 List of Common Commands

Command Description Value

DATA_SEND: Sending data Sends data with the desired size to the secondary MCU. 0x01

DATA_RECV: Receiving data Requests sending of data with the desired size for the

secondary MCU.

0x02

(1) DATA_SEND: Sending data

This command sends data to the secondary MCU.

Table 1-4 Specifications of the COMMON DATA_SEND Command

Item Value

Command 0x01

Command argument 0x00

Command result 0x00: Processing succeeded. / 0x02: Processing failed.

Command data size Desired data length which can be set according to section 2.6,

Compiler Settings.

Response data size 0

Command data Desired data

Response data None

(2) DATA_RECV: Receiving data

This command requests sending of data for the secondary MCU.

Table 1-5 Specifications of the COMMON DATA_RECV Command

Item Value

Command 0x02

Command argument 0x00

Command result 0x00: Processing succeeded. / 0x02: Processing failed.

Command data size 0

Response data size Desired data length which can be set according to section 2.6,

Compiler Settings.

Command data None

Response data Desired data

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 10 of 64

Dec.24.25

1.6.2 FWUP Commands

FWUP commands are a group of commands used in updating of the firmware. Table 1-6 lists the FWUP
commands.

Table 1-6 List of FWUP Commands

Command Description Value

START: Starting of updating the firmware Starts updating the firmware. 0x01

WRITE: Writing the updated firmware Writes the updated firmware. 0x02

INSTALL: Installing the updated firmware Installs and executes the updated

firmware.

0x03

CANCEL: Canceling of updating the

firmware

Cancels updating of the firmware. 0x04

VERSION: Confirming the Firmware

Version

Confirms the currently running

firmware version.

0xF0

(1) START: Starting of updating the firmware

This command requests starting of updating the firmware of the secondary MCU.

The desired data length can be set for the command data. It is used for sending data which are required for
initialization processing on the user side when updating of the firmware is started.

On reception of this command, the secondary MCU enables reception of the data for updating the firmware.

When starting of updating the firmware, send this command first.

Table 1-7 Specifications of the FWUP START Command

Item Value

Command 0x01

Command argument 0x00

Command result 0x00: Processing succeeded. / 0x02: Processing failed.

Command data size Desired data length which can be set according to section 2.6,

Compiler Settings.

Response data size 0

Command data Desired data

Response data None

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 11 of 64

Dec.24.25

(2) WRITE: Writing the updated firmware

This command sends the data for the updated firmware to the secondary MCU and requests writing of the
firmware.

The secondary MCU runs the processing for writing. It also runs signature verification processing when the
data for the updated firmware are in the final block.

Table 1-8 Specifications of the FWUP WRITE Command

Item Value

Command 0x02

Command argument 0x00

Command result 0x00: Processing succeeded. / 0x01: Signature verification succeeded.

/ 0x02: Processing failed.

Command data size An integer multiple of the ROM writing unit of the secondary MCU.

The data size can be set according to section 2.6, Compiler Settings.

Response data size 0x04

Command data Data for the updated firmware

Response data Size of data for the remaining updated firmware

(3) INSTALL: Installing the updated firmware

This command requests installing and executing the updated firmware which has been written to the
secondary MCU.

Table 1-9 Specifications of the FWUP INSTALL Command

Item Value

Command 0x03

Command argument 0x00

Command result 0x00: Processing succeeded. / 0x02: Processing failed.

Command data size 0

Response data size 0

Command data None

Response data None

(4) CANCEL: Canceling of updating the firmware

This command requests canceling of updating the firmware for the secondary MCU.

The secondary MCU stops updating the firmware and erases the updated firmware that has been written.

Table 1-10 Specifications of the FWUP CANCEL Command

Item Value

Command 0x04

Command argument 0x00

Command result 0x00: Processing succeeded. / 0x02: Processing failed.

Command data size 0

Response data size 0

Command data None

Response data None

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 12 of 64

Dec.24.25

(5) VERSION: Confirming the Firmware Version

This command requests the current firmware version running on the secondary MCU.

Table 1-11 Specifications of the FWUP VERSION Command

Item Value

Command 0xF0

Command argument 0x00

Command result 0x00: Processing succeeded. / 0x02: Processing failed.

Command data size 0

Response data size 0

Command data None

Response data Currently running firmware version

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 13 of 64

Dec.24.25

1.6.2.2 Flow of Communications for the FWUP Commands

Figure 1-8 shows the flow of communications for the commands when the firmware of the secondary MCU is
to be updated by using the FWUP commands.

Primary MCU Secondary MCU

Sends the FWUP START

command.

 ----->

 Receives the FWUP START

command.

 Makes the transition to the state

for receiving updated firmware.

 Sends the FWUP START

response.

 <-----

Receives the FWUP START

response.

Sends the FWUP WRITE

command.

 ----->

 Receives the FWUP WRITE

command.

 Writes the received data for the

updated firmware to the ROM by

using the API of FWUP FIT.

 Sends the FWUP WRITE

response.

 <-----

Receives the FWUP WRITE

response.

Repeats the above communications from the FWUP WRITE command until all data for the updated

firmware have been received.

Sends the FWUP INSTALL

command.

 ----->

 Receives the FWUP INSTALL

command.

 Installs the updated firmware and

prepares for execution of the

updated firmware after sending

the response.

 Sends the FWUP INSTALL

response.

 <-----

Receives the FWUP INSTALL

response.

 Executes the updated firmware.

Figure 1-8 Flow of Communications for the FWUP Commands

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 14 of 64

Dec.24.25

1.7 Handling Errors

If the secondary MCU fails in attempting to analyze the header of a received command packet, it will send
the received command header to the primary MCU. However, the command version is overwritten with that
set in the secondary MCU. Also, the command data size is overwritten as 0. In this case, no processing for
the command proceeds. Analyzing the header of the command packet will fail in the following cases.

• The header of the received command packet differs from the defined specifications.

• The command version of the received command packet differs from that which has been set in the

secondary MCU.

• The command class or command has an undefined value.

• The size of command data corresponding to the specified command data size was not received.

The primary MCU side can detect the failure of the header analysis on the secondary MCU side by
confirming that the most significant bit of command info in the received packet is “0: Command”.

1.8 Overview of API Functions

Table 1-12 lists the API functions included in this module.

Table 1-12 List of API Functions

Function Description

R_FWUPCOMM_Open() Opens a communications channel for use by or

within this module.

R_FWUPCOMM_Close() Closes a communications channel for use by or

within this module.

R_FWUPCOMM_CmdSend() Sends a command for the secondary MCU and

receives a corresponding response.

R_FWUPCOMM_ProcessCmdLoop() Receives a command from the primary MCU, runs

the corresponding handler, and sends the result of

executing the command.

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 15 of 64

Dec.24.25

2. API Information

Operation of this module was confirmed under the following conditions.

2.1 Hardware Requirements

The MCUs in use must support the following function.

• SCI

• RSPI

2.2 Software Requirements

This module depends on the following drivers.

• Board support package (r_bsp)

• Serial communications interface (r_sci)

• Serial peripheral interface (r_rspi)

2.3 Supported Toolchains

The module has been confirmed to work with the toolchains listed in section 6.1, Environments for
Confirming Operation.

2.4 Header Files

All API calls and their supporting interface definitions are stated in r_fwupcomm_if.h.

Configuration options which can be set during building are defined in r_fwupcomm_config.h.

2.5 Integer Types

This module uses ANSI C99. The integer types for use are defined in stdint.h.

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 16 of 64

Dec.24.25

2.6 Compiler Settings

The file r_fwupcomm_config.h contains the configuration option settings for this module.

The names of the options and descriptions of their settings are listed in Table 2-1.

Table 2-1 Configuration Settings (r_fwupcomm_config.h)

Configuration Option (r_fwupcomm_config.h)

FWUPCOMM_CFG_PARAM_CHECKING_ENABLE

*The default setting is 0.

0: Checking of parameters in the code at the time of

building is omitted.

1: Checking of parameters in the code at the time of

building is included.

Setting BSP_CFG_PARAM_CHECKING_ENABLE

selects use of the default setting for the system.

FWUPCOMM_CFG_DEVICE_PRIMARY

*The default setting is 0.

0: Secondary MCU

1: Primary MCU

FWUPCOMM_CFG_CH_INTERFACE

*The default setting is 0.

Sets the communication IP and communication

method to use.

0: SCI UART

10: SCI SPI (Only when used as the primary MCU)

11: RSPI SPI

FWUPCOMM_CFG_SCI_UART_CHANNEL

*The default setting is 1.

Sets the SCI channel number to be used for UART

communications.

FWUPCOMM_CFG_SCI_UART_BITRATE

*The default setting is 115200.

Sets the bitrate for UART communications.

FWUPCOMM_CFG_SCI_UART_INT_PRIORITY

*The default setting is 15.

Sets the priority of interrupts from the SCI channel to

be used for UART communications.

FWUPCOMM_CFG_SPI_CHANNEL

*The default setting is 0.

Sets the SCI or RSPI channel number to be used for

SPI communications.

FWUPCOMM_CFG_SPI_BITRATE

*The default setting is 1000000.

Sets the bitrate for SPI communications.

FWUPCOMM_CFG_SPI_MISO_PORTNO

*The default setting is “A”.

Sets the MISO port number for SPI communication.

FWUPCOMM_CFG_SPI_MISO_BITNO

*The default setting is “0”.

Sets the pin number for the MISO port for SPI

communication.

FWUPCOMM_CFG_SPI_INT_PRIORITY

*The default setting is 15.

Sets the priority of interrupts from the SCI channel to

be used for SPI communications.

FWUPCOMM_CFG_SEND_PACKET_BUFFER_SIZE

*The default setting is 1048U.

Sets the size of the transmission buffer for

commands. The size must be specified as 8 or

greater and a multiple of 4.

FWUPCOMM_CFG_RECV_PACKET_BUFFER_SIZE

*The default setting is 1048U.

Sets the size of the reception buffer for commands.

The size must be specified as 8 or greater and a

multiple of 4.

FWUPCOMM_CFG_DEVICE_ADDRESS

*The default setting is 0xA0.

Sets a specific address for the device.

FWUPCOMM_CFG_CMD_SEND_TIMEOUT

*The default setting is 500U.

Sets the timeout time for sending in

communications. Unit is milliseconds.

FWUPCOMM_CFG_CMD_RECV_TIMEOUT

*The default setting is 500U.

Sets the timeout time for receiving in

communications. Unit is milliseconds.

FWUPCOMM_CFG_CMD_COMMON_ENABLE

*The default setting is 1.

Select whether to enable the Common command.

FWUPCOMM_CFG_CMD_HANDLER_COMMON Sets the name of the handler function to be called

when a Common command is received.

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 17 of 64

Dec.24.25

*The default setting is

R_FWUPCOMM_CmdHandler_Common.

FWUPCOMM_CFG_CMD_HANDLER_FWUP

*The default setting is 1.

Select whether to enable the FWUP command.

FWUPCOMM_CFG_CMD_HANDLER_FWUP

*The default setting is R_FWUPCOMM_CmdHandler_FWUP.

Sets the name of the handler function to be called

when an FWUP command is received.

FWUPCOMM_CFG_CMD_VER

*The default setting is 1.

Sets the version number of commands.

FWUPCOMM_CFG_CMD_FWUP_START_DATA_SIZE

*The default setting is 0U.

Sets the size of data to be included with the

FWUP_START command.

FWUPCOMM_CFG_CMD_FWUP_WRITE_FW_BLOCK_SIZE

*The default setting is 1024U.

Sets the size of the block of firmware to be included

with the FWUP_WRITE command.

FWUPCOMM_CFG_CMD_COMMON_MAX_DATA_SIZE

*The default setting is 12U.

Sets the maximum size of data to be included with a

common command.

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 18 of 64

Dec.24.25

The configuration option settings for the SCI FIT module used with this module are contained in
r_sci_rx_config.h.

Table 2-2 describes the names of options and values of settings for the SCI FIT module. For details on the
options, refer to RX Family SCI Module Using Firmware Integration Technology (R01AN1815).

Table 2-2 Configuration Settings (r_sci_rx_config.h)

Configuration Option (r_sci_rx_config.h)

SCI_CFG_ASYNC_INCLUDED

*The default setting is 1.

These #defines are used to include code specific to their

mode of operation.

If FWUPCOMM_CFG_CH_INTERFACE is 0 (SCI

UART), set it to “1”.

SCI_CFG_SSPI_INCLUDED

*The default setting is 0.

These #defines are used to include code specific to their

mode of operation.

If FWUPCOMM_CFG_CH_INTERFACE is 10 (SCI SPI),

set it to “1”.

SCI_CFG_CHx_INCLUDED

*1. CHx = CH0 to CH12

*2. The default settings for each of the channels are as

follows.

CH0 = 1, CH1 to CH12 = 0

Includes resources such as the transmission and

reception buffers, counters, interrupts, other programs,

and areas of RAM for each of the channels.

If FWUPCOMM_CFG_CH_INTERFACE is 0 (SCI

UART), specify 1 for the same SCI channel number as

that specified with

FWUPCOMM_CFG_SCI_UART_CHANNEL.

If FWUPCOMM_CFG_CH_INTERFACE is 10 (SCI SPI),

specify 1 for the same SCI channel number as that

specified with FWUPCOMM_CFG_SPI_CHANNEL.

SCI_CFG_CHx_TX_BUFSIZ

*1. CHx = CH0 to CH12

*2. The default setting for each channel is 80.

Specifies the buffer size used for the transmission

queues of each channel in asynchronous mode.

If FWUPCOMM_CFG_CH_INTERFACE is 0 (SCI

UART), specify the buffer size which was specified for

FWUPCOMM_CFG_SEND_PACKET_BUFFER_SIZE.

SCI_CFG_CHx_RX_BUFSIZ

*1. CHx = CH0 to CH12

*2. The default setting for each channel is 80.

Specifies the buffer size used for the reception queues of

each channel in asynchronous mode.

If FWUPCOMM_CFG_CH_INTERFACE is 0 (SCI

UART), specify the buffer size which was specified for

FWUPCOMM_CFG_RECV_PACKET_BUFFER_SIZE.

SCI_CFG_TEI_INCLUDED

*The default setting is 0.

Enables the transmission complete interrupt for serial

transmission.

If FWUPCOMM_CFG_CH_INTERFACE is 0 (SCI

UART), specify 1 because this FIT module uses the serial

transmission complete interrupt.

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 19 of 64

Dec.24.25

The configuration option settings for the RSPI FIT module used with this module are contained in
r_rspi_rx_config.h.

Table 2-2 describes the names of options and values of settings for the RSPI FIT module. For details on the
options, refer to RX Family RSPI Module Using Firmware Integration Technology (R01AN1827).

Table 2-3 Configuration Settings (r_rspi_rx_config.h)

Configuration Option (r_rspi_rx_config.h)

RSPI_CFG_HIGH_SPEED_READ Selects master transmission/master reception and

transmission mode.

Set this to 0 because this module is verified to operate in

normal mode.

RSPI_CFG_USE_CHANx

※1. CHANx = CHAN0～CHAN2

Enable the RSPI channels to use at build-time.

Set the channel number specified in

FWUPCOMM_CFG_SPI_CHANNEL.

RSPI_CFG_IR_PRIORITY_CHANx

※1. CHANx = CHAN0～CHAN2

Sets the shared interrupt priority for the channel.

This module has been verified to operate on 15.

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 20 of 64

Dec.24.25

2.7 Code Size of the Sample Projects

Table 2-4 lists the ROM and RAM sizes for the sample projects included in the package for this application
note. The values in the table were confirmed under the following conditions.

Module revision: r_fwupcomm rev.1.00

Compiler versions: Renesas Electronics C/C++ Compiler for RX Family V3.07.00

GCC for Renesas RX 14.2.0.202505

CC-RX

• Optimization level(-optimize): Level 2: Performs whole module optimization

• Optimization type(-speed/-size): Optimizes with emphasis on code size

• Delete variables or functions to which there is no reference (-optimize=symbol_delete)

GCC

• Optimization level: Size (-Os)

Table 2-4 ROM and RAM Sizes for the Sample Projects(Half Update Method)

ROM and RAM Code Sizes

Device Category
Memory Used (Byte)

Project Name
CC-RX GCC

RX140 ROM 28448 25460 app_rx140_fpb_wo_buffer

30018 22212 bootloader_rx140_fpb_wo_buffer

RAM 9088 10492 app_rx140_fpb_wo_buffer

6975 11132 bootloader_rx140_fpb_wo_buffer

RX23E-B ROM 35526 26712 app_rx23eb_rssk_wo_buffer

29838 22096 bootloader_rx23eb_rssk_wo_buffer

RAM 10471 14716 app_rx23eb_rssk_wo_buffer

7096 11388 bootloader_rx23eb_rssk_wo_buffer

RX261 ROM 36290 25940 app_rx261_fpb_wo_buffer

30401 22624 bootloader_rx261_fpb_wo_buffer

RAM 10423 14588 app_rx261_fpb_wo_buffer

7356 11516 bootloader_rx261_fpb_wo_buffer

RX66T ROM 37843 28168 app_rx66t_rsk_wo_buffer

31587 24820 bootloader_rx66t_rsk_wo_buffer

RAM 10844 14972 app_rx66t_rsk_wo_buffer

7581 11644 bootloader_rx66t_rsk_wo_buffer

RX660 ROM 39021 29220 app_rx660_tb_wo_buffer

31987 25056 bootloader_rx660_tb_wo_buffer

RAM 10700 14716 app_rx660_tb_wo_buffer

7036 11516 bootloader_rx660_tb_wo_buffer

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 21 of 64

Dec.24.25

Table 2-5 ROM and RAM Sizes for the Sample Projects(Full Update Method)

ROM and RAM Code Sizes

Device Category
Memory Used (Byte)

Project Name
CC-RX GCC

RX140 ROM 26081 19040 app_rx140_fpb_wo_buffer

28115 25524 bootloader_rx140_fpb_wo_buffer

RAM 13439 13564 app_rx140_fpb_wo_buffer

8917 14460 bootloader_rx140_fpb_wo_buffer

RX23E-B ROM 26195 19112 app_rx23eb_rssk_wo_buffer

27917 25380 bootloader_rx23eb_rssk_wo_buffer

RAM 13882 14076 app_rx23eb_rssk_wo_buffer

9034 14588 bootloader_rx23eb_rssk_wo_buffer

RX261 ROM 26966 19852 app_rx261_fpb_wo_buffer

28617 26328 bootloader_rx261_fpb_wo_buffer

RAM 13836 13948 app_rx261_fpb_wo_buffer

9155 14844 bootloader_rx261_fpb_wo_buffer

RX66T ROM 28741 22256 app_rx66t_rsk_wo_buffer

38155 28600 bootloader_rx66t_rsk_wo_buffer

RAM 14409 14332 app_rx66t_rsk_wo_buffer

10700 14844 bootloader_rx66t_rsk_wo_buffer

RX660 ROM 28741 22300 app_rx660_rsk_wo_buffer

38571 28868 bootloader_rx660_rsk_wo_buffer

RAM 13789 13820 app_rx660_rsk_wo_buffer

10556 14588 bootloader_rx660_rsk_wo_buffer

Table 2-6 ROM and RAM Sizes for the Sample Projects(MCUboot)

ROM and RAM Code Sizes

Device Category
Memory Used (Byte)

Project Name
CC-RX GCC

RX261 ROM 22699 19108 app_rx261_fpb_mcuboot

59196 52797 bootloader_rx261_fpb_mcuboot

RAM 12295 13692 app_rx261_fpb_mcuboot

12240 13564 bootloader_rx261_fpb_mcuboot

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 22 of 64

Dec.24.25

2.8 Arguments

This section shows the definitions of structures and enumerated types that are used as arguments of the API
functions. The definitions of these types are described in r_fwupcomm_if.h, along with the prototype
declarations of the API functions.

/* Structure used for registering a timer interface */

typedef struct r_fwupcomm_timer

{

 r_fwupcomm_start_timer_t start; // Pointer to the function to start counting by a timer

 r_fwupcomm_stop_timer_t stop; // Pointer to the function to stop counting by a timer

} r_fwupcomm_timer_t;

/* Structure used as an argument of the Open function during initialization */

typedef struct r_fwupcomm_cfg

{

 r_fwupcomm_timer_t timer; // Timer interface

} r_fwupcomm_cfg_t;

/* Structure for specifying command information */

struct r_fwupcomm_cmd_info

{

 uint8_t device_address; // Address of the destination device for a command

 uint8_t class; // Command class

 uint8_t type; // Command

 uint8_t arg; // Command argument

 uint16_t data_size; // Command data size

 const void *data; // Pointer to command data

 uint8_t id; // Command ID

};

/* Structure for storing response information */

struct r_fwupcomm_resp_info

{

 int8_t result; // Command result

 void *data; // Pointer to the destination for storing response data

 uint16_t data_size; // Size of the destination for storing response data

};

/* Structure used as an argument of the CmdSend function when a command is to be sent */

struct r_fwupcomm_cmd_instr

{

 uint16_t timeout_ms; // Timeout time from sending the command to receiving the response

 r_fwupcomm_cmd_info_t cmd; // Command information

 r_fwupcomm_resp_info_t resp; // Destination for storing response information

};

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 23 of 64

Dec.24.25

/* Enumerated type for defining the command classes */

typedef enum

{

 FWUPCOMM_CMD_CLS_COMMON = 0, // Common command

 FWUPCOMM_CMD_CLS_FWUP, // FWUP command

 FWUPCOMM_CMD_NUM_CLS // Number of defined command classes

} r_fwupcomm_cmd_class_t;

/* Enumerated type for defining commands of the common command class */

typedef enum

{

 FWUPCOMM_CMD_COMMON_DATA_SEND = 0, // DATA_SEND command

 FWUPCOMM_CMD_COMMON_DATA_RECV, // DATA_RECV command

 FWUPCOMM_CMD_COMMON_NUM_COMMANDS // Number of defined common commands

} r_fwupcomm_cmd_type_common_t;

/* Enumerated type for defining commands of the FWUP command class */

typedef enum

{

 FWUPCOMM_CMD_FWUP_START = 0, // START command

 FWUPCOMM_CMD_FWUP_WRITE, // WRITE command

 FWUPCOMM_CMD_FWUP_INSTALL, // INSTALL command

 FWUPCOMM_CMD_FWUP_CANCEL, // CANCEL command

 FWUPCOMM_CMD_FWUP_NUM_COMMANDS // Number of defined FWUP commands

} r_fwupcomm_cmd_type_fwup_t;

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 24 of 64

Dec.24.25

2.9 Return Values

This section describes the return values of the API functions. The enumerated type is defined in
r_fwupcomm_if.h, along with the prototype declarations of the API functions.

typedef enum

{

 FWUPCOMM_SUCCESS = 0,

 FWUPCOMM_ERR_INVALID_PTR, // The pointer passed as an argument was NULL.

 FWUPCOMM_ERR_INVALID_ARG, // The parameter passed as an argument was invalid.

 FWUPCOMM_ERR_NOT_OPEN, // The module has not been opened.

 FWUPCOMM_ERR_ALREADY_OPEN, // The module has already been initialized.

 FWUPCOMM_ERR_INVALID_CMD, // An invalid command was received.

 FWUPCOMM_ERR_INVALID_RESP, // The received response was invalid.

 FWUPCOMM_ERR_RECV_RESP_TIMEOUT, // A timeout occurred before a response was received.

 FWUPCOMM_ERR_NO_CMD, // No command was received.

 FWUPCOMM_ERR_CH_ALREADY_OPEN, // The communications channel has already been opened.

 FWUPCOMM_ERR_CH_SEND, // Sending of data in the communications channel failed.

 FWUPCOMM_ERR_CH_SEND_BUSY, // The communications channel was busy so sending of data failed.

 FWUPCOMM_ERR_CH_RECV, // Receiving of data from the communications channel failed.

 FWUPCOMM_ERR_CH_RECV_NO_DATA, // The communications channel does not have enough received data.

} fwupcomm_err_t;

2.10 Adding the FIT Module to Your Project

The module must be added to each project in which it is used.

Renesas recommends the method using the Smart Configurator described in (1) below. However, the Smart
Configurator only supports some RX devices. Use the method under (2) for RX devices that are not
supported by the Smart Configurator.

(1) Adding the FIT module to your project by using the Smart Configurator in the e2 studio

By using the Smart Configurator in the e2 studio, the FIT module is automatically added to your project. Refer
to “RX Smart Configurator User’s Guide: e2 studio (R20AN0451)” for details.

(2) Adding the FIT module to your project by using the FIT Configurator in the e2 studio

By using the FIT Configurator in the e2 studio, the FIT module is automatically added to your project. Refer to
“RX Family Adding Firmware Integration Technology Modules to Projects (R01AN1723)” for details.

2.11 “for”, “while” and “do while” Statements

In this module, “for”, “while”, and “do while” statements (loop processing) are used in processing to wait for
registers to reflect written values and so on. For such loop processing, the comment “WAIT_LOOP” is written
as a keyword. Therefore, if the user wishes to incorporate fail-safe processing into the loop processing, the
user can search for the corresponding processing by using “WAIT_LOOP”.

The following listings are examples of such loop processing.

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 25 of 64

Dec.24.25

while statement example:

/* WAIT_LOOP */

while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)

{

/* The delay period needed is to make sure that the PLL has stabilized. */

}

for statement example:

/* Initialize reference counters to 0. */

/* WAIT_LOOP */

for (i = 0; i < BSP_REG_PROTECT_TOTAL_ITEMS; i++)

{

g_protect_counters[i] = 0;

}

do while statement example:

/* Reset completion waiting */

do

{

reg = phy_read(ether_channel, PHY_REG_CONTROL);

count++;

} while ((reg & PHY_CONTROL_RESET) && (count < ETHER_CFG_PHY_DELAY_RESET));

/* WAIT_LOOP */

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 26 of 64

Dec.24.25

3. API Functions

3.1 R_FWUPCOMM_Open Function

Table 3-1 Specifications of the R_FWUPCOMM_Open Function

Format fwupcomm_err_t R_FWUPCOMM_Open(r_fwupcomm_hdl_t *hdl, void *cfg)

Description Opens a communications channel for use by or within this module. This function must be

executed before other API functions are used.

Parameters hdl: Handler of the module

cfg: Structure variable with information required for initializing modules

Return

Values

FWUPCOMM_SUCCESS The channel was successfully initialized.

FWUPCOMM_ERR_INVALID_PTR The pointer passed as an argument was

NULL.

FWUPCOMM_ERR_ALREADY_OPEN Opening has already proceeded.

FWUPCOMM_ERR_CH_ALREADY_OPEN The communications channel has already

been opened.

FWUPCOMM_ERR_NOT_OPEN Initializing the communications channel

failed.

Special

Notes

―

Example:

fwupcomm_err_t fwupcomm_err;

r_fwupcomm_hdl_t fwupcomm_hdl = {0};

r_fwupcomm_cfg_t fwupcomm_cfg;

fwupcomm_cfg.timer.start = demo_start_timer;

fwupcomm_cfg.timer.stop = demo_stop_timer;

fwupcomm_err = R_FWUPCOMM_Open(&fwupcomm_hdl, &fwupcomm_cfg);

3.2 R_FWUPCOMM_Close Function

Table 3-2 Specifications of the R_FWUPCOMM_Close Function

Format fwupcomm_err_t R_FWUPCOMM_Close(r_fwupcomm_hdl_t *hdl)

Description Closes a communications channel for use by or within this module.

Parameters hdl: Handler of the module

Return

Values

FWUPCOMM_SUCCESS Closing was successful.

FWUPCOMM_ERR_NOT_OPEN The module has not been opened.

FWUPCOMM_ERR_INVALID_PTR The pointer passed as an argument is NULL.

Special

Notes

―

Example:

fwupcomm_err = R_FWUPCOMM_Close(&fwupcomm_hdl);

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 27 of 64

Dec.24.25

3.3 R_FWUPCOMM_CmdSend Function

Table 3-3 Specifications of the R_FWUPCOMM_CmdSend Function

Format fwupcomm_err_t R_FWUPCOMM_CmdSend(r_fwupcomm_hdl_t *hdl,

r_fwupcomm_cmd_instr_t *cmd_instr)

Description Sends a command for the secondary MCU and receives a corresponding response.

Parameters hdl: Handler of the module

cmd_instr: Structure variable with information on the command to be sent and the

destination for storing the response

Return

Values

FWUPCOMM_SUCCESS The command was successfully

completed.

FWUPCOMM_ERR_NOT_OPEN The module has not been opened.

FWUPCOMM_ERR_INVALID_PTR The pointer passed as an argument was

NULL.

FWUPCOMM_ERR_INVALID_ARG The parameter passed as an argument

was invalid.

FWUPCOMM_ERR_CH_SEND Sending of data in the communications

channel failed.

FWUPCOMM_ERR_CH_RECV Receiving of data from the communications

channel failed.

FWUPCOMM_ERR_RECV_RESP_TIMEOUT A timeout occurred before a response was

received.

Special

Notes

―

Example:

r_fwupcomm_cmd_info_t cmd = {0};

r_fwupcomm_resp_info_t resp = {0};

uint8_t resp_data[4] = {0};

cmd.device_address = 0xA0;

cmd.class = FWUPCOMM_CMD_CLS_FWUP;

cmd.type = FWUPCOMM_CMD_FWUP_START;

cmd.arg = 0;

cmd.data = NULL;

cmd.data_size = 0;

resp.data = resp_data;

r_fwupcomm_cmd_instr_t cmd_instruction =

{

.timeout_ms = 500U,

 .cmd = cmd,

 .resp = resp

};

fwupcomm_err = R_FWUPCOMM_CmdSend(&fwupcomm_hdl, &cmd_instruction);

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 28 of 64

Dec.24.25

3.4 R_FWUPCOMM_ProcessCmdLoop Function

Table 3-4 Specifications of the R_FWUPCOMM_ProcessCmdLoop Function

Format fwupcomm_err_t R_FWUPCOMM_ProcessCmdLoop(r_fwupcomm_hdl_t *hdl)

Description Receives a command from the primary MCU, runs the corresponding handler, and sends

the result of executing the command. Periodically execute this function in the secondary

MCU while it is waiting for commands.

Parameters hdl: Handler of the module

Return

Values

FWUPCOMM_SUCCESS The channel was successfully initialized.

FWUPCOMM_ERR_NOT_OPEN The module has not been opened.

FWUPCOMM_ERR_INVALID_PTR The pointer passed as an argument was

NULL.

FWUPCOMM_ERR_INVALID_ARG The parameter passed as an argument

was invalid.

FWUPCOMM_ERR_NO_CMD No command was received.

FWUPCOMM_ERR_INVALID_CMD An invalid command was received.

FWUPCOMM_ERR_CH_SEND Sending of data in the communications

channel failed.

FWUPCOMM_ERR_CH_RECV Receiving of data from the communications

channel failed.

Special

Notes

―

Example:

do

{

fwupcomm_err = R_FWUPCOMM_ProcessCmdLoop(&fwupcomm_hdl);

}while((FWUPCOMM_SUCCESS == fwupcomm_err)||(FWUPCOMM_ERR_NO_CMD == fwupcomm_err));

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 29 of 64

Dec.24.25

4. Extending the Functionality of This Module

This chapter describes how to add commands to this module and change the method of communications.

4.1 Adding Commands

This section describes how to define desired commands in addition to the FWUP and common commands
which have already been defined for this module. Here, ADDITIONAL1 and ADDITIONAL2 commands
having the UserDefined command class name are added as an example.

(1) Create a source file such as r_fwupcomm_cmd_user_defined.c and a header file such as

r_fwupcomm_cmd_user_defined.h.

Include the r_fwupcomm_if.h header file and also include the header file of the created UserDefined

commands in the source file.

(2) Create an enumerated type for defining the UserDefined commands, such as

r_fwupcomm_cmd_class_user_defined_t shown below, in the header file and define enumerators to

indicate the ADDITIONAL1 and ADDITIONAL2 commands. Define an enumerator to indicate the number

of elements as the last enumerator of the enumerated type.

typedef enum

{

 FWUPCOMM_CMD_USERDEFINED_ADDITIONAL1,

 FWUPCOMM_CMD_USERDEFINED_ADDITIONAL2,

 FWUPCOMM_CMD_USERDEFINED_NUM_COMMANDS

} r_fwupcomm_cmd_class_user_defined_t;

(3) Define an array of the r_fwupcomm_cmd_table_t type in the source file and place information on the

ADDITIONAL1 and ADDITIONAL2 commands as the two elements of the array.

const r_fwupcomm_cmd_table_t
r_fwupcomm_user_defined_cmd_table[FWUPCOMM_CMD_USERDEFINED_NUM_COMMANDS] =

{

{ FWUPCOMM_CMD_USERDEFINED_ADDITIONAL1, 0x01, 0U, 0U },

 { FWUPCOMM_CMD_USERDEFINED_ADDITIONAL2, 0x02, 0U, 0U }

};

The r_fwupcomm_cmd_table_t type is a structure defined in r_fwupcomm_if.h. Each of the members is

defined as follows.

typedef struct r_fwupcomm_cmd_table

{

 uint8_t type; // Value indicating this command (enumerator)

 uint8_t value; // Actual value used for communications by this command

 uint16_t cmd_data_max_size; // Maximum size of the command data of this command

 uint16_t resp_data_max_size; // Maximum size of the response data of this command

} r_fwupcomm_cmd_table_t;

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 30 of 64

Dec.24.25

(4) Define the handler function which describes the processing to be executed when the secondary MCU

receives the UserDefined command in the source file.

The pointer variable of the r_fwupcomm_cmd_info_t type contains the information on the received

command such as pointers to the command arguments or command data. Refer to such command

information to run the processing within the handler function. After that, store the information on

responses to be sent to the primary MCU (command results, pointer to the response data, and response

data size) in a pointer variable of the r_fwupcomm_resp_info_t type as the argument.

void R_FWUPCOMM_CmdHandler_UserDefined(r_fwupcomm_cmd_info_t *cmd,

 r_fwupcomm_resp_info_t *resp)

{

 if((NULL == cmd)||(NULL == resp))

 {

 return;

 }

 if(cmd->type >= FWUPCOMM_CMD_USERDEFINED_NUM_COMMANDS)

 {

 return;

 }

switch(cmd->type)

 {

 case FWUPCOMM_CMD_USERDEFINED_ADDITIONAL1:

 /* Describe the processing to be executed upon receiving the ADDITIONAL1 command. */

 break;

 case FWUPCOMM_CMD_USERDEFINED_ADDITIONAL2:

 /* Describe the processing to be executed upon receiving the ADDITIONAL2 command. */

 break;

}

(5) Declare an array of the r_fwupcomm_cmd_table_t type for the UserDefined command, which was

previously defined in the source file, in the header file as extern. Similarly, write a prototype declaration

for the handler function of the UserDefined command.

extern const r_fwupcomm_cmd_table_t r_fwupcomm_user_defined_cmd_table
[FWUPCOMM_CMD_COMMON_NUM_COMMANDS];

#if FWUPCOMM_CFG_DEVICE_PRIMARY == (0) // Macro which enables only the secondary MCU

void R_FWUPCOMM_CmdHandler_UserDefined (r_fwupcomm_cmd_info_t *cmd,
r_fwupcomm_resp_info_t *resp);

#endif

(6) Include the header file for the UserDefined command in the

r_fwupcomm¥src¥commands¥r_fwupcomm_cmd.h file.

#include "r_fwupcomm_cmd_common.h"

#include "r_fwupcomm_cmd_fwup.h"

#include " r_fwupcomm_cmd_user_defined.h"

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 31 of 64

Dec.24.25

(7) Enter the total number of command classes after adding the UserDefined command into the

FWUPCOMM_CMD_NUM_CLASS macro defined in the r_fwupcomm_cmd.h file.

#define FWUPCOMM_CMD_NUM_CLASS (FWUPCOMM_CFG_CMD_COMMON_ENABLE +
FWUPCOMM_CFG_CMD_FWUP_ENABLE + 1)

(8) Add an enumerator indicating the UserDefined command to the r_fwupcomm_cmd_class_t enumerated

type which is defined in the r_fwupcomm_cmd.h file.

typedef enum

{

 FWUPCOMM_CMD_CLS_COMMON = (0),

 FWUPCOMM_CMD_CLS_FWUP = (1),

 FWUPCOMM_CMD_CLS_USERDEFINED = (2)

} r_fwupcomm_cmd_class_t;

(9) Add the UserDefined command to the array of the r_fwupcomm_cmd_def_table_t type which is defined in

the r_fwupcomm_cmd.c file.

const r_fwupcomm_cmd_def_table_t r_fwupcomm_cmd_def_table_list[] =

{

[FWUPCOMM_CMD_CLS_COMMON] = {r_fwupcomm_common_cmd_table, FWUPCOMM_CMD_COMMON_NUM_COMMANDS},

[FWUPCOMM_CMD_CLS_FWUP] = {r_fwupcomm_fwup_cmd_table, FWUPCOMM_CMD_FWUP_NUM_COMMANDS},

 [FWUPCOMM_CMD_CLS_USERDEFINED] = {r_fwupcomm_user_defined_cmd_table,

FWUPCOMM_CMD_USERDEFINED_NUM_COMMANDS}

};

As stated, the r_fwupcomm_cmd_def_table_t type is defined in r_fwupcomm_cmd.h. Specify the array of

the r_fwupcomm_cmd_table_t type defined in the source file as the table member. Specify the number of

commands in that command class as the num_cmd member.

typedef struct

{

 const r_fwupcomm_cmd_table_t *table;

 uint8_t num_cmd;

} r_fwupcomm_cmd_def_table_t;

(10) Add the handler functions of the UserDefined command defined in the source file to the array of the

R_FWUPCOMM_CmdHandler_t type which is defined in the r_fwupcomm_cmd.c file.

#if FWUPCOMM_CFG_DEVICE_PRIMARY == (0) // Macro which enables only the secondary MCU

const R_FWUPCOMM_CmdHandler_t r_fwupcomm_cmd_handler_list[FWUPCOMM_CMD_NUM_CLS] =

{

 [FWUPCOMM_CMD_CLS_COMMON] = FWUPCOMM_CFG_CMD_HANDLER_COMMON,

 [FWUPCOMM_CMD_CLS_FWUP] = FWUPCOMM_CFG_CMD_HANDLER_FWUP,

 [FWUPCOMM_CMD_CLS_USERDEFINED] = R_FWUPCOMM_CmdHandler_UserDefined

};

#endif

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 32 of 64

Dec.24.25

The steps described above are used for adding commands. For further information, refer to the definition

files for the FWUP commands (r_fwupcomm_cmd_fwup.c and r_fwupcomm_cmd_fwup.h) and for the

common commands (r_fwupcomm_cmd_common.c and r_fwupcomm_cmd_common.h) in the

r_fwupcomm¥src¥commands folder.

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 33 of 64

Dec.24.25

4.2 Changing the Method of Communications

This module only supports UART communications via the SCI. This section describes how to change to
another method of communications.

4.2.1 Communications Interface

This module specifies the communications interface for packet communications. It is defined in
r_fwupcomm¥src¥connectivity¥r_fwupcomm_ch.h as follows.

typedef struct r_fwupcomm_ch_api

{

 fwupcomm_err_t (*open)(void);

 void (*close)(void);

 fwupcomm_err_t (*send)(uint8_t *src, uint16_t size);

 fwupcomm_err_t (*recv)(uint8_t *dest, uint16_t size);

 void (*rx_reset)(void);

} r_fwupcomm_ch_api_t;

4.2.1.1 fwupcomm_err_t (*open)(void)

Table 4-1 Specifications of the open Function

Format fwupcomm_err_t (*open)(void)

Description Opens a communications channel.

Parameters ―

Return

Values

FWUPCOMM_SUCCESS The channel was successfully initialized.

FWUPCOMM_ERR_CH_ALREADY_OPEN The communications channel has already

been opened.

FWUPCOMM_ERR_NOT_OPEN Initializing the communications channel

failed.

Special

Notes

―

4.2.1.2 void (*close)(void)

Table 4-2 Specifications of the close Function

Format void (*close)(void)

Description Closes a communications channel.

Parameters ―

Return

Values

―

Special

Notes

―

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 34 of 64

Dec.24.25

4.2.1.3 fwupcomm_err_t (*send)(uint8_t *src, uint16_t size)

Table 4-3 Specifications of the send Function

Format fwupcomm_err_t (*send)(uint8_t *src, uint16_t size)

Description Sends data by using a communications channel.

Parameters src: Pointer to the destination for storing data to be sent

size: Size of data to be sent

Return

Values

FWUPCOMM_SUCCESS The channel was successfully initialized.

FWUPCOMM_ERR_INVALID_PTR The src pointer is NULL.

FWUPCOMM_ERR_INVALID_ARG size is 0.

FWUPCOMM_ERR_NOT_OPEN The communications channel has not been

opened.

FWUPCOMM_ERR_CH_SEND_BUSY The communications channel was busy so

sending of data failed.

FWUPCOMM_ERR_CH_SEND Sending of data in the communications

channel failed.

Special

Notes

―

4.2.1.4 fwupcomm_err_t (*recv)(uint8_t *dest, uint16_t size)

Table 4-4 Specifications of the recv Function

Format fwupcomm_err_t (*recv)(uint8_t *dest, uint16_t size)

Description Receives data by using a communications channel.

Parameters dest: Pointer to the buffer for storing received data

size: Required size of received data

Return

Values

FWUPCOMM_SUCCESS The channel was successfully initialized.

FWUPCOMM_ERR_INVALID_PTR The dest pointer is NULL.

FWUPCOMM_ERR_INVALID_ARG size is 0.

FWUPCOMM_ERR_NOT_OPEN The communications channel has not been

opened.

FWUPCOMM_ERR_CH_RECV_NO_DATA The communications channel does not have

enough received data.

Special

Notes

―

4.2.1.5 void (*rx_reset)(void)

Table 4-5 Specifications of the rx_reset Function

Format void (*rx_reset)(void)

Description Enables the communication channel for reception.

Parameters ―

Return

Values

―

Special

Notes

―

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 35 of 64

Dec.24.25

4.2.2 How to Change the Method of Communications

(1) Implement the functions for communications interfaces described in section 4.2.1 by using the method of

communications you wish to use.

(2) Define the r_fwupcomm_ch_api variable of the const r_fwupcomm_ch_api_t type, and initialize the

functions which have been created for the communications interface as shown below.

const r_fwupcomm_ch_api_t r_fwupcomm_ch_api =

{ .open = r_fwupcomm_rx_sci_uart_open, // open

 .close = r_fwupcomm_rx_sci_uart_close, // close

 .send = r_fwupcomm_rx_sci_uart_send, // send

 .recv = r_fwupcomm_rx_sci_uart_recv, // recv

 .rx_reset = r_fwupcomm_rx_sci_uart_rx_reset // rx_reset

};

(3) Create a header file with a name such as r_fwupcomm_ch_user_defined.h to declare the

r_fwupcomm_ch_api variable as extern.

extern r_fwupcomm_ch_api_t const r_fwupcomm_ch_api;

(4) Add the definition of the communications interface to the r_fwupcomm¥src¥r_fwupcomm_private.h file in

such a way that the newly created header file is included instead of the one that has been previously

created.

#define FWUPCOMM_CFG_CH_INTERFACE (2)

#if (FWUPCOMM_CFG_CH_INTERFACE == 1) /* RX SCI UART */

#define FWUPCOMM_CH_RX_SCI_UART (FWUPCOMM_CFG_CH_INTERFACE)

#define FWUPCOMM_COMM_IF (FWUPCOMM_COMM_IF_UART)

#elif (FWUPCOMM_CFG_CH_INTERFACE == 2) /* USERDEFINED */

#define FWUPCOMM_CH_USERDEFINED (FWUPCOMM_CFG_CH_INTERFACE)

...

#endif

#define FWUPCOMM_USE_CH (FWUPCOMM_CFG_CH_INTERFACE)

#if (FWUPCOMM_USE_CH == FWUPCOMM_CH_RX_SCI_UART)

 #include "r_fwupcomm_rx_sci_uart.h"

#elif (FWUPCOMM_USE_CH == FWUPCOMM_CH_USERDEFINED)

 #include "r_fwupcomm_ch_user_defined.h"

#endif

That ends the description of how to change the method of communications.

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 36 of 64

Dec.24.25

5. Demonstration Projects

This demonstration projects are sample programs for updating the firmware of the secondary MCU, as
shown in Figure 5-1. The primary MCU is connected to a PC and receives the firmware for use in updating
that of the secondary MCU via serial communications from the PC. The primary MCU then transfers that
firmware to the secondary MCU by using the FWUP Comm module.

Figure 5-1 Configuration of the Demonstrations

5.1 Configuration for the Demonstration Projects

The folder structure for the demo project is shown below. The folder structure is described using the demo
project for the FPB-RX261 as an example.

r01an7757xx0110-rx-fwupcomm

├─FITDemos

│ ├─keys

│ ├─rx261-fpb

│ │ ├─w_buffer

│ │ │ ├─ccrx

│ │ │ │ ├─app_rx261_fpb_w_buffer

│ │ │ │ └─bootloader_rx261_fpb_w_buffer

│ │ │ └─gcc

│ │ │ ├─app_rx261_fpb_w_buffer

│ │ │ └─bootloader_rx261_fpb_w_buffer

│ │ ├─wo_buffer

│ │ │ ├─ccrx

│ │ │ │ ├─app_rx261_fpb_wo_buffer

│ │ │ │ └─bootloader_rx261_fpb_wo_buffer

│ │ │ └─gcc

│ │ │ ├─app_rx261_fpb_wo_buffer

│ │ │ └─bootloader_rx261_fpb_wo_buffer

│ │ └─mcuboot

│ │ ├─ccrx

│ │ │ ├─app_rx261_fpb_mcuboot

│ │ │ └─bootloader_rx261_fpb_mcuboot

│ │ └─gcc

│ │ ├─app_rx261_fpb_mcuboot

│ │ └─bootloader_rx261_fpb_mcuboot

│ ├─rx140-fpb

│ ├─rx23eb-rssk

│ ├─rx65n-ck

│ ├─rx65n-rsk

│ ├─rx66t-rsk

│ └─rx660-tb

├─FITModules

│ ├─r_fwupcomm_v1.10.xml

│ ├─r_fwupcomm_v1.10.zip

│ └─r_fwupcomm_v1.10_extend.mdf

├─r01an7757ej0110-rx-fwupcomm.pdf

└─r01an7757jj0110-rx-fwupcomm.pdf

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 37 of 64

Dec.24.25

5.1.1 Primary MCU

The primary MCU demo project is only for the RX65N and is organized into folders as follows.

FITDemos¥(board name)¥(compiler name)¥(project name)

Boot loader projects:

• Partial update method in linear mode : bootloader_(board name)_w_buffer

• MCUboot method: bootloader_(board name)_mcuboot

Application projects:

Partial update method in linear mode(FreeRTOS): app_(board name)_primary_frtos

Partial update method in linear mode(Baremetal): app_(board name)_primary

MCUboot method”: app_(board name)_mcuboot_primary

The supported boards are CK-RX65Nv2 and RSK-RX65N-2MB(TSIP). The demo project for CK-RX65Nv2

supports inter-MCU communication via SCI UART and SCI SPI using the FWUPCOMM FIT module. The

demo project for RSK-RX65N-2MB(TSIP) supports inter-MCU communication via RSPI only.

5.1.2 Secondary MCU

Demonstration projects in the secondary MCU are classified into folders for each of the supported device
groups.

• Partial update method in linear mode: FITDemos¥(board name)¥w_buffer¥(compiler name)¥(project

name)

• Full update method in linear mode: FITDemos¥(board name)¥wo_buffer¥(compiler name)¥(project name)

• MCUboot method: FITDemos¥(board name)¥mcuboot¥(compiler name)¥(project name)

Boot loader projects:

• Partial update method in linear mode: bootloader_(board name)_w_buffer

• Full update method in linear mode: bootloader_(board name)_wo_buffer

• MCUboot method: bootloader_(board name)_mcuboot

Application projects:

• Partial update method in linear mode: app_(board name)_w_buffer

• Full update method in linear mode: app_(board name)_wo_buffer

• MCUboot method: app_(board name)_mcuboot

The MCUboot method demo project is only available for the RX261.

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 38 of 64

Dec.24.25

5.2 Preparing an Operating Environment

To update the firmware of the secondary MCU, use the firmware updating module. To run the demonstration
projects, you need to install certain tools on your Windows PC.

5.2.1 Installing TeraTerm

TeraTerm is used to transfer the firmware updating image via serial communications from a Windows PC to
the primary MCU. For the demonstration project, the operation was confirmed with TeraTerm 5.5.0.

After installation, make the serial port communications settings listed in Table 5-1.

Table 5-1 Specifications for Communications

Item Description

Communications system Asynchronous

Bit rate 115200 bps

Data length 8 bits

Parity None

Stop bit 1 bit

Flow control RTS/CTS

5.2.2 Installing the Python Execution Environment

The Python execution environment is used by Renesas Image Generator (image-gen.py) to create the initial
and updating images.

Renesas Image Generator uses ECDSA to generate signature data. For the demonstration project, the
operation was confirmed with Python 3.10.4.

The Python encryption library (pycryptodome) is also used. Accordingly, after installing Python, execute the
following pip command from the command prompt to install the library.

pip install pycryptodome

5.2.3 Installing the Flash Writer

A flash writer is required to write the initial image.

Renesas Flash Programmer V3.21.00 is used with the demonstration projects.

Renesas Flash Programmer (Programming GUI) | Renesas

https://www.renesas.com/en/software-tool/renesas-flash-programmer-programming-gui

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 39 of 64

Dec.24.25

5.3 Procedure for Executing a Demonstration Project

This section describes an example of the procedure for executing a demonstration project with the use of an
RX140 device. The procedure for executing the demonstration project is common to other MCU products;
however, only the environment for confirming the operation differs with the MCU. Confirm the environment
(section 6.1, Environments for Confirming Operation) for the MCU product you intend to use. The procedure
for executing the demo project is also common for the CC-RX compiler and GCC compiler environments.

The following describes the procedure for executing UART communication using the FWUPCOMM FIT
module. For SPI communication settings, refer to “5.6 Settings for the Demo Project When Using SPI
Communication Between MCUs.”

5.3.1 Execution Environment

Prepare the environment for confirming the operation with an RX140 (6.3.1). For MCU products other than
RX140 devices, refer to the environment for confirming the operation of the applicable product.

5.3.2 Building the Demonstration Projects

Follow the steps below to build the projects for the primary and secondary MCUs.

5.3.2.1 Creating Initial and Updating Images for the Primary MCU

The procedure for creating the initial and updating images, using initial_firm_rx65n.mot as the name of the
initial image and update_firm_rx65n.rsu as the name of the updating image, is described below.

(1) Import the bootloader_rx65n_ck_w_buffer and app_rx65n_ck_primary project into the e2 studio and build
the project. For the full update method, change the “APP_COMM_CONFIG_FWUP_FULL_UPDATE” macro

definition to (1) in app_rx65n_ck_primary¥src¥fwup¥app_fwup_config.h before the build.

(2) Confirm that the following MOT file has been generated in the HardwareDebug folder for each project.

⎯ bootloader_rx65n_ck_w_buffer.mot

⎯ app_rx65n_ck_primary.mot

(3) Store the MOT files created by building the demonstration project in the

bootloader_rx65n_ck_w_buffer¥src¥smc_gen¥r_fwup¥tool folder. Also store the

FITDemos¥keys¥fwup¥secp256r1.privatekey file there as well.

image-gen.py

RX65N_Linear_Half_ImageGenerator_PRM.csv

secp256r1.privatekey

bootloader_rx65n_ck_w_buffer.mot

app_rx65n_ck_primary.mot

(4) Execute the following command in the bootloader_rx65n_ck_w_buffer¥src¥smc_gen¥r_fwup¥tool folder
to create the initial image.

python .¥image-gen.py -iup ".¥app_rx65n_ck_primary.mot" -

ip .¥RX65N_Linear_Half_ImageGenerator_PRM.csv -o initial_firm_rx65n -ibp

".¥bootloader_rx65n_ck_w_buffer.mot" -vt ecdsa -key ".¥secp256r1.privatekey"

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 40 of 64

Dec.24.25

(5) app_rx65n_ck_primary¥src¥app_rx65n_ck_primary.h file. Change the definition of DEMO_VER_MAJOR
from (1) to (2) and rebuild the app_rx65n_ck_primary project. After that, store the MOT files created by
building the project in the tool folder.

(6) Execute the following command to create the updating image.

python .¥image-gen.py -iup ".¥app_rx65n_ck_primary.mot" -

ip .¥RX65N_Linear_Half_ImageGenerator_PRM.csv -o update_firm_rx65n -vt ecdsa -key

".¥secp256r1.privatekey"

Confirm that the initial and updating images have been generated in the tool folder.

Image-gen.py

RX65N_Linear_Half_ImageGenerator_PRM.csv

secp256r1.privatekey

bootloader_rx65n_ck_w_buffer.mot

app_rx65n_ck_w_primary.mot

initial_firm_rx65n.mot

update_firm_rx65n.rsu

5.3.2.2 Creating Initial and Updating Images for the Secondary MCU

The procedure for creating the initial and updating images, using initial_firm_rx140.mot as the name of the
initial image and update_firm_rx140.rsu as the name of the updating image, is described below. This is the
procedure for the partial update method, but the procedure is the same for the full update method, so please
replace projects used with those for the full update method.

(1) Import the bootloader_rx140_fpb_w_buffer and app_rx140_fpb_w_buffer projects into the e2 studio and

build the projects.

(2) Confirm that the following MOT files have been generated in the HardwareDebug folder for each project.

⎯ bootloader_rx140_fpb_w_buffer.mot

⎯ app_rx140_fpb_w_buffer.mot

(3) Store the MOT files created by building the demonstration project in the

bootloader_rx140_fpb_w_buffer¥src¥smc_gen¥r_fwup¥tool folder. Also store the

FITDemos¥keys¥fwup¥secp256r1.privatekey file there as well.

image-gen.py

RX140_Linear_Full_ImageGenerator_PRM.csv

RX140_Linear_Half_ImageGenerator_PRM.csv

secp256r1.privatekey

bootloader_rx140_fpb_w_buffer.mot

app_rx140_fpb_w_buffer.mot

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 41 of 64

Dec.24.25

(4) Execute the following command in the bootloader_rx140_fpb_w_buffer¥src¥smc_gen¥r_fwup¥tool folder

to create the initial image. For the full update method, use RX140_Linear_Full_ImageGenerator_PRM.csv

instead of RX140_Linear_Half_ImageGenerator_PRM.csv.

python .¥image-gen.py -iup ".¥app_rx140_fpb_w_buffer.mot" -

ip .¥RX140_Linear_Half_ImageGenerator_PRM.csv -o initial_firm_rx140 -ibp

".¥bootloader_rx140_fpb_w_buffer.mot" -vt ecdsa -key ".¥secp256r1.privatekey"

(5) Open the app_rx140_fpb_w_buffer¥src¥fwupcomm_demo_main.h file. Change the definition of

DEMO_VER_MAJOR from (1) to (2) and rebuild the app_rx140_fpb_w_buffer project. After that, store the

MOT files created by building the project in the tool folder.

(6) Execute the following command to create the updating image. For the full update method, use

RX140_Linear_Full_ImageGenerator_PRM.csv instead of

RX140_Linear_Half_ImageGenerator_PRM.csv.

python .¥image-gen.py -iup ".¥app_rx140_fpb_w_buffer.mot" -

ip .¥RX140_Linear_Half_ImageGenerator_PRM.csv -o update_firm_rx140 -vt ecdsa -

key ".¥secp256r1.privatekey"

Confirm that the initial and updating images have been generated in the tool folder.

Image-gen.py

RX140_Linear_Full_ImageGenerator_PRM.csv

RX140_Linear_Half_ImageGenerator_PRM.csv

secp256r1.privatekey

bootloader_rx140_fpb_w_buffer.mot

app_rx140_fpb_w_buffer.mot

initial_firm_rx140.mot

update_firm_rx140.rsu

5.3.3 Programming the Initial Image

Use the flash writer to program initial_firm_rx65n.mot to the MCU on the CK-RX65Nv2 board.

Similarly, use the flash writer to program initial_firm_rx140.mot to the MCU on the FPB-RX140 board. After
programming is finished, turn off the power to the board and disconnect the debugger (E2 Lite).

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 42 of 64

Dec.24.25

5.3.4 Executing a Firmware Update

Once the initial image firmware has been activated, it waits for the transfer of the updating image through the
primary MCU. The received updating image is programmed to the flash memory, and after the transfer is
completed, the signature of the updating image is verified and the firmware is activated.

Follow the steps below to execute a firmware update.

(1) Launch two TeraTerm windows on the PC, select the serial COM ports for the primary MCU (CK-

RX65Nv2) and the secondary MCU (FPB-RX140) in the respective windows, and configure the

connection settings.

(2) Turn on the board. The following messages will be output to the TeraTerm windows.

Primary MCU side:

==== RX65N : BootLoader [with buffer] ====

verify install area main [sig-sha256-ecdsa]...OK

execute image ..

==== RX65N : FWUPCOMM DEMO [Primary][with buffer] ver 1.0.0 ====

Please select the target MCU to update firmware.

 0: Primary MCU

 1: Secondary MCU

>

Secondary MCU side:

==== RX140 : BootLoader [with buffer] ====

verify install area main [sig-sha256-ecdsa]...OK

execute image ..

==== RX140 : FWUPCOMM DEMO [Secondary][with buffer] ver. 1.0.0 ====

(3) On the primary MCU's TeraTerm screen, enter the number of the MCU to be updated.

(4) Send the updating image via TeraTerm.

Click on [Send file] from the [File] menu of TeraTerm for the primary MCU side. For updating the primary

MCU firmware, select update_firm_rx65n.rsu. For updating the secondary MCU firmware, select

update_firm_rx140.rsu. Check the “Binary” option and click [OK].

The following messages are output during the transfer of the updating image, a software reset is applied

after installation and signature verification are completed, and the firmware from the updating image is

executed.

The version number output in the last message from the targeted MCU having been incremented

indicates that the upedate was successful.

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 43 of 64

Dec.24.25

The following is an example of log output when the secondary MCU (FPB-RX140) is the target for the
firmware update.

Primary MCU side:

Send FWUP_START command... OK.

Send FWUP_WRITE command... OK. (1024 bytes sent, remaining 38912 bytes.)

Send FWUP_WRITE command... OK. (1024 bytes sent, remaining 37888 bytes.)

...

Send FWUP_WRITE command... OK. (1024 bytes sent, remaining 2048 bytes.)

Send FWUP_WRITE command... OK. (1024 bytes sent, remaining 1024 bytes.)

Send FWUP_INSTALL command... OK.

Firmware update for the device(0xA0) is successful.

Secondary MCU side:

Received FWUPCOMM_CMD_FWUP_START command.

Received FWUPCOMM_CMD_FWUP_WRITE command. size=1024

W 0xFFF78000, 512 ... OK

W 0xFFF78200, 256 ... OK

W 0xFFF78300, 256 ... OK

Received FWUPCOMM_CMD_FWUP_WRITE command. size=1024

W 0xFFF78400, 1024 ... OK

...

Received FWUPCOMM_CMD_FWUP_WRITE command. size=1024

W 0xFFF81400, 1024 ... OK

Received FWUPCOMM_CMD_FWUP_WRITE command. size=1024

W 0xFFF81800, 768 ... OK

W 0xFFFEFF00, 256 ... OK

verify install area buffer [sig-sha256-ecdsa]...OK

Received FWUPCOMM_CMD_FWUP_INSTALL command.

software reset...

==== RX140 : BootLoader [with buffer] ====

verify install area buffer [sig-sha256-ecdsa]...OK

activating image ... OK

software reset...

==== RX140 : BootLoader [with buffer] ====

verify install area main [sig-sha256-ecdsa]...OK

execute image ...

==== RX140 : FWUPCOMM DEMO [Secondary][with buffer] ver. 2.0.0 ====

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 44 of 64

Dec.24.25

5.4 Procedure for Executing the MCUboot Project

The following describes the execution steps for a demo project that performs firmware updates using the
MCUboot FIT module. This demo project supports both the RX65N and RX261. Furthermore, the execution
steps for the demo project are identical for both the CC-RX compiler and the GCC compiler.

Note that this demo project utilizes flash memory in linear mode and uses the Overwrite Only method for
MCUboot updates.

The following steps describe the execution procedure when the FWUPCOMM FIT module communicates via
UART. For configuration methods when using SPI communication, refer to “5.6 Demo Project Configuration
Method for SPI Communication Between Microcontrollers”.

5.4.1 Execution Environment

Prepare the environment for confirming the operation with an RX140 (6.3.1).

5.4.2 Building the Demonstration Projects

Follow the steps below to build the projects for the primary and secondary MCUs.

5.4.2.1 Creating Initial and Updating Images for the Primary MCU

The procedure for creating the initial and updating images, using initial_firm_rx65n.bin.sign as the name of
the initial image and update_firm_rx65n.bin.sign as the name of the updating image, is described below.

(1) Perform “4.2 Preparing the Operating Environment” in the “RX Family MCUboot Firmware Integration
Technology (R01AN7374)”.

(2) Import the key_injection_rx65n_ck_mcuboot, bootloader_rx65n_ck_mcuboot and
app_rx65n_ck_mcuboot_primary into the e2 studio. For the full update method, change the
“APP_COMM_CONFIG_FWUP_FULL_UPDATE” macro definition to (1) in

app_rx65n_ck_mcuboot_primary¥src¥fwup¥app_fwup_config.h before the build.

(3) Perform “4.3.1 Key Injection” in the “4.3 Procedure for Executing the Demo Project” of the “RX Family
MCUboot Firmware Integration Technology (R01AN7374)”.

The key injection program uses the key_injection_rx65n_ck_mcuboot project imported in step (1) above. The
Renesas Flash Programmer (RFP) project file for program writing is included in the
key_injection_rx65n_ck_mcuboot¥rfp folder. Modify only the path to the program file
(key_injection_rx65n_ck_mcuboot.mot) before use.

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 45 of 64

Dec.24.25

Regarding the key data used within the procedure, sample keys are included in the
FITDemos¥keys¥mcuboot folder. This key data is identical to the sample keys provided in the demo project
for “RX Family MCUboot Firmware Integration Technology (R01AN7374)”.

(4) Perform “4.3.2 Embedding the Public Key for Signature Verification” in “4.3 Procedure for Executing the
Demo Project” of “RX Family MCUboot Firmware Integration Technology (R01AN7374)”.

Note that the public key data output using the included sample key is already embedded in
bootloader_rx65n_ck_mcuboot/src/keys.c within the demo project.

(5) Perform “4.3.3 Preparing the Images for the Demo Project” in “4.3 Procedure for Executing the Demo
Project” of “RX Family MCUboot Firmware Integration Technology (R01AN7374)”.

In “4.3.3.1 Generating a Bootloader Image,” use bootloader_rx65n_ck_mcuboot as the bootloader project.

In Step 1 of “4.3.3.2 Generating the Initial Image,” use app_rx65n_ck_mcuboot_primary as the initial image
project.

In Step 2, below is an example command for creating an initial image using imgtool.

python imgtool.py sign --version 1.0.0 --header-size 0x200 --align 128 --max-align 128

--slot-size 0xF0000 --max-sectors 16 --confirm --pad-header --key

"path¥to¥sign_key_pair.pem"

"path¥to¥app_rx65n_ck_mcuboot_primary¥HardwareDebug¥app_rx65n_ck_mcuboot_primary.bin"

"path¥to¥output_dir¥initial_firm_rx65n.bin.sign"

In Step 2 of “4.3.3.3 Generating an Update Image”, below is an example command for creating an update
image using imgtool.

python imgtool.py sign --version 2.0.0 --header-size 0x200 --align 128 --max-align 128

--slot-size 0xF0000 --max-sectors 16 --confirm --pad-header --key

"path¥to¥sign_key_pair.pem" -kw--enckey "path¥to¥AES-CTR.bin" -kw--kek "path¥to¥AES-

KeyWrap.bin"

"path¥to¥app_rx65n_ck_mcuboot_primary¥HardwareDebug¥app_rx65n_ck_mcuboot_primary.bin"

"path¥to¥output_dir¥update_firm_rx65n.bin.sign"

(6) Perform “4.3.4 Programming the Demo Project” in “4.3 Procedure for Executing the Demo Project” of
“RX Family MCUboot Firmware Integration Technology (R01AN7374)”.

The RFP project file for programming is included in the app_rx65n_ck_mcuboot_primary¥rfp folder. Please
use it by changing only the paths to the program files (bootloader_rx65n_ck_mcuboot.bin and
initial_firm_rx65n.bin.sign).

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 46 of 64

Dec.24.25

5.4.2.2 Creating Initial and Updating Images for the Secondary MCU

The procedure for creating the initial and updating images, using initial_firm_rx261.bin.sign as the name of
the initial image and update_firm_rx261.bin.sign as the name of the updating image, is described below.

(1) Import the key_injection_rx261_fpb_mcuboot, bootloader_rx21_fpb_mcuboot and
app_rx261_fpb_mcuboot into the e2 studio.

(2) Perform “4.3.1 Key Injection” in the “4.3 Procedure for Executing the Demo Project” of the “RX Family
MCUboot Firmware Integration Technology (R01AN7374)”.

The key injection program uses the key_injection_rx261_fpb_mcuboot project imported in step (1) above.
The Renesas Flash Programmer (RFP) project file for program writing is included in the
key_injection_rx261_fpb_mcuboot¥rfp folder. Modify only the path to the program file
(key_injection_rx261_fpb_mcuboot.mot) before use.

Regarding the key data used within the procedure, sample keys are included in the
FITDemos¥keys¥mcuboot folder. This key data is identical to the sample keys provided in the demo project
for “RX Family MCUboot Firmware Integration Technology (R01AN7374)”.

(3) Perform “4.3.2 Embedding the Public Key for Signature Verification” in “4.3 Procedure for Executing the
Demo Project” of “RX Family MCUboot Firmware Integration Technology (R01AN7374)”.

Note that the public key data output using the included sample key is already embedded in
bootloader_rx261_fpb_mcuboot/src/keys.c within the demo project.

(4) Perform “4.3.3 Preparing the Images for the Demo Project” in “4.3 Procedure for Executing the Demo
Project” of “RX Family MCUboot Firmware Integration Technology (R01AN7374)”.

In “4.3.3.1 Generating a Bootloader Image,” use bootloader_rx261_fpb_mcuboot as the bootloader project.

In Step 1 of “4.3.3.2 Generating the Initial Image,” use app_rx261_fpb_mcuboot as the initial image project.

In Step 2, below is an example command for creating an initial image using imgtool.

python imgtool.py sign --version 1.0.0 --header-size 0x200 --align 8 --max-align 8 --

slot-size 0x30000 --max-sectors 16 --confirm --pad-header --key

"path¥to¥sign_key_pair.pem"

"path¥to¥app_rx261_fpb_mcuboot¥HardwareDebug¥app_rx261_fpb_mcuboot.bin"

"path¥to¥output_dir¥initial_firm_rx261.bin.sign"

In Step 2 of “4.3.3.3 Generating an Update Image”, below is an example command for creating an update
image using imgtool.

python imgtool.py sign --version 2.0.0 --header-size 0x200 --align 8 --max-align 8 --

slot-size 0x30000 --max-sectors 16 --confirm --pad-header --key

"path¥to¥sign_key_pair.pem" -kw--enckey "path¥to¥AES-CTR.bin" -kw--kek "path¥to¥AES-

KeyWrap.bin" "path¥to¥app_rx261_fpb_mcuboot¥HardwareDebug¥app_rx261_fpb_mcuboot.bin"

"path¥to¥output_dir¥update_firm_rx261.bin.sign"

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 47 of 64

Dec.24.25

(5) Perform “4.3.4 Programming the Demo Project” in “4.3 Procedure for Executing the Demo Project” of
“RX Family MCUboot Firmware Integration Technology (R01AN7374)”.

The RFP project file for programming is included in the app_rx261_fpb_mcuboot¥rfp folder. Please use it by
changing only the paths to the program files (bootloader_rx261_fpb_mcuboot.bin and
initial_firm_rx261.bin.sign).

5.4.3 Executing a Firmware Update

The procedure for executing a firmware update is the same as described in “5.3.4 Executing a Firmware
Update”.

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 48 of 64

Dec.24.25

5.5 Procedure for Executing the Demo Project When the Communication Method
Between the PC and Primary MCU is XMODEM

This demo project uses UART binary data communication between the PC and primary MCU as the default
communication method.

The following describes the procedure for using XMODEM.

(1) Connect the primary MCU CK-RX65Nv2 or RSK-RX65N-2MB (TSIP) as described in “6.3.6.1
Connection Configuration When the Communication Method Between the PC and Primary MCU is
XMODEM”.

(2) Set APP_COMM_CONFIG_PROTOCOL defined in src/comm/app_comm_config.h of the primary MCU's

application project to (2).

(3) Perform the procedures in “5.3.2 Building the Demonstration Projects” and “5.3.3 Programming the
Initial Image”.

(4) In “5.3.4 Executing a Firmware Update,” launch TeraTerm in three windows. In addition to the serial
COM ports for the primary MCU (CK-RX65Nv2) and secondary MCU (FPB-RX140), select the serial COM
port for the additionally connected USB terminal and configure the connection settings.

(5) Power on the board. The following messages will be displayed in TeraTerm.

Primary MCU side:

==== RX65N : BootLoader [with buffer] ====

verify install area main [sig-sha256-ecdsa]...OK

execute image ..

==== RX65N : FWUPCOMM DEMO [Primary][with buffer] ver 1.0.0 ====

Please select the target MCU to update firmware.

 0: Primary MCU

 1: Secondary MCU

>

Secondary MCU side:

==== RX140 : BootLoader [with buffer] ====

verify install area main [sig-sha256-ecdsa]...OK

execute image ..

==== RX140 : FWUPCOMM DEMO [Secondary][with buffer] ver. 1.0.0 ====

(6) On the primary MCU's TeraTerm window, enter the number of the MCU to be updated with the new
firmware.

(7) Send the update image from TeraTerm.

From the [File] menu in TeraTerm on the primary MCU, click [Transfer] → [XMODEM] → [Send]. Select

update_firm_rx65n.rsu for updating the primary MCU's firmware, or update_firm_rx140.rsu for updating the
secondary MCU's firmware, then click [Open]. It may take several seconds for the update firmware
transmission to begin. Note: This demo project does not support transfers with a 1K byte block size.
During the update image transfer, progress is output to the TeraTerm on the additionally connected serial
COM port. Once installation and signature verification complete, a software reset occurs, and the firmware
from the update image begins execution.
If the version number output in the message on the MCU targeted for the firmware update has
incremented, the update was successful.

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 49 of 64

Dec.24.25

The following is an example of log output during XMODEM transfer when updating the firmware on the
secondary MCU (FPB-RX140).

Primary MCU side (1):

==== RX65N : BootLoader [with buffer] ====

verify install area main [sig-sha256-ecdsa]...OK

execute image ..�

==== RX65N : FWUPCOMM DEMO [Primary][with buffer] ver 1.0.0 ====

Please select the target MCU to update firmware.

 0: Primary MCU

 1: Secondary MCU

> 1

Please send the firmware for secondary MCU

Primary MCU side (2) (Additional connection for XMODEM):

[S]Received 128 bytes. total 128 bytes.

Send FWUP_START command... OK.

Send FWUP_WRITE command... OK. (128 bytes sent, remaining 4294967168 bytes.)

[S]Received 128 bytes. total 256 bytes.

Send FWUP_WRITE command... OK. (128 bytes sent, remaining 4294967040 bytes.)

...

Send FWUP_WRITE command... OK. (1024 bytes sent, remaining 2048 bytes.)

Send FWUP_WRITE command... OK. (1024 bytes sent, remaining 1024 bytes.)

Send FWUP_INSTALL command... OK.

Firmware update for the device(0xA0) is successful.

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 50 of 64

Dec.24.25

Secondry MCU side:

Received FWUPCOMM_CMD_FWUP_START command.

Received FWUPCOMM_CMD_FWUP_WRITE command. size=1024

W 0xFFF78000, 512 ... OK

W 0xFFF78200, 256 ... OK

W 0xFFF78300, 256 ... OK

Received FWUPCOMM_CMD_FWUP_WRITE command. size=1024

W 0xFFF78400, 1024 ... OK

...

Received FWUPCOMM_CMD_FWUP_WRITE command. size=1024

W 0xFFF81400, 1024 ... OK

Received FWUPCOMM_CMD_FWUP_WRITE command. size=1024

W 0xFFF81800, 768 ... OK

W 0xFFFEFF00, 256 ... OK

verify install area buffer [sig-sha256-ecdsa]...OK

Received FWUPCOMM_CMD_FWUP_INSTALL command.

software reset...

==== RX140 : BootLoader [with buffer] ====

verify install area buffer [sig-sha256-ecdsa]...OK

activating image ... OK

software reset...

==== RX140 : BootLoader [with buffer] ====

verify install area main [sig-sha256-ecdsa]...OK

execute image ...

==== RX140 : FWUPCOMM DEMO [Secondary][with buffer] ver. 2.0.0 ====

5.6 Settings for the Demo Project When Using SPI Communication Between MCUs

This demo project uses UART communication between MCUs by default.

To use SPI communication, change the r_fwupcomm setting in the Smart Configurator as follows.

Primary MCU (CK-RX65Nv2) side:

Table 5-2 Changes to r_fwupcomm settings on the primary MCU side

Property Macro definition Vale

Communication Interface FWUPCOMM_CFG_CH_INTERFACE SCI SPI (Primary MCU Only)

Secondary MCU side:

Table 5-3 Changes to r_fwupcomm settings on the secondary MCU side

Property Macro definition Vale

Communication Interface FWUPCOMM_CFG_CH_INTERFACE RSPI SPI

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 51 of 64

Dec.24.25

6. Appendices

6.1 Environments for Confirming Operation

This section describes environments in which the operation of this module has been confirmed.

Table 6-1 Environment for Confirming Operation (CC-RX)

Item Description

IDE e2 studio 2025-10 from Renesas Electronics

C compiler C/C++ Compiler for RX Family V3.07.00 from Renesas Electronics

Compiler option: The following option is added to the default settings of the IDE.

-lang = c99

Endian Little endian

Revision of the module Rev. 1.10

Board used Fast Prototyping Board for RX140 MCU Group (product No.: RTK5FP1400S00001BE)

Renesas Solution Starter Kit for RX23E-B (product No.: RTK0ES1001C00001BJ)

Fast Prototyping Board for RX261 MCU Group (product No.: RTK5FP2610S00001BE)

Target Board for RX660 (product No.: RTK5RX6600C00000BJ)

Renesas Starter Kit for RX66T (product No.: RTK50566T0S00000BE)

Cloud Kit for RX65N Microcontroller Group (product No.: RTK5CK65N0S08001BE)

Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2S10010BE)

USB-to-serial conversion

board

Pmod USBUART (from DIGILENT)

https://digilent.com/reference/pmod/pmodusbuart/start

Table 6-2 Environment for Confirming Operation (GCC)

Item Description

IDE e2 studio 2025-10 from Renesas Electronics

C compiler GCC for Renesas RX 14.2.0.202505

Compiler option: The following option is added to the default settings of the IDE.

-std=gnu99

Endian Little endian

Revision of the module Rev. 1.10

Board used Fast Prototyping Board for RX140 MCU Group (product No.: RTK5FP1400S00001BE)

Renesas Solution Starter Kit for RX23E-B (product No.: RTK0ES1001C00001BJ)

Fast Prototyping Board for RX261 MCU Group (product No.: RTK5FP2610S00001BE)

Target Board for RX660 (product No.: RTK5RX6600C00000BJ)

Renesas Starter Kit for RX66T (product No.: RTK50566T0S00000BE)

Cloud Kit for RX65N Microcontroller Group (product No.: RTK5CK65N0S08001BE)

Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2S10010BE)

USB-to-serial conversion

board

Pmod USBUART (from DIGILENT)

https://digilent.com/reference/pmod/pmodusbuart/start

6.2 Settings for UART Communications

Table 6-3 lists the settings for UART communications by this module.

Table 6-3 Settings for UART Communications

Item Description

Data length 8 bits

Parity None

Stop bit 1 bit

Flow control None

Bit rate 1 Mbps

https://digilent.com/reference/pmod/pmodusbuart/start
https://digilent.com/reference/pmod/pmodusbuart/start

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 52 of 64

Dec.24.25

6.3 Operating Environment for the Demonstration Projects

This section shows the configurations of connections of each device for the demonstration projects.

For the PMOD pins of the evaluation board and the USB-to-serial conversion board in the figure, pins 1 to 6
of the PMOD interface are connected to pins 1 to 6 of the USB-to-serial conversion board (Pmod
USBUART).

6.3.1 Environment for Confirming Operation with an RX140

The configuration of connections is shown below.

6.3.1.1 Connection Configuration for UART Communications

Figure 6-1 Configuration of Connections on the FPB-RX140(UART)

Table 6-4 Correspondence of Connected Pins for UART Communications between the CK-RX65Nv2

and FPB-RX140

CK-RX65Nv2 FPB-RX140

J24 pin 7: GND ⇔ J10 pin 7

J23 pin 2: D1/TXD ⇔ J12 pin 1: D0/RX

J23 pin 1: D0/RXD ⇔ J12 pin 2: D1/TX

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 53 of 64

Dec.24.25

6.3.1.2 Connection Configuration for SPI Communication

For this demo project, pull up the MISO line.

Figure 6-2 Configuration of Connections on the FPB-RX140(SPI)

Table 6-5 Correspondence of Connected Pins for SPI Communications between the CK-RX65Nv2 and
FPB-RX140

CK-RX65Nv2 FPB-RX140

J24 Pin7: GND ⇔ J10 Pin7: GND

J24 Pin6: SPI_SCK ⇔ J10 Pin6: SPI_SCK

J24 Pin5: SPI_MISO ⇔ J10 Pin5: SPI_MISO

J24 Pin4: SPI_MOSI ⇔ J10 Pin4: SPI_MOSI

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 54 of 64

Dec.24.25

6.3.2 Environment for Confirming Operation with an RX23E-B

The configuration of connections is shown below.

Please make the following settings to supply power to the RSSK-RX23E-B from the USB-to-serial conversion
board.

⎯ Short-circuit “Pins 1-2” of jumper JP1 on the RSSK-RX23E-B.

⎯ Short-circuit “Pins 1-2” of jumper JP3 on the RSSK-RX23E-B.

⎯ Short-circuit “Pins VCC-SYS” of jumper JP1 on the USB-to-serial conversion board (Pmod

USBUART).

6.3.2.1 Connection Configuration for UART Communications

Figure 6-3 Configuration of Connections on the RSSK-RX23E-B(UART)

Table 6-6 Correspondence of Connected Pins for UART Communications between the CK-RX65Nv2

and RSSK-RX23E-B

CK-RX65Nv2 RSSK-RX23E-B

J24 pin 7: GND ⇔ PMOD2 pin 5

J23 pin 2: D1/TXD ⇔ PMOD2 pin 3

J23 pin 1: D0/RXD ⇔ PMOD2 pin 2

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 55 of 64

Dec.24.25

6.3.2.2 Connection Configuration for SPI Communication

For this demo project, pull up the MISO line.

Figure 6-4 Configuration of Connections on the RSSK-RX23E-B(SPI)

Table 6-7 Correspondence of Connected Pins for SPI Communications between the CK-RX65Nv2 and

RSSK-RX23E-B

CK-RX65Nv2 RSSK-RX23E-B

J24 Pin7: GND ⇔ JA3 Pin1

J24 Pin6: SPI_SCK ⇔ JA3 Pin13

J24 Pin5: SPI_MISO ⇔ JA3 Pin7

J24 Pin4: SPI_MOSI ⇔ JA3 Pin8

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 56 of 64

Dec.24.25

6.3.3 Environment for Confirming Operation with an RX261

The configuration of connections is shown below.

6.3.3.1 Connection Configuration for UART Communications

Figure 6-5 Configuration of Connections on the FPB-RX261(UART)

Table 6-8 Correspondence of Connected Pins for UART Communications between the CK-RX65Nv2

and FPB-RX261

CK-RX65Nv2 FPB-RX261

J24 pin 7: GND ⇔ J10 pin 7

J23 pin 2: D1/TXD ⇔ J12 pin 1: D0/RX

J23 pin 1: D0/RXD ⇔ J12 pin 2: D1/TX

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 57 of 64

Dec.24.25

6.3.3.2 Connection Configuration for SPI Communication

For this demo project, pull up the MISO line.

Figure 6-6 Configuration of Connections on the FPB-RX261(SPI)

Table 6-9 Correspondence of Connected Pins for SPI Communications between the CK-RX65Nv2 and
FPB-RX261

CK-RX65Nv2 FPB-RX261

J24 Pin7: GND ⇔ J10 Pin7 : GND

J24 Pin6: SPI_SCK ⇔ J10 Pin6 : SPI_SCK

J24 Pin5: SPI_MISO ⇔ J10 Pin5 : SPI_MISO

J24 Pin4: SPI_MOSI ⇔ J10 Pin4 : SPI_MOSI

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 58 of 64

Dec.24.25

6.3.4 Environment for Confirming Operation with an RX66T

The configuration of connections is shown below.

Please make the following settings to supply power to the RSK-RX66T from the DC power connector (5V).

⎯ Short-circuit jumper J7 on the RSK-RX66T.

6.3.4.1 Connection Configuration for UART Communications

Figure 6-7 Configuration of Connections on the RSK-RX66T(UART)

Table 6-10 Correspondence of Connected Pins for UART Communications between the CK-

RX65Nv2 and RSK-RX66T

CK-RX65Nv2 RSK-RX66T

J24 pin 7: GND ⇔ PMOD1 pin 5

J23 pin 2: D1/TXD ⇔ PMOD1 pin 3

J23 pin 1: D0/RXD ⇔ PMOD1 pin 2

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 59 of 64

Dec.24.25

6.3.4.2 Connection Configuration for SPI Communication

For this demo project, pull up the MISO line.

Figure 6-8 Configuration of Connections on the RSK-RX66T(SPI)

Table 6-11 Correspondence of Connected Pins for SPI Communications between the CK-RX65Nv2
and RSK-RX66T

CK-RX65Nv2 RSK-RX66T

J24 Pin7: GND ⇔ J3 Pin12

J24 Pin6: SPI_SCK ⇔ J3 Pin19

J24 Pin5: SPI_MISO ⇔ J3 Pin17

J24 Pin4: SPI_MOSI ⇔ J3 Pin18

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 60 of 64

Dec.24.25

6.3.5 Environment for Confirming Operation with an RX660

The configuration of connections is shown below.

6.3.5.1 Connection Configuration for UART Communications

Figure 6-9 Configuration of Connections on the TB-RX660(UART)

Table 6-12 Correspondence of Connected Pins for UART Communications between the CK-

RX65Nv2 and TB-RX660

CK-RX65Nv2 TB-RX660

J24 pin 7: GND ⇔ PMOD1 pin 11

J23 pin 2: D1/TXD ⇔ PMOD1 pin 10

J23 pin 1: D0/RXD ⇔ PMOD1 pin 9

Table 6-13 Correspondence of Connected Pins for UART Communications between the TB-RX660

and USB-to-serial Conversion Board (Pmod USBUART)

TB-RX660 Pmod USBUART

MCU header CN2 pin 22 ⇔ Pin 2

MCU header CN2 pin 20 ⇔ Pin 3

MCU header CN2 pin 12 ⇔ Pin 5

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 61 of 64

Dec.24.25

6.3.5.2 Connection Configuration for SPI Communication

For this demo project, pull up the MISO line.

Figure 6-10 Configuration of Connections on the TB-RX660(SPI)

Table 6-14 Correspondence of Connected Pins for SPI Communications between the CK-RX65Nv2
and TB-RX660

CK-RX65Nv2 RSK-RX66T

J24 Pin7: GND ⇔ CN3 Pin62

J24 Pin6: SPI_SCK ⇔ CN3 Pin65

J24 Pin5: SPI_MISO ⇔ CN3 Pin63

J24 Pin4: SPI_MOSI ⇔ CN3 Pin64

For USB-to-serial convertesion board connections, refer to Table 6-13 on the previous page.

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 62 of 64

Dec.24.25

6.3.6 Environment for Confirming Operation with an RX65N

The configuration of connections is shown below.

6.3.6.1 Connection Configuration When the Communication Method Between the PC and
Primary MCU is XMODEM

When the communication method between the PC and primary MCU is XMODEM, the connection between
the CK-RX65Nv2 and the PC requires connecting the CK-RX65Nv2's USB Type-C port to the PC, in addition
to the connection required for UART RAW mode.

Figure 6-11 Configuration of Connection on the CK-RX65Nv2 for XMODEM Communication

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 63 of 64

Dec.24.25

6.3.6.2 Connection Configuration for SPI Communication Using RSPI with RSK-RX65N-
2MB(TSIP)

For this demo project, pull up the MISO line.

Figure 6-12 Configuration of Connection on the RSK-RX65N-2MB(SPI)

Table 6-15 Correspondence of Connected Pins for SPI Communications between the RSK-RX65N-
2MB and secondary MCU

RSK-RX65N-2MB Secondary MCU

TFT Pin28 ⇔ GND

TFT Pin29 ⇔ SCK

TFT Pin30 ⇔ MISO

TFT Pin31 ⇔ MOSI

RX Family Firmware Updating Communications Module Using Firmware Integration Technology

R01AN7757EJ0110 Rev.1.10 Page 64 of 64

Dec.24.25

Revision History

Rev. Date

Description

Page Summary

1.00 May.20.25 ⎯ First edition issued

1.10 Dec.24.25 ⎯ • Module

⎯ Added SPI communication functionality

⎯ Added broadcast address

⎯ Added FWUP_VERSION command

⎯ Renamed communication interface function from

rx_flush to rx_reset

• Demo project

⎯ Added MCUboot projects

⎯ Added XMODEM to the firmware update data transfer

method from PC

⎯ Supported firmware updates for the primary MCU

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2025 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of

your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,

manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas

Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas

Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics

hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but

not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS

ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING

RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,

HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND

ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT

PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH

RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO

THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc.

Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products

outside of such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you

are responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 2020.10)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 About the Firmware Updating Communications Module
	1.2 Supported Communications IP and Hardware Configuration
	1.2.1 UART Communications
	1.2.2 SPI Communications

	1.3 Software Configuration
	1.3.1 Setting UART Communications

	1.4 Packet Communications
	1.5 Data Format
	1.5.1 Data Format of Packets

	1.6 Specifications of Commands
	1.6.1 Common Commands
	(1) DATA_SEND: Sending data
	(2) DATA_RECV: Receiving data

	1.6.2 FWUP Commands
	(1) START: Starting of updating the firmware
	(2) WRITE: Writing the updated firmware
	(3) INSTALL: Installing the updated firmware
	(4) CANCEL: Canceling of updating the firmware
	(5) VERSION: Confirming the Firmware Version
	1.6.2.2 Flow of Communications for the FWUP Commands

	1.7 Handling Errors
	1.8 Overview of API Functions

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Toolchains
	2.4 Header Files
	2.5 Integer Types
	2.6 Compiler Settings
	2.7 Code Size of the Sample Projects
	2.8 Arguments
	2.9 Return Values
	2.10 Adding the FIT Module to Your Project
	(1) Adding the FIT module to your project by using the Smart Configurator in the e2 studio
	(2) Adding the FIT module to your project by using the FIT Configurator in the e2 studio

	2.11 “for”, “while” and “do while” Statements

	3. API Functions
	3.1 R_FWUPCOMM_Open Function
	3.2 R_FWUPCOMM_Close Function
	3.3 R_FWUPCOMM_CmdSend Function
	3.4 R_FWUPCOMM_ProcessCmdLoop Function

	4. Extending the Functionality of This Module
	4.1 Adding Commands
	4.2 Changing the Method of Communications
	4.2.1 Communications Interface
	4.2.1.1 fwupcomm_err_t (*open)(void)
	4.2.1.2 void (*close)(void)
	4.2.1.3 fwupcomm_err_t (*send)(uint8_t *src, uint16_t size)
	4.2.1.4 fwupcomm_err_t (*recv)(uint8_t *dest, uint16_t size)
	4.2.1.5 void (*rx_reset)(void)

	4.2.2 How to Change the Method of Communications

	5. Demonstration Projects
	5.1 Configuration for the Demonstration Projects
	5.1.1 Primary MCU
	5.1.2 Secondary MCU

	5.2 Preparing an Operating Environment
	5.2.1 Installing TeraTerm
	5.2.2 Installing the Python Execution Environment
	5.2.3 Installing the Flash Writer

	5.3 Procedure for Executing a Demonstration Project
	5.3.1 Execution Environment
	5.3.2 Building the Demonstration Projects
	5.3.2.1 Creating Initial and Updating Images for the Primary MCU
	(1) Import the bootloader_rx65n_ck_w_buffer and app_rx65n_ck_primary project into the e2 studio and build the project. For the full update method, change the “APP_COMM_CONFIG_FWUP_FULL_UPDATE” macro definition to (1) in app_rx65n_ck_primary\src\fwup\a...

	5.3.2.2 Creating Initial and Updating Images for the Secondary MCU

	5.3.3 Programming the Initial Image
	5.3.4 Executing a Firmware Update

	5.4 Procedure for Executing the MCUboot Project
	5.4.1 Execution Environment
	5.4.2 Building the Demonstration Projects
	5.4.2.1 Creating Initial and Updating Images for the Primary MCU
	(1) Perform “4.2 Preparing the Operating Environment” in the “RX Family MCUboot Firmware Integration Technology (R01AN7374)”.
	(2) Import the key_injection_rx65n_ck_mcuboot, bootloader_rx65n_ck_mcuboot and app_rx65n_ck_mcuboot_primary into the e2 studio. For the full update method, change the “APP_COMM_CONFIG_FWUP_FULL_UPDATE” macro definition to (1) in app_rx65n_ck_mcuboot_p...
	(3) Perform “4.3.1 Key Injection” in the “4.3 Procedure for Executing the Demo Project” of the “RX Family MCUboot Firmware Integration Technology (R01AN7374)”.
	(4) Perform “4.3.2 Embedding the Public Key for Signature Verification” in “4.3 Procedure for Executing the Demo Project” of “RX Family MCUboot Firmware Integration Technology (R01AN7374)”.
	(5) Perform “4.3.3 Preparing the Images for the Demo Project” in “4.3 Procedure for Executing the Demo Project” of “RX Family MCUboot Firmware Integration Technology (R01AN7374)”.
	(6) Perform “4.3.4 Programming the Demo Project” in “4.3 Procedure for Executing the Demo Project” of “RX Family MCUboot Firmware Integration Technology (R01AN7374)”.

	5.4.2.2 Creating Initial and Updating Images for the Secondary MCU
	(1) Import the key_injection_rx261_fpb_mcuboot, bootloader_rx21_fpb_mcuboot and app_rx261_fpb_mcuboot into the e2 studio.
	(2) Perform “4.3.1 Key Injection” in the “4.3 Procedure for Executing the Demo Project” of the “RX Family MCUboot Firmware Integration Technology (R01AN7374)”.
	(3) Perform “4.3.2 Embedding the Public Key for Signature Verification” in “4.3 Procedure for Executing the Demo Project” of “RX Family MCUboot Firmware Integration Technology (R01AN7374)”.
	(4) Perform “4.3.3 Preparing the Images for the Demo Project” in “4.3 Procedure for Executing the Demo Project” of “RX Family MCUboot Firmware Integration Technology (R01AN7374)”.
	(5) Perform “4.3.4 Programming the Demo Project” in “4.3 Procedure for Executing the Demo Project” of “RX Family MCUboot Firmware Integration Technology (R01AN7374)”.

	5.4.3 Executing a Firmware Update

	5.5 Procedure for Executing the Demo Project When the Communication Method Between the PC and Primary MCU is XMODEM
	(1) Connect the primary MCU CK-RX65Nv2 or RSK-RX65N-2MB (TSIP) as described in “6.3.6.1 Connection Configuration When the Communication Method Between the PC and Primary MCU is XMODEM”.
	(2) Set APP_COMM_CONFIG_PROTOCOL defined in src/comm/app_comm_config.h of the primary MCU's application project to (2).
	(3) Perform the procedures in “5.3.2 Building the Demonstration Projects” and “5.3.3 Programming the Initial Image”.
	(4) In “5.3.4 Executing a Firmware Update,” launch TeraTerm in three windows. In addition to the serial COM ports for the primary MCU (CK-RX65Nv2) and secondary MCU (FPB-RX140), select the serial COM port for the additionally connected USB terminal an...
	(5) Power on the board. The following messages will be displayed in TeraTerm.
	(6) On the primary MCU's TeraTerm window, enter the number of the MCU to be updated with the new firmware.
	(7) Send the update image from TeraTerm. From the [File] menu in TeraTerm on the primary MCU, click [Transfer] → [XMODEM] → [Send]. Select update_firm_rx65n.rsu for updating the primary MCU's firmware, or update_firm_rx140.rsu for updating the seconda...

	5.6 Settings for the Demo Project When Using SPI Communication Between MCUs

	6. Appendices
	6.1 Environments for Confirming Operation
	6.2 Settings for UART Communications
	6.3 Operating Environment for the Demonstration Projects
	6.3.1 Environment for Confirming Operation with an RX140
	6.3.1.1 Connection Configuration for UART Communications
	6.3.1.2 Connection Configuration for SPI Communication

	6.3.2 Environment for Confirming Operation with an RX23E-B
	6.3.2.1 Connection Configuration for UART Communications
	6.3.2.2 Connection Configuration for SPI Communication

	6.3.3 Environment for Confirming Operation with an RX261
	6.3.3.1 Connection Configuration for UART Communications
	6.3.3.2 Connection Configuration for SPI Communication

	6.3.4 Environment for Confirming Operation with an RX66T
	6.3.4.1 Connection Configuration for UART Communications
	6.3.4.2 Connection Configuration for SPI Communication

	6.3.5 Environment for Confirming Operation with an RX660
	6.3.5.1 Connection Configuration for UART Communications
	6.3.5.2 Connection Configuration for SPI Communication

	6.3.6 Environment for Confirming Operation with an RX65N
	6.3.6.1 Connection Configuration When the Communication Method Between the PC and Primary MCU is XMODEM
	6.3.6.2 Connection Configuration for SPI Communication Using RSPI with RSK-RX65N-2MB(TSIP)

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

