
 Application Note

R01AN6908EJ0101 Rev.1.11 Page 1 of 66
Mar.20.25

RX Family
SPI Mode SD Memory Card Driver Firmware Integration Technology
Introduction
This application note describes the SPI Mode SD Memory Card driver that uses Firmware Integration
Technology (FIT). This module controls SD Memory Cards in SPI mode using the Serial Communication
Interface (SCI) or Serial Peripheral Interface (RSPI) included in Renesas Electronics RX Family
microcontrollers. In this document, this module is referred to as the SPI mode SD Memory Card driver.

The following shows the position of this module.

This module complies with the Simplified Specification.

When developing host devices that are compliant with the SD Specifications, the user must enter into the SD
Card Association License Agreement (SDALA) and SD Card Association Membership Agreement (SDAMA).

For details, refer to the SD Association website.

https://www.sdcard.org/

https://www.sdcard.org/

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 2 of 66
Mar.20.25

Target Device
• RX Family

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Target Compilers
• Renesas Electronics C/C++ Compiler Package for RX Family
• GCC for Renesas RX
• IAR C/C++ Compiler for Renesas RX

For details about the confirmed operational aspects of each complier, see section 6.1 Confirmed Operation
Environment.

Related Documents
• RX Family Board Support Package Module Using Firmware Integration Technology (R01AN1685)
• RX Family DMAC Module Using Firmware Integration Technology (R01AN2063)
• RX Family DTC Module Using Firmware Integration Technology (R01AN1819)
• RX Family LONGQ Module Using Firmware Integration Technology (R01AN1889)
• RX Family SCI Module Using Firmware Integration Technology (R01AN1815)
• RX Family RSPI Module Using Firmware Integration Technology (R01AN1827)
• RX Family Memory Access Driver Interface Module Using Firmware Integration Technology

(R01AN4548)
• RX Family Open Source FAT File System M3S-TFAT-Tiny Module FIT (R20AN0038)
• RX Family M3S-TFAT-Tiny Memory Driver Interface Module Using Firmware Integration Technology

(R20AN0355)
• RX Family GPIO Module Using Firmware Integration Technology (R01AN1721)

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 3 of 66
Mar.20.25

Contents

1. Overview ... 5
1.1 SPI Mode SD Memory Card Driver ... 5
1.2 Overview of the SPI Mode SD Memory Card Driver ... 9
1.3 API Overview ... 10
1.4 Hardware Settings ... 10
1.4.1 Hardware Configuration Example ... 10
1.5 State Transition Diagram ... 11
1.6 Processing Examples .. 12
1.6.1 Basic Control ... 12
1.6.2 Control After an Error .. 14
1.7 Limitations ... 15
1.7.1 Notes on SD Card Power Supply .. 15
1.7.2 Software Write Protection .. 15
1.7.3 Compatible with SDUC card .. 15

2. API Information .. 16
2.1 Hardware Requirements.. 16
2.2 Software Requirements ... 16
2.3 Supported Toolchain ... 16
2.4 Interrupt Vector .. 16
2.5 Header Files .. 16
2.6 Integer Types ... 16
2.7 Configuration Overview ... 17
2.8 Code Size .. 19
2.9 Parameters .. 20
2.10 Error Codes as Return Values .. 21
2.11 Adding the FIT Module to Your Project ... 22
2.12 “for”, “while” and “do while” Statements .. 23

3. API Functions .. 24
3.1 R_SDC_SPI_Open() ... 24
3.2 R_SDC_SPI_Close() ... 26
3.3 R_SDC_SPI_GetCardDetection() ... 27
3.4 R_SDC_SPI_Initialize() ... 28
3.5 R_SDC_SPI_End() .. 30
3.6 R_SDC_SPI_Read() .. 31
3.7 R_SDC_SPI_Write() .. 33
3.8 R_SDC_SPI_GetCardStatus() .. 35
3.9 R_SDC_SPI_GetCardInfo() .. 37
3.10 R_SDC_SPI_SetLogHdlAddress() .. 38
3.11 R_SDC_SPI_Log() .. 40
3.12 R_SDC_SPI_GetVersion() .. 41

4. Pin Setting ... 42
4.1 SD Card Insertion and Power-On Sequence .. 43
4.2 SD Card Removal and Power-Off Sequence .. 45

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 4 of 66
Mar.20.25

5. Demo project ... 46
5.1 Overview .. 46
5.2 Operation Confirmation Environment .. 46
5.3 Compile Settings ... 49
5.4 Demo Project Flowchart .. 50
5.5 Pin Condition Transition .. 53
5.6 Files ... 54
5.7 API Functions .. 54
5.8 Downloading Demo Projects ... 59
5.9 Importing a Project into e2 studio... 60
5.10 Notes for the Demo project ... 61

6. Appendices .. 62
6.1 Operation Confirmation Environment .. 62
6.2 Troubleshooting ... 64

7. Appendices .. 65

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 5 of 66
Mar.20.25

1. Overview
1.1 SPI Mode SD Memory Card Driver
By using this module in conjunction with a clock synchronous serial interface or other software modules
provided by Renesas free of charge (see Figure 1.1 and Table 1-1 on the next page), it is possible to control
SD Memory Cards.

Using this module in conjunction with the following modules allows access to files on SD Memory Cards
through a FAT file system: RX Family Open Source FAT File System M3S-TFAT-Tiny module (M3S-TFAT-
Tiny module) and RX Family M3S-TFAT-Tiny Memory driver interface module (memory driver interface
module). These modules are separately provided.

This module can be incorporated into a project as an API. For details on how to incorporate this module, see
section 2.11 Adding the FIT Module to Your Project.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 6 of 66
Mar.20.25

Figure 1.1 shows an application structure example when a FAT file system is constructed by using the SPI
mode SD Memory Card driver.

Figure 1.1 Application Structure Example

Table 1-1 lists the modules used in the application structure.

Table 1-1 Modules Used in Application Structure

Item Document number Remarks
M3S-TFAT-Tiny module R20AN0038
Memory driver interface module R20AN0335
SPI mode SD Memory Card driver module R01AN6908
MEMDRV FIT module R01AN4548
SCI FIT module R01AN1815
RSPI FIT module R01AN1827
DMAC FIT module R01AN2063
DTC FIT module R01AN1819
LONGQ FIT module R01AN1889
Config_CRC (CRC calculator) - Available by using the code

generation feature of the Smart
Configurator *1

GPIO FIT module R01AN1721
BSP (Board Support Package Module) R01AN1685
Pin setting function - Available by using the pin setting

feature of the Smart Configurator *2
Notes: 1. On the [Components] page of the Smart Configurator, click the + (add component) icon, and then

select the CRC calculator. Then, click the code generation button.
 2. On the [Pins] page of the Smart Configurator, select the ports for CD, CS, and WP corresponding

to
Figure 1.2 and the pins corresponding to SMOSI, SMISO, and SCK (or MOSI, MISO, and RSPCK for SPI).

Then, click the code generation button.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 7 of 66
Mar.20.25

(1) M3S-TFAT-Tiny module
This software is used for SD memory file management. Please obtain it from the following website as
necessary.

RX Family Open Source FAT File System M3S-TFAT-Tiny: https://www.renesas.com/mw/tfat-rx

(2) Memory driver interface module
This software is used for connecting the Renesas Electronics M3S-TFAT-Tiny module and the SPI mode SD
Memory Card driver API. Please obtain it from the M3S-TFAT-Tiny web page shown above as necessary.

RX Family M3S-TFAT-Tiny Memory Driver Interface Module Using Firmware Integration Technology

(3) SPI mode SD Memory Card driver module
This software implements SD memory protocol control conforming to the SD Specifications Part 1 Physical
Layer Simplified Specification.

(4) MEMDRV FIT module
This software is used as an adapter between the SPI mode SD Memory Card driver and the SCI FIT module
or RSPI FIT module.

(5) SCI FIT module
This software controls the SCI hardware. It also includes microcontroller-dependent target microcontroller
interface functions and interrupt setting files.

(6) RSPI FIT module
This software controls the RSPI hardware. It also includes the microcontroller-dependent target
microcontroller interface functions and interrupt setting files.

(7) DTC FIT module and DMAC FIT module
These software products implement DMAC control and DTC control.

(8) GPIO FIT module
This software controls general-purpose I/O ports.

(9) LONGQ FIT module
This software configures and manages longword (uint32_t) ring buffers used for acquiring error logs.

https://www.renesas.com/mw/tfat-rx

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 8 of 66
Mar.20.25

(10) Config_CRC (CRC calculator)
This software calculates the CRC used for sending or receiving commands.

(11) BSP (board support package module)
This software is the foundation of any project that uses FIT modules.

(12) Pin setting function
This function allocates pins. It specifies the port settings for the port used in SCI or RSPI and the pins used
for the CD, WP, and CS pins of the SD Card.

The demo project attached with this module generates the pin setting function by allocating the pins with the
Smart Configurator.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 9 of 66
Mar.20.25

1.2 Overview of the SPI Mode SD Memory Card Driver
This module controls SD Memory Cards by using SPI.

Table 1-2 and Table 1-3 list the functions of this module.

Table 1-2 SPI Mode SD Memory Card Driver Functions

Item Function
Conforming standard Conforms to the SD Specifications Part 1 Physical Layer Simplified

Specification Version 9.00
SD host interface control driver Block type device driver with 512-byte/sector
Target SD Cards SD Memory Card
SD Card operating voltage 2.7V to 3.6V

This driver is only 3.3 V is supported.
SD Card interface voltage Only 3.3 V is supported.
SD Card bus interface SPI mode (1-bit) is supported.
SD Card speed mode Default Speed mode is supported.
SD Card memory capacity Standard-Capacity SD Memory Card (SDSC) and High-Capacity SD

Memory Cards (SDHC and SDXC) are supported.
SD Card memory control
objects

Only a user area is supported.
Protected area control is not supported.

SD Card detection function Detection using the CD pin is only supported.

Table 1-3 Microcontroller Functions

Item Function
Target microcontroller RX Family microcontrollers that include the SCI or RSPI
Microcontroller internal data
transfer method

Software transfer, DMAC transfer, or DTC transfer can be selected by
using the MEMDRV FIT module.

Endian order Both big endian and little endian are supported.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 10 of 66
Mar.20.25

1.3 API Overview
Table 1-4 shows the API functions for this module.

Table 1-4 API Functions

Function Functional Overview
R_SDC_SPI_Open() Driver open processing
R_SDC_SPI_Close() Driver close processing
R_SDC_SPI_GetCardDetection() Insertion verification processing
R_SDC_SPI_Initialize() Initialization processing
R_SDC_SPI_End() End processing
R_SDC_SPI_Read() Read processing
R_SDC_SPI_Write() Write processing
R_SDC_SPI_GetCardStatus() Card status information acquisition processing
R_SDC_SPI_GetCardInfo() Register information acquisition processing
R_SDC_SPI_SetLogHdlAddress() LONGQ FIT module handler address registration

processing
R_SDC_SPI_Log() Error log acquisition processing *1
R_SDC_SPI_GetVersion() Driver version information acquisition processing

Note: 1. The LONGQ FIT module is also required.

1.4 Hardware Settings
1.4.1 Hardware Configuration Example

Figure 1.2 shows the pin connection diagram. The pin names differ depending on the MCU and serial
interface. Confirm the pins and functions used, and then assign the pin functions to the appropriate pins of
the MCU.

Figure 1.2 Pin Connection Diagram

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 11 of 66
Mar.20.25

1.5 State Transition Diagram
Figure 1.3 shows the state transition diagram for this driver.

Figure 1.3 State Transition Diagram for SD Memory Card Driver

Driver uninitialized state

Driver initialized state
(No SD Card inserted)

SD Card initialization possible state
(SD Card inserted)

R_SDC_SPI_GetCarddetect()

R_SDC_SPI_Open()

Inserting an SD Card causes a transition to the SD
Card initialization possible state.

Driver idle state *1
[SD memory transfer state (tran)]

R_SDC_SPI_Initialize() R_SDC_SPI_End()

Read execution state

(SD Card transfer state)

Write execution state

(SD Card receive state)

R_SDC_SPI_Read() R_SDC_SPI_Write()

R_SDC_SPI_Read()

Successful operation

R_SDC_SPI_Write()

Successful operation

R_SDC_SPI_Close()

R_SDC_SPI_Close()

Note: 1. [] indicates the state of the SD Memory Card as described in the SD Specifications Part 1
Physical Layer Simplified Specification.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 12 of 66
Mar.20.25

1.6 Processing Examples
1.6.1 Basic Control
(1) Supported commands
The SPI mode SD Memory Card driver uses the following commands.

The table below lists the SD Card commands and the status of support in this SPI mode SD Memory Card
driver.

Table 1-5 Supported Commands (: Supported, —: Not supported)

Command This module Remarks
CMD0  Used in SD memory initialization
CMD1 —
CMD5 —
CMD6  Used in SD memory initialization
CMD8  Used in SD memory initialization
CMD9  Used in SD memory initialization
CMD10  Used in SD memory initialization
CMD12  Used for SD memory read/write processing
CMD13  Used in SD memory initialization
CMD16 —
CMD17  Used for SD memory read processing
CMD18  Used for SD memory read processing
CMD24  Used for SD memory write processing
CMD25  Used for SD memory write processing
CMD27 —
CMD28 —
CMD29 —
CMD30 —
CMD32 —
CMD33 —
CMD38 —
CMD42 —
CMD55  Used in SD memory initialization
CMD56 —
CMD58  Used in SD memory initialization
CMD59  Used in SD memory initialization
ACMD13  Used in SD memory initialization
ACMD18 —
ACMD22 —
ACMD23  Used in SD memory initialization
ACMD25 —
ACMD26 —
ACMD38 —
ACMD41  Used in SD memory initialization
ACMD42 —
ACMD51  Used in SD memory initialization

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 13 of 66
Mar.20.25

(2) Relationship between data buffers and data in the SD Card
The SD Card driver is set up with the transmit/receive data pointers passed as arguments. Figure 1.4 shows
the relationship between the transmit/receive order and the order of the data in the data buffers in RAM. The
figure indicates that data in the transmit buffer is sent in the order it appears in the buffer and data is written
to the receive buffer in the order received regardless of the endian order.

Figure 1.4 Transmission Data Storage

(3) Operating voltage settings
The operating voltage for the SD Card must be set as an argument of the R_SDC_SPI_Initialize() function.

When performing the second or onward initialization processing, place this module in the SD Card
initialization possible state by calling the R_SDC_SPI_End() function. Then, remove and then reinsert the SD
Card, set the operating voltage again, and then perform the initialization processing again.

Note that this module supports an operating voltage and interface voltage of 3.3 V. Therefore, set the
operating voltage to 3.3 V using R_SDC_SPI_Initialize()..

Host transmission mode

Transmit data buffer in RAM (shown in bytes)

0 1 ... 508 509 510 511

Data transmission order

Write to an SD Card (slave device) (shown in bytes)

0 1 ... 508 509 510 511

Data reception order

Host reception mode

Read from an SD Card (slave device) (shown in bytes)

0 1 ... 508 509 510 511

Data transmission order

Receive data buffer in RAM (shown in bytes)

0 1 ... 508 509 510 511

Write to a receive data buffer

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 14 of 66
Mar.20.25

(4) SD Card status verification
To use the SD Card, it is necessary to detect the SD Card insertion/removal state.

Whether the SD Card is inserted or removed can be detected by software polling with the function shown in
Table 1-6.

Table 1-6 Status To Be Verified

Type Status Remarks
SD Card insertion/removal SD Card inserted or

removed
Detection is possible with the
R_SDC_SPI_GetCardDetection() function.

1.6.2 Control After an Error
(1) Handling when an error occurs
We recommend retrying the processing when an error occurs in read, write, or other processing.

If an error occurs even after retrying the processing, remove and reinsert the SD Card, and then initialize it
again. For details on the processing related to SD Card insertion and removal, see sections 4.1 SD Card
Insertion and Power-On Sequence and 4.2 SD Card Removal and Power-Off Sequence.

Also, if the SD Card driver is used in conjunction with a FAT file system, before removing and reinserting the
SD Card, perform any required processing, such as mounting and unmounting, by using the user application.

(2) Handling error termination after transition to the transfer state (tran)
If an error occurs after transition to the transfer state (tran), a CMD12 command is issued regardless of
whether or not there was a data transfer. The purpose of issuing the CMD12 command is to transition to the
transfer state (tran). Note, however, that if the CMD12 command is issued during write processing, the SD
Card might transition to the busy state. This can cause the next R_SDC_SPI_Read function or
R_SDC_SPI_Write function call to return an error.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 15 of 66
Mar.20.25

1.7 Limitations
1.7.1 Notes on SD Card Power Supply
After an SD Card is inserted, the power supply stipulated by the SD Card specifications must be applied. See
the Power Scheme section in the SD Specifications Part 1 Physical Layer Simplified Specification.

In particular, to control SD Card reinsertion after SD Card removal or power restoration after turning off
power to the SD Card, establish the control timing for circuit and power cycle on the system side according to
the regulations on the voltage value and voltage sustain period.

The time required to reach the operating voltage after supply of the power supply voltage is started must be
adjusted.

Also, the application program must provide the wait time processing required to reach the voltage at which
SD Card removal is allowed after supply of the power supply is stopped.

1.7.2 Software Write Protection
The SPI mode SD Card driver does not support software protection state control functions.

1.7.3 Compatible with SDUC card
Due to SD Specifications Part 1 Physical Layer Simplified Specification, SDUC card do not support SPI
mode. For this reason, we cannot guarantee operation when the SDUC card is connected.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 16 of 66
Mar.20.25

2. API Information
This FIT module has been confirmed to operate under the following conditions.

2.1 Hardware Requirements
The MCU used must support one of the following functions:

• SCI
• RSPI

2.2 Software Requirements
This SD Card driver depends on the following FIT modules:

• r_bsp (Rev. 5.20 or later)
• r_gpio_rx
• r_memdrv_rx
• r_sci_rx
• r_rspi_rx
• r_dmaca_rx
• r_dtc_rx
• r_longq_rx

It also depends on the following code generation module.

• CRC calculator

2.3 Supported Toolchain
This module has been confirmed to work with the toolchain listed in 6.1 Operation Confirmation Environment.

2.4 Interrupt Vector
None

2.5 Header Files
The API calls and interface definitions used are defined in r_sdc_spi_rx_if.h.

The configuration options for each build are selected in r_sdc_spi_rx_config.h.

2.6 Integer Types
This SD Card driver is coded in ANSI C99. These types are defined in stdint.h.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 17 of 66
Mar.20.25

2.7 Configuration Overview
All configurable options that can be set at build time are located in the file "r_sdc_spi_rx_config.h".

When using the Smart Configurator, the configuration options can be set on the software component
configuration screen. The setting value is automatically reflected in r_sdc_spi_rx_config.h when modules are
added to the user project. The option names and setting values are listed in the table below.

Configuration options in r_sdc_spi_rx_config.h

SDC_SPI_CFG_PARAM_CHECKING_ENABLE
Note: The default value is
BSP_CFG_PARAM_CHECKING_ENABLE.

1: Parameter check processing is included in the
code during build.
0: Parameter check processing is skipped in the
code during build.
If this option is set to
BSP_CFG_PARAM_CHECKING_ENABLE, the
system default setting is used.

SDC_SPI_CFG_ERROR_LOG_ACQUISITION
Note: The default value is 0.

Define 1 to use the error log acquisition function
using the LONGQ FIT module.
To use this function, the LONGQ FIT module
must be added to the project.

SDC_SPI_CFG_CH0_CD_ENABLE
Note: The default value is 1.

Select whether to use the CD pin for channel 0.
0: Do not use the CD pin.
1: Use the CD pin.

SDC_SPI_CFG_CH0_CD_PORT
Note: The default value is 0.

Specify the I/O port number to be used for the
CD pin for channel 0.
0x00 to 0x19: I/O port number

SDC_SPI_CFG_CH0_CD_BIT
Note: The default value is 0.

Specify the I/O port bit number to be used for
the CD pin for channel 0.
0 to 7: I/O port bit number to be used

SDC_SPI_CFG_CH0_CS_ENABLE
Note: The default value is 1.

Select whether to use the CS pin for channel 0.
0: Do not use the CS pin.
1: Use the CS pin.

SDC_SPI_CFG_CH0_CS_PORT
Note: The default value is 0.

Specify the I/O port number to be used for the
CS pin for channel 0.
0x00 to 0x19: I/O port number

SDC_SPI_CFG_CH0_CS_BIT
Note: The default value is 0.

Specify the I/O port bit number to be used for
the CS pin for channel 0.
0 to 7: I/O port bit number to be used

SDC_SPI_CFG_CH0_WP_ENABLE
Note: The default value is 1.

Select whether to use the WP pin for channel 0.
0: Do not use the WP pin.
1: Use the WP pin.

SDC_SPI_CFG_CH0_WP_PORT
Note: The default value is 0.

Specify the I/O port number to be used for the
WP pin for channel 0.
0x00 to 0x19: I/O port number

SDC_SPI_CFG_CH0_WP_BIT
Note: The default value is 0.

Specify the I/O port bit number to be used for
the WP pin for channel 0.
0 to 7: I/O port bit number to be used

SDC_SPI_CFG_CH1_CD_ENABLE
Note: The default value is 1.

Select whether to use the CD pin for channel 1.
0: Do not use the CD pin.
1: Use the CD pin.

SDC_SPI_CFG_CH1_CD_PORT
Note: The default value is 0.

Specify the I/O port number to be used for the
CD pin for channel 1.
0x00 to 0x19: I/O port number

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 18 of 66
Mar.20.25

Configuration options in r_sdc_spi_rx_config.h

SDC_SPI_CFG_CH1_CD_BIT
Note: The default value is 0.

Specify the I/O port bit number to be used for
the CD pin for channel 1.
0 to 7: I/O port bit number to be used

SDC_SPI_CFG_CH1_CS_ENABLE
Note: The default value is 1.

Select whether to use the CS pin for channel 1.
0: Do not use the CS pin.
1: Use the CS pin.

SDC_SPI_CFG_CH1_CS_PORT
Note: The default value is 0.

Specify the I/O port number to be used for the
CS pin for channel 1.
0x00 to 0x19: I/O port number

SDC_SPI_CFG_CH1_CS_BIT
Note: The default value is 0.

Specify the I/O port bit number to be used for
the CS pin for channel 1.
0 to 7: I/O port bit number to be used

SDC_SPI_CFG_CH1_WP_ENABLE
Note: The default value is 1.

Select whether to use the WP pin for channel 1.
0: Do not use the WP pin.
1: Use the WP pin.

SDC_SPI_CFG_CH1_WP_PORT
Note: The default value is 0.

Specify the I/O port number to be used for the
WP pin for channel 1.
0x00 to 0x19: I/O port number

SDC_SPI_CFG_CH1_WP_BIT
Note: The default value is 0.

Specify the I/O port bit number to be used for
the WP pin for channel 1.
0 to 7: I/O port bit number to be used

SDC_SPI_CFG_SBLK_NUM
Note: The default value is 1.

Set the maximum number of blocks for single
block write command.
1 to 255: Maximum write block count

SDC_SPI_CFG_USE_SC_CRC
Note: The default value is 0.

Define 1 to use the CRC calculation using the
Smart Configurator CRC calculator.
0: Do not use the Smart Configurator CRC
calculator.
1: Use the Smart Configurator CRC calculator.

To use this function, Configure Config_CRC
(CRC calculator) of the Smart Configurator as
shown below:
Generating Polynomial: CRC_CCITT
Bit order: MSB
Initial value: 0x0000

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 19 of 66
Mar.20.25

2.8 Code Size
The table below lists the sizes of ROM, RAM and maximum stack usage associated with this module.

The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options described in 2.7 Configuration Overview.

The values in the table below are confirmed under the following conditions.

Module Revision: r_sdc_spi_rx rev.1.00
Compiler Version: Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00

(The option of “-lang = c99” is added to the default settings of the
integrated development environment.)
GCC for Renesas RX 8.3.0.202311
(The option of “-lang = c99” is added to the default settings of the
integrated development environment.)
IAR C/C++ Compiler for Renesas RX version 5.10.1
(Default settings of the integrated development environment)

Configuration Options: Default settings

ROM, RAM, and Stack Code Sizes
Device Categ

ory
Memory Used
Renesas Compiler GCC IAR Compiler
With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

RX140 ROM 8085byte 7507byte 9722byte 8944byte 10371byte 10371byte

RAM 15byte 0byte 16byte

Stack
size 176byte - 108byte

Measurement condition:

 Setting for SPI mode SD Memory Card Driver FIT

CH0 CD pin Enable: Enable

CH0 CS pin Enable: Enable

CH0 WP pin Enable: Enable

Use CRC smart configuration: Disable

 Setting for MEMDRV FIT

Device 0 data transfer mode: CPU transfer

Device 0 drive: SCI clock synchronous control FIT module

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 20 of 66
Mar.20.25

2.9 Parameters
This section presents the structures used as arguments to the API functions. These structures are included
in the file r_sdc_spi_rx_if.h along with the API function prototype declarations.

(1) sdc_spi_cfg_t structure definition
typedef struct
{
 uint32_t mode;
 uint32_t voltage;
}sdc_spi_cfg_t;

(2) sdc_spi_access_t structure definition
typedef struct
{
 uint8_t *p_buff;
 uint32_t lbn;
 int32_t cnt;
 uint32_t write_mode;
}sdc_spi_access_t;

(3) sdc_spi_card_status_t structure definition
typedef struct
{
 uint32_t card_sector_size;
 uint32_t max_block_number;
 uint8_t write_protect;
 uint8_t csd_structure;
}sdc_spi_card_status_t;

(4) sdc_spi_card_reg_t structure definition
typedef struct
{
 uint32_t ocr[1];
 uint32_t cid[4];
 uint32_t csd[4];
 uint32_t scr[2];
 uint32_t sdstatus[4];
}sdc_spi_card_reg_t;

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 21 of 66
Mar.20.25

2.10 Error Codes as Return Values
This section presents the return values from the API functions. This enumeration type is defined in the file
r_sdc_spi_rx_if.h along with the API function prototype declarations.

If an error occurs during processing, these SD Card driver API functions return an error code in their return
value.

Table 2-1 lists the error codes. Note that values not listed in the table are reserved for future expansion.

Table 2-1 Error Codes

Macro Definition Value Meaning

SDC_SPI_SUCCESS 0 Successful
operation

• Successful operation for functions
other than the
R_SDC_SPI_GetCardDetection()
function

• The return value of the
R_SDC_SPI_GetCardDetection()
function indicates either of the
following:

1) The port level set for the CD pin is
Low when the CD pin is used.

2) The CD pin is not used.

SDC_SPI_ERR -1 General error
R_SDC_SPI_Open() function not yet
executed, parameter error, and other
errors

SDC_SPI_ERR_WP -2 Write protect
error

Write to an SD Card in the write
protected state

SDC_SPI_ERR_CRC -7 CRC error
CRC error detected

SDC_SPI_ERR_ILLEGALCMD -83 Illegal command
error

R1 response card status error
(ILLEGAL_COMMAND)

SDC_SPI_ERR_ADDRESS_BOUN
DARY -89 Work address

error

Argument buffer address error
The address does not fall on a 4-byte
boundary.

SDC_SPI_ERR_INTERNAL -99 Internal error
Error in a module used within the driver

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 22 of 66
Mar.20.25

2.11 Adding the FIT Module to Your Project
This module must be added to each project in which it is to be used. Renesas recommends using the Smart
Configurator described in (1) or (3) below. However, the Smart Configurator supports only some RX devices.
For unsupported RX devices, use the methods outlined in (2) and (4).

(1) Adding the FIT module to your project by using the Smart Configurator in e2 studio
By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project. Refer to
“Renesas e2 studio Smart Configurator User’s Guide (R20AN0451)” for details.

(2) Adding the FIT module to your project by using the FIT Configurator in e2 studio
By using the FIT Configurator in e2 studio, the FIT module is automatically added to your project. Refer to
“RX Family Adding Firmware Integration Technology Modules to Projects (R01AN1723)” for details.

(3) Adding the FIT module to your project by using the Smart Configurator in CS+
By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added to your
project. Refer to “Renesas e2 studio Smart Configurator User’s Guide (R20AN0451)” for details.

(4) Adding the FIT module to your project in CS+
In CS+, manually add the FIT module to your project. Refer to “RX Family Adding Firmware Integration
Technology Modules to CS+ Projects (R01AN1826)” for details.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 23 of 66
Mar.20.25

2.12 “for”, “while” and “do while” Statements
This module uses “for”, “while” and “do while” statements (loop processing) for processes such as waiting for
information to be reflected to registers. Such loop processing includes comments with “WAIT_LOOP” as a
keyword, which allows users to search for relevant processing when adding fail-safe processing to loop
processing.

The following shows a description example.

while statement example:

/* WAIT_LOOP */

while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)

{

 /* The delay period needed is to make sure that the PLL has stabilized. */

}

for statement example:

/* Initialize reference counters to 0. */

/* WAIT_LOOP */

for (i = 0; i < BSP_REG_PROTECT_TOTAL_ITEMS; i++)

{

 g_protect_counters[i] = 0;

}

do while statement example:

/* Reset completion waiting */

do

{

 reg = phy_read(ether_channel, PHY_REG_CONTROL);

 count++;

} while ((reg & PHY_CONTROL_RESET) && (count < ETHER_CFG_PHY_DELAY_RESET)); /* WAIT_LOOP */

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 24 of 66
Mar.20.25

3. API Functions

3.1 R_SDC_SPI_Open()
This is the first function to be called when this SD Card driver API is used.

Format
sdc_spi_status_t R_SDC_SPI_Open(
uint32_t card_no,
uint8_t dev_no,
void *p_sdc_spi_workarea
)

Parameters
card_no

SD Card number The number of the SD Card used (numbering starts at 0)

dev_no

Channel number The number of the MEMDRV FIT channel used (numbering starts at 0)

*p_sdc_spi_workarea

Pointer to a working area on a 4-byte boundary

Return Values
SDC_SPI_SUCCESS Successful operation

SDC_SPI_ERR There is a problem with parameter settings.

SDC_SPI_ERR_ADDRESS_BOUNDARY There is a problem in the memory area address used by the
driver.

SDC_SPI_ERR_INTERNAL An error occurred in a module used within the driver.

Properties
A prototype declaration for this function appears in r_sdc_spi_rx_if.h.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 25 of 66
Mar.20.25

Description
This function obtains resources for the general-purpose I/O port controlled by the argument card_no, and
initializes the SPI mode SD Card driver and the MEMDRV FIT module specified by the argument dev_no.

The working area is retained until SPI mode SD Card driver close processing completes, and the
application must not modify the working area content.

Example
uint32_t g_sdc_spi_work[160/sizesof(uint32_t)];

/* ==== Please add the processing to set the pins. ==== */

if (R_SDC_SPI_Open(SDC_SPI_CARD0, MEMDRV_CH0, &g_sdc_spi_work) !=
SDC_SPI_SUCCESS)
{
 /* Error */
}

Special Notes
The pins must be set up before this function is called. For details, see section 4. Pin Setting. To use the
SD Card CD pin, WP pin, and CS pin, modify the configuration option settings according to the pins to be
used.

If this function does not complete successfully, library functions other than the R_SDC_SPI_GetVersion()
and R_SDC_SPI_Log() functions cannot be used.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 26 of 66
Mar.20.25

3.2 R_SDC_SPI_Close()
This function releases the resources being used by the SD Card driver.

Format
sdc_spi_status_t R_SDC_SPI_Close(
uint32_t card_no
)

Parameters
card_no

SD Card number The number of the SD Card used (numbering starts at 0)

Return Values
SDC_SPI_SUCCESS Successful operation

SDC_SPI_ERR There is a problem with parameter settings.

SDC_SPI_ERR_INTERNAL An error occurred in a module used within the driver.

Properties
A prototype declaration for this function appears in r_sdc_spi_rx_if.h.

Description
This function terminates all SD Card driver processing and releases the resources for the channel
specified by the argument card_no.

The working area specified with the R_SDC_SPI_Open() function is not used after this function has been
executed. This area can be used for other purposes.

Example
/* ==== Please add the processing to set the pins. ==== */

if (R_SDC_SPI_Close(SDC_SPI_CARD0) != SDC_SPI_SUCCESS)
{
 /* Error */
}

Special Notes

A prototype declaration for this function appears in r_sdc_spi_rx_if.h.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 27 of 66
Mar.20.25

3.3 R_SDC_SPI_GetCardDetection()
This function verifies the SD Card insertion state.

Format
sdc_spi_status_t R_SDC_SPI_GetCardDetection(
uint32_t card_no
)

Parameters
card_no

SD Card number The number of the SD Card used (numbering starts at 0)

Return Values
SDC_SPI_SUCCESS The port level set for the CD pin is Low, or the CD pin is not used.

SDC_SPI_ERR There is a problem with parameter settings, or the port level set for the CD
pin is High.

Properties
A prototype declaration for this function appears in r_sdc_spi_rx_if.h.

Description
This function verifies the SD Card insertion state.

If the CD pin level specified by the compile option is Low or the CD pin is not used, this function returns
SDC_SPI_SUCCESS.

If the CD pin level specified by the compile option is High or there is a problem with parameter settings,
this function returns SDC_SPI_ERR.

Example
if (R_SDC_SPI_GetCardDetection(SDC_SPI_CARD0) != SDC_SPI_SUCCESS)
{
 /* Error */
}

Special Notes

A prototype declaration for this function appears in r_sdc_spi_rx_if.h.

Before running this function, driver open processing must be performed by the R_SDC_SPI_Open()
function.

The general-purpose I/O port connected to the CD pin of the SD Card socket is used as the SD Card
insertion/removal detection pin.

After an SD Card has been detected, processing that provides the power supply to the SD Card must be
performed.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 28 of 66
Mar.20.25

3.4 R_SDC_SPI_Initialize()
This function initializes the SD Card, and then changes the SD Card initialization possible state to the driver
idle state.

Format
sdc_spi_status_t R_SDC_SPI_Initialize(
uint32_t card_no,
sdc_spi_cfg_t *p_sdc_spi_config,
uint32_t init_type
)

Parameters
card_no

SD Card number The number of the SD Card used (numbering starts at 0)

*p_sdc_spi_config

Structure that holds the operating settings

mode: The operating mode

0x00000000 (Fixed value. This value is equivalent to software transfer setting.)

voltage: Power supply voltage

0x00200000 (Fixed value. This value is equivalent to 3.3 V in the operating voltage settings.)

init_type: Initialization type

Specify the initialization target. Use the value of the macro definition for media support type in
Table 3-1 SD Card Driver Operating Mode (mode).

Table 3-1 SD Card Driver Operating Mode (mode)

Type Macro definition Value (Bits) Definition

Media support type SDC_SPI_MODE_MEM 0x00000000 SD Memory Card/SD memory

Return Values

SDC_SPI_SUCCESS Successful operation

SDC_SPI_ERR There is a problem with parameter settings.

SDC_SPI_ERR_ILLEGALCMD An illegal command error occurred.

SDC_SPI_ERR_CRC A CRC error is detected.

SDC_SPI_ERR_INTERNAL An error occurred in a module used within the driver.

Properties
A prototype declaration for this function appears in r_sdc_spi_rx_if.h.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 29 of 66
Mar.20.25

Description
This function performs SD Card initialization processing. Call this function after detecting an SD Card.

When the return value is SDC_SPI_SUCCESS, the SD Card transitions to the transfer state (tran) in which
read and write access to the SD Card is possible.

Example
sdc_spi_cfg_t sdc_spi_config;

/* ==== Please add the processing to set the pins. ==== */

sdc_spi_config.mode = 0x00000000;
sdc_spi_config.voltage = 0x00200000;
if (R_SDC_SPI_Initialize(SDC_SPI_CARD0, &sdc_spi_config, SDC_SPI_MODE_MEM) !=
SDC_SPI_SUCCESS)
{
 /* Error */
}

Special Notes
The pins must be set up before running this function. See section 4 Pin Setting for details. Also, before
running this function, driver open processing must be performed by the R_SDC_SPI_Open() function.

If this function returns an error, set the hardware to the SD Card initialization possible state by calling the
R_SDC_SPI_End() function, and then perform the initialization processing again.

After initialization completes successfully and before performing the second or onward initialization
processing, perform end processing by calling the R_SDC_SPI_End() function.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 30 of 66
Mar.20.25

3.5 R_SDC_SPI_End()
This function clears the value of the working area and changes the driver idle state to the SD Card
initialization possible state. Running this function does not change the state of the SD Card.

Format
sdc_spi_status_t R_SDC_SPI_End(
uint32_t card_no,
uint32_t end_type
)

Parameters
card_no

SD Card number The number of the SD Card used (numbering starts at 0)

Return Values

SDC_SPI_SUCCESS Successful operation

SDC_SPI_ERR There is a problem with parameter settings.

SDC_SPI_ERR_INTERNAL An error occurred in a module used within the driver.

Properties
A prototype declaration for this function appears in r_sdc_spi_rx_if.h.

Description
This function performs SD Card end processing to make the SD Card removable.

Example
if (R_SDC_SPI_End(SDC_SPI_CARD0) != SDC_SPI_SUCCESS)
{
 /* Error */
}

/* ==== Please add the processing to set the pins. ==== */

Special Notes
If the SD Card is removed after this function has run, the pins must be set up. See section 4 Pin Setting for
details. Also, before running this function, driver open processing must be performed by the
R_SDC_SPI_Open() function.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 31 of 66
Mar.20.25

3.6 R_SDC_SPI_Read()
This function performs read processing.

Format
sdc_spi_status_t R_SDC_SPI_Read(
uint32_t card_no,
sdc_spi_access_t *p_sdc_spi_access
)

Parameters
card_no

SD Card number The number of the SD Card used (numbering starts at 0)

*p_sdc_spi_access

Access information structure

*p_buff: Read buffer pointer

This must be set to an address on a 4-byte boundary.

lbn: Read start block number

cnt: Block count

The maximum value that can be set is 65,535.

write_mode: Write mode (Does not need to be set)

Return Values
SDC_SPI_SUCCESS Successful operation

SDC_SPI_ERR There is a problem with parameter settings.

SDC_SPI_ERR_ILLEGALCMD An illegal command error occurred.

SDC_SPI_ERR_CRC A CRC error is detected.

SDC_SPI_ERR_INTERNAL An error occurred in a module used within the driver.

Properties
A prototype declaration for this function appears in r_sdc_spi_rx_if.h.

Description
This function reads data for the number of blocks specified by cnt in the argument p_sdc_spi_access
starting at the block specified by lbn in the argument p_sdc_spi_access, and then stores the data in the
buffer specified by p_buff in the argument p_sdc_spi_access.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 32 of 66
Mar.20.25

Example
#define TEST_BLOCK_CNT (4)
#define BLOCK_NUM (512)

sdc_spi_access_t sdc_spi_access;
uint32_t g_test_r_buff[(TEST_BLOCK_CNT*BLOCK_NUM)/sizeof(uint32_t)];

sdc_spi_access.p_buff = (uint8_t *)&g_test_r_buff[0];
sdc_spi_access.lbn = 0x10000000;
sdc_spi_access.cnt = TEST_BLOCK_CNT;

if(R_SDC_SPI_Read(SDC_SPI_CARD0, &sdc_spi_access) != SDC_SPI_SUCCESS)
{
 /* Error */
}

Special Notes
Before running this function, it is necessary to perform driver open processing by the R_SDC_SPI_Open()
function and initialization by the R_SDC_SPI_Initialize() function.

We recommend repeating the read operation when this function terminates with a read error.

The size of a block is 512 bytes.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 33 of 66
Mar.20.25

3.7 R_SDC_SPI_Write()
This function performs write processing.

Format
sdc_spi_status_t R_SDC_SPI_Write(
uint32_t card_no,
sdc_spi_access_t *p_sdc_spi_access
)

Parameters
card_no

SD Card number The number of the SD Card used (numbering starts at 0)

*p_sdc_spi_access

Access information structure

*p_buff: Write buffer pointer

This must be set to an address on a 4-byte boundary.

lbn: Write start block number

cnt: Block count

The maximum value that can be set is 65,535.

write_mode: Write mode

Set this parameter to one of the macro definitions shown in Table 3-2 SD Card Driver Write Mode
(write_mode).

Return Values
SDC_SPI_SUCCESS Successful operation

SDC_SPI_ERR There is a problem with parameter settings.

SDC_SPI_ERR_WP An attempt was made to write to the write-protected SD Card.

SDC_SPI_ERR_ILLEGALCMD An illegal command error occurred.

SDC_SPI_ERR_CRC A CRC error is detected.

SDC_SPI_ERR_INTERNAL An error occurred in a module used within the driver.

Properties
A prototype declaration for this function appears in r_sdc_spi_rx_if.h.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 34 of 66
Mar.20.25

Description
This function writes data from the buffer specified by p_buff in the argument p_sdc_spi_access to an area
with the number of blocks specified by cnt in the argument p_sdc_spi_access. That area starts at the
blocks specified by lbn in the argument p_sdc_spi_access.

Table 3-2 SD Card Driver Write Mode (write_mode)

Type Macro Definition Value (Bits)
Write with pre-erase SDC_SPI_WRITE_WITH_PREERASE 0x00000000
Normal write SDC_SPI_WRITE_OVERWRITE 0x00000001

Example
#define TEST_BLOCK_CNT (4)
#define BLOCK_NUM (512)

sdc_spi_access_t sdc_spi_access;
uint32_t g_test_w_buff[(TEST_BLOCK_CNT*BLOCK_NUM)/sizeof(uint32_t)];

sdc_spi_access.p_buff = (uint8_t *)&g_test_w_buff[0];
sdc_spi_access.lbn = 0x10000000;
sdc_spi_access.cnt = TEST_BLOCK_CNT;
sdc_spi_access.write_mode= SDC_SPI_WRITE_WITH_PREERASE;

if(R_SDC_SPI_Write(SDC_SPI_CARD0, &sdc_spi_access) != SDC_SPI_SUCCESS)
{
 /* Error */
}

Special Notes
Before running this function, it is necessary to perform driver open processing by the R_SDC_SPI_Open()
function and initialization by the R_SDC_SPI_Initialize() function.

We recommend repeating the write operation if this function terminates with a write error.

If the number of blocks to be transferred exceeds 65,535, break up the write processing into multiple
function calls. Care must be taken when this function is called from upper-layer application programs such
as the M3S-TFAT-Tiny module.

Block size is 512 bytes.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 35 of 66
Mar.20.25

3.8 R_SDC_SPI_GetCardStatus()
This function acquires the card status information.

Format
sdc_spi_status_t R_SDC_SPI_GetCardStatus(
uint32_t card_no,
sdc_spi_card_status_t *p_sdc_spi_card_status
)

Parameters
card_no

SD Card number The number of the SD Card used (numbering starts at 0)

*p_sdc_spi_card_status

Card status information structure pointer

card_sector_size: User area block count

max_block_number : Maximum block count

write_protect: Write protect information (see Table 3-3 Write Protect Information (write_protect))

csd_structure: CSD information

0: Standard-Capacity Card (SDSC)

1: High-Capacity Card (SDHC, SDXC)

Return Values
SDC_SPI_SUCCESS Successful operation

SDC_SPI_ERR There is a problem with parameter settings.

Properties
A prototype declaration for this function appears in r_sdc_spi_rx_if.h.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 36 of 66
Mar.20.25

Description
This function acquires the card status information of the SD Card, and then stores it in a card status
information structure.

Table 3-3 Write Protect Information (write_protect)

Macro Definition Value (Bits) Definition
SDC_SPI_WP_OFF 0x00 Write protect released state
SDC_SPI_WP_HW 0x01 Hardware write protect state

SDC_SPI_WP_TEMP 0x02 The TEMP_WRITE_PROTECT bit in the CSD register is
set.

SDC_SPI_WP_PERM 0x04 The PERM_WRITE_PROTECT bit in the CSD register is
set.

SDC_SPI_WP_ROM 0x10 SD ROM

Example
sdc_spi_card_status_t sdc_spi_card_status;

if (R_SDC_SPI_GetCardStatus(SDC_SPI_CARD0, &sdc_spi_card_status) !=
SDC_SPI_SUCCESS)
{
 /* Error */
}

Special Notes
Before running this function, it is necessary to perform driver open processing by the R_SDC_SPI_Open()
function and initialization by the R_SDC_SPI_Initialize() function.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 37 of 66
Mar.20.25

3.9 R_SDC_SPI_GetCardInfo()
This function acquires the SD Card register information.

Format
sdc_spi_status_t R_SDC_SPI_GetCardInfo(
uint32_t card_no,
sdc_spi_card_reg_t *p_sdc_spi_card_reg
)

Parameters
card_no

SD Card number The number of the SD Card used (numbering starts at 0)

*p_sdc_spi_card_reg

SD Card register information structure pointer

ocr[1]: SD memory OCR information

cid[4]: SD memory CID information

csd[4]: SD memory CSD information

scr[2]: SD memory SCR information

sdstatus[4]: SD memory SD Status information

Return Values
SDC_SPI_SUCCESS Successful operation

SDC_SPI_ERR There is a problem with parameter settings.

Properties
A prototype declaration for this function appears in r_sdc_spi_rx_if.h.

Description
This function acquires the SD Card register information, and then stores it in the SD Card register
information structure.

Example
sdc_spi_card_reg_t sdc_spi_card_reg;

if (R_SDC_SPI_GetCardInfo(SDC_SPI_CARD0, &sdc_spi_card_reg) !=
SDC_SPI_SUCCESS)
{
 /* Error */
}

Special Notes

Before running this function, it is necessary to perform driver open processing by the R_SDC_SPI_Open()
function and initialization by the R_SDC_SPI_Initialize() function.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 38 of 66
Mar.20.25

3.10 R_SDC_SPI_SetLogHdlAddress()
This function sets the LONGQ FIT module handler address.

Format
sdc_spi_status_t R_SDC_SPI_SetLogHdlAddress(
uint32_t user_long_que
)

Parameters
user_long_que

Handler address of the LONGQ FIT module

Return Values
SDC_SPI_SUCCESS Successful operation

Properties
A prototype declaration for this function appears in r_sdc_spi_rx_if.h.

Description
This function sets the LONGQ FIT module handler address in the SD Card driver.

Example
#define SDC_SPI_USER_LONGQ_MAX (8)
#define SDC_SPI_USER_LONGQ_BUFSIZE (SDC_SPI_USER_LONGQ_MAX * 4)
#define SDC_SPI_USER_LONGQ_IGN_OVERFLOW (1)

uint32_t g_sdc_spi_user_longq_buf[SDC_SPI_USER_LONGQ_BUFSIZE];
static longq_hdl_t sdc_spi_user_long_que;
longq_err_t err = LONGQ_SUCCESS;
uint32_t user_long_que = 0;

err = R_LONGQ_Open(g_sdc_spi_user_longq_buf,
 SDC_SPI_USER_LONGQ_BUFSIZE,
 SDC_SPI_USER_LONGQ_IGN_OVERFLOW,
 &sdc_spi_user_long_que);
if (LONGQ_SUCCESS != err)
{
 /* Error */
}
user_long_que = (uint32_t)sdc_spi_user_long_que;
if (R_SDC_SPI_SetLogHdlAddress(user_long_que) != SDC_SPI_SUCCESS)
{
 /* Error */
}

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 39 of 66
Mar.20.25

Special Notes
This function performs the preparatory processing required to acquire an error log by using the LONGQ
FIT module. This processing should be performed before the R_SDC_SPI_Open() is called.

The LONGQ FIT module needs to be added to the project separately.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 40 of 66
Mar.20.25

3.11 R_SDC_SPI_Log()
This function acquires an error log.

Format
uint32_t R_SDC_SPI_Log(
uint32_t flg,
uint32_t fid,
uint32_t line
)

Parameters
flg

0x00000001 (fixed value)

fid

0x0000003f (fixed value)

line

0x00001fff (fixed value)

Return Values
0 Successful operation

Properties
A prototype declaration for this function appears in r_sdc_spi_rx_if.h.

Description
This function acquires an error log.

To terminate error log acquisition, call this function.

Example
#define USER_DRIVER_ID (1)
#define USER_LOG_MAX (63)
#define USER_LOG_ADR_MAX (0x00001fff)

sdc_spi_cfg_t sdc_spi_config;

/* ==== Please add the processing to set the pins. ==== */

sdc_spi_config.mode = 0x0000;
sdc_spi_config.voltage = 0x00200000;
if (R_SDC_SPI_Initialize(SDC_SPI_CARD0, &sdc_spi_config, SDC_SPI_MODE_MEM) !=
SDC_SPI_SUCCESS)
{
 /* Error */
 R_SDC_SPI_Log(USER_DRIVER_ID, USER_LOG_MAX, USER_LOG_ADR_MAX);
}

Special Notes

The LONGQ FIT module needs to be added to the project separately.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 41 of 66
Mar.20.25

3.12 R_SDC_SPI_GetVersion()
This function acquires the version information for the driver.

Format
uint32_t R_SDC_SPI_GetVersion(
void
)

Parameters
None

Return Values
Upper 2 bytes Major version (decimal)

Lower 2 bytes Minor version (decimal)

Properties
A prototype declaration for this function appears in r_sdc_spi_rx_if.h.

Description
This function returns the version information for the driver.

Example
uint32_t version;
version = R_SDC_SPI_GetVersion();

Special Notes
None

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 42 of 66
Mar.20.25

4. Pin Setting
To control SD Card using the SPI mode SD Memory Card driver, the pins shown in "1.4 Hardware Settings"
is used. Each pin is used by the SPI mode SD Memory Card driver, the MEMDRV FIT module shown in "1.1
SPI Mode SD Memory Card Driver", and either the SCI FIT module or the RSPI FIT module. To enable each
module to us e the pins , peripheral functions mus t be properly as s igned to the pins .

Function assignments to the pins can be set using the "Smart Configurator" of the integrated development
environment "e2 studio". Refer to Table 4-1 for setting each pin. Depending on the settings, source files
"Pin.c", "e_sci_rx_pinset.c", and "r_rspi_rx_pinset" containing functions that control the pin are generated.

Table 4-1 Pin settings for controlling SD Card in SPI mode

Pin Peripheral
Function

Assignment

Modules to Call Pin Setting Function Pin Setting Function
(Generated by Smart Configurator)

FIT module Function

CDn*1 *5 GPIO SPI mode
SD Memory Card • R_SDC_SPI_Open() • GPIO FIT module*5

R_GPIO_PinDirectionSet () CSn(1 *5

WPn(*1 *5

SCKm*2 SCI*3 MEMDRV FIT
module

• r_memdrv_sci.c

sci_init_ports()

• r_sci_pinset.c

R_SCI_PinSet_SCIm()*2
SMOSIm*2

SMISOm*2

RSPCKm*2 RSPI*2 MEMDRV FIT
module

• r_memdrv_rspi.c

rspi_init_ports()

• r_rspi_pinset.c

R_RSPI_PinSet_RSPIm()*2
MOSIm*2

MISOm*2

Note1 : n indicates the card number.

Note2 : m indicates the channel number. The number varies depending on the channel used.

Note3 : When using RSPI, SCI settings are not required.

Note4 : When using SCI, RSPI settings are not required.

Note5 : Do not use pin setting functions generated by the Smart Configurator, use GPIO FIT module to
control the pins.

For the pin setting sequence, refer to "4.1 SD Card Insertion and Power-On " and "4.2 SD Card Removal
and Power-Off Sequence".

Refer to the demo project for practical coding examples.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 43 of 66
Mar.20.25

4.1 SD Card Insertion and Power-On Sequence
SD Card insertion and power-on sequence are shown in Figure 4-1 and Table 4-2. Insert the SD Card after
the R_SDC_SPI_Open() function has completed successfully, and when the power supply to the SD Card is
being provided, and the SCI or RSPI output pins are set to L level.

Here, "power supply" indicates the power supply circuit for the SD Card, and "power control pin" indicates
the RX microcontroller pin assigned to control the output of the power supply circuit for SD Card.

Figure 4-1 SD Card Insertion and Power-On Sequence

Driver uninitialized condition

R_SDC_SPI_Open()

R_SDC_SPI_GetCard
Detection()

Card undetected

Card detected

After power-on reset

Driver idle condition

Pin control 1

SD card power supply stopped condition
Power supply control pin: GPIO L/H output
(Set the pin to L or H to stop power supply)

Pin control 3

R_SDC_SPI_Initialize()

SD card power supply provided condition
Power supply control pin: GPIO L/H output
(Set the pin to L or H to provide power supply)
After providing power supply, put a sufficient
waiting time until it reaches operating
voltage*3.

SD command executable condition
CS pin : : GPIO H output
SCI/RSPI input pin*1: SCI or RSPI input
SCI/RSPI output pin*2: SCI or RSPI output

Notes: 1. For SCI, referred to SMISOn pin.
 For RSPI referred to MISOn pin.

 2. For SCI, referred to SMOSIn and SCK pin.
 For RSPI, referred to MOSIn and RSPCKn pin.
 3. The waiting time is determined by the SD card

power supply circuit.

A Card reinsertion

Pin control 2

SD card pin initial condition
SCI/RSPI input pin*1: GPIO input
SCI/RSPI output pin*2: GPIO L output

CD pin, CS pin, WP pin: GPIO input

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 44 of 66
Mar.20.25

Table 4-2 Pin Control for SD Card Insertion

Processing Target Pin Pin Settings Pin Condition after Execution
Pin control 1 SCI input pin or

RSPI input pin*1
PMR setting: General I/O port
PCR setting: Input pull-up resistor
disabled*3
PDR setting: Input
MPC setting: General I/O
PMR setting: General I/O port

GPIO input

SCI output pin
or RSPI output
pin*2

PMR setting: General I/O port
DSCR setting: High-drive output
PCR setting: Input pull-up resistor
disabled*3
PODR setting: L output
PDR setting: Output
MPC setting: General I/O

GPIO L output

Pin control 2*5 Power supply
control pin

PMR setting: General I/O
PCR setting: Input pull-up resistor
disabled*4
PODR setting: L or H output
(Set to L or H to stop power supply)
PDR setting: Output

GPIO L/H output
(Power supply stopped
condition)

Pin control 3*6 Power supply
control pin

PODR setting: L or H output
(Set to L or H to provide power supply)

GPIO L/H output
(Power supply provided
condition)

Notes: 1. For SCI, configure to SMISO pin. For RSPI, configure to MISO pin.
 2. For SCI, configure to SMOSI and SCK pins. For RSPI, configure to MOSI and RSPCK pins.
 3. Pull-up the pin externally to the microcontroller, and disable the microcontroller's internal pull-up

resistor.
 4. Depending on the system to be used this driver, enable or disable the microcontroller's built-in

input pull-up resistor.
 5. In the demo project, r_sdc_spi_demo_power_init() is used for the processing.
 6. In the demo project, r_sdc_spi_demo_power_on() is used for the processing.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 45 of 66
Mar.20.25

4.2 SD Card Removal and Power-Off Sequence
SD Card removal and power-off sequence are shown in Figure 4-2 and Table 4-3. Remove the SD Card
after the R_SDC_SPI_End() function has completed successfully in the driver idle state, and when the power
supply to the SD Card is stopped. Also, if the SD Card is removed unexpectedly, stop the power supply by
the same sequence.

Here, "power supply" indicates the power supply circuit for the SD Card, and "power control pin" indicates
the RX microcontroller pin assigned to control the output of the power supply circuit for SD Card.

Figure 4-2 SD Card Removal and Power-Off Sequence

Table 4-3 Pin Control for SD Card Removal

Processing Target Pin Pin Settings Pin Condition after Execution
Pin control 4*1 Power supply

control pin
PODR setting: L or H output
(Set to L or H to stop power supply)

GPIO L/H output
(Power supply stopped
condition)

Note 1. In the demo project, r_sdc_spi_demo_power_off() is used for the processing.

Driver idle condition

R_SDC_SPI_GetCard
Detection()

Card detected

Card undetected(Processing exit)

Pin control 4

SD card power supply stopped condition
Power supply control pin: GPIO L/H output
(Set the pin to L or H to stop power supply)
After stopping power supply, put a
sufficient waiting time until it reaches the
voltage possible to remove the SD card*3.

R_SDC_SPI_Close()

Notes: 1. For SCI, referred to SMISOn pin.
 For RSPI referred to MISOn pin.

 2. For SCI, referred to SMOSIn and CLK pin.
 For RSPI, referred to MOSIn and RSPCKn pin.
 3. The waiting time is determined by the SD card

power supply circuit.

Driver uninitialized condition

SD command execution impossible condition
CS pin :GPIO input
SCI/RSPI input pin*1: GPIO input
SCI/RSPI output pin*2: GPIO L output

A

Card undetected (Card reinsertion)

R_SDC_SPI_End()

CD pin, CS pin, WP pin: GPIO input

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 46 of 66
Mar.20.25

5. Demo project

5.1 Overview
This application note includes a demo project to explain how to use the SPI mode SD Memory Card driver.

Figure 5-1 Files of the Application Note

The demo project performs the following processing in sequence.
• SD Card insertion and power-on
• Read/write processing to the SD Card using the driver
• SD Card removal and power-off

The demo project performs read/write processing for one SD Card.
The demo project performs read/write processing by CPU transfer using SCI module.
For the details, refer to “5.4 Demo Project Flowchart”

5.2 Operation Confirmation Environment
Table 5-1 shows the hardware, settings, and other conditions for running the demo project.
Figure 5-2 shows the hardware configuration consists of the evaluation board and SD Card.
Figure 5-3 shows the Pin connection between RX140 and the SD Card.
Figure 5-4 shows the rework of the evaluation board.

Refer to the Tables and the Figures, configure the operating environment for the demo project.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 47 of 66
Mar.20.25

Table 5-1 Operation Confirmation Conditions

Item Contents
MCU used R5F51403ADFM (RX140 Group)
Operating frequency HOCO : 48 MHz

System clock (ICLK): 48 MHz (HOCO ×1)
Peripheral module clocks B (PCLKB): 24 MHz (PLL ×1/2)

Operating voltage 3.3 V
Integrated development
environment

Renesas Electronics e2 studio 2024-07

C compiler Renesas Electronics
C/C++ Compiler Package for RX Family V3.06.00
Compiler option
-lang = c99

iodefine.h version V 1.00
Endian Little endian or big endian
Operating mode Single-chip mode
Processor mode Supervisor mode
Sample code version Version 1.00
Board used Target Board for RX140 (Product No. RTK5RX1400CxxxxxBJ)
PmodTM SD Card
connector

Digilent® PmodSDTM
PmodTM and PmodSDTM is a trademarks of Digilent Inc.

SD Card SDHC memory card

Figure 5-2 Operation Environment for Demo Project

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 48 of 66
Mar.20.25

Figure 5-3 Pin Connection for Target Board for RX140 and SD Card

Figure 5-4 Rework of Target Board for RX140

Target Board for RX140

CN1.Pin2

Pmod SD

 Pin2 MOSI

RX140

PA4/TXD5/SMOSI5
 Pin3 MISO

CN1.Pin5
VSS

Pin5 GND

Pin9 CD

CN1.Pin3
PA3/RXD5/SMISO5

CN1.Pin1 Pin1 ~CS
PE5

 Pin4 SCK CN1.Pin4
PA1/SCK5

CN1.Pin6Pin6 VCC
TGVCC

CN1.Pin9
PB5

Pin10 WP CN1.Pin10
PB6

CN1.Pin11Pin11 GND

CN1.Pin12Pin12 VCC

SD Card

CMD/DI

VSS1

CLK/SCLK

DAT0/D0

CD/DAT3/CS

VDD

VSS2

CD

WP

Pattern Rework
 SC3: Short-circuit by soldering
 SS13: Cut
 SC2: Short-circuit by soldering
 SS12: Cut

Soldered Soldered

Cut Cut

Target Board for RX140 (Soldered Side)

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 49 of 66
Mar.20.25

5.3 Compile Settings
All configurable options the Demo Project that can be set at build time are located in the file
"r_sdc_spi_rx_demo_pin_config.h".

Configuration options in r_sdc_spi_rx_demo_pin_config.h

#define SDC_SPI_DEMO_CFG_POWER_CONTROL (0)
Note: The default value is "0".

The definition is specified if a general-purpose input/output port for
the power supply control for the SD Card is enabled or not.
Set to 1: The SD Card power supply control is enabled.
Set to 0: The SD Card power supply control is disabled.

#define SDC_SPI_DEMO_CFG_POWER_HIGH_ACTIVE (1)
Note: The default value is "1 (high level supplied)".

This definition is specified if an SD Card power supply control is
required or not.
Set to 1: A high level is supplied to the port that controls the SD
Card power supply circuit to enable the SD Card power supply
circuit.
Set to 0: A low level is supplied to the port that controls the SD
Card power supply circuit to enable the SD Card power supply
circuit.

#define SDC_SPI_DEMO_POWER_ON_WAIT (100)
Note: The default value is "100 (100 ms wait)".

This definition is specified the wait time for the power supply is
reached the operating voltage after enable the power supply circuit
started power supply to the SD Card.
When set to 1, the waiting period is 1ms.
Set according to the power supply circuit for the SD Card.

#define SDC_SPI_DEMO _POWER_OFF_WAIT (100)
Note: The default value is "100 (100 ms wait)".

This definition is specified the wait time for the power supply is
reached the voltage possible for SD Card removal.
When set to 1, the waiting period is 1ms.
Set according to the power supply circuit for the SD Card.

#define SDC_SPI_DEMO_POWER_CARDx_PORT (‘2’)
Note: The default number is " ‘2’ ".
Note: "x" in CARDx indicates an SD Card number (x = 0)

Specify the definition to the port number of the power supply a
control pin assigned for SD Card number x.
Put the number in single quotation marks ' '.

#define SDC_SPI_DEMO_POWER_CARDx_BIT (‘0’)
Note: "x" in CARDx indicates an SD Card number (x = 0)

Specify the definition to the bit number of the power supply a
control pin assigned for SD Card number x.
Put the number in single quotation marks ' '.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 50 of 66
Mar.20.25

5.4 Demo Project Flowchart
The demo project performs the processing shown in Table 5-2 on the SD Card connected to the RX140.

Figure 5-5 and Figure 5-6 shows the demo project processing.

Table 5-2 Operation of Demo Project

 Operation Description
1) SD Card insertion and power-on  After detecting the insertion of SD Card, starts providing

power to the SD Card. *1
 After started providing power, waiting until the operating

voltage is reached, and performs the subsequent
processing.

 The waiting time is specified by
SDC_SPI_CFG_POWER_ON_WAIT.

2) Read/write to SD Card using this
driver

Write and read 4 blocks (2048 bytes) and confirm that the data
was written correctly.

3) SD Card removal and power-off  Stop providing power to the SD Card.*1
 After stopped providing power, waiting until it reaches the

voltage possible to remove the SD Card, the SD Card can
be removed.

 The waiting time is specified by
SDC_SPI_CFG_POWER_OFF_WAIT.

Note 1. In the demo project, SDC_SPI_DEMO_CFG_POWER_CONTROL is set to (0) to disable
processing for power control pin setting. Because the Target Board for RX140, the operating
environment for the demo project, is not implemented with a power supply circuit for the SD Card.
Therefore, at the same time the board is powered, the SD Card is also powered.
For hardware implemented with a power supply circuit for the SD Card, set
SDC_SPI_DEMO_CFG_POWER_CONTROL to (1), enables the processing to start providing
power after detection of the SD Card insertion.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 51 of 66
Mar.20.25

Figure 5-5 Flowchart for Demo Project (1/2)

main

Initialize power supply control pin
r_sdc_spi_demo_power_init()

Open driver
R_SDC_SPI_Open()

SD card detection
R_SDC_SPI_GetCardDetection()

Yes

No
SD card Detected?

Set power supply control pin to
start providing power

r_sdc_spi_demo_power_on()

Initialize driver
R_SDC_SPI_Initialize()

A

Delay to avoid false detection
due to chattering

R_BSP_SoftwareDelay()

Yes

No
SD card Detected?

SD card detection
R_SDC_SPI_GetCardDetection()

Delay to avoid false detection
due to chattering

R_BSP_SoftwareDelay()

Yes

No
SD card Detected?

SD card detection
R_SDC_SPI_GetCardDetection()

Initialize variables used in demo project
 card_no ← 0 : Use ch0 of SPI mode SD Memory Card driver module
 device_no ← 0 : Used MEMDRV FIT ch0
 init_type ← 0 : Select Init ialize type for SD memory card

Set pin used in SMOSI and CLK to low output
PORTA.PODR register
 B1 bit ← 0 : Low output
PORTA.PODR register
 B4 bit ← 0 : Low output
PORTA.PDR register
 B1 bit ← 0 : Set output port
PORTA.PDR register
 B4 bit ← 0 : Set output port

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 52 of 66
Mar.20.25

Figure 5-6 Flowchart for Demo Project (2/2)

return

Set power supply control pinfrom to
stop providing power

r_sdc_spi_demo_power_off()

Read data from SD card
R_SDC_SPI_Read() Read and back up the current "data stored in SD card(A)".

Write to SD card
R_SDC_SPI_Write() Write data prepared in “data prepared in demo project.

Read data from SD card
R_SDC_SPI_Read()

Data prepared in “data prepared in demo project”
read.

Compare Write data and Read data
r_sdc_spi_rw_compare()

Check if "data prepared in demo project(B)" is
written as expected

Write to SD card
R_SDC_SPI_Write() Write backed up "data stored in SD card(A)".

Compare Write data and Read data
r_sdc_spi_rw_compare()

Check whether the backed up "data stored in SD card(A)" is
written as expected.

Change driver state to
SD Card initialization possible

R_SDC_SPI_End()

Close driver
R_SDC_SPI_Close()

Set parameters to p_sdc_spi_access variables
used in R_SDC_SPI_Write()

Set parameters to p_sdc_spi_access variables
used in R_SDC_SPI_Read()

Set parameters to p_sdc_spi_access variables
used in R_SDC_SPI_Write()

Set parameters to p_sdc_spi_access variables
used in R_SDC_SPI_Read()

A

From the area used by demo project (4 blocks from the last sector)
Set the parameters for reading to p_sdc_spi_access variables.

Set the parameters for writing "data prepared in demo project(B)" to
p_sdc_spi_access variables.
"data prepared in demo project(B)" is array data that repeats increment
data from "0x00" to "0xFF" eight times.

Set the parameters for reading from the area used in Demo project(4
blocks) to p_sdc_spi_access variables.

Set the parameters for writing the backed up "data prepared in
demo project(B)" to p_sdc_spi_access variables.

Get SD card status
R_SDC_SPI_GetCardStatus() Get SD card status

Initialize port mode of the
port used in SCI

sci_pin_initialize_gpio()
Set the port used in SCI to general IO/pin

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 53 of 66
Mar.20.25

5.5 Pin Condition Transition
Figure 5-7 Transition of Pin Conditions shows the transition focuses on the conditions of the RX140 pins
connected to the SD Card pins.

Figure 5-7 Transition of Pin Conditions

Pins undefined
condition

Pins initial condition, Power supply stopped condition:
SD Card possible to insert or remove

(CD pin, CS pin, WP pin, SMISO pin: GPIO input)
(SMOSI pin, SCK pin :GPIO L output)

(Power supply control pin: GPIO L/H output *1)

r_sdc_spi_demo_power_on() r_sdc_spi_demo_power_off()

CD pin, CS pin, WP pin, SMISO pin: GPIO input
SMOSI pin, SCK pin :GPIO L output

r_sdc_spi_demo_power_init()

SD Card driver executable condition:
SD Card control pins setting completed

(CD pin, CS pin, WP pin, SMISO pin: GPIO input)
(SMOSI pin, SCK pin :GPIO L output)

(Power supply control pin: GPIO L/H output *2)

Pins initial condition, Power supply provided condition:
SD Card driver not executable

(CD pin, CS pin, WP pin, SMISO pin: GPIO input)
(SMOSI pin, SCK pin :GPIO L output)

(Power supply control pin: GPIO L/H output *2)

R_SDC_SPI_Initialize() R_SDC_SPI_End()

R_SDC_SPI_Read()
R_SDC_SPI_Write()

R_SDC_SPI_GetCardStatus()
R_SDC_SPI_GetCardInfo()

Pins initial condition, Power supply stopped condition
(CD pin, CS pin, WP pin, SMISO pin: GPIO input)

(SMOSI pin, SCK pin :GPIO L output)
(Power supply control pin: GPIO L/H output *1)

R_SDC_SPI_Open()

Notes: 1. Set the pin to L or H to stop power supply.
 2. Set the pin to L or H to provide power supply.

R_SDC_SPI_Close()

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 54 of 66
Mar.20.25

5.6 Files

Table 5-3 lists the files used in the demo project.

Table 5-3 Files Used in the Demo Project

File Name Overview
r_sdc_spi_rx_demo.c The C source file containing the main function of the demo project. The

functions of main.c performs the operation shown in refer to “5.4 Demo
Project Flowchart” using the FIT module APIs such as the SD Card driver.

r_sdc_spi_rx_demo.c The C source file containing sub functions used in the demo project.
r_sdc_spi_rx_demo_config.h The header file for configuration options for the demo project.

5.7 API Functions
The demo project consists of the main function and sub functions. These functions are described in main.c
and r_sdc_spi_rx_demo.c.

Table 5-4 API Functions

Function Functional Overview
main() Main function of demo project.

 Performs the operation shown in “5.4 Demo Project Flowchart”by using
following four of sub functions.

 Calls SPI mode SD Memory Card driver API functions to perform read
and write processing

r_sdc_spi_demo_power_init() Initialize the power supply control pin*1 settings
r_sdc_spi_demo_power_on() Set the power supply control pin*1 to provide power supply to the SD Card
r_sdc_spi_demo_power_off() Set the power supply control pin*1 to stop power supply to SD Card
r_sdc_spi_rw_compare() Compare read data and write data

Note 1. Here, "power supply" indicates the power supply circuit for the SD Card, and "power control pin"

indicates the RX microcontroller pin assigned to control the output of the power supply circuit for SD
Card. Because the Target Board for RX140, the operating environment for the demo project, is not
implemented with a power supply circuit for the SD Card. The demo project is designed for hardware
that implements an SD card power supply circuit.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 55 of 66
Mar.20.25

(1) r_sdc_spi_demo_power_init()

The function initializes the setting of the power supply control pin.

Format
void r_sdc_spi_demo_power_init(
uint32_t card_no
)

Parameters
card_no

SD Card number The SD Card number to be controlled. (numbering starts at 0)

Return Values
None

Description
The function initializes the settings of the power control pin to control the SD Card power supply circuit.

The power control pin is the RX microcontroller pin specified in config.h.

Sets the power control pin as shown below.
• Sets the port mode register (PMR) to general I/O port.
• Sets the pull up control register (PCR) to disable the input pull-up resistor.
• Sets Port Output Data Register (PODR) the pin output to either L or H.

Specify L or H to stop power supply according to the power supply circuit.
(The setting in SDC_SPI_DEMO_CFG_POWER_HIGH_ACTIVE referred to)

• Set PDR to output.

Special Notes
This function was designed to control the power supply for SD Card on the SD Card control system
hardware.

Follow "4.1 SD Card Insertion and Power-On Sequence" for providing power to the SD Card. In the
sequence, "Pin control 2" is this function which is the process to initialize the setting of the power supply
control pin.

Note that, the Target Board for RX140, the operating environment for the demo project, is not implement with
a power supply circuit for the SD Card. Therefore, the process to initialize the power control pin in the
function is configured to disable by setting SDC_SPI_DEMO_CFG_POWER_CONTROL to (0) in
r_sdc_spi_rx_demo_config.h.
For hardware implemented with a power supply circuit, setting SDC_SPI_DEMO_CFG_POWER_CONTROL
to (1) enables the process to initialize the power supply control pin.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 56 of 66
Mar.20.25

(2) r_sdc_spi_demo_power_on()

The function sets the power supply control pin to start providing power supply to the SD Card.

Format
bool r_sdc_spi_demo_power_on(
 uint32_t card_no
)

Parameters
card_no

SD Card number The SD Card number to be controlled (numbering starts at 0)

Return Values
true Successful operation
false error

Description
Sets the output level of the power supply control pin to start providing power to the SD Card.

• Sets Port Output Data Register (PODR) the pin output to either L or H.
Specify L or H to provide power supply according to the power supply circuit
(The setting in SDC_SPI_DEMO_CFG_POWER_HIGH_ACTIVE referred to)

• After the time set by SDC_SPI_CFG_POWER_ON_WAIT in r_sdc_spi_rx_demo_config.h has elapsed,
the execution result of this function is returned as a return value.

Special Notes
• After started providing power, execute the R_BSP_SoftwareDelay() function to wait until the

operating voltage is reached.
The waiting time is specified by SDC_SPI_CFG_POWER_ON_WAIT, which referred to "5.5
Compile settings".

• Execute the r_sdc_spi_demo_power_init() function to initialize the power supply control pin before
executing this function.

• This function was designed to control the power supply for SD Card on the SD Card control system
hardware.
Follow "4.1 SD Card Insertion and Power-On Sequence" for providing power to the SD Card. In the
sequence, "Pin control 3” is this function which is the process to initialize the setting of the power
supply control pin.

Note that, the Target Board for RX140, the operating environment for the demo project, is not
implement with a power supply circuit for the SD Card. Therefore, the process to initialize the power
control pin in the function is configured to disable by setting
SDC_SPI_DEMO_CFG_POWER_CONTROL to (0) in r_sdc_spi_rx_demo_config.h.
For hardware implemented with a power supply circuit, setting
SDC_SPI_DEMO_CFG_POWER_CONTROL to (1) enables the process to initialize the power
supply control pin.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 57 of 66
Mar.20.25

(3) r_sdc_spi_demo_power_off()

The function sets the power supply control pin to stop providing power supply to the SD Card.

Format
bool r_sdc_spi_demo_power_off(
 uint32_t card_no
)

Parameters
card_no

SD Card number The SD Card number to be controlled. (numbering starts at 0)

Return Values
true Successful operation
false error

Description
Sets the output level of the power supply control pin to stop providing power to the SD Card.

• Sets Port Output Data Register (PODR) the pin output to either L or H.
Specify L or H to stop power supply according to the power supply circuit
(The setting in SDC_SPI_DEMO_CFG_POWER_HIGH_ACTIVE referred to)

• After the time set by SDC_SPI_CFG_POWER_OFF_WAIT in r_sdc_spi_rx_demo_config.h has
elapsed, the execution result of this function is returned as a return value.

Special Notes
• After stopped providing power, execute the R_BSP_SoftwareDelay() function to wait until the voltage

possible to remove the SD Card.
The waiting time is specified by SDC_SPI_CFG_POWER_OFF_WAIT, which referred to "5.5 Compile
settings".

• Execute the r_sdc_spi_demo_power_init() function to initialize the power supply control pin before
executing this function.

• This function was designed to control the power supply for SD Card on the SD Card control system
hardware.
Follow "4.2 SD Card Removal and Power-Off Sequence" for providing power to the SD Card. In the
sequence, "Pin control 4” is this function which is the process to initialize the setting of the power supply
control pin.

Note that, the Target Board for RX140, the operating environment for the demo project, is not
implement with a power supply circuit for the SD Card. Therefore, the process to initialize the power
control pin in the function is configured to disable by setting
SDC_SPI_DEMO_CFG_POWER_CONTROL to (0) in r_sdc_spi_rx_demo_config.h.
For hardware implemented with a power supply circuit, setting
SDC_SPI_DEMO_CFG_POWER_CONTROL to (1) enables the process to initialize the power supply
control pin.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 58 of 66
Mar.20.25

(4) r_sdc_spi_rw_compare()

This function compares write the data stored in the write data buffer and read data buffer, and return the
result.

Format
bool r_sdc_spi_rw_compare(
uint32_t * p_buf_w
uint32_t * p_buf_r
uint32_t cnt
)

Parameters
* p_buf_w
 Write data buffer pointer
 Please set the buffer in units of 512 bytes.

* p_buf_r
 Read data buffer pointer
 Please set the buffer in units of 512 bytes.

cnt
compare block count

Return Values
true Data in the Write data buffer and the Read data

buffer are matched.
false Data in the Write data buffer and the Read data

buffer are not matched.

Description
Compares data stored in the write data buffer and the read data buffer specified by arguments, return the
result.

Special Notes
None

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 59 of 66
Mar.20.25

5.8 Downloading Demo Projects
Notes for the case of the FIT module obtained from RX Driver Package are described here.

Demo projects are not included in the RX Driver Package. When using the demo project, the FIT module
needs to be downloaded. To download the FIT module, right click on this application note and select
"Sample Code (download)" from the context menu in the Smart Brower >> Application Notes tab.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 60 of 66
Mar.20.25

5.9 Importing a Project into e2 studio
Demo projects are not included in the RX Driver Package. When using the demo project, the FIT module

Follow the steps below to import your project into e2 studio. Pictures may be different depending on the
version of e2 studio to be used.

Figure 5-8 Importing a Project into e2 studio

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 61 of 66
Mar.20.25

5.10 Notes for the Demo project
The demo project runs on the condition shown in "5.2 Operation Confirmation Environment", Target Board
for RX140 connected with the Pmod SD Card connector.
By the condition, when power is supplied to the Target Board for RX140, also to the Pmod SD Card
connector's power pin.
And power must be supplied to SD Card while SD Card is connected.
Therefore, connect SD Card before starting power supply to the Target Board for RX140.
The other way, remove SD Card after the power supply to the Target Board for RX140 has stopped.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 62 of 66
Mar.20.25

6. Appendices
6.1 Operation Confirmation Environment
This section describes operation confirmation environment for the driver.

Table 6-1 Operation Confirmation Environment

Item Contents
Integrated development
environment

Renesas Electronics e2 studio 2025-01
IAR Embedded Workbench for Renesas 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.03.00.202411
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 5.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Version of the module Ver.1.11
Board used -

Table 6-2 Operation Confirmation Environment

Item Contents
Integrated development
environment

Renesas Electronics e2 studio 2024-07
IAR Embedded Workbench for Renesas 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.06.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.03.00.202405
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 5.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Version of the module Ver.1.10
Board used Target Board for RX140 (product No.: RTK5RX1400CxxxxxBJ)

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 63 of 66
Mar.20.25

Table 6-3 Operation Confirmation Environment

Item Contents
Integrated development
environment

Renesas Electronics e2 studio 2023-10
IAR Embedded Workbench for Renesas 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V.3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.03.00.202311
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 5.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Version of the module Ver.1.00
Board used Target Board for RX140 (product No.: RTK5RX1400CxxxxxBJ)

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 64 of 66
Mar.20.25

6.2 Troubleshooting
(1) Q: I have added the FIT module to the project and built it. Then I got the error: Could not open source file

"platform.h".

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules
is correct with the following documents:

 Using CS+:

Application note "Adding Firmware Integration Technology Modules to CS+ Projects
(R01AN1826)"

 Using e2 studio:

Application note "Adding Firmware Integration Technology Modules to Projects (R01AN1723)"

When using this FIT module, the board support package FIT module (BSP module) must also be added
to the project. Refer to the application note "Board Support Package Module Using Firmware Integration
Technology (R01AN1685)".

(2) Q: I have added the FIT module to the project and built it. Then I got the error: This MCU is not supported
by the current r_sdc_spi_rx module.

A: The FIT module you added may not support the target device chosen in your project. Check the
supported devices of added FIT modules.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 65 of 66
Mar.20.25

7. Appendices
User's Manual: Hardware
The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

User's Manual: Development Tools
RX Family C/C++ Compiler CC-RX User's Manual (R20UT3248)
The latest version can be downloaded from the Renesas Electronics website.

RX Family SPI Mode SD Memory Card Driver Firmware Integration Technology

R01AN6908EJ0101 Rev.1.11 Page 66 of 66
Mar.20.25

Revision History

Rev. Date
Description
Page Summary

1.00 Dec. 28, 2023 - First edition issued.
1.10 Sep.16.2024 62 Table 6-1 Add
 Program Delete #include "r_gpio_rx_if.h"
 Program CSD register Ver2 C_SIZE calculation formula correction
1.11 Mar.20.2025 62 Added Table 6 1 Operation Confirmation Environment
 program Changed the disclaimer in program sources

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2025 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 SPI Mode SD Memory Card Driver
	(1) M3S-TFAT-Tiny module
	(2) Memory driver interface module
	(3) SPI mode SD Memory Card driver module
	(4) MEMDRV FIT module
	(5) SCI FIT module
	(6) RSPI FIT module
	(7) DTC FIT module and DMAC FIT module
	(8) GPIO FIT module
	(9) LONGQ FIT module
	(10) Config_CRC (CRC calculator)
	(11) BSP (board support package module)
	(12) Pin setting function

	1.2 Overview of the SPI Mode SD Memory Card Driver
	1.3 API Overview
	1.4 Hardware Settings
	1.4.1 Hardware Configuration Example

	1.5 State Transition Diagram
	1.6 Processing Examples
	1.6.1 Basic Control
	(1) Supported commands
	(2) Relationship between data buffers and data in the SD Card
	(3) Operating voltage settings
	(4) SD Card status verification

	1.6.2 Control After an Error
	(1) Handling when an error occurs
	(2) Handling error termination after transition to the transfer state (tran)

	1.7 Limitations
	1.7.1 Notes on SD Card Power Supply
	1.7.2 Software Write Protection
	1.7.3 Compatible with SDUC card

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Toolchain
	2.4 Interrupt Vector
	2.5 Header Files
	2.6 Integer Types
	2.7 Configuration Overview
	2.8 Code Size
	2.9 Parameters
	(1) sdc_spi_cfg_t structure definition
	(2) sdc_spi_access_t structure definition
	(3) sdc_spi_card_status_t structure definition
	(4) sdc_spi_card_reg_t structure definition

	2.10 Error Codes as Return Values
	2.11 Adding the FIT Module to Your Project
	(1) Adding the FIT module to your project by using the Smart Configurator in e2 studio
	(2) Adding the FIT module to your project by using the FIT Configurator in e2 studio
	(3) Adding the FIT module to your project by using the Smart Configurator in CS+
	(4) Adding the FIT module to your project in CS+

	2.12 “for”, “while” and “do while” Statements

	3. API Functions
	3.1 R_SDC_SPI_Open()
	3.2 R_SDC_SPI_Close()
	3.3 R_SDC_SPI_GetCardDetection()
	3.4 R_SDC_SPI_Initialize()
	3.5 R_SDC_SPI_End()
	3.6 R_SDC_SPI_Read()
	3.7 R_SDC_SPI_Write()
	3.8 R_SDC_SPI_GetCardStatus()
	3.9 R_SDC_SPI_GetCardInfo()
	3.10 R_SDC_SPI_SetLogHdlAddress()
	3.11 R_SDC_SPI_Log()
	3.12 R_SDC_SPI_GetVersion()

	4. Pin Setting
	4.1 SD Card Insertion and Power-On Sequence
	4.2 SD Card Removal and Power-Off Sequence

	5. Demo project
	5.1 Overview
	5.2 Operation Confirmation Environment
	5.3 Compile Settings
	5.4 Demo Project Flowchart
	5.5 Pin Condition Transition
	5.6 Files
	5.7 API Functions
	(1) r_sdc_spi_demo_power_init()
	(2) r_sdc_spi_demo_power_on()
	(3) r_sdc_spi_demo_power_off()
	(4) r_sdc_spi_rw_compare()

	5.8 Downloading Demo Projects
	5.9 Importing a Project into e2 studio
	5.10 Notes for the Demo project

	6. Appendices
	6.1 Operation Confirmation Environment
	6.2 Troubleshooting

	7. Appendices
	Revision History

