
 Application Note

R01AN4234EJ0121 Rev.1.21 Page 1 of 102
Mar.15.25

RX Family
MMC Mode MMCIF Driver Firmware Integration Technology
Introduction
This application note describes the MMC Mode MMCIF driver which uses Firmware Integration Technology
(FIT). This driver controls MultiMediaCard (MMC card) and Embedded MultiMediaCard (eMMC) in MMC
mode using the MultiMediaCard Interface (MMCIF) module included in Renesas Electronics RX Family
microcontrollers. In this document, this driver is referred to as the MMCIF driver.

Target Device
RX Family MCU with MMCIF

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Target Compilers
• Renesas Electronics C/C++ Compiler Package for RX Family
• GCC for Renesas RX
• IAR C/C++ Compiler for Renesas RX

For details of the confirmed operation contents of each compiler, refer to “6.1 Operation Confirmation
Environment".

Related Documents
• RX Family Board Support Package Module Using Firmware Integration Technology (R01AN1685)
• RX Family DMA Controller DMACA Control Module Using Firmware Integration Technology

(R01AN2063)
• RX Family DTC Module Using Firmware Integration Technology (R01AN1819)
• RX Family CMT Module Using Firmware Integration Technology (R01AN1856)
• RX Family LONGQ Module Using Firmware Integration Technology (R01AN1889)

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 2 of 102
Mar.15.25

Contents
1. Overview ... 4

1.1 MMCIF driver... 4
1.2 Overview of the MMCIF driver .. 4

1.2.1 Application Structure ... 5
1.3 API Overview... 7
1.4 Processing Example ... 8

1.4.1 Quick Start Guide .. 8
1.4.2 Basic Control ... 10
1.4.3 Control After an Error .. 16
1.4.4 Control of Other Modules .. 17

1.5 State Transition Diagram .. 18
1.6 Limitations ... 19

1.6.1 Usage Notes ... 19
1.6.2 Notes on MMC Power Supply ... 19
1.6.3 Notes on MMC card Insertion and Removal Detection... 19
1.6.4 Software Write Protection ... 20
1.6.5 Chattering Control at MMC Card Insertion ... 20

2. API Information .. 21
2.1 Hardware Requirements ... 21
2.2 Software Requirements ... 21
2.3 Supported Toolchain ... 21
2.4 Interrupt Vector.. 21
2.5 Header Files .. 21
2.6 Integer Types .. 22
2.7 Configuration Overview ... 22
2.8 Code Size .. 24
2.9 Parameters .. 25
2.10 Return Values / Error Codes ... 27
2.11 Callback Function .. 29
2.12 Adding the FIT Module to Your Project ... 29
2.13 “for”, “while” and “do while” statements ... 30

3. API Functions .. 31
R_MMCIF_Open() .. 31
R_MMCIF_Close() ... 32
R_MMCIF_Get_CardDetection() .. 33
R_MMCIF_Mount() ... 36
R_MMCIF_Unmount() .. 39
R_MMCIF_Read_Memory() ... 40
R_MMCIF_Read_Memory_Software_Trans() ... 42
R_MMCIF_Write_Memory() ... 44
R_MMCIF_Write_Memory_Software_Trans() .. 46
R_MMCIF_Control() ... 48
R_MMCIF_Get_ModeStatus() .. 50
R_MMCIF_Get_CardStatus() ... 51
R_MMCIF_Get_CardInfo() ... 53
R_MMCIF_Int_Handler0() .. 54
R_MMCIF_Int_Handler1() .. 55

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 3 of 102
Mar.15.25

R_MMCIF_Cd_Int() .. 56
R_MMCIF_IntCallback() ... 59
R_MMCIF_Get_ErrCode() ... 60
R_MMCIF_Get_BuffRegAddress()... 61
R_MMCIF_Get_ExtCsd() ... 62
R_MMCIF_1ms_Interval() .. 63
R_MMCIF_Set_DmacDtc_Trans_Flg() .. 64
R_MMCIF_Set_LogHdlAddress()... 66
R_MMCIF_Log() ... 67
R_MMCIF_GetVersion() ... 68

4. Pin Setting ... 69
4.1 Pins setting of MMC bus 1 bit communication .. 69
4.2 Setting of MMC card power control pin ... 69
4.3 Setting of MMC card MMC reset pin ... 69
4.4 MMC card Insertion and Power-On Timing ... 70
4.5 MMC card Removal and Power-Off Timing .. 72
4.6 Hardware Settings ... 74

4.6.1 Sample Hardware Configuration ... 74
4.6.2 MMC Socket (Removable Media: MMC Card) ... 75
4.6.3 MMC (Embedded Multimedia Card: eMMC) ... 79

5. Demo Projects ... 83
5.1 Overview ... 83
5.2 State Transition Diagram .. 83
5.3 Configuration Overview ... 84
5.4 API Functions .. 85
5.5 Replacing Wait Time Processing with Operating System Processing .. 89
5.6 mmcif_demo_rskrx64m, mmcif_demo_rskrx65n, mmcif_demo_rskrx64m_gcc,

mmcif_demo_rskrx65n_gcc .. 89
5.7 Adding a Demo to a Workspace ... 90
5.8 Downloading Demo Projects ... 90

6. Appendices .. 91
6.1 Operation Confirmation Environment .. 91
6.2 Troubleshooting .. 95
6.3 Replacing Wait Processing with Operating System Processing ... 96

7. Reference Documents ... 100
Related Technical Updates .. 100
Revision History ... 101

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 4 of 102
Mar.15.25

1. Overview
1.1 MMCIF driver
By using this product in conjunction with a separately supplied FAT file system, files can be accessed on a
MMC card and eMMC.

Note that MMC card and eMMC are referred to collectively as “MMC” in this document.

The MMCIF driver can be used by being implemented in a project as an API. See section 2.12 Adding the
FIT Module to Your Project for details on methods to implement this FIT module into a project.

1.2 Overview of the MMCIF driver
Table 1.1 and Table 1.2 list this driver function.

Table 1.1 MMCIF Functions

Item Function
Conforming standard JEDEC Standard JESD84-A441

JEDEC Standard JESD84-B50
MMC control driver Block type device driver with 512-byte/sector
MMC operating voltage Only 2.7-3.6 V operation, with 3.3 V signal levels, is supported
MMC bus interface MMC mode (1-bit/4-bit/8-bit) is supported
Number of MMC devices controlled One device/channel
MMC speed mode The Backward-compatible and High-speed mode are supported.

This MMCIF driver discriminates the speed mode and mounts the
card

MMC memory capacity Media up to 2 GB is supported with byte access mode, and media
over 2 GB is supported with sector access mode.

MMC memory control objects Only a user area is supported
Boot area control is not supported

MMC detection function MMC card detection is possible
Boot operation mode Not supported
Background operation Not supported
High priority interrupt (HPI) Not supported

Table 1.2 Microcontroller Functions

Item Function
Target microcontroller RX Family microcontrollers that include the MMCIF
Microcontroller internal data transfer
method

Either software, DMAC, or DTC transfer can be selected
When DMAC or DTC transfer is used, separate DMAC transfer or
DTC transfer software is required.

Wait time processing Waiting using a 1 ms counter standard is supported
It is necessary for the user to provide, separately every 1 ms, calls
to an interval timer count processing function for calling every 1 ms.

Replaceable processing when an OS
is used

The wait processing can be replaced with the invoking task delay
processing provided by the OS.

Endian order Both big endian and little endian are supported
Other functions Firmware Integration Technology (FIT) is supported

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 5 of 102
Mar.15.25

1.2.1 Application Structure
Figure 1.1 shows the application structure when a FAT file system is constructed using this MMCIF driver.

Figure 1.1 Application Structure

MM C I F driver
(JE D E C S tandard JES D 84)

MM C
Card

Items provided with this
MMCIF driver

Sample programs that can be
provided separately

e MM C

Note: MMC card: Removable media
eMMC: Embedded MultiMediaCard

Application

Pin control
module

Port
control

MPC
control

Peripheral
function
control
module

T imers
(CM T
control)

DMAC
control

DTC
control

F A T file system F A T file system layer

Driver interface function Driver interface function

T arget microcontroller settings
(T arget microcontroller

interface functions)

Device driver layer

(MMC protocol,
MMCIF low-level driver)

Microcontroller hardware Hardware layer

Media

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 6 of 102
Mar.15.25

1.2.1.1 FAT File System
This is the software used for MMC file management. A FAT file system must be provided separately.

When high-capacity (over 2 GB) devices are used, the file system, which is an upper layer for this MMCIF
driver, must be FAT32.

Open Source FAT File System M3S-TFAT-Tiny: https://www.renesas.com/mw/tfat

1.2.1.2 Driver Interface Functions
This is the software that implements the layer that connects the Renesas Electronics FAT file system API
with the MMCIF driver API. If necessary, please obtain it from the M3S-TFAT-Tiny web page above.

RX Family M3S-TFAT-Tiny Memory Driver Interface Module Firmware Integration Technology

1.2.1.3 MMCIF Driver
This software implements the JEDEC Standard JESD84 MMC protocol control and MMCIF low-level access
control.

This software also includes target microcontroller interface functions that depend on the microcontroller used
and interrupt setup files.

1.2.1.4 Peripheral Function Control Module (Sample Program)
This software implements timer control, DMAC control, and DTC control. It can be acquired as a sample
program. See, Related Documents on the first page, for details on acquiring this software.

1.2.1.5 Pin Control Module (Sample Program)
This is the pin control software used for MMCIF control. The microcontroller resources used consist of the
port control (MMCIF function control and MMC card power supply port control) and MPC control (MMCIF
function control).

Regarding pin allocation, we recommend allocating system pins at the same time so that the pins used do
not conflict.

Note that a sample program that matches the RX64M RSK board is included. This is stored in the FITDemos
directory. Refer to this demo program to embed this functionality in an application system.

https://www.renesas.com/mw/tfat

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 7 of 102
Mar.15.25

1.3 API Overview
This MMCIF driver uses the JEDEC STANDARD JESD84 protocol. The table below lists the library functions.

Table 1.3 shows the API Functions for this driver.

Table 1.3 API Functions

Function Functional Overview
R_MMCIF_Open() Driver open processing
R_MMCIF_Close() Driver close processing
R_MMCIF_Get_CardDetection() Insertion verification processing
R_MMCIF_Mount() Mount processing
R_MMCIF_Unmount() Unmount processing
R_MMCIF_Read_Memory() Read processing *1
R_MMCIF_Read_Memory_Software_Trans() Read processing (software transfers)
R_MMCIF_Write_Memory() Write processing *1
R_MMCIF_Write_Memory_Software_Trans() Write processing (software transfers)
R_MMCIF_Control() Driver control processing
R_MMCIF_Get_ModeStatus() Mode status information processing
R_MMCIF_Get_CardStatus() Card status information processing
R_MMCIF_Get_CardInfo() Register information processing
R_MMCIF_Int_Handler0() Interrupt handler
R_MMCIF_Int_Handler1() Interrupt handler
R_MMCIF_Cd_Int() Insertion interrupt setup

(Includes insertion interrupt function callback registration)
R_MMCIF_IntCallback() Protocol status interrupt callback function registration

processing
R_MMCIF_Get_ErrCode() Driver error code processing
R_MMCIF_Get_BuffRegAddress() Data register address processing
R_MMCIF_Get_ExtCsd() Extended CSD processing
R_MMCIF_1ms_Interval() Interval timer count processing
R_MMCIF_Set_DmacDtc_Trans_Flg() DMAC/DTC transfer complete flag setting processing
R_MMCIF_Set_LogHdlAddress() LONGQ module handler address setup *2
R_MMCIF_Log() Error log processing *2
R_MMCIF_GetVersion() Driver version information processing
Notes: 1. When DMAC transfers or DTC transfers are set as the data transfer for the operating mode during

mount processing, either a DMAC control program or a DTC control program is required. See
section 1.4.4.2, DMAC and DTC Control Methods, for the setup procedure.

 2. The error log function is provided as a dedicated library module. The LONGQ FIT module is also
required.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 8 of 102
Mar.15.25

1.4 Processing Example
1.4.1 Quick Start Guide
The procedure for performing read and write access to an MMC Card using a Renesas Starter Kits (RSK) is
described below.

1.4.1.1 Hardware Settings
An SD card socket has already been implemented in the RSK of the MCU equipped with MMCIF.

The SDHI control pins of the MCU and the MMCIF control pins (4-bit / 1-bit bus) are allocated identically1.
Therefore, SD card socket on RSK can be treated as 9 pin MMC card socket. In addition, eMMC
manufacturers provide SD memory card shape compatible boards to eMMC for device evaluation purposes.

Therefore, it is possible to evaluate the 4-bit / 1-bit bus eMMC by using the MMCIF-equipped MCU and the
eMMC's RSK loaded SD memory card supporting board.

Settings must be made on the RSK for each target microcontroller.

(1) RSK for RX64M or RX71M

Make the settings described below to enable the SD Card socket.

SW9 SW8
Pin Number Setting Pin Number Setting
Pin 1 OFF Pin 1 OFF
Pin 2 ON Pin 2 ON
Pin 3 OFF Pin 3 OFF
Pin 4 ON Pin 4 ON
Pin 5 OFF Pin 5 OFF
Pin 6 OFF Pin 6 ON
Pin 7 OFF Pin 7 OFF
Pin 8 ON Pin 8 ON
Pin 9 OFF Pin 9 OFF
Pin 10 OFF Pin 10 ON

1 RSK (type name: RTK50565N2SxxxxxBE) excluding the Renesas Starter Kits for RX65N-2MB.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 9 of 102
Mar.15.25

(2) RSK for RX65N

Make the settings described below to enable the SD Card socket.

SW7 SW8
Pin Number Setting Pin Number Setting
Pin 1 OFF Pin 1 OFF
Pin 2 ON Pin 2 ON
Pin 3 OFF Pin 3 OFF
Pin 4 ON Pin 4 ON
Pin 5 OFF Pin 5 OFF
Pin 6 ON Pin 6 ON
Pin 7 OFF Pin 7 OFF
Pin 8 ON Pin 8 ON
Pin 9 OFF Pin 9 OFF
Pin 10 ON Pin 10 OFF

(3) RSK for RX65N-2MB

It cannot be used.

(4) RSK for RX72M

It cannot be used.

(5) RSK for RX72N

It cannot be used.

1.4.1.2 Software Settings
Follow the procedure below to add the software to your project.

1. Create a new project in e2 studio and download the RX Driver Package.
2. Copy r_mmcif_rx_vX.XX.zip and r_mmcif_rx_vX.XX.xml to the folder containing the e2 studio FIT

modules (normally C:\Renesas\e2_studio\FITModules).
3. Refer to RX Family: Adding Firmware Integration Technology Modules to Projects (R01AN1723), and add

r_bsp, r_mmcif_rx and r_cmt_rx to your project.
4. Copy the sample program r_mmcif_rx_demo_main*1 to the src folder of your project.
 Make settings to the configuration options of the sample program. For how to make these settings, see

5.3, Configuration Overview.
5. Please set the media target of #define MMC_CFG_DRIVER_MODE of r_mmcif_rx_config.h to

"MMC_MODE_MMC (MMC card)*2".

Note1: *1 Contained in the FITDemos folder in the product package.
Note2: *2 r_mmcif_rx_pin.c has r_mmcif_demo_power_on () function and r_mmcif_demo_power_off ()

function. Since these functions are based on MMC card control, when the media object of
MMC_CFG_DRIVER_MODE is "MMC_MODE_MMC", the power supply voltage is supplied to the
SD card socket of RSK.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 10 of 102
Mar.15.25

1.4.2 Basic Control
1.4.2.1 Supported Commands
This MMCIF driver uses the following commands.

The table below lists the MMC commands, the MMC specifications version, the User’s Manual: Hardware
and the status of support in this MMCIF driver. The values in the JEDEC Standard JESD84 column indicate
the version (for version 4.41 and later) that the command supports.

Table 1.4 Commands Supported by this MMCIF Driver

(: Not included, : Supported, ×: Not supported)

Command JEDEC Standard
JESD84

Microcontrollers
Supported

This Product
(MMCIF Driver)

Remarks

CMD0 A441 Used in MMC initialization
CMD1 A441 Used in MMC initialization
CMD2 A441 Used in MMC initialization
CMD3 A441 Used in MMC initialization
CMD4 A441 Used in MMC initialization
CMD5 A441 × Not used by this MMCIF driver
CMD6 A441 Used in MMC initialization
CMD7 A441 Used in MMC initialization
CMD8 A441 Used in MMC initialization
CMD9 A441 Used in MMC initialization
CMD10 A441 × Not used by this MMCIF driver
CMD11 A441*  × Not used by this MMCIF driver
CMD12 A441 Used in read/write processing
CMD13 A441 Used in read/write processing
CMD14 A441 Used in MMC initialization
CMD15 A441 × Not used by this MMCIF driver
CMD16 A441 Used in MMC initialization
CMD17 A441 Used in read/write processing
CMD18 A441 Used in read/write processing
CMD19 A441 Used in MMC initialization
CMD20 A441*  × Not used by this MMCIF driver
CMD21-22 Reserved   
CMD23 A441 Used in read/write processing
CMD24 A441 Used in read/write processing
CMD25 A441 Used in read/write processing
CMD26 A441 × Not used by this MMCIF driver
CMD27 A441 × Not used by this MMCIF driver
CMD28 A441 × Not used by this MMCIF driver
CMD29 A441 × Not used by this MMCIF driver
CMD30 A441 × Not used by this MMCIF driver
CMD31 A441 × Not used by this MMCIF driver
CMD32-34 Reserved   
CMD35 A441 × Not used by this MMCIF driver
CMD36 A441 × Not used by this MMCIF driver

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 11 of 102
Mar.15.25

Command JEDEC Standard
JESD84

Microcontrollers
Supported

This Product
(MMCIF Driver)

Remarks

CMD37 Reserved   
CMD38 A441 × Not used by this MMCIF driver
CMD39 A441 × Not used by this MMCIF driver
CMD40 A441 × Not used by this MMCIF driver
CMD41 Reserved   
CMD42 A441 × Not used by this MMCIF driver
CMD43-54 Reserved   
CMD55 A441 × Not used by this MMCIF driver
CMD56 A441 × Not used by this MMCIF driver
CMD57-63 Reserved   
Root Operation × Not used by this MMCIF driver
Note: * Commands removed in JEDEC Standard JESD84-B45

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 12 of 102
Mar.15.25

1.4.2.2 Relation Between Data Buffers and Data in the MMC
This MMCIF driver is set up with the transmit/receive data pointers passed as arguments. As shown in
Figure 1.2, the relationship between the transmit/receive order and the order of the data in the data buffers in
RAM is such that data in the transmit buffer is transmit data in the order it appears in the buffer and data is
written to the receive buffer in the order received regardless of the endian order.

Figure 1.2 Transmission Data Storage

1.4.2.3 Operating Voltage Settings When Initialization
The operating voltage must be set as an argument to the R_MMCIF_Mount() function. During MMC
initialization, if it is determined that the MMC cannot operate at the set voltage, the MMC will transition to the
inactive state.

For an MMC card, call the R_MMCIF_Unmount() function and after it reaches the unmounted state, the
MMC card should be removed. After that, reinsert the card, set the operating voltage again, and perform
mount processing again.

For an eMMC, call the R_MMCIF_Unmount() function and after it reaches the unmounted state, stop supply
of power to the eMMC. After that, restart supply voltage supply to the eMMC, set the operating voltage again,
and perform the mount processing again.

Host transmission mode

Transmit data buffer in RAM (units shown are bytes)

0 1 ... 508 509 510 511

Data transmission order

Write to a slave device (units shown are bytes)

0 1 ... 508 509 510 511

Data reception order

Host reception mode

Read out from a slave device (units shown are bytes)

0 1 ... 508 509 510 511

Data transmission order

Receive data buffer in RAM (units shown are bytes)

0 1 ... 508 509 510 511

Write to a receive data buffer

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 13 of 102
Mar.15.25

1.4.2.4 Stopping MMC_CLK
To save power, this MMCIF driver only outputs the MMC_CLK signal during library function execution, and
stops output of the MMC_CLK signal when the library function terminates.

1.4.2.5 MMCIF Status Verification
To use the MMC, it is necessary to verify the MMCIF status, such as detecting communication completion
and detect the MMC card insertion/removal state. This section describes the status verification methods
when this MMCIF driver library functions are used.

(1) Status Verification Methods

This MMCIF driver allows users to select either MMCIF interrupts or software poling as MMCIF status
verification methods.

The follow status items can be verified.

• MMC Card insertion/removal detection
• MMC protocol

Table 1.5 lists the status items verified by the MMCIF driver library functions.

Table 1.5 Status Items Verified

Type Status Remarks
MMC card insertion/removal
(Interrupt enable/disable setting
with the R_MMCIF_Cd_Int()
function)

MMC card inserted/removed
state

Detection is possible with the
R_MMCIF_Get_CardDetection() function.

MMC protocol
(Interrupt enable setting with the
R_MMCIF_Mount() function)

Response reception complete Occurs on each command transmission
Data transfer request Occurs on each 512 bytes of transmission
Protocol error Occurs when a CRC or other error occurs
Timeout error Occurs when a no response state is

detected

(2) Setup Methods

When interrupts are selected as the MMC card insertion verification method, interrupts (the
MMC_MODE_HWINT setting) must also be selected for MMC protocol status verification with the
R_MMCIF_Mount() function.

Note that the R_MMCIF_Int_HandlerX() functions (where X is the channel number) are already registered in
the system as the interrupt handlers for the MMCIF interrupts.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 14 of 102
Mar.15.25

(3) MMC Card Insertion Verification by Software Poling and Interrupt

The MMC card insertion state can be verified using the R_MMCIF_Get_CardDetection() function regardless
of the enabled/disabled setting of the MMC card insertion interrupt.

When the interrupt has been enabled (MMC_CD_INT_ENABLE) with the R_MMCIF_Cd_Int() function, a
callback function can also be executed when the interrupt occurs when an MMC card is inserted. This allows
real-time processing for MMC card insertion. Use the R_MMCIF_Cd_Int() function to register the MMC card
insertion interrupt callback function.

(4) MMC Protocol Status Verification Using Software Poling

When poling (MMC_MODE_POLL) is set with the R_MMCIF_Mount() function as the MMC protocol status
verification method, status items such as data transfer complete wait or response reception wait during
communication with the MMC can be verified with software poling.

When software poling is set up, use the target microcontroller interface function, r_mmcif_dev_int_wait()
function, within that function, call interrupt status flag register acquisition processing (the
r_mmcif_get_intstatus() function), and check the interrupt status flag register (CEINT) value.

Figure 1.3 shows the flowchart for MMC protocol status verification when poling is used.

Figure 1.3 MMC Protocol Status Verification Using Software Poling

r_mmcif_dev_int_wait()

Acquire the contents of the
interrupt status flag register

Flag set?

MMC ERR MMC SUCCESS

Yes

No

Timeout?
Yes

No Stop timer

Start timer

Check for timeout

Stop timer

Execute the interrupt status flag register
acquisition processing.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 15 of 102
Mar.15.25

(5) MMC Protocol Status Verification Using Interrupts

When interrupts (MMC_MODE_HWINT) are set as the MMC protocol status verification method with the
R_MMCIF_Mount() function, the status is stored in an internal buffer when the status verification interrupt
occurs.

A user registered callback function can be called when a status verification interrupt occurs. The user should
register an MMC protocol status interrupt callback function with the R_MMCIF_IntCallback() function.

When waiting for interrupts is enabled, use the target microcontroller interface function,
r_mmcif_dev_int_wait() function, within that function, call interrupt status flag register acquisition processing
(the r_mmcif_get_intstatus() function), and verify the interrupt occurrence state.

Figure 1.4 shows the flowchart for MMC protocol status verification when interrupts are used.

Figure 1.4 MMC Protocol Status Verification Using Interrupts

r_mmcif_dev_int_wait()

Acquire the contents of the
interrupt status flag register

Flag set?

MMC_ERR MMC_SUCCESS

Yes

No

Timeout?

Yes

No Stop timer

Start timer

Check for timeout

Stop timer

Check the internal buffer set by
the interrupt.

The status is stored in an
internal buffer when an
interrupt occurs.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 16 of 102
Mar.15.25

1.4.3 Control After an Error
1.4.3.1 Handling When an Error Occur
We recommend retrying the processing when an error occurs in read, write, or other processing.

If an error occurs even after retrying the processing, remove the MMC card and initialize the card again. See
section 4.4, 4.5, for details on the processing related to MMC card insertion and removal. For the eMMC,
temporarily turn off the power supply, then reapply power, and then initialize it.

Also, if using a file system as the upper level application for this MMCIF driver, before removing and
reinserting the MMC card, implement any required processing in advance in that upper level application.

1.4.3.2 Handling Error Termination After Transition to the Transfer State (tran)
If an error occurs after transition to the transfer state (tran), a CMD12 command is issued regardless of
whether or not there was a data transfer. The purpose of issuing the CMD12 command is to transition to the
transfer state (tran). Note, however, that the CMD12 is issued during write processing, the MMC may
transition to the busy state. This can cause the next read or write function call to return an error.

1.4.3.3 Error Log Acquisition Methods
Use MMCIF driver source code. Also, the LONGQ FIT module should be acquired separately as well.

Use the following setup procedure to acquire an error log.

(1) R_LONGQ_Open() Setup

Set the third argument of the R_LONGQ_Open() function in the LONGQ FIT module, ignore_overflow, to 1.
This will make it possible to use the error buffer as a ring buffer.

(2) Control Procedures

Before calling the R_MMCIF_Open() function, call the following functions in the order shown. See section
R_MMCIF_Set_LogHdlAddress(), for a setup example.

1. R_LONGQ_Open()
2. R_MMCIF_Set_LogHdlAddress()

(3) Set Up R_MMCIF_Log()

Call this function to terminate error acquisition. See section R_MMCIF_Log(), for a setup example.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 17 of 102
Mar.15.25

1.4.4 Control of Other Modules

1.4.4.1 Timers

Timers are used to detect timeouts.

Applications should call R_MMCIF_1ms_Interval() at 1 ms intervals. Note, however, that this is not required
when the r_mmcif_dev_int_wait() and r_mmcif_dev_wait() functions in r_mmcif_dev.c have been replaced
with operating system processing.

1.4.4.2 DMAC and DTC Control Methods

This section describes the control methods used when DMAC or DTC transfers are used.

This MMCIF driver performs DMAC or DTC transfer starts and transfer complete waiting. For other DMAC or
DTC register settings, either use the DMAC or DTC FIT module, or implement your own user processing.

Note that when DMAC transfers are set up, clearing the DMAC transfer complete flag when a DMAC start
completes must be performed by user code.

Figure 1.5 Processing for DMAC/DTC Transfer Setup

Start

DMAC/DTC initialization

Activate DMAC/DTC transfer

Stop DMAC/DTC operation

End

Settings performed by the DMAC FIT module
or the DTC FIT module,
or user-implemented DMAC/DTC settings.

DMAC/DTC transfer start and transfer complete
wait performed by this MMCIF driver

Settings performed by the DMAC FIT module
or the DTC FIT module,
or user-implemented DMAC/DTC settings.

Yes

Operation complete interrupt handling
(Transfer complete flag =

MMC_SET_TRANS_STOP)

<For the DTC>

<For the DMAC: user handling is required>

Operation complete interrupt handling
(R_MMCIF_Set_DmacDtc_Trans_Flg

(MMC_CH0,
MMC_SET_TRANS_STOP))

Transfer
complete
interrupt

Blue: Sections that this MMCIF driver performs
Black: Sections that user code performs

No

Is the transfer complete flag
MMC_SET_TRANS_START?

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 18 of 102
Mar.15.25

1.5 State Transition Diagram
Figure 1.6 shows the state transition diagram for this driver.

Figure 1.6 MMCIF driver State Transition Diagram

Uninitialized state

Initialized state
(No MMC card inserted state)

Mountable state
(MMC card inserted state)

R_MMCIF_IntCallback() R_MMCIF_Cd_Int()

R_MMCIF_Open()

For eMMC, the initialized state and the mountable state
are equivalent. For MMC cards, a card insertion causes
a transition to the mountable state.

Driver idle stat *3
【Transfer State (tran)】

R_MMCIF_Mount() R_MMCIF_Unmount()

Read execution state

（MMC transfer state）

Write execution state

（MMC receive state）

R_MMCIF_Control()

forcibly termination

R_MMCIF_Read_Memory()

*1

R_MMCIF_Write_Memory()

*2

R_MMCIF_Read_Memory()

successful operation*1

R_MMCIF_Write_Memory()

successful operation*2

R_MMCIF_Close()

R_MMCIF_Close()

Note: 1. The MMC transfer state transition command processing, which includes the
 R_MMCID_Read_Memory_Software_Trans() function, is similar.
 2. The MMC receive state transition command processing, which includes the
 R_MMCID_Write_Memory_Software_Trans() function, is similar.
 3. [] indicates MMC described in JEDEC Standard JESD84.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 19 of 102
Mar.15.25

1.6 Limitations
1.6.1 Usage Notes
• Argument setup rules and register warranty rules

The functions provided by this library are coded assuming that they will be called from application
programs coded in the C language. The argument setup rules and register warranty rules used by this
MMCIF driver conform to those of the C compiler. See the related manuals for details.

• Sections
Sections with no initialization value should be initialized to 0.

• Notes on using interrupt callback functions
The interrupt callback functions are called as subroutines from the interrupt handlers.

• All software settings should conform to the hardware actually used.
1.6.2 Notes on MMC Power Supply
A power supply voltage that conforms to the MMC specifications must be provided. See the Power-Up
chapter in JEDEC Standard JESD84 for details.

In particular, an application must provide from the system side circuits and cutoff/reapplication control timing
that conform to the stipulations on the voltage values and voltage maintenance periods if that application
performs MMC card reinsertion control after an MMC card has been removed or if it performs power
reapplication control after power to an MMC card has been cut off.

If correct power supply application and cutoff processing is not performed, the power supply system may
become unstable due to MMC card insertion or removal and this could cause the microcontroller to go to the
reset state.

Applications should call the R_MMCIF_Mount() function only after the power supply has reached the
operating voltage. If the time required to reach the operating voltage after power supply voltage starts is
insufficient, adjust this wait time.

Also, the application program must implement the wait time processing required to reach the voltage at
which MMC removal is allowed after stopping supply of the MMC supply voltage.

1.6.3 Notes on MMC card Insertion and Removal Detection
If the MMC card is removed during communication with this MMCIF driver, a response error for the
command will occur and as a result the MMCIF driver will return an error. Also, the time until an error is
returned depends on the processing being performed.

However, if a card is removed only briefly during communication, it is possible that an error may not be
returned by the MMCIF driver as discussed below.

• If card poling based on a fixed period is used, a removal for less than a single period cannot be detected
by the MMCIF driver and if a no response error from the MMC is detected, processing will continue.

• If the card is removed briefly during write, the MMCIF driver may incorrectly recognize the state as write
complete. This is because the MMC notifies the write busy signal complete state with a high-level output.
(The MMC_Dn (n = 0 to 7) pins are pulled up by external resistors.)

Applications should modify their detection methods for MMC card removal with appropriate measures on the
system side by using hardware interrupt control or revising the poling period.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 20 of 102
Mar.15.25

1.6.4 Software Write Protection
This MMCIF driver does not support software protection state control functions.

An error is returned if an attempt is made to write to as software protected area set by another system.

1.6.5 Chattering Control at MMC Card Insertion
This MMCIF driver does not perform any exclusion control for chattering that occurs when an MMC card is
inserted or removed. Furthermore, there is no hardware chattering exclusion function. For controlling MMC
card, applications should implement card detection processing that take chattering into account by referring
to the sample programs and the examples in section R_MMCIF_Get_CardDetection() and section
R_MMCIF_Cd_Int() of “Example”.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 21 of 102
Mar.15.25

2. API Information
This FIT module has been confirmed to operate under the following conditions.

2.1 Hardware Requirements
The MCU used must support the following functions:

 MMCIF

2.2 Software Requirements
This MMCIF driver depends on the following packages.

 r_bsp Rev.5.20 or higher
 r_dmaca_rx (Only when DMAC transfers using the DMACA FIT module are used)
 r_dtc_rx (Only when DTC transfers using the DTC FIT module are used)
 r_cmt_rx (Only when the compare match timer CMT FIT module is used)

Other timers or software times can be used for this functionality.

2.3 Supported Toolchain
This driver has been confirmed to work with the toolchain listed in 6.1, Operation Confirmation Environment.

2.4 Interrupt Vector
If the macro definition MMC_CFG_DRIVER_MODE is set to MMC_MODE_HWINT, MMCIF interrupts are
enabled. Put the system in the interrupts permitted state before the MMCIF driver's open processing,
R_MMCIF_Open(), is called.

Table 2.1 lists the interrupt vectors used by the MMCIF driver.

Table 2.1 Interrupt Vectors

Device Interrupt Vectors
RX64M
RX65N
RX66N
RX71M
RX72M
RX72N

MMCIF buffer access interrupt (MBFAI) (vector number: 45)
GROUPBL1 interrupt (vector number: 111)
• MMC detection interrupt (CDETIO) (group interrupt source number: 6)
• Error/timeout access interrupt (ERRIO) (group interrupt source number: 7)
• Normal operation interrupt (ACCIO) (group interrupt source number: 8)

2.4.1 API Functions that Can be Called from Within Interrupt Handling
Table 2.2 lists the API functions (recommended) that can be called from within interrupt handling.

Note that the interrupt callback functions are called as subroutines from the interrupt handlers.

Table 2.2 MMCIF Driver Library Functions that may be Called from Within an Interrupt Handler

Function Functional Overview Remarks
R_MMCIF_Control() Driver control processing MMC_SET_STOP (Forced stop request

command)

2.5 Header Files
The API calls and interface definitions used are defined in r_mmcif_rx_if.h.

The configuration options for each build are selected in r_mmcif_rx_config.h.

#include "r_mmcif_rx_if.h"

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 22 of 102
Mar.15.25

2.6 Integer Types
This MMCIF driver is coded in ANSI C99. These types are defined in stdint.h.

2.7 Configuration Overview
This MMCIF driver configuration options are set in r_mmcif_rx_config.h.

The table below lists the option names and set values when the RX64M RSK is used.

Configuration options in r_mmcif_rx_config.h

#define MMC_CFG_USE_FIT
Note: The default value is "enabled".

Selects whether this MMCIF driver will be used in the BSP
environment.
If set to "disabled", the r_bsp and other FIT module control will be
disabled. Also, it will be necessary to embed this processing some
other way.
When set to "enabled", the r_bsp and other FIT modules are
enabled.

#define MMC_CFG_CHx_INCLUDED
Note: The channel 0 default value is "enabled".

"x" indicates the channel number.

Selects whether the corresponding channel is used.
If set to "disabled", the processing related to the corresponding
channel will be omitted from the code.
If set to "enabled", the processing related to the corresponding
channel will be included in the code.
Other channel definitions must be added if a microcontroller that
supports multiple channels is used.

#define MMC_CFG_DRIVER_MODE
(MMC_MODE_HWINT | MMC_MODE_eMMC |
MMC_MODE_1BIT)
Note: The default value is "status verification: hardware

interrupt, data transfers: software transfers, supported
media: eMMC, MMC bus width: MMC mode 1-bit bus".

This definition can be used as the argument p_mmc_Config->mode
to the R_MMCIF_Mount() mount processing function.
Refer to the section "Mount processing function R_MMCIF_Mount()"
and define p_mmc_Config->mode.

#define MMC_CFG_CHx_CD_ACTIVE (0)
Note: The default value is "disabled".

"x" indicates the channel number.

When allocation of the MMC_CD pin is not required, it can be
removed individually from the objects of MMCIF driver control.
If the pin is to be allocated as an object of the MMCIF functions, set
the value to (1).
To remove the pin as an object, set the value to (0).
When this pin is removed as an object of control, it can be used for
another purpose (such as a general-purpose I/O port). This MMCIF
driver does not have the functionality to remove pins from control,
and does not have a function for setting the pins that will be used.
Therefore, if this pin is to be used for another purpose, it must be set
up separately to match the pins used. These settings are required for
each channel used.

#define MMC_CFG_DIV_HIGH_SPEED
MMC_DIV_2 /* 52MHz or less clock */
Note: The default value is "MMC_DIV_2" (divide by 2)*1

Defines the clock frequency for High-speed mode. For the JEDEC
Standard JESD84, the maximum clock frequency is 52 MHz.
Set the MMCIF clock frequency setting bits (CLKDIV[3:0]) to the
PCLKB divisor. The set value should be in the range MMC_DIV_2 to
MMC_DIV_1024 (from divide by 2 to divide by 1024).
For example, if PCLKB = 60 MHz and the High-speed mode clock
frequency is 30 MHz, then MMC_DIV_2 (divide by 2) should be set.

#define
MMC_CFG_DIV_BACKWARD_COM_SPEED
MMC_DIV_4 /* 26MHz or less clock */
Note: The default value is "MMC_DIV_4" (divide by 4)*1

Defines the clock frequency for Backward-compatible mode. For the
JEDEC Standard JESD84, the maximum clock frequency is 26 MHz.
This item is set in the same way as is the High-speed mode setting
described above.
For example, if PCLKB = 60 MHz and the Backward-compatible
mode clock frequency is 15 MHz, then MMC_DIV_4 (divide by 4)

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 23 of 102
Mar.15.25

should be set.
#define MMC_CFG_DIV_INIT_SPEED
MMC_DIV_1024 /* 400KHz or less clock */
Note: The default value is "MMC_DIV_1024"

(divide by 1024)*1*2

Defines the clock frequency for card identification mode. For the
JEDEC Standard JESD84, the maximum clock frequency is 400 kHz.
This item is set in the same way as is the High-speed mode setting
described above.
For example, if PCLKB = 60 MHz and the card identification mode
clock frequency is 58 kHz, then MMC_DIV_1024 (divide by 1024)
should be set.

#define
MMC_CFG_TIMEOUT_TRANS
(0x000000a0ul) /* CECLKCTR register : Write
data/read data timeout */
Note: The default value is "0x000000a0ul"

This is the timeout setting for write data and read data.
Set the timeout value for the clock control register (CECLKCTRL)
SRWDTO[3:0] bits in bits 7 to 4.

#define
MMC_CFG_TIMEOUT_RESBUSY
(0x00000f00ul) /* CECLKCTR register : Response
busy timeout */
Note: The default value is "0x00000f00ul"

This is the response busy timeout setting.
Set the timeout value for the clock control register (CECLKCTRL)
SRBSYTO[3:0] bits in bits 11 to 8.

#define
MMC_CFG_TIMEOUT_RES
(0x00002000ul) /* CECLKCTR register : Response
timeout */
Note: The default value is "0x00002000ul"

This is the response reception timeout setting.
Set the timeout value for the clock control register (CECLKCTRL)
SRSPT[3:0] bits in bits 13 and 12.

#define MMC_CFG_CHx_INT_LEVEL (10)
/* MMC channel x interrupt level */
Note: The default value is "(10)"

This sets the normal operation interrupt (ACCIO), the error/timeout
interrupt (ERRIO), and the MMC detection interrupt (CDETIO) levels.

#define
MMC_CFG_CHx_INT_LEVEL_DMADTC (10)
/* MMC channel x DMA/DTC interrupt level */
Note: The default value is "(10)"

Set this define macro to the MMCIF buffer access interrupt (MBFAI)
level. This is the interrupt level when DMAC/DTC is used and data is
written to the MMCIF buffer and when data is read from the MMCIF
buffer.

/* #define MMC_CFG_LONGQ_ENABLE */
Note: The default value is "disabled"

This must be set when an error log acquisition function using the
LONGQ FIT module is used.
When this function is used, a debugging module (a dedicated module
created with this definition enabled) must be used and the LONGQ
FIT module must be included.

Notes: 1. The symbols MMC_DIV_n (where n is an integer and indicates the divisor) indicate the divisor for
the MMCIF PCLK. There are cases where it is not possible to set the JEDEC Standard JESD84
maximum transfer frequency due to the electrical characteristics of the microcontroller used. See
the User’s Manual: Hardware document for the microcontroller used to determine the maximum
transfer frequency that can be set.

 2. In card identification mode, the MMC CMD line becomes an open-drain circuit. Therefore the clock
frequencies that can be used depend on the pull-up resistor and the load capacitance for the
MMC_CMD pin. See section 4.6, Hardware Settings, for details.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 24 of 102
Mar.15.25

2.8 Code Size
The code sizes for the latest version of the driver are shown below.

The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options described in 2.7, Configuration Overview.

The values in the table below are confirmed under the following conditions.

Module Revision: r_mmcif_rx rev1.07

Compiler Version: Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00

(The option of “-lang = c99” is added to the default settings of the integrated
development environment.)

GCC for Renesas RX 4.8.4.201902

(The option of “-std=gnu99” is added to the default settings of the integrated
development environment.)

IAR C/C++ Compiler for Renesas RX version 4.12.1

(The default settings of the integrated development environment.)

Configuration Options: Default settings

Table 2.3 Code Size

ROM, RAM and Stack Code Sizes (Note1)

Device Category Memory Used
Renesas Compiler GCC IAR Compiler

RX65N ROM Note2 9650 bytes 18,004 bytes 12,749 bytes

RAM Note2, 3
276 bytes (Work buffer)
Note4

624 bytes 624 bytes

Maximum user stack used 320 bytes - 288 bytes

Maximum interrupt stack
used

40 bytes - 68 bytes

Note 1: This is the value in the case of little-endian. The memory sizes indicated above differ depending on
the endian order.

Note 2: The memory sizes depend on the data transfer method used and other aspects.
Note 3: Data buffers used for read/write are not included.
Note 4: For details of work buffer, see Open processing function.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 25 of 102
Mar.15.25

2.9 Parameters
This section presents the structures used as arguments to the API functions. These structures are included
in the file r_mmcif_rx_if.h along with the API function prototype declarations.

2.9.1 e_mmc_enum_cmd Structure Definition
typedef enum e_mmc_enum_cmd
{
 MMC_SET_STOP,
} mmc_enum_cmd_t;

2.9.2 e_mmc_enum_trans Structure Definition
typedef enum e_mmc_enum_trans
{
 MMC_SET_TRANS_STOP,
 MMC_SET_TRANS_START
} mmc_enum_trans_t;

2.9.3 mmc_cmd_t Structure Definition
typedef struct
{
 mmc_enum_cmd_t cmd;
 uint32_t mode; /* Lock/Unlock operation code */
 uint8_t *p_buff;
 uint32_t size;
} mmc_cmd_t;

2.9.4 mmc_cfg_t Structure Definition
typedef struct
{
 uint32_t mode; /* MMC Driver operation mode */
 uint32_t voltage; /* Operation voltage */
} mmc_cfg_t;

2.9.5 mmc_access_t Structure Definition
typedef struct
{
 uint8_t *p_buff;
 uint32_t lbn;
 int32_t cnt;
 uint32_t mode;
 uint32_t rw_mode;
} mmc_access_t;

2.9.6 mmc_card_status_t Structure Definition

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 26 of 102
Mar.15.25

typedef struct
{
 uint32_t card_sector_size; /* Sector size (user area) */
 uint8_t csd_structure; /* CSD structure
 0 : CSD version No.1.0
 1 : CSD version No.1.1
 2 : CSD version No.1.2
 3 : Version is coded in the CSD_STRUCTURE byte
 in the EXT_CSD register */
 uint8_t speed_mode; /* Card speed mode
 Supported speed bit 5,4 : 0 0 Backward-compatible
 0 1 High-speed 26MHz Max
 1 1 High-speed 52MHz Max
 Current speed bit 1,0 : 0 0 Backward-compatible
 0 1 High-speed 26MHz Max
 1 1 High-speed 52MHz Max */
 uint8_t csd_spec; /* MMC spec version */
 uint8_t if_mode; /* Bus width */
 uint8_t density_type; /* Card density type */
 uint8_t rsv[3]; /* Reserve */
} mmc_card_status_t;

2.9.7 mmc_card_reg_t Structure Definition
typedef struct
{
 uint32_t ocr[1]; /* OCR value */
 uint32_t cid[4]; /* CID value */
 uint32_t csd[4]; /* CSD value */
 uint32_t dsr[1]; /* DSR value */
 uint32_t rca[1]; /* RCA value */
} mmc_card_reg_t;

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 27 of 102
Mar.15.25

2.10 Return Values / Error Codes
This section presents the return values from the API functions. This enumeration type is defined in the file
r_mmcif_rx_if.h along with the API function prototype declarations.

If an error occurs during processing, these MMCIF driver library functions return an error code in their return
value. Also, the error code can be acquired using the R_MMCIF_Get_ErrCode() function after execution of
the R_MMCIF_Mount(), R_MMCIF_Read_Memory(), and R_MMCIF_Write_Memory() functions*.

Table 2.4 lists the error codes. Note that values not listed in the table are reserved for future expansion.

Note: * The R_MMCIF_Read_Memory_Software_Trans() and
R_MMCIF_Write_Memory_Software_Trans() functions operate similarly.

Table 2.4 Error Codes

Macro Definition Value Meaning
MMC_SUCCESS_LOCKED_CARD 1 Successful operation

(card locked state)
Successful operation. Note, however, that the card is in the
locked state.

MMC_SUCCESS 0 Successful operation Successful operation.
MMC_ERR −1 General error R_MMCIF_Open() function not yet executed, argument

parameter error, and other errors
MMC_ERR_WP −2 Write protect error Write to an MMC card in the write protected state
MMC_ERR_HOST_TOE −9 Host timeout error Error in the r_mmcif_dev_int_wait() function.
MMC_ERR_CARD_LOCK −11 Card locked error R1 response card status error

(CARD_IS_LOCKED)
MMC_ERR_CARD_UNLOCK −12 Card unlocked error R1 response card status error

(LOCK_UNLOCK_FAILED)
MMC_ERR_CARD_CRC −13 Card CRC error R1 response card status error

(COM_CRC_ERROR)
MMC_ERR_CARD_ECC −14 Card ECC error R1 response card status error

(CARD_ECC_FAILED)
MMC_ERR_CARD_CC −15 Card CC error R1 response card status error

(CC_ERROR)
MMC_ERR_CARD_ERROR −16 Card error R1 response card status error

(ERROR)
MMC_ERR_NO_CARD −18 No card inserted error No card is inserted.
MMC_ERR_CPU_IF −30 Target microcontroller

interface function error
Target microcontroller interface function error
(other than the r_mmcif_dev_int_wait() function)

MMC_ERR_STOP −31 Forced stop error Forced stop state due to the R_MMCIF_Control() function.
MMC_ERR_CMD −32 Command issue error MMCIF internal error

(command issued)
MMC_ERR_BUFACC −33 MMCIF buffer access error MMCIF internal error

(Illegal access to MMCIF buffer)
MMC_ERR_WRITE −34 Write data error MMCIF internal error

(CRC error token status or end bit)
MMC_ERR_READ −35 Read data error MMCIF internal error

(Read data CRC 16 or end bit)
MMC_ERR_RESPIND −36 Response index error MMCIF internal error

(Response command index field value or check bits field
value error)

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 28 of 102
Mar.15.25

MMC_ERR_RESP −37 Response error MMCIF internal error
(Response or boot acknowledge error)

MMC_ERR_CRC_TOE −38 CRC status timeout error MMCIF internal error
(When a CRC status token could not be received)

MMC_ERR_WRITE_TOE −39 Write data timeout error MMCIF internal error
(When a busy state continued for longer than the
stipulated period during a data write)

MMC_ERR_READ_TOE −40 Read data timeout error MMCIF internal error
(Data could not be received within the stipulated period)

MMC_ERR_RESPB_TOE −41 Response busy timeout
error

MMCIF internal error
(When the response busy state continued for longer than
the stipulated period)

MMC_ERR_RESP_TOE −42 Response timeout error MMCIF internal error
(When a response or boot acknowledge could not be
received within the stipulated period)

MMC_ERR_FAST_IO −43 Fast I/O response error Fast I/O data error
MMC_ERR_CHANGE_BUS −44 Bus test error Error during bus test processing
MMC_ERR_SWITCH −47 SWITCH command error R1 response card status error

(SWITCH_ERROR)
MMC_ERR_CSD_RLEN −49 READ_BL_LEN error CSD register[83:80] bits maximum read block length error
MMC_ERR_CSD_VER −50 CSD Ver error Version error for CSD version 5.0 or later.

Note, however, that this MMCIF driver does not check for
this error.

MMC_ERR_CSD_WLEN −54 WRITE_BL_LEN error CSD register[25:22] bits maximum write block length error
MMC_ERR_OUT_OF_RANGE −80 Argument range error R1 response card status error

(OUT_OF_RANGE)
MMC_ERR_ADDRESS_ERROR −81 Address error R1 response card status error

(ADDRESS_ERROR)
MMC_ERR_BLOCK_LEN_ERROR −82 Block length error R1 response card status error

(BLOCK_LEN_ERROR)
MMC_ERR_ILLEGAL_COMMAND −83 Illegal command error R1 response card status error

(ILLEGAL_COMMAND)
MMC_ERR_CBSY_ERROR −87 Command error MMCIF internal error

(Command busy)
MMC_ERR_NO_RESP_ERROR −88 No response error MMCIF internal error

(Response could not be received)
MMC_ERR_ADDRESS_BOUNDARY −89 Buffer address error Argument buffer address error

The address does not fall on a 4-byte boundary
MMC_ERR_INTERNAL −99 Internal error Internal driver error

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 29 of 102
Mar.15.25

2.11 Callback Function
This driver calls the callback function specified by the user when the MMC protocol status interrupt, or MMC
Card insertion interrupt occurs.

For information regarding how to register callback functions, see “R_MMCIF_Cd_Int()” and
“R_MMCIF_IntCallback()”.
For the timing at which the callback function occurs, see “1.4.2.5 MMCIF Status Verification”.

2.12 Adding the FIT Module to Your Project
This driver must be added to each project in which it is used. Renesas recommends using “Smart
Configurator” described in (1) or (2). However, “Smart Configurator” only supports some RX devices. Please
use the methods of (3) for unsupported RX devices.

(1) Adding the FIT module to your project using “Smart Configurator” in e2 studio
By using the “Smart Configurator” in e2 studio, the FIT module is automatically added to your
project. Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details.

(2) Adding the FIT module to your project using “Smart Configurator” on CS+
By using the “Smart Configurator Standalone version” in CS+, the FIT module is automatically
added to your project. Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)”
for details.

(3) Adding the FIT module to your project in CS+
In CS+, please manually add the FIT module to your project. Refer to “Adding Firmware Integration
Technology Modules to CS+ Projects (R01AN1826)” for details.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 30 of 102
Mar.15.25

2.13 “for”, “while” and “do while” statements
In this module, “for”, “while” and “do while” statements (loop processing) are used in processing to wait for
register to be reflected and so on. For these loop processing, comments with “WAIT_LOOP” as a keyword
are described. Therefore, if user incorporates fail-safe processing into loop processing, user can search the
corresponding processing with “WAIT_LOOP”.

The following shows example of description.

while statement example :
/* WAIT_LOOP */
while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)
{
 /* The delay period needed is to make sure that the PLL has stabilized. */
}

for statement example :
/* Initialize reference counters to 0. */
/* WAIT_LOOP */
for (i = 0; i < BSP_REG_PROTECT_TOTAL_ITEMS; i++)
{
 g_protect_counters[i] = 0;
}

do while statement example :
/* Reset completion waiting */
do
{
 reg = phy_read(ether_channel, PHY_REG_CONTROL);
 count++;
} while ((reg & PHY_CONTROL_RESET) && (count < ETHER_CFG_PHY_DELAY_RESET)); /*
WAIT_LOOP */

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 31 of 102
Mar.15.25

3. API Functions

R_MMCIF_Open()
This is the first function called when this MMCIF driver API is used.

Format
mmc_status_t R_MMCIF_Open(
 uint32_t channel,
 void *p_mmc_WorkArea
)

Parameters
channel

Channel number - The number of the MMCIF channel used (numbering starts at 0)
*p_mmc_WorkArea

Pointer to a working area on a 4-byte boundary (area size: 164 bytes)

Return Values
MMC_SUCCESS Successful operation
MMC_ERR General error
MMC_ERR_CPU_IF Target microcontroller interface error
MMC_ERR_ADDRESS_BOUNDARY Argument buffer address error

Properties
A prototype declaration for this function appears in r_mmcif_rx_if.h.

Description
This function acquires the MMCIF channel resource specified with the argument channel and initializes this
MMCIF driver and the MMCIF channel. Also, this function exclusively acquires that MMCIF channel resource.

The working area is also retained until MMCIF driver close processing completes, and the application must
not modify the working area contents.

Example
uint32_t g_mmcif_work[164/sizesof(uint32_t)];

/* ==== Please add the processing to set the pins. ==== */

if (R_MMCIF_Open(MMC_CH0, &g_mmcif_work) != MMC_SUCCESS)
{
 /* Error */
}

Special Notes
The pins must be set up before this function is called. See section 4.4, MMC card Insertion and Power-On
Timing, for details.

If this function does not complete successfully, do not call any library functions other than
R_MMCIF_GetVersion(), R_MMCIF_Log() or R_MMCIF_Set_LogHdlAddress().

If this function does complete successfully, the card insertion interrupt may be enabled. If the MMC card
insertion interrupt is used, after this function has run, use the R_MMCIF_Cd_Int() function to enable the card
insertion interrupt.

Note that the error code cannot be acquired with the R_MMCIF_Get_ErrCode() function.

The microcontroller pin states do not change from before to after the execution of this function.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 32 of 102
Mar.15.25

R_MMCIF_Close()
This function releases the resources being used by the MMCIF driver.

Format
mmc_status_t R_MMCIF_Close(
 uint32_t channel
)

Parameters
channel

Channel number - The number of the MMCIF channel used (numbering starts at 0)

Return Values
MMC_SUCCESS Successful operation
MMC_ERR General error

Properties
A prototype declaration for this function appears in r_mmcif_rx_if.h.

Description
This function terminates all MMCIF driver processing and releases the resources for the MMCIF channel
specified in the argument channel.

That MMCIF channel is set to the module stop state.

After this function is called, the insertion interrupt will be in the disabled state.

The working area specified with the R_MMCIF_Open() function is not used after this function has been
executed. This are may be used for other purposes.

Example
/* ==== Please add the processing to set the pins. ==== */

if (R_MMCIF_Close(MMC_CH0) != MMC_SUCCESS)
{
 /* Error */
}

Special Notes
The pins must be set up after this function is called. See section 4.5, MMC card Removal and Power-Off
Timing, for details. Before running this function, driver open processing must be performed by the
R_MMCIF_Open() function.

Note that the error code cannot be acquired with the R_MMCIF_Get_ErrCode() function.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 33 of 102
Mar.15.25

R_MMCIF_Get_CardDetection()
This function verifies the MMC Card insertion state.

Format
mmc_status_t R_MMCIF_Get_CardDetection(
 uint32_t channel
)

Parameters
channel

Channel number - The number of the MMCIF channel used (numbering starts at 0)

Return Values
MMC_SUCCESS The MMC_CD pin was at the low level or card
 detection was invalid.
MMC_ERR The MMC_CD pin was at the high level.

Properties
A prototype declaration for this function appears in r_mmcif_rx_if.hh.

Description
This function verifies the MMC card insertion state.

<When MMC_CFG_CHx_CD_ACTIVE == 1 (card detection enabled)>
If the MMC_CD pin is low, this function returns MMC_SUCCESS.
If the MMC_CD pin is high, this function returns MMC_ERR.

<When MMC_CFG_CHx_CD_ACTIVE == 0 (card detection disabled)>
This function will always return MMC_SUCCESS.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 34 of 102
Mar.15.25

Example
mmc_status_t r_mmcif_pin_check_card_detection(uint32_t channel, uint8_t
derection)
{
#if (MMC_CFG_DRIVER_MODE & MMC_MODE_MMC)
 mmc_status_t ret_old = MMC_ERR;
 mmc_status_t ret_new = MMC_ERR;
 uint32_t chat_cnt = MMC_CFG_CHAT_CNT;
 uint32_t loop_cnt = MMC_CHAT_LOOP_CNT;

 /* ==== Check card insertion ==== */
 if (MMC_CD_REMOVE == derection)
 {
 ret_old = MMC_SUCCESS;
 ret_new = MMC_SUCCESS;
 }
 do
 {
 ret_new = R_MMCIF_Get_CardDetection(MMC_CH0);
 if (ret_new != ret_old) /* Status change */
 {
 if (((MMC_SUCCESS == ret_new) && (MMC_CD_INSERT == derection)) ||
 ((MMC_SUCCESS != ret_new) && (MMC_CD_REMOVE == derection)))
 {
 chat_cnt--;
 if (0 == chat_cnt)
 {
 return MMC_SUCCESS;
 }

 if (true != r_mmcif_pin_softwaredelay(1, MMC_DELAY_MILLISECS))
 {
 return MMC_ERR;
 }
 }
 else
 {
 chat_cnt = MMC_CFG_CHAT_CNT;
 }
 }
 else
 {
 chat_cnt = MMC_CFG_CHAT_CNT;
 }
 loop_cnt--;
 }
 while(0 != loop_cnt);
 return MMC_ERR;
#else
 return MMC_SUCCESS;
#endif /* (MMC_CFG_DRIVER_MODE & MMC_MODE_MMC) */
}

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 35 of 102
Mar.15.25

Special Notes
When using the card insertion detection function, pin setting is necessary after this function is executed. See
section 4.4, MMC card Insertion and Power-On Timing, for details. Before running this function, driver open
processing must be performed by the R_MMCIF_Open() function.

When using with card removal detection, pin setting is required before this function is executed. See section
4.5, MMC card Removal and Power-Off Timing, for details.

The MMC_CD pin, which is connected to the MMC card socket CD pin, is used as the MMC card insertion
detection pin.

In this MMCIF, there is no hardware function to remove the chattering generated when an MMC card is
inserted. Users should implement card detection processing that takes chattering into consideration based
on this example.

Note that the error code cannot be acquired with the R_MMCIF_Get_ErrCode() function.

See section 4.6, Hardware Settings, for MMC_CD pin handling methods.

After an MMC card has been detected, the processing that provides the power supply voltage to the MMC
card must be performed.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 36 of 102
Mar.15.25

R_MMCIF_Mount()
This function initializes the MMC and transitions the state from the mountable state to the driver idle state.

Format
mmc_status_t R_MMCIF_Mount(
 uint32_t channel,
 mmc_cfg_t *p_mmc_Config,
)

Parameters
channel

Channel number - The number of the MMCIF channel used (numbering starts at 0)
*p_mmc_Config

Structure that holds the operating settings
mode: The operating mode

The application should set the operating mode to the logical OR of each of the types shown as macro
definitions in Table 3.1, MMCIF Driver Operating Mode (mode).
voltage: The power supply voltage

Specify the voltage supplied to the MMC (For the setting values, see the macro definitions in Table 3.2,
Supply Voltage (voltage). An MMC that cannot operate at the specified supply voltage will not be
initialized. See section 1.4.2.3, Operating Voltage Settings When Initialization.

Table 3.1 MMCIF Driver Operating Mode (mode)

Type Macro Definition Value (Bits) Definition
Status verification type MMC_MODE_POLL 0x0000 Software polling

MMC_MODE_HWINT 0x0001 Hardware interrupt
Data transfer type MMC_MODE_SW 0x0000 Software transfers

MMC_MODE_DMA*1*4 0x0002 DMAC transfers*3
MMC_MODE_DTC*2*4 0x0004 DTC transfers*3

Media support type MMC_MODE_MMC 0x0000 MMC card
MMC_MODE_eMMC 0x0020 eMMC

MMC bus support type MMC_MODE_1BIT*5 0x0100 MMC mode 1-bit bus
MMC_MODE_4BIT*5 0x0400 MMC mode 4-bit bus
MMC_MODE_8BIT*5 0x0800 MMC mode 8-bit bus

Notes: 1. DMAC control software must be provided separately.
 2. DTC control software must be provided separately.
 3. Software transfers are performed by the library functions used.
 4. Do not set up MMC_MODE_DMA and MMC_MODE_DTC at the same time.
 5. Select one of MMC_MODE_1BIT, MMC_MODE_4BIT, and MMC_MODE_8BIT.
 When MMC_MODE_8BIT is selected, bus connection will be attempted in the order 8-bit → 4-bit

→ 1-bit bus by the bus test.
 When MMC_MODE_4BIT is selected, bus connection will be attempted in the order 4-bit → 1-bit

by the bus test.
 When MMC_MODE_1BIT is selected, the bus will be connected as a 1-bit bus by the bus test.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 37 of 102
Mar.15.25

Table 3.2 Supply Voltage (voltage)

Supply Voltage [V] Macro Definition Value (Bits)
2.7-2.8 MMC_VOLT_2_8 0x00008000
2.8-2.9 MMC_VOLT_2_9 0x00010000
2.9-3.0 MMC_VOLT_3_0 0x00020000
3.0-3.1 MMC_VOLT_3_1 0x00040000
3.1-3.2 MMC_VOLT_3_2 0x00080000
3.2-3.3 MMC_VOLT_3_3 0x00100000
3.3-3.4 MMC_VOLT_3_4 0x00200000
3.4-3.5 MMC_VOLT_3_5 0x00400000
3.5-3.6 MMC_VOLT_3_6 0x00800000

Table 3.3 MMCIF Control Pins

Pin Name eMMC
1-Bit Mode

eMMC
4-Bit Mode

eMMC
8-Bit Mode

MMC Card
1-Bit Mode

MMC Card
4-Bit Mode

MMC Card
8-Bit Mode

MMC_CLK MMCIF control MMCIF control MMCIF control MMCIF control MMCIF control MMCIF control
MMC_CMD MMCIF control MMCIF control MMCIF control MMCIF control MMCIF control MMCIF control
MMC_D0 MMCIF control MMCIF control MMCIF control MMCIF control MMCIF control MMCIF control
MMC_D1 MMCIF control MMCIF control MMCIF control MMCIF control MMCIF control MMCIF control
MMC_D2 MMCIF control MMCIF control MMCIF control MMCIF control MMCIF control MMCIF control
MMC_D3 MMCIF control MMCIF control MMCIF control MMCIF control MMCIF control MMCIF control
MMC_D4 Not used Not used MMCIF control Not used Not used MMCIF control
MMC_D5 Not used Not used MMCIF control Not used Not used MMCIF control
MMC_D6 Not used Not used MMCIF control Not used Not used MMCIF control
MMC_D7 Not used Not used MMCIF control Not used Not used MMCIF control
MMC_CD Not used Not used Not used MMCIF control MMCIF control MMCIF control

Return Values
MMC_SUCCESS Successful operation
MMC_SUCCESS_LOCKED_CARD Successful operation, and, furthermore, MMC is in
 the locked state
Other than the above Error termination (See the error code for details.)

Properties
A prototype declaration for this function appears in r_mmcif_rx_if.h.

Description
This function performs MMC mount processing. Execute this function after detecting an MMC card.

When the return value is MMC_SUCCESS, the MMC will have transitioned to the transfer state (tran) and
MMC read and write access will be possible. When the return value is MMC_SUCCESS_LOCKED_CARD,
the MMC will have transitioned to the transfer state (tran) but MMC read and write access will not be possible.
The locked state must be cleared by other means.

Example
mmc_cfg_t mmc_Config;

/* ==== Please add the processing to set the pins. ==== */

mmc_Config.mode = MMC_CFG_DRIVER_MODE;
mmc_Config.voltage = MMC_VOLT_3_3;
if (R_MMCIF_Mount(MMC_CH0, &mmc_Config) != MMC_SUCCESS)
{
 /* Error */
}

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 38 of 102
Mar.15.25

Special Notes
This MMCIF driver discriminates between High-speed mode and Backward-compatible mode when mounting.

The pins must be set up before executing this function. See section 4.4, MMC card Insertion and Power-On
Timing, for details. Also, initialization using the R_MMCIF_Open() function is required before executing this
function.

If this function returns an error, after setting the hardware to the unmounted state by calling the
R_MMCIF_Unmount() function, perform the mount processing again.

After mounting has completed normally, unmounting must be performed before performing another mount
operation.

When voltage in p_mmc_Config is set to an arbitrary value in the range 2.7 to 3.6 V, the output voltage will
be taken to be in the 2.7 to 3.6 V range.

If the R_MMCIF_Cd_Int() function is used, set MMC_MODE_HWINT as the p_mmc_Config mode status.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 39 of 102
Mar.15.25

R_MMCIF_Unmount()
This function clears the MMC mounted state and transitions from the transfer state to the state from which
the driver can enter the idle state.

Format
mmc_status_t R_MMCIF_Unmount(
 uint32_t channel
)

Parameters
channel

Channel number - The number of the MMCIF channel used (numbering starts at 0)

Return Values
MMC_SUCCESS Successful operation
MMC_ERR General error

Properties
A prototype declaration for this function appears in r_mmcif_rx_if.h.

Description
This function performs MMC unmount processing. If this function is called in the transfer state, it initializes
the MMC extended CSD register.

For MMC card, it switches to the MMC card removable state. Note that even if this function has been called
and the MMC card mounted state has been cleared, the MMC card insertion interrupt and the MMC card
insertion verification interrupt callback function remain enabled.

Example
if (R_MMCIF_Unmount(MMC_CH0) != MMC_SUCCESS)
{
 /* Error */
}

/* ==== Please add the processing to set the pins. ==== */

Special Notes
If the MMC card is removed after this function has been called, the pins must be set up. See section 4.5,
MMC card Removal and Power-Off Timing, for details. Also, initialization using the R_MMCIF_Open()
function is required before executing this function.

Note that the error code cannot be acquired with the R_MMCIF_Get_ErrCode() function.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 40 of 102
Mar.15.25

R_MMCIF_Read_Memory()
This function performs read processing.

Format
mmc_status_t R_MMCIF_Read_Memory(
 uint32_t channel,
 mmc_access_t *p_mmc_Access
)

Parameters
channel

Channel number - The number of the MMCIF channel used (numbering starts at 0)
*p_mmc_Access

Access information structure
*p_buff: Read buffer pointer

This must be set to an address on a 4-byte boundary.
lbn: Read start block number
cnt: Block count

The maximum value that this argument may be set to is 65,535.
mode: Transfer mode (Does not need to be set and may not be changed)
rw_mode: Read mode

The setting values are shown in Table 3.4. For eMMC, specify MMC_PRE_DEF. For MMC card,
specify MMC_OPEN_END.

Table 3.4 MMCIF Driver Read Mode (rw_mode)

Type Macro Definition Value (Bits) Target MMC
Open-ended MMC_OPEN_END 0x00000000 MMC card
Pre-defined MMC_PRE_DEF 0x00000001 eMMC

Return Values
MMC_SUCCESS Successful operation
Other than the above Error termination (See the error code for details.)

Properties
A prototype declaration for this function appears in r_mmcif_rx_if.h.

Description
Reads the number of blocks of data specified by cnt in the argument p_mmc_Access starting at the block
specified by lbn in the argument p_mmc_Access and stores that data in the buffer specified by p_buff in the
argument p_mmc_Access.

If MMC card removal is detected at the start of this function’s execution, processing is interrupted and
processing is terminated and an error is returned.

If a forced stop request due to an R_MMCIF_Control() function MMC_SET_STOP (forced stop request)
command is detected at the start of this function’s execution, the forced stop is cleared and processing is
terminated and an error is returned.

The following commands are used to read out the block data.

First block: READ_SINGLE_BLOCK command (CMD17)
Second and later blocks: READ_MULTIPLE_BLOCK command (CMD18)

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 41 of 102
Mar.15.25

Example
#define TEST_BLOCK_CNT (4)
#define BLOCK_NUM (512)

mmc_access_t mmc_Access;
uint32_t g_test_r_buff[(TEST_BLOCK_CNT*BLOCK_NUM)/sizeof(uint32_t)];

test_data_clear(&g_def_buf[0], TEST_BLOCK_CNT);
mmc_Access.p_buff = (uint8_t *)&g_test_r_buff[0];
mmc_Access.lbn = 0x10000000;
mmc_Access.cnt = TEST_BLOCK_CNT;
mmc_Access.rw_mode = MMC_PRE_DEF;

if(R_MMCIF_Read_Memory(MMC_CH0, &mmc_Access) != MMC_SUCCESS)
{
 /* Error */
}

Special Notes
Both initialization processing by the R_MMCIF_Open() function and mount processing by the
R_MMCIF_Mount() function are required prior to executing this function.

We recommend repeating the read operation when this function terminates with a read error.

If the number of blocks to be transferred exceeds 65,535, break up the read into multiple function calls. This
issue requires care when this functionality is called from upper layer application programs such as the FAT
file system.

Note that the size of a block is 512 bytes.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 42 of 102
Mar.15.25

R_MMCIF_Read_Memory_Software_Trans()
This function performs read processing (software transfers).

Format
mmc_status_t R_MMCIF_Read_Memory_Software_Trans(
 uint32_t channel,
 mmc_access_t *p_mmc_Access
)

Parameters
channel

Channel number - The number of the MMCIF channel used (numbering starts at 0)
*p_mmc_Access

Access information structure
*p_buff: Read buffer pointer

There are no address boundary restrictions. We recommend using an address that falls on a 4-byte
boundary for faster processing.

lbn: Read start block number
cnt: Block count

The maximum value that this argument may be set to is 65,535.
mode: Transfer mode (Does not need to be set and may not be changed)
rw_mode: Read mode

The setting values are shown in Table 3.5. For eMMC, specify MMC_PRE_DEF. For MMC card,
specify MMC_OPEN_END.

Table 3.5 MMCIF Driver Read Mode (rw_mode)

Type Macro Definition Value (Bits) Target MMC
Open-ended MMC_OPEN_END 0x00000000 MMC card
Pre-defined MMC_PRE_DEF 0x00000001 eMMC

Return Values
MMC_SUCCESS Successful operation
Other than the above Error termination (See the error code for details.)

Properties
A prototype declaration for this function appears in r_mmcif_rx_if.h.

Description
Reads the number of blocks of data specified by cnt in the argument p_mmc_Access starting at the block
specified by lbn in the argument p_mmc_Access and stores that data in the buffer specified by p_buff in the
argument p_mmc_Access.

Software transfer is used, regardless of the operating mode data transfer setting at command processing
time.

If MMC card removal is detected at the start of this function’s execution, processing is interrupted and
processing is terminated and an error is returned.

If a forced stop request due to an R_MMCIF_Control() function MMC_SET_STOP (forced stop request)
command is detected at the start of this function’s execution, the forced stop is cleared and processing is
terminated and an error is returned.

The following commands are used to read out the block data.

First block: READ_SINGLE_BLOCK command (CMD17)
Second and later blocks: READ_MULTIPLE_BLOCK command (CMD18)

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 43 of 102
Mar.15.25

Example
#define TEST_BLOCK_CNT (4)
#define BLOCK_NUM (512)

mmc_access_t mmc_Access;
uint32_t g_test_w_buff[(TEST_BLOCK_CNT*BLOCK_NUM)/sizeof(uint32_t)];

test_data_set(&g_def_buf[0], TEST_BLOCK_CNT);
mmc_Access.p_buff = (uint8_t *)&g_test_w_buff[0];
mmc_Access.lbn = 0x10000000;
mmc_Access.cnt = TEST_BLOCK_CNT;
mmc_Access.rw_mode = MMC_PRE_DEF;

if(R_MMCIF_Write_Memory(MMC_CH0, &mmc_Access) != MMC_SUCCESS)
{
 /* Error */
}

Special Notes
Both initialization processing by the R_MMCIF_Open() function and mount processing by the
R_MMCIF_Mount() function are required prior to executing this function.

We recommend repeating the read operation when this function terminates with a read error.

If the number of blocks to be transferred exceeds 65,535, break up the read into multiple function calls. This
issue requires care when this functionality is called from upper layer application programs such as the FAT
file system.

Note that the size of a block is 512 bytes.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 44 of 102
Mar.15.25

R_MMCIF_Write_Memory()
This function performs write processing.

Format
mmc_status_t R_MMCIF_Write_Memory(
 uint32_t channel,
 mmc_access_t *p_mmc_Access
)

Parameters
channel

Channel number - The number of the MMCIF channel used (numbering starts at 0)
*p_mmc_Access

Access information structure
*p_buff: Write buffer pointer

This must be set to an address on a 4-byte boundary.
lbn: Write start block number
cnt: Block count

The maximum value that this argument may be set to is 65,535.
mode: Transfer mode (Does not need to be set and may not be changed)
rw_mode: Write mode

The setting values are shown in Table 3.6. For eMMC, specify MMC_PRE_DEF. For MMC card,
specify MMC_OPEN_END.

Table 3.6 MMCIF Driver Read Mode (rw_mode)

Type Macro Definition Value (Bits) Target MMC
Open-ended MMC_OPEN_END 0x00000000 MMC card
Pre-defined MMC_PRE_DEF 0x00000001 eMMC

Return Values
MMC_SUCCESS Successful operation
Other than the above Error termination (See the error code for details.)

Properties
A prototype declaration for this function appears in r_mmcif_rx_if.h.

Description
Writes the data from p_buff in the argument p_mmc_Access to an area with the number of blocks set by cnt
in the argument p_mmc_Access. That area starts at the block specified by lbn in the argument
p_mmc_Access.

If MMC card removal is detected at the start of this function’s execution, processing is interrupted and
processing is terminated and an error is returned.

If a forced stop request due to an R_MMCIF_Control() function MMC_SET_STOP (forced stop request)
command is detected at the start of this function’s execution, the forced stop is cleared and processing is
terminated and an error is returned.

The following commands are used to write out the block data.

First block: WRITE_SINGLE_BLOCK command (CMD24)
Second and later blocks: WRITE_MULTIPLE_BLOCK command (CMD25)

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 45 of 102
Mar.15.25

Example
#define TEST_BLOCK_CNT (4)
#define BLOCK_NUM (512)

mmc_access_t mmc_Access;
uint32_t g_test_w_buff[(TEST_BLOCK_CNT*BLOCK_NUM)/sizeof(uint32_t)];

test_data_set(&g_def_buf[0], TEST_BLOCK_CNT);
mmc_Access.p_buff = (uint8_t *)&g_test_w_buff[0];
mmc_Access.lbn = 0x10000000;
mmc_Access.cnt = TEST_BLOCK_CNT;
mmc_Access.rw_mode = MMC_PRE_DEF;

if(R_MMCIF_Write_Memory(MMC_CH0, &mmc_Access) != MMC_SUCCESS)
{
 /* Error */
}

Special Notes
Both initialization processing by the R_MMCIF_Open() function and mount processing by the
R_MMCIF_Mount() function are required prior to executing this function.

We recommend repeating the write operation when this function terminates with a write error.

If the number of blocks to be transferred exceeds 65,535, break up the read into multiple function calls. This
issue requires care when this functionality is called from upper layer application programs such as the FAT
file system.

Note that the size of a block is 512 bytes.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 46 of 102
Mar.15.25

R_MMCIF_Write_Memory_Software_Trans()
This function performs write processing (software transfers).

Format
mmc_status_t R_MMCIF_Write_Memory_Software_Trans(
 uint32_t channel,
 mmc_access_t *p_mmc_Access
)

Parameters
channel

Channel number - The number of the MMCIF channel used (numbering starts at 0)
*p_mmc_Access

Access information structure
*p_buff: Write buffer pointer

There are no address boundary restrictions. We recommend using an address that falls on a 4-byte
boundary for faster processing.

lbn: Write start block number
cnt: Block count

The maximum value that this argument may be set to is 65,535.
mode: Transfer mode (Does not need to be set and may not be changed)
rw_mode: Write mode

The setting values are shown in Table 3.7. For eMMC, specify MMC_PRE_DEF. For MMC card,
specify MMC_OPEN_END.

Table 3.7 MMCIF Driver Read Mode (rw_mode)

Type Macro Definition Value (Bits) Target MMC
Open-ended MMC_OPEN_END 0x00000000 MMC card
Pre-defined MMC_PRE_DEF 0x00000001 eMMC

Return Values
MMC_SUCCESS Successful operation
Other than the above Error termination (See the error code for details.)

Properties
A prototype declaration for this function appears in r_mmcif_rx_if.h.

Description
Writes the data from p_buff in the argument p_mmc_Access to an area with the number of blocks set by cnt
in the argument p_mmc_Access. That area starts at the block specified by lbn in the argument
p_mmc_Access.

Software transfer is used, regardless of the operating mode data transfer setting at command processing
time.

If MMC card removal is detected at the start of this function’s execution, processing is interrupted and
processing is terminated and an error is returned.

If a forced stop request due to an R_MMCIF_Control() function MMC_SET_STOP (forced stop request)
command is detected at the start of this function’s execution, the forced stop is cleared and processing is
terminated and an error is returned.

The following commands are used to write out the block data.

First block: WRITE_SINGLE_BLOCK command (CMD24)
Second and later blocks: WRITE_MULTIPLE_BLOCK command (CMD25)

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 47 of 102
Mar.15.25

Example
#define TEST_BLOCK_CNT (4)
#define BLOCK_NUM (512)

mmc_access_t mmc_Access;
uint32_t g_test_w_buff[(TEST_BLOCK_CNT*BLOCK_NUM)/sizeof(uint32_t)];

test_data_set(&g_def_buf[0], TEST_BLOCK_CNT);
mmc_Access.p_buff = (uint8_t *)&g_test_w_buff[0];
mmc_Access.lbn = 0x10000000;
mmc_Access.cnt = TEST_BLOCK_CNT;
mmc_Access.rw_mode = MMC_PRE_DEF;

if(R_MMCIF_Write_Memory_Software_Trans(MMC_CH0, &mmc_Access) != MMC_SUCCESS)
{
 /* Error */
}

Special Notes
Both initialization processing by the R_MMCIF_Open() function and mount processing by the
R_MMCIF_Mount() function are required prior to executing this function.

We recommend repeating the write operation when this function terminates with a write error.

If the number of blocks to be transferred exceeds 65,535, break up the read into multiple function calls. This
issue requires care when this functionality is called from upper layer application programs such as the FAT
file system.

Note that the size of a block is 512 bytes.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 48 of 102
Mar.15.25

R_MMCIF_Control()
This function performs driver control processing.

Format
mmc_status_t R_MMCIF_Control(
 uint32_t channel,
 mmc_cmd_t *p_mmc_Cmd
)

Parameters
channel

Channel number - The number of the MMCIF channel used (numbering starts at 0)
*p_mmc_Cmd

Control information structure
cmd: Command macro definition
mode: Mode
*p_buff: Transfer buffer pointer
size: Transfer size

Return Values
MMC_SUCCESS Successful operation
Other than the above Error termination (See the error code for details.)

Properties
A prototype declaration for this function appears in r_mmcif_rx_if.h.

Description
This is an MMC control utility.

Table 3.8, Commands, lists the commands that can be controlled. These commands are described
individually starting on the following page.

Table 3.8 Commands

Command macro
Definition
cmd

Mode

mode

Transfer
Content
*p_buff

Transfer Size

size

Control Performed

MMC_SET_STOP
(Forced stop request
command)

Setting invalid Setting invalid Setting invalid Transitions to the forced stop request
state
When a forced stop request
command due to this function call is
issued during read or write
processing, a transfer processing
forced stop is requested.

Example
Examples are shown for each command on the following pages.

Special Notes
Before running this function, driver open processing must be performed by the R_MMCIF_Open() function
and initialization by the R_MMCIF_Mount() function.

Note that the error code cannot be acquired with the R_MMCIF_Get_ErrCode() function.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 49 of 102
Mar.15.25

(1) MMC_SET_STOP
This function forcibly stops read/write processing.

Return Values
MMC_SUCCESS Successful operation

Description
This function requests a forced stop and transitions the MMCIF driver to the forced stop state. This function
can be called from within an interrupt handler when an application program wants to stop processing.

When there is a data transfer to or from the MMC in progress, a CMD12 is issued to transition the MMC to
the transfer state (tran), the read/write processing for the transfer in progress is forcibly terminated, and an
error is returned.

Note that if this function is executed during write processing, a CMD12 is issued and the MMC may transition
to the busy state. As a result, there are cases where an error is returned when a next read or write function is
called. In such cases, we recommend performing the read or write processing again. If this occurs during a
write, it will be necessary to wait until the MMC is in the ready state.

Also, if a forced stop request is issued with a timing such that it occurs after a transfer has completed, the
processing will return with the MMC still in the forced stop request state.

Example
mmc_cmd_t mmc_Cmd;

mmc_Cmd.cmd = MMC_SET_STOP;
mmc_Cmd.mode = 0;
mmc_Cmd.p_buff = 0;
mmc_Cmd.size = 0;

if (R_MMCIF_Control(MMC_CH0, &mmc_Cmd) != MMC_SUCCESS)
{
 /* Error */
}

Special Notes
When a forced stop is performed during write processing, the MMC data is not guaranteed.

The following are the forced stop request checkpoints in library functions.

(1) After read/write processing has started, before any commands are issued to the MMC.
(2) During software transfers, after the completion of transfer of a 512-byte block unit and before transfer of

the next block.
(3) Forced stop requests are always accepted during DMAC or DTC transfers.

Also, a forced stop request clear is performed in the following cases.

(1) When forced stop processing is performed during execution of the R_MMCIF_Read_Memory() or
R_MMCIF_Write_Memory()* function.

(2) When the R_MMCIF_Read_Memory() or R_MMCIF_Write_Memory()* function is called in the forced stop
state. In this case, the forced stop request is detected at the start of processing, the processing is
stopped, and an error is returned.

Note: * The R_MMCIF_Read_Memory_Software_Trans() and

R_MMCIF_Write_Memory_Software_Trans() functions operate similarly.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 50 of 102
Mar.15.25

R_MMCIF_Get_ModeStatus()
This function acquires the transfer mode status.

Format
mmc_status_t R_MMCIF_Get_ModeStatus(
 uint32_t channel,
 uint8_t *p_mode
)

Parameters
channel

Channel number - The number of the MMCIF channel used (numbering starts at 0)
*p_mode

Mode status information storage pointer (1 byte). See the macro definitions in Table 3.1, MMCIF Driver
Operating Mode (mode) for the values of this parameter.

Return Values
MMC_SUCCESS Successful operation
MMC_ERR General error

Properties
A prototype declaration for this function appears in r_mmcif_rx_if.h.

Description
This function acquires the transfer mode status and stores it in the mode status information storage pointer.

Example
uint8_t * p_mode;

if(R_MMCIF_Get_ModeStatus(MMC_CH0, p_mode) != MMC_SUCCESS)
{
 /* Error */
}

Special Notes
Both initialization processing by the R_MMCIF_Open() function and mount processing by the
R_MMCIF_Mount() function are required prior to executing this function.

Note that the error code cannot be acquired with the R_MMCIF_Get_ErrCode() function.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 51 of 102
Mar.15.25

R_MMCIF_Get_CardStatus()
This function acquires the card status information.

Format
mmc_status_t R_MMCIF_Get_CardStatus(
 uint32_t channel,
 mmc_card_status_t *p_mmc_CardStatus
)

Parameters
channel

Channel number - The number of the MMCIF channel used (numbering starts at 0)
*p_mmc_CardStatus

Card status information structure pointer
card_sector_size: User area block count
csd_structure: the CSD_STRUCTURE[127:126] field in the CSD register

0: CSD version No. 1.0
1: CSD version No. 1.1
2: CSD version No. 1.2 (Version 4.1-4.2-4.3)
3: Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register

speed_mode: Speed mode
<Corresponding MMC support mode> <Current transfer mode>
bit 5-4 bit 1-0
00: Backward-compatible mode 00: Backward-compatible mode
01: High-speed mode 26 MHz (Maximum) 01: High-speed mode 26 MHz (Maximum)
11: High-speed mode 52 MHz (Maximum) 11: High-speed mode 52 MHz (Maximum)

csd_spec: the SPEC_VERS[125:122] field in the CSD register
0: MMC_SPEC_10 /* MMC system spec: 1.0-1.2 */
1: MMC_SPEC_14 /* MMC system spec: 1.4 */
2: MMC_SPEC_20 /* MMC system spec: 2.0-2.2 */
3: MMC_SPEC_30 /* MMC system spec: 3.1-3.2-3.31 */
4: MMC_SPEC_40 /* MMC system spec: 4.0-4.1-4.2-4.3-4.4-4.41 */

if_mode: Data bus width mode
0: 1-bit
1: 4-bit
2: 8-bit

density_type: Access mode (OCR bit[30:29])
0: Byte mode
1: Sector mode

Return Values
MMC_SUCCESS Successful operation
MMC_ERR General error

Properties
A prototype declaration for this function appears in r_mmcif_rx_if.h.

Description
This function gets the MMC card status information and stores it in a card status information structure.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 52 of 102
Mar.15.25

Example
mmc_card_status_t mmc_CardStatus;

if (R_MMCIF_Get_CardStatus(MMC_CH0, &mmc_CardStatus) != MMC_SUCCESS)
{
 /* Error */
}

Special Notes
Both initialization processing by the R_MMCIF_Open() function and mount processing by the
R_MMCIF_Mount() function are required prior to executing this function.

Note that the error code cannot be acquired with the R_MMCIF_Get_ErrCode() function.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 53 of 102
Mar.15.25

R_MMCIF_Get_CardInfo()
This function acquires the MMC register information.

Format
mmc_status_t R_MMCIF_Get_CardInfo(
 uint32_t channel,
 mmc_card_reg_t *p_mmc_CardReg
)

Parameters
channel

Channel number - The number of the MMCIF channel used (numbering starts at 0)
*p_mmc_CardReg

MMC register information structure pointer
ocr[1]
 OCR information
cid[4]
 CID information
csd[4]
 CSD information
dsr[1]
 DSR information
rca[1]
 RCA information

Return Values
MMC_SUCCESS Successful operation
MMC_ERR General error

Properties
A prototype declaration for this function appears in r_mmcif_rx_if.h.

Description
This function acquires the MMC register information and stores it in the MMC register information structure.

Example
mmc_card_reg_t mmc_CardReg;

if (R_MMCIF_Get_CardInfo(MMC_CH0, &mmc_CardReg) != MMC_SUCCESS)
{
 /* Error */
}

Special Notes
Both initialization processing by the R_MMCIF_Open() function and mount processing by the
R_MMCIF_Mount() function are required prior to executing this function.

Note that the error code cannot be acquired with the R_MMCIF_Get_ErrCode() function.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 54 of 102
Mar.15.25

R_MMCIF_Int_Handler0()
This function is the MMCIF interrupt handler.

Format
void R_MMCIF_Int_Handler0(
 void *vect
)

Parameters
*vect

Vector table

Return Values
None

Properties
A prototype declaration for this function appears in r_mmcif_rx_if.h.

Description
This function is the interrupt handler for the MMCIF driver.

This function is already embedded in the system as the interrupt factor processing routine for the MMCIF.

When an MMC card insertion interrupt setup callback function and a status verification interrupt callback
function are registered, these callback functions will be called from this function.

Example
Since this function is already embedded in the system, no user settings are required.

Special Notes
Both initialization processing by the R_MMCIF_Open() function and mount processing by the
R_MMCIF_Mount() function are required prior to executing this function.

Note that the error code cannot be acquired with the R_MMCIF_Get_ErrCode() function.

When other channels are used, interrupt handlers must be created for each channel in a similar manner.
(Example: R_MMCIF_Int_Handler1() for channel 1)

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 55 of 102
Mar.15.25

R_MMCIF_Int_Handler1()
This function is the MMCIF interrupt handler.

Format
void R_MMCIF_Int_Handler1(
 void *vect
)

Parameters
*vect

Vector table

Return Values
None

Properties
A prototype declaration for this function appears in r_mmcif_rx_if.h.

Description
This function is the interrupt handler for the MMCIF driver.

This function is already embedded in the system as the interrupt factor processing routine for the MMCIF.

When an MMC card insertion interrupt setup callback function and a status verification interrupt callback
function are registered, these callback functions will be called from this function.

Example
Since this function is already embedded in the system, no user settings are required.

Special Notes
Both initialization processing by the R_MMCIF_Open() function and mount processing by the
R_MMCIF_Mount() function are required prior to executing this function.

Note that the error code cannot be acquired with the R_MMCIF_Get_ErrCode() function.

When other channels are used, interrupt handlers must be created for each channel in a similar manner.
(Example: R_MMCIF_Int_Handler0() for channel 0)

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 56 of 102
Mar.15.25

R_MMCIF_Cd_Int()
This function sets up the insertion interrupt (including registering the insertion interrupt callback function).

Format
mmc_status_t R_MMCIF_Cd_Int(
 uint32_t channel,
 int32_t enable,
 mmc_status_t (*callback)(int32_t)
)

Parameters
channel

Channel number - The number of the MMCIF channel used (numbering starts at 0)
enable

Specifies enable/disable of the MMC card insertion interrupt.
When MMC_CD_INT_ENABLE is specified, the MMC card insertion interrupt is enabled.
When MMC_CD_INT_DISABLE is specified, the MMC card insertion interrupt is disabled.

callback
Callback function to be registered.
If a null pointer is specified, no callback function is registered. If a callback function is to be used, execute
this function to register the callback function before an MMC card is inserted.
The MMC_CD pin detection state is stored in the (int32_t).

0: MMC_CD_INSERT (A falling edge on the MMC_CD pin was detected)
1: MMC_CD_REMOVE (A rising edge on the MMC_CD pin was detected)

Return Values
MMC_SUCCESS Successful operation
MMC_ERR General error

Properties
A prototype declaration for this function appears in r_mmcif_rx_if.h.

Description
This function sets up the MMC card insertion interrupt and registers a callback function.

The callback function registered by this function is called as a subroutine from the interrupt handler when an
MMC card insertion interrupt occurs.

Note that the MMC card insertion state can be verified with the R_MMCIF_Get_CardDetection() function
regardless of the enabled/disabled state of the MMC card insertion interrupt.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 57 of 102
Mar.15.25

Example
uint32_t g_cd_int;

/* Callback function */
mmc_status_t r_mmcif_cd_callback(int32_t cd)
{
 g_cd_int = 1;
 /* ==== Disable card detect interrupt ==== */
 if (R_MMCIF_Cd_Int(MMC_CH0, MMC_CD_INT_DISABLE, 0) != MMC_SUCCESS)
 {
 /* Error */
 }
 return MMC_SUCCESS;
}

/* main */
void main(void)
{
 if (R_MMCIF_Cd_Int(MMC_CH0, MMC_CD_INT_ENABLE, r_mmcif_cd_callback) !=
MMC_SUCCESS)
 {
 /* Error */
 }

 /* ==== Check card insertion ==== */
 g_cd_int = 0;
 while (1)
 {
 if (1 == g_cd_int)
 {
 g_cd_int = 0;
 if (r_mmcif_pin_check_card_detection(MMC_CH0, MMC_CD_INSERT) ==
MMC_SUCCESS)
 {
 /* ==== Enable card detect interrupt ==== */
 if (R_MMCIF_Cd_Int(MMC_CH0, MMC_CD_INT_ENABLE,
r_mmcif_cd_callback) != MMC_SUCCESS)
 {
 /* Error */
 }
 break;
 }
 else
 {
 /* ==== Enable card detect interrupt ==== */
 if (R_MMCIF_Cd_Int(MMC_CH0, MMC_CD_INT_ENABLE,
r_mmcif_cd_callback) != MMC_SUCCESS)
 {
 /* Error */
 }
 }
 }
 else
 {
 /* Do nothing. */
 }
 }
}

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 58 of 102
Mar.15.25

Special Notes
To enable card detection, set #define MMC_CFG_CHx_CD_ACTIVE to 1.

Initialization by the R_MMCIF_Open() function is required before this function is executed.

After this function has been executed, the MMC card insertion interrupt will be caused by an MMC card
insertion.

Note that the error code cannot be acquired with the R_MMCIF_Get_ErrCode() function.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 59 of 102
Mar.15.25

R_MMCIF_IntCallback()
This function registers an MMC protocol status interrupt callback function.

Format
mmc_status_t R_MMCIF_IntCallback(
 uint32_t channel,
 mmc_status_t (*callback)(int32_t)
)

Parameters
channel

Channel number - The number of the MMCIF channel used (numbering starts at 0)
callback

Callback function to be registered
If a null pointer is specified, no callback function is registered. If a callback function is to be used, register
a callback function before the R_MMCIF_Mount() function is executed.
The value 0 is always stored in (int32_t).

Return Values
MMC_SUCCESS Successful operation
MMC_ERR General error

Properties
A prototype declaration for this function appears in r_mmcif_rx_if.h.

Description
This function registers an MMC protocol status interrupt callback function.

The callback function registered by this function is called as a subroutine from the interrupt handler when an
interrupt occurs due to a change in the MMC protocol status (ACCIO or ERRIO).

Example
/* Callback function */
mmc_status_t r_mmcif_callback(int32_t cd)
{
 /* ACCIO, ERRIO */
 return MMC_SUCCESS;
}

if (R_MMCIF_IntCallback(MMC_CH0, r_mmcif_callback) != MMC_SUCCESS)
{
 /* Error */
}

Special Notes
Initialization by the R_MMCIF_Open() function is required before this function is executed.

The stack wait state clear operation and other processing is performed in registered callback function.

The callback function registered by this function differs from the MMC card insertion interrupt callback
function.

The callback function registered by this function is not called when an MMC card insertion interrupt occurs.

Note that the error code cannot be acquired with the R_MMCIF_Get_ErrCode() function.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 60 of 102
Mar.15.25

R_MMCIF_Get_ErrCode()
This function acquires the driver error codes.

Format
mmc_status_t R_MMCIF_Get_ErrCode(
 uint32_t channel
)

Parameters
channel

Channel number - The number of the MMCIF channel used (numbering starts at 0)

Return Values
Error code - See the error code documentation.

Properties
A prototype declaration for this function appears in r_mmcif_rx_if.h.

Description
This function returns the error codes that occur when the R_MMCIF_Mount(), R_MMCIF_Read_Memory(),
and R_MMCIF_Write_Memory() function* are executed. Note that the error code is cleared when a library
function is executed again.

Note: * The R_MMCIF_Read_Memory_Software_Trans() and
R_MMCIF_Write_Memory_Software_Trans() functions operate similarly.

Example
mmc_cfg_t mmc_Config;
mmc_status_t error_code = MMC_SUCCESS;

/* ==== Please add the processing to set the pins. ==== */

mmc_Config.mode = MMC_CFG_DRIVER_MODE;
mmc_Config.voltage = MMC_VOLT_3_3;
if (R_MMCIF_Mount(MMC_CH0, &mmc_Config) != MMC_SUCCESS)
{
 /* Error */
 error_code = R_MMCIF_Get_ErrCode(MMC_CH0);
}

Special Notes
Initialization by the R_MMCIF_Open() function is required before this function is executed.

Use this function when an application program needs to acquire the MMCIF driver error code.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 61 of 102
Mar.15.25

R_MMCIF_Get_BuffRegAddress()
This function acquires the address of the MMCIF data register (CEDATA).

Format
mmc_status_t R_MMCIF_Get_BuffRegAddress(
 uint32_t channel,
 uint32_t *p_reg_buff
)

Parameters
channel

Channel number - The number of the MMCIF channel used (numbering starts at 0)
*p_reg_buff

Data register (CEDATA) address pointer

Return Values
MMC_SUCCESS Successful operation
MMC_ERR General error

Properties
A prototype declaration for this function appears in r_mmcif_rx_if.h.

Description
This function acquires the address of the data register (CEDATA) and stores it in a buffer.

This function is used, for example, when specifying the data register address when using DMAC or DTC
transfers.

Example
uint32_t reg_buff = 0;

if (R_MMCIF_Get_BuffRegAddress(MMC_CH0, ®_buff) != MMC_SUCCESS)
{
 /* Error */
}

Special Notes
Initialization by the R_MMCIF_Open() function is required before this function is executed.

Note that the error code cannot be acquired with the R_MMCIF_Get_ErrCode() function.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 62 of 102
Mar.15.25

R_MMCIF_Get_ExtCsd()
This function acquires the MMC extended CSD information.

Format
mmc_status_t R_MMCIF_Get_ExtCsd(
 uint32_t channel,
 uint32_t *p_ext_csd_buffer
)

Parameters
channel

Channel number - The number of the MMCIF channel used (numbering starts at 0)
*p_ext_csd_buffer

Extended CSD receive buffer pointer (512 bytes)

Return Values
MMC_SUCCESS Successful operation
MMC_ERR General error

Properties
A prototype declaration for this function appears in r_mmcif_rx_if.h.

Description
This function stores the MMC extended CSD information in the argument p_ext_csd_buffer.

Example
uint8_t g_mmc_extcsd[512];

if (R_MMCIF_Get_ExtCsd(MMC_CH0, &g_mmc_extcsd[0]) != MMC_SUCCESS)
{
 /* Error */
}

Special Notes
Both initialization processing by the R_MMCIF_Open() function and mount processing by the
R_MMCIF_Mount() function are required prior to executing this function.

Note that the error code cannot be acquired with the R_MMCIF_Get_ErrCode() function.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 63 of 102
Mar.15.25

R_MMCIF_1ms_Interval()
This function increments the MMCIF driver’s internal timer counter.

Format
void R_MMCIF_1ms_Interval(
 void
)

Parameters
None

Return Values
None

Properties
A prototype declaration for this function appears in r_mmcif_rx_if.h.

Description
The internal timer counter is incremented each time this function is called.

Example
uint32_t g_cmt_channel;

void r_cmt_callback(void * pdata)
{
 uint32_t channel;

 channel = *((uint32_t *)pdata);
 if (channel == g_cmt_channel)
 {
 R_MMCIF_1ms_Interval();
 }
}

main()
{
 /* Create CMT timer */
 R_CMT_CreatePeriodic(1000, &r_cmt_callback, &g_cmt_channel); /* 1ms */
}

Special Notes
The application must call this function once each millisecond. However, this is not required if the timer
functionality has been replaced by the r_mmcif_dev_int_wait() and r_mmcif_dev_wait() functions in
r_mmcif_dev.c.

Note that the error code cannot be acquired with the R_MMCIF_Get_ErrCode() function.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 64 of 102
Mar.15.25

R_MMCIF_Set_DmacDtc_Trans_Flg()
This function sets the DMAC/DTC transfer complete flag.

Format
mmc_status_t R_MMCIF_Set_DmacDtc_Trans_Flg(
 uint32_t channel,
 uint32_t flg
)

Parameters
channel

Channel number - The number of the MMCIF channel used (numbering starts at 0)
flg

DMAC/DTC transfer complete flag - MMC_SET_TRANS_STOP

Return Values
MMC_SUCCESS Successful operation
MMC_ERR General error (channel error)

Properties
A prototype declaration for this function appears in r_mmcif_rx_if.h.

Description
This function sets the DMAC/DTC transfer complete flag.

Table 3.9, DMAC Transfer/DTC Transfer Flag Processing Methods, lists the processing methods for
handling the DMAC/DTC transfer complete flag.

Note that the DMAC/DTC transfer complete flag processing method differs depending on the transfer state.

For the DMAC, the application should set the MMC_SET_TRANS_STOP in the interrupt handler called when
a DMAC transfer completes and call this function.

For the DTC, no user processing is required to set MMC_SET_TRANS_STOP in the MMCIF MBFAI interrupt
handler.

If an error occurs during a transfer, the user code must set MMC_SET_TRANS_STOP, regardless of
whether DMAC or DTC is used and then call this function.

Table 3.9 DMAC Transfer/DTC Transfer Flag Processing Methods

Data Transfer On Successful Termination On Error Termination
DMAC transfer Transfer in progress

The user code should execute
R_MMCIF_Set_DmacDtc_Trans_Flg() in the
interrupt handler called when a DMAC
transfer completes and set the transfer
complete state.

Transfer in progress
The user code should execute
R_MMCIF_Set_DmacDtc_Trans_Fl
g() and set the transfer complete
state.

DTC transfer Transfer complete
(Transfer complete processing is performed
in the DTC handler)
No user processing is required.

As above

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 65 of 102
Mar.15.25

Example
<When the DMAC transfer completes successfully>

void r_dmaca_callback(void)
{
 R_MMCIF_Set_DmacDtc_Trans_Flg(MMC_CH0, MMC_SET_TRANS_STOP);
}

<When the DMAC transfer terminates with an error>

#define TEST_BLOCK_CNT (4)
#define BLOCK_NUM (512)

mmc_access_t mmc_Access;
uint32_t g_test_r_buff[(TEST_BLOCK_CNT*BLOCK_NUM)/sizeof(uint32_t)];

test_data_clear(&g_def_buf[0], TEST_BLOCK_CNT);
mmc_Access.p_buff = (uint8_t *)&g_test_r_buff[0];
mmc_Access.lbn = 0x10000000;
mmc_Access.cnt = TEST_BLOCK_CNT;
mmc_Access.rw_mode = MMC_PRE_DEF;

if(R_MMCIF_Read_Memory(MMC_CH0, &mmc_Access) != MMC_SUCCESS)
{
 /* Error */
 R_MMCIF_Set_DmacDtc_Trans_Flg(MMC_CH0, MMC_SET_TRANS_STOP);
}

Special Notes
Both initialization processing by the R_MMCIF_Open() function and mount processing by the
R_MMCIF_Mount() function are required prior to executing this function.

Note that the error code cannot be acquired with the R_MMCIF_Get_ErrCode() function.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 66 of 102
Mar.15.25

R_MMCIF_Set_LogHdlAddress()
This function sets the LONGQ FIT module handler address.

Format
mmc_status_t R_MMCIF_Set_LogHdlAddress(
 uint32_t user_long_que
)

Parameters
user_long_que

LONGQ FIT module handler address

Return Values
MMC_SUCCESS Successful operation

Properties
A prototype declaration for this function appears in r_mmcif_rx_if.h.

Description
This function sets the LONGQ FIT module handler address in the MMCIF driver.

Example
#define MMC_USER_LONGQ_MAX (8) /* Max error log count*/
#define MMC_USER_LONGQ_BUFSIZE (MMC_USER_LONGQ_MAX * 4)
 /* Error log buffer size */
#define MMC_USER_LONGQ_IGN_OVERFLOW (1) /* Ignore_overflow of error log
buffer.*/

uint32_t g_mmc_user_longq_buf[MMC_USER_LONGQ_BUFSIZE];
 /* Error log buffer */
static longq_hdl_t p_mmc_user_long_que; /* LongQ handler */
longq_err_t err = LONGQ_SUCCESS;
uint32_t user_long_que = 0;

err = R_LONGQ_Open(g_mmc_user_longq_buf,
 MMC_USER_LONGQ_BUFSIZE,
 MMC_USER_LONGQ_IGN_OVERFLOW,
 &p_mmc_user_long_que);
if (LONGQ_SUCCESS != err)
{
 /* Error */
}
user_long_que = (uint32_t)p_mmc_user_long_que;
if (R_MMCIF_Set_LogHdlAddress(user_long_que) != MMC_SUCCESS)
{
 /* Error */
}

Special Notes
This function performs the preparatory processing required to acquire an error log using the LONGQ FIT
module. This processing should be performed before the R_MMCIF_Open() function is called.

The LONGQ FIT module needs to be embedded in the application as a separate operation.

Note that the error code cannot be acquired with the R_MMCIF_Get_ErrCode() function.

If the MMC_CFG_LONGQ_ENABLE disable and this function is called, this function does nothing.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 67 of 102
Mar.15.25

R_MMCIF_Log()
This function acquires an error log.

Format
uint32_t R_MMCIF_Log(
 uint32_t flg,
 uint32_t fid,
 uint32_t line
)

Parameters
flg

0x00000001 (Fixed value)
fid

0x0000003f (Fixed value)
line

0x00001fff (Fixed value)

Return Values
0 Successful operation

Properties
A prototype declaration for this function appears in r_mmcif_rx_if.h.

Description
This function acquires an error log.

To terminate error log acquisition, call this function.

Example
#define USER_DRIVER_ID (1)
#define USER_LOG_MAX (63)
#define USER_LOG_ADR_MAX (0x00001fff)

mmc_cfg_t mmc_Config;

/* ==== Please add the processing to set the pins. ==== */

mmc_Config.mode = MMC_CFG_DRIVER_MODE;
mmc_Config.voltage = MMC_VOLT_3_3;
if (R_MMCIF_Mount(MMC_CH0, &mmc_Config) != MMC_SUCCESS)
{
 /* Error */
 R_MMCIF_Log(USER_DRIVER_ID, USER_LOG_MAX, USER_LOG_ADR_MAX);
}

Special Notes
The LONGQ FIT module needs to be embedded in the application as a separate operation.

Note that the error code cannot be acquired with the R_MMCIF_Get_ErrCode() function.

If the MMC_CFG_LONGQ_ENABLE disable and this function is called, this function does nothing.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 68 of 102
Mar.15.25

R_MMCIF_GetVersion()
This function acquires the version information for the driver.

Format
uint32_t R_MMCIF_GetVersion(
 void
)

Parameters
None

Return Values
Upper 2 bytes Major version (decimal)
Lower 2 bytes Minor version (decimal)

Properties
A prototype declaration for this function appears in r_mmcif_rx_if.h.

Description
This function returns the driver version information.

Example
uint32_t version;
version = R_MMCIF_GetVersion();

Special Notes
Note that the error code cannot be acquired with the R_MMCIF_Get_ErrCode() function.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 69 of 102
Mar.15.25

4. Pin Setting
To use the MMCIF FIT module, assign input/output signals of the peripheral function to pins with the multi-
function pin controller (MPC).
When performing the pin setting in the e2 studio, the Pin Setting feature of the Smart Configurator can be
used. When using the Pin Setting feature, a source file is generated according to the option selected in the
Pin Setting window in the Smart Configurator. Then pins are configured by calling the function defined in the
source file. Refer to Table 4.1 for details.
The pin assignment is referred to as the “Pin Setting” in this document. Also, GPIO control is required. Refer
to 4.4, MMC card Insertion and Power-On Timing, and 4.5, MMC card Removal and Power-Off Timing, and
create appropriate program code to provide this processing.

Table 4.1 Function Output by the Smart Configurator

Function to be Output Function
R_MMCIF_PinSetInit() Performs initialization of the MMCIF pins.

After execution, only MMC_CD pin is valid.
R_MMCIF_PinSetTransfer() Sets MMCIF pins to MMC command issuance possible state.

After execution, all MMCIF pins are valid.
R_MMCIF_PinSetDetection() Sets MMCIF pins to MMC command issuance impossible state.

After execution, only MMC_CD pin is valid.
R_MMCIF_PinSetEnd() Sets to MMCIF control disabled state.

After execution, all MMCIF pins are invalid.

4.1 Pins setting of MMC bus 1 bit communication

Even if the MMC bus used for communication is 1 bit, please set the pin of the MMC bus to 4 bits. If
generates the MMC command without controlling the MCC bus other than the MMC_D0 pin, there is the
possibility that the MMC transitions the SPI mode.

4.2 Setting of MMC card power control pin

The pin setting function of the Smart Configurator does not include the power supply voltage control pin of
the MMC card, create it separately.

4.3 Setting of MMC card MMC reset pin

Since the MMC reset pin (MMC_RES#) is not controlled by the MMCIF driver, create it separately.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 70 of 102
Mar.15.25

4.4 MMC card Insertion and Power-On Timing

Figure 4.1 and Table 4.2 show the control procedure. Perform the MMC card insertion procedure after
successful operation of the R_MMCIF_Open() function and when the supply of power voltage to the MMC
card is in the halted state and the MMCIF output pin is in the L output state.

Figure 4.1 MMC card Insertion and Power-On Timing

Driver uninitialized state

R_MMCIF_Open()

R_MMCIF_Get_Card
Detection()

Card undetected

Card detected

After power-on reset

Driver idle state

Pin control 1
(sample program:

R_MMCIF_PinSetInit()*1)

Supply of power voltage to MMC card halted state
Power supply voltage control pin: GPIO L/H output
(Values when supply of power voltage is in halted state)

Pin control 3
(sample program:

r_mmcif_demo_power_on())

Pin control 4
Add the following functions to

the user program
R_MMCIF_PinSetTransfer()*1

R_MMCIF_Mount()

Power voltage being supplied to MMC card state
Power supply voltage control pin: GPIO L/H output
(Values when power voltage is being supplied)
After starting power supply voltage supply,
provide a sufficient waiting time until it
reaches operating voltage*4.

MMC command issuance possible state
MMCIF input pin*2: MMCIF input
MMCIF output pin*3: MMCIF output

Notes: 1. This function is generated by setting the
pins with Smart Configurator.

 2. MMC_CD pin
 3. MMC_CLK pin, MMC_CMD pin, and
 MMC_Dn pin
 4. The waiting time is determined by
 the configuration of the MMC card
 power supply circuit.

A Card reinsertion

Pin control 2
(sample program:

r_mmcif_demo_power_init()

MMC card pin initialization state
MMCIF input pin*2: MMCIF input
MMCIF output pin*3: GPIO L output

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 71 of 102
Mar.15.25

Table 4.2 User Setting Method at MMC Card Insertion

Processing Target Pin Pin Settings Subsequent Pin State
Pin control 1 MMCIF input pin*1 PMR setting: General I/O port

PCR setting: Input pull-up resistor
disabled*3
PDR setting: Input
MPC setting: MMCIF
PMR setting: Peripheral module

MMCIF input
(MMC Card detection
possible state)

MMCIF output
pin*2

PMR setting: General I/O port
DSCR setting: High-drive output
PCR setting: Input pull-up resistor
disabled*3
PODR setting: L output
PDR setting: Output
MPC setting: Hi-z

GPIO L output

Pin control 2 Power supply
voltage control pin

PMR setting: General I/O
PCR setting: Input pull-up resistor
disabled*4
PODR setting: L output/H output (output of
value based on power voltage
supplied/halted state)
PDR setting: Output

GPIO L/H output
(supply of power voltage
halted state)

Pin control 3 Power supply
voltage control pin

PODR setting: L output/H output
(output of value based on power voltage
supply state)

GPIO L/H output
(supply of power voltage
halted state)

Pin control 4 MMCIF input pin*1 MPC setting: MMCIF
PMR setting: Peripheral module

MMCIF input

MMCIF output
pin*2

MPC setting: MMCIF
PMR setting: Peripheral module

MMCIF output
(MMC command issuance
possible state)

Notes: 1. MMC_CD pin
 2. MMC_CLK pin, MMC_CMD pin, and MMC_Dn pin
 3. It is assumed that the pin will be pulled-up external to the microcontroller, so the microcontroller’s

integrated
pull-up resistor is disabled.

 4. Review the setting to match the details of the system.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 72 of 102
Mar.15.25

4.5 MMC card Removal and Power-Off Timing

Figure 4.2 and Table 4.4 show the control procedure. Perform the MMC card removal procedure after
successful operation of the R_MMCIF_Unmount() function in the driver idle state and when the supply of
power voltage to the MMC card is in the halted state. An equivalent procedure should be used to halt supply
of the power voltage in cases where the MMC card is removed unexpectedly.

Figure 4.2 MMC card Removal and Power-Off Timing

Driver idle state

R_MMCIF_Get_CardDet
ection()

Card detected

Card undetected(Processing exit)

Pin control 6
(sample program:

r_mmcif_demo_power_off())

Supply of power voltage to MMC card halted state
Power supply voltage control pin: GPIO L/H output
(Values when supply of power voltage is in halted state)
After stopping the supply voltage supply,
provide a sufficient waiting time until it
reaches the removable voltage of the MMC
card*4.

R_MMCIF_Close()

Pin control 7
Add the following functions to

the user program
R_MMCIF_PinSetEnd()*1

MMCIF control disabled state
MMCIF input pin*2: GPIO input
MMCIF output pin*3: GPIO L output

Notes: 1. This function is generated by setting
the pins with Smart Configurator.

 2. MMC_CD pin
 3. MMC_CLK pin, MMC_CMD pin, and
 MMC_Dn pin
 4. The waiting time is determined by
 the configuration of the MMC card
 power supply circuit.

Driver uninitialized state

Pin control 5
Add the following functions to

the user program
R_MMCIF_PinSetTransfer()*1

MMC command issuance impossible state
MMCIF input pin*2: MMCIF input
MMCIF output pin*3: GPIO L output

A

Card undetected (Card reinsertion)

R_MMCIF_Unmount()

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 73 of 102
Mar.15.25

Table 4.3 User Setting Method at MMC Card Removal

Processing Target Pin Pin Settings Subsequent Pin State
Pin control 5 MMCIF input pin*1 MPC setting: MMCIF

PMR setting: Peripheral module
MMCIF input

MMCIF output
pin*2

PMR setting: General I/O port
MPC setting: Hi-z

GPIO L output

Pin control 6 Power supply
voltage control pin

PODR setting: L output/H output
(output of value based on power voltage
supply halted state)

GPIO L/H output
(supply of power voltage
halted state)

Pin control 7 MMCIF input pin*1 PMR setting: General I/O port
MPC setting: Hi-z

GPIO input

MMCIF output
pin*2

PMR setting: General I/O port
MPC setting: Hi-z

GPIO L output

Notes: 1. MMC_CD pin
 2. MMC_CLK pin, MMC_CMD pin, and MMC_Dn pin

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 74 of 102
Mar.15.25

4.6 Hardware Settings

This MMCIF driver uses the microcontrollerʼs internal MMCIF and performs 1-bit, 4-bit or 8-bit bus MMC
mode control.

The number of MMC that can be connected is one per channel.

4.6.1 Sample Hardware Configuration
Section 4.6.2, MMC Socket (removable media: MMC card), shows the circuit diagram for MMC card.

Section 4.6.3, MMC (Embedded MultiMediaCard: eMMC), shows the circuit diagram when an eMMC is used.

See the JEDEC Standard JESD84 for pull-up resistor values. Users should consider the addition of damping
resistors and capacitors for circuit matching if high-speed operation is expected.

4.6.1.1 Pin Descriptions

(1) MMC_CLK Pin

Since there is no stipulation regarding pulling up this pin in the JEDEC Standard JESD84, there is no
stipulation regarding that here.

(2) MMC_CMD Pin

The MMC sets the CMD line to open drain in card identification mode. Therefore, the JEDEC Standard
JESD84 stipulates the pull-up resistor values for CMD and DAT0 to DAT7 separately. The user must
determine pull-up resistor values that match the environment used.

(3) MMC_CD Pin

When MMC card are used, configure the circuit for this pin so that a high level is input to the MMC_CD pin
when no card is inserted, and a low level is input when a card is inserted.

Set up control for the MMC_CD pin in r_mmcif_rx_config.h. If this control is disabled, the MMC_CD pin can
be used for peripheral functions other than the MMC.

Table 4.4 MMC_CD Pin #define Definition Setting in r_mmcif_rx_config.h

#define MMC_CFG_CHx_CD_ACTIVE MMC_CD pin Target MMC
(0) Not controlled eMMC
(1) Controlled MMC card
(4) MMC_RES# Pin

The MMC_RES pin is not controlled. It may be used for peripheral functions other than the MMC. Note,
however, that the Bit[1:0] field (RST_n_FUNCTION[162]) in the Extended CSD must be used with the value
0x0 (the default).

(5) MMC Power Supply Control Pins

When MMC power supply control is required, construct an external circuit using PMOS transistors and other
devices. In particular, be sure to attach an adequately large capacitor and discharge resistor between power
supply and ground. When the microcontroller pins are directly controlling PMOS transistors with large gate
capacitances, refer to the microcontroller electrical characteristics (in particular, the allowable output low
level current and allowable output high level current) and insert current control resistors between the
microcontroller pins and the PMOS transistor gates.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 75 of 102
Mar.15.25

4.6.2 MMC Socket (Removable Media: MMC Card)

4.6.2.1 Connection Using an 8-bit Bus

Figure 4.3 Connection Between Microcontroller and 8-bit Bus MMC (Removable Media: MMC Card)

MCU
MMCIF

VCC

MMC_CLK
MMC_CMD

MMC_D0
MMC_D1
MMC_D2
MMC_D3
MMC_Dn
MMC_CD

MMC_RES#

Pxx

MMC
Socket

VDD

CLK
CMD
DAT0
DAT1
DAT2
DAT3
DATn
CD

Pull up to the MMC
power supply with
an external resistor

Pull up to the MCU
power supply with
an external resistor

The n in DATn indicates lines 4 to 7. Connect a pull-up resistor each line in DAT4 to DAT7.

PMOS Tr

S D
G

MMC card VDD power supply

+

Example: 2.2Kohm

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 76 of 102
Mar.15.25

4.6.2.2 Connection Using an 4-bit Bus

Figure 4.4 Connection Between Microcontroller and 4-bit Bus MMC (Removable Media: MMC Card)

MCU
MMCIF

VCC

MMC_CLK
MMC_CMD

MMC_D0
MMC_D1
MMC_D2
MMC_D3
MMC_Dn
MMC_CD

MMC_RES#

Pxx

MMC
Socket

VDD

CLK
CMD
DAT0
DAT1
DAT2
DAT3
DATn
CD

PMOS Tr

S D
G

MMC card VDD power supply

+

Pull up to the MCU
power supply with
an external resistor

Pull up to the MMC
power supply with
an external resistor

The n in DATn indicates lines 4 to 7. Connect a pull-up resistor each line in DAT4 to DAT7.

Example: 2.2Kohm

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 77 of 102
Mar.15.25

4.6.2.3 Connection Using an 1-bit Bus

Figure 4.5 Connection Between Microcontroller and 1-bit Bus MMC (Removable Media: MMC Card)

MCU
MMCIF

VCC

MMC_CLK
MMC_CMD

MMC_D0
MMC_D1
MMC_D2
MMC_D3
MMC_Dn
MMC_CD

MMC_RES#

Pxx

MMC
Socket

VDD

CLK
CMD
DAT0
DAT1
DAT2
DAT3
DATn
CD

PMOS Tr

S D
G

+

Connection of DAT1 to
DAT3 is required, even for
a 1-bit bus.

The n in DATn indicates lines 4 to 7. Connect a pull-up resistor each line in DAT4 to DAT7.

Example: 2.2Kohm

MMC card VDD power supply

Pull up to the MMC
power supply with
an external resistor

Pull up to the MCU
power supply with
an external resistor

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 78 of 102
Mar.15.25

4.6.2.4 Microcontroller Resources

This MMCIF driver uses the following microcontroller resources.

Table 4.5 Pins and Functions Used

Used Resource I/O Description
MMC_CLK*1 Output MMC clock output (required)
MMC_CMD*1 I/O MMC command output/response input (required)
MMC_D0*1 I/O MMC data 0 (required)
MMC_D1*1*3 I/O MMC data 1 (required)
MMC_D2*1*3 I/O MMC data 2 (required)
MMC_D3*1*3 I/O MMC data 3 (required)

Even when a 1-bit bus is used, this pin must be
controlled for transition to SPI mode stop control.

MMC_D4*1*3 I/O MMC data 4 (optional)
MMC_D5*1*3 I/O MMC data 5 (optional)
MMC_D6*1*3 I/O MMC data 6 (optional)
MMC_D7*1*3 I/O MMC data 7 (optional)
MMC_CD*1*4 Input MMC card detection input (optional)
MMC_RES#*5 Output MMC reset (not controlled)
Microcontroller power supply  Microcontroller power supply, MMC_CD pin pull-up

power supply (required)
MMC power supply  MMC power supply, MMC_CMD/MMC_Dn pin pull-up

power supply (required)
Pxx (MMC power supply control ports)
(Allocated to general-purpose I/O
pins)*1*2

Output MMC power supply voltage control output (optional)
Allocate the number of pins required for power supply
control.
Use either active-high or active-low control according to
the circuit configuration used.

Notes: 1. The user should allocate these pins.
 2. The user should allocate and control these pins.
 3. The following settings are possible, depending on the bus size used.

Maximum Bus Width Used by MMC Bus Required MMC_Dn Pin Allocation
8 MMC_Dn (n = 0 to 7)

4 MMC_Dn (n = 0 to 3)
The MMC_D4 to MMC_D7 pins can be used for other purposes.

1 MMC_Dn (n = 0 to 3)
The MMC_D4 to MMC_D7 pins can be used for other purposes.

 4. Set the MMC card detection function MMC_CFG_CHx_CD_ACTIVE to 1 (enabled) in the MMCIF
driver file r_mmcif_rc_config.h.

 5. There is no reset pin on an MMC card. This pin can be used for peripheral functions other than the
MMC.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 79 of 102
Mar.15.25

4.6.3 MMC (Embedded Multimedia Card: eMMC)

4.6.3.1 Connection Using an 8-bit Bus

Figure 4.6 Connection Between Microcontroller and 8-bit Bus MMC (Embedded Multimedia Card:

eMMC)

MCU
MMCIF

VCC

MMC_CLK
MMC_CMD

MMC_D0
MMC_D1
MMC_D2
MMC_D3
MMC_Dn
MMC_CD

MMC_RES#

eMMC

VCC
VCCQ

CLK
CMD
DAT0
DAT1
DAT2
DAT3
DATn

RST_n

VDDi

Pull up to the eMMC
power supply with an
external resistor

The n in DATn indicates lines 4 to 7. Connect a pull-up resistor each line in DAT4 to DAT7.
The figures shows the case where the same 2.7 to 3.6V power supply is supplied to both the
VCC and VCCQ eMMC pins

PMOS Tr

S D
G

+

eMMC power supply

Example: 2.2Kohm

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 80 of 102
Mar.15.25

4.6.3.2 Connection Using an 4-bit Bus

Figure 4.7 Connection Between Microcontroller and 4-bit Bus MMC (Embedded Multimedia Card:

eMMC)

MCU
MMCIF

VCC

MMC_CLK
MMC_CMD

MMC_D0
MMC_D1
MMC_D2
MMC_D3
MMC_Dn
MMC_CD

MMC_RES#

eMMC

VCC
VCCQ

CLK
CMD
DAT0
DAT1
DAT2
DAT3
DATn

RST_n

VDDi

PMOS Tr

S D
G

+

Pull up to the eMMC
power supply with an
external resistor

eMMC power supply

The n in DATn indicates lines 4 to 7. Connect a pull-up resistor each line in DAT4 to DAT7.
The figures shows the case where the same 2.7 to 3.6V power supply is supplied to both the
VCC and VCCQ eMMC pins.

Example: 2.2Kohm

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 81 of 102
Mar.15.25

4.6.3.3 Connection Using an 1-bit Bus

Figure 4.8 Connection Between Microcontroller and 1-bit Bus MMC (Embedded Multimedia Card:

eMMC)

MCU
MMCIF

VCC

MMC_CLK
MMC_CMD

MMC_D0
MMC_D1
MMC_D2
MMC_D3
MMC_Dn
MMC_CD

MMC_RES#

eMMC

VCC
VCCQ

CLK
CMD
DAT0
DAT1
DAT2
DAT3
DATn

RST_n

VDDi

PMOS Tr

S D
G

eMMC power supply

+

Connection of DAT1 to
DAT3 is required, even for
a 1-bit bus.

Pull up to the eMMC
power supply with an
external resistor

The n in DATn indicates lines 4 to 7. Connect a pull-up resistor each line in DAT4 to DAT7.
The figures shows the case where the same 2.7 to 3.6V power supply is supplied to both the
VCC and VCCQ eMMC pins.

Example: 2.2Kohm

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 82 of 102
Mar.15.25

4.6.3.4 Microcontroller Resources

This MMCIF driver uses the following microcontroller resources.

Table 4.6 Pins and Functions Used

Used Resource I/O Description
MMC_CLK*1 Output MMC clock output (required)
MMC_CMD*1 I/O MMC command output/response input (required)
MMC_D0*1 I/O MMC data 0 (required)
MMC_D1*1*3 I/O MMC data 1 (required)
MMC_D2*1*3 I/O MMC data 2 (required)
MMC_D3*1*3 I/O MMC data 3 (required)

Even when a 1-bit bus is used, this pin must be
controlled for transition to SPI mode stop control.

MMC_D4*1*3 I/O MMC data 4 (optional)
MMC_D5*1*3 I/O MMC data 5 (optional)
MMC_D6*1*3 I/O MMC data 6 (optional)
MMC_D7*1*3 I/O MMC data 7 (optional)
MMC_CD*1*4 Input MMC card detection input (not controlled)
MMC_RES#*5 Output MMC reset (not controlled)
Microcontroller power supply  Microcontroller power supply (required)
eMMC power supply*6  eMMC power supply, MMC_CMD/MMC_Dn pin pull-up

power supply (required)
Pxx (MMC power supply control ports)
(Allocated to general-purpose I/O
pins)*1*2

Output MMC power supply voltage control output (optional)
Allocate the number of pins required for power supply
control.
Use either active-high or active-low control according to
the circuit configuration used.

Notes: 1. The user should allocate these pins.
 2. The user should allocate and control these pins.
 3. The following settings are possible, depending on the bus size used.

Maximum Bus Width Used by MMC Bus Required MMC_Dn Pin Allocation
8 MMC_Dn (n = 0 to 7)

4 MMC_Dn (n = 0 to 3)
The MMC_D4 to MMC_D7 pins can be used for other purposes.

1 MMC_Dn (n = 0 to 3)
The MMC_D4 to MMC_D7 pins can be used for other purposes.

 4. Set the MMC card detection function MMC_CFG_CHx_CD_ACTIVE to 0 (disabled) in the MMCIF
driver file r_mmcif_rx_config.h. Since this disables control of the MMC card detection pin, it can be
used for peripheral functions other than the MMC.

 5. This MMCIF driver does not control a reset pin. This this pin can be used for peripheral functions
other than the MMC. Note, however, that the Bit[1:0] field (RST_n_FUNCTION[162]) in the
Extended CSD must be used with the value 0x0 (the default).

 6. If the microcontroller power supply and eMMC power supply control voltages differ, set the eMMC
power supply voltage here.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 83 of 102
Mar.15.25

5. Demo Projects

5.1 Overview
The sample program is included and can be found in the FITDemos directory. This sample program performs
the processing described in section 4.4, MMC card Insertion and Power-On Timing, 4.5, MMC card Removal
and Power-Off Timing and 1.6.5,Chattering Control at MMC Card Insertion, as well as MMC read and write
processing.

Note that in this sample program, Pre-defined (MMC_PRE_DEF) is taken to be the default setting for
read/write mode. With Pre-defined, there is a possibility that MMC card will not work. When using an MMC
card, change this setting from Pre-defined to Open-ended (MMC_OPEN_END). The locations where the
changes should be made are on lines 115 to 118 of the sample program.

5.2 State Transition Diagram
Figure 5.1 shows the state transition diagram for this driver.

Figure 5.1 State Transition Diagram

Pins unstable state

Pins initialized state, power halted state [MMC Card insertable/removable state]
(MMC_CD: MMCIF function)

(MMC_Dn, MMC_CMD, MMC_CLK: GPIO L output)
(Power supply voltage control pin: GPIO inactive value output)

r_mmicf_demo_power_on() r_mmcif_demo_power_off()

All pins:
GPIO L output

r_mmcif_demo_power_init()

[MMCIF driver executable state]
(MMC bus setting state)

Pins initialized state, power supplied state [MMC Card driver
unexecutable state]

(MMC_CD: MMCIF function)
(MMC_Dn, MMC_CMD, MMC_CLK: GPIO L output)

(Power supply voltage control pin: GPIO active value output)

R_MMCIF_Close()

R_MMCIF_Mount() R_MCCIF_Unmount()

MMCIF driver

Pins initialized state, power halted state [inactive state]
(MMC_CD: MMCIF function)

(MMC_Dn, MMC_CMD, MMC_CLK: GPIO L output)
(Power supply voltage control pin: GPIO inactive value output)

R_MMCIF_Open()

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 84 of 102
Mar.15.25

5.3 Configuration Overview
The sample program configuration options are set in the file r_mmcif_rx_demo_pin_config.h.

The table below lists the option names and set values when the RX64M RSK or RX65N RSK is used.

Configuration options in r_mmcif_rx_demo_pin_config.h

#define MMC_CFG_MODE_SW (1)
#define MMC_CFG_MODE_DMAC (0)
#define MMC_CFG_MODE_DTC (0)
Note: Software transfer is selected as the default value.

These set the transfer mode used in the sample program.
Only 1 transfer mode should be enabled. (1: Enabled, 0: Disabled)
When DMAC or DTC transfers are used, the corresponding DMAC or
DTC FIT module must be acquired separately.

#define MMC_CFG_POWER_PORT_NONE
Note: The default value is "disabled".

This definition is used when an MMC card is used.
If MMC card power supply control is not required, enable this definition.
If MMC card power supply control is required, disable this definition.

#define MMC_CFG_POWER_HIGH_ACTIVE
(1)
Note: The default value is "1 (high level supplied)".

This definition is used when an MMC card is used and furthermore card
power supply control is required.
When set to 1, a high level is supplied to the port that controls the card
power supply circuit to enable the card power supply circuit.
When set to 0, a low level is supplied to the port that controls the card
power supply circuit to enable the card power supply circuit.

#define MMC_CFG_CHAT_CNT (300)
Note: The default value is "300 (300 ms wait)".

This definition is used when an MMC card is used.
This is the chattering counter used for card insertion or removal.
A wait of 1 ms is provided for each count of the counter.
Set this definition to a value appropriate for the system used.

#define MMC_CFG_POWER_ON_WAIT (100)
Note: The default value is "100 (100 ms wait)".

This definition is used when an MMC card is used.
Set this definition to the wait time after power supply is started to the
MMC card power supply circuit until the operating voltage is reached. A
wait of 1 ms is provided for each count of the counter.
Set this definition to a value appropriate for the system used.

#define MMC_CFG_POWER_OFF_WAIT (100)
Note: The default value is "100 (100 ms wait)".

This definition is used when an MMC card is used.
Set this definition to the wait time after power supply to the MMC card
power supply circuit is stopped until the voltage at which MMC card
removal is possible is reached. A wait of 1 ms is provided for each count
of the counter.
Set this definition to a value appropriate for the system used.

#define MMC_CFG_POWER_CHx_PORT
Note: The x in CHx indicates a channel number (x = 0 or 1)

Set these definitions to the port number for each pin allocated for
channel x.
Surround each setting value with single quotation marks ‘ ‘.

#define MMC_CFG_POWER_CHx_BIT
Note: The x in CHx indicates a channel number (x = 0 or 1)

Set these definitions to the bit number for each pin allocated for channel
x.
Surround each setting value with single quotation marks ’ ‘.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 85 of 102
Mar.15.25

5.4 API Functions
The power supply voltage control pin control functions in the sample program are shown below.

Add or modify functions as necessary.

Table 5.1 Pin Control API Functions

Function Function Outline
r_mmcif_demo_power_init() Initializes the power supply voltage control pin settings
r_mmcif_demo_power_on() Starts supply of power supply voltage
r_mmcif_demo_power_off() Stops supply of power supply voltage
r_mmcif_demo_softwaredelay() Performs delay

5.4.1 r_mmcif_demo_power_init()
This function initializes the settings of the MMCIF pins that are used by the MMCIF driver. It also initializes
the power supply voltage control pin settings of the eMMC or MMC card.

Format
mmc_status_t r_mmcif_demo_power_init(
uint32_t channel
)

Parameters
channel

Channel number - The number of the MMCIF channel used (numbering starts at 0)

Return Values
MMC_SUCCESS Successful operation

Description
Initializes the settings of the MMC_CD, MMC_Dn, MMC_CMD, and MMC_CLK pins, which are used by the
MMCIF driver specified in r_mmcif_rx_demo_pin_config.h. Also initializes the power supply voltage control
pin settings of the eMMC or MMC card.

Special Notes:
The power supply voltage control pins are set as follows.

• The port mode register (PMR) is set to the general-purpose I/O port.
• Set the pull-up control register (PCR) to input pull-up resistance disabled.
• Pin output is set to the inactive state.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 86 of 102
Mar.15.25

5.4.2 r_mmcif_demo_power_on()
This function controls the power supply voltage control pins of the eMMC or MMC card, and starts the supply
of power from the power supply.

Format
mmc_status_t r_mmcif_demo_power_on(
 uint32_t channel
)

Parameters
channel

Channel number - The number of the MMCIF channel used (numbering starts at 0)

Return Values
MMC_SUCCESS Successful operation
MMC_ERR General error

Description
Controls the power supply voltage control pins of the eMMC or MMC card, and starts the supply of power
from the power supply. Then, after the time specified by MMC_CFG_POWER_ON_WAIT in
r_mmcif_rx_demo_pin_config.h has elapsed, returns the result.

Special Notes:
Modify as necessary.

After starting the supply of power supply voltage, executes the mmcif_pin_softwaredelay() function to wait
until the operating voltage is reached. Set the wait time using MMC_CFG_POWER_ON_WAIT in section
5.3,Configuration Overview.

Initialization using the r_mmcif_demo_power_init() function must be performed before executing this function.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 87 of 102
Mar.15.25

5.4.3 r_mmcif_demo_power_off()
This function controls the power supply voltage control pins of the eMMC or MMC card, and stops the supply
of power from the power supply.

Format
mmc_status_t r_mmcif_demo_power_off(
 uint32_t channel
)

Parameters
channel

Channel number - The number of the MMCIF channel used (numbering starts at 0)

Return Values
MMC_SUCCESS Successful operation
MMC_ERR General error

Description
Controls the power supply voltage control pins of the eMMC or MMC card, and stops the supply of power
from the power supply. Then, after the time specified by MMC_CFG_POWER_OFF_WAIT in
r_mmcif_rx_demo_pin_config.h has elapsed, returns the result.

Special Notes:
After stopping the supply of power supply voltage, executes the mmcif_pin_softwaredelay() function to wait
until the removable voltage is reached. Set the wait time using MMC_CFG_POWER_OFF_WAIT in
section5.3,Configuration Overview.

Initialization using the r_mmcif_demo_power_init() function must be performed before executing this function.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 88 of 102
Mar.15.25

5.4.4 r_mmcif_demo_softwaredelay()
This function is used when waiting for a particular time.

Format
bool r_mmcif_demo_softwaredelay(
 uint32_t delay,
 mmc_delay_units_t units
)

Parameters
delay

Timeout time (Units: set with the units)
units

Microseconds: MMC_DELAY_MICROSECS
Milliseconds: MMC_DELAY_MILLISECS
Seconds: MMC_DELAY_SECS

Return Values
true Successful operation
false Parameter error

Description
This function performs wait time processing.

True is returned when the timeout time specified in the argument delay has elapsed.

Special Notes
The wait time processing is listed in Table 5.2. Since this function only waits for the set time, it can be
replaced with the operating system activating task delay processing (example: the µITRON dly_tsk()
function).

Table 5.2 Wait Time Processing

Type Description
MMC card power on power supply
voltage stabilization time

The wait time until the operating voltage is reached after power supply is
started to the MMC card power supply circuit <100 ms>
Note: The wait time can be modified with

MMC_CFG_POWER_ON_WAIT.
MMC card power off voltage turn-off
time

The wait time until the MMC card removable voltage is reached after
supply is stopped to the MMC card power supply circuit <100 ms>
Note: The wait time can be modified with

MMC_CFG_POWER_OFF_WAIT.
Note: The times in angle brackets ("<>") above are the values set when this MMCIF driver is provided.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 89 of 102
Mar.15.25

5.5 Replacing Wait Time Processing with Operating System Processing
The r_mmcif_demo_softwaredelay() function, which processes the delays that arise in the sample program,
can be replaced by the task delay processing of the OS itself (for example, dly_tsk() in μITRON).

Figure 5.2 Wait Example Using Operating System Task Delay Processing

5.6 mmcif_demo_rskrx64m, mmcif_demo_rskrx65n, mmcif_demo_rskrx64m_gcc,
mmcif_demo_rskrx65n_gcc

Once the code is compiled and downloaded to the target board and is running, LED0 will turn ON after
initialization. After the MMCIF module is successfully opened, LED1 will turn ON. After data has been
successfully written to the MMC, LED2 will turn ON. After data has been successfully read from the MMC,
LED3 will turn ON. After the MMCIF module is successfully closed, all LEDs will turn OFF.

Setup and Execution
1. Ensure driver support for channel 0 is enabled in r_mmcif_rx_config.h:

#define MMC_CFG_CH0_INCLUDED

2. Selection of data transfer module:
When the DMAC transfer mode is used, set MMC_CFG_MODE_DMAC in r_mmcif_rx_pin_config.h to 1.

#define MMC_CFG_MODE_DMAC (1)

When the DTC transfer mode is used, set MMC_CFG_MODE_DTC in r_mmcif_rx_pin_config.h to 1.

#define MMC_CFG_MODE_DTC (1)

By default, the transmit mode is Software Transfers.

3. Connect the RSK board to the PC (using Renesas E1 Emulator). The DC 5V 3A power adapter needs
be plugged into the power jack (PWR) on the RSK board for external power supply. Build this sample
application, download it to the board.

4. In Renesas e2 studio IDE, click the Renesas Views tab -> Move mouse over the Debug item, and select
the Renesas Debug Virtual Console to show it.

5. By checking the log and LEDs, confirm that the application writes and reads data of 3 sectors (512-
byte/sector) to the MMC.

Boards Supported
RSKRX64M, RSKRX65N

r_mmcif_pin_softwaredelay()

MMC_SUCCESS

Task delay processing
(Example: μITRON dly_tsk())

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 90 of 102
Mar.15.25

5.7 Adding a Demo to a Workspace
Demo projects are found in the FITDemos subdirectory of the distribution file for this application note. To add
a demo project to a workspace, select File >> Import >> General >> Existing Projects into Workspace, then
click “Next”. From the Import Projects dialog, choose the “Select archive file” radio button. “Browse” to the
FITDemos subdirectory, select the desired demo zip file, then click “Finish”.

5.8 Downloading Demo Projects
Demo projects are not included in the RX Driver Package. When using the demo project, the FIT module
needs to be downloaded. To download the FIT module, right click on this application note and select
“Sample Code (download)” from the context menu in the Smart Browser >> Application Notes tab.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 91 of 102
Mar.15.25

6. Appendices
6.1 Operation Confirmation Environment
This section describes operation confirmation environment for this driver.

Table 6.1 Operation Confirmation Environment (Ver. 1.03)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio V6.2.0

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V2.08.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Version of the module Ver.1.03
Board used Renesas Starter Kits for RX64M (product No.:R0K50564MSxxxBE)

Renesas Starter Kits for RX71M (product No.:R0K50571MSxxxBE)
Renesas Starter Kits for RX65N (product No.:RTK500565NSxxxxxBE)
Renesas Starter Kits for RX65N-2MB (product No.:RTK50565N2SxxxxxBE)*

Table 6.2 Operation Confirmation Environment (Ver. 1.04)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio V7.3.0

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Version of the module Ver.1.04

Table 6.3 Operation Confirmation Environment (Ver. 1.05)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio V7.3.0
IAR Embedded Workbench for Renesas RX 4.10.01

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 4.08.04.201803
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.10.01
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Version of the module Ver.1.05
Board used Renesas Starter Kit+ for RX64M (product No.:R0K50564Mxxxxxx)

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 92 of 102
Mar.15.25

Table 6.4 Operation Confirmation Environment (Ver. 1.06)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio V7.4.0
IAR Embedded Workbench for Renesas RX 4.12.01

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 4.08.04.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.12.01
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Version of the module Ver.1.06
Board used Renesas Starter Kit+ for RX72M (product No.: RTK5572Mxxxxxxxxxx)

Table 6.5 Operation Confirmation Environment (Ver. 1.07)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio V7.4.0
IAR Embedded Workbench for Renesas RX 4.12.01

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 4.08.04.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.12.01
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Version of the module Ver.1.07
Board used Renesas Starter Kit+ for RX72N (product No.: RTK5572Nxxxxxxxxxx)

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 93 of 102
Mar.15.25

Table 6.6 Operation Confirmation Environment (Ver. 1.10)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2022-10
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99
GCC for Renesas RX 8.3.0.202202

Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Version of the module Ver. 1.10
Board used Renesas Starter Kit+ for RX64M (product No.: R0K50564Mxxxxxx)

Renesas Starter Kit+ for RX65N (product No.: RTK5005651Cxxxxxxx)

Table 6.7 Operation Confirmation Environment (Ver. 1.20)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2024-10
IAR Embedded Workbench for Renesas RX 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.06.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99
GCC for Renesas RX 8.3.0.202411

Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 5.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Version of the module Ver. 1.20
Board used Renesas Starter Kits for RX65N-2MB (product No.:RTK50565N2SxxxxxBE)

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 94 of 102
Mar.15.25

Table 6.8 Operation Confirmation Environment (Ver. 1.21)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2025-10
IAR Embedded Workbench for Renesas RX 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99
GCC for Renesas RX 8.3.0.202411

Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 5.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Version of the module Ver. 1.21
Board used -

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 95 of 102
Mar.15.25

6.2 Troubleshooting
 (1) Q: I have added the FIT module to the project and built it. Then I got the error: Could not open source file

“platform.h”.

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules
is correct with the following documents:

 Using CS+:

Application note “Adding Firmware Integration Technology Modules to CS+ Projects
(R01AN1826)”

 Using e2 studio:

Application note “Adding Firmware Integration Technology Modules to Projects (R01AN1723)”

When using this FIT module, the board support package FIT module (BSP module) must also be added
to the project. Refer to the application note “Board Support Package Module Using Firmware Integration
Technology (R01AN1685)”.

(2) Q: I have added the FIT module to the project and built it. Then I got the error: This MCU is not supported
by the current r_mmcif_rx module.

A: The FIT module you added may not support the target device chosen in your project. Check the
supported devices of added FIT modules.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 96 of 102
Mar.15.25

6.3 Replacing Wait Processing with Operating System Processing
The handling of status interrupts generated by this MMCIF driver can be replaced with operating system
processing. The table below lists the details of the related functions.

Table 6.9 Target Microcontroller Interface Functions

Function Functional Overview
r_mmcif_dev_int_wait() Status interrupt wait processing
r_mmcif_dev_wait() Wait time processing

6.3.1 r_mmcif_dev_int_wait()*
This function is used when waiting for a status interrupt.

Format
mmc_status_t r_mmcif_dev_int_wait(
 uint32_t channel,
 int32_t time
)

Parameters
channel

Channel number - The number of the MMCIF channel used (numbering starts at 0)
time

Timeout time (units ms)

Return Values
MMC_SUCCESS Successful operation (Interrupt request generation)
MMC_ERR General error

Description
This function performs the interrupt wait processing used for protocol communication with the MMC.

When an interrupt request is verified, this function returns MMC_SUCCESS.

If no interrupt is detected within the interrupt wait time given by the argument time, it returns MMC_ERR.

The interrupt wait processing is already included as processing that uses interrupts.

This function calls interrupt status flag register acquisition processing (the r_mmcif_get_intstatus() function)
internally to determine whether or not an interrupt has occurred.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 97 of 102
Mar.15.25

Special Notes
The response reception wait time during communication with the MMC and the data transfer completion wait
time can be allocated to other processing.

Figure 6.1 shows a usage example in which the operating system invoking task delay processing (in this
example, the µITRON dly_tsk() function) is used. Note, however, that users must code the required calls to
the r_mmcif_dev_int_wait() function themselves.

Figure 6.1 MMC Protocol Status Verification Example Using Operating System Task Delay

Processing

r_mmcif_dev_int_wait()

Acquire the contents of the
interrupt status flag register

Flag set

MMC_ERR MMC_SUCCESS

Yes

No

Timeout?
Yes

No

Task delay processing
(Example: μITRON dly_tsk())

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 98 of 102
Mar.15.25

Figure 6.2 shows a usage example in which the operating system event flag set wait processing is used. If
this functionality is used, the user must replace the r_mmcif_dev_int_wait() function interrupt status flag
register acquisition processing (the r_mmcif_get_intstatus() function) with event flag set wait processing and
furthermore add wakeup processing to the MMC protocol status interrupt callback function.

Figure 6.2 MMC Protocol Status Verification Example Using Operating System Wait Task

Processing

6.3.2 r_mmcif_dev_wait()
This function is used when waiting for a particular time.

Format
mmc_status_t r_mmcif_dev_wait(
 uint32_t channel,
 int32_t time
)

Parameters
channel

Channel number - The number of the MMCIF channel used (numbering starts at 0)
time

Timeout time (units ms)

Return Values
MMC_SUCCESS Successful operation (Interrupt request generation)
MMC_ERR General error

Description
This function performs wait time processing.

MMC_SUCCESS is returned when the timeout time specified in the argument time has elapsed.

Special Notes
Table 6.7 lists the wait time processing not associated with status verification. Since this function only
provides a wait for a specified time, it can be replaced with the operating system task delay processing
(example: the µITRON dly_tsk() function).

Table 6.10 Wait Time Processing not Associated with Status Verification

r_mmcif_dev_int_wait()

Event flag set
wait processing

Timeout?

MMC_ERR MMC_SUCCESS

Yes

No

Task execution rights are released with,
for example, the μITRON twai_flg() function
and perform wakeup operations either with
a callback function or by timeout.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 99 of 102
Mar.15.25

Type Description*
The 74 clock cycle wait during
MMC initialization

Card identification mode: A wait of 74 clock cycles <3 ms> for MMC
initialization (A minimum of 2 ms and a maximum of 3 ms must be
assured)

Ready state transition detection
during MMC initialization

Card identification mode: A wait <5 ms> for transition to the MMC ready
state (maximum: 1 second)
For MMC, a CMD1 command is issued at 5 ms intervals, repeated a
maximum of 200 times.

Ready state transition detection
on an error during mount, read, or
write processing

Data transfer mode: A wait <1 ms> for transition to the MMC ready state
after a CMD13 command has been issued for mount, read, or write
processing
(A 1 ms wait is repeated multiple times until a timeout occurs.)

Figure 6.3 Wait Example Using Operating System Task Delay Processing

r_mmcif_dev_wait()

MMC_SUCCESS

Task delay processing
(Example: μITRON dly_tsk())

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 100 of 102
Mar.15.25

7. Reference Documents
User’s Manual: Hardware
The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

User’s Manual: Development Tools
RX Family C/C++ Compiler CC-RX User's Manual (R20UT3248)
The latest version can be downloaded from the Renesas Electronics website.

Related Technical Updates
Not applicable technical update for this module.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 101 of 102
Mar.15.25

Revision History

Rev. Date
Description
Page Summary

1.03 Mar 31, 2018 - First edition issued.
MMC Mode MMCIF Driver Software RTM0RX0000DMMC
Ver.1.02 User’s Manual (R01UW0118) changed to the
application note.

1.04 Feb 01, 2019 87 Added Table 6.2 Operation Confirmation Environment (Ver.
1.04)

 - Changes associated with functions:
Added support setting function of configuration option Using
GUI on Smart Configurator.
[Description]
Added a setting file to support configuration option setting
function by GUI.

1.05 May 20, 2019 - Update the following compilers
GCC for Renesas RX
IAR C/C++ Compiler for Renesas RX

 - Deleted Table 1.3.
 - Deleted Table 6.3, 6.4 Operation Confirmation Environment.
 1 Added Target Compilers.
 1 Deleted R01AN1723, R01AN1826 and R20AN0451 from

Related Documents.
 21 Added revision of dependent r_bsp module in 2.2 Software

Requirements.
 24 2.8 Code Size, amended.
 88 Added Table 6.3 Operation Confirmation Environment

(Ver.1.05).
1.06 Jul 30, 2019 - Changes associated with RX72M.
 24 Changed Section 2.8 Code Size.
 30 Added Section 2.13 “for”, “while” and “do while” statements.
 31-67 Delete “Reentrant” item on the API description page.
 90 Added Table 6.4 Operation Confirmation Environment

(Ver.1.06).
1.07 Nov 22, 2019 - Changes associated with RX66N and RX72N.
 9 Added RX72N hardware setting in 1.4.1 Quick Start Guide.
 21 Added RX66N and RX72N device in 2.4 Interrupt Vector.
 24 2.8 Code Size, amended.
 65-66 Changed “Special Notes” in 3.22

R_MMCIF_Set_LogHdlAddress() and 3.23 R_MMCIF_Log().
 90 Added Table 6.5 Operation Confirmation Environment

(Ver.1.07).
1.10 Dec 27, 2022 83 Updated and added new demo project

Added RSKRX65N to “5. Demo Projects”
 88 Added “5.6. mmcif_demo_rskrx64m, mmcif_demo_rskrx65n,

mmcif_demo_rskrx64m_gcc, mmcif_demo_rskrx65n_gcc”
 89 Added “5.7. Adding a Demo to a Workspace”
 92 6.1 Operating Confirmation Environment:

Added Table for Rev. 1.10
 - Updated and added new demo project

Updated slash format of included header file paths for Linux
compatibility.

RX Family MMC Mode MMCIF Driver Firmware Integration Technology

R01AN4234EJ0121 Rev.1.21 Page 102 of 102
Mar.15.25

Rev. Date
Description
Page Summary

1.20 Dec 31, 2024 29 Deleted the description of FIT configurator from "2.12 Adding
the FIT Module to Your Project"

 93 6.1 Operating Confirmation Environment:
Added Table for Rev. 1.20

 - Modified comment of API function to Doxygen style.
Deleted the description of FIT configurator.
Updated file description.

1.21 Mar 15, 2025 94 6.1 Operating Confirmation Environment:
Added Table for Rev. 1.21

 - Updated FIT Disclaimer and Copyright.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2025 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

http://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 MMCIF driver
	1.2 Overview of the MMCIF driver
	1.2.1 Application Structure
	1.2.1.1 FAT File System
	1.2.1.2 Driver Interface Functions
	1.2.1.3 MMCIF Driver
	1.2.1.4 Peripheral Function Control Module (Sample Program)
	1.2.1.5 Pin Control Module (Sample Program)

	1.3 API Overview
	1.4 Processing Example
	1.4.1 Quick Start Guide
	1.4.1.1 Hardware Settings
	1.4.1.2 Software Settings

	1.4.2 Basic Control
	1.4.2.1 Supported Commands
	1.4.2.2 Relation Between Data Buffers and Data in the MMC
	1.4.2.3 Operating Voltage Settings When Initialization
	1.4.2.4 Stopping MMC_CLK
	1.4.2.5 MMCIF Status Verification

	1.4.3 Control After an Error
	1.4.3.1 Handling When an Error Occur
	1.4.3.2 Handling Error Termination After Transition to the Transfer State (tran)
	1.4.3.3 Error Log Acquisition Methods

	1.4.4 Control of Other Modules
	1.4.4.1 Timers
	1.4.4.2 DMAC and DTC Control Methods

	1.5 State Transition Diagram
	1.6 Limitations
	1.6.1 Usage Notes
	1.6.2 Notes on MMC Power Supply
	1.6.3 Notes on MMC card Insertion and Removal Detection
	1.6.4 Software Write Protection
	1.6.5 Chattering Control at MMC Card Insertion

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Toolchain
	2.4 Interrupt Vector
	2.4.1 API Functions that Can be Called from Within Interrupt Handling

	2.5 Header Files
	2.6 Integer Types
	2.7 Configuration Overview
	2.8 Code Size
	2.9 Parameters
	2.9.1 e_mmc_enum_cmd Structure Definition
	2.9.2 e_mmc_enum_trans Structure Definition
	2.9.3 mmc_cmd_t Structure Definition
	2.9.4 mmc_cfg_t Structure Definition
	2.9.5 mmc_access_t Structure Definition
	2.9.6 mmc_card_status_t Structure Definition
	2.9.7 mmc_card_reg_t Structure Definition

	2.10 Return Values / Error Codes
	2.11 Callback Function
	2.12 Adding the FIT Module to Your Project
	2.13 “for”, “while” and “do while” statements

	3. API Functions
	R_MMCIF_Open()
	R_MMCIF_Close()
	R_MMCIF_Get_CardDetection()
	R_MMCIF_Mount()
	R_MMCIF_Unmount()
	R_MMCIF_Read_Memory()
	R_MMCIF_Read_Memory_Software_Trans()
	R_MMCIF_Write_Memory()
	R_MMCIF_Write_Memory_Software_Trans()
	R_MMCIF_Control()
	(1) MMC_SET_STOP

	R_MMCIF_Get_ModeStatus()
	R_MMCIF_Get_CardStatus()
	R_MMCIF_Get_CardInfo()
	R_MMCIF_Int_Handler0()
	R_MMCIF_Int_Handler1()
	R_MMCIF_Cd_Int()
	R_MMCIF_IntCallback()
	R_MMCIF_Get_ErrCode()
	R_MMCIF_Get_BuffRegAddress()
	R_MMCIF_Get_ExtCsd()
	R_MMCIF_1ms_Interval()
	R_MMCIF_Set_DmacDtc_Trans_Flg()
	R_MMCIF_Set_LogHdlAddress()
	R_MMCIF_Log()
	R_MMCIF_GetVersion()

	4. Pin Setting
	4.1 Pins setting of MMC bus 1 bit communication
	4.2 Setting of MMC card power control pin
	4.3 Setting of MMC card MMC reset pin
	4.4 MMC card Insertion and Power-On Timing
	4.5 MMC card Removal and Power-Off Timing
	4.6 Hardware Settings
	4.6.1 Sample Hardware Configuration
	4.6.1.1 Pin Descriptions

	4.6.2 MMC Socket (Removable Media: MMC Card)
	4.6.2.1 Connection Using an 8-bit Bus
	4.6.2.2 Connection Using an 4-bit Bus
	4.6.2.3 Connection Using an 1-bit Bus
	4.6.2.4 Microcontroller Resources

	4.6.3 MMC (Embedded Multimedia Card: eMMC)
	4.6.3.1 Connection Using an 8-bit Bus
	4.6.3.2 Connection Using an 4-bit Bus
	4.6.3.3 Connection Using an 1-bit Bus
	4.6.3.4 Microcontroller Resources

	5. Demo Projects
	5.1 Overview
	5.2 State Transition Diagram
	5.3 Configuration Overview
	5.4 API Functions
	5.4.1 r_mmcif_demo_power_init()
	5.4.2 r_mmcif_demo_power_on()
	5.4.3 r_mmcif_demo_power_off()
	5.4.4 r_mmcif_demo_softwaredelay()

	5.5 Replacing Wait Time Processing with Operating System Processing
	5.6 mmcif_demo_rskrx64m, mmcif_demo_rskrx65n, mmcif_demo_rskrx64m_gcc, mmcif_demo_rskrx65n_gcc
	5.7 Adding a Demo to a Workspace
	5.8 Downloading Demo Projects

	6. Appendices
	6.1 Operation Confirmation Environment
	6.2 Troubleshooting
	6.3 Replacing Wait Processing with Operating System Processing
	6.3.1 r_mmcif_dev_int_wait()*
	6.3.2 r_mmcif_dev_wait()

	7. Reference Documents
	Related Technical Updates
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

