
 Application Note

R01AN7238EJ0100 Rev.1.00 Page 1 of 46

Jan.22.24

RX Family

How to Change Transfer Data Length During RSPI Communication Using a DTC

Introduction

This application note describes how to change the transfer data length during serial peripheral interface
(RSPI) communication using a data transfer controller (DTC), using the RX660 group as an example.

Target Devices

RX Family

Confirmed Devices

RX660 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 2 of 46

Jan.22.24

Contents

1. SSL Signal When the RSPI Transfer Data Length Changes ... 4

1.1 SSL Signal Controlled by Hardware .. 4

1.2 SSL Signal Generation Controlled by a General-Purpose Port .. 4

2. Hardware Configuration ... 5

3. Operation Confirmation Conditions ... 6

4. Description of Software ... 7

4.1 Description of Operation .. 11

4.1.1 Communication When the Transfer Data Length is 24 Bits .. 11

4.1.2 Communication When the Transfer Data Length Is 16 Bits .. 12

4.2 Components Used for Firmware Integration Technology (FIT) Modules and Code Generation 13

4.2.1 Smart Configurator (SC) Settings for FIT Module Component ... 13

4.2.2 SC Settings for Code Generation Components .. 14

4.2.2.1 Interrupt controller configuration ... 14

4.2.2.2 Data transfer controller configuration (DTC settings for data transmission (transfer data length is

24 bits)) ... 17

4.2.2.3 Data transfer controller configuration (DTC settings for data reception (transfer data length is

24 bits)) ... 19

4.2.2.4 SPI operation mode (4-wire method) configuration .. 21

4.2.3 Generating Code ... 24

4.2.4 Adding Code to the SC-Generated Code .. 25

4.2.4.1 Additional processing to the SC-generated code .. 25

4.2.4.2 Constants added to the SC-generated code ... 26

4.2.4.3 Variables added to the SC-generated code .. 26

4.2.4.4 Functions added to the SC-generated code ... 26

4.2.4.5 Adding code to the main routine ... 27

Adding code to the Config_RSPI0.h file .. 28

Adding code to the main() function .. 28

4.2.4.6 Adding code to the IRQ9 interrupt handler.. 29

Adding code to the “Includes” and “Global variables and functions” sections in the Config_ICU_user.c file . 30

Adding code to the r_Config_ICU_irq9_interrupt () function ... 31

4.2.4.7 Adding the set_16bit_data_transfer_mode() function to the Config_DTC.c file 32

Adding code to the Config_DTC.h file ... 32

Adding code to the “Global variables and functions” section in the Config_DTC.c file 33

set_16bit_data_transfer_mode() function added to the Config_DTC.c file ... 33

4.2.4.8 Adding the set_16bit_data_receive_mode() function to the Config_DTC1.c file 34

Adding code to the Config_DTC1.h file ... 34

Adding code to “Global variables and functions” in the Config_DTC1.c file .. 35

set_16bit_data_receive_mode() function added to the Config_DTC1.c file .. 35

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 3 of 46

Jan.22.24

4.2.4.9 Adding code to the SPTI0 interrupt handler .. 36

Code added to the r_Config_RSPI0_callback_transmitend() function .. 36

4.2.4.10 Adding code to the SPRI0 interrupt handler.. 37

Code added to the r_Config_RSPI0_callback_receiveend() function ... 37

4.2.4.11 Adding code to the SPCI0 interrupt handler.. 38

Adding code to the “Includes” and “Global variables and functions” sections in the Config_RSPI0_user.c file

 ... 39

Code added to the r_Config_RSPI0_communication_end_interrupt() function .. 40

5. Importing a Project .. 42

5.1 Importing a Project into e2 studio .. 42

5.2 Importing a Project into CS+ ... 43

6. Notes ... 44

6.1 Notes on Bit Manipulation Instructions .. 44

7. Reference Documents ... 45

Revision History .. 46

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 4 of 46

Jan.22.24

1. SSL Signal When the RSPI Transfer Data Length Changes

1.1 SSL Signal Controlled by Hardware

During RSPI communication, the transfer data length can be changed only after the current transfer finishes.

When the RSPI communication terminates, the SSL signal is negated by hardware control. Therefore, as
shown in Figure 1.1, assertion and negation of the SSL signal occur when the transfer data length changes.

If you want the SSL signal to remain asserted throughout the data communication, you need to control the
SSL signal by using a general-purpose port.

Figure 1.1 SSL Signal Controlled by Hardware When the Transfer Data Length Changes

1.2 SSL Signal Generation Controlled by a General-Purpose Port

In this application note, a general-purpose port is used to control the SSL signal by software rather than by
hardware.

Figure 1.2 SSL Signal Controlled Using a General-Purpose Port

When the Transfer Data Length Changes

SSL

RSPCK

Data length X Data length Y Data length Y Data length Y. . .MOSI

Data length X Data length Y Data length Y Data length YMISO

Assertion and negation of the SSL signal occur

when the transfer data length changes.

. . .

SSL
(General-

purpose port)

RSPCK

Data length X Data length Y Data length Y Data length YMOSI

Data length X Data length Y Data length Y Data length YMISO

. . .

. . .

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 5 of 46

Jan.22.24

2. Hardware Configuration

Figure 2.1 shows Hardware Configuration.

Figure 2.1 Hardware Configuration

Table 2.1 shows RSPI Pins Used for Connecting RX660 and the SPI Slave Device.

Table 2.1 RSPI Pins Used for Connecting RX660 and the SPI Slave Device

Pin Name I/O Port Used Function

RSPCKA Output PA5 Clock I/O

MOSIA Output PA6 Master transmit data I/O

MISOA Input PA7 Slave transmit data I/O

SSLA Output PA2 Slave selection output by general-purpose port control

In this application note, SW1 installed on the Renesas Starter Kit+ for RX660 (RSK) board is used to start
RSPI communication.

Table 2.2 shows External Pin Interrupt Assigned to SW1 Input.

Table 2.2 External Pin Interrupt Assigned to SW1 Input

Pin Name Port Used Function

IRQ9
P91 Detects that SW1 is pressed and then starts RSPI

communication.

RX660

(Master)

RSPCKA

MOSIA

MISOA

SSLA
(General-purpose port)

SPI device

(Slave)

SPCK

MOSI

MISO

SSL

IRQ9SW1

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 6 of 46

Jan.22.24

3. Operation Confirmation Conditions

Table 3.1 Operation Confirmation Conditions

Item Description

MCU used R5F56609HDFB (RX660 Group)

Operating frequency • Main clock: 24 MHz

• PLL: 240 MHz (Main clock, divided by 1, multiplied by 10)

• System clock (ICLK): 120 MHz (PLL divided by 2)

• Peripheral module clock A (PCLKA): 120 MHz (PLL divided by 2)

• Peripheral module clock B (PCLKB): 60 MHz (PLL divided by 4)

Operating voltage 3.3 V

Integrated development

environment

Renesas Electronics

e2 studio Version 2024-01 (24.1.0)

C compiler Renesas Electronics

C/C++ Compiler Package for RX Family V.3.06.00

Compile options

-lang = c99

iodefine.h version Version 1.00

Endian order Little endian

Operating mode Single-chip mode

Processor mode Supervisor mode

Sample program version Version 1.00

Board used Renesas Starter Kit for RX660 (Product No.: RTK556609xxxxxxxxx)

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 7 of 46

Jan.22.24

4. Description of Software

In this application note, when SW1 installed on RSK is pressed, 1-frame communication is performed using a
data length of 24 bits. Then, the transfer data length is changed to 16 bits and 8-frame communication is
performed.

SW1 is connected to IRQ9. Table 4.1 shows Setting of IRQ9 (Used to Detect Pressing of SW1).

Table 4.1 Setting of IRQ9 (Used to Detect Pressing of SW1)

Item Settings

Detection type Falling edge

Digital filter setting PCLK/64

Table 4.2 and Table 4.3 show the RSPI settings for communication when the transfer data length is 24 bits
and 16 bits, respectively.

Table 4.2 RSPI Settings for Communication When the Transfer Data Length Is 24 Bits

Item Settings

RSPCK clock 125 kHz

Bit length 24 bits

Number of frames 1 frame

Format MSB first

RSPCK phase Data variation on odd edge, data sampling on even edge.

RSPCK polarity Low when idle

SSL polarity Active Low

SSL negation operation Keeps the SSL signal level from transfer end until next access start

RSLCK delay 1 RSPCK

SSL negation delay 1 RSPCK

Next access delay 1 RSPCK + 2 PCLK

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 8 of 46

Jan.22.24

Table 4.3 Settings for Communication When the Transfer Data Length Is 16 Bits

Item Settings

RSPCK clock 125 kHz

Bit length 16 bits

Number of frames 1 frame

Format MSB first

RSPCK phase Data variation on odd edge, data sampling on even edge.

RSPCK polarity Low when idle

SSL polarity Active Low

SSL negate operation Keeps the SSL signal level from transfer end until next access start

RSLCK delay 1 RSPCK

SSL negation delay 1 RSPCK

Next access delay 1 RSPCK + 2 PCLK

Table 4.4 shows RSPI Interrupts Used.

Table 4.4 RSPI Interrupts Used

Interrupt Description

SPTI0 Transmit buffer empty interrupt

SPRI0 Receive data full interrupt

SPEI0 Error interrupt

SPCI0 Communication end interrupt

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 9 of 46

Jan.22.24

In this application note, both data transmission and reception use the DTC.

Because the DTC settings differ depending on the transfer data length and whether data is to be sent or
received, the DTC settings are classified as follows.

DTC transfer A: DTC settings for data transmission (transfer data length: 24 bits)

DTC transfer B: DTC settings for data reception (transfer data length: 24 bits)

DTC transfer C: DTC settings for data transmission (transfer data length: 16 bits)

DTC transfer D: DTC settings for data reception (transfer data length: 16 bits)

Table 4.5 to Table 4.8 show the respective DTC settings.

Table 4.5 DTC Transfer A: DTC Settings for Data Transmission (Transfer Data Length: 24 Bits)

Item Description

Activation Source SPTI0 interrupt

Transfer mode Normal transfer

Transfer data size 32 bits

Interrupt settings
An interrupt request to the CPU is generated when specified data

transfer is completed.

Source address Address fixed

Destination address Address fixed

Source register (SAR) 0x3000 (RAM area address)

Destination register (DAR) SPDR register address

Transfer count register A (CRA) 0x0001

Transfer count register B (CRB) 0x0000

Table 4.6 DTC Transfer B: DTC Settings for Data Reception (Transfer Data Length: 24 Bits)

Item Description

Activation Source SPRI0 interrupt

Transfer mode Normal transfer

Transfer data size 32 bits

Interrupt settings
An interrupt request to the CPU is generated when specified data

transfer is completed.

Source address Address fixed

Destination address Address fixed

Source register (SAR) SPDR register address

Destination register (DAR) 0x2000 (RAM area address)

Transfer count register A (CRA) 0x0001

Transfer count register B (CRB) 0x0000

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 10 of 46

Jan.22.24

Table 4.7 DTC Transfer C: DTC Settings for Data Transmission (Transfer Data Length: 16 Bits)

Item Description

Activation Source SPTI0 interrupt

Transfer mode Normal transfer

Transfer data size 16 bits

Interrupt settings
An interrupt request to the CPU is generated when specified data

transfer is completed.

Source address Address fixed

Destination address Address fixed

Source register (SAR) Address of g_w16_data

Destination register (DAR) SPDR register address

Transfer count register A (CRA) 0x0008

Transfer count register B (CRB) 0x0000

Table 4.8 DTC Transfer D: DTC Settings for Data Reception (Transfer Data Length: 16 Bits)

Item Description

Activation Source SPRI0 interrupt

Transfer mode Normal transfer

Transfer data size 16 bits

Interrupt settings
An interrupt request to the CPU is generated when specified data

transfer is completed.

Source address Address fixed

Destination address Address incremented

Source register (SAR) SPDR register address

Destination register (DAR) Address of g_r16_data[0]

Transfer count register A (CRA) 0x0008

Transfer count register B (CRB) 0x0000

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 11 of 46

Jan.22.24

4.1 Description of Operation

4.1.1 Communication When the Transfer Data Length is 24 Bits
When SW1 is pressed, an IRQ9 interrupt request is generated. The IRQ9 interrupt handler changes the SSL
signal controlled by the general-purpose port (PA2) to the Low level, and then starts communication for 24-
bit transfer data length.

The communication for 24-bit transfer data length sends and receives one frame.

Figure 4.1 shows Timing Chart for Communication When the Transfer Data Length Is 24 Bits.

Data transmission:

Using an SPTI0 interrupt as an activation source, DTC transfer A in Table 4.5 is performed to write 24-bit
data to the SPDR register (the DTC transfers 32 bits, of which the lower 24 bits will be valid data).
After DTC transfer A is performed, an SPTI0 interrupt request to the CPU is generated.
The SPTI0 interrupt handler disables the SPTI0 interrupt (SPCR.SPTIE=0).

Data reception:

Using an SPRI0 interrupt as an activation source, DTC transfer B in Table 4.6 is performed to read 24-bit
data from the SPDR register (the DTC transfers 32 bits, of which the lower 24 bits will be valid data).
After DTC transfer B is performed, an SPRI0 interrupt request to the CPU is generated.
The SPRI0 interrupt handler enables the SPCI0 interrupt (SPCR3.SPCIE=1).

Communication completion processing:

The SPCI0 interrupt handler changes the transfer data length to 16 bits, and then changes the DTC settings
according to DTC transfer C for sending 16-bit data (Table 4.7) and DTC transfer D for receiving 16-bit data
(Table 4.8). Then, communication for 16-bit transfer length starts.

Figure 4.1 Timing Chart for Communication When the Transfer Data Length Is 24 Bits

SSL
(General-

purpose port)

RSPCK

24 bitsMOSI

24 bitsMISO

SPTI0
(Request to the

DTC or CPU)

SPRI0
(Request to the

DTC or CPU)

SPCI0
(Request to the CPU)

DTC transfer A writes 24-bit transmit data. Then,
an SPTI0 interrupt request to the CPU is
generated, and then the interrupt handler
disables the SPTI0 interrupt (SPCR.SPTIE=0).

Note:
The SPTI0 interrupt request shown above is
generated when a DTC transfer ends. However,
almost at the same time, another SPTI0 interrupt
request (caused when the transmit buffer
becomes empty) is also generated.
In the above case, if the transmit buffer becomes
empty before SPTI0 interrupts are disabled, an
SPTI0 interrupt request is generated again.

DTC transfer B reads 24-bit
receive data. Then, an SPRI0
interrupt request to the CPU is
generated, and then the
interrupt handler enables the
SPCI0 interrupt
(SPCR3.SPCIE=1).

An SPCI0 interrupt request to
the CPU is generated. Then,
the interrupt handler changes
the transfer data length to 16
bits, changes the DTC
settings, and then starts
communication for 16-bit
transfer data length.

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 12 of 46

Jan.22.24

4.1.2 Communication When the Transfer Data Length Is 16 Bits
When communication for 24-bit transfer data length finishes, communication for 16-bit transfer data length
starts.

The communication for 16-bit transfer data length sends and receives eight frames.

Figure 4.2 shows Timing Chart for Communication When the Transfer Data Length is 16 Bits.

Data transmission:

Using an SPTI0 interrupt as an activation source, DTC transfer C in Table 4.7 is performed to write 16-bit
data to the SPDR register.
When DTC transfer C activated by an SPTI0 interrupt request has transferred eight frames, another SPTI0
interrupt request to the CPU is generated.
The SPTI0 interrupt handler disables the SPTI0 interrupt (SPCR.SPTIE=0).

Data reception:

Using an SPRI0 interrupt as an activation source, DTC transfer D in Table 4.8 is performed to read 16-bit
data from the SPDR register.
When DTC transfer D activated by an SPRI0 interrupt request has transferred eight frames, another SPRI0
interrupt request to the CPU is generated.
The SPRI0 interrupt handler enables the SPCI0 interrupt (SPCR3.SPCIE=1).

Communication completion processing:

The SPCI0 interrupt handler changes the SSL signal controlled by the general-purpose port (PA2) to High
level, changes the transfer data length to 24 bits, and then changes the DTC settings according to DTC
transfer A for sending 24-bit data (Table 4.5) and DTC transfer B for receiving 24-bit data (Table 4.6).
Then, when SW1 is pressed, communication for 24-bit transfer data length starts as described in 4.1.1
Communication When the Transfer Data Length is 24 Bits.

Figure 4.2 Timing Chart for Communication When the Transfer Data Length is 16 Bits

SSL
(General-

purpose port)

RSPCK

16 bits (1)MOSI

MISO

16 bits (2) 16 bits (7) 16 bits (8)

16 bits (1) 16 bits (2) 16 bits (7) 16 bits (8)

SPTI0
(Request to the

DTC or CPU)

SPRI0
(Request to the

DTC or CPU)

SPCI0
(Request to the CPU)

Write 16 bits of

transmit data (1)

by DTC transfer C

Write 16 bits of

transmit data (2)

by DTC transfer C

Write 16 bits of

transmit data (3)

by DTC transfer C

Read 16 bits of

receive data (1) by

DTC transfer D

Write 16 bits of

transmit data (4)

by DTC transfer C

Read 16 bits of

receive data (2) by

DTC transfer D

Write 16 bits of
transmit data (8) by
DTC transfer C.
Then, an SPTI0
interrupt request to
the CPU is
generated, and then
the interrupt handler
disables the SPTI0
interrupt.
(SPCR.SPTIE=0)

Read 16 bits of

receive data (6) by

DTC transfer D

Read 16 bits of

receive data (7) by

DTC transfer D

Read 16 bits of
receive data (8) by
DTC transfer D.
Then, an SPRI0
interrupt request to
the CPU is
generated, and then
the interrupt handler
enables the SPCI0
interrupt.
(SPCR3.SPCIE=1)

An SPCI0 interrupt
request to the CPU
is generated, and
then interrupt
handler drives the
SSL signal High,
changes the
transfer data length
to 24 bis, and then
changes the DTC
setting.

.

.

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 13 of 46

Jan.22.24

4.2 Components Used for Firmware Integration Technology (FIT) Modules and
Code Generation

Table 4.9 shows Components Used for FIT Modules and Code Generation.

Table 4.9 Components Used for FIT Modules and Code Generation

Component Category Use

Board Support Packages (BSP) FIT module Provides all codes from reset to the main()

function

Interrupt controller Code generation ICU settings

Data transfer controller Code generation DTC settings

SPI operation mode (4-wire method) Code generation RSPI settings

4.2.1 Smart Configurator (SC) Settings for FIT Module Component

This application note uses BSP modules that are automatically generated when a new project is created, but
the SC settings for the BSP are not changed.

Table 4.10 shows the major clock settings only.

Table 4.10 BSP Module Clock Settings

Item Settings

System clock settings Clock source: PLL circuit output 240 MHz

System clock (ICLK): x1/2 ··································· 120 (MHz)

Peripheral module clock (PCLKA): x1/2 ·················· 120 (MHz)

Peripheral module clock (PCLKB): x1/4 ···················· 60 (MHz)

Peripheral module clock (PCLKD): x1/4 ···················· 60 (MHz)

Bus clock (BCLK): x1/4 ··· 60 (MHz)

FlashIF clock (FCLK): x1/4 ···································· 60 (MHz)

Sub-clock oscillator setting Operating

(Default setting. Sub-clocks are not used.)

HOCO clock setting Stop

LOCO clock setting Stop

IWDT-dedicated clock setting Stop

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 14 of 46

Jan.22.24

4.2.2 SC Settings for Code Generation Components

The first communication after the power is turned on uses 24 bits for the transfer data length.

Therefore, the SC settings described in this section apply to communication for 24-bit transfer data length.

Note that the settings necessary for communication for 16-bit transfer data length must be manually added to
the code generated by SC.

4.2.2.1 Interrupt controller configuration

(1) Open the [Components] tab, and then click the icon for adding a component.

(2) In the [Software Component Selection] window, select [Interrupt Controller], and then click
[Next].

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 15 of 46

Jan.22.24

(3) In the window for adding the component, click [Finish].

(4) Software component configuration

Assign the pin (P91) connected to SW1 of RSK to IRQ9.

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 16 of 46

Jan.22.24

(5) Pin configuration

Open the [Pins] tab, select [Interrupt] from under [Hardware Resource], and then assign P91 to IRQ9
included in the pin functions.

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 17 of 46

Jan.22.24

4.2.2.2 Data transfer controller configuration (DTC settings for data transmission (transfer
data length is 24 bits))

(1) Open the [Components] tab, and then click the icon for adding a component.

For details about the selection window, see 4.2.2.1(1).

(2) In the [Software Component Selection] window, select [Data Transfer Controller], and then click
[Next].

(3) In the window for adding the component, click [Finish].

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 18 of 46

Jan.22.24

(4) Software component configuration

In this application note, the items on the [Base setting] tab are specified as follows.

The setting in the red frame has been changed from the default.

The items on the [DTC0] tab are specified as follows.

The settings in the red frames have been changed from the defaults.

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 19 of 46

Jan.22.24

4.2.2.3 Data transfer controller configuration (DTC settings for data reception (transfer
data length is 24 bits))

(1) Open the [Components] tab, and then click the icon for adding a component.

For details about the selection window, see 4.2.2.1(1).

(2) In the [Software Component Selection] window, select [Data Transfer Controller], and then click
[Next].

For details about the selection window, see 4.2.2.2 (2).

(3) In the window for adding the component, click [Finish].

(4) Software component configuration

In this application note, the items on the [Base setting] tab are specified as follows.

The setting in the red frame has been changed from the default.

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 20 of 46

Jan.22.24

The items on the [DTC0] tab are specified as follows.

The settings in the red frames have been changed from the defaults.

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 21 of 46

Jan.22.24

4.2.2.4 SPI operation mode (4-wire method) configuration

(1) Open the [Components] tab, and then click the icon for adding a component.

For details about the selection window, see 4.2.2.1(1).

(2) In the [Software Component Selection] window, select [SPI Operation Mode (4-wire method)],
and then click [Next].

(3) In the window for adding the component, select [Master transmit/receive] for [Operation], and
then click [Finish].

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 22 of 46

Jan.22.24

(4) Software component configuration

In this application note, the items are specified as follows.

The settings in red frames have been changed from the defaults.

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 23 of 46

Jan.22.24

(5) Pin configuration

Open the [Pins] tab, select [RSPI0] from the hardware resources, and then assign the pins to be used for
RSPI.

In this application note, pins that are open on the RSK are assigned.

Note that the SSLA0 pin is not used.

The settings in the red frame have been changed from the defaults.

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 24 of 46

Jan.22.24

4.2.3 Generating Code

When all the SC settings are complete, click [Generate Code] to generate code.

When the following dialog box appears, click [Proceed].

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 25 of 46

Jan.22.24

4.2.4 Adding Code to the SC-Generated Code

You can add user code between the following lines in a source file or header file:
/* Start user … */
/* End user … */

4.2.4.1 Additional processing to the SC-generated code

To the code generated by SC, add the processing that is necessary for 16-bit data transfer (such as
changing the transfer data length and DTC settings) and the IRQ9 interrupt handler to be run after SW1 is
pressed.

Table 4.11 shows Additions to SC-Generated Code.

Table 4.11 Additions to SC-Generated Code

Folder File Changed or Added Function Description

src data_length_change_s

ample_for_rspi_dtc.c

void main(void) The processing to drive the SSL signal High

using general-purpose port control, clear the

24-bit communication completion check flag

(g_length_check), and enable IRQ9 was

added.

src\sm_gen\

Config_ICU

Config_ICU_user.c static void

r_Config_ICU_irq9_interrupt(void)

The processing to initialize transmit data,

initialize the receive data storage RAM, start

the DTC, assert the SSL signal, and start

RSPI communication was added.

src\sm_gen\

Config_DTC

Config_DTC.c void set_16bit_data_transfer_mode(void) The void set_16bit_data_transfer_mode

(void) function was added. This function sets

the DTC transfer information shown in

Table 4.7 DTC Transfer C: DTC Settings for

Data Transmission (Transfer Data Length: 16

Bits).

Config_DTC.h - The prototype declaration of the void

set_16bit_data_transfer_mode(void) function

was added.

The value of the transfer count register A

(CRA) to be specified for this function was

added as a macro constant.

src\sm_gen\

Config_DTC1

Config_DTC1.c void set_16bit_data_receive_mode(void) The void set_16bit_data_receive_mode(void)

function was added. This function sets the

DTC transfer information shown in Table 4.8

DTC Transfer D: DTC Settings for Data

Reception (Transfer Data Length: 16 Bits).

Config_DTC1.h - The prototype declaration of the void

set_16bit_data_receive_mode(void) function

was added.

The value of the transfer count register A

(CRA) to be specified for this function was

added as a macro constant.

src\sm_gen\

Config_RSPI0

Config_RSPI0_user.c static void

r_Config_RSPI0_communication_end_int

errupt(void)

The following processing was added:

• When 24-bit communication is complete

Processing to change the transfer data length

to 16 bits, change the DTC settings, start the

DTC, and start RSPI communication

• When communication of 16 bits x 8 frames

is complete

Processing to negate the SSL signal, change

the transfer data length to 24 bits, and

change the DTC settings

static void

r_Config_RSPI0_callback_transmitend(void)

The processing to disable SPTI0 interrupts

was added.

static void

r_Config_RSPI0_callback_receiveend(void)

The processing to enable SPCI0 interrupts

was added.

Config_RSPI0.h - The macro definition of the general-purpose

port used for SSL control was added.

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 26 of 46

Jan.22.24

4.2.4.2 Constants added to the SC-generated code

Table 4.12 shows List of Constants Added to the SC-Generated Code.

Table 4.12 List of Constants Added to the SC-Generated Code

Constant Name Setting Description

SSL_PORT_PODR_BIT PORTA.PODR.BIT.B2
PODR register bits of the general-purpose port

used for SSL control

SSL_PORT_PDR_BIT PORTA.PDR.BIT.B2
PDR register bits of the general-purpose port

used for SSL control

CRA_16BIT_TRANSFER 0x0008
Value of the DTC transfer count register A

(CRA) for 16-bit transmission

CRA_16BIT_RECEIVE 0x0008
Value of the DTC transfer count register A

(CRA) for 16-bit reception

4.2.4.3 Variables added to the SC-generated code

Table 4.13 shows List of Variables Added to the SC-Generated Code.

Table 4.13 List of Variables Added to the SC-Generated Code

Type Variable Name Description Functions Using the Variable

volatile uint8_t g_length_check

Transfer data length check flag

0: Transfer data length is 24

bits

1: Transfer data length is 16

bits

main()

r_Config_ICU_irq9_interrupt()

r_Config_RSPI0_communication_e

nd_interrupt()

volatile

uint32_t
g_w24_data Stores 24-bit transmit data

r_Config_ICU_irq9_interrupt()

volatile

uint32_t
g_r24_data Stores 24-bit receive data

r_Config_ICU_irq9_interrupt()

volatile

uint16_t
g_w16_data Stores 16-bit transmit data

r_Config_ICU_irq9_interrupt()

set_16bit_data_transfer_mode()

volatile

uint16_t
g_r16_data[8] Stores 16-bit receive data

r_Config_ICU_irq9_interrupt()

set_16bit_data_receive_mode()

4.2.4.4 Functions added to the SC-generated code

Table 4.14 shows List of Functions Added to the SC-Generated Code.

Table 4.14 List of Functions Added to the SC-Generated Code

Type Variable Name Argument Description

void set_16bit_data_transfer_mode void

Sets DTC transfer information for 16-bit

transmission as shown in Table 4.7 DTC Transfer

C: DTC Settings for Data Transmission (Transfer

Data Length: 16 Bits)

void set_16bit_data_receive_mode void

Sets DTC transfer information for 16-bit reception

as shown in Table 4.8 DTC Transfer D: DTC

Settings for Data Reception (Transfer Data

Length: 16 Bits).

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 27 of 46

Jan.22.24

4.2.4.5 Adding code to the main routine

Add code to the main() function of the main routine in the data_length_change_sample_for_rspi_dtc.c file.

Figure 4.3 shows Outline Flow of the main() Function.

Figure 4.3 Outline Flow of the main() Function

main()

The SSL signal is output High by general-purpose
port control

Initialize the SSL signal

Clear the transfer data
length check flag

R_Config_ICU_IRQ9_Start() Call the function that is automatically generated by SC
(Enable IRQ9 interrupt)

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 28 of 46

Jan.22.24

Add code to the Config_RSPI0.h file.

Adding code to the Config_RSPI0.h file

/* Start user code for function. Do not edit comment generated here */

/***

Macro definitions

***/

#define SSL_PORT_PODR_BIT (PORTA.PODR.BIT.B2)

#define SSL_PORT_PDR_BIT (PORTA.PDR.BIT.B2)

/* End user code. Do not edit comment generated here */

Add code to the main routine.

Adding code to the main() function

#include "r_smc_entry.h"

volatile uint8_t g_length_check;

void main(void);

void main(void)

{

 /* Set General-purpose port for SSL control */

 SSL_PORT_PODR_BIT = 1U;

 SSL_PORT_PDR_BIT = 1U;

 g_length_check = 0U;

 R_Config_ICU_IRQ9_Start();

 while(1U){

 /* do nothing */

 }

}

← Enables IRQ9.

← Clears the transfer data length check flag.

← The SSL signal is output High by general-purpose port control.

← Includes the header files automatically created by SC.

← General-purpose port PA2 controls the
SSL signal.

← Definition of the transfer data length check flag

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 29 of 46

Jan.22.24

4.2.4.6 Adding code to the IRQ9 interrupt handler

Add code to the r_Config_ICU_irq9_interrupt() function, which is the IRQ9 interrupt handler.

Figure 4.4 shows Outline Flow of the r_Config_ICU_irq9_interrupt() Function.

Figure 4.4 Outline Flow of the r_Config_ICU_irq9_interrupt() Function

r_Config_ICU_irq9_interrupt()

Is the transfer data length set to 24 bits?

Initialize 24-bit transmit data
Initialize the 24-bit receive data storage RAM

Initialize 16-bit transmit data
Initialize the 16-bit receive data storage RAM

Assert the SSL signal

Is the RSPI idle?

Yes

No

g_lengh_check == 0 ?

Yes

R_Config_DTC_Start()

No

Calls the function of SC-generated code
(Enables DTC transfer requests on SPTI0 interrupts)

R_Config_DTC1_Start()
Calls the function of SC-generated code
(Enables DTC transfer requests on SPRI0 interrupts)

R_Config_RSPI0_Start() Calls the function of SC-generated code
(Enables RSPI-related interrupts for the ICU
register (the RSPI register does not enable
interrupts), clears the RSPI status flag)

R_Config_RSPI0_Send_Receive()

End

Calls the function of SC-generated code
(Enables interrupts for the RSPI register, start
communication)

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 30 of 46

Jan.22.24

Add code to the “Includes” and “Global variables and functions” sections in the Config_ICU_user.c file.

Adding code to the “Includes” and “Global variables and functions” sections in the
Config_ICU_user.c file

/***

Includes

***/

#include "r_cg_macrodriver.h"

#include "Config_ICU.h"

/* Start user code for include. Do not edit comment generated here */

#include "r_smc_entry.h"

/* End user code. Do not edit comment generated here */

#include "r_cg_userdefine.h"

/***

Global variables and functions

***/

/* Start user code for global. Do not edit comment generated here */

extern volatile uint8_t g_length_check;

#pragma address (g_w24_data=0x03000U)

#pragma address (g_r24_data=0x02000U)

volatile uint32_t g_w24_data;

volatile uint32_t g_r24_data;

volatile uint16_t g_w16_data;

volatile uint16_t g_r16_data[8];

/* End user code. Do not edit comment generated here */

← Defines the addresses according to the source
address and destination address specified in
4.2.2.2 and 4.2.2.3.

← Defines the variables for 24-bit transmit, 24-bit
receive data storage RAM, 16-bit transmit data,
and 16-bit receive data storage RAM.

← Includes the header files automatically created by SC.

← extern statement of the transfer data length check
flag

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 31 of 46

Jan.22.24

Add code to the r_Config_ICU_irq9_interrupt() function.

Adding code to the r_Config_ICU_irq9_interrupt () function

static void r_Config_ICU_irq9_interrupt(void)

{

/* Start user code for r_Config_ICU_irq9_interrupt. Do not edit comment generated here */

 uint32_t i;

 if (0U != RSPI0.SPSR.BIT.IDLNF)

 {

 /* do nothing */

 }

 else

 {

 If (0U == g_length_check)

 {

 g_w24_data = 0x123456U;

 g_r24_data = 0xFFFFFFFFU;

 g_w16_data = 0x789AU;

 for (i=0U; i<8U; i++)

 {

 g_r16_data[i] = 0xFFFFU;

 }

 R_Config_DTC_Start();

 R_Config_DTC1_Start();

 R_Config_RSPI0_Start();

 /* SSL assert */

 SSL_PORT_PODR_BIT = 0U;

 R_Config_RSPI0_Send_Receive(NULL, 24U, NULL);

 }

 }

 /* End user code. Do not edit comment generated here */

}

← Checks whether the RSPI is idle.

← Checks whether the initial setting of the transfer data length is
24 bits.

← Initializes the RAM areas that store 24-bit
transmit data, 24-bit receive data, 16-bit
transmit data, and 16-bit receive data.

← Enables DTC transfer requests on SPTI0 interrupts or
SPRI0 interrupts.
Enables RSPI-related interrupts for the ICU register.
(Interrupts for the RSPI register are not enabled.)
Clears the RSPI status flag.

← Asserts the SSL signal.

← Enables interrupts for the RSPI
register, start communication

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 32 of 46

Jan.22.24

4.2.4.7 Adding the set_16bit_data_transfer_mode() function to the Config_DTC.c file

The set_16bit_data_transfer_mode() function has been added to the Config_DTC.c file.

This function sets DTC transfer information for 16-bit transmission as shown in Table 4.7 DTC Transfer C:
DTC Settings for Data Transmission (Transfer Data Length: 16 Bits).

Figure 4.5 shows Outline Flow of the set_16bit_data_transfer_mode() Function.

Figure 4.5 Outline Flow of the set_16bit_data_transfer_mode() Function

Add the prototype declaration and constant definition of the set_16bit_data_transfer_mode() function to the
Config_DTC.h file.

Adding code to the Config_DTC.h file

/* Start user code for function. Do not edit comment generated here */

void set_16bit_data_transfer_mode(void);

#define CRA_16BIT_TRANSFER (0x0008U)

/* End user code. Do not edit comment generated here */

set_16bit_data_transfer_mode()

Set the DTC transfer
information as follows:

MRA=0x10
MRB=0x00

SAR=&g_w16_data
DAR=0x000D0104

CRA=0x0008
CRB=0x0000

DTC module operation

End

← Prototype declaration

For details about the settings,
see Table 4.7 DTC Transfer C:
DTC Settings for Data
Transmission (Transfer Data
Length: 16 Bits).

← Value of the CRA register for 16-bit transmission

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 33 of 46

Jan.22.24

Add the extern statement of the transmit data storage variable for 16-bit communication to the “Global
variables and functions” section in the Config_DTC.c file.

Adding code to the “Global variables and functions” section in the Config_DTC.c file

/***

Global variables and functions

***/

#pragma address dtc_vector39=0x0001FC9CUL

volatile uint32_t dtc_vector39;

volatile st_dtc_data_t dtc_transferdata_vector39;

/* Start user code for global. Do not edit comment generated here */

extern volatile uint16_t g_w16_data;

/* End user code. Do not edit comment generated here */

The following shows the set_16bit_data_transfer_mode() function added to the Config_DTC.c file.

set_16bit_data_transfer_mode() function added to the Config_DTC.c file

/* Start user code for adding. Do not edit comment generated here */

/***

* Function Name: set_16bit_data_transfer_mode

* Description : This function initializes the DTC module for 16bit transmission.

* Arguments : None

* Return Value : None

***/

void set_16bit_data_transfer_mode(void)

{

 /* Set DTC transfer data */

 dtc_transferdata_vector39.mra_mrb =((uint32_t)(_00_DTC_WRITE_BACK_ENABLE |

_00_DTC_SRC_ADDRESS_FIXED |

_10_DTC_TRANSFER_SIZE_16BIT |

_00_DTC_TRANSFER_MODE_NORMAL)<<24U) |

((uint32_t)(_00_DTC_DST_ADDRESS_FIXED |

_00_DTC_INTERRUPT_COMPLETED)<<16U);

 dtc_transferdata_vector39.sar = (uint32_t) &g_w16_data;

 dtc_transferdata_vector39.dar = _000D0104_DTC0_DST_ADDRESS;

 dtc_transferdata_vector39.cra_crb = (uint32_t)(CRA_16BIT_TRANSFER) << 16U;

 /* Enable DTC module start */

 DTC.DTCST.BYTE = _01_DTC_MODULE_START;

}

/* End user code. Do not edit comment generated here */

← extern statement of the transmit data storage
variable for 16-bit communication

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 34 of 46

Jan.22.24

4.2.4.8 Adding the set_16bit_data_receive_mode() function to the Config_DTC1.c file

The set_16bit_data_receive_mode() function has been added to the Config_DTC1.c file.

This function sets DTC transfer information for 16-bit reception to the settings in Table 4.8 DTC Transfer D:
DTC Settings for Data Reception (Transfer Data Length: 16 Bits).

Figure 4.6 shows Outline Flow of the set_16bit_data_receive_mode() Function.

Figure 4.6 Outline Flow of the set_16bit_data_receive_mode() Function

Add the prototype declaration and constant definition of the set_16bit_data_receive_mode() function to the
Config_DTC1.h file.

Adding code to the Config_DTC1.h file

/* Start user code for function. Do not edit comment generated here */

void set_16bit_data_receive_mode(void);

#define CRA_16BIT_RECEIVE (0x0008U)

/* End user code. Do not edit comment generated here */

set_16bit_data_receive_mode()

Set the DTC transfer
information as follows:

MRA=0x10
MRB=0x08

SAR=0x000D0104
DAR=&g_r16_data[0]

CRA=0x0008
CRB=0x0000

Activate the DTC module

End

← Prototype declaration

For details about the settings,
see Table 4.8 DTC Transfer D:
DTC Settings for Data
Reception (Transfer Data
Length: 16 Bits).

← Value of the CRA register for 16-bit reception

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 35 of 46

Jan.22.24

Add the extern statement of the receive data storage variable for 16-bit communication to “Global variables
and functions” in the Config_DTC1.c file.

Adding code to “Global variables and functions” in the Config_DTC1.c file

/***

Global variables and functions

***/

#pragma address dtc_vector38=0x0001FC98UL

volatile uint32_t dtc_vector38;

volatile st_dtc_data_t dtc_transferdata_vector38;

/* Start user code for global. Do not edit comment generated here */

extern volatile uint16_t g_r16_data[8];

/* End user code. Do not edit comment generated here */

The following shows how the set_16bit_data_receive_mode() function is added to the Config_DTC1.c file.

set_16bit_data_receive_mode() function added to the Config_DTC1.c file

/* Start user code for adding. Do not edit comment generated here */

/***

* Function Name: set_16bit_data_receive_mode

* Description : This function initializes the DTC module for 16bit reception.

* Arguments : None

* Return Value : None

***/

void set_16bit_data_receive_mode(void)

{

/* Set DTC transfer data */

 dtc_transferdata_vector38.mra_mrb = ((uint32_t)(_00_DTC_WRITE_BACK_ENABLE |

_00_DTC_SRC_ADDRESS_FIXED |

_10_DTC_TRANSFER_SIZE_16BIT |

_00_DTC_TRANSFER_MODE_NORMAL)<<24U) |

((uint32_t)(_08_DTC_DST_ADDRESS_INCREMENTED |

_00_DTC_REPEAT_DST_SIDE |

_00_DTC_INTERRUPT_COMPLETED)<<16U);

 dtc_transferdata_vector38.sar = _000D0104_DTC0_SRC_ADDRESS;

 dtc_transferdata_vector38.dar = (uint32_t) &g_r16_data[0];

 dtc_transferdata_vector38.cra_crb = (uint32_t)(CRA_16BIT_RECEIVE) << 16U;

 /* Enable DTC module start */

 DTC.DTCST.BYTE = _01_DTC_MODULE_START;

}

/* End user code. Do not edit comment generated here */

← extern statement of the receive data storage
variable for 16-bit communication

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 36 of 46

Jan.22.24

4.2.4.9 Adding code to the SPTI0 interrupt handler

Code has been added to the SPTI0 interrupt callback function (r_Config_RSPI0_callback_transmitend()).

Figure 4.7 shows Outline Flow of the r_Config_RSPI0_callback_transmitend() Function.

Figure 4.7 Outline Flow of the r_Config_RSPI0_callback_transmitend() Function

Code has been added to the r_Config_RSPI0_callback_transmitend() function of the Config_RSPI0_user.c
file.

Code added to the r_Config_RSPI0_callback_transmitend() function

/* Start user code for r_Config_RSPI0_callback_transmitend. Do not edit comment generated here */

/* Disable Transmit buffer empty interrupt */

RSPI0.SPCR.BIT.SPTIE = 0U;

/* End user code. Do not edit comment generated here */

r_Config_RSPI0_callback_transmitend()

Disable SPTI0 interrupts

End

← Disables SPTI0 interrupts.

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 37 of 46

Jan.22.24

4.2.4.10 Adding code to the SPRI0 interrupt handler

Code has been added to the SPRI0 interrupt callback function (r_Config_RSPI0_callback_receiveend()).

Figure 4.8 shows Outline Flow of the r_Config_RSPI0_callback_reveiveend() Function.

Figure 4.8 Outline Flow of the r_Config_RSPI0_callback_reveiveend() Function

Code has been added to the r_Config_RSPI0_callback_receiveend() function of the Config_RSPI0_user.c
file.

Code added to the r_Config_RSPI0_callback_receiveend() function

/* Start user code for r_Config_RSPI0_callback_transmitend. Do not edit comment generated here */

/* Enable communication end interrupt */

RSPI0.SPCR3.BIT.SPCIE = 1U;

/* End user code. Do not edit comment generated here */

r_Config_RSPI0_callback_receiveend()

Enables SPCI0 interrupts

End

← Enables SPCI0 interrupts.

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 38 of 46

Jan.22.24

4.2.4.11 Adding code to the SPCI0 interrupt handler

Code has been added to the SPCI0 interrupt callback function
(r_Config_RSPI0_communication_end_interrupt()).

Figure 4.9 shows Outline Flow of the r_Config_RSPI0_communication_end_interrupt() Function.

Figure 4.9 Outline Flow of the r_Config_RSPI0_communication_end_interrupt() Function

r_Config_RSPI0_communication_end_interrupt()

Yes (the transfer data length is 16 bits)

g_length_check == 1 ?

R_Config_DTC_Create()
Call the function of SC-generated code
(Set the DTC transfer information for DTC
transfer A)

R_Config_DTC_Start()

R_Config_RSPI0_Start()

R_Config_RSPI0_Send_Receive()

End

Call the function of SC-generated code
(Enable interrupts for the RSPI register,
start communication)

Disable SPCI0 interrupts

Negate the SSL signal

g_length_check = 0

R_Config_DTC1_Create()
Call the function of SC-generated code
(Set the DTC transfer information for DTC
transfer B)

R_Config_RSPI0_Create()
Call the function of SC-generated code
(Configure the RSPI for communication with
the transfer data length set to 24 bits)

Disable all RSPI interrupts on the ICU side

No (the transfer data length is 24 bits)

RSPI0.SPCR.BIT.SPE = 0 Disable the RSPI feature

Change the data length set in the
RSPI0.SPDCR register and

RSPI0.SPCMD0 register to 16 bits

set_16bit_data_transfer_mode()

set_16bit_data_receive_mode()

R_Config_DTC1_Start()

Call the function of SC-generated code
(Enable DTC transfer requests on SPTI0
interrupts)

Call the function of SC-generated code
(Enable DTC transfer requests on SPRI0
interrupts)

Call the function of SC-generated code
(Enable RSPI-related interrupts for the ICU
register (the RSPI register does not enable
interrupts), clear the RSPI status flag)

g_length_check = 1

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 39 of 46

Jan.22.24

Add the definition statement to the “Includes” and “Global variables and functions” sections in the
Config_RSPI0_user.c file.

Adding code to the “Includes” and “Global variables and functions” sections in the
Config_RSPI0_user.c file

/***

Includes

***/

#include "r_cg_macrodriver.h"

#include "Config_RSPI0.h"

/* Start user code for include. Do not edit comment generated here */

#include "r_smc_entry.h"

/* End user code. Do not edit comment generated here */

#include "r_cg_userdefine.h"

/***

Global variables and functions

***/

/* Start user code for global. Do not edit comment generated here */

extern volatile uint8_t g_length_check;

/* End user code. Do not edit comment generated here */

← extern statement of the transfer data length check flag

← Includes the header files automatically created by SC

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 40 of 46

Jan.22.24

Code has been added to the r_Config_RSPI0_communication_end_interrupt() function of the
Config_RSPI0_user.c file.

Code added to the r_Config_RSPI0_communication_end_interrupt() function

/* Start user code for r_Config_RSPI0_communication_end_interrupt. Do not edit comment generated here

*/

 /* Disable communication end interrupt */

 RSPI0.SPCR3.BIT.SPCIE = 0U;

 /* Processing when 16bit x 8frames is received */

If (1U == g_length_check)

{

/*SSL negate */

SSL_PORT_PODR_BIT = 1U;

/* Return DTC and RSPI settings to default settings (for 24-bit settings) */

R_Config_DTC_Create();

R_Config_DTC1_Create();

R_Config_RSPI0_Create();

g_length_check = 0U;

}

else

{

/* Processing when 24bit x 1frame is received */

 /* Disable RSPI interrupts */

IEN(RSPI0,SPTI0) = 0U;

IEN(RSPI0,SPRI0) = 0U;

 EN(RSPI0,SPEI0) = 0U;

EN(RSPI0,SPII0) = 0U;

IEN(RSPI0, SPCI0) = 0U;

/* Disable RSPI function */

RSPI0.SPCR.BIT.SPE = 0U;

/* Change RSPI settings for 16bit length */

RSPI0.SPDCR.BIT.SPLW = 0U;

RSPI0.SPDCR.BIT.SPBYT = 0U;

RSPI0.SPDCR.BIT.SPFC = 0x00U;

RSPI0.SPCMD0.WORD = _0001_RSPI_RSPCK_SAMPLING_EVEN |

_0000_RSPI_RSPCK_POLARITY_LOW |

_000C_RSPI_BASE_BITRATE_8 |

_0000_RSPI_SIGNAL_ASSERT_SSL0 |

_0080_RSPI_SSL_KEEP_ENABLE |

_0F00_RSPI_DATA_LENGTH_BITS_16 |

_0000_RSPI_MSB_FIRST |

_0000_RSPI_NEXT_ACCESS_DELAY_DISABLE |

_0000_RSPI_NEGATION_DELAY_DISABLE |

_0000_RSPI_RSPCK_DELAY_DISABLE;

← This processing negates the SSL signal and resets the
transfer data length to 24 bits after completion of 16-bit
communication.

This processing starts communication with the transfer
data length changed to 16 bits after completion of 24-
bit communication.

↓

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 41 of 46

Jan.22.24

 /* Change DTC settings for 16bit x 8frames */

set_16bit_data_transfer_mode();

set_16bit_data_receive_mode();

 /* DTC, RSPI start */

 R_Config_DTC_Start();

 R_Config_DTC1_Start();

 R_Config_RSPI0_Start();

 R_Config_RSPI0_Send_Receive(NULL, 16U, NULL);

g_length_check = 1U;

 }

 /* End user code. Do not edit comment generated here */

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 42 of 46

Jan.22.24

5. Importing a Project

The sample programs are distributed in e2 studio project format. This section shows how to import a project
into e2 studio or CS+. After importing the sample project, make sure to confirm build and debugger setting.

5.1 Importing a Project into e2 studio

To use sample programs in e2 studio, follow the steps below to import them into e2 studio.

In projects managed by e2 studio, do not use space codes, multibyte characters, and symbols such as "$",
"#", "%" in folder names or paths to them.

(Note that depending on the version of e2 studio you are using, the interface may appear somewhat different
from the screenshots below.)

Figure 5.1 Importing a Project into e2 studio

Select [Existing Projects into Workspace].

Select [Select root directory:].

Select [Add project to working sets]
when using the working sets.

Select [Copy projects into workspace]
when copying a project to workspace.

Start the e2 studio and select the
File >> [Import…]

Specify the directory which stored the project to
import (e.g. sample_project).
Each application note has its own project name.

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 43 of 46

Jan.22.24

5.2 Importing a Project into CS+

To use sample programs in CS+, follow the steps below to import them into CS+.

In projects managed by CS+, do not use space codes, multibyte characters, and symbols such as "$", "#",
"%" in folder names or paths to them.

(Note that depending on the version of CS+ you are using, the interface may appear somewhat different from
the screenshots below.)

Figure 5.2 Importing a Project into CS+

Check [Project File for MCU Simulator
Online / e2 studio (*.rcpc)].

Select [Empty Application(CC-RX)] in [Kind of
project:], and then specify the project name and
place, and select whether to backup.

Select a project (e.g. sample_project).
Each application note has its own
project name.

Select a rcpc file, and then click the button
[Open].

Start the CS+, and select
[Open Existing MCU Simulator / e2 studio / CubeSuite / High-performance
Embedded Workshop / PM+ Project]

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 44 of 46

Jan.22.24

6. Notes

6.1 Notes on Bit Manipulation Instructions

If the target of bit manipulation is an 8-bit I/O register, depending on the code of the C language, bit
manipulation instructions that involve memory access may not be output.

Refer to “C language code example” shown below. In this example, a variable is used on the right side of the
expression for bit manipulation on a general-purpose port. If this code is compiled, it may be expanded to the
instructions shown in “Instruction expansion example”.

In this case, if there is an interrupt that changes the settings of other bits of the same I/O register and the
interrupt occurs around the time at which A3 occurs, the changes made by the interrupt are not applied.

C language code example:

unsigned char i;

i=1;

PORTD.PODR.BIT.B6 = i;

Instruction expansion example:

A1 : mov.l #0x8c02d, r14

A2 : mov.b [r14], r15

A3 : bset #6, r15

A4 : mov.b r15, [r14]

A possible solution is to use an immediate value (instead of a variable) on the right side of the expression as
shown below. This solution allows you to output bit manipulation instructions that involve memory access
(with CC-RX V2.06 or later).

if(0 == i)

{

 PORTD.PODR.BIT.B6 = 0;

}

else

{

 PORTD.PODR.BIT.B6 = 1;

}

This problem may also be prevented by using intrinsic functions provided by the CC-RX compiler.

For details, refer to the “CC-RX Compiler User’s Manual” (R20UT3248).

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 45 of 46

Jan.22.24

7. Reference Documents

User’s Manual: Hardware

RX660 Group User’s Manual: Hardware (R01UH0937)

(The latest version can be downloaded from the Renesas Electronics website.)

Application Note

RX Family Board Support Package Module Using Firmware Integration Technology (R01AN1685)

(The latest version can be downloaded from the Renesas Electronics website.)

User’s Guide: Smart Configurator

Smart Configurator User’s Guide: e2 studio (R20AN0451)

(The latest version can be downloaded from the Renesas Electronics website.)

User’s Manual: Compiler

CC-RX Compiler User's Manual (R20UT3248)

(The latest version can be downloaded from the Renesas Electronics website.)

User’s Manual: RSK

Renesas Starter Kit for RX660 User’s Manual (R20UT5017)

(The latest version can be downloaded from the Renesas Electronics website.)

Schematic Diagram: RSK

Renesas Starter Kit for RX660 CPU Board Schematics (R20UT5016)

(The latest version can be downloaded from the Renesas Electronics website.)

RX Family How to Change Transfer Data Length During RSPI Communication Using a DTC

R01AN7238EJ0100 Rev.1.00 Page 46 of 46

Jan.22.24

Revision History

Rev. Date

Description

Page Summary

1.00 Jan. 22, 2024 — First edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2024 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your

product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,

manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics

disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product

that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics

hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but

not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS

ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING

RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,

HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND

ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT

PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH

RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO

THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas

Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are

responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. SSL Signal When the RSPI Transfer Data Length Changes
	1.1 SSL Signal Controlled by Hardware
	1.2 SSL Signal Generation Controlled by a General-Purpose Port

	2. Hardware Configuration
	3. Operation Confirmation Conditions
	4. Description of Software
	4.1 Description of Operation
	4.1.1 Communication When the Transfer Data Length is 24 Bits
	4.1.2 Communication When the Transfer Data Length Is 16 Bits

	4.2 Components Used for Firmware Integration Technology (FIT) Modules and Code Generation
	4.2.1 Smart Configurator (SC) Settings for FIT Module Component
	4.2.2 SC Settings for Code Generation Components
	4.2.2.1 Interrupt controller configuration
	(1) Open the [Components] tab, and then click the icon for adding a component.
	(2) In the [Software Component Selection] window, select [Interrupt Controller], and then click [Next].
	(3) In the window for adding the component, click [Finish].
	(4) Software component configuration
	(5) Pin configuration

	4.2.2.2 Data transfer controller configuration (DTC settings for data transmission (transfer data length is 24 bits))
	(1) Open the [Components] tab, and then click the icon for adding a component.
	(2) In the [Software Component Selection] window, select [Data Transfer Controller], and then click [Next].
	(3) In the window for adding the component, click [Finish].
	(4) Software component configuration

	4.2.2.3 Data transfer controller configuration (DTC settings for data reception (transfer data length is 24 bits))
	(1) Open the [Components] tab, and then click the icon for adding a component.
	(2) In the [Software Component Selection] window, select [Data Transfer Controller], and then click [Next].
	(3) In the window for adding the component, click [Finish].
	(4) Software component configuration

	4.2.2.4 SPI operation mode (4-wire method) configuration
	(1) Open the [Components] tab, and then click the icon for adding a component.
	(2) In the [Software Component Selection] window, select [SPI Operation Mode (4-wire method)], and then click [Next].
	(3) In the window for adding the component, select [Master transmit/receive] for [Operation], and then click [Finish].
	(4) Software component configuration
	(5) Pin configuration

	4.2.3 Generating Code
	4.2.4 Adding Code to the SC-Generated Code
	4.2.4.1 Additional processing to the SC-generated code
	4.2.4.2 Constants added to the SC-generated code
	4.2.4.3 Variables added to the SC-generated code
	4.2.4.4 Functions added to the SC-generated code
	4.2.4.5 Adding code to the main routine
	Adding code to the Config_RSPI0.h file
	Adding code to the main() function
	4.2.4.6 Adding code to the IRQ9 interrupt handler
	Adding code to the “Includes” and “Global variables and functions” sections in the Config_ICU_user.c file
	Adding code to the r_Config_ICU_irq9_interrupt () function
	4.2.4.7 Adding the set_16bit_data_transfer_mode() function to the Config_DTC.c file
	Adding code to the Config_DTC.h file
	Adding code to the “Global variables and functions” section in the Config_DTC.c file
	set_16bit_data_transfer_mode() function added to the Config_DTC.c file
	4.2.4.8 Adding the set_16bit_data_receive_mode() function to the Config_DTC1.c file
	Adding code to the Config_DTC1.h file
	Adding code to “Global variables and functions” in the Config_DTC1.c file
	set_16bit_data_receive_mode() function added to the Config_DTC1.c file
	4.2.4.9 Adding code to the SPTI0 interrupt handler
	Code added to the r_Config_RSPI0_callback_transmitend() function
	4.2.4.10 Adding code to the SPRI0 interrupt handler
	Code added to the r_Config_RSPI0_callback_receiveend() function
	4.2.4.11 Adding code to the SPCI0 interrupt handler
	Adding code to the “Includes” and “Global variables and functions” sections in the Config_RSPI0_user.c file
	Code added to the r_Config_RSPI0_communication_end_interrupt() function

	5. Importing a Project
	5.1 Importing a Project into e2 studio
	5.2 Importing a Project into CS+

	6. Notes
	6.1 Notes on Bit Manipulation Instructions

	7. Reference Documents
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

