LENESAS Application Note

RX Family

I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

Introduction

This application note describes the 12C bus interface (RIIC) module using firmware integration technology
(FIT) for communications between devices using the I2C bus interface.

Target Device

* RX110, RX111, RX113 Groups
e RX130, RX13T, RX140 Groups
¢ RX230, RX231, RX23E-A, RX23E-B, RX23T, RX23W Groups
e RX24T, RX24U Groups

e RX26T Group

¢ RX260, RX261 Groups

¢ RX64M Group

¢ RX65N, RX651 Groups

¢ RX660 Group

e RX66T Group

e RX66N Group

e RX671 Group

¢ RX71M Group

e RX72T Group

e RX72M Group

e RX72N Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Target Compilers

e Renesas Electronics C/C++ Compiler Package for RX Family
e GCC for Renesas RX
¢ |AR C/C++ Compiler for Renesas RX

For details of the confirmed operation contents of each compiler, refer to “6.4 Operating Test Environment".

RO1AN1692EJ0302 Rev.3.02 Page 1 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

Contents

L © 1= 1= PP 5
S B {1 [o 1 o Yo [][SRR 5
1.2 UsSiNg the RIIC FIT MOAUIEooiiiiiee ettt e et e et e e st e e e e aabeeeeens 6
1.2.1 Using RIIC FIT module in CH+ PrOJECEooiiuiiiiiiieee ettt 6
LS T @ 10 {1 L= o (L= SRR URPTPRR 6
1.4 Overview Of RIIC FIT MOGUIEcooiiii ettt ettt et e e et e e e st e e e snteeeeeanneeaeeans 7
1.4.1 Specifications of RIIC FIT MOQUIE...........cccouuiiiiiieei e e e e e e s s e raaeeeae s 7
{2V F= 1] (Y I = g T 0 £ () o S 8
R T Y/ F= 1] (Y (=Y o =Y o] (oo SRS 12
1.4.4 Slave Transmission and RECEPHION.....coooi i it e e e e e e e 15
L S = 1 (=Y I = 0131 o o SRR 19
1.4.6 Flags when Transitioning Statescooiiiiiiiiiiiice e e e e 20
1.4.7 Arbitration-Lost Detection FUNCHON ... 21
1.4.8 Timeout Detection FUNCHON ... et e e e e e 21
P N o B 101 (o] 0 0 =1 (o] o PR 22
2.1 Hardware REQUIMEMENTS ..o ittt e e e e e ettt e e e e e e e e e e e e eeeeeaaanneneeeeaeeeeaannnnneeaaeeas 22
2.2 SOftWAre REQUIFEIMENTSciiiiiiiiiiiieie ettt e et e e e e e e e e e e e e e e se e reeeeeeesesaabaaeeeeeeeseannsraneeaaeeas 22
ARG IS TW] o) oo Ty (Yo I WoTo] (o] o F= 11 o 1= USSP 22
2.4 Usage Of INTEITUPE VECIOT ..o e e e e e e e et e e e e e e s e snnraneeaaee s 23
D2 T == T oY {1 SRR 25
DGR 101 (=To =T g 1Y o 1= T PSP PUPPPPPPRRN 25
2.7 CoNfIGUratioN OVEIVIEWo..uiiiiiiiiiie ittt et e ettt e e e et et e e e aabe e e e s aabeeeeeanbeeeeen 26
D T O7o o [T - - SRR 31
e B e 1 £= 4 Lot (T S PO PU PP PPRP 32
210 REIUIN VAIUES ..ottt e e oottt et e e e e e o e bt e e e e e e e e aab b e e e e e e e e e s nnbbeeeeeeeean 32
D220 I B -1 | oY= Yo .G a0 T 1o o < SRR 33
212 Adding the FIT Module t0 YOUTr PrOJECEc..uiiiiiiiii et 33
2.13 “for”, “while” and “do While” StatemMeENtS.............eeoiiii e 34
3. AP FUNCHONS . e 35
L R (O @ o= o OO PPPPRRN 35
L A (O Y F= 1] (T e Y=Y o o [SO PPPPRRN 37
R_RIIC_MaaSEIRECEIVE(). ... et teeeieie ettt ettt e s bt e e s aab et e s aabbe e e s aabbe e e e annes 41
RURIC_SIAVETIANSTEI() ..ottt ettt e e bt e s b bt e e s ab et e e aab b e e e s aabbe e e e annes 45
L R (O 1Y £ = U= () TSRS 49
L a1 L@ 0o T4 (o] [USSP 51
L U (O 1o 1T (SO PPPPRRN 53
L R (O Tt Y=Y 7o o TSSO PPPPRRN 55
RO1AN1692EJ0302 Rev.3.02 Page 2 of 101

Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

4. PN SEtNGS .ot e e e e e e e e e e e e e as 56
LT B 1Y o o T e o] [= o2 £ 57
5.1 riic_mastersend_demo_rskrx64m, riic_mastersend_demo_rskrx64m_gCC..........ccccurrrrrrrrmrnrmrnnnennnnnnns 57
5.2 riic_masterreceive_demo_rskrx64m, riic_masterreceive_demo_rskrx64m_gCCcccccuvruvrrrrrnnnnnnnnns 57
5.3 riic_slavetransfer_demo_rskrx64m, riic_slavetransfer_demo_rskrx64m_gccCccccceeeriiiiiiiienanennnnee 57
5.4 riic_mastersend_demo_rskrx231, riic_mastersend_demo_rskrx231_gCC......cooiriiiiirieieriiiciiiieeaaeeee 58
5.5 riic_masterreceive_demo_rskrx231, riic_masterreceive_demo_rskrx231_gcCcccceiiriiiiiiiiiiannnnnne. 58
5.6 riic_slavetransfer_demo_rskrx231, riic_slavetransfer_demo_rskrx231 gcC........ccccceveeiiiiiiiiiiieeeenenns 58
5.7 riic_mastersend_demo_rskrx671, riic_mastersend_demo_rskrx671 _gCC........ccccurmmrmrrrmrmrmmnrmennnnnnnnnnns 58
5.8 riic_masterreceive_demo_rskrx671, riic_masterreceive_demo_rskrx671_gCCcccccuvrrrrvrmrmrnrnnnnnnnnns 58
5.9 riic_slavetransfer_demo_rskrx671, riic_slavetransfer_demo_rskrx671_gccCccccccveeeriiiiiiiineneneeee 59
5.10 riic_mastersend_demo_rskrx72n, riic_mastersend_demo_rskrX72n_gCCcoorouuiirrreeeiiiiiiiieaaaeeanee 59
5.11 riic_masterreceive_demo_rskrx72n, riic_masterreceive_demo_rskrx72n_gceCcccceeriiiiiiiiienaannnnne 59
5.12 riic_slavetransfer_demo_rskrx72n, riic_slavetransfer_demo_rskrx72n_gcccccccceeeeiiiiivneieeeeeeenns 59
5,13 Adding a Demo t0 @ WOIKSPACE..........uuuuuieiiiiiiiiiiiiiiiietiieieiaieebebaeababebataeebeeees e essasssssssssssssssnsssnsnsnsnsnsnsnnes 59
0 T S B ToV1V o1 (o =T T g To TN 1= o g Lo TN o o) =T o3 £ PRSPt 59
G T Y o 0 T= Lo [T = R 60
6.1 Communication Methodot e e e e e e e e e e e e e e e e eeeeeaeeeaennes 60
6.1.1 States fOor API OPerationttt e e e e e e e e e e et e e e e e e e s neneeeeeaeeaaannes 60
6.1.2 Events DUrNG APl OPEIationcciiiiuiiiiiiie ettt e e e e e e e e e e e s et e e e e e e e e snntsreeeeaeeeeannns 60
6.1.3 Protocol State TranSitioNSooi i e ennes 61
6.1.4 Protocol State Transition TabIeoo i e 65
6.1.5 Functions Used on Protocol State Transitionscoooio e 66
6.1.6 Flag States on State TransSitioNScooiiiii e 66
6.2 Interrupt Request Generation TimiNgot e e e e e e e e e e e e e e eennes 68
6.2.1 MaASEEr TraNSMUISSION ...eeiiiiiiiiiiiiee e ettt e e e e sttt e e e s e ab ettt e e e e e s abeb et e e e e e e e annbereeeeeeeaaannns 68
I V=T (= gl =T o7=T o] 1 o o PR PPPRPPPPNt 69
6.2.3 Master TranSMIt/RECEIVEcc.ueiiiiiiiie ettt e e et e e et e e e enbe e e e enbeeeeennees 70
I S P AV I = g 1= 01 £ (o o SO 70
02 TR F- 1YY =Yo7 T o 11 SO PR 71
6.2.6 Multi-Master COMMUNICALION........oii et e et e e e e e e e e e e e e e e e e e s neneeeeaaeeaaannes 71
6.3 Timeout Detection and Processing After the Detectioncoooeiiiiiiii e, 72
6.3.1 Detecting a Timeout with the Timeout Detection FUNCLION ... 72
6.3.2 Processing After @ TiImeout is DeteCIed..........cooi i e 72
6.4 Operating Test ENVIFONMENToiiiiiii e e 74
6.5 TrOUDIESNOOLINGceiiiiiiie et 86
LGRS =13 Y o 1= 7 o Yo [USSR 87
6.6.1 Example when Accessing One Slave Device Continuously with One Channel.............ccccccveeeeien. 87
7. ReferenCe DOCUMENTSuuiiiiiiiiiiiiiiiiiiiii s 92
RO1AN1692EJ0302 Rev.3.02 Page 3 of 101

Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

Related Technical UpAates ...t e e e 93
REVISION HISTOIYt e e e e e e e e e e e e e e e e e e st e e aaeas 94
RO1AN1692EJ0302 Rev.3.02 Page 4 of 101

Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

1. Overview

The I2C bus interface module using firmware integration technology (RIIC FIT module () provides a method
to transmit and receive data between the master and slave devices using the I°C bus interface (RIIC). The
RIIC is in compliance with the NXP [2C-bus (Inter-IC-Bus) interface.

Note:
1. When the description says “module” in this document, it indicates the RIIC FIT module.

Features supported by this module are as follows:
- Master transmission, master reception, slave transmission, and slave reception
- Multi-master configuration that communicates between multiple masters and one slave.

- Communication mode can be standard or fast mode and the maximum communication rate is 400 kbps.
However, channel 0 of RX64M, RX71M, RX65N, RX66N, RX671, RX72M and RX72N supports fast mode
plus and the maximum communication rate is 1 Mbps.

Limitations

This module has the following limitations:

(1) The module cannot be used with the DMAC and the DTC.
(2)

(3) Transmission with 10-bit address is not supported.
(4)

The NACK arbitration-lost detection function of the RIIC is not supported.

Acceptance of the restart condition on slave device mode is not supported. Do not specify the address of
a device in which this module is embedded as an address immediately following a restart condition.

(5) The module does not support multiple interrupts.
(6) API function calls except for the R_RIIC_GetStatus function is prohibited within a callback function.

(7) Setthe | flag to 1 to use interrupts.

1.1 RIIC FIT Module

This module is implemented in a project and used as the API. Refer to 2.12 Adding the FIT Module to Your
Project for details on implementing the module to the project.

RO1AN1692EJ0302 Rev.3.02 Page 5 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

1.2 Using the RIIC FIT module

1.2.1 Using RIIC FIT module in C++ project
For C++ project, add RIIC FIT module interface header file within extern “C”{}:

extern “C”

{

#include “r smc _entry.h”
#include “r riic rx if.h”

}

1.3 Outline of the API
Table 1.1 lists the API Functions.

Table 1.1 API Functions

Item Contents

R_RIC_Open() The function initializes the RIIC FIT module. This function must be called
before calling any other API functions.

Starts master transmission. Changes the master transmit pattern
R_RIC_MasterSend() according to the parameters. Operates batched processing until stop
condition generation.

Starts master reception. Changes the master receive pattern according to
R_RIIC_MasterReceive() the parameters. Operates batched processing until stop condition
generation.

Performs slave transmission and reception. Changes the transmit and

R_RIIC_SlaveTransfer() receive patterns according to the parameters.

R_RIIC_GetStatus() Returns the state of this module.
This function outputs conditions, Hi-Z from the SDA pin, and one-shot of
R_RIIC_Control() the SCL clock. Also it resets the settings of this module. This function is

mainly used when a communication error occurs.

This function completes the RIIC communication and releases the RIIC

R_RIIC_Close() used

R_RIIC_GetVersion() Returns the current version of this module.

RO1AN1692EJ0302 Rev.3.02 Page 6 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

1.4 Overview of RIIC FIT Module

1.4.1 Specifications of RIIC FIT Module
1. This module supports master transmission, master reception, slave transmission, and slave reception.

- There are four transmit patterns that can be used for master transmission. Refer to 1.4.2 for details on
master transmission.

- Master reception and master transmit/receive can be selected for master reception. Refer to 1.4.3 for
details on master reception.

- Slave reception or slave transmission is performed according to the content of the data transmitted
from the master. Refer to 1.4.4 for details on slave reception and slave transmission.

2. Aninterrupt occurs when any of the following operations completes: start condition generation, slave
address transmission/reception, data transmission/reception, NACK detection, arbitration-lost detection,
or stop condition generation. In the RIIC interrupt handling, the communication control function is called
and the operation is continued.

3. When multiple RIIC channels are used, the module can control multiple channels. When the device used
has multiple channels, simultaneous communication is available using multiple channels.

4. Multiple slave devices with different addresses on the same channel bus can be controlled. However,
while communication is in progress (the period from start condition generation to stop condition
generation), communication with other devices is not available. Figure 1.1 shows an Example of
Controlling Multiple Slave Devices.

When slave devices A and B are connected to channel 0. - ;
Multiple devices cannot

ST: Start condition, SP: Stop condition communicate on the same
channel bus at the same time.

Device A Device A Device A

ST generated SP generated ST not generated
A
P)

Y
Slave device A Slave device B
Channel 0 bus o o —
communicating communicating
T ‘ %
Device B Device B Device B
ST not generated ST generated SP generated
Time | >

Figure 1.1 Example of Controlling Multiple Slave Devices

RO1AN1692EJ0302 Rev.3.02 Page 7 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

1.4.2 Master Transmission
The master device (master (RX MCU)) transmits data to the slave device (slave).

With this module, four patterns of waveforms can be generated for master transmission. A pattern is selected
according to the arguments set in the parameters which are members of the 12C communication information
structure. Figure 1.2 to Figure 1.5 show the transmit patterns. Refer to 2.9 Parameters for details on the 12C
communication information structure.

(1) Pattern 1
The master (RX MCU) transmits data in two buffers for the first data and second data to the slave.

A start condition is generated and then the slave address is transmitted. The eighth bit specifies the
transfer direction. This bit is set to 0 (write) when transmitting. Then the first data is transmitted. The first
data is used when there is data to be transmitted in advance before performing the data transmission.
For example, if the slave is an EEPROM, the EEPROM internal address can be transmitted. Next the
second data is transmitted. The second data is the data to be written to the slave. When a data
transmission has started and all data transmissions have completed, a stop condition is generated, and
the bus is released.

ST123456789123456789 12 78912345678912 789 SP

SCLn

SDAnN

—
Start Slave address ACK 1st data ACK 1stdata (i) ACK 2nd data ACK 2nddata (i) ACK Stop
(8th bit: 0)

n: Channel number

ST: Start condition generation

SP: Stop condition generation

ACK: Acknowledge: 0

* A signal with an underline indicates data transmission from the slave to the master.

Figure 1.2 Signals for Pattern 1 of Master Transmission

RO1AN1692EJ0302 Rev.3.02 Page 8 of 101
Oct.30.25 RENESAS

RX Family I1?°C Bus Interface (RIIC) Module Using Firmware Integration Technology

(2) Pattern 2
The master (RX MCU) transmits data in the buffer for the second data to the slave.

Operations from start condition generation through to slave address transmission are the same as the
operations for pattern 1. Then the second data is transmitted without transmitting the first data. When all
data transmissions have completed, a stop condition is generated and the bus is released.

ST12345678912345678912 || 789 SP

|
|

SDAnN

1

]y
Start Slave address ~ ACK 2nd data ACK 2nddata (i) ACK Stop
(8th bit: 0)

n: Channel number

ST: Start condition generation

SP: Stop condition generation

ACK: Acknowledge: 0

* A signal with an underline indicates data transmission from the slave to the master.

Figure 1.3 Signals for Pattern 2 of Master Transmission

(3) Pattern 3
The master (RX MCU) transmits only the slave address to the slave.

Operations from start condition generation through to slave address transmission are the same as the
operations for pattern 1. After transmitting the slave address, if neither the first data nor the second data
are set, data transmission is not performed, then a stop condition is generated, and the bus is released.

This pattern is useful for detecting connected devices or when performing acknowledge polling to verify
the EEPROM rewriting state.

ST123456789 SP

n: Channel number
SCLn ST: Start condition generation
SP: Stop condition generation
ACK: Acknowledge: 0
* A signal with an underline indicates data

transmission from the slave to the master.
SDAnNn ‘\ ’ \ |7

e
Start Slave address ACK Stop
(8th bit: 0)

Figure 1.4 Signals for Pattern 3 of Master Transmission

RO1AN1692EJ0302 Rev.3.02 Page 9 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

(4) Pattern 4
The master (RX MCU) transmits only a start condition and stop condition to the slave.

After a start condition is generated, if the slave address, first data, and second data are not set, slave
address transmission and data transmission are not performed. Then a stop condition is generated and
the bus is released.

This pattern is useful for just releasing the bus.

ST SP n: Channel number
ST: Start condition generation
SCLn SP: Stop condition generation
SDAN |_\
o
Start Stop

Figure 1.5 Signals for Pattern 4 of Master Transmission

RO1AN1692EJ0302 Rev.3.02 Page 10 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

Figure 1.6 shows the procedure of master transmission. The callback function is called after generating a
stop condition. Specify the function name in the CallBackFunc of the I2C communication information
structure member.

< Master transmission >

|

Specify the parameter depending on
the channel used

l

RIIC initialization
R_RIIC_Open()

)

Specify the communication
information structure

|

Master transmission [4] Starts transmission with the specified transmit pattern.
R_RIIC_MasterSend()

[1] Sets the channel used.

[2] Initializes the RIIC channel set in [1].

[3] The arguments vary depending on the transmit pattern.

********************************* > Callback function
[5] The callback function is called

when a stop condition is generated. !

Has the communication
completed?

[6] Determines if all communications completed.

Release the channel [7] After the communication has completed, the bus
R_RIIC_Close() used for the selected channel is released.

[

O

Figure 1.6 Example of Master Transmission

RO1AN1692EJ0302 Rev.3.02 Page 11 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

1.4.3 Master Reception

The master (RX MCU) receives data from the slave. This module supports master reception and master
transmit/receive. The receive pattern is selected according to the arguments set in the parameters which are
members of the 12C communication information structure. Figure 1.7 and Figure 1.8 show receive patterns.
Refer to 2.9 Parameters for details on the I12C communication information structure.

(1) Master Reception
The master (RX MCU) receives data from the slave.

A start condition is generated and then the slave address is transmitted. The eighth bit specifies the
transfer direction. This bit is set to 1 (read) when receiving. Then data reception starts. An ACK is
transmitted each time 1-byte data is received except the last data. A NACK is transmitted when the last
data is received to notify the slave that all data receptions have completed. Then a stop condition is
generated and the bus is released.

ST123456789123456789 12 789 SP

SCLn

SDAnN

e ——— A
Start Slave address ~ ACK 2nd data ACK 2nd data (i) NACK Stop
(8th bit: 1)

n: Channel number

ST: Start condition generation NACK: Acknowledge: 1

SP: Stop condition generation ACK: Acknowledge: 0

* A signal with an underline indicates data transmission from the slave to the master.

Figure 1.7 Signals for Master Reception

RO1AN1692EJ0302 Rev.3.02 Page 12 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

(2) Master Transmit/Receive

The master (RX MCU) transmits data to the slave. After the transmission completes, a restart condition
is generated, and the master receives data from the slave.

A start condition is generated and then the slave address is transmitted. The eighth bit specifies the
transfer direction. This bit is set to 0 (write) when transmitting. Then the first data is transmitted. When
the data transmission completes, a restart condition is generated and the slave address is transmitted.
Then the eighth bit is set to 1 (read) and a data reception starts. An ACK is transmitted each time 1-byte
data is received except the last data. A NACK is transmitted when the last data is received to notify the
slave that all data receptions have completed. Then a stop condition is generated and the bus is
released.

ST12345678912| 789RST12345678912345678912(789 SP

SCLn

1N N

1T I
s ~— e ~— Ty ¥
Start Slave address ACK 1stdata (i) ACK Restart Slave address ACK 2nd data ACK 2nd data (i) NACK Stop
(8th bit: 0) (8th bit: 1)

n: Channel number

ST: Start condition generation NACK: Acknowledge: 1

SP: Stop condition generation ACK: Acknowledge: 0

RST: Restart condition generation

* A signal with an underline indicates data transmission from the slave to the master.

Figure 1.8 Signals for Master Transmit/Receive

RO1AN1692EJ0302 Rev.3.02 Page 13 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

Figure 1.9 shows the procedure of master reception. The callback function is called after generating a stop
condition. Specify the function name in the CallBackFunc of the I2C communication information structure
member.

< Master reception >

|

Specify the parameter depending on
the channel used

l

RIIC initialization
R_RIIC_Open()

-

Specify the communication
information structure

|

Master reception [4] Starts reception for the specified receive pattern.
R_RIIC_MasterReceive()

[1] Sets the channel used.

[2] Initializes the RIIC channel set in [1].

[3] The arguments differ between master reception and master composite.

[5] The callback function is called
when a stop condition is generated. ‘

Callback function

Has the communication

[6] Determines whether all communications completed.
completed?

Release the channel [7] After the communication has completed, the bus
R_RIIC_Close() used for the selected channel is released.

[

T

Figure 1.9 Example of Master Reception

RO1AN1692EJ0302 Rev.3.02 Page 14 of 101
Oct.30.25 RENESAS

RX Family

1.4.4 Slave Transmission and Reception

The slave (RX MCU) receives data transmitted from the master. The slave transmits data by the transmit

request from the master.

When the slave address specified by the master matches the slave address set in r_riic_config.h, slave
transmission and reception starts. The module processes the operation automatically determining whether
the operation is slave reception or slave transmission according to the eighth bit (transfer direction specify

bit) of the slave address.

(1) Slave Reception

The slave (RX MCU) receives data from the master.

After a start condition generated by the master is detected, when the received slave address matches its
own address and the eighth bit of the slave address is 0 (write), then the slave starts receive operation.
When the last data (the number of data specified in the 1°C communication information structure
member) is received, a NACK is returned to the master to notify that all necessary data has been

received. Figure 1.10 shows the Signals for Slave Reception.

ST12345678912345678912 789 SP

SCLn

SDAnN

N — N — 7NN ’I’/Y A
Start Slave address ACK 2nd data ACK 2nd data(i) NACK Stop
(8th bit: 0)
n: Channel number
ST: Start condition generation NACK: Acknowledge: 1
SP: Stop condition generation ACK: Acknowledge: 0
* A signal with an underline indicates data transmission from the slave to the master.

Figure 1.10 Signals for Slave Reception

RO1AN1692EJ0302 Rev.3.02

Oct.30.25

RENESAS

I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

Page 15 of 101

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

Figure 1.11 shows the procedure of slave reception. The callback function is called after generating a stop
condition. Specify the function name in the CallBackFunc of the I12C communication information structure
member.

< Slave reception >

|

Specify the parameter depending on
the channel used

l

RIIC initialization

[1] Sets the channel used.

[2] Initializes the RIIC channel set in [1].

R_RIIC_Open()
o
1
Specify the communication [3] Specify arguments for the parameters in the information
information structure communication structure such as the pointer to the receive

‘ data storage buffer or the number of data.

[4] Starts transmission/reception according to the specified

Slave transmission/reception . .
transmit/receive pattern.

R_RIIC_SlaveTransfer()

it > Callback function
[5] The callback function is called

when a stop condition is detected. T

,,

Has the communication

[6] Determines whether all communications completed.
completed?

Release the channel [7] After the communication has completed, the bus
R_RIIC_Close() used for the selected channel is released.

[

T

Figure 1.11 Slave Reception

RO1AN1692EJ0302 Rev.3.02 Page 16 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

(2) Slave Transmission
The slave (RX MCU) transmits data to the master.

After a start condition from the master is detected, when the slave address matches its own address and
the eighth bit of the slave address is 1 (read), then the slave starts transmit operation. When the transmit
request exceeds the number of data specified in the I2C communication information structure member,
the slave transmits OxFF as data. The slave continues transmit operation until a stop condition is
detected. Figure 1.12 shows the Signals for Slave Transmission.

ST123456789123456789 12 789 SP.

SCLn

SDAn]\|7
o

l_'_I\ ~— J\T}\ ~— JLYJ\ # J
Start Slave address ~ ACK 1st data ACK 1stdata (i) NACK Stop
(8th bit: 1)

n: Channel number

ST: Start condition generation NACK: Acknowledge: 1

SP: Stop condition generation ACK: Acknowledge: 0

* A signal with an underline indicates data transmission from the slave to the master.

Figure 1.12 Signals for Slave Transmission

RO1AN1692EJ0302 Rev.3.02 Page 17 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

Figure 1.13 shows the procedure of slave transmission. The callback function is called after generating a
stop condition. Specify the function name in the CallBackFunc of the I2C communication information
structure member.

< Slave transmission >

|

Specify the parameter depending on
the channel used

l

RIIC initialization

[1] Sets the channel used.

[2] Initializes the RIIC channel set in [1].

R_RIIC_Open()
o
1
Specify the communication [3] Specify arguments for the parameters in the information
information structure communication structure such as the pointer to the transmit

‘ data storage buffer or the number of data.

Slave transmission/reception [4] Starts transmission/reception according to the specified

R_RIIC_SlaveTransfer() receive/transmit pattern.

el > Callback function
[5] The callback function is called

when a SP is detected. T

Has the communication

[6] Determines whether all communications completed.
completed?

Release the channel [7] After the communication has completed, the bus
R_RIIC_Close() used for the selected channel is released.

[

T

Figure 1.13 Slave Transmission

RO1AN1692EJ0302 Rev.3.02 Page 18 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

1.4.5 State Transition
Figure 1.14 shows the RIIC FIT Module State Transition Diagram.

Notation conventions

Reset released

Uninitialized state Event[condition]/Action on the event
o—> RIIC_NO_INIT

R_RIIC_Close() called/
I2C driver reset processing

Error state

RZER”.C—C"’SeO called/ R_RIIC_Close() called/ RFI{IICI:CT'/I-\\/ILO
I°C driver reset processing IC driver reset processing RIIC ERROR

R_RIIC_Open() called/
Initialization

Idle state

(Ready for master
communication)
RIIC_IDLE
RIIC_FINISH
RIIC_NACK

7

Error occurred/

Error occurred/

Master transmission
and reception
completed/

~

Master transmission and
reception
RIIC_COMMUNICATION

Transmission
and reception/

R_RIIC_MasterSend() called/
Starts master transmission
R_RIIC_MasterReceive() called/
Starts master reception

Master transmission and
reception completed/

/

Slave address match interrupt
[Arbitration-lost occurred]/

R_RIIC_MasterSend() called/ R_RIIC_MasterSend() called/
Starts master transmission Starts master transmission
R_RIIC_MasterReceive() called/ R_RIIC_MasterReceive() called/
Starts master reception Starts master reception

Slave transmission and reception /

R_RIIC_SlaveTransfer() called/
Starts slave transmission and reception

completed/

Idle state

\

(Ready for master/slave
communication) Slave transmission and reception Transmission
RIIC_IDLE RIIC_COMMUNICATION and reception/
RIIC_FINISH

RIIC_NACK

N 7

Slave address match interrupt/

Figure 1.14 RIIC FIT Module State Transition Diagram

RO1AN1692EJ0302 Rev.3.02 Page 19 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

1.4.6 Flags when Transitioning States

dev_sts is the device state flag and is one of the I°C communication information structure members. The flag
stores the communication state of the device. Using this flag enables controlling multiple slaves on the same
channel.

Table 1.2 lists the Device State Flags when Transitioning States.

Table 1.2 Device State Flags when Transitioning States

State Device State Flag (dev_sts)
Uninitialized state RIIC_NO_INIT
RIIC_IDLE
Idle states RIIC_FINISH
RIIC_NACK
Communicating
(master transmission, master reception, RIIC_COMMUNICATION
slave transmission, and slave reception)
Arbitration-lost detection state RIIC_AL
Timeout detection state RIIC_TMO
Error RIIC_ERROR
RO1AN1692EJ0302 Rev.3.02 Page 20 of 101

Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

1.4.7 Arbitration-Lost Detection Function

This module detects arbitration-lost for the reasons below. The module does not support the arbitration-lost
detection on slave transmission while the RIIC does.

(1) When a start condition is issued during the bus busy state:

If the module issues a start condition when the other master has already issued a start condition and
occupied the bus (bus busy state), the module detects arbitration-lost.

(2) When the module issues a start condition after the other master issued a start condition though the bus
is free:

When the module issues a start condition, it attempts to drive the SDA line low. However if the other
master issued a start condition earlier, the signal level on the SDA line does not match the signal level
output by the module. Then the module detects arbitration-lost.

(3) When multiple start conditions are issued at the same time:

If multiple masters issue start conditions at the same time, the module may determine that the start
condition has been issued successfully on each device. Then each device starts communication.
However, when any of the conditions described below occurs, the module detects arbitration-lost.

a. When data transmitted by masters are different:

The module compares the signal level on the SDA line with the signal level output by itself during
communication. If these signals do not match while data is being transmitted including the slave
address, the module detects arbitration-lost.

b. The numbers of data transmissions differ between masters while data sent by the masters are the
same.

With the case other than the above a, i.e., the slave address and transmit data match, the module
does not detect arbitration-lost. However if the number of data transmitted by masters differ, the
module detects arbitration-lost.

1.4.8 Timeout Detection Function

The timeout detection function can be enabled in this module (enabled as default). The RIIC can detect an
abnormal bus state by monitoring that the SCLO line is stuck low or high for a predetermined time.

The timeout detection function detects a bus hang up, i.e. the SCL line is held low or high, in the following
period:

(1) The bus is busy in master mode.
(2) The RIIC’s own slave address is detected and the bus is busy in slave mode.
(3) The bus is free while generation of a START condition is requested.

Refer to the following configuration options in “2.7 Configuration Overview” for details on enabling and
disabling the timeout detection function.

« RIIC_CFG_CHO_TMO_ENABLE
« RIIC_CFG_CH2_TMO_ENABLE
« RIIC_CFG_CHO_TMO_DET_TIME
« RIIC_CFG_CH2_TMO_DET_TIME
« RIIC_CFG_CHO_TMO_LCNT

« RIIC_CFG_CH2_TMO_LCNT

« RIIC_CFG_CHO_TMO_HCNT

« RIIC_CFG_CH2 TMO_HCNT

Refer to 6.3 Timeout Detection and Processing After the Detection for detailed explanation when a timeout is
detected.

RO1AN1692EJ0302 Rev.3.02 Page 21 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

2. API Information

The FIT module provided with this application note has been confirmed to operate under the following
conditions.

2.1 Hardware Requirements

This FIT module requires your MCU supports the following feature:
-RIIC

2.2 Software Requirements

This FIT module is dependent upon the following FIT modules:

e Board Support Package Module (r_bsp) Rev.5.20 or higher

2.3 Supported Toolchains

This FIT module is tested and works with the following toolchain:
- Renesas RX Toolchain v.2.01.01
- Renesas RX Toolchain v.2.03.00
- Renesas RX Toolchain v.2.05.00
- Renesas RX Toolchain v.2.06.00
- Renesas RX Toolchain v.2.07.00
- Renesas RX Toolchain v.3.00.00
- Renesas RX Toolchain v.3.01.00
- Renesas RX Toolchain v.3.02.00
- Renesas RX Toolchain v.3.03.00
- Renesas RX Toolchain v.3.04.00
- Renesas RX Toolchain v.3.05.00
- Renesas RX Toolchain v.3.06.00
- Renesas RX Toolchain v.3.07.00

Refer to 6.4 Operating Test Environment for details.

RO1AN1692EJ0302 Rev.3.02 Page 22 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

2.4 Usage of Interrupt Vector

The EEl interrupt, RXI interrupt, TXI interrupt, and TEI interrupt are enabled by execution of
R_RIIC_MasterSend function, R_RIIC_MasterReceive function, or R_RIIC_SlaveTransfer function (with
specified condition)(while the macro definition RIIC_CFG_CHi_INCLUDE (i=0to 2)is 1).

Table 2.1 lists the interrupt vector used in the RIIC FIT Module.

RO1AN1692EJ0302 Rev.3.02 Page 23 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

Table 2.1 Interrupt Vector used in the RIIC FIT Module

Device Contents

RX110 EEIO interrupt [channel 0] (vector no.: 246)
RX111 RXIO interrupt [channel 0] (vector no.: 247)
RX113 TXIO0 interrupt [channel 0] (vector no.: 248)
RX130 TEIOQ interrupt [channel 0] (vector no.: 249)
RX13T
RX140
RX230
RX231
RX23E-A
RX23E-B
RX23T
RX24T
RX24U
RX23W
RX260
RX261

RX660 RXIO interrupt [channel 0] (vector no.: 52)
RX64M TXIO0 interrupt [channel 0] (vector no.: 53)
RX71M RXI2 interrupt [channel 2] (vector no.: 54)
TXI2 interrupt [channel 2] (vector no.: 55)

GROUPBL1 interrupt (vector no.: 111)

e TEIO interrupt [channel 0] (group interrupt source no.: 13)
e EEIO interrupt [channel 0] (group interrupt source no.: 14)
e TEI2 interrupt [channel 2] (group interrupt source no.: 15)
e EEI2 interrupt [channel 2] (group interrupt source no.: 16)

RX65N RXIO interrupt [channel 0] (vector no.: 52)
RX651 TXIO0 interrupt [channel 0] (vector no.: 53)
RX66N RXI1 interrupt [channel 1] (vector no.: 50)
RX671 TXI1 interrupt [channel 1] (vector no.: 51)
RX72M RXI2 interrupt [channel 2] (vector no.: 54)
RX72N TXI2 interrupt [channel 2] (vector no.: 55)

GROUPBLA1 interrupt (vector no.: 111)

e TEIO interrupt [channel 0] (group interrupt source no.: 13)
EEIOQ interrupt [channel 0] (group interrupt source no.: 14)
TEI1 interrupt [channel 1] (group interrupt source no.: 28)
EEI1 interrupt [channel 1] (group interrupt source no.: 29)
TEI2 interrupt [channel 2] (group interrupt source no.: 15)
e EEI2 interrupt [channel 2] (group interrupt source no.: 16)

RX66T RXIO interrupt [channel 0] (vector no.: 52)
RX72T TXIO0 interrupt [channel 0] (vector no.: 53)
RX26T

GROUPBL1 interrupt (vector no.: 111)
e TEIO interrupt [channel 0] (group interrupt source no.: 13)
e EEIO interrupt [channel 0] (group interrupt source no.: 14)

RO1AN1692EJ0302 Rev.3.02 Page 24 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

2.5 Header Files

All API calls and their supporting interface definitions are located in r_riic_rx_if.h.

2.6 Integer Types

This project uses ANSI C99. These types are defined in stdint.h.

RO1AN1692EJ0302 Rev.3.02 Page 25 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

2.7 Configuration Overview

The configuration options in this module are specified in r_riic_rx_config.h and r_riic_rx_pin_config.h. The
option names and setting values are listed in the table below.

Configuration options in r_riic_rx_config.h

Selects whether to include parameter checking in the code.
RIIC_CFG_PARAM_CHECKING_ENABLE - When this is set to 0, parameter checking is omitted.

- Default value = 1 With this setting, the code size can be reduced.
- When this is set to 1, parameter checking is included.

Selects whether to use available channels.

RIIC_CFG_CHi_INCLUDED ™ When not using the channel, set this to 0.

i=0to2 - When this is set to 0, relevant processes for the channel are omitted

-When i =0, the default value = 1 from the code.

- When i =1 to 2, the default value = 0 - When this is set to 1, relevant processes for the channel are included in
the code.

Specifies the RIICO communication rate.

Setting values for the bit rate register and internal reference clock
selection bit are calculated using the setting values for
RIC_CFG_CHO_kBPS RIIC_CFG_CHO_kBPS and the peripheral clock.

- Default value = 400 - Target devices that do not support fast mode plus as the transfer
speed. Specify a value less than or equal to 400.

- For RX64M, RX71M, RX65N, RX66N, RX671, RX72M and RX72N,
specify a value less than or equal to 1000.

Specifies the RIIC1 communication rate.

RIIC CFG CH1 kBPS ™ Setting vall_Jes for the bit rate register anq internal reference clock
- Default value = 400 selection bit are calculated using the setting values for
RIIC_CFG_CH1_kBPS and the peripheral clock.

This should be set to 400 or less.

Specifies the RIIC2 communication rate.

RIIC CFG CH2 kBPS ™ Setting vall_Jes for the bit rate register anq internal reference clock
- Default value = 400 selection bit are calculated using the setting values for
RIIC_CFG_CH2_kBPS and the peripheral clock.

This should be set to 400 or less.

Specify the value of SCL rise time and SCL fall time:

RIIC_CFG_SCL100K_UP_TIME - RIIC_CFG_SCL100K_UP_TIME: Specifies the SCL rise time (s) in
- Default value = 1000E-9 Standard Mode (up to 100 kbps).
RBCFCEG—ISC';1 gggE—gOWN—T'ME -RIIC_CFG_SCL100K_DOWN_TIME: Specifies the SCL fall time (s) in
'R“g agF(‘;a geC[200K UP TIME Standard Mode (up to 100 kbps).

= I —a - RIIC_CFG_SCL400K_UP_TIME: Specifies the SCL rise time (s) in Fast
- Default value = 300E-9
RIIC_CFG_SCL400K_DOWN_TIME Mode (up to 400 kbps).
- Default value = 300E-9 - RIIC_CFG_SCL400K_DOWN_TIME: Specifies the SCL fall time (s) in
RIIC_CFG_SCL1M_UP_TIME Fast Mode (up to 400 kbps).
- Default value = 120E-9 - RIIC_CFG_SCL1M_UP_TIME: Specifies the SCL rise time (s) in Fast
RIIC_CFG_SCL1M_DOWN_TIME Mode Plus (up to 1 Mbps).
- Default value = 120E-9 - RIIC_CFG_SCL1M_UP_TIME: Specifies the SCL fall time (s) in Fast

Mode Plus (up to 1 Mbps).
The number of noise filter stage of the specified RIIC channel can be

RIIC_CFG_CHi_DIGITAL_FILTER selected.
i=0to2 - - - When this is set to 0, the noise filter is disabled.
~Wheni=0to 2 the default value = 0 - When this is set to a value from 1 to 4, values to enable the selected

number of filters are selected for the noise filter stage selection bit and
digital noise filter circuit enable bit.

Note:
1. This setting is invalid for target devices that do not support the corresponding channel.

RO1AN1692EJ0302 Rev.3.02 Page 26 of 101
Oct.30.25 RENESAS

RX Family

I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

Configuration options in r_riic_config.h

RIIC_CFG_PORT_SET_PROCESSING
- Default value = 1

Specifies whether to include processing for port setting) in the code.

* Processing for port setting is the setting to use ports selected by
R_RIIC_CFG_RIICi_SCLi_PORT,

R_RIIC_CFG_RIICi_SCLi_BIT,

R_RIIC_CFG_RIICi_SDAi_PORT, and R_RIIC_CFG_RIICi_SDAi_BIT as
pins SCL and SDA.

- When this is set to 0, processing for port setting is omitted from the
code.

- When this is set to 1, processing for port setting is included in the code.

RIIC_CFG_CHi_MASTER_MODE ("
i=0to 2
-When i =0 to 2, the default value = 0

The master arbitration lost detection function of the specified RIIC
channel can be enable or disable.

Set this to 1 (enabled) when using multi-master.

- When this is set to 0, the master arbitration-lost detection is disabled.
- When this is set to 1, the master arbitration-lost detection is enabled.

RIIC_CFG_CHi_SLV_ADDRO_FORMAT "
(1)
RIIC_CFG_CHi_SLV_ADDR1_FORMAT ™
(1)
RIIC_CFG_CHi_SLV_ADDR2_FORMAT "2
(1)

i=0to2

*1: When i = 0 to 2, the default value = 1
*2:When i =0 to 2, the default value =0

The slave address format can be selected as 7 bits or 10 bits for the
specified RIIC channel.

- When this is set to 0, the slave address is not set.

- When this is set to 1, the 7-bit slave address format is set.

- When this is set to 2, the 10-bit slave address format is set.

RIIC_CFG_CHi_SLV_ADDRO "' (™
RIIC_CFG_CHi_SLV_ADDR1 2™
RIIC_CFG_CHi_SLV_ADDR2 2 ("
i=0to2

*1:When i = 0 to 2, the default value =
0x0025

*2: When i =0 to 2, the default value =
0x0000

This set the slave address of the specified RIIC channel.
Available bits of the setting value vary depending on the setting value of
the RIIC_CFG_CHi_SLV_ADDRj_FORMAT. (j =0 to 2)
When RIIC_CFG_CHO_SLV_ADDRj_FORMAT is:

0: The setting value is ignored.

1: The lower 7 bits of the setting value are used.

2: The lower 10 bits of the setting value are used.

RIIC_CFG_CHi_SLV_GCA_ENABLE ™
i=0to2
-When i =0 to 2, the default value =0

The general call address of the specified RIIC channel can be enable or
disable.

- When this is set to 0: General call address is disabled.

- When this is set to 1: General call address is enabled.

RIIC_CFG_CHi_RXI_INT_PRIORITY ("
i=0to 2
-When i =0 to 2, the default value = 1

The priority level of the receive data full interrupt (RXIli) of the specified
RIIC channel can be selected.
Specify the level from 1 to 15.

RIIC_CFG_CHi_TXI_INT_PRIORITY M
i=0to 2
-Wheni =0 to 2, the default value = 1

The priority level of the transmit data empty interrupt (TXIi) of the
specified RIIC channel can be selected.
Specify the level from 1 to 15.

Note:

1. This setting is invalid for target devices that do not support the corresponding channel.

RO1AN1692EJ0302 Rev.3.02
Oct.30.25

Page 27 of 101
RENESAS

RX Family

I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

Configuration options in r_riic_config.h

RIC_CFG_CHi_EEI_INT_PRIORITY M)
i=0to 2
-Wheni =0 to 2, the default value = 1

The priority level of the communication error / event occurrence interrupt
(EEIi) of the specified RIIC channel can be selected.

Specify the level from 1 to 15. Do not set this option to a value lower than
the priority level specified with RIIC_CFG_CHi_RXI_INT_PRIORITY or
RIIC_CFG_CHi_TXL_INT_PRIORITY.

For devices where EEli and TEli (i = 0 to 2) are grouped as group BL1
interrupts, set a value higher than the priority level value specified in
RIIC_CFG_CHi_RXI_INT_PRIORITY and
RIIC_CFG_CHi_TXI_INT_PRIORITY.

RIIC_CFG_CHi_TEI_INT_PRIORITY M)
i=0to2
-When i =0 to 2, the default value = 1

The priority level of the transmission end interrupt (TEli) of the specified
RIIC channel can be selected.

Specify the level from 1 to 15. Do not set this option to a value lower than
the priority level specified with RIC_CFG_CHi_RXI_INT_PRIORITY or
RIC_CFG_CHi_TXI_INT_PRIORITY.

For devices where EEli and TEli (i = 0 to 2) are grouped as group BL1
interrupts, set a value higher than the priority level value specified in
RIIC_CFG_CHi_RXI_INT_PRIORITY and
RIC_CFG_CHi_TXL_INT_PRIORITY.

RIIC_CFG_CHi_TMO_ENABLE @
i=0to 2
-Wheni =0 to 2, the default value = 1

The timeout detection function of the specified RIIC channel can be
enabled.

- When this is set to 0: RIICi timeout detection function is disabled.
- When this is set to 1: RIICi timeout detection function is enabled.

RIIC_CFG_CHi_TMO_DET_TIME @
i=0to2
-When i =0 to 2, the default value =0

You can select the timeout detection time of the specified RIIC channel.

- When this is set to 0, long mode is selected.
- When this is set to 1, short mode is selected.

Note:

1. The priority level cannot be set individually in devices that group EEIO, TEIO, EEI2, and TEI2 as the
BL1 interrupt. In this case, the priority levels for EEIO, TEIO, EEI2, and TEI2 will be unified to all be
the maximum value of the individual priority levels set in r_riic_confg.h. However, if the other module
specifies a greater value than the value specified for the BL1 priority level in the RIIC, the greater

value will be used.

For EEIO and TEIO interrupt priority levels, set values higher than the priority levels for RXI0 and TXIO.
Also, for EEI2 and TEI2 interrupt priority levels, set values higher than the priority levels for RXI2 and

TXI2.

2. This setting is invalid for target devices that do not support the corresponding channel.

RO1AN1692EJ0302 Rev.3.02
Oct.30.25

Page 28 of 101
RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

Configuration options in r_riic_config.h

RIIC_CFG_CHi_TMO_LCNT ™
i=0to 2
-Wheni =0 to 2, the default value = 1

After enabling the timeout detection function of specified RIIC channel,

during the time SCLi line is low, count-up of the internal counter for the

timeout detection function can be enabled.

- When this is set to 0, counting up is disabled while the SCLi line is held
low.

- When this is set to 1, counting up is enabled while the SCLi line is held
low.

RIC_CFG_CHi_TMO_HCNT ("
i=0to 2
-Wheni =0 to 2, the default value = 1

After enabling the specified RIIC timeout detection function, during the

time SCLi line is high, the count-up of the internal counter for the timeout

detection function can be enabled.

- When this is set to 0, counting up is disabled while the SCLO line is held
high.

- When this is set to 1, counting up is enabled while the SCLO line is held
high.

RIC_CFG_BUS_CHECK_COUNTER
- Default value = 1000

Specifies the timeout counter (number of times to perform bus checking)

when the RIIC API function performs bus checking.

Specify a value less than or equal to OXFFFFFFFF.

The bus checking is performed in the following timings:

- Before generating a start condition

- After detecting a stop condition

- After generating each condition using the RIIC control function
(R_RIC_Control function)

- After generating the SCL one-shot pulse using the RIIC control function
(R_RIIC_Control function).

With the bus checking, when the bus is busy, the timeout counter is

decremented by the software until the bus becomes free. When the

counter reaches 0, the API determines that a timeout has occurred and

returns an error (Busy) as the return value.

* The timeout counter is used for the bus not to be locked. Therefore,

specify the value greater than or equal to the time for that the other
device holds the SCL pin low.

Setting time for the timeout (ns) ~ (Icﬁ (Hz)) x counter value x 10

Note:

1. This setting is invalid for target devices that do not support the corresponding channel.

RO1AN1692EJ0302 Rev.3.02
Oct.30.25

Page 29 of 101
RENESAS

RX Family I1?°C Bus Interface (RIIC) Module Using Firmware Integration Technology

Configuration options in r_riic_rx_config.h

R _RIIC_CFG_RIICi_SCLi_PORT
i=0to 2

-When i = 0, the default value =1’
-When i =1, the default value =2’
-When i = 2, the default value =1’

Selects port groups used as the SCL pins.
Specify the value as an ASCII code in the range ‘0’
to 'J.

R_RIIC_CFG_RIICi_SCLi_BIT
i=0to2

-When i = 0, the default value =2’
-When i =1, the default value =1’
-When i = 2, the default value = '6’

Selects pins used as the SCL pins.
Specify the value as an ASCII code in the range ‘0’
to ‘7.

R_RIIC_CFG_RIICi_SDAi_PORT
i=0to2

-When i = 0, the default value =1’
-When i = 1, the default value = '2’
-When i = 2, the default value =1’

Selects port groups used as the SDA pins.
Specify the value as an ASCII code in the range ‘0’
to ‘J’.

R_RIIC_CFG_RIICi_SDAi_BIT
i=0to 2

-When i = 0, the default value =3’
-When i =1, the default value =0’
-When i = 2, the default value =7’

Selects pins used as the SDA pins.
Specify the value as an ASCII code in the range ‘0’
to ‘7.

RO1AN1692EJ0302 Rev.3.02
Oct.30.25

Page 30 of 101

RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

2.8 Code Size

Typical code sizes associated with this module are listed below. Information is listed for a single
representative device of the RX100 Series, RX200 Series, and RX600 Series, respectively.

The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options described in 2.7,Configuration Overview. The table lists reference values when the C compiler's
compile options are set to their default values, as described in 2.3,Supported Toolchains. The compile option
default values are optimization level: 2, optimization type: for size, and data endianness: little-endian. The
code size varies depending on the C compiler version and compile options.

The values in the table below are confirmed under the following conditions.
Module Revision: r_riic_rx rev3.00
Compiler Version: Renesas Electronics C/C++ Compiler Package for RX Family V3.06.00

(The option of “-lang = c99” is added to the default settings of the integrated
development environment.)

GCC for Renesas RX 8.03.00.202405

(The option of “-std=gnu99” is added to the default settings of the integrated
development environment.)

IAR C/C++ Compiler for Renesas RX version 5.10.1

(The default settings of the integrated development environment.)

Configuration Options: Default settings

ROM, RAM and Stack Memory Usage

Device Category Memory Used
Renesas Compiler GCC IAR Compiler
With Without With Without With Without
Parameter Parameter Parameter Parameter Parameter Parameter
Checking Checking Checking Checking Checking Checking
RX130 ROM | 1channelused | 10319 bytes | 10319 bytes | 13416 bytes | 13416 bytes | 14207 bytes | 14207 bytes
RAM | 1 channel used 37 bytes 0 bytes 20 bytes
STACK
o1 48 bytes - 308 bytes
RX261 ROM | 1channel used | 9046 bytes | 9046 bytes | 11480 bytes | 11480 bytes | 11862 bytes | 11862 bytes
RAM | 1 channel used 37 bytes 40 bytes 20 bytes
STACK
» 48 bytes - 264 bytes
RX64M 1 channel used | 9246 bytes | 9230 bytes | 11696 bytes | 11648 bytes | 14353 bytes | 14354 bytes
ROM
2 channels used | 10215 bytes | 10199 bytes | 13272 bytes | 13224 bytes | 16004 bytes | 16000 bytes
1 channel used 111 bytes 0 bytes 66 bytes
RAM
2 channels used | 111 bytes 0 bytes 66 bytes
STACK
1 48 bytes - 308 bytes
Note 1. The sizes of maximum usage stack of Interrupts functions is included.

RO1AN1692EJ0302 Rev.3.02

Oct.30.25

RENESAS

Page 31 of 101

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

2.9 Parameters

This section describes the structure whose members are API| parameters. This structure is located in
r_riic_rx_if.h as are the prototype declarations of API functions.

The contents of the structure are referred and updated during communication. Do not rewrite the structure
during communication (RIIC_COMMUNICATION).

typedef volatile struct
{
uint8 t rsv2; /* Reserved area */
uint8 t rsvl; /* Reserved area */
riic_ch dev_status_t dev_sts; /* Device state flag */
uint8 t ch no; /* Channel number of the used device */
riic_callback callbackfunc; /* Callback function */
uint32 t cnt2nd; /* Second data counter (number of bytes) */
uint32 t cntlst; /* First data counter (number of bytes) */
uint8 t *p data2nd; /* Pointer to the second data storage buffer */
uint8 t *p datalst; /* Pointer to the first data storage buffer */
uint8 t *p slv _adr; /* Pointer to the slave address storage buffer */
} riic_info_ t;

2.10 Return Values

This section describes return values of API functions. This enumeration is located in r_riic_rx_if.h as are the
prototype declarations of API functions.

typedef enum

{
RIIC_SUCCESS = 0U, /* Function processing completed successfully */
RIIC ERR LOCK FUNC, /* The RIIC is used by another module */
RIIC_ERR_INVALID CHAN, /* Nonexistent channel is specified */
RIIC ERR INVALID ARG, /* Invalid parameter is specified */
RIIC ERR NO INIT, /* Uninitialized state */
RIIC ERR BUS BUSY, /* Bus is busy */
RIIC ERR AL, /* The function was called while an arbitration-lost has been detected */
RIIC ERR TMO, /* Timeout is detected */
RIIC_ERR OTHER, /* Other error */

} riic return t;

RO1AN1692EJ0302 Rev.3.02 Page 32 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

2.11 Callback Functions

In this module, a callback function set up by the user is called when either of the following conditions is met
and an EEl interrupt request occuers.

(1) The communication operation (Master Transmission, Master Reception, Master Transmit/Receive,
Slave Transmission, Slave Reception) is completed and stop condition is detected .

(2) A timeout was detected during communication operation (Master Transmission, Master Reception,
Master Transmit/Receive, Slave Transmission, Slave Reception). (1)

Note:

1. When the timeout detection function is enabled in RIIC_CFG_CHi_TMO_ENABLE (i = 0 to 2) in section
2.7, Configuration Overview.

The callback function is set up by storing the address of the callback function in the callbackfunc structure
member described in section 2.9, Parameters and then calling function R_RIIC_MasterSend(),
R_RIC_MasterReceive(), R_RIIC_SlaveTransfer().

API function calls except for the R_RIIC_GetStatus function is prohibited within a callback function.

2.12 Adding the FIT Module to Your Project

This module must be added to each project in which it is used. Renesas recommends the method using the
Smart Configurator described in (1) or (2) or (4) below. However, the Smart Configurator only supports some
RX devices. Please use the methods of (3) for RX devices that are not supported by the Smart Configurator.

(1) Adding the FIT module to your project using the Smart Configurator in e2 studio
By using the Smart Configurator in e? studio, the FIT module is automatically added to your project.
Refer to “RX Smart Configurator User’'s Guide: e? studio (R20AN0451)” for details.

(2) Adding the FIT module to your project using the Smart Configurator in CS+
By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added
to your project. Refer to “RX Smart Configurator User's Guide: CS+ (R20AN0470)” for details.

(3) Adding the FIT module to your project in CS+
In CS+, please manually add the FIT module to your project. Refer to “RX Family Adding Firmware
Integration Technology Modules to CS+ Projects (RO1AN1826)” for details.

(4) Adding the FIT module to your project using the Smart Configurator in IAREW
By using the Smart Configurator Standalone version, the FIT module is automatically added to your
project. Refer to “RX Smart Configurator User’s Guide: IAREW (R20AN0535)” for details.

RO1AN1692EJ0302 Rev.3.02 Page 33 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

2.13 “for”, “while” and “do while” statements

In this module, “for”, “while” and “do while” statements (loop processing) are used in processing to wait for
register to be reflected and so on. For these loop processing, comments with “WAIT_LOOP” as a keyword
are described. Therefore, if user incorporates fail-safe processing into loop processing, user can search the
corresponding processing with “WAIT_LOOP”.

The following shows example of description.

while statement example :
/* WAIT LOOP */
while (0 == SYSTEM.OSCOVFSR.BIT.PLOVF)
{
/* The delay period needed is to make sure that the PLL has stabilized. */

for statement example :

/* Initialize reference counters to 0. */

/* WAIT LOOP */

for (i = 0; i < BSP_REG PROTECT TOTAL ITEMS; i++)
{

g_protect counters[i] = 0;

do while statement example :
/* Reset completion waiting */
do
{
reg = phy read(ether channel, PHY REG CONTROL) ;

count++;
} while ((reg & PHY CONTROL RESET) && (count < ETHER CFG PHY DELAY RESET)); /* WAIT LOOP */
RO1AN1692EJ0302 Rev.3.02 Page 34 of 101

Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

3. API Functions

R_RIIC_Open()

This function initializes the RIIC FIT module. This function must be called before calling any other API
functions.

Format
riic_ return_t R_RIIC_Open(
riic_info_t* p_riic_info [* Structure data */
)
Parameters

*p_riic_info
This is the pointer to the I2C communication information structure.

Only the member of the structure used in this function is described here. Refer to 2.9 Parameters for
details on the structure.

The contents of the structure are referred and updated during communication. Do not rewrite the structure
during communication (RIIC_COMMUNICATION) and when an error has occurred (RIIC_TMO and
RIIC_ERROR).

For the parameter which has ‘(to be updated)’ in the comment below, the argument for the parameter will
be updated during the API execution.

riic _ch dev status_t dev_sts; /* Device state flag (to be updated) */
uint8 t ch no; /* Channel number */

Return Values

RIIC_SUCCESS, /* Processing completed successfully */
RIIC_ERR LOCK _FUNC, /* The APl is locked by the other task. */
RIIC_ERR _INVALID CHAN, /* Nonexistent channel */

RIIC_ERR _INVALID_ARG, /* Invalid parameter */

RIIC_ERR _OTHER, /* The event occurred is invalid in the current state. */

Properties
Prototyped in r_riic_rx_if.h.

Description
Performs the initialization to start the RIIC communication. Sets the RIIC channel specified by the parameter.
If the state of the channel is ‘uninitialized (RIIC_NO_INIT)’, the following processes are performed.

- Setting the state flag

- Setting 1/0O ports

- Allocating I2C output ports

- Cancelling RIIC module-stop state

- Initializing variables used by the API

- Initializing the RIIC registers used for the RIIC communication
- Disabling the RIIC interrupts

RO1AN1692EJ0302 Rev.3.02 Page 35 of 101
Oct.30.25 RENESAS

RX Family 1?°C Bus Interface (RIIC) Module Using Firmware Integration Technology

Example

volatile riic return t ret;
riic info t iic_info m;

iic_info m.dev_sts
iic _info m.ch no

RIIC NO INIT;
0;

ret = R RIIC Open(&iic _info m);

Special Notes
None

RO1AN1692EJ0302 Rev.3.02 Page 36 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

R_RIIC_MasterSend()

Starts master transmission. Changes the transmit pattern according to the parameters. Operates batched
processing until stop condition generation.

Format
riic_return_t R_RIIC_MasterSend(
riic_info_t* p_riic_info [* Structure data */
)
Parameters

*p_riic_info

This is the pointer to the I2C communication information structure. The transmit patterns can be selected
from four patterns by the parameter setting. Refer to Special Notes in this section for available settings
and the setting values for each transmit pattern. Also refer to 1.4.2 Master Transmission for details of
each pattern.

Only members of the structure used in this function are described here. Refer to 2.9 Parameters for
details on the structure.

The contents of the structure are referred and updated during communication. Do not rewrite the structure
during communication (RIIC_COMMUNICATION) and when an error has occurred (RIIC_TMO and
RIIC_ERROR).

When setting the slave address, store it without shifting 1 bit to left.

For the parameter which has ‘(to be updated)’ in the comment below, the argument for the parameter will
be updated during the API execution.

riic _ch dev_status_t dev_sts; /* Device state flag (to be updated)*/
uint8 t ch no; /* Channel number */
riic _callback callbackfunc; /* Callback function */
uint32 t cnt2nd; /* Second data counter (number of bytes)
(to be updated for only pattern 1 and 2) */
uint32 t cntlst; /* First data counter (number of bytes)
(to be updated for only pattern 1) */
uint8 t * p data2nd; /* Pointer to the second data storage buffer */
uint8 t * p datalst; /* Pointer to the first data storage buffer */
uint8 t * p slv adr; /* Pointer to the slave address storage buffer */

Return Values

RIIC_SUCCESS /* Processing completed successfully */

RIIC_ERR _INVALID_CHAN /* The channel is nonexistent. */
RIIC_ERR_INVALID_ARG /* The parameter is invalid. */
RIIC_ERR_NO_INIT /* Uninitialized state */

RIIC_ERR BUS BUSY /* The bus state is busy. */

RIIC_ERR_AL /* Arbitration-lost error occurred */

RIIC_ERR _TMO /* Timeout is detected */

RIIC_ERR_OTHER /* The event occurred is invalid in the current state. */

Properties
Prototyped in r_riic_rx_if.h.

Description

Starts the RIIC master transmission. The transmission is performed with the RIIC channel and transmit
pattern specified by parameters. If the state of the channel is ‘idle (RIIC_IDLE, RIIC_FINISH, or
RIIC_NACK), the following processes are performed.

- Setting the state flag
- Initializing variables used by the API
- Enabling the RIIC interrupts

RO1AN1692EJ0302 Rev.3.02 Page 37 of 101
Oct.30.25 RENESAS

RX Family 1?°C Bus Interface (RIIC) Module Using Firmware Integration Technology

- Generating a start condition

This function returns RIIC_SUCCESS as a return value when the processing up to the start condition
generation ends normally. This function returns RIIC_ERR_BUS_BUSY as a return value when the following
conditions are met to the start condition generation ends normally. ™

- The internal status bit is in busy state.
- Either SCL or SDA line is in low state.

The transmission processing is performed sequentially in subsequent interrupt processing after this function
return RIIC_SUCCESS. Section "2.4 Usage of Interrupt Vector" should be refered for the interrupt to be used.
For master transmission, the interrupt generation timing should be refered from "6.2.1 Master transmission".

After issuing a stop condition at the end of transmission, the callback function specified by the argument is
called.

The transmission completion is performed normally or not, can be confirmed by checking the device status
flag specified by the argument or the channel status flag g_riic_ChStatus [], that is to be "RIIC_FINISH" for
normal completion.

Notes:
1. When SCL and SDA pin is not external pull-up, this function may return RIIC_ERR_BUS_ BUSY by
detecting either SCL or SDA line is as in low state.

Example

/* for MasterSend (Pattern 1) */
#include <stddef.h>

#include "platform.h"

#include "r riic rx if.h"

riic_info_t iic_info_m;

void CallbackMaster (void) ;
void main (void) ;

void main (void)
{

volatile riic return t ret;

{0x50};
{0x00};
{0x81,0x82,0x83,0x84,0x85};

uint8 t addr eeprom[1]
uint8 t access_addrl[1]
uint8 t mst send datal[5]

/* Sets IIC Information for sending pattern 1. */
iic_info m.dev_sts = RIIC NO_ INIT;

iic _info m.ch no = 0;

iic_info m.callbackfunc = &CallbackMaster;
iic_info m.cnt2nd = 3;

iic_info m.cntlst = 1;

iic_info m.p data2nd
iic_info m.p datalst
iic_info m.p slv adr

mst send data;
access_addrl;
addr_ eeprom;

/* RIIC open */
ret = R RIIC Open(&iic info m);

/* RIIC send start */
ret = R RIIC MasterSend(&iic _info m);

if (RIIC SUCCESS == ret)
{
while (RIIC FINISH != iic info m.dev_sts);
RO1AN1692EJ0302 Rev.3.02 Page 38 of 101

Oct.30.25 RENESAS

RX Family 1?°C Bus Interface (RIIC) Module Using Firmware Integration Technology
}

else

{

/* error */

}

/* RIIC send complete */
while (1) ;
}

void CallbackMaster (void)
{
volatile riic return t ret;
riic mcu status t iic_status;

ret = R RIIC GetStatus(&iic_info m, &iic_status);
if (RIIC_SUCCESS != ret)
{

/* Call error processing for the R RIIC GetStatus() function */
}
else
{

/* Processing when a timeout, arbitration-lost, NACK,

or others is detected by verifying the iic_status flag. */

RO1AN1692EJ0302 Rev.3.02 Page 39 of 101
Oct.30.25 RENESAS

RX Family 1?°C Bus Interface (RIIC) Module Using Firmware Integration Technology

Special Notes
The table below lists available settings for each pattern.

Structure Available Settings for Each Pattern of the Master Transmission

Member Pattern 1 | Pattern 2 | Pattern 3 Pattern 4

*p_slv_adr Pointer to the slave address storage buffer FIT_NO_ PTRM
Pointer to the first

*p_data1st data storage buffer FIT_NO_PTR®™ FIT_NO_ PTR ™M FIT_NO_ PTRM
for transmitting

*0_data2nd Pointer. to the second data storage buffer for FIT_NO_PTR ™ FIT_NO_PTR ™
transmitting
0000 0001h to

ontist FFFF FFFFh @ 0 0 0

cnt2nd 0000 0001h to FFFF FFFFh @ 0 0

callbackfunc Specify the function name used

ch_no 00h to FFh

dev_sts Device state flag

rsv1, rsv2 Reserved (value set here has no effect)

Notes:

1. When using pattern 2, 3, or 4, set ‘FIT_NO_PTR’ as the argument of the parameter.
2. 0 cannot be set.

RO1AN1692EJ0302 Rev.3.02 Page 40 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

R_RIIC_MasterReceive()

Starts master reception. Changes the receive pattern according to the parameters. Operates batched
processing until stop condition generation.

Format
riic_return_t R_RIIC_MasterRecive(
riic_info_t* p_riic_info [* Structure data */
)
Parameters

*p_riic_info

This is the pointer to the 12C communication information structure. The receive pattern can be selected
from master reception and master transmit/receive by the parameter setting. Refer to the Special Notes in
this section for available settings and the setting values for each receive pattern. Also refer to 1.4.3
Master Reception for details of each receive pattern.

Only members of the structure used in this function are described here. Refer to 2.9 Parameters for
details on the structure.

The contents of the structure are referred and updated during communication. Do not rewrite the structure
during communication (RIIC_COMMUNICATION) and when an error has occurred (RIIC_TMO and
RIIC_ERROR).

When setting the slave address, store it without shifting 1 bit to left.

For the parameter which has ‘(to be updated)’ in the comment below, the argument for the parameter will
be updated during the API execution.

riic ch dev status t dev_sts; /* Device state flag (to be updated) */
uint8 t ch no; /* Channel number */
riic callback callbackfunc; /* Callback function */
uint32 t cnt2nd; /* Second data counter (number of bytes) (to be updated) */
uint32 t cntlst;/* First data counter (number of bytes)
(to be updated only for master transmit/receive) */
uint8 t * p data2nd; /* Pointer to the second data storage buffer */
uint8 t * p datalst; /* Pointer to the first data storage buffer */
uint8 t * p slv_adr; /* Pointer to the slave address storage buffer */

Return Values

RIIC_SUCCESS /* Processing completed successfully */
RIIC_ERR_INVALID_CHAN /* The channel is nonexistent. */

RIIC_ERR _INVALID ARG /* The parameter is invalid. */
RIIC_ERR_NO_INIT /* Uninitialized state */

RIIC_ERR BUS BUSY /* The bus state is busy. */

RIIC_ERR_AL /* Arbitration-lost error occurred */

RIIC_ERR _TMO /* Timeout is detected */

RIIC_ERR _OTHER /* The event occurred is invalid in the current state. */

Properties
Prototyped in r_riic_rx_if.h.

RO1AN1692EJ0302 Rev.3.02 Page 41 of 101
Oct.30.25 RENESAS

RX Family 1?°C Bus Interface (RIIC) Module Using Firmware Integration Technology

Description

Starts the RIIC master reception. The reception is performed with the RIIC channel and receive pattern
specified by parameters. If the state of the channel is ‘idle (RIIC_IDLE, RIC_FINISH, or RIIC_NACKY), the
following processes are performed.

- Setting the state flag

- Initializing variables used by the API
- Enabling the RIIC interrupts

- Generating a start condition

This function returns RIIC_SUCCESS as a return value when the processing up to the start condition
generation ends normally. This function returns RIIC_ERR_BUS BUSY as a return value when the following
conditions are met to the start condition generation ends normally. ™

- The internal status bit is in busy state.
- Either SCL or SDA line is in low state.

The reception processing is performed sequentially in subsequent interrupt processing after this function
return RIIC_SUCCESS. Section "2.4 Usage of Interrupt Vector" should be refered for the interrupt to be used.
For master transmission, the interrupt generation timing should be refered from "6.2.2 Master Reception".

After issuing a stop condition at the end of reception, the callback function specified by the argument is
called.

The reception completion is performed normally or not, can be confirmed by checking the device status flag
specified by the argument or the channel status flag g_riic_ChStatus [], that is to be "RIIC_FINISH" for
normal completion.

Notes:
1. When SCL and SDA pin is not external pull-up, this function may return RIIC_ERR_BUS_BUSY by
detecting either SCL or SDA line is as in low state.

Example

#include <stddef.h>
#include "platform.h"
#include "r riic rx if.h"

riic _info t iic_info m;

void CallbackMaster (void) ;
void main (void);

volid main (void)

{

volatile riic return t ret;

{0x50};
{0x00};
{OxFF, OxFF, OxFF, OxXFF, OxFF};

uint8 t addr eeprom[1]
uint8 t access_addrl[1]
uint8 t mst store areal[5]

/* Sets IIC Information. */
iic_info m.dev_sts = RIIC NO INIT;

iic_info m.ch no = 0;

iic_info m.callbackfunc = &CallbackMaster;
iic_info m.cnt2nd = 3;

iic info m.cntlst = 1;

iic_info m.p data2nd = mst store area;
iic_info m.p datalst access addrl;
iic_info m.p slv_adr addr_eeprom;

RO1AN1692EJ0302 Rev.3.02 Page 42 of 101
Oct.30.25 RENESAS

RX Family 1?°C Bus Interface (RIIC) Module Using Firmware Integration Technology

/* RIIC open */
ret = R RIIC Open(&iic info m);

/* RIIC receive start */
ret = R RIIC MasterReceive(&iic_info m);

if (RIIC_SUCCESS == ret)
{
while (RIIC FINISH != iic info m.dev sts);
}
else
{
/* error */

}

/* RIIC receive complete */
while (1) ;
}

void CallbackMaster (void)
{
volatile riic_return t ret;
riic mcu status t iic status;

ret = R RIIC GetStatus(&iic info m, &iic status);
if(RIIC_SUCCESS = ret)
{

/* Call error processing for the R RIIC GetStatus() function */
}
else
{

/* Processing when a timeout, arbitration-lost, NACK,

or others is detected by verifying the iic status flag. */

RO1AN1692EJ0302 Rev.3.02 Page 43 of 101
Oct.30.25 RENESAS

RX Family

I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

Special Notes

The table below lists available settings for each receive pattern.

Structure Available Settings for Each Pattern of the Master Reception

Member Master Reception | Master transmit/receive

*p_slv_adr Pointer to the slave address storage buffer

*p_data1st Not used (value set here has no effect) Pomter' t(.) the first data storage buffer for
transmitting

*p_data2nd Pointer to the second data storage buffer for receiving

dev_sts Device state flag

cnt1st (1) 0 | 0000 0001h to FFFF FFFFh

cnt2nd 0000 0001h to FFFF FFFFh @

callbackfunc

Specify the function name used

ch_no

00h to FFh

rsv1, rsv2

Reserved (value set here has no effect)

Notes:

1. The receive pattern is determined by whether cnt1st is 0 or not.
2. 0 cannot be set.

RO1AN1692EJ0302 Rev.3.02

Oct.30.25

RENESAS

Page 44 of 101

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

R_RIIC_SlaveTransfer()

This function performs slave transmission and reception. Changes the transmit and receive pattern
according to the parameters.

Format
riic_return_t R_RIIC_SlaveTransfer(
riic_info_t* p_riic_info [* Structure data */
)
Parameters

*p_riic_info

This is the pointer to the 12C communication information structure. The operation can be selected from
preparation for slave reception, slave transmission, or both of them by the parameter setting. Refer to the
Special Notes in this section for available parameter settings. Also refer to 1.4.4 Slave Transmission and
Reception for details of slave operations.

Only members of the structure used in this function are described here. Refer to 2.9 Parameters for
details on the structure.

The contents of the structure are referred and updated during communication. Do not rewrite the structure
during communication (RIIC_COMMUNICATION) and when an error has occurred (RIIC_TMO and
RIIC_ERROR).

For the parameter which has ‘(to be updated)’ in the comment below, the argument for the parameter will
be updated during the API execution.

riic ch dev status t dev sts; /* Device state flag (to be updated)*/
uint8 t ch no; /* Channel number */
riic _callback callbackfunc; /* Callback function */
uint32 t cnt2nd; /* Second data counter (number of bytes)

(to be updated for only slave reception) */
uint32 t cntlst; /* First data counter (number of bytes)

(to be updated for only slave transmission) */
uint8 t * p data2nd; /* Pointer to the second data storage buffer */
uint8 t * p datalst; /* Pointer to the first data storage buffer */

Return Values

RIIC_SUCCESS /* Processing completed successfully */

RIIC_ERR _INVALID_CHAN /* The channel is nonexistent. */

RIIC_ERR _INVALID_ARG /* The parameter is invalid. */
RIIC_ERR_NO_INIT /* Uninitialized state */

RIIC_ERR _BUS _BUSY /* The bus state is busy. */

RIIC_ERR_AL /* Arbitration-lost error occurred */

RIIC_ERR _TMO /* Timeout is detected */

RIIC_ERR_OTHER /* The event occurred is invalid in the current state. */

Properties
Prototyped in r_riic_rx_if.h.

RO1AN1692EJ0302 Rev.3.02 Page 45 of 101
Oct.30.25 RENESAS

RX Family 1?°C Bus Interface (RIIC) Module Using Firmware Integration Technology

Description

Prepares for the RIIC slave transmission or slave reception. If this function is called while the master is
communicating, an error occurs. Sets the RIIC channel specified by the parameter. If the state of the channel
is ‘idle (RIIC_IDLE, RIC_FINISH, or RIIC_NACK), the following processes are performed.

- Setting the state flag

- Initializing variables used by the API

- Initializing the RIIC registers used for the RIIC communication

- Enabling the RIIC interrupts

- Setting the slave address and enabling the slave address match interrupt

This function returns RIIC_SUCCESS as a return value when the setting of slave address and permission of
slave address match interrupt are completed normally.

The processing of slave transmission or slave reception is performed sequentially in the subsequent interrupt
processing.

Section "2.4 Usage of Interrupt Vector" should be refered for the interrupt to be used.

The interrupt generation timing of slave transmission should be refered from "6.2.4 Slave Transmission". The
interrupt generation timing for slave reception should be refered from "6.2.5 Slave reception".

After detecting the stop condition of slave transmission or slave reception termination, the callback function
specified by the argument is called.

The successful completion of slave reception can be checked by confirming the device status flag or channel
status flag specified in the argument g_riic_ChStatus [], that is to be "RIIC_FINISH". The successful
completion of slave transmission can be checked by confirming the device status flag or channel status flag
specified in the argument g_riic_ChStatus [], that is to be "RIIC_FINISH" or "RIIC_NACK". "RIIC_NACK" is
set when master device transmitted NACK for notify to the slave that last data receive completed.

Example

#include <stddef.h>
#include "platform.h"
#include "r riic rx if.h"

riic _info t iic_info m;

void CallbackMaster (void) ;
void CallbackSlave (void) ;
void main (void) ;

void main (void)

{
volatile riic _return t ret;
riic info t iic info_s;

{0x50};
{0x00};
{0x81,0x82,0x83,0x84,0x85};
{0x71,0x72,0x73,0x74,0x75};
{OxFF, OxXFF, OxFF, OxXFF, OxFF};
{0xFF, OxFF, OXFF, OXFF, OXFF};

uint8 t addr eeprom[1]
uint8 t access_addrl[1]
uint8 t mst send datal[5]
uint8 t slv send datal[5]
uint8 t mst store areal[5]
uint8 t slv store area[5]

/* Sets IIC Information for Master Send. */
iic _info m.dev sts = RIIC NO INIT;

iic_info m.ch no = 0;

iic_info m.callbackfunc = &CallbackMaster;
iic_info m.cnt2nd = 3;

iic info m.cntlst = 1;

iic_info m.p data2nd = mst store area;

RO1AN1692EJ0302 Rev.3.02 Page 46 of 101
Oct.30.25 RENESAS

RX Family

I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

iic info m.p datalst =

iic info m.p slv adr

access_addrl;
addr_ eeprom;

/* Sets IIC Information for Slave Transfer. */
RIIC_NO_INIT;

iic_info_s.dev_sts =
iic _info s.ch no = 0;

iic_info_s.callbackfunc
iic_info_s.cnt2nd = 3;

iic info s.cntlst = 3
iic_info_s.p dataZnd

’

o~

iic info s.p datalst =

= &CallbackSlave;

slv_store_area;
slv_send data;

iic_info s.p slv_adr (uint8 t*)FIT NO PTR;
/* RIIC open */
ret = R RIIC Open(&iic info m);

/* RIIC slave transfer enable */
ret = R RIIC SlaveTransfer(&iic_info_s);

/* RIIC master send start */
ret = R RIIC MasterSend(&iic info m);

while (1) ;
}

void CallbackMaster (void)
{
volatile riic_return t ret;
riic mcu status t iic status;

ret = R RIIC GetStatus(&iic info m,
if (RIIC SUCCESS != ret)
{

&iic status);

/* Call error processing for the R RIIC GetStatus() function */

}

else

{
/* Processing when a timeout, arbitration-lost, NACK,
or others is detected by verifying the iic status flag. */

}

void CallbackSlave (void)
{

/* Processing when an event occurs in slave mode as required. */

}

RO1AN1692EJ0302 Rev.3.02
Oct.30.25

Page 47 of 101
RENESAS

RX Family 1?°C Bus Interface (RIIC) Module Using Firmware Integration Technology

Special Notes
The table below lists available settings for each receive pattern.

Structure Available Parameter Settings
Member Slave Reception | Slave Transmission
*p_slv_adr Not used (value set here has no effect)
*0_dataist (For slave transmission) Pointer' tg the first data storage buffer for
transmitting ()
*0_data2nd Pointer to the second data storage buffer (For slave reception)
for receiving @
dev_sts Device state flag
cnt1st (For slave transmission) 0000 0001h to FFFF FFFFh
cnt2nd 0000 0001h to FFFF FFFFh (For slave reception)
callbackfunc Specify the function name used
ch_no 00h to FFh
rsv1, rsv2 Reserved (value set here has no effect)
Notes:

1. Set this when performing slave transmission.

When slave transmission is not used in the user system, set FIT_NO_PTR.
2. Set this when performing slave reception.

When slave reception is not used in the user system, set FIT_NO_PTR.

RO1AN1692EJ0302 Rev.3.02 Page 48 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

R_RIIC_GetStatus()

Returns the state of this module.

Format
riic_sts_flg t R_RIIC_GetStatus(
riic_info_t* p_riic_info [* Structure data */

riic_mcu_status_t * p_riic_status /* RIIC state */

Parameters
*p_riic_info

This is the pointer to the I2C communication information structure.
Only the member of the structure used in this function is described here. Refer to 2.9 Parameters for
details on the structure.

For the parameter which has ‘(to be updated)’ in the comment below, the argument for the parameter will
be updated during the API execution.

riic_ch dev_status_t dev_sts; /* Device state flag
(to be updated when the state is “RIIC_AL”)*/
uint8 t ch no; /* Channel number */

*p_riic_status
This contains the variable to store the RIIC state. Use the structure members listed below to specify
parameters.

typedef union

{
uint32 t LONG;
struct

{
uint32 t rsv:19; /* reserve */

uint32 t TMO:1; /* Timeout flag */

uint32 t AL:1; /* Arbitration lost detection flag */
uint32 t rsv:4; /* reserve */

uint32 t SCLO:
uint32_ t SDAO:

1; /* SCL pin output control status */
1
uint32 t SCLI:1; /* SCL pin level */
1
1

; /* SDA pin output control status */

uint32 t SDAI:1; /* SDA pin level */
uint32 t NACK:1; /* NACK detection flag */
uint32 t rsv:l; /* reserve */
uint32 t BSY:1; /* Bus status flag */

}BIT;

} riic mcu_status t;

Return Values

RIIC_SUCCESS /* Processing completed successfully */
RIIC_ERR _INVALID_CHAN /* The channel is nonexistent. */
RIIC_ERR _INVALID_ ARG /* The parameter is invalid. */

RO1AN1692EJ0302 Rev.3.02 Page 49 of 101
Oct.30.25 RENESAS

RX Family I1?°C Bus Interface (RIIC) Module Using Firmware Integration Technology

Properties
Prototyped in r_riic_rx_if.h.

Description

Returns the state of this module.

By reading the register, pin level, variable, or others, obtains the state of the RIIC channel which specified by
the parameter, and returns the obtained state as 32-bit structure.

When this function is called, the RIIC arbitration-lost flag and NACK flag are cleared to 0. If the device state
is
“‘RIIC_ AL”, the value is updated to “RIIC_FINISH”.

Example

volatile riic return t ret;

riic info t iic_info m;
riic mcu status t riic status;
iic_info m.ch no = 0;

ret = R RIIC GetStatus(&iic _info m, &riic status);

Special Notes
The following shows the state flag allocation.

b31 to b16
Reserved
Reserved
Rsv
Undefined
b15 to b13 b12 b11 b10 to b8
Reserved Event detection Reserved
Ti t Arbitration
Reserved imeou lost Reserved
detection .
detection
Rsv TMO AL Rsv
) 0: Not detected)
Undefined 1: Detected Undefined
b7 b6 b5 b4 b3 b2 b1 b0
. . Event
Reserved Pin status Pin level . Reserved Bus state
detection
Reserved SCL pin SDA pin SCL pin SDA pin NAC_K Reserved Bus
control control level level detection busy/ready
Rsv SCLO SDAO SCLI SDAI NACK Rsv BSY
. . 0: Not .
Undefined o: 10 ngltjt Llftwl::.ezv el ? ,' h?v;/] lIZ\\I/ZII detected Undefined 1OBI?JISe
) p - g 1: Detected ’ y
R0O1AN1692EJ0302 Rev.3.02 Page 50 of 101

Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

R_RIIC_Control()

This function outputs conditions, Hi-Z from the SDA, and one-shot of the SCL clock. Also it resets the
settings of this module. This function is mainly used when a communication error occurs.

Format

riic_return_t R_RIIC_Control(
r_riic_info_t* p_riic_info [* Structure data */
uint8_t ctrl_ptn /* Output pattern */

);

Parameters

*p_riic_info
This is the pointer to the I2C communication information structure.

Only the member of the structure used in this function is described here. Refer to 2.9 Parameters for
details on the structure.

The contents of the structure are referred and updated during communication. Do not rewrite the structure
during communication (RIIC_COMMUNICATION) and when an error has occurred (RIIC_TMO and
RIIC_ERROR).

For the parameter which has ‘(to be updated)’ in the comment below, the argument for the parameter will
be updated during the API execution.

riic ch dev status t dev_sts; /* Device state flag
(to be updated when “RIIC GEN RESET” is
specified as the output pattern)*/
uint8 t ch no; /* Channel number */

ctrl_ptn
Specifies the output pattern.

The output pattern listed below can be specified simultaneously. When specifying multiple patterns
simultaneously, specify them with ‘'(OR).

The following output patterns can be specified simultaneously with a combination of two or three of them.

- RIIC_GEN_START_CON
- RIIC_GEN_RESTART_CON
- RIIC_GEN_STOP_CON

The following two can specified simultaneously.

-RIIC_GEN_SDA _HI_Z
-RIIC_GEN_SCL_ONESHOT

#define RIIC GEN START CON (uint8 t) (0x01) /* Start condition generation */
#define RIIC_GEN_STOP_CON (uint8 t) (0x02) /* Stop condition generation */
#define RIIC_GEN RESTART CON (uint8 t) (0x04) /* Restart condition generation */
#define RIIC_GEN_SDA HI Z (uint8 t) (0x08) /* Hi-Z output from the SDA pin */
#define RIIC GEN SCL ONESHOT (uint8 t) (0x10) /* SCL clock one-shot output */

#define RIIC_GEN RESET (uint8 t) (0x20) /* RIIC module reset */

RO1AN1692EJ0302 Rev.3.02 Page 51 of 101
Oct.30.25 RENESAS

RX Family I1?°C Bus Interface (RIIC) Module Using Firmware Integration Technology

Return Values

RIIC_SUCCESS /* Processing completed successfully */

RIIC_ERR _INVALID_CHAN /* Nonexistent channel */

RIIC_ERR INVALID ARG /* Invalid parameter */
RIIC_ERR_BUS_BUSY /* Bus is busy */

RIIC_ERR_AL /* Arbitration-lost error occurred */

RIIC_ERR_OTHER /* The event occurred is invalid in the current state. */

Properties
Prototyped in r_riic_rx_if.h.

Description
Outputs control signals of the RIIC. Outputs conditions specified by the argument, Hi-Z from the SDA pin,
and one-shot of the SCL clock. Also resets the RIIC module settings.

Example

/* Outputs an extra SCL clock cycle after the SDA pin state is changed to a high-
impedance state. */

volatile riic return t ret;

riic info t iic_info m;

iic_info m.ch no = 0;

ret = R_RIIC_Control(&iic_info_m, RIIC GEN SDA HI Z | RIIC GEN SCL ONESHOT) ;

Special Notes
One-shot output of the SCL clock

In master mode, if the clock signals from the master and slave devices go out of synchronization due to
noise or other factors, the slave device may hold the SDA line low (bus hang up). Then the SDA line can be
released from being held low by outputting one clock of the SCL at a time.

In this module, one clock of the SCL can be output by setting the output pattern
‘RIIC_GEN_SCL_ONESHOT” (one-shot output of the SCL clock) and calling R_RIIC_Control().

RO1AN1692EJ0302 Rev.3.02 Page 52 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

R_RIIC_Close()

This function completes the RIIC communication and releases the RIIC used.

Format
riic_return_t R_RIIC_Close(
riic_info_t* p_riic_info [* Structure data */
)
Parameters

*p_riic_info
This is the pointer to the 12C communication information structure.

Only the member of the structure used in this function is described here. Refer to 2.9 Parameters for
details on the structure.

The contents of the structure are referred and updated during communication. Do not rewrite the structure
during communication (RIIC_COMMUNICATION) and when an error has occurred (RIIC_TMO and
RIIC_ERROR).

For the parameter which has ‘(to be updated)’ in the comment below, the argument for the parameter will
be updated during the API execution.

riic ch dev status t dev_sts; /* Device state flag (to be updated) */
uint8 t ch no; /* Channel number */

Return Values

RIIC_SUCCESS /* Processing completed successfully */
RIIC_ERR _INVALID_CHAN /* The channel is nonexistent. */
RIIC_ERR INVALID ARG /* Invalid parameter */

Properties
Prototyped in r_riic_rx_if.h.

Description
Configures the settings to complete the RIIC communication. Disables the RIIC channel specified by the
parameter. The following processes are performed in this function.

- Entering the RIIC module-stop state
- Releasing I2C output ports
- Disabling the RIIC interrupt

To restart the communication, call the R_RIIC_Open() function (initialization function). If the communication
is forcibly terminated, that communication is not guaranteed.

Example

volatile riic return t ret;
riic info t iic_info m;

iic _info m.ch no = 0;

ret = R RIIC Close(&iic_info m);

RO1AN1692EJ0302 Rev.3.02 Page 53 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

Special Notes
None

RO1AN1692EJ0302 Rev.3.02 Page 54 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

R_RIIC_GetVersion()

Returns the current version of this module.

Format
uint32_t R_RIIC_GetVersion(void)

Parameters
None

Return Values
Version number

Properties
Prototyped in r_riic_rx_if.h.

Description

This function will return the version of the currently installed RIIC FIT module. The version number is
encoded where the top 2 bytes are the major version number and the bottom 2 bytes are the minor version
number. For example, Version 4.25 would be returned as 0x00040019.

Example

uint32 t version;

version = R RIIC GetVersion();

Special Notes
None.

RO1AN1692EJ0302 Rev.3.02 Page 55 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

4. Pin Settings

To use the RIIC FIT module, assign input/output signals of the peripheral function to pins with the multi-
function pin controller (MPC). The pin assignment is referred to as the “Pin Setting” in this document.
The RIIC FIT module can choose whether or not to perform the pin setting in the R_RIIC_Open function
depending on the setting of the configuration option RIIC_CFG_PORT_SET_PROCESSING.

For details of the configuration options, refer to "2.7 Configuration Overview".

When performing the Pin Setting in the e? studio, the Pin Setting feature of the Smart Configurator can be
used. When using the pin setting feature, pins selected in the Pin Setting pane can be used in the Smart
Configurator. The information of selected pins is reflected in the r_riic_pin_config.h file. Values of the macro
definitions listed in Table 4.1 are overwritten with values corresponding to the pins selected.

Table 4.1 Macro Definitions for the Pin Setting Feature

Channel Selected Pin Selected Macro Definition
Channel 0 SCLO Pin R RIC_CFG_RIICO_SCLO_PORT
R _RIIC_CFG_RIICO_SCLO BIT
SDAO Pin R _RIIC_CFG_RIICO_SDAO_PORT
R _RIIC_CFG_RIICO_SDAO BIT
Channel 1 SCL1 Pin R _RIIC_CFG_RIIC1_SCL1_PORT
R RIIC_CFG_RIIC1_SCL1 BIT
SDA1 Pin R RIIC_CFG_RIIC1_SDA1_PORT
R _RIIC_CFG_RIIC1_SDA1 BIT
Channel 2 SCL2 Pin R _RIIC_CFG_RIIC2_SCL2_PORT
R _RIIC_CFG_RIIC2_SCL2 BIT
SDAZ2 Pin R RIIC_CFG_RIIC2_SDA2 PORT
R _RIIC_CFG_RIIC2_SDA2 BIT

Pins selected in the r_riic_pin_config.h file are configured as peripheral function pins SCL and SDA after
calling the R_RIIC_Open function.

The pins assigned to the peripheral function are released upon calling the R_RIIC_Close function and then
become general I/O pins (as input pins).

Pins SCL and SDA must be pulled up with an external resistor.

When the pin setting feature in this FIT module is not used according to the
RIIC_CFG_PORT_SET_PROCESSING setting, pins used in user processing must be configured after
calling the R_RIIC_Open function before calling the other APls.

RO1AN1692EJ0302 Rev.3.02 Page 56 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

5. Demo Projects

Demo projects are complete stand-alone programs. They include function main() that utilizes the module
and its dependent modules (e.g.. r_bsp).

In this section, it explains about GUI operation when you use e? studio.

5.1 riic_mastersend_demo_rskrx64m, riic_mastersend_demo_rskrx64m_gcc

Description

A simple demo of the RX64M RIIC Master Transmission for the RSKRX64M starter kit (FIT module
"r_riic_rx"). The demo uses the RIIC API from r_riic_rx_if.h to start master transmission. The master device
(RX MCU) transmits data to the slave device. When the master transmission is finished, print the finished
message to the debug console by main().

Setup and Execution

1. Compile and download the sample code.

2. Click ‘Reset Go’ to start the software. If PC stops at Main, press F8 to resume.
3. Set breakpoints and watch global variables

Boards Supported

RSKRX64M

5.2 riic_masterreceive_demo_rskrx64m, riic_masterreceive_demo_rskrx64m_gcc

Description

A simple demo of the RX64M RIIC Master Reception for the RSKRX64M starter kit (FIT module "r_riic_rx").
The demo uses the RIIC API from r_riic_rx_if.h to start master reception. The master (RX MCU) receives
data from the slave device .When the master reception is finished, print the received data to the debug
console by main().

Boards Supported
RSKRX64M

5.3 riic_slavetransfer_demo_rskrx64m, riic_slavetransfer_demo_rskrx64m_gcc

Description

A simple demo of the RX64M RIIC Slave Transmission and Reception for the RSKRX64M starter kit (FIT
module "r_riic_rx"). The demo uses the RIIC API from r_riic_rx_if.h to start slave transmission and reception.
The slave (RX MCU) receives data transmitted from the master, or transmits data by the transmit request
from the master. When the slave transmission and reception is finished, print the finished message to the
debug console by main().

Boards Supported

RSKRX64M

RO1AN1692EJ0302 Rev.3.02 Page 57 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

5.4 riic_mastersend_demo_rskrx231, riic_mastersend_demo_rskrx231_gcc

Description

A simple demo of the RX231 RIIC Master Transmission for the RSKRX231 starter kit (FIT module "r_riic_rx").
This demo is identical to the RX64M for demo above.

Boards Supported
RSKRX231

5.5 riic_masterreceive_demo_rskrx231, riic_masterreceive_demo_rskrx231_gcc

Description

A simple demo of the RX231 RIIC Master Reception for the RSKRX231 starter kit (FIT module "r_riic_rx").
This demo is identical to the RX64M for demo above.

Boards Supported
RSKRX231

5.6 riic_slavetransfer_demo_rskrx231, riic_slavetransfer_demo_rskrx231_gcc

Description

A simple demo of the RX231 RIIC Slave Transmission and Reception for the RSKRX231 starter kit (FIT
module "r_riic_rx"). This demo is identical to the RX64M for demo above.

Boards Supported
RSKRX231

5.7 riic_mastersend_demo_rskrx671, riic_mastersend_demo_rskrx671_gcc

Description

A simple demo of the RX671 RIIC Master Transmission for the RSKRX671 starter kit (FIT module "r_riic_rx").
This demo is identical to the RX64M for demo above.

Boards Supported
RSKRX671

5.8 riic_masterreceive_demo_rskrx671, riic_masterreceive_demo_rskrx671_gcc

Description

A simple demo of the RX671 RIIC Master Reception for the RSKRX671 starter kit (FIT module "r_riic_rx").
This demo is identical to the RX64M for demo above.

Boards Supported
RSKRX671

RO1AN1692EJ0302 Rev.3.02 Page 58 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

5.9 riic_slavetransfer_demo_rskrx671, riic_slavetransfer_demo_rskrx671_gcc

Description

A simple demo of the RX671 RIIC Slave Transmission and Reception for the RSKRX671 starter kit (FIT
module "r_riic_rx"). This demo is identical to the RX64M for demo above.

Boards Supported
RSKRX671

5.10 riic_mastersend_demo_rskrx72n, riic_mastersend_demo_rskrx72n_gcc

Description

A simple demo of the RX72N RIIC Master Transmission for the RSKRX72N starter kit (FIT module
"r_riic_rx"). This demo is identical to the RX64M for demo above.

Boards Supported
RSKRX72N

5.11 riic_masterreceive_demo_rskrx72n, riic_masterreceive_demo_rskrx72n_gcc

Description

A simple demo of the RX72N RIIC Master Reception for the RSKRX72N starter kit (FIT module "r_riic_rx").
This demo is identical to the RX64M for demo above.

Boards Supported
RSKRX72N

5.12 riic_slavetransfer_demo_rskrx72n, riic_slavetransfer_demo_rskrx72n_gcc

Description

A simple demo of the RX72N RIIC Slave Transmission and Reception for the RSKRX72N starter kit (FIT
module "r_riic_rx"). This demo is identical to the RX64M for demo above.

Boards Supported
RSKRX72N

5.13 Adding a Demo to a Workspace

Demo projects are found in the FITDemos subdirectory of the distribution file for this application note. To
add a demo project to a workspace, select File>Import>General>Existing Projects into Workspace, then click
“‘Next”. From the Import Projects dialog, choose the “Select archive file” radio button. “Browse” to the
FITDemos subdirectory, select the desired demo zip file, then click “Finish”.

5.14 Downloading Demo Projects

Demo projects are not included in the RX Driver Package. When using the demo project, the FIT module
needs to be downloaded. To download the FIT module, right click on the required application note and select
“Sample Code (download)” from the context menu in the Smart Brower >> Application Notes tab.

RO1AN1692EJ0302 Rev.3.02 Page 59 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

6. Appendices

6.1 Communication Method

This module controls each processing such as start condition generation, slave address transmission, and
others as a single protocol, and performs communication by combining these protocols.

6.1.1 States for APl Operation
Table 6.1 lists the States Used for Protocol Control.

Table 6.1 States Used for Protocol Control (enum r_riic_api_status_t)

No. Constant Name Description

STSO | RIIC_STS _NO_INIT Uninitialized state

STS1 | RIIC_STS IDLE Idle state (ready for master communication)
STS2 |RIIC_STS IDLE_EN_SLV Idle state (ready for master/slave communication)
STS3 | RIC_STS ST _COND_WAIT Wait state for a start condition to be detected

STS4 | RIIC_STS_SEND_SLVADR W_WAIT Wait state for the slave address [write] transmission

to complete
STS5 | RIIC_STS_SEND_SLVADR R_WAIT \é\éi;tpi?;e for the slave address [read] transmission to
STS6 | RIIC_STS SEND_DATA WAIT Wait state for the data transmission to complete
STS7 | RIC_STS RECEIVE_DATA WAIT Wait state for the data reception to complete
STS8 | RIIC_STS SP_COND_WAIT Wait state for a stop condition to be detected
STS9 | RIC_STS AL Arbitration-lost state
STS10 | RIC_STS _TMO Timeout detection state

6.1.2 Events During API Operation

Table 6.2 lists the Events Used for Protocol Control. In this module, not only interrupt but also the module
function call is defined as event.

Table 6.2 Events Used for Protocol Control (enum r_riic_api_event_t)

No. Event Event Definition

EVO | RIIC_EV_INIT R_RIIC_Open() called

EV1 | RIIC_EV_EN_SLV_TRANSFER R_RIIC_SlaveTransfer() called
R_RIIC_MasterSend()

EV2 | RIC_EV_GEN_START_COND or R_RIIC_MasterReceive() called

EV3 | RIIC_EV_INT_START EEI interrupt occurred (interrupt flag: START)

EV4 | RIIC_EV_INT_ADD TEl interrupt occurred, TXI interrupt occurred @

EV5 | RIIC_EV_INT_SEND TEl interrupt occurred, TXI interrupt occurred @

EV6 | RIIC_EV_INT_RECEIVE RXI interrupt occurred

EV7 | RIIC_EV_INT_STOP EEI interrupt occurred (interrupt flag: STOP)

EV8 | RIIC_EV_INT_AL EEI interrupt occurred (interrupt flag: AL)

EV9 | RIIC_EV_INT_NACK EEI interrupt occurred (interrupt flag: NACK)

—_ e~

EV10 | RIIC_EV_INT_TMO EEI interrupt occurred (interrupt flag: TMO)

Note:
1. The definition of EV4 and EV5 differs depending on the communication operation and the states of
"6.1.1 States for API Operation". For details, refer to "6.1.3 Protocol State Transitions".

RO1AN1692EJ0302 Rev.3.02 Page 60 of 101
Oct.30.25 RENESAS

RX Family

I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

6.1.3 Protocol State Transitions

In this module, a state transition occurs when an interface function provided is called or when an I12C interrupt
request is generated. Figure 6.1 to Figure 6.4 show protocol state transitions.

Notation conventions

l Event[condition]/Action on the event

Figure 6.1

STSO (RIIC_STS_NO_INIT)
Uninitialized state

EVO ('R_RIIC_Open()' called) /
Initialization processing

STS1 (RIIC_STS_IDLE)
Idle state
(ready for master transmission)

State Transition on Initialization (‘R_RIIC_Open()’ Called)

RO1AN1692EJ0302 Rev.3.02
Oct.30.25

RENESAS

Page 61 of 101

RX Family

I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

Notation conventions

Event[condition]/
Action on the event

STS10 (RIIC_STS_TMO)
Timeout detection state

EV10 (EEI interrupt occurred) /

EV1 ('R_RIIC_SlaveTransfer()' called)/

Specifies the setting for the slave transmission

and reception

'STS2 (RIIC_STS_IDLE_EN_SLV
Idle state
(ready for master/slave
communication)

)

EV3 (EEI interrupt occurred)
Operation for Pattern 4

Starts generating a stop condition

EV8 (EEI interrupt occurred)
[R_RIIC_SlaveTransfer()' not called] /

EV4 (TEl interrupt occurred)
Operation for Pattern 1
[First data buffer pointer = NULL]/
Starts transmitting the first data
Operation for Pattern 2

[First data buffer pointer == NULL &&
second data buffer pointer 1= NULL]/
Starts transmitting the second data

EV5 (TEl interrupt occurred)
[First data counter != 0]/
Starts transmitting the first data

[Second data counter != 0]/
Starts transmitting the second data

EV7 (EEI interrupt occurred)

['R_RIIC_SlaveTransfer()' already called]/

Communication end processing

EV2 ('R_RIIC_MasterSend()' called)/
Starts generating a start condition

[Slave address buffer pointer == NULL]/

EV3 (EEl interrupt occurred)
[Slave address buffer pointer != NULL]/
Starts transmitting the slave address[write]

'STS4 (RIIC_STS_SEND_SLVADR_W_WAIT)

| Go to the state transition on slave
| transmission and reception

STS9 (RIC_STS_AL)
Arbitration-lost state

STS1 (RIC_STS_IDLE)
Idle state
(ready for master communication

EV8 (EEI interrupt occurred)

), [R_RIIC_SlaveTransfer()' already called] /

STS3 (RIIC_STS_ST_COND_WAIT)
Wait state for a start condition to be
detected

Wait state for the slave address [write]
transmission to complete

EV4 (TEl interrupt occurred)
Operation for Pattern 3

[First data buffer pointer == NULL &&
second data buffer pointer == NULL}/
Starts generating a stop condition

STS6 (RIIC_STS_SEND_DATA_WAIT!
Wait state for the data transmission to
complete

)

EV8 (EElI interrupt occurred)
[R_RIIC_SlaveTransfer()' not called]/

EV5 (TEl interrupt occurred)
[First data counter == 0 &&
second data counter == 0]/
Starts generating a stop condition

EV8 (EEI interrupt occurred)
[R_RIIC_SlaveTransfer()' not called]/

EV9 (EEI interrupt occurred)
[NACK detected]/
Starts generating a stop condition

EV7 (EEI interrupt occurred)
[R_RIIC_SlaveTransfer()' not called]/
Communication end processing
STS8 (RIIC_STS_SP_COND_WAIT)
Wait state for a stop condition to be
detected

Figure 6.2 State Transition on Master Transmission (R_RIIC_MasterSend() Called)

RO1AN1692EJ0302 Rev.3.02
Oct.30.25

Page 62 of 101
RENESAS

RX Family I1?°C Bus Interface (RIIC) Module Using Firmware Integration Technology

Notation conventions

Event[condition)/
Actionon the event

| Go to the state transition on slave
| transmission and reception

STS1(RIIC_STS_IDLE)
Idle state
(ready for master communication)

STS10 (RIC_STS_TMO)
Timeout detection state

STS9(RIIC_STS_AL)
Arbitration-lost state

EV1 (R_RIIC_SlaveTransfer()' céfled)/

Specifies the setting for the slave transmission
and reception

EV10 (EEI interrupt occurred) /
STS2(RIC_STS_IDLE_EN_SLV)
Idle state
(ready for master/slave
communication)

EV2 ('/R_RIIC_MasterSend()' called)/
Starts generating a start condition

EV8 (EElinterrupt occurred)
[R_RIIC_SlaveTransfer()' already called)/

STS3(RIIC_STS_ST_COND_WAIT)
Wait state for a start condition to be
detected

EV3 (EEl interrupt occurred)
[Master composite and
the previous state is the idle state]/

Starts transmitting the slave address [write]

EV3 (EElinterrupt occumred)
[Master reception mode and the
previous state is the idle state] or
[Master composite mode and the
previous state is the wait state for
the data transmission to complete)/
Starts transmitting the slave
address[read]

STS4 (RIC_STS_SEND_SLVADR_W_WAIT)
Wait state for the slave address [write]
transmission to complete

EV5 (TEI interrupt occurred)
[First data counter == 0}/
Starts generating a restart condition

EV4 (TEI interrupt occurred)/
Starts transmitting the first data

STS5 (RIIC_STS_SEND_SLVADR_R_WAIT)
Wait state for the slave address [read]
transmission to complete

STS6 (RIIC_STS_SEND_DATA_WAIT)
Wait state for the data transmission to
complete

EV5 (TEl interrupt occurred)
[Firstdata counter = Q)/
Starts the first data transmission

EV6 (RXI interrupt
occurred)/
Starts receiving data

EV8 (EElinterrupt occumred)
[R_RIIC_SlaveTransfer()' not called]/

STS7(RIIC_STS_RECEIVE_DATA_WAIT)
Wait state for the datareception to complete,

EV6 (RXI interrupt occurred)
[Second data counter != 0}/
Data reception

EV6 (RXI interrupt occurred) .
[Second data counter == 0]/ EV8 (EElinterrupt occurred)
Starts generating the stop condition [R_RIIC_SlaveTransfer()' not caled] /

EV8 (EElinterrupt occumred)
[R_RIIC_SlaveTransfer()' not called] /

EV7 (EEl interrupt occumred)
[R_RIIC_SlaveTransfer()' not called]/
Communication end processing

STS8(RIIC_STS_SP_COND_WAIT)
Wait state for the stop conditiontobe
detected

EV7 (EElinterrupt occumred)
[R_RIIC_SlaveTransfer()' already called]/
Communication end processing

Figure 6.3 State Transition on Master Reception (R_RIIC_MasterReceive() Called)

RO1AN1692EJ0302 Rev.3.02

Page 63 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

Notation conventions

Event[condition]/
Action on the event

STS10 (RIIC_STS_TMO)
Timeout detection state

STS1 (RIIC_STS_IDLE)
Idle state
(ready for master communication)

EV10 (EEI interrupt occurred) / EV1 ('R_RIIC_SlaveTransfer()' called)/

Specifies the setting for the slave
transmission and reception

STS2 (RIIC_STS_IDLE_EN_SLV)
Idle state
(ready for master/slave
communication)

EV6 (RXI interrupt occurred)
. [Slave address matched && .
EV7 (EEl interrupt occurred) write signal received]/Starts EV7 (EEl interrupt occurred)

[Stop condition detected)/ EV4 (TXI interrupt occurred) data reception (dummy read) [Stop condition detected]/
Communication end processing [Slave address matched 8& Communication end processing

read signal received]/
Starts transmitting the data

STS6 (RIIC_STS_SEND_DATA_WAIT)
Wait state for the data transmission to
complete

STS7 (RIIC_STS_RECEIVE_DATA_WAIT)
Wait state for the data reception to complete

EV6 (RXI interrupt occurred)

EV5 (TXI interrupt occurred) [Second dat.a counter != 0}/
[First data counter != 0}/ Data reception
Starts the first data transmission [Second data counter == 0]/
Dummy read
[First data counter == 0]/ NACK output
Starts transmitting FFh EV9 (EEl interrupt occurred)/
NACK detection

STS8 (RIIC_STS_SP_COND_WAIT)
Wait state for the stop condition to be
detected

EV7 (EEl interrupt occurred)/
Communication end processing

Figure 6.4 State Transition on Slave Transmission and Reception (R_RIIC_SlaveTransfer() Called)

RO1AN1692EJ0302 Rev.3.02 Page 64 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

6.1.4 Protocol State Transition Table

The processing when the events in Table 6.2 occur in the states in Table 6.1 is shown in the Table 6.3
Protocol State Transition. Refer to Table 6.4 for details of each function.

Table 6.3 Protocol State Transition Table (gc_riic_mtx_tbI[][]) "

Event

State

Uninitialized state
STSO FuncO =R
[RIC_STS_NO_INIT]

Idle state (ready for master
STS1 | communication)
[RIIC_STS_IDLE]

Idle state (ready for master/slave
STS2 | communication)
[RIIC_STS_IDLE_EN_SLV]

Wait state for the start condition to be
STS3 | generated ERR [FI{+¥] Func8 Func9
[RIIC_STS_ST_COND_WAIT]

Wait state for the slave address [write] to
STS4 | complete Func8 Func9
[RIIC_STS_SEND_SLVADR_W_WAIT]

Wait state for the slave address [read] to
STS5 | complete Func8 Func9
[RIIC_STS_SEND_SLVADR_R_WAIT]

Wait state for the data transmission to
STS6 | complete Func8 Func9
[RIIC_STS_SEND_DATA_WAIT]

Wait state for the data reception to
STS7 | complete =33 Func6 Func8 Func9

[RIIC_STS_RECEIVE_DATA_WAIT]

STS8 Wait state for the stop condition to be _— - o
generated [RIIC_STS_SP_COND_WAIT] une une
Arbitration-lost state

STS9 et Func6 Func7 =
[RIIC_STS_AL]

Timeout detection state

STS10
[RIIC_STS_TMO]

Note:

1. ERRindicates RIIC_ERR_OTHER. When an unexpected event is notified in a state, error processing
will be performed.

RO1AN1692EJ0302 Rev.3.02 Page 65 of 101
Oct.30.25 RENESAS

RX Family

I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

6.1.5 Functions Used on Protocol State Transitions

Table 6.4 lists the Functions Used on Protocol State

Transition.

Table 6.4 Functions Used on Protocol State Transition

Processing Function Overview

FuncO riic_init_driver() Initialization

Func1 riic_generate_start_cond() Start condition generation (for master transmission)

Func2 riic_after_gen_start_cond() Processing after generating a start condition

Func3 riic_after_send_slvadr() Proces§ing after completing the slave address
transmission

Func4 riic_after_receive_slvadr() Processing after matching the received slave address

Func5 riic_write_data_sending() Data transmission

Func6 riic_read_data_receiving() Data reception

Func7 riic_after_dtct_stop_cond () Communication end processing

Func8 riic_arbitration_lost() Processing when detecting an arbitration-lost

Func9 riic_nack() Processing when detecting a NACK

Func10 riic_enable_slave_transfer() Enabling slave transmission/reception

Func11 riic_time_out() Processing when detecting a timeout

6.1.6 Flag States on State Transitions
1. Controlling states of channels

Multiple slaves on the same bus can be exclusively controlled using the channel state flag
‘g_riic_ChStatus[]'. Each channel has the channel state flag and the flag is controlled by the global variable.
When the initialization for this module has completed and the target bus is not being used for a

communication, the flag becomes ‘RIIC_IDLE/RIIC_

FINISH/RIIC_NACK (idle state (ready for

communication)) and communication is available. When the bus is being used for communication, the flag
becomes ‘RIIC_COMMUNICATION’ (communicating). When communication is started, the flag is always
verified. Thus, if a device is communicating on a bus, then no other device can start communicating on the
same bus. Simultaneous communication can be achieved by controlling the channel state flag for each

channel.
2. Controlling states of devices

Multiple slaves on the same channel can be contro

lled using the device state flag ‘dev_sts’ in the I2C

communication information structure. The device state flag stores the state of communication for the device.

Table 6.5 lists States of Flags on State Transitions.

RO1AN1692EJ0302 Rev.3.02
Oct.30.25

Page 66 of 101

RENESAS

RX Family

I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

Table 6.5 States of Flags on State Transitions

State

Channel State Flag

Device State Flag
(Communication Device)

I12C Protocol Operating
Mode

Current State of the Protocol Control

g_riic_ChStatus[]

12C Communication
Information Structure
dev_sts

Internal Communication
Information Structure
N_Mode

Internal Communication Information
Structure
N_status

Uninitialized state | RIIC_NO_INIT RIIC_NO_INIT RIIC_MODE_NONE RIIC_STS_NO_INIT
Idle state RIIC_IDLE RIIC_IDLE

(ready for master | RIIC_FINISH RIIC_FINISH RIIC_MODE_NONE RIIC_STS_IDLE
communication) RIIC_NACK RIIC_NACK

Idle state

(ready for RIIC_IDLE RIIC_IDLE RIIC_MODE_S_READY RIIC_STS_IDLE_EN_SLV

master/slave

communication)

Communicating
(master
transmission)

RIIC_COMMUNICATION

RIIC_COMMUNICATION

RIIC_MODE_M_SEND

RIIC_STS_ST_COND_WAIT

RIIC_STS_SEND_SLVADR_W_WAIT

RIIC_STS_SEND_DATA WAIT

RIIC_STS_SP_COND_WAIT

RIIC_STS_AL

RIIC_STS_TMO

Communicating

(master reception)

RIIC_COMMUNICATION

RIIC_COMMUNICATION

RIIC_MODE_
M_RECEIVE

RIIC_STS_ST_COND_WAIT

RIIC_STS_SEND_SLVADR_R_WAIT

RIIC_STS_RECEIVE_DATA WAIT

RIIC_STS_SP_COND_WAIT

RIIC_STS AL

RIIC_STS_TMO

Communicating
(master

transmit/receive)

RIIC_COMMUNICATION

RIIC_COMMUNICATION

RIIC_MODE_
M_SEND_RECEIVE

RIIC_STS_ST_COND_WAIT

RIIC_STS_SEND_SLVADR W_WAIT

RIIC_STS_SEND_SLVADR_R_WAIT

RIIC_STS_SEND_DATA WAIT

RIIC_STS_RECEIVE_DATA WAIT

RIIC_STS_SP_COND_WAIT

RIIC_STS AL

RIIC_STS_TMO

Communicating
(slave

transmission)

RIIC_COMMUNICATION

RIIC_COMMUNICATION

RIIC_MODE_S_SEND

RIIC_STS_SEND_DATA_ WAIT

RIIC_STS_SP_COND_WAIT

RIIC_STS_TMO

Communicating

(slave reception)

RIIC_COMMUNICATION

RIIC_COMMUNICATION

RIIC_MODE_S_RECEIVE

RIIC_STS_RECEIVE_DATA_WAIT

RIIC_STS_SP_COND_WAIT

RIIC_STS_TMO

Arbitration-lost

RIIC _AL RIIC _AL — —
detection state
Timeout detection

RIIC_TMO RIIC_TMO — —
state
Error state RIIC_ERROR RIIC_ERROR — —

RO1AN1692EJ0302 Rev.3.02

Oct.30.25

RENESAS

Page 67 of 101

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

6.2 Interrupt Request Generation Timing
This section describes the interrupt request generation timings in this module.

Legend:
ST: Start condition

ADG to ADQ: Slave address

/W: Transfer direction bit: 0 (Write)
R: Transfer direction bit: 1 (Read)
/ACK: Acknowledge: 0

NACK: Acknowledge: 1

D7 to DO: Data

RST: Restart condition

SP: Stop condition

6.2.1 Master Transmission

(1) Pattern 1

ST

ADG to
ADO

/ACK

D7 to DO

/ACK

D7 to DO

/ACK

SP

A1

A2

A 1: EEI (START) interrupt: Start condition detected

A3

A 2: TEl interrupt: Address transmission completed (transfer direction bit: write)

A 3: TEl interrupt: Data transmission completed (first data)

A 4: TEl interrupt: Data transmission completed (second data)

A 5: EEI (STOP) interrupt: Stop condition detected

(2) Pattern 2

ST

ADG to
ADO

/ACK

D7 to DO

/ACK

SP

A1

A2

A 1: EEI (START) interrupt: Start condition detected

A3

A4

A 2: TEl interrupt: Address transmission completed (transfer direction bit: write)

A 3: TEl interrupt: Data transmission completed (second data)

A 4: EE| (STOP) interrupt: Stop condition detected

A4

A5

RO1AN1692EJ0302 Rev.3.02
Oct.30.25

RENESAS

Page 68 of 101

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

(3) Pattern 3

ADG to
ST ADO W /ACK SP

A1 A2 A3

A 1: EEI (START) interrupt: Start condition detected
A 2: TEl interrupt: Address transmission completed (transfer direction bit: write)

A 3: EEI (STOP) interrupt: Stop condition detected

(4) Pattern 4
| sT | sp |
A1 A2

A 1: EE| (START) interrupt: Start condition detected
A 2: EEI (STOP) interrupt: Stop condition detected

Note:
1. Aninterrupt request is generated on the rising edge of the ninth clock.

6.2.2 Master Reception

ADG to

ST ADO R /ACK D7to DO | /ACK D7to DO | NACK SP

A1 A2 A3 A4 A5

A 1: EEI (START) interrupt: Start condition detected

A 2: RXI interrupt: Address transmission completed (transfer direction bit: read)
A 3: RXI interrupt: Reception for the last data - 1 completed (second data)

A 4: RXI interrupt: Reception for the last data completed (second data)

A 5: EEI (STOP) interrupt: Stop condition detected

RO1AN1692EJ0302 Rev.3.02 Page 69 of 101
Oct.30.25 RENESAS

RX Family

I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

6.2.3 Master Transmit/Receive

ST

ADG to
ADO

/ACK

D7 to DO

/ACK

RST

ADG to
ADO

A1

A2

A3

/ACK

D7 to
DO

IACK

D7 to
DO

NACK

SP

AS

AG

A7

A8

A4

A1
A2
A3:
A4
A5
A6:
AT
A38:

EEI (START) interrupt: Start condition detected

TEl interrupt: Address transmission completed (transfer direction bit: write)
TEl interrupt: Data transmission completed (first data)

EEI (START) interrupt: Restart condition detected

RXI interrupt: Address transmission completed (transfer direction bit: read)
RXI interrupt: Reception for the last data - 1 completed (second data)

RXI interrupt: Reception for the last data completed (second data)

EEI (STOP) interrupt: Stop condition detected

6.2.4 Slave Transmission

When transmitting 2-byte data:

ST R

ADG to

IACK D7 to DO /ACK D7 to DO

ADO

NACK

SP

A1 A3

A2

A 1: TXI interrupt: Received address matched (transfer direction bit: read)

A 2: TXI interrupt: Transmit buffer is empty

A 3: TXI interrupt: Transmit buffer is empty

A4
A5:

EEI (NACK) interrupt: NACK detected
EEI (STOP) interrupt: Stop condition detected

Ad

A5

RO1AN1692EJ0302 Rev.3.02

Oct.30.25

RENESAS

Page 70 of 101

RX Family

I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

When transmitting 3-byte data:

sT | A R /ACK |D7toD0O| /ACK |D7toDO| /ACK
A1 A3
D7 to A2
DO NACK SP
A4 A5 AG
A 1: TXI interrupt: Received address matched (transfer direction bit: read)
A 2: TXI interrupt: Transmit buffer is empty
A 3: TXI interrupt: Transmit buffer is empty
A 4: TXI interrupt: Transmit buffer is empty
A 5: EE| (NACK) interrupt: NACK detected
A 6: EEI (STOP) interrupt: Stop condition detected
6.2.5 Slave Reception
ST AESJO W /ACK D7 to DO /ACK D7 to DO /ACK SP
A1l A2 A3 A4
A 1: RXI interrupt: Received address matched (transfer direction bit: write)
A 2: RXI interrupt: Reception for the last data - 1 completed (second data)
A 3: RXI interrupt: Reception for the last data completed (second data)
A 4: EE| (STOP) interrupt: Stop condition detected
6.2.6 Multi-Master Communication
(Slave transmission after detecting AL during master transmission)
ADG6
ST to ADO R IACK D7 to DO /ACK D7 to DO NACK SP
A1l A4 AS A7 A8 A9
N2 AG
A3
A 1: EEI (START) interrupt: Start condition detected

A 2:
A 3:

A4
A5
A6:
AT
A38:
Ao

TXl interrupt: Start condition detected (no processing performed)

TXl interrupt: Transmit buffer is empty (no processing performed)

EEI (AL) interrupt: Arbitration-lost detected

TXI interrupt: Address reception matched (transfer direction bit: Read)
TXI interrupt: Transmit buffer is empty

TXI interrupt: Transmit buffer is empty

EEI (NACK) interrupt: NACK detected

EEI (STOP) interrupt: Stop condition detected

RO1AN1692EJ0302 Rev.3.02
Oct.30.25

Page 71 of 101
RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

6.3 Timeout Detection and Processing After the Detection

6.3.1 Detecting a Timeout with the Timeout Detection Function

When the timeout detection function is enabled by the setting in r_riic_config.h, call the R_RIIC_GetStatus()
function in the callback function.

The information of timeout detection can be verified with the TMO bit in the riic_mcu_status_t structure
specified as the second parameter in the R_RIIC_GetStatus() function.

- When the TMO bit is 1: Timeout detected
- When the TMO bit is 0: Timeout not detected

6.3.2 Processing After a Timeout is Detected

When a timeout is detected, the R_RIIC_Close() function needs to be called once to restart communication
calling the R_RIIC_Open() function in the initialization.

A timeout may be detected due to a bus hang up. In master mode, if the clock signals from the master and
slave devices go out of synchronization due to noise or other factors, the slave device may hold the SDA line
low (bus hang up). Then the stop condition cannot be issued and a timeout will be detected.

To recover from bus hang up state, the extra SCL clock cycle output function is used. Outputting one clock of
the extra SCL at a time can release the SDA line from being held low and the bus is recovered from hang up
state.

To output one clock of the extra SCL clock, set “RIIC_GEN_SCL_ONESHOT” (one-shot output of the SCL
clock) to the second parameter of the R_RIIC_Control() function and call the R_RIIC_Control() function.

The state of the SCL pin can be verified using the R_RIIC_GetStatus() function.
Repeat one-shot output of the SCL clock until the SCL clock becomes high.
Figure 6.5 shows the Timeout Detection and Processing After the Detection.

For details on the extra SCL clock cycle output function, refer to the Extra SCL Clock Cycle Output Function
section of the I12C Bus Interface (RIIC) chapter in the User’'s Manual: Hardware for the product used.

If the RX111 Group is used, refer to “27.11.2 Extra SCL Clock Cycle Output Function” in the RX111 Group
User’s Manual: Hardware.

RO1AN1692EJ0302 Rev.3.02 Page 72 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

Example of master transmission Example of user callback function for master mode
(only processing for timeout detection)

(User callback function for master mode)
-Processing for timeout detectont+ - - - - — — — — — — — — Bl
Declare the riic_return_t structure
variable "ret"
Declare the riic_info_t structure

variable "iic_info_m"

Declare the variable "iic_tout_check"

with initial value "0x00" for verifying
timeout occurrence

I

Declare the riic_mcu_status_t
structure variable "iic_status"

R_RIIC_GetStatus(&iic_info_m,
&iic_status)

No (iic_status.BIT.TMO == 0)

1 »

Has a timeout been detected?

: Checks the other errors.
Yes (iic_status.BIT.TMO == 1) |
|

Timeout occurred

[
|
|
|
|
|
|
|
|
|
|
|
|
|
: iic_tout_check =1

>)

F——————— = — = — — — — — —Processing when a timeout is detected - — —

@CL High?

Yes (iic_status.BIT.SCLI == 1)

Set RIIC_NO_INIT to iic_info_m.dev_sts

Set the channel number used to
iic_info_m.ch_no

N

o (iic_status.BIT.SCLI ==

Set the start address of the callback
function to iic_info_m.callbackfunc

>

Y
R_RIIC_GetStatus(&iic_info_m, &iic_status)

Is the SDA Low? No

Yes (iic_status.BIT.SDAI == 0)

Set the second data counter to
iic_info_m.cnt2nd

Set the first data counter to
iic_info_m.cnt1st

(iic_status.BIT.SDAI == 1)

Set the buffer pointer for the second data
storage to iic_info_m.p_data2nd
I
Set the buffer pointer for the first data
storage to iic_info_m.p_data1st

Output one clock of the SCL
R_RIIC_Control(&iic_info_m, RIIC_GEN_SCL_ONESHOT)

Y
Set the buffer pointer for the slave address No 10 cIocksHo?vniore been End
to iic_info_m.p_slv_adr output?
[
R_RIIC_Open(&iic_info_m)
ret = R_RIIC_MasterSend(&iic_info_m)
| I— __________________________________ =)
>
s Yes (iic_info_m.dev_sts == RIIC_FINISH)
the communication been otes:
completed? 1. When a timeout occurs while the SCL is held low, a
No (iic_info_m.dev_sts = RIIC_FINISH) system error may oceur.
2. When the SDA line is not released after 10 or more
e - Processing for timeout - clocks are output while the SDA is held low by the slave
: | device, a system error may occur.
| '
| |No I
| | iic_tout_check == 0) - |
| Yes (iic_tout_check ==1) |
|
|
| I A4
|
: R_RIIC_Close(&iic_info_m) | | |R_RIIC_Close(&iic_info_m)
I I
| | |
Lo End
Figure 6.5 Timeout Detection and Processing After the Detection

RO1AN1692EJ0302 Rev.3.02 Page 73 of 101

Oct.30.25 RENESAS

RX Family

I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

6.4 Operating Test Environment
This section describes for detailed the operating test environments of this module.

Table 6.6 Operation Test Environment for Rev.1.60 and Rev.1.70.

Item

Contents

Integrated development
environment

Renesas Electronics
e? studio V3.1.0.024

C compiler

Renesas Electronics
C/C++ compiler for RX Family V.2.01.01

Compiler options: The integrated development environment default settings
are used, with the following option added.
-lang = c99

Endian order

Big-endian/Little-endian

Module version

Rev.1.60 and Rev.1.70

Board used

Renesas Starter Kit for RX111 (product number. ROK505111SxxxBE)
Renesas Starter Kit for RX231 (product number. ROK505231SxxxBE)
Renesas Starter Kit+ for RX64M (product number. ROK50564MSxxxBE)
Renesas Starter Kit+ for RX71M (product number. ROK50571MSxxxBE)

Table 6.7 Operation Test Environment for Rev.1.80.

Item

Contents

Integrated development
environment

Renesas Electronics
e? studio V4.0.2.008

C compiler

Renesas Electronics
C/C++ compiler for RX Family V.2.03.00

Compiler options: The integrated development environment default settings
are used, with the following option added.

-lang = c99
Endian order Big-endian/Little-endian
Module version Rev.1.80

Board used

Renesas Starter Kit for RX130 (product number. RTK5005130SxxxxxBE)
Renesas Starter Kit for RX23T (product number. RTK500523TSxxxxxBE)

RO1AN1692EJ0302 Rev.3.02
Oct.30.25

Page 74 of 101

RENESAS

RX Family

I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

Table 6.8 Operation Confirmation Environment for Rev.1.90.

Item

Contents

Integrated development
environment

Renesas Electronics
e? studio V4.1.0.018

C compiler

Renesas Electronics
C/C++ compiler for RX Family V.2.03.00

Compiler options: The integrated development environment default settings
are used, with the following option added.

-lang = c99
Endian order Big-endian/Little-endian
Module version Rev.1.90

Board used

Renesas Starter Kit for RX111 (product number. ROK505111SxxxBE)
Renesas Starter Kit for RX113 (product number. ROK505113SxxxBE)
Renesas Starter Kit for RX130 (product number. RTK5005130SxxxxxBE)
Renesas Starter Kit for RX231 (product number. ROK505231SxxxBE)
Renesas Starter Kit for RX23T (product number. RTK500523TSxxxxxBE)
Renesas Starter Kit for RX24T (product number. RTK500524 T SxxxxxBE)
Renesas Starter Kit+ for RX64M (product number. ROK50564MSxxxBE)
Renesas Starter Kit+ for RX71M (product number. ROK50571MSxxxBE)

Table 6.9 Operation Confirmation Environment for Rev.2.00.

Item

Contents

Integrated deveropment
environment

Renesas Electronics
e? studio VV5.0.1.005

C compiler

Renesas Electronics
C/C++ compiler for RX Family V.2.05.00

Compiler options: The integrated development environment default settings
are used, with the following option added.

-lang = c99
Endian order Big-endian/Little-endian
Module version Rev.2.00

Board used

Renesas Starter Kit for RX231 (product number. ROK505231SxxxBE)
Renesas Starter Kit+ for RX65N (product number. RTK500565NSxxxxxBE)

Table 6.10 Operation Confirmation Environment for Rev.2.10.

Item

Contents

Integrated deveropment
environment

Renesas Electronics
e? studio V5.3.0.023

C compiler

Renesas Electronics
C/C++ compiler for RX Family V.2.06.00

Compiler options: The integrated development environment default settings
are used, with the following option added.

-lang = c99
Endian order Big-endian/Little-endian
Module version Rev.2.10

Board used

Renesas Starter Kit for RX24T (product number. RTK500524TSxxxxxBE)
Renesas Starter Kit for RX24U (product number. RTK500524USxxxxxBE)

RO1AN1692EJ0302 Rev.3.02

Oct.30.25

Page 75 of 101
RENESAS

RX Family

I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

Table 6.11 Operation Confirmation Environment for Rev.2.20.

Item

Contents

Integrated deveropment
environment

Renesas Electronics
e2 studio V6.0.0.001

C compiler

Renesas Electronics
C/C++ compiler for RX Family V.2.06.00
C/C++ compiler for RX Family V.2.07.00

Compiler options: The integrated development environment default settings
are used, with the following option added.

-lang = c99
Endian order Big-endian/Little-endian
Module version Rev.2.20

Board used

Renesas Starter Kit for RX130-512KB
(product number. RTK5051308SxxxxxBE)
Renesas Starter Kit+ for RX65N-2MB
(product number. RTK50565N2SxxxxxBE)

Table 6.12 Operation Confirmation Environment for Rev.2.30.

Item

Contents

Integrated deveropment
environment

Renesas Electronics
e? studio V7.0.0

C compiler

Renesas Electronics
C/C++ compiler for RX Family V.3.00.00

Compiler options: The integrated development environment default settings
are used, with the following option added.

-lang = c99
Endian order Big-endian/Little-endian
Module version Rev.2.30

Board used

Renesas Starter Kit for RX66T
(product number. RTK50566 TOSxxxxxBE)

Table 6.13 Operation Confirmation Environment for Rev.2.31.

Item

Contents

Integrated deveropment
environment

Renesas Electronics
e? studio V7.1.0

C compiler

Renesas Electronics
C/C++ compiler for RX Family V.3.00.00

Compiler options: The integrated development environment default settings
are used, with the following option added.

-lang = c99
Endian order Big-endian/Little-endian
Module version Rev.2.31

RO1AN1692EJ0302 Rev.3.02
Oct.30.25

Page 76 of 101

RENESAS

RX Family

I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

Table 6.14 Operation Confirmation Environment for Rev.2.40.

Item

Contents

Integrated deveropment
environment

Renesas Electronics
e? studio V7.3.0

C compiler

Renesas Electronics
C/C++ compiler for RX Family V.3.01.00

Compiler options: The integrated development environment default settings
are used, with the following option added.

-lang = c99
Endian order Big-endian/Little-endian
Module version Rev.2.40

Board used

Renesas Starter Kit for RX72T
(product number. RTK557 2 TXXXXXXXXXX)

Table 6.15 Operation Confirmation Environment for Rev.2.41.

Item

Contents

Integrated deveropment
environment

Renesas Electronics e? studio V7.3.0
IAR Embedded Workbench for Renesas RX 4.10.01

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 4.08.04.201803

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99

IAR C/C++ Compiler for Renesas RX version 4.10.01
Compiler option: The default settings of the integrated development
environment.

Endian order

Big-endian/Little-endian

Module version

Rev.2.41

Board used

Renesas Starter Kit+ for RX65N
(product number. RTK500565NxxxxxXx)

Table 6.16 Operation Confirmation Environment for Rev.2.42.

Item

Contents

Integrated deveropment
environment

Renesas Electronics
e? studio V7.2.0

C compiler

Renesas Electronics
C/C++ compiler for RX Family V.3.01.00

Compiler options: The integrated development environment default settings
are used, with the following option added.

-lang = c99
Endian order Big-endian/Little-endian
Module version Rev.2.42

Board used

Renesas Solution Starter Kit for RX23W
(product No.: RTK5523WXXXXXXXXXX)

RO1AN1692EJ0302 Rev.3.02
Oct.30.25

Page 77 of 101

RENESAS

RX Family

I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

Table 6.17 Operation Confirmation Environment for Rev.2.43.

Item

Contents

Integrated deveropment
environment

Renesas Electronics e? studio V7.4.0
IAR Embedded Workbench for Renesas 4.12.01

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 4.08.04.201902

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99

IAR C/C++ Compiler for Renesas RX version 4.12.01
Compiler option: The default settings of the integrated development
environment.

Endian order

Big-endian/Little-endian

Module version

Rev.2.43

Board used

Renesas Starter Kit+ for RX72M
(product No.: RTK557 2MXXXXXXXXXX)

Table 6.18 Operation Confirmation Environment for Rev.2.44.

Item

Contents

Integrated deveropment
environment

Renesas Electronics e? studio V7.3.0
IAR Embedded Workbench for Renesas 4.12.01

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 4.08.04.201902

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99

IAR C/C++ Compiler for Renesas RX version 4.12.01
Compiler option: The default settings of the integrated development
environment.

Endian order

Big-endian/Little-endian

Module version

Rev.2.44

Board used

RX13T CPU Card (product No.: RTKOEMXA10C00000BJ)

RO1AN1692EJ0302 Rev.3.02

Oct.30.25

Page 78 of 101
RENESAS

RX Family

I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

Table 6.19 Operation Confirmation Environment for Rev.2.45.

Item

Contents

Integrated deveropment
environment

Renesas Electronics e? studio 7.4.0
IAR Embedded Workbench for Renesas 4.12.01

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 4.08.04.201902

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99

IAR C/C++ Compiler for Renesas RX version 4.12.01
Compiler option: The default settings of the integrated development
environment.

Endian order

Big-endian/Little-endian

Module version

Rev.2.45

Board used

Renesas Starter Kit+ for RX72N
(product No.: RTK557 2NXXXXXXXXXX)

Table 6.20 Operation Confirmation Environment for Rev.2.46.

Item

Contents

Integrated deveropment
environment

Renesas Electronics e2 studio 7.7.0
IAR Embedded Workbench for Renesas 4.13.01

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.03.00.201904

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99

IAR C/C++ Compiler for Renesas RX version 4.13.01
Compiler option: The default settings of the integrated development
environment.

Endian order

Big-endian/Little-endian

Module version

Rev.2.46

Board used

Renesas Solution Starter Kit for RX23E-A
(product No.: RTKOESXB10C00001BJ)

RO1AN1692EJ0302 Rev.3.02
Oct.30.25

Page 79 of 101

RENESAS

RX Family

I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

Table 6.21 Operation Confirmation Environment for Rev.2.47.

Item

Contents

Integrated deveropment
environment

Renesas Electronics e? studio 2020-10 (20.10.0)

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99
Endian order Big-endian/Little-endian
Module version Rev.2.47

Board used

Renesas Starter Kit for RX231 (product number.: ROK505231SxxxBE)
Renesas Starter Kit+ for RX64M (product number. ROK50564MSxxxBE)

Table 6.22 Operation Confirmation Environment for Rev.2.48.

Item

Contents

Integrated deveropment
environment

Renesas Electronics e? studio 2020-10 (20.10.0)
IAR Embedded Workbench for Renesas 4.14.01

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.03.00.202002

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99

IAR C/C++ Compiler for Renesas RX version 4.14.01
Compiler option: The default settings of the integrated development
environment.

Endian order

Big-endian/Little-endian

Module version

Rev.2.48

Board used

Renesas Starter Kit+ for RX671 (product number. RTK5567 1XXXXXXXXXX)

Table 6.23 Operation Confirmation Environment for Rev.2.49.

Item

Contents

Integrated deveropment
environment

Renesas Electronics e? studio 2021-07 (21.7.0)
IAR Embedded Workbench for Renesas 4.20.01

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.03.00.202102

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99

IAR C/C++ Compiler for Renesas RX version 4.20.01

Compiler option: The default settings of the integrated development environment.

Endian order

Big-endian/Little-endian

Module version

Rev.2.49

Board used

Target board for RX140 (product No.: RTK5RX140XXXXXXXXX)

RO1AN1692EJ0302 Rev.3.02

Oct.30.25

RENESAS

Page 80 of 101

RX Family 1?°C Bus Interface (RIIC) Module Using Firmware Integration Technology

Table 6.24 Operation Confirmation Environment for Rev.2.50.

Item Contents
Integrated deveropment | Renesas Electronics e? studio 2022-04 (22.4.0)
environment IAR Embedded Workbench for Renesas 4.20.03
C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.04.00

Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.03.00.202104

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99

Linker option: The following user defined option should be added to the default
settings of the integrated development environment, if “Optimize size (-Os)” is
used:

-WI,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously discard
interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.03
Compiler option: The default settings of the integrated development environment.

Endian order Big-endian/Little-endian
Module version Rev.2.50
Board used Renesas Starter Kit for RX660 (product number. RTK556609HC10000BJ)

Table 6.25 Operation Confirmation Environment for Rev.2.60.

Item Contents
Integrated deveropment | Renesas Electronics e? studio 2022-10 (22.10.0)
environment IAR Embedded Workbench for Renesas 4.20.03
C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.04.00

Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.03.00.202204

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99

Linker option: The following user defined option should be added to the default
settings of the integrated development environment, if “Optimize size (-Os)” is
used:

-WI,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously discard
interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.03
Compiler option: The default settings of the integrated development environment.

Endian order Big-endian/Little-endian
Module version Rev.2.60
RO1AN1692EJ0302 Rev.3.02 Page 81 of 101

Oct.30.25 RENESAS

RX Family

I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

Table 6.26 Operation Confirmation Environment for Rev.2.70.

Item

Contents

Integrated deveropment
environment

Renesas Electronics e? studio 2022-10 (22.10.0)
IAR Embedded Workbench for Renesas 4.20.03

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.03.00.202204

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99

Linker option: The following user defined option should be added to the default
settings of the integrated development environment, if “Optimize size (-Os)” is
used:

-WI,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously discard
interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.03
Compiler option: The default settings of the integrated development environment.

Endian order

Big-endian/Little-endian

Module version Rev.2.70
Board used Renesas Flexible Motor Control Kit for RX26T (Part Number:
RTKOEMXE70S00020BJ)

Renesas Starter Kit for RX231 (product No.: ROK505231SxxxBE)
Renesas Starter Kit+ for RX64M (product No.: ROK50564MSxxxBE)
Renesas Starter Kit+ for RX671 (product No.: RTK5567 1XXXXXXXXXX)
Renesas Starter Kit+ for RX72N (product No.: RTK5572NXXXXXXXXXX)

Table 6.27 Operation Confirmation Environment for Rev.2.80.

Item

Contents

Integrated deveropment
environment

Renesas Electronics e? studio 2023-04 (23.04.0)
IAR Embedded Workbench for Renesas 4.20.03

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.03.00.202204

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99

Linker option: The following user defined option should be added to the default
settings of the integrated development environment, if “Optimize size (-Os)” is
used:

-WI,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously discard
interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.03
Compiler option: The default settings of the integrated development environment.

Endian order

Big-endian/Little-endian

Module version

Rev.2.80

Board used

Renesas Solution Starter Kit for RX23E-B (product No.: RTKOES1001C00001BJ)

RO1AN1692EJ0302 Rev.3.02

Oct.30.25

Page 82 of 101
RENESAS

RX Family

I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

Table 6.28 Operation Confirmation Environment for Rev.2.90.

Item

Contents

Integrated deveropment
environment

Renesas Electronics e? studio 2023-07 (23.07.0)
IAR Embedded Workbench for Renesas 4.20.03

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.03.00.202305

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99

Linker option: The following user defined option should be added to the default
settings of the integrated development environment, if “Optimize size (-Os)” is
used:

-WI,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously discard
interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.03
Compiler option: The default settings of the integrated development environment.

Endian order

Big-endian/Little-endian

Module version Rev.2.90
Board used Renesas Flexible Motor Control Kit for RX26T (product No.:
RTKOEMXE70S00020BJ)

Renesas Solution Starter Kit for RX23E-B (product No.: RTKOES1001C00001BJ)

Table 6.29 Operation Confirmation Environment for Rev.2.91.

Item

Contents

Integrated deveropment
environment

Renesas Electronics e? studio 2024-07 (24.07.0)
IAR Embedded Workbench for Renesas 5.10.01

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.06.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.03.00.202405

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99

Linker option: The following user defined option should be added to the default
settings of the integrated development environment, if “Optimize size (-Os)” is
used:

-WI,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously discard
interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 5.10.01
Compiler option: The default settings of the integrated development environment.

Endian order

Big-endian/Little-endian

Module version

Rev.2.91

Board used

Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2CxxxxxBE)
Custom board (Target device: R5F5651EHXLC)

RO1AN1692EJ0302 Rev.3.02

Oct.30.25

Page 83 of 101
RENESAS

RX Family

I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

Table 6.30 Operation Confirmation Environment for Rev.3.00.

Item

Contents

Integrated deveropment
environment

Renesas Electronics e? studio 2024-07 (24.07.0)
IAR Embedded Workbench for Renesas 5.10.01

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.06.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.03.00.202405

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99

Linker option: The following user defined option should be added to the default
settings of the integrated development environment, if “Optimize size (-Os)” is
used:

-WI,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously discard
interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 5.10.01
Compiler option: The default settings of the integrated development environment.

Endian order

Big-endian/Little-endian

Module version

Rev.3.00

Board used

Evaluation Kit for RX261 (product No.: RTKSEK2610S00011BJ)

Table 6.31 Operation Confirmation Environment for Rev.3.01.

Item

Contents

Integrated deveropment
environment

Renesas Electronics e? studio 2025-01 (25.01.0)
IAR Embedded Workbench for Renesas 5.10.01

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.03.00.202411

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99

Linker option: The following user defined option should be added to the default
settings of the integrated development environment, if “Optimize size (-Os)” is
used:

-WI,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously discard
interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 5.10.01
Compiler option: The default settings of the integrated development environment.

Endian order

Big-endian/Little-endian

Module version

Rev.3.01

Board used

RO1AN1692EJ0302 Rev.3.02

Oct.30.25

Page 84 of 101
RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

Table 6.32 Operation Confirmation Environment for Rev.3.02.

Item Contents
Integrated deveropment | Renesas Electronics e? studio 2025-01
environment IAR Embedded Workbench for Renesas 5.10.01
C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.07.00

Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.03.00.202411

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99

Linker option: The following user defined option should be added to the default
settings of the integrated development environment, if “Optimize size (-Os)” is
used:

-WI,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously discard
interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 5.10.01
Compiler option: The default settings of the integrated development environment.

Endian order Big-endian/Little-endian

Module version Rev.3.02

Board used -

RO1AN1692EJ0302 Rev.3.02 Page 85 of 101

Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

6.5 Troubleshooting

(1) Q: I have added the FIT module to the project and built it. Then | got the error: Could not open source file
“platform.h”.

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules
is correct with the following documents:

® When using CS+:

Application note “Adding Firmware Integration Technology Modules to CS+ Projects (R0O1AN1826)"
® \When using e? studio:

Application note “Adding Firmware Integration Technology Modules to Projects (RO1AN1723)”

When using a FIT module, the board support package FIT module (BSP module) must also be added to
the project. For this, refer to the application note “Board Support Package Module Using Firmware
Integration Technology (RO1AN1685)”.

(2) Q: I have added the FIT module to the project and built it. Then | got the error: This MCU is not supported
by the current r_riic_rx module.

A: The FIT module you added may not support the target device chosen in the user project. Check if the
FIT module supports the target device for the project used.

(3) Q: I have added the FIT module to the project and built it. Then | got an error for when the configuration
setting is wrong.

A: The setting in the file “r_riic_rx_config.h” may be wrong. Check the file “r_riic_rx_config.h”. If there is a
wrong setting, set the correct value for that. Refer to 2.7 Configuration Overview for details.

RO1AN1692EJ0302 Rev.3.02 Page 86 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

6.6 Sample Code

6.6.1 Example when Accessing One Slave Device Continuously with One Channel
This section describes an example of using one RIIC channel to continuously access to one slave device.

The procedure is as follows:

Execute the R_RIIC_Open function to use RIIC channel 0 in the RIIC FIT module.
Execute the R_RIIC_MasterSend function to write 16-byte data to EEPROM.
Performs Acknowledge Polling to wait for EEPROM write completion.

Execute the R_RIIC_MasterReceive function to write 16-byte data from EEPROM.

Compare write data with read data.

o g bk w N~

Execute the R_RIIC_Close function to release RIIC channel 0 from the RIIC FIT module.

This sample code is checked to operate with Renesas starter kit of target device. Please note that the
address of the slave device depends on the EEPROM used.

#include <stddef.h>
#include "platform.h"
#include "r_riic rx if.h"

/* EEPROM device code (fixed) */

#define EEPROM DEVICE CODE (0xAQ0)

/* Device address code (under 4 bit is A2 (Vss=0), Al (Vcc=l), A0 (Vcc=1l), and RW code)
for hardware connection with EEPROM on RSK of the supported target device.
Please change the following settings as necessary. */

#define EEPROM_DEVICE ADDRESS CODE (0x06)

/* E2PROM device address */

#define EEPROM_DEVICE ADDRESS ((EEPROMiDEVICEicoDE | EEPROM_DEVICE ADDRESS CODE) >> 1)
/* variables */

static volatile riic_return_ t ret; /* Return value */

static riic info t iic info m; /* Structure data */

static uint8 t addr_eeprom[1l] = { EEPROM DEVICE ADDRESS };
static uint8 t access_addrl[1l] = { 0x00 };

* /

()

/* This data is sent to the EEPROM when target device is the master devic
static uint8 t master send data[l6] =

{ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0Ox8e,
0x8f };

/* This buffer stores data received from the slave device. */

static uint8 t master store areall6] =

{ OxFF, OxFF, OxFF, OxFF, OxFF, OxFF, OxFF, OxFF, OxFF, OxFF, OxFF, OxFF, OxFF, OxFF, OxFF,
OxXFF };

/* private functions */

static void callback master (void);
static void eeprom write (void);

static void acknowledge polling (void);
static void eeprom read (void);

Figure 6.6 Example when Accessing One Slave Device Continuously with One Channel (1/5)

RO1AN1692EJ0302 Rev.3.02 Page 87 of 101
Oct.30.25 RENESAS

RX Family 1?°C Bus Interface (RIIC) Module Using Firmware Integration Technology

* Function Name: main
* Description : The main loop
* Arguments : none
* Return Value : none

void main (void)
{
uint8 t i = 0;

/* Initialize */
for (1 = 0; 1 < 16; i++)
{
master store area[i] = OxFF;

}

/* Set arguments for R_RIIC Open. */
iic info m.ch no = 0; /* Channel number */
iic_info m.dev_sts = RIIC NO INIT; /* Device state flag (to be updated) */

ret = R RIIC Open(&iic info m);
if (RIIC_SUCCESS != ret)
{
/* This software is for single master.
Therefore, return value should be always 'RIIC SUCCESS'. */
while (1)
{
R BSP NOP(); /* error */
}
}

/* EEPROM Write (Master transfer) */
eeprom write();

/* Acknowledge polling (Master transfer) */
acknowledge polling();

/* EEPROM Read (Master transfer and Master receive) */
eeprom_read() ;

/* Compare */
for (i = 0; 1 < 16; i++)
{
if (master store area[i] != master send data[i])
{
/* Detected mismatch. */
LED3 = LED ON;
}
else
{
LEDO = LED_ON;
}
}

ret = R RIIC Close(&iic_info m);
if (RIIC_SUCCESS != ret)
{
/* This software is for single master.
Therefore, return value should be always 'RIIC SUCCESS'. */
while (1)
{
R _BSP NOP() ; /* error */
}
}

while (1)
{

/* do nothing */
}

} /* End of function main() */

VAR AR AR EEEEE RSt E R e R e Rt R R R R

Kok k ok ok ok ok kA kKKK KKk k ok ko hh kA A A KKKk h ok ok ok ki ok ok ok h kA A A KA Ak k ok ok ok ok ko hkhk kA XA KAk kkk ok ok ok khkhh kA Ak Ak Kk kkkkkkkkk /

Figure 6.7 Example when Accessing One Slave Device Continuously with One Channel (2/5)

RO1AN1692EJ0302 Rev.3.02 Page 88 of 101

Oct.30.25 RENESAS

RX Family 1?°C Bus Interface (RIIC) Module Using Firmware Integration Technology

VAR AR AR EEEEE RSt E R e R e Rt R R R R

* Function Name: callback master

* Description : This function is sample of Master Mode callback function.
* Arguments : none
* Return Value : none

ke K K K K K K K K K K K Kk o ok ok ok K K R R K K K Kk o o ok ok ok ok ok R R K K K Kk ke ok ok ok ok ok R R R K K Kk ko ko ok ok kR R R R K Kk ok ke kR ok ok ok /

static void callback master (void)
{

riic_mcu_status_t iic_status;

ret = R RIIC GetStatus(&iic info m, &iic status);
if (RIIC_SUCCESS != ret)
{
/* This software is for single master.
Therefore, return value should be always 'RIIC SUCCESS'. */
while (1)
{
R _BSP NOP () ; /* error */

}

else

{
/* Processing when a timeout, arbitration-lost, NACK,
or others is detected by verifying the iic status flag. */

}
} /* End of function callback master() */

/**

* Function Name: eeprom write

* Description : This function is sample of EEPROM write function using R RIIC MasterSend.
* Arguments : none
* Return Value : none

~k***********************/

static void eeprom write (void)
{

/* Set arguments for R RIIC MasterSend. */

iic_info m.p slv_adr = addr_eeprom; /* Pointer to the slave address storage buffer */
iic_info m.p datalst = access_addrl; /* Pointer to the first data storage buffer */

iic_info m.cntlst = 1; /* First data counter (number of bytes) (to be updated) */
iic info m.p data2nd = master send data; /* Pointer to the second data storage buffer */
iic info m.cnt2nd = 16; /* Second data counter (number of bytes) (to be updated) */
iic_info _m.callbackfunc = &callback master; /* Callback function */

/* Master send start */
ret = R RIIC MasterSend(&iic _info m);
if (RIIC_SUCCESS == ret)
{
/* Waitting for R_RIIC MasterSend completed. */
while (RIIC COMMUNICATION == iic info m.dev_sts)
{
/* do nothing */
}

if (RIIC_NACK == iic_info _m.dev_sts)
{
/* Slave returns NACK. The slave address may not correct.
Please check the macro definition value or hardware connection etc. */
while (1)
{
R _BSP NOP() ; /* error */

/* This software is for single master.
Therefore, return value should be always 'RIIC SUCCESS'. */
while (1)
{
R _BSP NOP(); /* error */

Figure 6.8 Example when Accessing One Slave Device Continuously with One Channel (3/5)

RO1AN1692EJ0302 Rev.3.02 Page 89 of 101
Oct.30.25 RENESAS

RX

Family I12C Bus Interface (RIIC) Module Using Firmware Integration Technology

}

}

/* End of function eeprom write() */

[F Ak k k ok ok ok ok kKK K K Kk ks k ok ok ok ok kA KK K K Kk ks sk sk ok ok ok ok ok kK KK K K Kk ko ok ok ok ok ok ok ok kK K K K Kk ks k ok ok ok ok ok ok kK K K K Kk ko k ok ok ok ok

*
*
*
*
*

Function Name: acknowledge polling

Description : This function is sample of Acknowledge Polling using R RIIC MasterSend with
master send pattern 3.

Arguments : none

Return Value : none

LR R R R E R e R R

st
{

*/

*/

}

(number of bytes) */

(number of bytes) */

atic void acknowledge polling (void)
do
{
/* Set arguments for R_RIIC MasterSend. */
iic info m.p_slv_adr = addr_eeprom; /* Pointer to the slave address storage buffer */
iic_info m.p datalst = (uint8 t*) FIT NO PTR; /* Pointer to the first data storage buffer
iic info m.cntlst = 0; /* First data counter
iic info m.p data2nd = (uint8 t*) FIT NO PTR; /* Pointer to the second data storage buffer
iic info m.cnt2nd = 0; /* Second data counter
iic info m.callbackfunc = &callback master; /* Callback function */
/* Master send start. */
ret = R RIIC MasterSend(&iic info m);
if (RIIC_SUCCESS == ret)
{
/* Waitting for R RIIC MasterSend completed. */
while (RIIC COMMUNICATION == iic info m.dev_sts)
{
/* do nothing */
}
/* Slave returns NACK. Set retry interval. */
if (RIIC NACK == iic_info m.dev_sts)
{
/* Waitting for retry interval 100us. */
R _BSP SoftwareDelay (100, BSP_DELAY MICROSECS) ;
}
}
else
{
/* This software is for single master.
Therefore, return value should be always 'RIIC SUCCESS'. */
while (1)
{
R_BSP NOP () ; /* error */
}
}
} while (RIIC _FINISH != iic info m.dev_sts);

/* End of function acknowledge polling() */

Figure 6.9 Example when Accessing One Slave Device Continuously with One Channel (4/5)

RO1
Oct.

AN1692EJ0302 Rev.3.02
30.25 RENESAS

Page 90 of 101

RX Family 1?°C Bus Interface (RIIC) Module Using Firmware Integration Technology

*
*
*

*

{

}

VAR AR AR EEEEE RSt E R e R e Rt R R R R

Function Name: eeprom read

Description : This function is sample of EEPROM read function using R RIIC MasterReceive.
Arguments : none
Return Value : none

Kok k ok ok ok ok kA kKKK KKk k ok ko hh kA A A KKKk h ok ok ok ki ok ok ok h kA A A KA Ak k ok ok ok ok ko hkhk kA XA KAk kkk ok ok ok khkhh kA Ak Ak Kk kkkkkkkkk /

static void eeprom_read (void)

/* Set arguments for R RIIC MasterReceive. */

iic info m.p_slv_adr = addr_ eeprom; /* Pointer to the slave address storage buffer */
iic info m.p _datalst = access_addrl; /* Pointer to the first data storage buffer */
iic_info m.cntlst = 1; /* First data counter (number of bytes) (to be updated) */
iic_info m.p data2nd = master store area; /* Pointer to the second data storage buffer */
iic_info m.cnt2nd = 16; /* Second data counter (number of bytes) (to be updated) */
iic_info _m.callbackfunc = &callback master; /* Callback function */

/* Master send receive start. */

ret = R RIIC MasterReceive(&iic_info m);

if (RIIC_SUCCESS == ret)

{
/* Waitting for R_RIIC MasterSend completed. */
while (RIIC COMMUNICATION == iic info m.dev_sts)
{
/* do nothing */
}

if (RIIC_NACK == iic_info _m.dev_sts)
{
/* Slave returns NACK. The slave address may not correct.
Please check the macro definition value or hardware connection etc. */
while (1)
{
R _BSP NOP(); /* error */

}
else
{
/* This software is for single master.
Therefore, return value should be always 'RIIC SUCCESS'. */

while (1)
{
R BSP NOP(); /* error */
}
}
/* End of function eeprom read() */

Figure 6.10 Example when Accessing One Slave Device Continuously with One Channel (5/5)

RO1AN1692EJ0302 Rev.3.02 Page 91 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

7. Reference Documents

User’s Manual: Hardware
The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

User’s Manual: Development Tools
RX Family Compiler CC-RX User's Manual (R20UT3248)
The latest versions can be downloaded from the Renesas Electronics website.

RO1AN1692EJ0302 Rev.3.02 Page 92 of 101
Oct.30.25 RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology

Related Technical Updates

This module reflects the content of the following technical updates.
¢ TN-RX*-A012A/E

RO1AN1692EJ0302 Rev.3.02 Page 93 of 101
Oct.30.25 RENESAS

RX Family

I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

Revision History

Rev.

Date

Description

Page

Summary

1.00

Aug. 1, 2013

First edition issued

1.10

Sep. 30, 2013

Modified return values.

1.20

Nov. 15, 2013

4

Limitations: Changed the interrupt size to 120 bytes in (6).

5

Table 1.2 Required Memory Size:

- Changed the Size for the ROM to 7340 bytes.

- Changed the Size for the Maximum interrupt stack usage to
120 bytes.

47

Figure 4.2 State Transition on Master Transmission
(R_RIIC_MasterSend() Called):

- Added an arrow to indicate EV7 from STS8 to STS2.

- Modified the comment on the arrow from STS8 to STS1.

48

Figure 4.3 State Transition on Master Reception
(R_RIIC_MasterReceive() Called):

- Added an arrow to indicate EV7 from STS8 to STS2.

- Modified the comment on the arrow from STS8 to STSH1.

1.30

Apr. 1, 2014

Added support for the RX100 Series.

1.40

Oct. 1, 2014

Target Device: Changed from the RX100 Series to the RX111,
RX110 and RX64M Groups.

Related Documents: Added.

1. Overview:
- Features supported by this module: Added the description
regarding channel 0 of RX64M in the third item.
- Limitations:
- Added the DMAC to (1) as the module not supported with this
module.
- Deleted (2), (5) and (6) in rev.1.30.
- Added (5) to (7).

Table 1.2 Required Memory Size: Changed the memory sizes.

18

Figure 1.14 RIIC FIT Module State Transition Diagram: Added
“‘RIIC_TMOQ” in the Error state.

19

Table 1.2 Device State Flags when Transitioning States: Added
“Timeout detection state”.

20

1.3.8 Timeout Detection Function: Added.

21

2.2 Software Requirements: Deleted “r_cgc_rx”.

22 to 26

2.6 Configuration Overview:

- Added parameters for CH2.

- Changed the explanation of the following parameters:
RIC_CFG_CHO_kBPS, RIIC_CFG_CHO0_SCLO,
RIC_CFG_CHO_SDAO

- Deleted the parameter “RIIC_CFG_PCLK _Hz".

- Deleted the parameter “RIIC_CFG_CHO_INT_PRIORITY” and
added separated parameters for RXI, TXI, EEI, and TEI (e.g.
RIC_CFG_CHO_RXI_INT_PRIORITY).

- Added parameters regarding timeout detection.

- Added note 1.

27

2.7 Parameters: Added the description regarding the limitation
of rewriting the structure.

2.8 Return Values: Added “RIIC_ERR_TMO”.

29

3.1 R_RIIC_Open(): Added the limitation of rewriting the
structure to the explanation in the Parameters.

RO1AN1692EJ0302 Rev.3.02

Oct.30.25

Page 94 of 101
RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology
Description
Rev. Date Page Summary
1.40 Oct. 1, 2014 31to0 39 3.2 R_RIIC_MasterSend(),3.3 R_RIIC_MasterReceive(), and
3.4 R_RIIC_SlaveTransfer():
- Parameters: Added the limitation of rewriting the structure to
the explanation.
- Return Values: Added “RIIC_ERR_TMO”.
- Example: Changed the code in the CallbackMaster function.
- Special Notes (3.4 only): Changed description in the Notes.
40, 41 3.5 R_RIIC_GetStatus():
- Changed the structure members of “riic_mcu_status_t".
- Changed the flag allocation table in the Special Notes.
42 3.6 R_RIIC_Control():
- Parameters: Added the limitation of rewriting the structure to
the explanation.
- Special Notes: Added “One-shot output of the SCL clock”.
44 3.7 R_RIIC_Close(): Added the limitation of rewriting the
structure to the explanation in the Parameters.
47 to 60 4. Appendices:
Changed symbols for interrupt names “ICEEI”, “ICTEI", “ICRXI”
and “ICTXI” to “EEI”, “TEI”, “RXI” and “TXI”, respectively.
47 Table 4.1 States Used for Protocol Control:
Added state STS10 “RIIC_STS_TMO”.
Table 4.2 Events Used for Protocol Control:
- Added EV10 “RIIC_EV_INT_TMO”.
49, 50 Figure 4.2 State Transition on Master Transmission and Figure
4.3 State Transition on Master Reception:
- Added descriptions regarding state STS10 (RIIC_STS_TMO).
- Deleted the arrow from STS8 to STS9.
51 Figure 4.4 State Transition on Slave Transmission and
Reception:
Deleted descriptions regarding STS9 (RIIC_STS_AL).
52 Table 4.3 Protocol State Transition Table:
- Added the column for EV10 and the row for STS10.
- Changed “FuncA” to “Func10”.
53 Table 4.4 Functions Used on Protocol State Transition:
- Changed “FuncA” to “Func10”.
- Added the row for Func11 “riic_time_out()”.
54 Table 4.5 States of Flags on State Transitions:
- Added “RIIC_STS_TMO? for all the “Communicating” states.
- Deleted “RIC_STS_AL” from the “Communicating (slave
transmission/reception” states.
- Added the row for “Timeout detection state”.
55 to 58 4.2 Interrupt Request Generation Timing:
- Deleted notes 1 and 2.
57 4.2.4 Slave Transmission:
- When transmitting 2-byte data: Added “5: EEI (STOP)
interrupt”.
- When transmitting 3-byte data: Added “4: TXI interrupt”.
58 4.2.6 Multi-Master Communication: Added.
59, 60 4.3 Timeout Detection and Processing After the Detection:
Added including Figure 4.5. .
61 6. Reference Documents: Changed reference documents in the

User’s Manual: Development Tools.

RO1AN1692EJ0302 Rev.3.02

Oct.30.25

Page 95 of 101
RENESAS

RX Family

I2C Bus Interface (RIIC) Module Using Firmware Integration Technology

Rev.

Date

Description

Page

Summary

1.40

Oct. 1, 2014

Program

The module is updated to fix the software issue.

Description:

Slave communication is not available after an arbitration-lost
occurs, and then the bus is locked.

Conditions:

The issue occurs when the following four conditions are all met.
- RIIC FIT module rev. 1.30 or earlier is used.

- RX device operates as both the master and the slave in multi-
master communication.

- An arbitration-lost is detected when communicating as the
master.

- Communication other than master reception or slave reception
is performed.

Measure:

Please use the RIIC FIT module Rev. 1.40.

1.50

Dec. 1, 2014

Added support for the RX113 Group.

1.60

Dec. 15, 2014

Added support for the RX71M Group.

1.70

Dec. 15, 2014

Added support for the RX231 Group.

1.80

Oct. 31, 2015

Added support for the RX130 Group, RX230 Group, RX23T
Group.

34

Example of 3.2, R_RIIC_MasterSend(), modified

37, 38

Example of 3.3, R_RIIC_MasterReceive(), modifided

40, 41

Example of 3.4, R_RIIC_SlaveTransfer(), modified

1.90

Mar. 4, 2016

Added support for the RX24T Group.

Table 1.2 Required Memory Size, changed.

22,28

Added description of r_riic_rx_pin_config.h to section 2.6,
Configuration Overview.

Changed “master composite” to “master transmit/receive”.

2.00

Oct 1, 2016

Added support for the RX65N Group.

29

Changed code size description from “Table 1.2 Required
Memory Size” to “2.7 Code Size.”

Program

Corrected an error of the definitions “RIIC_IR_RXI2” and
“‘RIIC_IR_TXI2” to refer the RXI, and TXI Interrupt Status Flag of
channel 2.

The module is updated to fix the software issue.
Description:

Since there is an error in the handling of pin function settings of
RX110 in Rev.1.90, build error occurs if use RX110.
Conditions:

When you build the project, after create a new project with
selected "RX110" series device as MCU, and added RIIC FIT
module Rev.1.90 in reference to "2.10 Adding the FIT Module to
Your Project".

Corrective action:

Corrected the handling pin function settings by function
riic_mcu_mpc_enable() and riic_mcu_mpc_disable().

Please use the RIIC FIT module Rev.2.00.

RO1AN1692EJ0302 Rev.3.02

Oct.30.25

Page 96 of 101
RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology
Description
Rev. Date Page Summary
2.10 Jun 2, 2017 - Added RX24U Group in the Target Device.
- Added support for the RX24T-512KB version.
22 2.4, Usage of Interrupt Vector: Added.
32 2.11. Callback Functions: Added.
2.12. Adding the FIT Module to Your Project: Changed.
52 4. Pin Settings: Added.
69to 70 5.4. Operating Test Environment: Added.
72 5.5. Troubleshooting: Added.
2.20 Aug. 31, 2017 - Added support for the RX65N-2MB version.
- Added support for the RX130-512KB version.
1 Related Documents: Added the following document:
“Renesas e? studio Smart Configurator User Guide
(R20AN0451)”
22 2.4. Usage of Interrupt Vector: Revised.
Interrupt vector used in RX65N-2MB added to the Table 2.1.
Interrupt Vector used in the RIIC FIT Module.
24 2.7. Configuration Overview: Changed the description for
RIC_CFG_PORT_SET_PROCESSING.
24 to 27 2.7. Configuration Overview: Added definitions for Channel 1.
32 2.12. Adding the FIT Module to Your Project: Revised.
52 4. Pin Settings: Revised.
70 Table 5.11. Operation Test Environment for Rev.2.20, added.
721076 5.6. Sample Code: Added.
77 6. Provided Modules: Deleted.
Program Added definitions for Channel 1.
2.30 Sep. 20, 2018 - Added support for the RX66T Group.
21 2.3. Supported Toolchains
Added for Toolchain v.3.00.00
22 2.4. Usage of Interrupt Vector: Revised.
Interrupt vector used in RX66T added to the Table 2.1. Interrupt
Vector used in the RIIC FIT Module.
29 2.8. Code Size: Changed code size for Rev2.30
32 2.13 “for”, “while” and “do while” statements: added
55 to 56 5.Demo Projects: Added
- Change 5.Appendices to 6.Appendices
All file: Chapter 5 related number is changed to 6
73 Table 6-12. Operation Test Environment for Rev.2.30, added.
2.31 Dec. 03, 2018 73 6.4 Operation Confirmation Environment:
Corrected board used in Table 6.12 Confirmed Operation
Environment (Rev. 2.30). Added Table 6.13 Confirmed
Operation Environment (Rev. 2.31).
Program Added document number of the application note accompanying
the sample program of the FIT module to xml file.

RO1AN1692EJ0302 Rev.3.02
Oct.30.25

Page 97 of 101
RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology
Description
Rev. Date Page Summary
2.40 Feb. 20, 2019 - Added support for the RX72T Group.
1 Related Documents: Changed the following documents’ names
RX Family Board Support Package Module Using Firmware
Integration Technology (RO1AN1685)
RX Family Adding Firmware Integration Technology Modules to
Projects (RO1AN1723)
RX Family Adding Firmware Integration Technology Modules to
CS+ Projects (RO1AN1826)
21 2.3. Supported Toolchains
Added for Toolchain v.3.01.00
22 2.4. Usage of Interrupt Vector: Revised.
Interrupt vector used in RX72T added to the Table 2.1. Interrupt
Vector used in the RIIC FIT Module.
74 Table 6-14. Operation Test Environment for Rev.2.40, added.
2.41 May. 20, 2019 - Update the following compilers
GCC for Renesas RX
IAR C/C++ Compiler for Renesas RX
1 Deleted Related Documents.
Added Target Compilers.
21 Added revision of dependent r_bsp module in 2.2 Software
Requirements.
29 2.8 Code Size, amended
53 3.8 R_RIIC_GetVersion function, deleted special notes.
74 Table 6-15. Operation Test Environment for Rev.2.41, added.
77 Changed nop to BSP’s built in function.
242 Jun. 20. 2019 - Added support for the RX23W Group.
22 Table 2.1 Interrupt Vector used in the RIIC FIT Module, added
RX23W.
29 2.8 Code Size, amended.
74 Table 6-16. Operation Confirmation Environment for Rev.2.42,
added.
2.43 Jul. 30. 2019 - Added support for the RX72M Group.
22 2.4. Usage of Interrupt Vector: Revised.
Interrupt vector used in RX72M added to the Table 2.1. Interrupt
Vector used in the RIIC FIT Module.
24 2.7. Configuration Overview Changed.
29 Changed Section 2.8 Code Size.
34 to 53 Delete “Reentrant” item on the API description page.
75 Table 6-17. Operation Test Environment for Rev.2.43, added.
2.44 Oct. 10. 2019 - Added support for the RX13T Group.
22 2.4. Usage of Interrupt Vector: Revised.
Interrupt vector used in RX13T added to the Table 2.1. Interrupt
Vector used in the RIIC FIT Module.
29 Changed Section 2.8 Code Size.
75 Table 6-18. Operation Test Environment for Rev.2.44, added.

RO1AN1692EJ0302 Rev.3.02
Oct.30.25

Page 98 of 101
RENESAS

RX Family I?C Bus Interface (RIIC) Module Using Firmware Integration Technology
Description
Rev. Date Page Summary
2.45 Nov. 22. 2019 - Added support for the RX72N and RX66N Group.
4 1.Overview Changed
22 2.4. Usage of Interrupt Vector: Revised.
Interrupt vector used in RX72N and RX66N added to the Table
2.1. Interrupt Vector used in the RIIC FIT Module.
24 2.7. Configuration Overview Changed.
29 Changed Section 2.8 Code Size.
57 6.1.2 Events During API Operation:
Added notes to EV4 and EV5 in Table 6.2 Events Used for
Protocol Control (enum r_riic_api_event_t).
60 6.1.3 Protocol State Transitions:
Corrected Figure 6.3 State Transition on Master Reception
(R_RIIC_MasterReceive() Called).
62 6.1.4 Protocol State Transitions:
Corrected Table 6.3 State Transition Table (gc_riic_mtx_tbl[][]).
76 Table 6-19. Operation Test Environment for Rev.2.45, added.
2.46 Mar. 10. 2020 - Added support for the RX23E-A Group.
21 2.3 Supported Toolchains
Added for Toolchain v.3.02.00
23 2.4. Usage of Interrupt Vector: Revised.
Interrupt vector used in RX23E-A added to the Table 2.1.
Interrupt Vector used in the RIIC FIT Module.
30 Changed Section 2.8 Code Size.
32 Changed Section 2.12 Adding the FIT Module to Your Project.
77 Table 6-20. Operation Test Environment for Rev.2.46, added.
2.47 Oct. 30. 2020 - Updated the sample code project due to the upgrade of the
development environment.
2.48 Jun. 30. 2021 - Added support for the RX671 Group.
4 1.Overview Changed
21 2.3 Supported Toolchains
Added for Toolchain v.3.03.00
23 2.4. Usage of Interrupt Vector: Revised.
Interrupt vector used in RX671 added to the Table 2.1.
Interrupt Vector used in the RIIC FIT Module.
30 Changed Section 2.8 Code Size.
78 Table 6-22. Operation Test Environment for Rev.2.48, added.
2.49 Jul. 31. 2021 - Added support for the RX140 Group.
23 2.4. Usage of Interrupt Vector: Revised.
Interrupt vector used in RX140 added to the Table 2.1.
Interrupt Vector used in the RIIC FIT Module.
30 Changed Section 2.8 Code Size.
78 Table 6-23. Operation Test Environment for Rev.2.49, added.
2.50 Dec. 31. 2021 - Added support for the RX660 Group.
21 2.3 Supported Toolchains
Added for Toolchain v.3.04.00
23 2.4. Usage of Interrupt Vector: Revised.
Interrupt vector used in RX660 added to the Table 2.1.
Interrupt Vector used in the RIIC FIT Module.
30 Changed Section 2.8 Code Size.
79 Table 6-24. Operation Test Environment for Rev.2.50, added.

RO1AN1692EJ0302 Rev.3.02

Oct.30.25

Page 99 of 101
RENESAS

RX Family 1?°C Bus Interface (RIIC) Module Using Firmware Integration Technology

Description
Rev. Date Page Summary
2.60 Dec. 16. 2022 - Fixed processing error of riic_bps_calc.
79 Table 6-25. Operation Test Environment for Rev.2.60, added.
2.70 Mar. 31. 2023 1 Added support for the RX26T Group.
22 2.3 Supported Toolchains
Added for Toolchain v.3.05.00
24 2.4. Usage of Interrupt Vector: Revised.
Interrupt vector used in RX26T added to the Table 2.1.
Interrupt Vector used in the RIIC FIT Module.
26 Added new macros for SCL rise time and SCL fall time.
31 Changed Section 2.8 Code Size.
57, 58,59 | Updated and added new demo project.
Added RSKRX671, RSKRX72N to “5. Demo Projects”.
82 Table 6-24. Operation Test Environment for Rev.2.70, added.
Program Added support for RX26T.
Updated and added new demo projects.
Added new macros for SCL rise time and SCL fall time.
Apply a digital noise filter circuit to the riic_bps_calc function.
2.80 May. 29. 2023 1 Added support for the R23E-B Group.
24 2.4. Usage of Interrupt Vector: Revised.
Interrupt vector used in RX23E-B added to the Table 2.1.
Interrupt Vector used in the RIIC FIT Module.
31 Changed Section 2.8 Code Size.
33, 56 Deleted the description of FIT configurator from "2.12 Adding
the FIT Module to Your Project", "4. Pin Settings"
82 Table 6-27. Operation Test Environment for Rev.2.80, added.
Program Added support for RX23E-B.
2.90 Oct. 10. 2023 28 2.7. Configuration Overview:
Updated description and notes for
RIC_CFG_CHi_EEI_INT_PRIORITY and
RIC_CFG_CHi_TEI_INT_PRIORITY.
83 Table 6.28. Operation Test Environment for Rev.2.90, added.
Program Changed EEI and TEI default interrupt priority levels for devices
with EEl and TEI assigned to group interrupts, to be higher than
TXI and RXI priority levels in MDF file.
Modified source code comments of
RIC_CFG_CHi_RXI_INT_PRIORITY,
RIC_CFG_CHi_TXI_INT_PRIORITY,
RIC_CFG_CHi_EEI_INT_PRIORITY,
RIC_CFG_CHi_TEI_INT_PRIORITY (i=0to 2)in
r_riic_rx_config.h.
2.91 Aug. 01. 2024 22 2.3 Supported Toolchains
Added for Toolchain v.3.06.00.
83 Table 6.29. Operation Test Environment for Rev.2.91, added.
Program Fixed issues related to EEIl and TEI interrupt priority levels for
RX651 in MDF file.

RO1AN1692EJ0302 Rev.3.02

Oct.30.25

Page 100 of 101
RENESAS

RX Family 1?°C Bus Interface (RIIC) Module Using Firmware Integration Technology

Description
Rev. Date Page Summary
3.00 Aug. 08. 2024 1 Added support for the RX260 Group, RX261 Group.
24 2.4. Usage of Interrupt Vector: Revised.
Interrupt vector used in RX260, RX261 added to the Table 2.1.
Interrupt Vector used in the RIIC FIT Module.
31 Changed Section 2.8 Code Size.
84 Table 6.30. Operation Test Environment for Rev.3.00, added.
Program Added support for RX260, RX261.
3.01 Mar. 15. 2025 22 2.3 Supported Toolchains
Added for Toolchain v.3.07.00.
84 Table 6.31. Operation Test Environment for Rev.3.01, added.
Program Updated FIT Disclaimer and Copyright.
3.02 Oct. 30. 2025 85 Table 6.32. Operation Test Environment for Rev.3.02, added.
Program Removed doc folder and updated .rcpc file in FITDemos.

RO1AN1692EJ0302 Rev.3.02 Page 101 of 101
Oct.30.25 RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LS| are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an 1/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or /0
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between Vi
(Max.) and Vin (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between ViL (Max.) and Vi (Min.).
7. Pronhibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LS| is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.

Notice

1.

10.

1.

12.

13.
14.

(Note1)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’'s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)
Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 RIIC FIT Module
	1.2 Using the RIIC FIT module
	1.2.1 Using RIIC FIT module in C++ project

	1.3 Outline of the API
	1.4 Overview of RIIC FIT Module
	1.4.1 Specifications of RIIC FIT Module
	1.4.2 Master Transmission
	1.4.3 Master Reception
	1.4.4 Slave Transmission and Reception
	1.4.5 State Transition
	1.4.6 Flags when Transitioning States
	1.4.7 Arbitration-Lost Detection Function
	1.4.8 Timeout Detection Function

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Toolchains
	2.4 Usage of Interrupt Vector
	2.5 Header Files
	2.6 Integer Types
	2.7 Configuration Overview
	2.8 Code Size
	2.9 Parameters
	2.10 Return Values
	2.11 Callback Functions
	2.12 Adding the FIT Module to Your Project
	2.13 “for”, “while” and “do while” statements

	3. API Functions
	R_RIIC_Open()
	R_RIIC_MasterSend()
	R_RIIC_MasterReceive()
	R_RIIC_SlaveTransfer()
	R_RIIC_GetStatus()
	R_RIIC_Control()
	R_RIIC_Close()
	R_RIIC_GetVersion()

	4. Pin Settings
	5. Demo Projects
	5.1 riic_mastersend_demo_rskrx64m, riic_mastersend_demo_rskrx64m_gcc
	5.2 riic_masterreceive_demo_rskrx64m, riic_masterreceive_demo_rskrx64m_gcc
	5.3 riic_slavetransfer_demo_rskrx64m, riic_slavetransfer_demo_rskrx64m_gcc
	5.4 riic_mastersend_demo_rskrx231, riic_mastersend_demo_rskrx231_gcc
	5.5 riic_masterreceive_demo_rskrx231, riic_masterreceive_demo_rskrx231_gcc
	5.6 riic_slavetransfer_demo_rskrx231, riic_slavetransfer_demo_rskrx231_gcc
	5.7 riic_mastersend_demo_rskrx671, riic_mastersend_demo_rskrx671_gcc
	5.8 riic_masterreceive_demo_rskrx671, riic_masterreceive_demo_rskrx671_gcc
	5.9 riic_slavetransfer_demo_rskrx671, riic_slavetransfer_demo_rskrx671_gcc
	5.10 riic_mastersend_demo_rskrx72n, riic_mastersend_demo_rskrx72n_gcc
	5.11 riic_masterreceive_demo_rskrx72n, riic_masterreceive_demo_rskrx72n_gcc
	5.12 riic_slavetransfer_demo_rskrx72n, riic_slavetransfer_demo_rskrx72n_gcc
	5.13 Adding a Demo to a Workspace
	5.14 Downloading Demo Projects

	6. Appendices
	6.1 Communication Method
	6.1.1 States for API Operation
	6.1.2 Events During API Operation
	6.1.3 Protocol State Transitions
	6.1.4 Protocol State Transition Table
	6.1.5 Functions Used on Protocol State Transitions
	6.1.6 Flag States on State Transitions

	6.2 Interrupt Request Generation Timing
	6.2.1 Master Transmission
	6.2.2 Master Reception
	6.2.3 Master Transmit/Receive
	6.2.4 Slave Transmission
	6.2.5 Slave Reception
	6.2.6 Multi-Master Communication

	6.3 Timeout Detection and Processing After the Detection
	6.3.1 Detecting a Timeout with the Timeout Detection Function
	6.3.2 Processing After a Timeout is Detected

	6.4 Operating Test Environment
	6.5 Troubleshooting
	6.6 Sample Code
	6.6.1 Example when Accessing One Slave Device Continuously with One Channel

	7. Reference Documents
	Related Technical Updates
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

